WorldWideScience

Sample records for model tachyonic fluid

  1. Metamaterial Model of Tachyonic Dark Energy

    Directory of Open Access Journals (Sweden)

    Igor I. Smolyaninov

    2014-02-01

    Full Text Available Dark energy with negative pressure and positive energy density is believed to be responsible for the accelerated expansion of the universe. Quite a few theoretical models of dark energy are based on tachyonic fields interacting with itself and normal (bradyonic matter. Here, we propose an experimental model of tachyonic dark energy based on hyperbolic metamaterials. Wave equation describing propagation of extraordinary light inside hyperbolic metamaterials exhibits 2 + 1 dimensional Lorentz symmetry. The role of time in the corresponding effective 3D Minkowski spacetime is played by the spatial coordinate aligned with the optical axis of the metamaterial. Nonlinear optical Kerr effect bends this spacetime resulting in effective gravitational force between extraordinary photons. We demonstrate that this model has a self-interacting tachyonic sector having negative effective pressure and positive effective energy density. Moreover, a composite multilayer SiC-Si hyperbolic metamaterial exhibits closely separated tachyonic and bradyonic sectors in the long wavelength infrared range. This system may be used as a laboratory model of inflation and late time acceleration of the universe.

  2. Consistency of the tachyon warm inflationary universe models

    International Nuclear Information System (INIS)

    Zhang, Xiao-Min; Zhu, Jian-Yang

    2014-01-01

    This study concerns the consistency of the tachyon warm inflationary models. A linear stability analysis is performed to find the slow-roll conditions, characterized by the potential slow-roll (PSR) parameters, for the existence of a tachyon warm inflationary attractor in the system. The PSR parameters in the tachyon warm inflationary models are redefined. Two cases, an exponential potential and an inverse power-law potential, are studied, when the dissipative coefficient Γ = Γ 0 and Γ = Γ(φ), respectively. A crucial condition is obtained for a tachyon warm inflationary model characterized by the Hubble slow-roll (HSR) parameter ε H , and the condition is extendable to some other inflationary models as well. A proper number of e-folds is obtained in both cases of the tachyon warm inflation, in contrast to existing works. It is also found that a constant dissipative coefficient (Γ = Γ 0 ) is usually not a suitable assumption for a warm inflationary model

  3. Sakai-Sugimoto model, tachyon condensation and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Dhar, Avinash; Nag, Partha

    2008-01-01

    We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and D8-bar-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra

  4. Classical tachyons

    International Nuclear Information System (INIS)

    Recami, E.

    1984-01-01

    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author) [pt

  5. Deforming tachyon kinks and tachyon potentials

    International Nuclear Information System (INIS)

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  6. Observational constraints on tachyonic chameleon dark energy model

    Science.gov (United States)

    Banijamali, A.; Bellucci, S.; Fazlpour, B.; Solbi, M.

    2018-03-01

    It has been recently shown that tachyonic chameleon model of dark energy in which tachyon scalar field non-minimally coupled to the matter admits stable scaling attractor solution that could give rise to the late-time accelerated expansion of the universe and hence alleviate the coincidence problem. In the present work, we use data from Type Ia supernova (SN Ia) and Baryon Acoustic oscillations to place constraints on the model parameters. In our analysis we consider in general exponential and non-exponential forms for the non-minimal coupling function and tachyonic potential and show that the scenario is compatible with observations.

  7. Non-minimally coupled tachyon and inflation

    International Nuclear Information System (INIS)

    Piao Yunsong; Huang Qingguo; Zhang Xinmin; Zhang Yuanzhong

    2003-01-01

    In this Letter, we consider a model of tachyon with a non-minimal coupling to gravity and study its cosmological effects. Regarding inflation, we show that only for a specific coupling of tachyon to gravity this model satisfies observations and solves various problems which exist in the single and multi tachyon inflation models. But noting in the string theory the coupling coefficient of tachyon to gravity is of order g s , which in general is very small, we can hardly expect that the non-minimally coupling of tachyon to gravity could provide a reasonable tachyon inflation scenario. Our work may be a meaningful try for the cosmological effect of tachyon non-minimally coupled to gravity

  8. Aspects of Tachyon theory

    International Nuclear Information System (INIS)

    Bose, S K

    2009-01-01

    Does the Special Theory of Relativity (STR) forbid the existence of particles traveling with speed greater than the speed of light in vacuo (Tachyons)? Prof. Sudarshan and collaborators O.M. Bilaniuk and V.K. Despande examined this question in 1962 and concluded that STR does not rule out such objects. Now, the momentum 4-vector of a Tachyon is necessarily space-like and consequently, the sign of energy no longer Lorentz-invariant. Thus a Tachyon will be found to have negative energy in certain inertial frames. The authors noted that in the latter, the sign of time-intervals will also be reversed. A negative energy Tachyon traveling backward in time could now be reinterpreted as a positive energy particle traveling forward in time. This reinterpretation could be done consistently as was shown by several examples. A quantum field theory of free spinless Tachyons was suggested by Feinberg (1967). M. Arons and Sudarshan reexamined this model and showed that the model did not possess invariance under the Poincare group. An alternative version was constructed by them that possessed the desired invariance property but no local commutativity. Subsequently, Dhar and Sudarshan constructed a model of a neutral scalar Tachyon with Yukawa coupling to Fermions. The model had unusual features such as the emission of a Tachyon by a Fermion as a real process and the need for an additional non-local interaction. Prof. Sudarshan, in association with J. Narlikar, studied Tachyons in the context of cosmology in 1976. One of their conclusions is that any primordial Tachyons that might have been created at the beginning are unlikely to have survived to the present era.

  9. A model-theory for Tachyons in two dimensions

    International Nuclear Information System (INIS)

    Recami, E.; Rodriques, W.A. Jr.

    1986-01-01

    The subject of Tachyons, even if still speculative, may deserve some attention for reasons that can be divided into a few categories, two of which are as follows: The larger scheme, to build up in order to incorporate space-like objects in the relativistic theories. These allow better understanding of many aspects of the ordinary relativistic physics, even if Tachyons would not exist in our cosmos as ''asymptotically free'' objects; superliminal classical objects can have a role in elementary particle interactions (perhaps even in astrophysics) and possible verification of the reproduction of quantum-like behaviour at a classical level when taking into account the possible existence of faster-than-light classical particles. This paper shows that Special Relativity - even without tachyons - can be given a form which describes both particles and anti-particles. This paper also is confined only to a ''model theory'' of Tachyons in two dimensions

  10. A model-theory for tachyons in two dimensions

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues Junior, W.A.

    1985-01-01

    The subject of Tachyons, even if still speculative, may deserve some attention for reasons that can be divided into a few categories, two of which are preliminarily mentioned right now; (i) the larger scheme that one tries to build up in order to incorporate space-like objects in the relativistic theories can allow a better understanding of many aspects of the ordinary relativistic physics, even if Tachyons would not exist in our cosmos as 'asymptotically free' objects; (ii) Superluminal classical objects can have a role in elementary particle interactions (and perhaps even in astrophysics); and it might be tempting to verify how far one can go in reproducing the quantum-like behaviour at a classical level just by taking account of the possible existence of faster-than-light classical particles. This article is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in Part I (Sect. 2) it is merely shown that Special Relativity - even without tachyons - can be given a form such to describe both particles and anti-particles. The plan of Part II is confined only to a 'model-theory' of Tachyons in two dimensions, for the reasons stated in Sect. 3. (Author) [pt

  11. A model theory for tachyons in two dimensions

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W.A.

    1985-01-01

    The paper is divided in two parts, the first one having nothing to do with tachyons. In fact, to prepare the ground, in part one (sect. 2) it is shown that special relativity, even without tachyons, can be given a form such to describe both particles and antiparticles. The plan of part two is confined only to a model theory in two dimensions, for the reasons stated in sect. 3

  12. The Effect of Bulk Tachyon Field on the Dynamics of Geometrical Tachyon

    International Nuclear Information System (INIS)

    Papantonopoulos, Eleftherios; Pappa, Ioanna; Zamarias, Vassilios

    2007-01-01

    We study the dynamics of the geometrical tachyon field on an unstable D3-brane in the background of a bulk tachyon field of a D3-brane solution of Type-0 string theory. We find that the geometrical tachyon potential is modified by a function of the bulk tachyon and inflation occurs at weak string coupling, where the bulk tachyon condenses, near the top of the geometrical tachyon potential. We also find a late accelerating phase when the bulk tachyon asymptotes to zero and the geometrical tachyon field reaches the minimum of the potential

  13. Tachyons without paradoxes

    International Nuclear Information System (INIS)

    Barrowes, S.C.

    1977-01-01

    Tachyon paradoxes, including causality paradoxes, have persisted within tachyon theories and left little hope for the existence of observable tachyons. A way is presented to solve the causality paradoxes, along with two other paradoxes, by the introduction of an absolute frame of reference in which a tachyon effect may never precede its cause. Relativity for ordinary matter is unaffected by this, even if the tachyons couple to ordinary particles. Violations of the principle of relativity due to the absolute frame would appear only in the case of free tachyons

  14. Are partons confined tachyons?

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1996-03-01

    The author notes that if hadrons are gravitationally stabilized ''black holes'', as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v 2 > c 2 , without conflict with the observational fact that neither quarks nor tachyons have appeared as ''free particles''. Some consequences of this model are explored

  15. Are partons confined tachyons?

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1996-03-01

    The author notes that if hadrons are gravitationally stabilized ``black holes``, as discrete physics suggests, it is possible that partons, and in particular quarks, could be modeled as tachyons, i.e. particles having v{sup 2} > c{sup 2}, without conflict with the observational fact that neither quarks nor tachyons have appeared as ``free particles``. Some consequences of this model are explored.

  16. A new formulation of the theory of tachyons. Part II: Tachyon electrodynamics

    International Nuclear Information System (INIS)

    Dawe, R.L.; Hines, K.C.

    1991-06-01

    A new formulation of the theory of tachyons using the same two postulates as in Special Relativity is applied to electrodynamics. Use is made of a 'switching principle' to show how tachyons automatically obey the law of conservation of electric charge in any inertial reference frame, even though the observed electric charge is not any invariant for tachyons. Tachyonic transformations of electromagnetic fields E, B, D, H, P and M are rigorously derived from Maxwell's equations and are shown to be the same as for bradyonic transformations. Tachyonic transformations of current and charge densities and scalar and vector potentials are also derived and discussed. Further examples include calculations of the magnetic dipole moment of a tachyonic current loop and of the speed of light in a tachyonic dielectric. Constitutive equations for a tachyonic dielectric are also given. The Lagrangian and Hamiltonian for charged tachyons are discussed, as well as generic tachyonic transformations. 51 refs., 15 figs

  17. The tachyon potential in string theory

    International Nuclear Information System (INIS)

    Banks, T.

    1991-01-01

    We argue that the tachyon potential in string theory is exactly given by the unstable quadratic mass term calculated perturbatively around the critical string. The argument is given in terms of the sigma model formulation. The same result follows from the exact Wilson renormalization group equations. The discrepancy with previous calculations of the tachyon potential is explained by the fact that other authors worked near the tachyon mass shell where it is impossible to distinguish a potential from derivative terms in the effective action. (orig.)

  18. Dynamics of Interacting Tachyonic Teleparallel Dark Energy

    International Nuclear Information System (INIS)

    Banijamali, Ali

    2014-01-01

    We consider a tachyon scalar field which is nonminimally coupled to gravity in the framework of teleparallel gravity. We analyze the phase-space of the model, known as tachyonic teleparallel dark energy, in the presence of an interaction between dark energy and background matter. We find that although there exist some late-time accelerated attractor solutions, there is no scaling attractor. So, unfortunately interacting tachyonic teleparallel dark energy cannot alleviate the coincidence problem.

  19. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  20. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    International Nuclear Information System (INIS)

    Kamenshchik, A. Yu.; Manti, S.

    2013-01-01

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  1. Tachyon dynamics — for neutrinos?

    Science.gov (United States)

    Schwartz, Charles

    2018-04-01

    Following earlier studies that provided a consistent theory of kinematics for tachyons (faster-than-light particles), we here embark on a study of tachyon dynamics, both in classical physics and in the quantum theory. Examining a general scattering process, we come to recognize that the labels given to “in” and “out” states are not Lorentz invariant for tachyons; and this lets us find a sensible interpretation of negative energy states. For statistical mechanics, as well as for scattering problems, we study what should be the proper expression for density of states for tachyons. We review the previous work on quantization of a Dirac field for tachyons and go on to expand earlier considerations of neutrinos as tachyons in the context of cosmology. We stumble into the realization that tachyon neutrinos would contribute to gravitation with the opposite sign compared to tachyon antineutrinos. This leads to the gobsmacking prediction that the Cosmic Neutrino Background, if they are indeed tachyons, might explain both phenomena of Dark Matter and Dark Energy. This theoretical study also makes contact with the anticipated results from the experiments KATRIN and PTOLEMY, which focus on beta decay and neutrino absorption by Tritium.

  2. Non-Gaussianity from tachyonic preheating in hybrid inflation

    International Nuclear Information System (INIS)

    Barnaby, Neil; Cline, James M.

    2007-01-01

    In a previous work we showed that large non-Gaussianities and nonscale-invariant distortions in the cosmic microwave background power spectrum can be generated in hybrid inflation models, due to the contributions of the tachyon (waterfall) field to the second order curvature perturbation. Here we clarify, correct, and extend those results. We show that large non-Gaussianity occurs only when the tachyon remains light throughout inflation, whereas n=4 contamination to the spectrum is the dominant effect when the tachyon is heavy. We find constraints on the parameters of warped-throat brane-antibrane inflation from non-Gaussianity. For F-term and D-term inflation models from supergravity, we obtain nontrivial constraints from the spectral distortion effect. We also establish that our analysis applies to complex tachyon fields

  3. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)

    2014-09-07

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  4. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2014-09-01

    Full Text Available We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9, Planck and BICEP2 data.

  5. Cosmological perturbations in warm-tachyon inflationary universe model with viscous pressure

    International Nuclear Information System (INIS)

    Setare, M.R.; Kamali, V.

    2014-01-01

    We study the warm-tachyon inflationary universe model with viscous pressure in high-dissipation regime. General conditions which are required for this model to be realizable are derived in the slow-roll approximation. We present analytic expressions for density perturbation and amplitude of tensor perturbation in longitudinal gauge. Expressions of tensor-to-scalar ratio, scalar spectral index and its running are obtained. We develop our model by using exponential potential, the characteristics of this model are calculated for two specific cases in great details: 1. Dissipative parameter Γ and bulk viscous parameter ζ are constant parameters. 2. Dissipative parameter is a function of tachyon field ϕ and bulk viscous parameter is a function of matter-radiation mixture energy density ρ. The parameters of the model are restricted by recent observational data from the nine-year Wilkinson microwave anisotropy probe (WMAP9), Planck and BICEP2 data.

  6. Tachyon kinematics and causality: a systematic thorough analysis of the tachyon causal paradoxes

    International Nuclear Information System (INIS)

    Recami, E.

    1987-01-01

    The chronological order of the events along a spacelike path is not invariant under Lorentz transformations, as is well known. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stueckelberg-Feynman switching procedure (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the SWP does eliminate the motions backwards in time, but interchanges the roles of source and detector. This fact triggered the proposal of a host of causal paradoxes. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least in microphysics) only after the tachyon relativistic mechanics has been properly developed. They start by showing how to apply the SWP, both in the case of ordinary special relativity and in the case with tachyons. Then they carefully exploit the kinetics of the tachyon exchange between two (ordinary) bodies. Being finally able to tackle the tachyon causality problem, they successively solve the paradoxes of: (i) Tolman-Regge, (ii) Pirani, (iii) Edmonds, and (iv) Bell. Finally, they discuss a further, new paradox associated with the transmission of signals by modulated tachyon beams

  7. Tachyons in Robertson-Walker Cosmology

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    Superluminal signal transfer is studied in the context of a preferred cosmic frame of reference provided by the galactic background. The receding galaxies constitute a frame of absolute rest, in which the energy of tachyons (faster-than-light particles) is unambiguously defined as a positive quantity. The causality violation which arises in relativistic tachyonic theories is avoided. We define interactions of particles and tachyons in terms of elastic head-on collisions and energy-momentum conservation. To compare the theory developed with existing relativistic theories, tachyons are studied at first in a Minkowski universe, and the causality of a superluminal communication process is analyzed. Then we discuss the dynamics of tachyons in a Robertson-Walker universe with linear expansion factor and negatively curved three-space. We point out the consequences that the space expansion has on tachyons, like a finite life-time in the frame of absolute rest, and multiple images in the rest frames of moving observer...

  8. Inflation and dark energy arising from geometrical tachyons

    International Nuclear Information System (INIS)

    Panda, Sudhakar; Sami, M.; Tsujikawa, Shinji

    2006-01-01

    We study the motion of a Bogomol'nyi-Prasad-Sommerfield D3-brane in the NS5-brane ring background. The radion field becomes tachyonic in this geometrical setup. We investigate the potential of this geometrical tachyon in the cosmological scenario for inflation as well as dark energy. We evaluate the spectra of scalar and tensor perturbations generated during tachyon inflation and show that this model is compatible with recent observations of cosmic microwave background due to an extra freedom of the number of NS5-branes. It is not possible to explain the origin of both inflation and dark energy by using a single tachyon field, since the energy density at the potential minimum is not negligibly small because of the amplitude of scalar perturbations set by cosmic microwave background anisotropies. However, the geometrical tachyon can account for dark energy when the number of NS5-branes is large, provided that inflation is realized by another scalar field

  9. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues, W. A.

    1985-01-01

    The possible role of space like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of tachyons. Particular attention is paid : 1) to tachyons as the possible carriers of interactions (''internal lines''); e.g., to the links between ''virtual particles'' and superluminal objects; 2) to the possibility of ''vacuum decays'' at the classical level; 3) to a Lorentz-invariant bootstrap model; 4) to the apparent shape of the tachyonic elementary particles (''elementary tachyons'') and its possible connection with the de Broglie wave-particle dualism

  10. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, E.; Rodrigues Junior, W.A.

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions ('internal lines'); e.g., to the links between 'virtual particles' and superluminal objects; (ii) to the possibility of 'vacuum decays' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles ('elementary tachyons') and its possible connection with the de Broglie wave-particle dualism. (Author) [pt

  11. On the shape of tachyons

    International Nuclear Information System (INIS)

    Barut, A.O.

    1982-01-01

    Some aspects of the experimental behaviour of tachyons are studied, in particular by finding out their apparent shape. A Superluminal particle, which in its own rest-frame is spherical or ellipsoidal (and with an infinite life-time), would appear to a laboratory frame as occupying the whole region of space bound by a double cone and a two-sheeted hyperboloid. Such a structure (the tachyon 'shape') rigidly travels with the speed of the tachyon. However, if the Superluminal particle has a finite life-time in its rest-frame, then in the laboratory frame in gets a finite space-extension. As a by-product, we are able to interpret physically the immaginary units entering -as wellknown- the transversal coordinates in the Superluminal Lorentz transformations. The various particular or limiting cases of the tachyon shape are thoroughly considered. Finally, some brief considerations concerning possible experiments to look for tachyons are added

  12. Conformal Tachyons

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    We study tachyons conformally coupled to the background geometry of a Milne universe. The causality of superluminal signal transfer is scrutinized in this context. The cosmic time of the comoving frame determines a distinguished time order for events connected by superluminal signals. An observer can relate his rest frame to the galaxy frame, and compare so the time order of events in his proper time to the cosmic time order. All observers can in this way arrive at identical conclusions on the causality of events connected by superluminal signals. An unambiguous energy concept for tachyonic rays is defined by means of the cosmic time of the comoving reference frame, without resorting to an antiparticle interpretation. On that basis we give an explicit proof that no signals can be sent into the past of observers. Causality violating signals are energetically forbidden, as they would have negative energy in the rest frame of the emitting observer. If an observer emits a superluminal signal, the tachyonic respon...

  13. A small mass tachyon theory

    International Nuclear Information System (INIS)

    Hohly, R.W.

    1992-01-01

    Tachyons of very small mass, m, have been assumed to satisfy a Proca-like equation, approximately but not exactly, so that the Lorentz gauge condition can be retained as in the photon case. THe tachyon fields therefore have four non-zero conjugate momenta, making invariance manifest. On introducing particle operators, two consistent, theories are found, a particle theory and a 'non-particle' theory, depending on which version of the Reinterpretation Principle one applies. The particle theory is relativistically invariant, gauge invariant, and also causal in the naive sense. While the vacuum is not invariant, using RIP, the fields and Fock space of physical tachyon states is invariant. The Lorentz gauge is satisfied by restricting states to those meeting a Gupta-Bleuler condition. Physical states can further be modified to travel symmetrically in time, and thus, will not violate causality. Under this restriction, a time symmetric tachyon sent backwards in time by Lorentz transformation becomes a tachyon going forward in time, but in the opposite direction

  14. On the ideal gas of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1983-01-01

    The properties of the ideal gas of classical (nonquantum) faster than light particles-tachyons have been considered. The basic notions of thermodynamics of tachyons have been introduced. We have found the partition function and other thermodynamical quantities for the ideal tachyon gas. The equation of state which we have found for tachyons is exactly the same as for the ideal gas of partictes slower than light-bradyons. The internal energy and the apecific heat have been discussed at low and at very high temperatures. It has been shown that in high temperature limit the properties of gas of tachyons and gas of bradyons are th'e same. The numerical calculations concerning the internal energy and specific heat at different temperatures were performed and the results have been presented. It has been shown that in full interval of temperature the characteristics of gas of tachyons are similar to those of gas of bradyons

  15. Stability of a tachyon braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62251, Cuernavaca, Morelos, México (Mexico); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apartado Postal J-48, 72570, Puebla, Puebla, México (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aherrera@ifuap.buap.mx, E-mail: andre.kuerten@ufabc.edu.br, E-mail: malagon@fis.unam.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC), Avenida dos Estados, 5001, Santo André, SP (Brazil)

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld

  16. Stability of a tachyon braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apartado Postal J-48, 72570, Puebla, Puebla (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Kuerten, André Martorano [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC (UFABC),Avenida dos Estados, 5001, Santo André, SP (Brazil); Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apartado Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Rocha, Roldão da [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC (UFABC),Avenida dos Estados, 5001, Santo André, SP (Brazil)

    2016-01-26

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton’s law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb’s law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.

  17. Stability of a tachyon braneworld

    International Nuclear Information System (INIS)

    Germán, Gabriel; Kuerten, André Martorano; Malagón-Morejón, Dagoberto; Herrera-Aguilar, Alfredo; Rocha, Roldão da

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld

  18. Stability of a tachyon braneworld

    Science.gov (United States)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Martorano Kuerten, André; Malagón-Morejón, Dagoberto; da Rocha, Roldão

    2016-01-01

    Within the braneworld paradigm the tachyonic scalar field has been used to generate models that attempt to solve some of the open problems that physics faces nowadays, both in cosmology and high energy physics as well. When these field configurations are produced by the interplay of higher dimensional warped gravity with some matter content, braneworld models must prove to be stable under the whole set of small fluctuations of the gravitational and matter fields background, among other consistency tests. Here we present a complete proof of the stability under scalar perturbations of tachyonic thick braneworlds with an embedded maximally symmetric 4D space-time, revealing its physical consistency. This family of models contains a recently reported tachyonic de Sitter thick braneworld which possesses a series of appealing properties. These features encompass complete regularity, asymptotic flatness (instead of being asymptotically dS or AdS) even when it contains a negative bulk cosmological constant, a relevant 3-brane with dS metric which naturally arises from the full set of field equations of the 5D background (it is not imposed), qualitatively describing the inflationary epochs of our Universe, and a graviton spectrum with a single zero mode bound state that accounts for the 4D graviton localised on the brane and is separated from the continuum of Kaluza-Klein massive graviton excitations by a mass gap. The presence of this mass gap in the graviton spectrum makes the extra-dimensional corrections to Newton's law decay exponentially. Gauge vector fields with a single massless bound state in its mass spectrum are also localised on this braneworld model a fact that allows us to recover the Coulomb's law of our 4D world. All these properties of the above referred tachyonic braneworld together with the positive stability analysis provided in this work, constitute a firm step towards the construction of realistic cosmological models within the braneworld paradigm.

  19. Off-Shell Interactions of Closed-String Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Dabholkar, A

    2004-04-07

    Off-shell interactions for localized closed-string tachyons in C/Z{sub N} superstring backgrounds are analyzed and a conjecture for the effective height of the tachyon potential is elaborated. At large N, some of the relevant tachyons are nearly massless and their interactions can be deduced from the S-matrix. The cubic interactions between these tachyons and the massless fields are computed in a closed form using orbifold CFT techniques. The cubic interaction between nearly-massless tachyons with different charges is shown to vanish and thus condensation of one tachyon does not source the others. It is shown that to leading order in N, the quartic contact interaction vanishes and the massless exchanges completely account for the four point scattering amplitude. This indicates that it is necessary to go beyond quartic interactions or to include other fields to test the conjecture for the height of the tachyon potential.

  20. Tachyon field in cosmology

    Indian Academy of Sciences (India)

    This report is based on a recent work in collaboration with Bagla and Padmanabhan. [1]. In this paper, we construct cosmological models with homogeneous tachyon matter [2] to provide the dark energy component which drives acceleration of the universe (for a recent review of dark energy models, see [3]). We assume that.

  1. D-instantons and closed string tachyons in Misner space

    International Nuclear Information System (INIS)

    Hikida, Yasuaki; Tai, T.-S.

    2006-01-01

    We investigate closed string tachyon condensation in Misner space, a toy model for big bang universe. In Misner space, we are able to condense tachyonic modes of closed strings in the twisted sectors, which is supposed to remove the big bang singularity. In order to examine this, we utilize D-instanton as a probe. First, we study general properties of D-instanton by constructing boundary state and effective action. Then, resorting to these, we are able to show that tachyon condensation actually deforms the geometry such that the singularity becomes milder

  2. Tachyons in an Expanding Space-Time

    CERN Document Server

    Tomaschitz, R

    1998-01-01

    Superluminal signal transfer is introduced in the context of an absolute frame of reference provided by the galactic background. The receding galaxies constitute a reference frame, a frame of absolute rest, in which the energy of tachyons (faster-than-light particles) can be defined as a positive definite quantity. The theory presented is essentially covariant, but not relativistic. The causality problem of superluminal signal transfer, which arises in relativistic theories, can be completely avoided. Tachyons are studied in a Robertson-Walker universe with linear expansion factor and negatively curved three-space. The tachyonic dynamics is defined, and it is pointed out how tachyonic events appear to observers who are uniformly moving in the frame of absolute rest. The consequences that the space expansion has on tachyons, e.g. redoubling effects, are discussed.

  3. Tachyons: may they have a role in elementary particle physics

    International Nuclear Information System (INIS)

    Recami, Erasmo

    1985-01-01

    The possible role of space-like objects in elementary particle physics (and in quantum mechanics) is reviewed and discussed, mainly by exploiting the explicit consequences of the peculiar relativistic mechanics of Tachyons. Particular attention is paid: (i) to tachyons as the possible carriers of interactions; (ii) to the possibility of ''vacuum decays'' at the classical level; (iii) to a Lorentz-invariant bootstrap model; (iv) to the apparent shape of the tachyonic elementary particles and its possible connection with the de Broglie wave-particle dualism. (author)

  4. Cosmology with rolling tachyon

    Indian Academy of Sciences (India)

    Email: sami@iucaa.ernet.in. Abstract. We examine the possibility of rolling tachyon to play the dual role of inflaton at early epochs and dark matter at late times. We argue that enough inflation can be generated with the rolling tachyon either by invoking the large number of branes or brane world assisted inflation. However ...

  5. Dynamics of Symmetry Breaking and Tachyonic Preheating

    CERN Document Server

    Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor

    2001-01-01

    We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.

  6. Closed string tachyon driving f(R) cosmology

    Science.gov (United States)

    Wang, Peng; Wu, Houwen; Yang, Haitang

    2018-05-01

    To study quantum effects on the bulk tachyon dynamics, we replace R with f(R) in the low-energy effective action that couples gravity, the dilaton, and the bulk closed string tachyon of bosonic closed string theory and study properties of their classical solutions. The α' corrections of the graviton-dilaton-tachyon system are implemented in the f(R). We obtain the tachyon-induced rolling solutions and show that the string metric does not need to remain fixed in some cases. In the case with H( t=‑∞ ) = , only the R and R2 terms in f(R) play a role in obtaining the rolling solutions with nontrivial metric. The singular behavior of more classical solutions are investigated and found to be modified by quantum effects. In particular, there could exist some classical solutions, in which the tachyon field rolls down from a maximum of the tachyon potential while the dilaton expectation value is always bounded from above during the rolling process.

  7. A de Sitter tachyon thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Mora-Luna, Refugio Rigel [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aha@fis.unam.mx, E-mail: malagon@ifm.umich.mx, E-mail: rigel@ifm.umich.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Rua Santa Adélia, 166 09210-170, Santo André, SP (Brazil)

    2013-02-01

    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.

  8. Constraining non-minimally coupled tachyon fields by the Noether symmetry

    International Nuclear Information System (INIS)

    De Souza, Rudinei C; Kremer, Gilberto M

    2009-01-01

    A model for a homogeneous and isotropic Universe whose gravitational sources are a pressureless matter field and a tachyon field non-minimally coupled to the gravitational field is analyzed. The Noether symmetry is used to find expressions for the potential density and for the coupling function, and it is shown that both must be exponential functions of the tachyon field. Two cosmological solutions are investigated: (i) for the early Universe whose only source of gravitational field is a non-minimally coupled tachyon field which behaves as an inflaton and leads to an exponential accelerated expansion and (ii) for the late Universe whose gravitational sources are a pressureless matter field and a non-minimally coupled tachyon field which plays the role of dark energy and is responsible for the decelerated-accelerated transition period.

  9. The ideal gases of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1984-01-01

    The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed

  10. Tachyons in the Milne Universe

    CERN Document Server

    Tomaschitz, R

    1999-01-01

    Superluminal particles (tachyons) are studied in a Robertson-Walker cosmology with linear expansion factor and negatively curved 3-space (Milne universe). This cosmology admits globally geodesic rest frames for uniformly moving observers, isometric copies of the forward lightcone, which can be synchronized by Lorentz boosts. We investigate superluminal wave propagation, a real Proca field with negative mass-square, coupled to subluminal matter in analogy to the electromagnetic field. For photons, the eikonal approximation is exact in Robertson-Walker cosmology, and the Proca field is coupled to the background geometry in such a way that this also holds for tachyons. The spectral decomposition of freely propagating tachyon fields in the Milne universe is derived. We study the wave-particle duality in terms of the spectral elementary waves and their orthogonal ray bundles, in the comoving frame as well as in the individual geodesic rest frames of galactic observers. The spectral energy density of a tachyon back...

  11. Observational status of Tachyon Natural Inflation and reheating

    Science.gov (United States)

    Rashidi, Narges; Nozari, Kourosh; Grøn, Øyvind

    2018-05-01

    We study observational viability of Natural Inflation with a tachyon field as inflaton. By obtaining the main perturbation parameters in this model, we perform a numerical analysis on the parameter space of the model and in confrontation with 68% and 95% CL regions of Planck2015 data. By adopting a warped background geometry, we find some new constraints on the width of the potential in terms of its height and the warp factor. We show that the Tachyon Natural Inflation in the large width limit recovers the tachyon model with a phi2 potential which is consistent with Planck2015 observational data. Then we focus on the reheating era after inflation by treating the number of e-folds, temperature and the effective equation of state parameter in this era. Since it is likely that the value of the effective equation of state parameter during the reheating era to be in the range 0Inflation model. In particular, we show that a prediction of this model is r<=8/3 δns, where δns is the scalar spectral tilt, δns=1‑ns. In this regard, given that from the Planck2015 data we have δns=0.032 (corresponding to ns=0.968), we get r<= 0.085.

  12. Tachyons and causal paradoxes

    International Nuclear Information System (INIS)

    Maund, J.B.

    1979-01-01

    Although the existence of tachyons is not ruled out by special relativity, it appears that causal paradoxes will arise if there are tachyons. The usual solutions to these paradoxes employ some form of the reinterpretation principle. In this paper it is argued first that, the principle is incoherent, second, that even if it is not, some causal paradoxes remain, and third, the most plausible ''solution,'' which appeals to boundary conditions of the universe, will conflict with special relativity

  13. Tachyon Warm Intermediate and Logamediate Inflation in the Brane World Model in the Light of Planck Data

    International Nuclear Information System (INIS)

    Setare, M. R.; Kamali, V.

    2016-01-01

    Tachyon inflationary universe model on the brane in the context of warm inflation is studied. In slow-roll approximation and in longitudinal gauge, we find the primordial perturbation spectrums for this scenario. We also present the general expressions of the tensor-scalar ratio, scalar spectral index, and its running. We develop our model by using exponential potential; the characteristics of this model are calculated in great detail. We also study our model in the context of intermediate (where scale factor expands as a=a_0exp (At"f)) and logamediate (where the scale factor expands as a=a_0exp (A[ln t]"ν)) models of inflation. In these two sectors, dissipative parameter is considered as a constant parameter and a function of tachyon field. Our model is compatible with observational data. The parameters of the model are restricted by Planck data.

  14. Open string decoupling and tachyon condensation

    International Nuclear Information System (INIS)

    Chalmers, G.

    2001-01-01

    The amplitudes in perturbative open string theory are examined as functions of the tachyon condensate parameter. The boundary state formalism demonstrates the decoupling of the open string modes at the non-perturbative minima of the tachyon potential via a degeneration of open world-sheets and identifies an independence of the coupling constants g s and g YM at general values of the tachyon condensate. The closed sector is generated at the quantum level; it is also generated at the classical level through the condensation of the propagating open string modes on the D-brane degrees of freedom.

  15. Tachyon condensation in the D0/D4 system

    International Nuclear Information System (INIS)

    David, Justin R.

    2000-01-01

    The D0/D4 system with a Neveu-Schwarz B-field in the spatial directions of the D4-brane has a tachyon in the spectrum of the (0,4) strings. The tachyon signals the instability of the system to form a bound state of the D0-brane with the D4-brane. We use the Wess-Zumino-Witten like open superstring field theory formulated by Berkovits to study the tachyon potential for this system. The tachyon potential lies outside the universality class of the D-brane anti-D-brane system. It is a function of the B-field. We calculate the tachyon potential at the zeroth level approximation. The minimum of the tachyon potential in this case is expected to reproduce the mass defect involved in the formation of the D0/D4 bound state. We compare the minimum of the tachyon potential with the mass defect in three cases. For small values of the B-field we obtain 70% of the expected mass defect. For large values of the B-field with Pf(2πα' B) > 0 the potential reduces to that of the D-brane anti-D-brane reproducing 62% of the expected mass defect. For large values of the B-field with Pf(2πα' B) < 0 the minimum of the tachyon potential gives 25% of the expected mass defect. At the tachyon condensate we show that the (0,4) strings decouple from the low energy dynamics. (author)

  16. Tachyon hair on two-dimensional black holes

    International Nuclear Information System (INIS)

    Peet, A.; Susskind, L.; Thorlacius, L.

    1993-01-01

    Static black holes in two-dimensional string theory can carry tachyon hair. Configurations which are nonsingular at the event horizon have a nonvanishing asymptotic energy density. Such solutions can be smoothly extended through the event horizon and have a nonvanishing energy flux emerging from the past singularity. Dynamical processes will not change the amount of tachyon hair on a black hole. In particular, there will be no tachyon hair on a black hole formed in gravitational collapse if the initial geometry is the linear dilaton vacuum. There also exist static solutions with a finite total energy, which have singular event horizons. Simple dynamical arguments suggest that black holes formed in gravitational collapse will not have tachyon hair of this type

  17. Disk partition function and oscillatory rolling tachyons

    International Nuclear Information System (INIS)

    Jokela, Niko; Jaervinen, Matti; Keski-Vakkuri, Esko; Majumder, Jaydeep

    2008-01-01

    An exact cubic open string field theory rolling tachyon solution was recently found by Kiermaier et al and Schnabl. This oscillatory solution has been argued to be related by a field redefinition to the simple exponential rolling tachyon deformation of boundary conformal theory. In the latter approach, the disk partition function takes a simple form. Out of curiosity, we compute the disk partition function for an oscillatory tachyon profile, and find that the result is nevertheless almost the same

  18. Non-minimally coupled tachyon field in teleparallel gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fazlpour, Behnaz [Department of Physics, Babol Branch, Islamic Azad University, Shariati Street, Babol (Iran, Islamic Republic of); Banijamali, Ali, E-mail: b.fazlpour@umz.ac.ir, E-mail: a.banijamali@nit.ac.ir [Department of Basic Sciences, Babol University of Technology, Shariati Street, Babol (Iran, Islamic Republic of)

    2015-04-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P{sub 4}), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field.

  19. Non-minimally coupled tachyon field in teleparallel gravity

    International Nuclear Information System (INIS)

    Fazlpour, Behnaz; Banijamali, Ali

    2015-01-01

    We perform a full investigation on dynamics of a new dark energy model in which the four-derivative of a non-canonical scalar field (tachyon) is non-minimally coupled to the vector torsion. Our analysis is done in the framework of teleparallel equivalent of general relativity which is based on torsion instead of curvature. We show that in our model there exists a late-time scaling attractor (point P 4 ), corresponding to an accelerating universe with the property that dark energy and dark matter densities are of the same order. Such a point can help to alleviate the cosmological coincidence problem. Existence of this point is the most significant difference between our model and another model in which a canonical scalar field (quintessence) is used instead of tachyon field

  20. Tachyon kinematics and causality: A systematic, thorough analysis

    International Nuclear Information System (INIS)

    Recami, E.

    1985-01-01

    The chronological order of the events along a space-like path is not invariant under Lorentz transformations, as wellknown. This led to an early conviction that tachyons would give rise to causal anomalies. A relativistic version of the Stuckelberg-Feynman 'switching procedure' (SWP) has been invoked as the suitable tool to eliminate those anomalies. The application of the 'SWP' does eliminate the motions backwards in time, but interchanges the roles of source and detector. This fact triggered the proposal of a host of causal 'paradoxes'. Till now, however, it has not been recognized that such paradoxes can be sensibly discussed (and completely solved, at least 'in microphysics') only after having properly developed the tachyon relativistic mechanics. It is shown how to apply the 'SWP', both in the case of ordinary Special Relativity, and in the case with tachyons. Then, the kinematics of the tachyon-exchange between two (ordinary) bodies is carrefully exploited. Being finally able to tackle the tachyon-causality problem, the paradoxes are sucessively solved: (i) by Tolman-Regge; (ii) by Pirani; (iii) by Edmonds; (iv) by Bell. At last, a further new paradox associated with the transmission of signals by modulated tachyon beams is discussed. (Author) [pt

  1. Tachyon mediated non-Gaussianity

    International Nuclear Information System (INIS)

    Dutta, Bhaskar; Leblond, Louis; Kumar, Jason

    2008-01-01

    We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.

  2. Non-Gaussian and nonscale-invariant perturbations from tachyonic preheating in hybrid inflation

    Science.gov (United States)

    Barnaby, Neil; Cline, James M.

    2006-05-01

    We show that in hybrid inflation it is possible to generate large second-order perturbations in the cosmic microwave background due to the instability of the tachyonic field during preheating. We carefully calculate this effect from the tachyon contribution to the gauge-invariant curvature perturbation, clarifying some confusion in the literature concerning nonlocal terms in the tachyon curvature perturbation; we show explicitly that such terms are absent. We quantitatively compute the non-Gaussianity generated by the tachyon field during the preheating phase and translate the experimental constraints on the nonlinearity parameter fNL into constraints on the parameters of the model. We also show that nonscale-invariant second-order perturbations from the tachyon field with spectral index n=4 can become larger than the inflaton-generated first-order perturbations, leading to stronger constraints than those coming from non-Gaussianity. The width of the excluded region in terms of the logarithm of the dimensionless coupling g, grows linearly with the log of the ratio of the Planck mass to the tachyon VEV, log⁡(Mp/v); hence very large regions are ruled out if the inflationary scale v is small. We apply these results to string-theoretic brane-antibrane inflation, and find a stringent upper bound on the string coupling, gs<10-4.5.

  3. Observability of complex ghosts and tachyons

    International Nuclear Information System (INIS)

    Yamamoto, Hiroshi

    1976-01-01

    The complex ghost introduced previously by the present author is studied from a standpoint whether its effects are observable by experiments or not. According to the theory of complex ghost the scattering cross section of two real particles shows some particular properties. It has a kind of resonance peak at a certain energy which does not conform to the Breit-Wigner formula. It has also a peak for a certain energy transfer, if there exist tachyons. The tachyon is a kind of ghost and is allowed to exist in the theory. Using these properties the complex ghosts are expected to be detected by experiments. The recently observed resonance psi(3.1) is supposed to be the complex ghost of photon, since they have the same quantum numbers. If it is assumed, some properties of the resonance known by experiments are explained naturally to a certain extent. Along the same line it is not unnatural to expect that the photon is also accompanied by a tachyon as a ghost. An experiment to detect the tachyon is proposed. If the angular distribution of elastic electron-positron or electron-electron scattering is observed at a suitably high energy, then a peak will be found in the domain -1< cos theta<1, where it is assumed that the exchanged photon accompanies a tachyon. (auth.)

  4. Tachyonic cyclotron radiation

    International Nuclear Information System (INIS)

    Tomaschitz, R.

    2006-01-01

    We study superluminal cyclotron emission by electrons and muons in semiclassical orbits. The tachyonic line spectra of hydrogenic ions such as H, 56 Fe 25+ , and 238 U 91+ , as well as their muonic counterparts pμ - , 56 Fe 26+ μ - and 238 U 92+ μ - are calculated, in particular the tachyonic power transversally and longitudinally radiated, the total intensity, and the power radiated in the individual harmonics. We also investigate tachyonic continuum radiation from electrons and protons cycling in the surface and light cylinder fields of γ -ray and millisecond pulsars, such as the Crab pulsar, PSR B1509-58, and PSR J0218 + 4232. The superluminal spectral densities generated by non-relativistic, mildly relativistic and ultra-relativistic source particles are derived. We study the parameters determining the global shape of the transversal and longitudinal densities and the energy scales of the broadband spectrum. The observed cutoff frequency in the γ-ray band of the pulsars is used to infer the upper edge of the orbital energy, and we conclude that electrons and nuclei cycling in the surface fields can reach energies beyond the ''ankle'' of the cosmic ray spectrum. This suggests γ-ray pulsars as sources of ultra-high energy cosmic rays. (orig.)

  5. Tachyon tube on non BPS D-branes

    International Nuclear Information System (INIS)

    Huang Wunghong

    2004-01-01

    We report our searches for a single tubular tachyonic solution of regular profile on unstable non BPS D3-branes. We first show that some extended Dirac-Born-Infeld tachyon actions in which new contributions are added to avoid the Derrick's no-go theorem still could not have a single regular tube solution. Next we use the Minahan-Zwiebach tachyon action to find the regular tube solutions with circular or elliptic cross section. With a critical electric field, the energy of the tube comes entirely from the D0 and strings, while the energy associated to the tubular D2-brane tension is vanishing. We also show that fluctuation spectrum around the tube solution does not contain tachyonic mode. The results are consistent with the identification of the tubular configuration as a BPS D2-brane. (author)

  6. Things Fall Apart: Topology Change From Winding Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.

    2005-02-04

    We argue that closed string tachyons drive two spacetime topology changing transitions--loss of genus in a Riemann surface and separation of a Riemann surface into two components. The tachyons of interest are localized versions of Scherk-Schwarz winding string tachyons arising on Riemann surfaces in regions of moduli space where string-scale tubes develop. Spacetime and world-sheet renormalization group analyses provide strong evidence that the decay of these tachyons removes a portion of the spacetime, splitting the tube into two pieces. We address the fate of the gauge fields and charges lost in the process, generalize it to situations with weak flux backgrounds, and use this process to study the type 0 tachyon, providing further evidence that its decay drives the theory sub-critical. Finally, we discuss the time-dependent dynamics of this topology-changing transition and find that it can occur more efficiently than analogous transitions on extended supersymmetric moduli spaces, which are limited by moduli trapping.

  7. A study of tachyon dynamics for broad classes of potentials

    Energy Technology Data Exchange (ETDEWEB)

    Quiros, Israel [Division de Ciencias e Ingenieria de la Universidad de Guanajuato, AP 150, 37150, Leon, Guanajuato (Mexico); Gonzalez, Tame [Departamento de Fisica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); Gonzalez, Dania; Napoles, Yunelsy [Departamento de Matematica, Universidad Central de Las Villas, 54830 Santa Clara (Cuba); GarcIa-Salcedo, Ricardo [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada-Legaria del IPN, Mexico DF (Mexico); Moreno, Claudia, E-mail: iquiros@Fisica.ugto.m, E-mail: tame@uclv.edu.c, E-mail: dgm@uclv.edu.c, E-mail: yna@uclv.edu.c, E-mail: rigarcias@ipn.m, E-mail: claudia.moreno@cucei.udg.m [Departamento de Fisica y Matematicas, Centro Universitario de Ciencias Exactas e IngenierIas, Av. Revolucion 1500 SR, Universidad de Guadalajara, 44430 Guadalajara, Jalisco (Mexico)

    2010-11-07

    We investigate in detail the asymptotic properties of tachyon cosmology for a broad class of self-interaction potentials. The present approach relies on an appropriate re-definition of the tachyon field, which, in conjunction with a method formerly applied in the bibliography in a different context allows us to generalize the dynamical systems study of tachyon cosmology to a wider class of self-interaction potentials beyond the (inverse) square-law one. It is revealed that independent of the functional form of the potential, the matter-dominated solution and the ultra-relativistic (also matter-dominated) solution are always associated with equilibrium points in the phase space of the tachyon models. The latter is always the past attractor, while the former is a saddle critical point. For inverse power-law potentials V{proportional_to}{phi}{sup -2{lambda}} the late-time attractor is always the de Sitter solution, while for sinh-like potentials V{proportional_to}sinh {sup -{alpha}}({lambda}{sup {phi}}), depending on the region of parameter space, the late-time attractor can be either the inflationary tachyon-dominated solution or the matter-scaling (also inflationary) phase. In general, for most part of known quintessential potentials, the late-time dynamics will be associated either with de Sitter inflation, or with matter-scaling, or with scalar field-dominated solutions.

  8. Are classical tachyons slower-than-light quantum particles

    International Nuclear Information System (INIS)

    Recami, E.; Maccarrone, G.D.

    1983-01-01

    After having studied the shape that a tachyon T (e.g., intrinsecally spherical) would take up, it is shown in an explicit example that the characteristic of classical tachyons are similar to those of the ordinary (slower-than-light) quantum particles. In particular, a realistic tachyon is associated with a 'phase-speed' V [V 2 >Cσ2], but with a 'group speed' v=c 2 /V [v 2 2

  9. Tachyons, Lamb Shifts and Superluminal Chaos

    CERN Document Server

    Tomaschitz, R

    2000-01-01

    An elementary account on the origins of cosmic chaos in an open and multiply connected universe is given; there is a finite region in the open 3-space in which the world-lines of galaxies are chaotic, and the mixing taking place in this chaotic nucleus of the universe provides a mechanism to create equidistribution. The galaxy background defines a distinguished frame of reference and a unique cosmic time order; in this context superluminal signal transfer is studied. Tachyons are described by a real Proca field with negative mass square, coupled to a current of subluminal matter. Estimates on tachyon mixing in the geometric optics limit are derived. The potential of a static point source in this field theory is a damped periodic function. We treat this tachyon potential as a perturbation of the Coulomb potential, and study its effects on energy levels in hydrogenic systems. By comparing the induced level shifts to high-precision Lamb shift measurements and QED calculations, we suggest a tachyon mass of 2.1 ke...

  10. The reconstruction of tachyon inflationary potentials

    Energy Technology Data Exchange (ETDEWEB)

    Fei, Qin; Gong, Yungui; Lin, Jiong; Yi, Zhu, E-mail: feiqin@hust.edu.cn, E-mail: yggong@mail.hust.edu.cn, E-mail: 707751841@qq.com, E-mail: yizhu92@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, 1037 LuoYu Rd, Wuhan, Hubei 430074 (China)

    2017-08-01

    We derive a lower bound on the field excursion for the tachyon inflation, which is determined by the amplitude of the scalar perturbation and the number of e -folds before the end of inflation. Using the relation between the observables like n {sub s} and r with the slow-roll parameters, we reconstruct three classes of tachyon potentials. The model parameters are determined from the observations before the potentials are reconstructed, and the observations prefer the concave potential. We also discuss the constraints from the reheating phase preceding the radiation domination for the three classes of models by assuming the equation of state parameter w {sub re} during reheating is a constant. Depending on the model parameters and the value of w {sub re} , the constraints on N {sub re} and T {sub re} are different. As n {sub s} increases, the allowed reheating epoch becomes longer for w {sub re} =−1/3, 0 and 1/6 while the allowed reheating epoch becomes shorter for w {sub re} =2/3.

  11. Twisted tachyon condensation in closed string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Zwiebach, Barton

    2004-01-01

    We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)

  12. Two-body interactions by tachyon exchange

    International Nuclear Information System (INIS)

    Maccarrone, R.; Recami, E.

    1982-01-01

    Due to its relevance for the possible applications to particle physics and for causality problems, is analyzed in this paper the kinematic of (classical) tachyon-exchange between two bodies A, B, for all possible relative velocities. In particular, the two cases u.-vector V-vector c 2 are carefully investigated, V are the body B and tachyon speeds relative to A, respectively

  13. Tachyonic ionization cross sections of hydrogenic systems

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman [Department of Physics, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima 739-8526 (Japan)

    2005-03-11

    Transition rates for induced and spontaneous tachyon radiation in hydrogenic systems as well as the transversal and longitudinal ionization cross sections are derived. We investigate the interaction of the superluminal radiation field with matter in atomic bound-bound and bound-free transitions. Estimates are given for Ly-{alpha} transitions effected by superluminal quanta in hydrogen-like ions. The tachyonic photoelectric effect is scrutinized, in the Born approximation and at the ionization threshold. The angular maxima occur at different scattering angles in the transversal and longitudinal cross sections, which can be used to sift out longitudinal tachyonic quanta in a photon flux. We calculate the tachyonic ionization and recombination cross sections for Rydberg states and study their asymptotic scaling with respect to the principal quantum number. At the ionization threshold of highly excited states of order n {approx} 10{sup 4}, the longitudinal cross section starts to compete with photoionization, in recombination even at lower levels.

  14. Tachyon driven solution to Cosmic Coincidence Problrm

    OpenAIRE

    Srivastaca, S. K.

    2004-01-01

    Here, non-minimally coupled tachyon to gravity is considered as a source of "dark energy". It is demonstrated that with expansion of the universe, tachyon dark energy decays to "dark matter" providing a solution to "cosmic coincidence problem".Moreover, it is found that universe undergoes accelerated expansion simultaneously.

  15. Finite temperature corrections to tachyon mass in intersecting D-branes

    International Nuclear Information System (INIS)

    Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu

    2017-01-01

    We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.

  16. Finite temperature corrections to tachyon mass in intersecting D-branes

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Varun [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India); Chowdhury, Sudipto Paul [Institute of Physics, Sachivalaya Marg,Bhubaneswar 751005 (India); Sarkar, Swarnendu [Department of Physics and Astrophysics, University of Delhi,Delhi 110007 (India)

    2017-04-19

    We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in https://www.doi.org/10.1007/JHEP09(2014)063. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in https://www.doi.org/10.1016/j.nuclphysb.2011.07.011. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in https://www.doi.org/10.1007/JHEP09(2014)063 as well as those for intersecting D2 branes.

  17. Dynamical analysis of tachyonic chameleon

    Science.gov (United States)

    Banijamali, Ali; Solbi, Milad

    2017-08-01

    In the present paper we investigate tachyonic chameleon scalar field and present the phase space analysis for four different combinations of the tachyonic potential V(φ ) and the coupling function f(φ ) of the chameleon field with matter. We find some stable solution in which accelerated expansion of the universe is satisfied. In one case where both f(φ ) and V(φ ) are exponential a scaling attractor was found that can give rise to the late-time acceleration of the universe and alleviate the coincidence problem.

  18. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Khaledian, M.S.; Felegary, F.; Azarmi, Z. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-03-29

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  19. Interacting new agegraphic tachyon, K-essence and dilaton scalar field models of dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Khaledian, M.S.; Felegary, F.; Azarmi, Z.

    2010-01-01

    We study the correspondence between the tachyon, K-essence and dilaton scalar field models with the interacting new agegraphic dark energy model in the non-flat FRW universe. We reconstruct the potentials and the dynamics for these scalar field models, which describe accelerated expansion of the universe.

  20. Toward an open-closed string theoretical description of a rolling tachyon

    International Nuclear Information System (INIS)

    Ohmori, Kazuki

    2004-01-01

    We consider how the time-dependent decay process of an unstable D-brane should be described in the full (quantum) open-closed string theory. It is argued that the system, starting from the unstable D-brane configuration, will evolve in time into the time-independent open string tachyon vacuum configuration which we assume to be finite, with the total energy conserved. As a concrete realization of this idea, we construct a toy model describing the open and closed string tachyons which admits such a time-dependent solution. The structure of our model has some resemblance to that of open-closed string field theory

  1. Localized tachyon condensation and G-parity conservation

    International Nuclear Information System (INIS)

    Lee, Sunggeun; Sin, Sang-Jin

    2004-01-01

    We study the condensation of localized tachyon in non-supersymmetric orbifold. We first show that the G-parity of chiral primaries are preserved under the condensation of localized tachyon (CLT). Using this, we finalize the proof of the conjecture that the lowest-tachyon-mass-squared increases under CLT at the level of type II string with full consideration of GSO projection. We also show the equivalence between the G-parity given by G [jk 1 /n]+[jk 2 /n] coming from partition function and that given by G={jk 1 /n}+k 2 -{jk 2 -/n}k 1 coming from the monomial construction for the chiral primaries in the dual Mirror picture. (author)

  2. The Tolman-Regge antitelephone paradox: Its solution by tachyon mechanics

    International Nuclear Information System (INIS)

    Recami, E.

    The possibility of solving (at least 'in microphysics') all the ordinary causal paradoxes devised for Tachyons is not yet widely recognized; on the contrary, the effectiveness of the Stuckelberg-Feynman 'switching principle' is often misunderstood. It is therefore shown in details and rigorously how to solve the oldest causal paradox, originally proposed by Tolman, which is the Kernel of so many further tachyon paradoxes. The key to the solution is a careful application of Tachyon Kinematics. Which can be unambiguously derived from Special Relativity. A systematic, thorough analysis of all tachyon paradoxes is going to appear elsewhere. (Author) [pt

  3. Information flow, causality, and the classical theory of tachyons

    International Nuclear Information System (INIS)

    Basano, L.

    1977-01-01

    Causal paradoxes arising in the tachyon theory have been systematically solved by using the reinterpretation principle as a consequence of which cause and effect no longer retain an absolute meaning. However, even in the tachyon theory, a cause is always seen to chronologically precede its effect, but this is obtained at the price of allowing cause and effect to be interchanged when required. A recent result has shown that this interchange-ability of cause and effect must not be unlimited if heavy paradoxes are to be avoided. This partial recovery of the classical concept of causality has been expressed by the conjecture that transcendent tachyons cannot be absorbed by a tachyon detector. In this paper the directional properties of the flow of information between two observers in relative motion and its consequences on the logical self-consistency of the theory of superluminal particles are analyzed. It is shown that the above conjecture does not provide a satisfactory solution to the problem because it implies that tachyons of any speed cannot be intercepted by the same detector. (author)

  4. The energy-carrying velocity and rolling of tachyons of unstable D-branes

    International Nuclear Information System (INIS)

    Chung, Jin Hyun; L'Yi, Won Sik

    2004-01-01

    We show that the tachyons that originate from unstable D-branes carry energy and momentum at a velocity β = c 2 /v; where v is the phase velocity, which is greater than c. For an observer who moves with velocity β, the tachyon is observed to be moving from one of the ground states of the tachyon potential to a potential hill. The tachyon is found to either pass over the hill or bounce back to the original ground state. Another possible solution is the case that is margial to these; that is, the tachyon reaches the top of the potential hill and stays there forever.

  5. How to recover casuality for tachyons even in macrophysics

    International Nuclear Information System (INIS)

    Pavsic, M.

    1976-11-01

    The postulate that negative energy particles do not exist (travelling forward in time) leads automatically to the ''re-interpretation principle'' by Stueckelberg and Feynman. It has already been shown that such a ''principle'', assumed as the third postulate of special relativity, ensures the validity of the law of (retarded) casuality both in standard relativity and in (extended) relativity with tachyons and with superluminal inertial frames. Our third postulate, moreover, alloys to one predict antiparticle existence in a purely relativistic context. The paper shown that the third postulate is sufficient to implement the law of casuality even in macrophysics, when usual macro-objects interact with micro-tachyons and macro-tachyons. To that aim, some tachyon kinematics is further developed, which can be useful even in understanding elementary particle interactions (and may be hadron structure). Many other related problems are discussed

  6. Interacting viscous ghost tachyon, K-essence and dilaton scalar field models of dark energy

    International Nuclear Information System (INIS)

    Karami, K; Fahimi, K

    2013-01-01

    We study the correspondence between the interacting viscous ghost dark energy model with the tachyon, K-essence and dilaton scalar field models in the framework of Einstein gravity. We consider a spatially non-flat FRW universe filled with interacting viscous ghost dark energy and dark matter. We reconstruct both the dynamics and potential of these scalar field models according to the evolutionary behavior of the interacting viscous ghost dark energy model, which can describe the accelerated expansion of the universe. Our numerical results show that the interaction and viscosity have opposite effects on the evolutionary properties of the ghost scalar field models. (paper)

  7. Can a tachyon emit light radiation in all directions

    Energy Technology Data Exchange (ETDEWEB)

    Ramanujam, G A [NGM Coll., Tamil Nadu (India). Dept. of Physics

    1976-03-01

    It is shown here that a critical analysis of the approaches employed by various authors to accommodate tachyons into special relativity leads one to the conclusion that a tachyon can emit light radiation only along its line of motion.

  8. Tachyon logamediate inflation on the brane

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Vahid; Nik, Elahe Navaee [Bu-Ali Sina University, Department of Physics, Hamedan (Iran, Islamic Republic of)

    2017-07-15

    According to a Barrow solution for the scale factor of the universe, the main properties of the tachyon inflation model in the framework of the RSII braneworld are studied. Within this framework the basic slow-roll parameters are calculated analytically. We compare this inflationary scenario to the latest observational data. The predicted spectral index and the tensor-to-scalar fluctuation ratio are in excellent agreement with those of Planck 2015. The current predictions are consistent with those of viable inflationary models. (orig.)

  9. The tachyon at the end of the universe

    International Nuclear Information System (INIS)

    McGreevy, John; Silverstein, Eva

    2005-01-01

    We show that a tachyon condensate phase replaces the spacelike singularity in certain cosmological and black hole spacetimes in string theory. We analyze explicitly a set of examples with flat spatial slices in various dimensions which have a winding tachyon condensate, using worldsheet path integral methods from Liouville theory. In a vacuum with no excitations above the tachyon background in the would-be singular region, we analyze the production of closed strings in the resulting state in the bulk of spacetime. We find a thermal result reminiscent of the Hartle-Hawking state, with tunably small energy density. The amplitudes exhibit a self-consistent truncation of support to the weakly-coupled small-tachyon region of spacetime. We argue that the background is accordingly robust against back reaction, and that the resulting string theory amplitudes are perturbatively finite, indicating a resolution of the singularity and a mechanism to start or end time in string theory. Finally, we discuss the generalization of these methods to examples with positively curved spatial slices

  10. Exact potential and scattering amplitudes from the tachyon non-linear β -function

    International Nuclear Information System (INIS)

    Coletti, E.; Forini, V.; Nardelli, G.; Orselli, M.; Grignani, G.

    2004-01-01

    We compute, on the disk, the non-linear tachyon β-function, β T , of the open bosonic string theory. β T is determined both in an expansion to the third power of the field and to all orders in derivatives and in an expansion to any power of the tachyon field in the leading order in derivatives. We construct the Witten-Shatashvili (WS) space-time effective action S and prove that it has a very simple universal form in terms of the renormalized tachyon field and β T . The expression for S is well suited to studying both processes that are far off-shell, such as tachyon condensation, and close to the mass-shell, such as perturbative on-shell amplitudes. We evaluate S in a small derivative expansion, providing the exact tachyon potential. The normalization of S is fixed by requiring that the field redefinition that maps S into the tachyon effective action derived from the cubic string field theory is regular on-shell. The normalization factor is in precise agreement with the one required for verifying all the conjectures on tachyon condensation. The coordinates in the space of couplings in which the tachyon β-function is non linear are the most appropriate to study RG fixed points that can be interpreted as solitons of S, i.e. D-branes. (author)

  11. Gravitational waves from non-Abelian gauge fields at a tachyonic transition

    Science.gov (United States)

    Tranberg, Anders; Tähtinen, Sara; Weir, David J.

    2018-04-01

    We compute the gravitational wave spectrum from a tachyonic preheating transition of a Standard Model-like SU(2)-Higgs system. Tachyonic preheating involves exponentially growing IR modes, at scales as large as the horizon. Such a transition at the electroweak scale could be detectable by LISA, if these non-perturbatively large modes translate into non-linear dynamics sourcing gravitational waves. Through large-scale numerical simulations, we find that the spectrum of gravitational waves does not exhibit such IR features. Instead, we find two peaks corresponding to the Higgs and gauge field mass, respectively. We find that the gravitational wave production is reduced when adding non-Abelian gauge fields to a scalar-only theory, but increases when adding Abelian gauge fields. In particular, gauge fields suppress the gravitational wave spectrum in the IR. A tachyonic transition in the early Universe will therefore not be detectable by LISA, even if it involves non-Abelian gauge fields.

  12. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    International Nuclear Information System (INIS)

    Keresztes, Zoltán; Gergely, László Á.

    2014-01-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω b h 2  = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω CDM  = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model

  13. Stability analysis in tachyonic potential chameleon cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)

    2011-05-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.

  14. Stability analysis in tachyonic potential chameleon cosmology

    International Nuclear Information System (INIS)

    Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.

    2011-01-01

    We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations

  15. Tachyon with an inverse power-law potential in a braneworld cosmology

    Science.gov (United States)

    Bilić, Neven; Domazet, Silvije; Djordjevic, Goran S.

    2017-08-01

    We study a tachyon cosmological model based on the dynamics of a 3-brane in the bulk of the second Randall-Sundrum model extended to more general warp functions. A well known prototype of such a generalization is the bulk with a selfinteracting scalar field. As a consequence of a generalized bulk geometry the cosmology on the observer brane is modified by the scale dependent four-dimensional gravitational constant. In particular, we study a power law warp factor which generates an inverse power-law potential V\\propto \\varphi-n of the tachyon field φ. We find a critical power n cr that divides two subclasses with distinct asymptotic behaviors: a dust universe for n>n_cr and a quasi de Sitter universe for 0.

  16. Closed String Tachyons, AdS/CFT, and QCD

    International Nuclear Information System (INIS)

    Silverstein, Eva M

    2001-01-01

    We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual

  17. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  18. Closed String Tachyons, AdS/CFT, and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Eva M

    2001-07-25

    We find that tachyonic orbifold examples of AdS/CFT have corresponding instabilities at small radius, and can decay to more generic gauge theories. We do this by computing a destabilizing Coleman-Weinberg effective potential for twisted operators of the corresponding quiver gauge theories, generalizing calculations of Tseytlin and Zarembo and interpreting them in terms of the large-N behavior of twisted-sector modes. The dynamically generated potential involves double-trace operators, which affect large-N correlators involving twisted fields but not those involving only untwisted fields, in line with large-N inheritance arguments. We point out a simple reason that no such small radius instability exists in gauge theories arising from freely acting orbifolds, which are tachyon-free at large radius. When an instability is present, twisted gauge theory operators with the quantum numbers of the large-radius tachyons acquire VEVs, leaving a gauge theory with fewer degrees of freedom in the infrared, analogous to but less extreme than ''decays to nothing'' studied in other systems with broken supersymmetry. In some cases one is left with pure glue QCD plus decoupled matter and U(1) factors in the IR, which we thus conjecture is described by the corresponding (possibly strongly coupled) endpoint of tachyon condensation in the M/String-theory dual.

  19. Constant-roll tachyon inflation and observational constraints

    Science.gov (United States)

    Gao, Qing; Gong, Yungui; Fei, Qin

    2018-05-01

    For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio to the first order of epsilon1 by using the method of Bessel function approximation. The derived ns-r results are compared with the observations, we find that only the constant-roll inflation with ηH being a constant is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.

  20. Study of Tachyon Warm Intermediate and Logamediate Inflationary Universe from Loop Quantum Cosmological Perspective

    International Nuclear Information System (INIS)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2016-01-01

    We have studied the tachyon intermediate and logamediate warm inflation in loop quantum cosmological background by taking the dissipative co-efficient Γ = Γ 0 (where Γ 0 is a constant) in “intermediate” inflation and Γ = V(ϕ), (where V(ϕ) is the potential of tachyonic field) in “logamediate” inflation. We have assumed slow-roll condition to construct scalar field ϕ, potential V, N-folds, etc. Various slow-roll parameters have also been obtained. We have analyzed the stability of this model through graphical representations. (paper)

  1. Supersymmetric closed string tachyon cosmology: a first approach

    International Nuclear Information System (INIS)

    Vázquez-Báez, V; Ramírez, C

    2014-01-01

    We give a worldline supersymmetric formulation for the effective action of closed string tachyon in a FRW background. This is done considering that, as shown by Vafa, the effective theory of closed string tachyons can have worldsheet supersymmetry. The Hamiltonian is constructed by means of the Dirac procedure and written in a quantum version. By using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations

  2. A de Sitter tachyonic braneworld revisited

    Science.gov (United States)

    Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão

    2018-01-01

    Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.

  3. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons

    International Nuclear Information System (INIS)

    Sin, Sang-Jin

    2003-01-01

    We study the localized tachyon condensation of non-supersymmetric orbifold backgrounds in their mirror Landau-Ginzburg picture. We first show that the R-charges of chiral primaries increase under the process of condensing the tachyon in the same chiral ring. Then, utilizing the existence of four copies of (2,2) worldsheet supersymmetry, we show that the minimal tachyon mass in twisted sectors increases in CFT and type 0 string and it plays the role of the c-function of the twisted sectors. We also study the GSO projection in detail and show that type II decays to only to type II while type 0 can mix with type 0 and II under the RG-flow

  4. Chiral Rings, Mirror Symmetry and the Fate of Localized Tachyons

    Energy Technology Data Exchange (ETDEWEB)

    Sin, Sang-Jin

    2003-03-20

    We study the localized tachyon condensation of non-supersymmetric orbifold backgrounds in their mirror Landau-Ginzburg picture. We first show that the R-charges of chiral primaries increase under the process of condensing the tachyon in the same chiral ring. Then, utilizing the existence of four copies of (2,2) worldsheet supersymmetry, we show that the minimal tachyon mass in twisted sectors increases in CFT and type 0 string and it plays the role of the c-function of the twisted sectors. We also study the GSO projection in detail and show that type II decays to only to type II while type 0 can mix with type 0 and II under the RG-flow.

  5. Localizability of tachyonic particles and neutrinoless double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Jentschura, U.D. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States); Institut fuer Theoretische Physik, Heidelberg (Germany); Wundt, B.J. [Missouri University of Science and Technology, Department of Physics, Rolla, MO (United States)

    2012-02-15

    The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)

  6. Localizability of tachyonic particles and neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Jentschura, U.D.; Wundt, B.J.

    2012-01-01

    The quantum field theory of superluminal (tachyonic) particles is plagued by a number of problems, which include the Lorentz non-invariance of the vacuum state, the ambiguous separation of the field operator into creation and annihilation operators under Lorentz transformations, and the necessity of a complex reinterpretation principle for quantum processes. Another unsolved question concerns the treatment of subluminal components of a tachyonic wave packet in the field-theoretical formalism, and the calculation of the time-ordered propagator. After a brief discussion on related problems, we conclude that rather painful choices have to be made in order to incorporate tachyonic spin- (1)/(2) particles into field theory. We argue that the field theory needs to be formulated such as to allow for localizable tachyonic particles, even if that means that a slight unitarity violation is introduced into the S matrix, and we write down field operators with unrestricted momenta. We find that once these choices have been made, the propagator for the neutrino field can be given in a compact form, and the left-handedness of the neutrino as well as the right-handedness of the antineutrino follow naturally. Consequences for neutrinoless double beta decay and superluminal propagation of neutrinos are briefly discussed. (orig.)

  7. Answer to 'Information flow, causality, and the classical theory of tachyons'

    International Nuclear Information System (INIS)

    Recami, E.; Pavsic, M.

    1978-01-01

    Recently Basano (Int. J. Theor. Phys.; 16:715 (1977)) in a paper entitled 'Information Flow, Causality and the Classical Theory of Tachyons' commented on earlier work by the present authors. In answer to those comments it is pointed out that although 'Extended Relativity' seems to allow one to solve any causal paradoxes with both usual particles and tachyons nevertheless a number of paradoxes are continuously proposed. It has already been shown by the authors that tachyons possibly do not imply any causality violations even in macro-physics but Basano claimed that the procedure lead to new, different paradoxes. It is here demonstrated that such presumed difficulties do not exist. (U.K.)

  8. Quaternionic formulation of tachyons, superluminal transformations and a complex space-time

    Energy Technology Data Exchange (ETDEWEB)

    Imaeda, K [Dublin Inst. for Advanced Studies (Ireland)

    1979-04-11

    A theory of tachyons and superluminal transformations is developed on the basis of the quaternionic formulation. A complex space-time adn a complex transformation group which contains both Lorentz transformations and superluminal transformations are introduced. The complex space-time '' the biquaternion space'' which is closed under the superluminal transformations is introduced. The principle of special relativity, such as the conservation of the quadratic form of the metric of the space-time, and the principle of duality are extended to the complex space-time and to bradyons, luxons and tachyons under the complex transformations. SeVeral characteristic features of the superluminal transformations and of tachyons are derived.

  9. Singular tachyon kinks from regular profiles

    International Nuclear Information System (INIS)

    Copeland, E.J.; Saffin, P.M.; Steer, D.A.

    2003-01-01

    We demonstrate how Sen's singular kink solution of the Born-Infeld tachyon action can be constructed by taking the appropriate limit of initially regular profiles. It is shown that the order in which different limits are taken plays an important role in determining whether or not such a solution is obtained for a wide class of potentials. Indeed, by introducing a small parameter into the action, we are able circumvent the results of a recent paper which derived two conditions on the asymptotic tachyon potential such that the singular kink could be recovered in the large amplitude limit of periodic solutions. We show that this is explained by the non-commuting nature of two limits, and that Sen's solution is recovered if the order of the limits is chosen appropriately

  10. Tachyons in the Galilean limit

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, Vilanova i la Geltrú, E-08808 (Spain); Gomis, Joaquim [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona, Martí i Franquès 1, Barcelona, E-08028 (Spain); Mezincescu, Luca [Department of Physics, University of Miami,P.O. Box 248046, Coral Gables, FL, 33124 (United States); Townsend, Paul K. [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences,University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2017-04-20

    The Souriau massless Galilean particle of “colour” k and spin s is shown to be the Galilean limit of the Souriau tachyon of mass m=ik and spin s. We compare and contrast this result with the Galilean limit of the Nambu-Goto string and Green-Schwarz superstring.

  11. Assisted inflation from geometric tachyon

    International Nuclear Information System (INIS)

    Panigrahi, Kamal L.; Singh, Harvendra

    2007-01-01

    We study the effect of rolling of N D3-branes in the vicinity of NS5-branes. We find out that this system coupled with the four dimensional gravity gives the slow roll assisted inflation of the scalar field theory. Once again this expectation is exactly similar to that of N-tachyon assisted inflation on unstable D-branes

  12. Tachyon cosmology, supernovae data, and the big brake singularity

    International Nuclear Information System (INIS)

    Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Kamenshchik, A. Yu.

    2009-01-01

    We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard ΛCDM model.

  13. Non-critical Poincare invariant bosonic string backgrounds and closed string tachyons

    International Nuclear Information System (INIS)

    Alvarez, Enrique; Gomez, Cesar; Hernandez, Lorenzo

    2001-01-01

    A new family of non critical bosonic string backgrounds in arbitrary space-time dimension D and with ISO(1,D-2) Poincare invariance are presented. The metric warping factor and dilaton agree asymptotically with the linear dilaton background. The closed string tachyon equation of motion enjoys, in the linear approximation, an exact solution of 'kink' type interpolating between different expectation values. A renormalization group flow interpretation, based on a closed string tachyon potential of type -T 2 e -T , is suggested

  14. Note on inflation with a tachyon rolling on the Gauss-Bonnet brane

    International Nuclear Information System (INIS)

    Paul, B.C.; Sami, M.

    2004-01-01

    In this paper we study the tachyonic inflation in brane world cosmology with Gauss-Bonnet term in the bulk. We obtain the exact solution of slow roll equations in case of exponential potential. We attempt to implement the proposal of J. E. Lidsey and N. J. Nunes [Phys. Rev. D 67, 103510 (2003)] for the tachyon condensate rolling on the Gauss-Bonnet brane and discuss the difficulties associated with the proposal

  15. Nonequatorial tachyon trajectories in Kerr space-time and the second law of black-hole physics

    International Nuclear Information System (INIS)

    Dhurandhar, S.V.

    1979-01-01

    The behavior of tachyon trajectories (spacelike geodesics) in Kerr space-time is discussed. It is seen that the trajectories may be broadly classified into three types according to the magnitude of the angular momentum of the tachyon. When the magnitude of angular momentum is large [vertical-barhvertical-bar > or = a (1 + GAMMA 2 )atsup 1/2at, where h and GAMMA are the angular momentum and energy at infinity and a 0. In the other cases, a negative value for Carter's constant of motion Q is permitted, which happens to be a necessary condition for the tachyon to fall into the singularity. Next, the second law of black-hole physics is investigated in the general case of nonequatorial trajectories. It is shown that nonequatorial tachyons can decrease the area of the Kerr black hole only if it is rotating sufficiently rapidly [a > (4/3√3) M

  16. Ancient cosmological tachyons in the present-day world

    International Nuclear Information System (INIS)

    Molski, M.

    1993-01-01

    The geodesic equation for space-like objects moving along a circular trajectory in the expanding universe is considered. Our analysis leads to the conclusion that ancient cosmological tachyons may exist in the present-day world and may play an important role in (i) the internal structure of hadrons conceived as nonlocal objects called strings, (ii) the T-symmetry violation observed in the weak K-decays, (iii) the multidimensional unified field theories of Kaluza-Klein type, and in (iv) the classical models of charged particles which combine ordinary electromagnetism with a self-interacting version of Newtonian gravity. 18 refs

  17. Non-supersymmetric tachyon-free type-II and type-I closed strings from RCFT

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain)], E-mail: bgator@imaff.cfmac.csic.es; Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Matematicas y Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2007-11-15

    We consider non-supersymmetric four-dimensional closed string theories constructed out of tensor products of N=2 minimal models. Generically such theories have closed string tachyons, but these may be removed either by choosing a non-trivial partition function or a suitable Klein bottle projection. We find large numbers of examples of both types.

  18. Proper acceleration, the geometric tachyon and the dynamics of a fundamental string near Dp branes

    International Nuclear Information System (INIS)

    Das, Ashok; Panda, Sudhakar; Roy, Shibaji

    2009-01-01

    We present a detailed analysis of our recent observation that the origin of the geometric tachyon, which arises when a Dp brane propagates in the vicinity of a stack of coincident NS5 branes, is due to the proper acceleration generated by the background dilaton field. We show that when a fundamental string (F-string), described by the Nambu-Goto action, is moving in the background of a stack of coincident Dp branes, the geometric tachyon mode can also appear since the overall conformal mode of the induced metric for the string can act as a source for proper acceleration. We also studied the detailed dynamics of the F-string as well as the instability by mapping the Nambu-Goto action of the F-string to the tachyon effective action of the non-BPS D-string. We qualitatively argue that the condensation of the geometric tachyon is responsible for the (F,Dp) bound state formation.

  19. Non-minimally coupled tachyonic inflation in warped string background

    International Nuclear Information System (INIS)

    Chingangbam, Pravabati; Panda, Sudhakar; Deshamukhya, Atri

    2005-01-01

    We show that the non-minimal coupling of tachyon field to the scalar curvature, as proposed by Piao et al, with the chosen coupling parameter does not produce the effective potential where the tachyon field can roll down from T=0 to large T along the slope of the potential. We find a correct choice of the parameters which ensures this requirement and support slow-roll inflation. However, we find that the cosmological parameter found from the analysis of the theory are not in the range obtained from observations. We then invoke warped compactification and varying dilaton field over the compact manifold, as proposed by Raeymaekers, to show that in such a setup the observed parameter space can be ensured. (author)

  20. Light-like tachyon condensation in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Hellerman, S.; Schnabl, Martin

    2013-01-01

    Roč. 2013, č. 4 (2013), s. 1-34 ISSN 1126-6708 Institutional support: RVO:68378271 Keywords : string field theory * tachyon condensation Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012

  1. Tachyon warm-intermediate inflation in the light of Planck data

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Vahid; Mehrabi, Ahmad [Bu-Ali Sina University, Department of Physics, Hamedan (Iran, Islamic Republic of); Basilakos, Spyros [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Athens (Greece)

    2016-10-15

    We study the main properties of the warm tachyon inflation model in the framework of the RSII braneworld based on Barrow's solution for the scale factor of the universe. Within this framework we calculate analytically the basic slow-roll parameters for different versions of warm inflation. We test the performance of this inflationary scenario against the latest observational data and we verify that the predicted spectral index and the tensor-to-scalar fluctuation ratio are in excellent agreement with those of Planck 2015. Finally, we find that the current predictions are consistent with those of viable inflationary models. (orig.)

  2. Tachyon constant-roll inflation

    Science.gov (United States)

    Mohammadi, A.; Saaidi, Kh.; Golanbari, T.

    2018-04-01

    The constant-roll inflation is studied where the inflaton is taken as a tachyon field. Based on this approach, the second slow-roll parameter is taken as a constant which leads to a differential equation for the Hubble parameter. Finding an exact solution for the Hubble parameter is difficult and leads us to a numerical solution for the Hubble parameter. On the other hand, since in this formalism the slow-roll parameter η is constant and could not be assumed to be necessarily small, the perturbation parameters should be reconsidered again which, in turn, results in new terms appearing in the amplitude of scalar perturbations and the scalar spectral index. Utilizing the numerical solution for the Hubble parameter, we estimate the perturbation parameter at the horizon exit time and compare it with observational data. The results show that, for specific values of the constant parameter η , we could have an almost scale-invariant amplitude of scalar perturbations. Finally, the attractor behavior for the solution of the model is presented, and we determine that the feature could be properly satisfied.

  3. Pseudo-Hermitian quantum dynamics of tachyonic spin-1/2 particles

    International Nuclear Information System (INIS)

    Jentschura, U D; Wundt, B J

    2012-01-01

    We investigate the spinor solutions, the spectrum and the symmetry properties of a matrix-valued wave equation whose plane-wave solutions satisfy the superluminal (tachyonic) dispersion relation E 2 = p-vector 2 - m 2 , where E is the energy, p-vector is the spatial momentum and m is the mass of the particle. The equation reads (iγ μ  ∂ μ − γ 5  m)ψ = 0, where γ 5 is the fifth current. The tachyonic equation is shown to be CP invariant and T invariant. The tachyonic Hamiltonian breaks parity and is non-Hermitian but fulfils the pseudo-Hermitian property H 5 ( r-vector ) = P H + 5 (- r-vector ) P -1 =P H + 5 ( r-vector ) P -1 , where P is the parity matrix and P is the full parity transformation. The energy eigenvalues and eigenvectors describe a continuous spectrum of plane-wave solutions (which correspond to real eigenvalues for | p-vector |≥m) and evanescent waves, which constitute resonances and anti-resonances with complex-conjugate pairs of resonance eigenvalues (for | p-vector | 5 . This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’. (paper)

  4. Covariant holography of a tachyonic accelerating universe

    Energy Technology Data Exchange (ETDEWEB)

    Rozas-Fernandez, Alberto [Consejo Superior de Investigaciones Cientificas, Instituto de Fisica Fundamental, Madrid (Spain); University of Portsmouth, Institute of Cosmology and Gravitation, Portsmouth (United Kingdom)

    2014-08-15

    We apply the holographic principle to a flat dark energy dominated Friedmann-Robertson-Walker spacetime filled with a tachyon scalar field with constant equation of state w = p/ρ, both for w > -1 and w < -1. By using a geometrical covariant procedure, which allows the construction of holographic hypersurfaces, we have obtained for each case the position of the preferred screen and have then compared these with those obtained by using the holographic dark energy model with the future event horizon as the infrared cutoff. In the phantom scenario, one of the two obtained holographic screens is placed on the big rip hypersurface, both for the covariant holographic formalism and the holographic phantom model. It is also analyzed whether the existence of these preferred screens allows a mathematically consistent formulation of fundamental theories based on the existence of an S-matrix at infinite distances. (orig.)

  5. Calculation of the decay rate of tachyonic neutrinos against charged-lepton-pair and neutrino-pair Cerenkov radiation

    Science.gov (United States)

    Jentschura, Ulrich D.; Nándori, István; Ehrlich, Robert

    2017-10-01

    We consider in detail the calculation of the decay rate of high-energy superluminal neutrinos against (charged) lepton pair Cerenkov radiation, and neutrino pair Cerenkov radiation, i.e., against the decay channels ν \\to ν {e}+ {e}- and ν \\to ν \\overline{ν } ν . Under the hypothesis of a tachyonic nature of neutrinos, these decay channels put constraints on the lifetime of high-energy neutrinos for terrestrial experiments as well as on cosmic scales. For the oncoming neutrino, we use the Lorentz-covariant tachyonic relation {E}ν =\\sqrt{{p}2-{m}ν 2}, where m ν is the tachyonic mass parameter. We derive both threshold conditions as well as on decay and energy loss rates, using the plane-wave fundamental bispinor solutions of the tachyonic Dirac equation. Various intricacies of rest frame versus lab frame calculations are highlighted. The results are compared to the observations of high-energy IceCube neutrinos of cosmological origin.

  6. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    International Nuclear Information System (INIS)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto; Germán, Gabriel; Herrera-Aguilar, Alfredo; Mora-Luna, Refugio Rigel

    2016-01-01

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  7. Coulomb’s law corrections and fermion field localization in a tachyonic de Sitter thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Cartas-Fuentevilla, Roberto; Escalante, Alberto [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Germán, Gabriel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road,Oxford, OX1 3NP (United Kingdom); Herrera-Aguilar, Alfredo [Instituto de Física, Benemérita Universidad Autónoma de Puebla,Apdo. postal J-48, 72570 Puebla, Pue. (Mexico); Institutode Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Mora-Luna, Refugio Rigel [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2016-05-11

    Following recent studies which show that it is possible to localize gravity as well as scalar and gauge vector fields in a tachyonic de Sitter thick braneworld, we investigate the solution of the gauge hierarchy problem, the localization of fermion fields in this model, the recovering of the Coulomb law on the non-relativistic limit of the Yukawa interaction between bulk fermions and gauge bosons localized in the brane, and confront the predicted 5D corrections to the photon mass with its upper experimental/observational bounds, finding the model physically viable since it passes these tests. In order to achieve the latter aims we first consider the Yukawa interaction term between the fermionic and the tachyonic scalar fields MF(T)ΨΨ-bar in the action and analyze four distinct tachyonic functions F(T) that lead to four different structures of the respective fermionic mass spectra with different physics. In particular, localization of the massless left-chiral fermion zero mode is possible for three of these cases. We further analyze the phenomenology of these Yukawa interactions among fermion fields and gauge bosons localized on the brane and obtain the crucial and necessary information to compute the corrections to Coulomb’s law coming from massive KK vector modes in the non-relativistic limit. These corrections are exponentially suppressed due to the presence of the mass gap in the mass spectrum of the bulk gauge vector field. From our results we conclude that corrections to Coulomb’s law in the thin brane limit have the same form (up to a numerical factor) as far as the left-chiral massless fermion field is localized on the brane. Finally we compute the corrections to the Coulomb’s law for an arbitrarily thick brane scenario which can be interpreted as 5D corrections to the photon mass. By performing consistent estimations with brane phenomenology, we found that the predicted corrections to the photon mass, which are well bounded by the experimentally

  8. Tachyons imply the existence of a privileged frame

    Energy Technology Data Exchange (ETDEWEB)

    Sjoedin, T.; Heylighen, F.

    1985-12-16

    It is shown that the existence of faster-than-light signals (tachyons) would imply the existence (and detectability) of a privileged inertial frame and that one can avoid all problems with reversed-time order only by using absolute synchronization instead of the standard one. The connection between these results and the EPR-paradox is discussed.

  9. Physical states at the tachyonic vacuum of open string field theory

    International Nuclear Information System (INIS)

    Giusto, S.; Imbimbo, C.

    2004-01-01

    We illustrate a method for computing the number of physical states of open string theory at the stable tachyonic vacuum in level truncation approximation. The method is based on the analysis of the gauge-fixed open string field theory quadratic action that includes Fadeev-Popov ghost string fields. Computations up to level 9 in the scalar sector are consistent with Sen's conjecture about the absence of physical open string states at the tachyonic vacuum. We also derive a long exact cohomology sequence that relates relative and absolute cohomologies of the BRS operator at the non-perturbative vacuum. We use this exact result in conjunction with our numerical findings to conclude that the higher ghost number non-perturbative BRS cohomologies are non-empty

  10. Scalar perturbation in warm tachyon inflation in LQC in light of Plank and BICEP2

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R., E-mail: rezakord@ipm.ir [Department of Science, Campus of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of); Kamali, V., E-mail: vkamali1362@gmail.com [Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan, 65178 (Iran, Islamic Republic of)

    2014-12-12

    We study warm-tachyon inflationary universe model in the context of the effective field theory of loop quantum cosmology. In slow-roll approximation the primordial perturbation spectrums for this model are calculated. We also obtain the general expressions of the tensor-to-scalar ratio and scalar spectral index. We develop this model by using exponential potential, the characteristics of this model are presented in great details. The parameters of the model are restricted by recent observational data from Planck, WMAP9 and BICEP2.

  11. The spectrum of the two-dimensional black hole or does the two-dimensional black hole have tachyonic or W-hair?

    International Nuclear Information System (INIS)

    Marcus, N.; Oz, Y.

    1993-01-01

    We solve the equations of motion of the tachyon and the discrete states in the background of Witten's semiclassical black hole and in the exact two-dimensional dilaton-graviton background of Dijkgraaf et al. We find the exact solutions for weak fields, leading to conclusions in disagreement with previous studies of tachyons in the black hole. Demanding that a state in the black hole be well behaved at the horizon implies that it must tend asymptotically to a combination of a Seiberg and an anti-Seiberg c=1 state. For such a state to be well behaved asymptotically, it must satisfy the condition that neither its Seiberg nor its anti-Seiberg Liouville momentum is positive. Thus, although the free-field BRST cohomologies of the underlying SL(2, R) theory is the same as that of a c=1 theory, the black-hole spectrum is drastically truncated: There are no W ∞ states, and only tachyons with x-momenta vertical stroke p tach ≤m tach vertical stroke are allowed. In the Minkowski case only the static tachyon is allowed. The black hole is stable to the back reaction of these remaining tachyons, so they are good perturbations of the black hole, or 'hair'. However, this leaves only three tachyonic hairs in the black hole and seven in the exact solution. Such sparse hair is clearly irrelevant to the maintenance of coherence during black-hole evaporation. (orig.)

  12. Dynamics and stability of light-like tachyon condensation

    International Nuclear Information System (INIS)

    Barnaby, Neil; Robinson, Patrick; Mulryne, David J.; Nunes, Nelson J.

    2009-01-01

    Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an 'island of stability' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.

  13. Dynamics and stability of light-like tachyon condensation

    Science.gov (United States)

    Barnaby, Neil; Mulryne, David J.; Nunes, Nelson J.; Robinson, Patrick

    2009-03-01

    Recently, Hellerman and Schnabl considered the dynamics of unstable D-branes in the background of a linear dilaton. Remarkably, they were able to construct light-like tachyon solutions which interpolate smoothly between the perturbative and nonperturbative vacua, without undergoing the wild oscillations that plague time-like solutions. In their analysis, however, the full structure of the initial value problem for the nonlocal dynamical equations was not considered. In this paper, therefore, we reexamine the nonlinear dynamics of light-like tachyon condensation using a combination of numerical and analytical techniques. We find that for the p-adic string the monotonic behaviour obtained previously relied on a special choice of initial conditions near the unstable maximum. For generic initial conditions the wild oscillations come back to haunt us. Interestingly, we find an ``island of stability'' in initial condition space that leads to sensible evolution at late times. For the string field theory case, on the other hand, we find that the evolution is completely stable for generic choices of initial data. This provides an explicit example of a string theoretic system that admits infinitely many initial data but is nevertheless nonperturbatively stable. Qualitatively similar dynamics are obtained in nonlocal cosmologies where the Hubble damping plays a role very analogous to the dilaton gradient.

  14. Tachyons And Modern Physics

    Directory of Open Access Journals (Sweden)

    Francisco Martnez Flores

    2015-08-01

    Full Text Available ABSTRACT We have carried out an exhaustive analysis of the scope of Relativity showing that it is possible to couple it with Quantum Theory but not with Classical Mechanics In order to do that we have introduced the concept of electromagnetic and virtual mass to all particles subjected to Quantum Field Theory radically different from the real or inertial mass included in Newtonian Dynamics which turns out the adequate status to understand quantum phenomena without resorting to explanations difficult to admit. In that line we have considered the particles so-called Tachyon for which we made a reformulation of the relativistic equation avoiding the space-like or negative interval non-causal thus it has been demonstrated its identification with antiparticles on account of the peculiar behavior of energy and momentum regarding the particles and photons.

  15. Dynamics of coupled phantom and tachyon fields

    Energy Technology Data Exchange (ETDEWEB)

    Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Pathak, S.D.; Li, Shiyuan [Shandong University, School of Physics, Jinan (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, Department of Physics, GCAP-CASPER, Waco, TX (United States)

    2017-10-15

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  16. Dynamics of coupled phantom and tachyon fields

    International Nuclear Information System (INIS)

    Shahalam, M.; Pathak, S.D.; Li, Shiyuan; Myrzakulov, R.; Wang, Anzhong

    2017-01-01

    In this paper, we apply the dynamical analysis to a coupled phantom field with scaling potential taking particular forms of the coupling (linear and combination of linear), and present phase space analysis. We investigate if there exists a late time accelerated scaling attractor that has the ratio of dark energy and dark matter densities of the order one. We observe that the scrutinized couplings cannot alleviate the coincidence problem, however, they acquire stable late time accelerated solutions. We also discuss a coupled tachyon field with inverse square potential assuming linear coupling. (orig.)

  17. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-07-15

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  18. Study of inflationary generalized cosmic Chaplygin gas for standard and tachyon scalar fields

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    We consider an inflationary universe model in the context of the generalized cosmic Chaplygin gas by taking the matter field as standard and tachyon scalar fields. We evaluate the corresponding scalar fields and scalar potentials during the intermediate and logamediate inflationary regimes by modifying the first Friedmann equation. In each case, we evaluate the number of e-folds, scalar as well as tensor power spectra, scalar spectral index, and the important observational parameter, the tensor-scalar ratio in terms of inflation. The graphical behavior of this parameter shows that the model remains incompatible with WMAP7 and Planck observational data in each case. (orig.)

  19. Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies

    Science.gov (United States)

    Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian; Huber, Jennifer S.; Moses, William W.; Qi, Jinyi

    2018-03-01

    The first generation Tachyon PET (Tachyon-I) is a demonstration single-ring PET scanner that reaches a coincidence timing resolution of 314 ps using LSO scintillator crystals coupled to conventional photomultiplier tubes. The objective of this study was to quantify the improvement in both lesion detection and quantification performance resulting from the improved time-of-flight (TOF) capability of the Tachyon-I scanner. We developed a quantitative TOF image reconstruction method for the Tachyon-I and evaluated its TOF gain for lesion detection and quantification. Scans of either a standard NEMA torso phantom or healthy volunteers were used as the normal background data. Separately scanned point source and sphere data were superimposed onto the phantom or human data after accounting for the object attenuation. We used the bootstrap method to generate multiple independent noisy datasets with and without a lesion present. The signal-to-noise ratio (SNR) of a channelized hotelling observer (CHO) was calculated for each lesion size and location combination to evaluate the lesion detection performance. The bias versus standard deviation trade-off of each lesion uptake was also calculated to evaluate the quantification performance. The resulting CHO-SNR measurements showed improved performance in lesion detection with better timing resolution. The detection performance was also dependent on the lesion size and location, in addition to the background object size and shape. The results of bias versus noise trade-off showed that the noise (standard deviation) reduction ratio was about 1.1–1.3 over the TOF 500 ps and 1.5–1.9 over the non-TOF modes, similar to the SNR gains for lesion detection. In conclusion, this Tachyon-I PET study demonstrated the benefit of improved time-of-flight capability on lesion detection and ROI quantification for both phantom and human subjects.

  20. Inflation driven by single geometric tachyon with D-brane orbiting around NS5-branes

    International Nuclear Information System (INIS)

    Kwon, Pyung Seong; Jun, Gyeong Yun; Panigrahi, Kamal L.; Sami, M.

    2012-01-01

    We investigate models in which inflation is driven by a single geometrical tachyon. We assume that the D-brane as a probe brane in the background of NS5-branes has non-zero angular momentum which is shown to play similar role as the number of the scalar fields of the assisted inflation. We demonstrate that the angular momentum corrected effective potential allows to account for the observational constraint on COBE normalization, spectral index n S and the tensor to scalar ratio of perturbations consistent with WMAP seven years data.

  1. Accelerated expansion of the universe driven by tachyonic matter

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    2002-01-01

    It is an accepted practice in cosmology to invoke a scalar field with a potential V(φ) when the observed evolution of the universe cannot be reconciled with theoretical prejudices. Since one function degree of freedom in the expansion factor a(t) can be traded off for the function V(φ), it is always possible to find a scalar field potential which will reproduce a given evolution. I provide a recipe for determining V(φ) from a(t) in two cases: (i) a normal scalar field with the Lagrangian L=(1/2)∂ a φ∂ a φ-V(φ) used in quintessence or dark energy models; (ii) a tachyonic field with the Lagrangian L=-V(φ)[1-∂ a φ∂ a φ] 1/2 , motivated by recent string theoretic results. In the latter case, it is possible to have accelerated expansion of the universe during the late phase in certain cases

  2. Non-supersymmetric orientifolds of Gepner models

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl

    2009-01-12

    Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.

  3. The Hagedorn temperature and open QCD-string tachyons in pure N=1 super-Yang-Mills

    International Nuclear Information System (INIS)

    Armoni, Adi; Hollowood, Timothy J.

    2008-01-01

    We consider large-N confining gauge theories with a Hagedorn density of states. In such theories the potential between a pair of colour-singlet sources may diverge at a critical distance r c =1/T H . We consider, in particular, pure N=1 super-Yang-Mills theory and argue that when a domain wall and an anti-domain wall are brought to a distance near r c the interaction potential is better described by an 'open QCD-string channel'. We interpret the divergence of the potential in terms of a tachyonic mode and relate its mass to the Hagedorn temperature. Finally we relate our result to a theorem of Kutasov and Seiberg and argue that the presence of an open string tachyonic mode in the annulus amplitude implies an exponential density of states in the UV of the closed string channel

  4. Equivalence between Born–Infeld tachyon and effective real scalar field theories for brane structures in warped geometry

    International Nuclear Information System (INIS)

    Bernardini, A.E.; Bertolami, O.

    2013-01-01

    An equivalence between Born–Infeld and effective real scalar field theories for brane structures is built in some specific warped space–time scenarios. Once the equations of motion for tachyon fields related to the Born–Infeld action are written as first-order equations, a simple analytical connection with a particular class of real scalar field superpotentials can be found. This equivalence leads to the conclusion that, for a certain class of superpotentials, both systems can support identical thick brane solutions as well as brane structures described through localized energy densities, T 00 (y), in the 5th dimension, y. Our results indicate that thick brane solutions realized by the Born–Infeld cosmology can be connected to real scalar field brane scenarios which can be used to effectively map the tachyon condensation mechanism

  5. Tachyon Condensation on the Elliptic Curve

    CERN Document Server

    Govindarajan, S; Lerche, Wolfgang; Warner, Nicholas P

    2007-01-01

    We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minim...

  6. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael

    2009-09-01

    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  7. Dynamics of tachyon fields and inflation - comparison of analytical and numerical results with observation

    Directory of Open Access Journals (Sweden)

    Milošević M.

    2016-01-01

    Full Text Available The role tachyon fields may play in evolution of early universe is discussed in this paper. We consider the evolution of a flat and homogeneous universe governed by a tachyon scalar field with the DBI-type action and calculate the slow-roll parameters of inflation, scalar spectral index (n, and tensor-scalar ratio (r for the given potentials. We pay special attention to the inverse power potential, first of all to V (x ~ x−4, and compare the available results obtained by analytical and numerical methods with those obtained by observation. It is shown that the computed values of the observational parameters and the observed ones are in a good agreement for the high values of the constant X0. The possibility that influence of the radion field can extend a range of the acceptable values of the constant X0 to the string theory motivated sector of its values is briefly considered. [Projekat Ministarstva nauke Republike Srbije, br. 176021, br. 174020 i br. 43011

  8. A premier analysis of supersymmetric closed string tachyon cosmology

    Science.gov (United States)

    Vázquez-Báez, V.; Ramírez, C.

    2018-04-01

    From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.

  9. Singularity Crossing, Transformation of Matter Properties and the Problem of Parametrization in Field Theories

    Science.gov (United States)

    Kamenshchik, A. Yu.

    2018-03-01

    We investigate particular cosmological models, based either on tachyon fields or on perfect fluids, for which soft future singularities arise in a natural way. Our main result is the description of a smooth crossing of the soft singularity in models with an anti-Chaplygin gas or with a particular tachyon field in the presence of dust. Such a crossing is made possible by certain transformations of matter properties. We discuss and compare also different approaches to the problem of crossing of the Big Bang-Big Crunch singularities.

  10. Tachyon condensation on the elliptic curve

    International Nuclear Information System (INIS)

    Govindarajan, Suresh; Jockers, Hans; Lerche, Wolfgang; Warner, Nicholas P.

    2007-01-01

    We use the framework of matrix factorizations to study topological B-type D-branes on the cubic curve. Specifically, we elucidate how the brane RR charges are encoded in the matrix factors, by analyzing their structure in terms of sections of vector bundles in conjunction with equivariant R-symmetry. One particular advantage of matrix factorizations is that explicit moduli dependence is built in, thus giving us full control over the open-string moduli space. It allows one to study phenomena like discontinuous jumps of the cohomology over the moduli space, as well as formation of bound states at threshold. One interesting aspect is that certain gauge symmetries inherent to the matrix formulation lead to a non-trivial global structure of the moduli space. We also investigate topological tachyon condensation, which enables us to construct, in a systematic fashion, higher-dimensional matrix factorizations out of smaller ones; this amounts to obtaining branes with higher RR charges as composites of ones with minimal charges. As an application, we explicitly construct all rank two matrix factorizations

  11. New view about black holes. [Tachyon--bradyon transformation at horizon

    Energy Technology Data Exchange (ETDEWEB)

    De Sabbata, V; Pavsic, M; Recami, E

    1977-01-01

    For a Schwarzschild black-hole, as reference frame is chosen the frame sigma at rest with respect to the Schwarzschild metric. In this locally non-inertial frame, a freely falling body is shown to reach the speed of light on the horizon and then to travel faster than light inside the horizon. The usual Szekeres--Kruskal (SK) coordinates represent themselves frames that (with respect to the frames sigma) travel at subluminal speed outside, at luminal speed on, and at superluminal speed inside the horizon (so that SK frames always describe any free falling body as a standard, slower-than-light object). Finally, black-holes are shown to be possible sources of tachyons.

  12. REM - the Shape of Potentials for f(R) Theories in Cosmology and Tachyons

    CERN Document Server

    Vulcanov, Dumitru N; Sporea, Ciprian A

    2014-01-01

    We investigated the reverse engineering method (REM) for constructing the potential of the scalar field in cosmological theories based on metric f(R) gravity and Friedman Robertson Walker (FRW) metric. Then transposing the new field and Friedman equations in an algebraic computing special library (in Maple + GrTennsorII platform) we graphically investigate the shape of the potentials in terms of the scalar field in at least two type of cosmology with exponential and linear scale factor expansion. Some perspectives and conclusions relating these results with tachyonic cosmology theories are noticed.

  13. Mesoscopic model for binary fluids

    Science.gov (United States)

    Echeverria, C.; Tucci, K.; Alvarez-Llamoza, O.; Orozco-Guillén, E. E.; Morales, M.; Cosenza, M. G.

    2017-10-01

    We propose a model for studying binary fluids based on the mesoscopic molecular simulation technique known as multiparticle collision, where the space and state variables are continuous, and time is discrete. We include a repulsion rule to simulate segregation processes that does not require calculation of the interaction forces between particles, so binary fluids can be described on a mesoscopic scale. The model is conceptually simple and computationally efficient; it maintains Galilean invariance and conserves the mass and energy in the system at the micro- and macro-scale, whereas momentum is conserved globally. For a wide range of temperatures and densities, the model yields results in good agreement with the known properties of binary fluids, such as the density profile, interface width, phase separation, and phase growth. We also apply the model to the study of binary fluids in crowded environments with consistent results.

  14. Numerical Modeling of Fluid-Structure Interaction with Rheologically Complex Fluids

    OpenAIRE

    Chen, Xingyuan

    2014-01-01

    In the present work the interaction between rheologically complex fluids and elastic solids is studied by means of numerical modeling. The investigated complex fluids are non-Newtonian viscoelastic fluids. The fluid-structure interaction (FSI) of this kind is frequently encountered in injection molding, food processing, pharmaceutical engineering and biomedicine. The investigation via experiments is costly, difficult or in some cases, even impossible. Therefore, research is increasingly aided...

  15. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    Science.gov (United States)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  16. Hamiltonian closures in fluid models for plasmas

    Science.gov (United States)

    Tassi, Emanuele

    2017-11-01

    This article reviews recent activity on the Hamiltonian formulation of fluid models for plasmas in the non-dissipative limit, with emphasis on the relations between the fluid closures adopted for the different models and the Hamiltonian structures. The review focuses on results obtained during the last decade, but a few classical results are also described, in order to illustrate connections with the most recent developments. With the hope of making the review accessible not only to specialists in the field, an introduction to the mathematical tools applied in the Hamiltonian formalism for continuum models is provided. Subsequently, we review the Hamiltonian formulation of models based on the magnetohydrodynamics description, including those based on the adiabatic and double adiabatic closure. It is shown how Dirac's theory of constrained Hamiltonian systems can be applied to impose the incompressibility closure on a magnetohydrodynamic model and how an extended version of barotropic magnetohydrodynamics, accounting for two-fluid effects, is amenable to a Hamiltonian formulation. Hamiltonian reduced fluid models, valid in the presence of a strong magnetic field, are also reviewed. In particular, reduced magnetohydrodynamics and models assuming cold ions and different closures for the electron fluid are discussed. Hamiltonian models relaxing the cold-ion assumption are then introduced. These include models where finite Larmor radius effects are added by means of the gyromap technique, and gyrofluid models. Numerical simulations of Hamiltonian reduced fluid models investigating the phenomenon of magnetic reconnection are illustrated. The last part of the review concerns recent results based on the derivation of closures preserving a Hamiltonian structure, based on the Hamiltonian structure of parent kinetic models. Identification of such closures for fluid models derived from kinetic systems based on the Vlasov and drift-kinetic equations are presented, and

  17. Simplified Aeroelastic Model for Fluid Structure Interaction between Microcantilever Sensors and Fluid Surroundings.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available Fluid-structural coupling occurs when microcantilever sensors vibrate in a fluid. Due to the complexity of the mechanical characteristics of microcantilevers and lack of high-precision microscopic mechanical testing instruments, effective methods for studying the fluid-structural coupling of microcantilevers are lacking, especially for non-rectangular microcantilevers. Here, we report fluid-structure interactions (FSI of the cable-membrane structure via a macroscopic study. The simplified aeroelastic model was introduced into the microscopic field to establish a fluid-structure coupling vibration model for microcantilever sensors. We used the finite element method to solve the coupled FSI system. Based on the simplified aeroelastic model, simulation analysis of the effects of the air environment on the vibration of the commonly used rectangular microcantilever was also performed. The obtained results are consistent with the literature. The proposed model can also be applied to the auxiliary design of rectangular and non-rectangular sensors used in fluid environments.

  18. Advances in fluid modeling and turbulence measurements

    International Nuclear Information System (INIS)

    Wada, Akira; Ninokata, Hisashi; Tanaka, Nobukazu

    2002-01-01

    The context of this book consists of four fields: Environmental Fluid Mechanics; Industrial Fluid Mechanics; Fundamentals of Fluid Mechanics; and Turbulence Measurements. Environmental Fluid Mechanics includes free surface flows in channels, rivers, seas, and estuaries. It also discusses wind engineering issues, ocean circulation model and dispersion problems in atmospheric, water and ground water environments. In Industrial Fluid Mechanics, fluid phenomena in energy exchanges, modeling of turbulent two- or multi-phase flows, swirling flows, flows in combustors, variable density flows and reacting flows, flows in turbo-machines, pumps and piping systems, and fluid-structure interaction are discussed. In Fundamentals of Fluid Mechanics, progress in modeling turbulent flows and heat/mass transfers, computational fluid dynamics/numerical techniques, parallel computing algorithms, applications of chaos/fractal theory in turbulence are reported. In Turbulence Measurements, experimental studies of turbulent flows, experimental and post-processing techniques, quantitative and qualitative flow visualization techniques are discussed. Separate abstracts were presented for 15 of the papers in this issue. The remaining 89 were considered outside the subject scope of INIS. (J.P.N.)

  19. Acoustic Velocity and Attenuation in Magnetorhelogical fluids based on an effective density fluid model

    Directory of Open Access Journals (Sweden)

    Shen Min

    2016-01-01

    Full Text Available Magnetrohelogical fluids (MRFs represent a class of smart materials whose rheological properties change in response to the magnetic field, which resulting in the drastic change of the acoustic impedance. This paper presents an acoustic propagation model that approximates a fluid-saturated porous medium as a fluid with a bulk modulus and effective density (EDFM to study the acoustic propagation in the MRF materials under magnetic field. The effective density fluid model derived from the Biot’s theory. Some minor changes to the theory had to be applied, modeling both fluid-like and solid-like state of the MRF material. The attenuation and velocity variation of the MRF are numerical calculated. The calculated results show that for the MRF material the attenuation and velocity predicted with this effective density fluid model are close agreement with the previous predictions by Biot’s theory. We demonstrate that for the MRF material acoustic prediction the effective density fluid model is an accurate alternative to full Biot’s theory and is much simpler to implement.

  20. Extended two-fluid model for simulating magneto-rheological fluid flows

    International Nuclear Information System (INIS)

    Shivaram, A C

    2011-01-01

    The current practice of designing magneto-rheological (MR) fluid-based devices is, to a large extent, based on simple phenomenological models like the Bingham model. Though useful for initial force or torque estimation and sizing, these models lack the capability to predict performance degradation due to changes in the particle volume fraction distribution. The present work demonstrates the use of the two-fluid model for predicting the particle volume fraction distribution inside a device in the absence of a field and proposes a novel modeling scheme which can simulate the fluid flow in the presence of a field. This modeling scheme can be used to (a) visualize flow patterns inside a device under various operating conditions, (b) predict the spatial distribution of particles inside a device after multiple operating cycles, (c) assist in estimating the extent of performance degradation due to non-uniform particle distribution and (d) enable testing of various design strategies to mitigate such performance issues using simulations. This is illustrated through numerical examples of a few case studies of typical MR device configurations

  1. Theoretical models for supercritical fluid extraction.

    Science.gov (United States)

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Development of bubble-induced turbulence model for advanced two-fluid model

    International Nuclear Information System (INIS)

    Hosoi, Hideaki; Yoshida, Hiroyuki

    2011-01-01

    A two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method. The two-fluid model is therefore useful for thermal hydraulic analysis in the large-scale domain such as rod bundles. However, since the two-fluid model includes a lot of constitutive equations verified by use of experimental results, it has problems that the result of analyses depends on accuracy of the constitutive equations. To solve these problems, an advanced two-fluid model has been developed by Japan Atomic Energy Agency. In this model, interface tracking method is combined with two-fluid model to accurately predict large interface structure behavior. Liquid clusters and bubbles larger than a computational cell are calculated using the interface tracking method, and those smaller than the cell are simulated by the two-fluid model. The constitutive equations to evaluate the effects of small bubbles or droplets on two-phase flow are also required in the advanced two-fluid model, just as with the conventional two-fluid model. However, the dependency of small bubbles and droplets on two-phase flow characteristics is relatively small, and fewer experimental results are required to verify the characteristics of large interface structures. Turbulent dispersion force model is one of the most important constitutive equations for the advanced two-fluid model. The turbulent dispersion force model has been developed by many researchers for the conventional two-fluid model. However, existing models implicitly include the effects of large bubbles and the deformation of bubbles, and are unfortunately not applicable to the advanced two-fluid model. In the previous study, the authors suggested the turbulent dispersion force model based on the analogy of Brownian motion. And the authors improved the turbulent dispersion force model in consideration of bubble-induced turbulence to improve the analysis results for small

  3. Introduction to fluid model for RHIC heavy ion collisions

    International Nuclear Information System (INIS)

    Muraya, Shin

    2007-01-01

    An introductory review of the fluid model which has been looked upon as the promising phenomenological model for the heavy ion scattering experiments at RHIC is presented here. Subjects are especially focused on the fundamental assumptions of the model and the decision process of the phenomenological parameters considering newcomers to hadron physics. Introduction of thermodynamical quantities, 1+1 dimension model, time-space evolution of fluid, correspondence of fluid to particles, initial condition, boundary condition and comparison of the equation of state of fluid model and that of hadron model are described. Limitation of fluid picture and the validity of the model are discussed finally. It is summarized that the present fluid model does not predict much about results in advance but gives interpretation after the event, nevertheless it reproduces much of the experimental results in natural form. It is expected that the parameter of the fluid model is to be used as the intermediate theory to relate experimental results with theory. (S. Funahashi)

  4. Studying Validity of Single-Fluid Model in Inertial Confinement Fusion

    International Nuclear Information System (INIS)

    Gu Jian-Fa; Fan Zheng-Feng; Dai Zhen-Sheng; Ye Wen-Hua; Pei Wen-Bing; Zhu Shao-Ping

    2014-01-01

    The validity of single-fluid model in inertial confinement fusion simulations is studied by comparing the results of the multi- and single-fluid models. The multi-fluid model includes the effects of collision and interpenetration between fluid species. By simulating the collision of fluid species, steady-state shock propagation into the thin DT gas and expansion of hohlraum Au wall heated by lasers, the results show that the validity of single-fluid model is strongly dependent on the ratio of the characteristic length of the simulated system to the particle mean free path. When the characteristic length L is one order larger than the mean free path λ, the single-fluid model's results are found to be in good agreement with the multi-fluid model's simulations, and the modeling of single-fluid remains valid. If the value of L/λ is lower than 10, the interpenetration between fluid species is significant, and the single-fluid simulations show some unphysical results; while the multi-fluid model can describe well the interpenetration and mix phenomena, and give more reasonable results. (physics of gases, plasmas, and electric discharges)

  5. Assessment of fluid-to-fluid modelling of critical heat flux in horizontal 37-element bundle flows

    International Nuclear Information System (INIS)

    Yang, S.K.

    2006-01-01

    Fluid-to-fluid modelling laws of critical heat flux (CHF) available in the literature were reviewed. The applicability of the fluid-to-fluid modelling laws was assessed using available data ranging from low to high mass fluxes in horizontal 37-element bundles simulating a CANDU fuel string. Correlations consisting of dimensionless similarity groups were derived using modelling fluid data (Freon-12) to predict water CHF data in horizontal 37-element bundles with uniform and non-uniform axial-heat flux distribution (AFD). The results showed that at mass fluxes higher than ∼4,000 kg/m 2 s (water equivalent value), the vertical fluid-to-fluid modelling laws of Ahmad (1973) and Katto (1979) predict water CHF in horizontal 37-element bundles with non-uniform AFD with average errors of 1.4% and 3.0% and RMS errors of 5.9% and 6.1%, respectively. The Francois and Berthoud (2003) fluid-to-fluid modelling law predicts CHF in non-uniformly heated 37-element bundles in the horizontal orientation with an average error of 0.6% and an RMS error of 10.4% over the available range of 2,000 to 6,200 kg/m 2 s. (author)

  6. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  7. Atomistic Modeling of the Fluid-Solid Interface in Simple Fluids

    Science.gov (United States)

    Hadjiconstantinou, Nicolas; Wang, Gerald

    2017-11-01

    Fluids can exhibit pronounced structuring effects near a solid boundary, typically manifested in a layered structure that has been extensively shown to directly affect transport across the interface. We present and discuss several results from molecular-mechanical modeling and molecular-dynamics (MD) simulations aimed at characterizing the structure of the first fluid layer directly adjacent to the solid. We identify a new dimensionless group - termed the Wall number - which characterizes the degree of fluid layering, by comparing the competing effects of wall-fluid interaction and thermal energy. We find that in the layering regime, several key features of the first layer layer - including its distance from the solid, its width, and its areal density - can be described using mean-field-energy arguments, as well as asymptotic analysis of the Nernst-Planck equation. For dense fluids, the areal density and the width of the first layer can be related to the bulk fluid density using a simple scaling relation. MD simulations show that these results are broadly applicable and robust to the presence of a second confining solid boundary, different choices of wall structure and thermalization, strengths of fluid-solid interaction, and wall geometries.

  8. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  9. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.

    Science.gov (United States)

    Aland, Sebastian; Lowengrub, John; Voigt, Axel

    2012-10-01

    Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces. At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together with the interfacial colloids form an emulsion with interesting material properties and offer an important route to new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids 23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface. Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface model. Using simple flow configurations, we show that the new model has much better properties and does not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by simulating the fall of a solid ball through a colloid-laden multiphase fluid.

  10. Four-fluid model of PWR degraded cores

    International Nuclear Information System (INIS)

    Dearing, J.F.

    1985-01-01

    This paper describes the new two-dimensional, four-fluid fluid dynamics and heat transfer (FLUIDS) module of the MELPROG code. MELPROG is designed to give an integrated, mechanistic treatment of pressurized water reactor (PWR) core meltdown accidents from accident initiation to vessel melt-through. The code has a modular data storage and transfer structure, with each module providing the others with boundary conditions at each computational time step. Thus the FLUIDS module receives mass and energy source terms from the fuel pin module, the structures module, and the debris bed module, and radiation energy source terms from the radiation module. MELPROG, which models the reactor vessel, is also designed to model the vessel as a component in the TRAC/PF1 networking solution of a PWR reactor coolant system (RCS). The coupling between TRAC and MELPROG is implicit in the fluid dynamics of the reactor coolant (liquid water and steam) allowing an accurate simulation of the coupling between the vessel and the rest of the RCS during an accident. This paper deals specifically with the numerical model of fluid dynamics and heat transfer within the reactor vessel, which allows a much more realistic simulation (with less restrictive assumptions on physical behavior) of the accident than has been possible before

  11. Numerical investigation of fluid mud motion using a three-dimensional hydrodynamic and two-dimensional fluid mud coupling model

    Science.gov (United States)

    Yang, Xiaochen; Zhang, Qinghe; Hao, Linnan

    2015-03-01

    A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.

  12. The Applicability of Fluid Model to Electrical Breakdown and Glow Discharge Modeling in Argon

    International Nuclear Information System (INIS)

    Stankov, M. N.; Marković, V. Lj.; Stamenković, S. N.; Jovanović, A. P.; Petković, M. D.

    2015-01-01

    The simple fluid model, an extended fluid model, and the fluid model with nonlocal ionization are applied for the calculations of static breakdown voltages, Paschen curves and current-voltage characteristics. The best agreement with the experimental data for the Paschen curve modeling is achieved by using the model with variable secondary electron yield. The modeling of current-voltage characteristics is performed for different inter-electrode distances and the results are compared with the experimental data. The fluid model with nonlocal ionization shows an excellent agreement for all inter-electrode distances, while the extended fluid model with variable electron transport coefficients agrees well with measurements at short inter-electrode distances when ionization by fast electrons can be neglected. (physics of gases, plasmas, and electric discharges)

  13. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-01-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic

  14. Immiscible multicomponent lattice Boltzmann model for fluids with ...

    Indian Academy of Sciences (India)

    College of Mechanical Engineering, Tongji University, 4800# Cao'an Road, ... was developed from a discretized fluid model known as the lattice gas automata ... of two immiscible fluids, several lattice Boltzmann (LB) models have been ...

  15. Approximate Riemann solver for the two-fluid plasma model

    International Nuclear Information System (INIS)

    Shumlak, U.; Loverich, J.

    2003-01-01

    An algorithm is presented for the simulation of plasma dynamics using the two-fluid plasma model. The two-fluid plasma model is more general than the magnetohydrodynamic (MHD) model often used for plasma dynamic simulations. The two-fluid equations are derived in divergence form and an approximate Riemann solver is developed to compute the fluxes of the electron and ion fluids at the computational cell interfaces and an upwind characteristic-based solver to compute the electromagnetic fields. The source terms that couple the fluids and fields are treated implicitly to relax the stiffness. The algorithm is validated with the coplanar Riemann problem, Langmuir plasma oscillations, and the electromagnetic shock problem that has been simulated with the MHD plasma model. A numerical dispersion relation is also presented that demonstrates agreement with analytical plasma waves

  16. Relativistic fluid model of the resistive hose instability

    International Nuclear Information System (INIS)

    Siambis, J.G.

    1992-01-01

    A systematic analysis of the hose instability using the relativistic fluid formulation is reported. In its basic nature, the hose instability is a macroscopic, low-frequency instability, hence a fluid model should, in principle, give an accurate account of the hose instability. It has been found that for zeroth-order beam displacements, giving rise to rigid beam displacements, the fluid wave equation and resulting dispersion relation are identical to the spread-mass model and the energy-group model results. When first-order fluid displacements are included as well, giving rise to compressible, nonfrozen displacements in the axial direction and beam cross-section distortion in the radial direction, then there is obtained a wave equation similar, but not identical to the multicomponent model. The dispersion relation is solved for numerically. The hose instability growth rate is found to be similar to the multicomponent model result, over part of the beam frame, real hose frequency range

  17. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  18. Free surface modelling with two-fluid model and reduced numerical diffusion of the interface

    International Nuclear Information System (INIS)

    Strubelj, Luka; Tiselj, Izrok

    2008-01-01

    Full text of publication follows: The free surface flows are successfully modelled with one of existing free surface models, such as: level set method, volume of fluid method (with/without surface reconstruction), front tracking, two-fluid model (two momentum equations) with modified interphase force and others. The main disadvantage of two-fluid model used for simulations of free surface flows is numerical diffusion of the interface, which can be significantly reduced using the method presented in this paper. Several techniques for reduction of numerical diffusion of the interface have been implemented in the volume of fluid model and are based on modified numerical schemes for advection of volume fraction near the interface. The same approach could be used also for two-fluid method, but according to our experience more successful reduction of numerical diffusion of the interface can be achieved with conservative level set method. Within the conservative level set method, continuity equation for volume fraction is solved and after that the numerical diffusion of the interface is reduced in such a way that the thickness of the interface is kept constant during the simulation. Reduction of the interface diffusion can be also called interface sharpening. In present paper the two-fluid model with interface sharpening is validated on Rayleigh-Taylor instability. Under assumptions of isothermal and incompressible flow of two immiscible fluids, we simulated a system with the fluid of higher density located above the fluid of smaller density in two dimensions. Due to gravity in the system, fluid with higher density moves below the fluid with smaller density. Initial condition is not a flat interface between the fluids, but a sine wave with small amplitude, which develops into a mushroom-like structure. Mushroom-like structure in simulation of Rayleigh-Taylor instability later develops to small droplets as result of numerical dispersion of interface (interface sharpening

  19. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  20. SVZ⊕1/q{sup 2}-expansion versus some QCD holographic models

    Energy Technology Data Exchange (ETDEWEB)

    Jugeau, F., E-mail: frederic.jugeau@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972, Rio de Janeiro (Brazil); Narison, S., E-mail: snarison@yahoo.fr [Laboratoire Particules et Univers de Montpellier, CNRS-IN2P3, Case 070, Place Eugène Bataillon, 34095 Montpellier (France); Ratsimbarison, H., E-mail: herysedra@yahoo.fr [Institute of High-Energy Physics of Madagascar (iHEP-MAD), University of Antananarivo (Madagascar)

    2013-05-13

    Considering the classical two-point correlators built from (axial-) vector, scalar q{sup ¯}q and gluonium currents, we confront results obtained using the SVZ⊕1/q{sup 2}-expansion to the ones from some QCD holographic models in the Euclidean region and with negative dilaton Φ{sub i}(z)=−|c{sub i}{sup 2}|z{sup 2}. We conclude that the presence of the 1/q{sup 2}-term in the SVZ-expansion due to a tachyonic gluon mass appears naturally in the Minimum Soft-Wall (MSW) and the Gauge/String Dual (GSD) models which can also reproduce semi-quantitatively some of the higher dimension condensate contributions appearing in the OPE. The Hard-Wall model shows a large departure from the SVZ⊕1/q{sup 2}-expansion in the vector, scalar and gluonium channels due to the absence of any power corrections. The equivalence of the MSW and GSD models is manifest in the vector channel through the relation of the dilaton parameter with the tachyonic gluon mass. For approximately reproducing the phenomenological values of the dimension d=4,6 condensates, the holographic models require a tachyonic gluon mass (α{sub s}/π)λ{sup 2}≈−(0.12–0.14) GeV{sup 2}, which is about twice the fitted phenomenological value from e{sup +}e{sup −} data. The relation of the inverse length parameter c{sub i} to the tachyonic gluon mass also shows that c{sub i} is channel dependent but not universal for a given holographic model. Using the MSW model and M{sub ρ}=0.78 GeV as input, we predict a scalar q{sup ¯}q mass M{sub S}≈(0.95–1.10) GeV and a scalar gluonium mass M{sub G}≈(1.1–1.3) GeV.

  1. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Wilhelm, D.

    1990-09-01

    This volume describes the Advanced Fluid-Dynamics Model (AFDM) for topologies, flow regimes, and interfacial areas. The objective of these models is to provide values for the interfacial areas between all components existing in a computational cell. The interfacial areas are then used to evaluate the mass, energy, and momentum transfer between the components. A new approach has been undertaken in the development of a model to convect the interfacial areas of the discontinuous velocity fields in the three-velocity-field environment of AFDM. These interfacial areas are called convectible surface areas. The continuous and discontinuous components are chosen using volume fraction and levitation criteria. This establishes so-called topologies for which the convectible surface areas can be determined. These areas are functions of space and time. Solid particulates that are limited to being discontinuous within the bulk fluid are assumed to have a constant size. The convectible surface areas are subdivided to model contacts between two discontinuous components or discontinuous components and the structure. The models have been written for the flow inside of large pools. Therefore, the structure is tracked only as a boundary to the fluid volume without having a direct influence on velocity or volume fraction distribution by means of flow regimes or boundary layer models. 17 refs., 7 tabs., 18 figs

  2. Modelling of fluid-solid interaction using two stand-alone codes

    CSIR Research Space (South Africa)

    Grobler, Jan H

    2010-01-01

    Full Text Available A method is proposed for the modelling of fluid-solid interaction in applications where fluid forces dominate. Data are transferred between two stand-alone codes: a dedicated computational fluid dynamics (CFD) code capable of free surface modelling...

  3. SPH modeling of fluid-solid interaction for dynamic failure analysis of fluid-filled thin shells

    Science.gov (United States)

    Caleyron, F.; Combescure, A.; Faucher, V.; Potapov, S.

    2013-05-01

    This work concerns the prediction of failure of a fluid-filled tank under impact loading, including the resulting fluid leakage. A water-filled steel cylinder associated with a piston is impacted by a mass falling at a prescribed velocity. The cylinder is closed at its base by an aluminum plate whose characteristics are allowed to vary. The impact on the piston creates a pressure wave in the fluid which is responsible for the deformation of the plate and, possibly, the propagation of cracks. The structural part of the problem is modeled using Mindlin-Reissner finite elements (FE) and Smoothed Particle Hydrodynamics (SPH) shells. The modeling of the fluid is also based on an SPH formulation. The problem involves significant fluid-structure interactions (FSI) which are handled through a master-slave-based method and the pinballs method. Numerical results are compared to experimental data.

  4. Statistical properties of three-dimensional two-fluid plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Qaisrani, M. Hasnain [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); Xia, ZhenWei [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zou, Dandan, E-mail: ddzou@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023 (China)

    2015-09-15

    The nonlinear dynamics of incompressible non-dissipative two-fluid plasma model is investigated through classical Gibbs ensemble methods. Liouville's theorem of phase space for each wave number is proved, and the absolute equilibrium spectra for Galerkin truncated two-fluid model are calculated. In two-fluid theory, the equilibrium is built on the conservation of three quadratic invariants: the total energy and the self-helicities for ions and electrons fluid, respectively. The implications of statistic equilibrium spectra with arbitrary ratios of conserved invariants are discussed.

  5. Computational fluid dynamic modelling of cavitation

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  6. Dirac-Born-Infeld action on the tachyon kink and vortex

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2003-01-01

    The tachyon effective field theory describing the dynamics of a non-Bogomol'nyi-Prasad-Sommerfield (BPS) D-brane in superstring theory has an infinitely thin but finite tension kink solution describing a codimension one BPS D-brane. We study the world-volume theory of massless modes on the kink, and show that the world volume action has precisely the Dirac-Born-Infeld (DBI) form without any higher derivative corrections. We generalize this to a vortex solution in the effective field theory on a brane-antibrane pair. As in the case of the kink, the vortex is infinitely thin, has finite energy density, and the world-volume action on the vortex is again given exactly by the DBI action on a BPS D-brane. We also discuss the coupling of fermions and restoration of supersymmetry and κ symmetry on the world volume of the kink. The absence of higher derivative corrections to the DBI action on the soliton implies that all such corrections are related to higher derivative corrections to the original effective action on the world volume of a non-BPS D-brane or brane-antibrane pair

  7. Closed-String Tachyons and the Hagedorn Transition in AdS Space

    CERN Document Server

    Barbón, José L F

    2002-01-01

    We discuss some aspects of the behaviour of a string gas at the Hagedorn temperature from a Euclidean point of view. Using AdS space as an infrared regulator, the Hagedorn tachyon can be effectively quasi-localized and its dynamics controled by a finite energetic balance. We propose that the off-shell RG flow matches to an Euclidean AdS black hole geometry in a generalization of the string/black-hole correspondence principle. The final stage of the RG flow can be interpreted semiclassically as the growth of a cool black hole in a hotter radiation bath. The end-point of the condensation is the large Euclidan AdS black hole, and the part of spacetime behind the horizon has been removed. In the flat-space limit, holography is manifest by the system creating its own transverse screen at infinity. This leads to an argument, based on the energetics of the system, explaining why the non-supersymmetric type 0A string theory decays into the supersymmetric type IIB vacuum. We also suggest a notion of `boundary entropy'...

  8. Modeling and control of magnetorheological fluid dampers using neural networks

    Science.gov (United States)

    Wang, D. H.; Liao, W. H.

    2005-02-01

    Due to the inherent nonlinear nature of magnetorheological (MR) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the direct identification and inverse dynamic modeling for MR fluid dampers using feedforward and recurrent neural networks are studied. The trained direct identification neural network model can be used to predict the damping force of the MR fluid damper on line, on the basis of the dynamic responses across the MR fluid damper and the command voltage, and the inverse dynamic neural network model can be used to generate the command voltage according to the desired damping force through supervised learning. The architectures and the learning methods of the dynamic neural network models and inverse neural network models for MR fluid dampers are presented, and some simulation results are discussed. Finally, the trained neural network models are applied to predict and control the damping force of the MR fluid damper. Moreover, validation methods for the neural network models developed are proposed and used to evaluate their performance. Validation results with different data sets indicate that the proposed direct identification dynamic model using the recurrent neural network can be used to predict the damping force accurately and the inverse identification dynamic model using the recurrent neural network can act as a damper controller to generate the command voltage when the MR fluid damper is used in a semi-active mode.

  9. Cellular-automation fluids: A model for flow in porous media

    International Nuclear Information System (INIS)

    Rothman, D.H.

    1987-01-01

    Because the intrinsic inhomogeneity of porous media makes the application of proper boundary conditions difficult, fluid flow through microgeometric models has typically been achieved with idealized arrays of geometrically simple pores, throats, and cracks. The author proposes here an attractive alternative, capable of freely and accurately modeling fluid flow in grossly irregular geometries. This new method numerically solves the Navier-Stokes equations using the cellular-automation fluid model introduced by Frisch, Hasslacher, and Pomeau. The cellular-automation fluid is extraordinarily simple - particles of unit mass traveling with unit velocity reside on a triangular lattice and obey elementary collisions rules - but capable of modeling much of the rich complexity of real fluid flow. The author shows how cellular-automation fluids are applied to the study of porous media. In particular, he discusses issues of scale on the cellular-automation lattice and present the results of 2-D simulations, including numerical estimation of permeability and verification of Darcy's law

  10. Physical modelling and the poroelastic model with application to fluid detection in a VTI medium

    International Nuclear Information System (INIS)

    Li, Shengjie

    2013-01-01

    In this paper, both poroelasticity theory and pre-stack inversions have been combined to generate a flexible way to derive an effective fluid factor, which is then used to identify the presence of the hydrocarbon in weakly anisotropic VTI reservoirs. The effective fluid factor has been derived by using an approximate fluid substitution equation for anisotropic VTI media. The approximate equation provides a means of performing fluid substitution for elastic moduli along the vertical symmetry axis of a VTI medium with fewer elastic moduli. The effective fluid factor can be used to analyse the sensitivity of seismic attributes to fluid content. In order to examine the effectiveness of the effective fluid factor, an anisotropic physical model has been constructed. The rock properties of artificial sandstone used as a reservoir building material are properly selected by using an empirical model and Gassmann's equation. An effort is made to ensure the physical modelling data represent the 'true’ response of different fluid-filled sands. The fluid detection method is then applied to interpret the inverted seismic impedance obtained from physical modelling seismic data with some known gas-sands and wet-sands. The results shows that the interpretive resolution of seismic fluid detection has been dramatically improved by using the effective fluid factor. In addition, more information on lateral changes in fluid content can be distinguished. This study has demonstrated the potential of this method in detecting different fluid content in weakly anisotropic VTI reservoirs. (paper)

  11. Conceptual models of microseismicity induced by fluid injection

    Science.gov (United States)

    Baro Urbea, J.; Lord-May, C.; Eaton, D. W. S.; Joern, D.

    2017-12-01

    Variations in the pore pressure due to fluid invasion are accountable for microseismic activity recorded in geothermal systems and during hydraulic fracturing operations. To capture this phenomenon on a conceptual level, invasion percolation models have been suggested to represent the flow network of fluids within a porous media and seismic activity is typically considered to be directly related to the expansion of the percolated area. Although such models reproduce scale-free frequency-magnitude distributions, the associated b-values of the Gutenberg-Richter relation do not align with observed data. Here, we propose an alternative conceptual invasion percolation model that decouples the fluid propagation from the microseismic events. Instead of a uniform pressure, the pressure is modeled to decay along the distance from the injection site. Wet fracture events are simulated with a stochastic spring block model exhibiting stick-slip dynamics as a result of the variations of the pore pressure. We show that the statistics of the stick-slip events are scale-free, but now the b-values depend on the level of heterogeneity in the local static friction coefficients. Thus, this model is able to reproduce the wide spectrum of b-values observed in field catalogs associated with fluid induced microseismicity. Moreover, the spatial distribution of microseismic events is also consistent with observations.

  12. Numerical Modeling of Conjugate Heat Transfer in Fluid Network

    Science.gov (United States)

    Majumdar, Alok

    2004-01-01

    Fluid network modeling with conjugate heat transfer has many applications in Aerospace engineering. In modeling unsteady flow with heat transfer, it is important to know the variation of wall temperature in time and space to calculate heat transfer between solid to fluid. Since wall temperature is a function of flow, a coupled analysis of temperature of solid and fluid is necessary. In cryogenic applications, modeling of conjugate heat transfer is of great importance to correctly predict boil-off rate in propellant tanks and chill down of transfer lines. In TFAWS 2003, the present author delivered a paper to describe a general-purpose computer program, GFSSP (Generalized Fluid System Simulation Program). GFSSP calculates flow distribution in complex flow circuit for compressible/incompressible, with or without heat transfer or phase change in all real fluids or mixtures. The flow circuit constitutes of fluid nodes and branches. The mass, energy and specie conservation equations are solved at the nodes where as momentum conservation equations are solved at the branches. The proposed paper describes the extension of GFSSP to model conjugate heat transfer. The network also includes solid nodes and conductors in addition to fluid nodes and branches. The energy conservation equations for solid nodes solves to determine the temperatures of the solid nodes simultaneously with all conservation equations governing fluid flow. The numerical scheme accounts for conduction, convection and radiation heat transfer. The paper will also describe the applications of the code to predict chill down of cryogenic transfer line and boil-off rate of cryogenic propellant storage tank.

  13. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  14. Landau fluid model for weakly nonlinear dispersive magnetohydrodynamics

    International Nuclear Information System (INIS)

    Passot, T.; Sulem, P. L.

    2005-01-01

    In may astrophysical plasmas such as the solar wind, the terrestrial magnetosphere, or in the interstellar medium at small enough scales, collisions are negligible. When interested in the large-scale dynamics, a hydrodynamic approach is advantageous not only because its numerical simulations is easier than of the full Vlasov-Maxwell equations, but also because it provides a deep understanding of cross-scale nonlinear couplings. It is thus of great interest to construct fluid models that extended the classical magnetohydrodynamic (MHD) equations to collisionless situations. Two ingredients need to be included in such a model to capture the main kinetic effects: finite Larmor radius (FLR) corrections and Landau damping, the only fluid-particle resonance that can affect large scales and can be modeled in a relatively simple way. The Modelization of Landau damping in a fluid formalism is hardly possible in the framework of a systematic asymptotic expansion and was addressed mainly by means of parameter fitting in a linearized setting. We introduced a similar Landau fluid model but, that has the advantage of taking dispersive effects into account. This model properly describes dispersive MHD waves in quasi-parallel propagation. Since, by construction, the system correctly reproduces their linear dynamics, appropriate tests should address the nonlinear regime. In a first case, we show analytically that the weakly nonlinear modulational dynamics of quasi-parallel propagating Alfven waves is well captured. As a second test we consider the parametric decay instability of parallel Alfven waves and show that numerical simulations of the dispersive Landau fluid model lead to results that closely match the outcome of hybrid simulations. (Author)

  15. Generalized reduced fluid model with finite ion-gyroradius effects

    International Nuclear Information System (INIS)

    Hsu, C.T.; Hazeltine, R.D.; Morrison, P.J.

    1985-04-01

    Reduced fluid models have become important tools for studying the nonlinear dynamics of plasma in a large aspect-ratio tokamak. A self-consistent nonlinear reduced fluid model, with finite ion-gyroradius effects is presented. The model is distinctive in allowing for arbitrary beta and in satisfying an exact, relatively simple energy conservation law

  16. Two-Fluid Mathematical Models for Blood Flow in Stenosed Arteries: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Sankar DS

    2009-01-01

    Full Text Available The pulsatile flow of blood through stenosed arteries is analyzed by assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a non-Newtonian fluid and the plasma in the peripheral layer as a Newtonian fluid. The non-Newtonian fluid in the core region of the artery is assumed as a (i Herschel-Bulkley fluid and (ii Casson fluid. Perturbation method is used to solve the resulting system of non-linear partial differential equations. Expressions for various flow quantities are obtained for the two-fluid Casson model. Expressions of the flow quantities obtained by Sankar and Lee (2006 for the two-fluid Herschel-Bulkley model are used to get the data for comparison. It is found that the plug flow velocity and velocity distribution of the two-fluid Casson model are considerably higher than those of the two-fluid Herschel-Bulkley model. It is also observed that the pressure drop, plug core radius, wall shear stress and the resistance to flow are significantly very low for the two-fluid Casson model than those of the two-fluid Herschel-Bulkley model. Hence, the two-fluid Casson model would be more useful than the two-fluid Herschel-Bulkley model to analyze the blood flow through stenosed arteries.

  17. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyons: Unified analyses

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We present cosmological perturbation theory based on generalized gravity theories including string theory correction terms and a tachyonic complication. The classical evolution as well as the quantum generation processes in these varieties of gravity theories are presented in unified forms. These apply both to the scalar- and tensor-type perturbations. Analyses are made based on the curvature variable in two different gauge conditions often used in the literature in Einstein's gravity; these are the curvature variables in the comoving (or uniform-field) gauge and the zero-shear gauge. Applications to generalized slow-roll inflation and its consequent power spectra are derived in unified forms which include a wide range of inflationary scenarios based on Einstein's gravity and others

  18. Comparison of kinetic and fluid neutral models for attached and detached state

    International Nuclear Information System (INIS)

    Furubayashi, M.; Hoshino, K.; Toma, M.; Hatayama, A.; Coster, D.; Schneider, R.; Bonnin, X.; Kawashima, H.; Asakura, N.; Suzuki, Y.

    2009-01-01

    Neutral behavior has an important role in the transport simulations of the edge plasma. Most of the edge plasma transport codes treat neutral particles by a simple fluid model or a kinetic model. The fluid model allows faster calculations. However, the applicability of the fluid model is limited. In this study, simulation results of JT-60U from kinetic neutral model and fluid neutral model are compared under the attached and detached state, using the 2D edge plasma code package, SOLPS5.0. In the SOL region, no significant differences are observed in the upstream plasma profiles between kinetic and fluid neutral models. However, in the divertor region, large differences are observed in plasma and neutral profiles. Therefore, further optimization of the fluid neutral model should be performed. Otherwise kinetic neutral model should be used to analyze the divertor region.

  19. Modeling of Non-Isothermal Cryogenic Fluid Sloshing

    Science.gov (United States)

    Agui, Juan H.; Moder, Jeffrey P.

    2015-01-01

    A computational fluid dynamic model was used to simulate the thermal destratification in an upright self-pressurized cryostat approximately half-filled with liquid nitrogen and subjected to forced sinusoidal lateral shaking. A full three-dimensional computational grid was used to model the tank dynamics, fluid flow and thermodynamics using the ANSYS Fluent code. A non-inertial grid was used which required the addition of momentum and energy source terms to account for the inertial forces, energy transfer and wall reaction forces produced by the shaken tank. The kinetics-based Schrage mass transfer model provided the interfacial mass transfer due to evaporation and condensation at the sloshing interface. The dynamic behavior of the sloshing interface, its amplitude and transition to different wave modes, provided insight into the fluid process at the interface. The tank pressure evolution and temperature profiles compared relatively well with the shaken cryostat experimental test data provided by the Centre National D'Etudes Spatiales.

  20. Two-fluid hydrodynamic model for semiconductors

    DEFF Research Database (Denmark)

    Maack, Johan Rosenkrantz; Mortensen, N. Asger; Wubs, Martijn

    2018-01-01

    The hydrodynamic Drude model (HDM) has been successful in describing the optical properties of metallic nanostructures, but for semiconductors where several different kinds of charge carriers are present an extended theory is required. We present a two-fluid hydrodynamic model for semiconductors...

  1. Time response model of ER fluids for precision control of motors

    Energy Technology Data Exchange (ETDEWEB)

    Koyanagi, Ken' ichi [Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama (Japan)], E-mail: koyanagi@pu-toyama.ac.jp

    2009-02-01

    For improvement of control performance or new control demands of mechatronics devices using particle type ER fluids, it will be needed to further investigate a response time of the fluids. It is commonly said around 5-mili seconds, however, the formula structure of that delay has not been clear. This study aims to develop a functional damper (attenuators), that can control its viscous characteristics in real time using ER fluids as its working fluid. ER dampers are useful to accomplish high precision positioning not to prevent high speed movement of the motor. To realize the functional damper that can be manipulated according to situations or tasks, the modeling and control of ER fluids are necessary. This paper investigates time delay affects of ER fluids and makes an in-depth dynamic model of the fluid by utilizing simulation and experiment. The mathematical model has a dead-time and first ordered delays of the fluid and the high voltage amplifier for the fluid.

  2. Modeling of magnetorheological fluid in quasi-static squeeze flow mode

    Science.gov (United States)

    Horak, Wojciech

    2018-06-01

    This work presents a new nonlinear model to describe MR fluid behavior in the squeeze flow mode. The basis for deriving the model were the principles of continuum mechanics and the theory of tensor transformation. The analyzed case concerned quasi-static squeeze with a constant area, between two parallel plates with non-slip boundary conditions. The developed model takes into account the rheological properties or MR fluids as a viscoplastic material for which yield stress increases due to compression. The model also takes into account the formation of normal force in the MR fluid as a result of the magnetic field impact. Moreover, a new parameter has been introduced which characterizes the behavior of MR fluid subjected to compression. The proposed model has been experimentally validated and the obtained results suggest that the assumptions made in the model development are reasonable, as good model compatibility with the experiments was obtained.

  3. Gyro-Landau fluid model of tokamak core fluctuations

    International Nuclear Information System (INIS)

    Leboeuf, J.N.; Carreras, B.A.; Dominguez, N.; Hedrick, C.L.; Sidikman, K.L.; Lynch, V.E.; Drake, J.B.; Walker, D.W.

    1992-01-01

    Dissipative trapped electron modes (DTEM) may be one of the causes of deterioration of confinement in tokamak and stellatator plasmas. We have implemented a fluid model to study DTEM turbulence in slab geometry. The electron dynamics include in addition to the adiabatic part, a non-adiabatic piece modeled with an i-delta-type response. The ion dynamics include Landau damping and FLR corrections through Landau fluid approximate techniques and Pade approximants for Γ 0 (b)=I 0 (b)e -b . The model follows from the gyrokinetic equation. Evolution equations, which closely resemble those used in standard reduced MHD, are presented since these are better suited to non-linear calculations. The numerical results of radially resolved calculations will be discussed. A recently developed hybrid model, which consists of a gyrokinetic implementation for the ions using particles and the same description for the electron dynamics as in the fluid model, will also be presented

  4. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  5. Development of a Model Foamy Viscous Fluid

    Directory of Open Access Journals (Sweden)

    Vial C.

    2013-08-01

    Full Text Available The objective is to develop a model viscous foamy fluid, i.e. below the very wet limit, the rheological and stability properties of which can be tuned. First, the method used for the preparation of foamy fluids is detailed, including process and formulation. Then, experimental results highlight that stable foamy fluids with a monomodal bubble size distribution can be prepared with a void fraction between 25% and 50% (v/v. Their viscoelastic properties under flow and low-strain oscillatory conditions are shown to result from the interplay between the formulation of the continuous phase, void fraction and bubble size. Their apparent viscosity can be described using the Cross equation and zero-shear Newtonian viscosity may be predicted by a Mooney equation up to a void fraction about 40%. The Cox-Merz and the Laun’s rules apply when the capillary number Ca is lower than 0.1. The upper limit of the zero-shear plateau region decreases when void fraction increases or bubble size decreases. In the shear-thinning region, shear stress varies with Ca1/2, as in wet foams with immobile surfaces. Finally, foamy fluids can be sheared up to Ca about 0.1 without impairing their microstructure. Their stability at rest achieves several hours and increases with void fraction due to compact packing constraints. These constitute, therefore, versatile model fluids to investigate the behaviour of foamy fluids below the very wet limit in process conditions.

  6. Numerical Cerebrospinal System Modeling in Fluid-Structure Interaction.

    Science.gov (United States)

    Garnotel, Simon; Salmon, Stéphanie; Balédent, Olivier

    2018-01-01

    Cerebrospinal fluid (CSF) stroke volume in the aqueduct is widely used to evaluate CSF dynamics disorders. In a healthy population, aqueduct stroke volume represents around 10% of the spinal stroke volume while intracranial subarachnoid space stroke volume represents 90%. The amplitude of the CSF oscillations through the different compartments of the cerebrospinal system is a function of the geometry and the compliances of each compartment, but we suspect that it could also be impacted be the cardiac cycle frequency. To study this CSF distribution, we have developed a numerical model of the cerebrospinal system taking into account cerebral ventricles, intracranial subarachnoid spaces, spinal canal and brain tissue in fluid-structure interactions. A numerical fluid-structure interaction model is implemented using a finite-element method library to model the cerebrospinal system and its interaction with the brain based on fluid mechanics equations and linear elasticity equations coupled in a monolithic formulation. The model geometry, simplified in a first approach, is designed in accordance with realistic volume ratios of the different compartments: a thin tube is used to mimic the high flow resistance of the aqueduct. CSF velocity and pressure and brain displacements are obtained as simulation results, and CSF flow and stroke volume are calculated from these results. Simulation results show a significant variability of aqueduct stroke volume and intracranial subarachnoid space stroke volume in the physiological range of cardiac frequencies. Fluid-structure interactions are numerous in the cerebrospinal system and difficult to understand in the rigid skull. The presented model highlights significant variations of stroke volumes under cardiac frequency variations only.

  7. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  8. A dynamic neutral fluid model for the PIC scheme

    Science.gov (United States)

    Wu, Alan; Lieberman, Michael; Verboncoeur, John

    2010-11-01

    Fluid diffusion is an important aspect of plasma simulation. A new dynamic model is implemented using the continuity and boundary equations in OOPD1, an object oriented one-dimensional particle-in-cell code developed at UC Berkeley. The model is described and compared with analytical methods given in [1]. A boundary absorption parameter can be adjusted from ideal absorption to ideal reflection. Simulations exhibit good agreement with analytic time dependent solutions for the two ideal cases, as well as steady state solutions for mixed cases. For the next step, fluid sources and sinks due to particle-particle or particle-fluid collisions within the simulation volume and to surface reactions resulting in emission or absorption of fluid species will be implemented. The resulting dynamic interaction between particle and fluid species will be an improvement to the static fluid in the existing code. As the final step in the development, diffusion for multiple fluid species will be implemented. [4pt] [1] M.A. Lieberman and A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Ed, Wiley, 2005.

  9. Downhole Temperature Modeling for Non-Newtonian Fluids in ERD Wells

    Directory of Open Access Journals (Sweden)

    Dan Sui

    2018-04-01

    Full Text Available Having precise information of fluids' temperatures is a critical process during planning of drilling operations, especially for extended reach drilling (ERD. The objective of this paper is to develop an accurate temperature model that can precisely calculate wellbore temperature distributions. An established semi-transient temperature model for vertical wellbores is extended and improved to include deviated wellbores and more realistic scenarios using non-Newtonian fluids. The temperature model is derived based on an energy balance between the formation and the wellbore. Heat transfer is considered steady-state in the wellbore and transient in the formation through the utilization of a formation cooling effect. In this paper, the energy balance is enhanced by implementing heat generation from the drill bit friction and contact friction force caused by drillpipe rotation. A non-linear geothermal gradient as a function of wellbore inclination, is also introduced to extend the model to deviated wellbores. Additionally, the model is improved by considering temperature dependent drilling fluid transport and thermal properties. Transport properties such as viscosity and density are obtained by lab measurements, which allows for investigation of the effect of non-Newtonian fluid behavior on the heat transfer. Furthermore, applying a non-Newtonian pressure loss model enables an opportunity to evaluate the impact of viscous forces on fluid properties and thus the overall heat transfer. Results from sensitivity analysis of both drilling fluid properties and other relevant parameters will be presented. The main application area of this model is related to optimization of drilling fluid, hydraulics, and wellbore design parameters, ultimately leading to safe and cost efficient operations.

  10. Numerical Modelling of Three-Fluid Flow Using The Level-set Method

    Science.gov (United States)

    Li, Hongying; Lou, Jing; Shang, Zhi

    2014-11-01

    This work presents a numerical model for simulation of three-fluid flow involving two different moving interfaces. These interfaces are captured using the level-set method via two different level-set functions. A combined formulation with only one set of conservation equations for the whole physical domain, consisting of the three different immiscible fluids, is employed. Numerical solution is performed on a fixed mesh using the finite volume method. Surface tension effect is incorporated using the Continuum Surface Force model. Validation of the present model is made against available results for stratified flow and rising bubble in a container with a free surface. Applications of the present model are demonstrated by a variety of three-fluid flow systems including (1) three-fluid stratified flow, (2) two-fluid stratified flow carrying the third fluid in the form of drops and (3) simultaneous rising and settling of two drops in a stationary third fluid. The work is supported by a Thematic and Strategic Research from A*STAR, Singapore (Ref. #: 1021640075).

  11. Model identification methodology for fluid-based inerters

    Science.gov (United States)

    Liu, Xiaofu; Jiang, Jason Zheng; Titurus, Branislav; Harrison, Andrew

    2018-06-01

    Inerter is the mechanical dual of the capacitor via the force-current analogy. It has the property that the force across the terminals is proportional to their relative acceleration. Compared with flywheel-based inerters, fluid-based forms have advantages of improved durability, inherent damping and simplicity of design. In order to improve the understanding of the physical behaviour of this fluid-based device, especially caused by the hydraulic resistance and inertial effects in the external tube, this work proposes a comprehensive model identification methodology. Firstly, a modelling procedure is established, which allows the topological arrangement of the mechanical networks to be obtained by mapping the damping, inertance and stiffness effects directly to their respective hydraulic counterparts. Secondly, an experimental sequence is followed, which separates the identification of friction, stiffness and various damping effects. Furthermore, an experimental set-up is introduced, where two pressure gauges are used to accurately measure the pressure drop across the external tube. The theoretical models with improved confidence are obtained using the proposed methodology for a helical-tube fluid inerter prototype. The sources of remaining discrepancies are further analysed.

  12. Mechanistic Fluid Transport Model to Estimate Gastrointestinal Fluid Volume and Its Dynamic Change Over Time.

    Science.gov (United States)

    Yu, Alex; Jackson, Trachette; Tsume, Yasuhiro; Koenigsknecht, Mark; Wysocki, Jeffrey; Marciani, Luca; Amidon, Gordon L; Frances, Ann; Baker, Jason R; Hasler, William; Wen, Bo; Pai, Amit; Sun, Duxin

    2017-11-01

    Gastrointestinal (GI) fluid volume and its dynamic change are integral to study drug disintegration, dissolution, transit, and absorption. However, key questions regarding the local volume and its absorption, secretion, and transit remain unanswered. The dynamic fluid compartment absorption and transit (DFCAT) model is proposed to estimate in vivo GI volume and GI fluid transport based on magnetic resonance imaging (MRI) quantified fluid volume. The model was validated using GI local concentration of phenol red in human GI tract, which was directly measured by human GI intubation study after oral dosing of non-absorbable phenol red. The measured local GI concentration of phenol red ranged from 0.05 to 168 μg/mL (stomach), to 563 μg/mL (duodenum), to 202 μg/mL (proximal jejunum), and to 478 μg/mL (distal jejunum). The DFCAT model characterized observed MRI fluid volume and its dynamic changes from 275 to 46.5 mL in stomach (from 0 to 30 min) with mucus layer volume of 40 mL. The volumes of the 30 small intestine compartments were characterized by a max of 14.98 mL to a min of 0.26 mL (0-120 min) and a mucus layer volume of 5 mL per compartment. Regional fluid volumes over 0 to 120 min ranged from 5.6 to 20.38 mL in the proximal small intestine, 36.4 to 44.08 mL in distal small intestine, and from 42 to 64.46 mL in total small intestine. The DFCAT model can be applied to predict drug dissolution and absorption in the human GI tract with future improvements.

  13. Particle hopping vs. fluid-dynamical models for traffic flow

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  14. Random fluid limit of an overloaded polling model

    NARCIS (Netherlands)

    M. Frolkova (Masha); S.G. Foss (Sergey); A.P. Zwart (Bert)

    2014-01-01

    htmlabstractIn the present paper, we study the evolution of an overloaded cyclic polling model that starts empty. Exploiting a connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches

  15. Random fluid limit of an overloaded polling model

    NARCIS (Netherlands)

    M. Frolkova (Masha); S.G. Foss (Sergey); A.P. Zwart (Bert)

    2013-01-01

    htmlabstractIn the present paper, we study the evolution of an~overloaded cyclic polling model that starts empty. Exploiting a~connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches

  16. Four-dimensional strings: Phenomenology and model building

    International Nuclear Information System (INIS)

    Quiros, M.

    1989-01-01

    In these lectures we will review some of the last developments in string theories leading to the construction of realistic four-dimensional string models. Special attention will be paid to world-sheet and space-time supersymmetry, modular invariance and model building for supersymmetric and (tachyon-free) nonsupersymmetric ten and four-dimensional models. (orig.)

  17. Local lattice-gas model for immiscible fluids

    International Nuclear Information System (INIS)

    Chen, S.; Doolen, G.D.; Eggert, K.; Grunau, D.; Loh, E.Y.

    1991-01-01

    We present a lattice-gas model for two-dimensional immiscible fluid flows with surface tension that uses strictly local collision rules. Instead of using a local total color flux as Somers and Rem [Physica D 47, 39 (1991)], we use local colored holes to be the memory of particles of the same color. Interactions between walls and fluids are included that produce arbitrary contact angles

  18. Vacuum Stability with Tachyonic Boundary Higgs Masses in No-Scale Supersymmetry or Gaugino Mediation

    CERN Document Server

    Evans, Jason L; Wells, James D

    2009-01-01

    No-scale supersymmetry or gaugino mediation augmented with large negative Higgs soft masses at the input scale provides a simple solution to the supersymmetric flavor problem while giving rise to a neutralino LSP. However, to obtain a neutralino LSP it is often necessary to have tachyonic input Higgs soft masses that can give rise to charge-and-color-breaking (CCB) minima and unbounded-from-below (UFB) directions in the low energy theory. We investigate the vacuum structure in these theories to determine when such problematic features are present. When the standard electroweak vacuum is only metastable, we compute its lifetime under vacuum tunneling. We find that vacuum metastability leads to severe restrictions on the parameter space for larger $\\tan\\beta \\sim 30$, while for smaller $\\tan\\beta\\sim 10$, only minor restrictions are found. Along the way, we derive an exact bounce solution for tunneling through an inverted parabolic potential.

  19. Vlasov fluid model with electron pressure

    International Nuclear Information System (INIS)

    Gerwin, R.

    1975-11-01

    The Vlasov-ion, fluid-electron model of Freidberg for studying the linear stability of hot-ion pinch configurations is here extended to include electron pressure. Within the framework of an adiabatic electron-gas picture, it is shown that this model is still amenable to the numerical methods described by Lewis and Freidberg

  20. Laszlo Tisza and the two-fluid model of superfluidity

    Science.gov (United States)

    Balibar, Sébastien

    2017-11-01

    The "two-fluid model" of superfluidity was first introduced by Laszlo Tisza in 1938. On that year, Tisza published the principles of his model as a brief note in Nature and two articles in French in the Comptes rendus de l'Académie des sciences, followed in 1940 by two other articles in French in the Journal de physique et le Radium. In 1941, the two-fluid model was reformulated by Lev Landau on a more rigorous basis. Successive experiments confirmed the revolutionary idea introduced by Tisza: superfluid helium is indeed a surprising mixture of two fluids with independent velocity fields. His prediction of the existence of heat waves, a consequence of his model, was also confirmed. Then, it took several decades for the superfluidity of liquid helium to be fully understood.

  1. D0-D4 brane tachyon condensation to a BPS state and its excitation spectrum in noncommutative super Yang-Mills theory

    International Nuclear Information System (INIS)

    Wimmer, Robert

    2005-01-01

    We investigate the D0-D4-brane system for different B-field backgrounds including the small instanton singularity in noncommutative SYM theory. We discuss the excitation spectrum of the unstable state as well as for the BPS D0-D4 bound state. We compute the tachyon potential which reproduces the complete mass defect. The relevant degrees of freedom are the massless (4,4) strings. Both results are in contrast with existing string field theory calculations. The excitation spectrum of the small instanton is found to be equal to the excitation spectrum of the fluxon solution on R θ 2 x R which we trace back to T-duality. For the effective theory of the (0,0) string excitations we obtain a BFSS matrix model. The number of states in the instanton background changes significantly when the B-field becomes self-dual. This leads us to the proposal of the existence of a phase transition or cross over at self-dual B-field

  2. Study and discretization of kinetic models and fluid models at low Mach number

    International Nuclear Information System (INIS)

    Dellacherie, Stephane

    2011-01-01

    This thesis summarizes our work between 1995 and 2010. It concerns the analysis and the discretization of Fokker-Planck or semi-classical Boltzmann kinetic models and of Euler or Navier-Stokes fluid models at low Mach number. The studied Fokker-Planck equation models the collisions between ions and electrons in a hot plasma, and is here applied to the inertial confinement fusion. The studied semi-classical Boltzmann equations are of two types. The first one models the thermonuclear reaction between a deuterium ion and a tritium ion producing an α particle and a neutron particle, and is also in our case used to describe inertial confinement fusion. The second one (known as the Wang-Chang and Uhlenbeck equations) models the transitions between electronic quantified energy levels of uranium and iron atoms in the AVLIS isotopic separation process. The basic properties of these two Boltzmann equations are studied, and, for the Wang-Chang and Uhlenbeck equations, a kinetic-fluid coupling algorithm is proposed. This kinetic-fluid coupling algorithm incited us to study the relaxation concept for gas and immiscible fluids mixtures, and to underline connections with classical kinetic theory. Then, a diphasic low Mach number model without acoustic waves is proposed to model the deformation of the interface between two immiscible fluids induced by high heat transfers at low Mach number. In order to increase the accuracy of the results without increasing computational cost, an AMR algorithm is studied on a simplified interface deformation model. These low Mach number studies also incited us to analyse on cartesian meshes the inaccuracy at low Mach number of Godunov schemes. Finally, the LBM algorithm applied to the heat equation is justified

  3. Development of the tube bundle structure for fluid-structure interaction analysis model

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong

    2010-02-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  4. Modeling fluid transport in 2d paper networks

    Science.gov (United States)

    Tirapu Azpiroz, Jaione; Fereira Silva, Ademir; Esteves Ferreira, Matheus; Lopez Candela, William Fernando; Bryant, Peter William; Ohta, Ricardo Luis; Engel, Michael; Steiner, Mathias Bernhard

    2018-02-01

    Paper-based microfluidic devices offer great potential as a low-cost platform to perform chemical and biochemical tests. Commercially available formats such as dipsticks and lateral-flow test devices are widely popular as they are easy to handle and produce fast and unambiguous results. While these simple devices lack precise control over the flow to enable integration of complex functionality for multi-step processes or the ability to multiplex several tests, intense research in this area is rapidly expanding the possibilities. Modeling and simulation is increasingly more instrumental in gaining insight into the underlying physics driving the processes inside the channels, however simulation of flow in paper-based microfluidic devices has barely been explored to aid in the optimum design and prototyping of these devices for precise control of the flow. In this paper, we implement a multiphase fluid flow model through porous media for the simulation of paper imbibition of an incompressible, Newtonian fluid such as when water, urine or serum is employed. The formulation incorporates mass and momentum conservation equations under Stokes flow conditions and results in two coupled Darcy's law equations for the pressures and saturations of the wetting and non-wetting phases, further simplified to the Richard's equation for the saturation of the wetting fluid, which is then solved using a Finite Element solver. The model tracks the wetting fluid front as it displaces the non-wetting fluid by computing the time-dependent saturation of the wetting fluid. We apply this to the study of liquid transport in two-dimensional paper networks and validate against experimental data concerning the wetting dynamics of paper layouts of varying geometries.

  5. Flow modelling of a newtonian fluid by two regions- the region of pure fluid and porous region

    International Nuclear Information System (INIS)

    Sampaio, R.; Gama, R.M.S. da

    1983-01-01

    A model of flow with two regions is presented using mixture theory. One region contains only pure fluid and the other a mixture of fluid and porous rigid solid. Compatibility conditons on the pure fluid-mixture interface are carefully discussed. The theory is used to solve a problem of a flow induced by pressure gradient and helicoidal motion of an impermeable cylinder on two rings one of pure fluid and another of mixture. (Author) [pt

  6. Two-fluid model for locomotion under self-confinement

    Science.gov (United States)

    Reigh, Shang Yik; Lauga, Eric

    2017-09-01

    The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solution in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterize the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independent of the assumption chosen to characterize the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modeling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above ≈25 μ m for Helicobacter pylori.

  7. Collisional transport across the magnetic field in drift-fluid models

    DEFF Research Database (Denmark)

    Madsen, Jens; Naulin, Volker; Nielsen, Anders Henry

    2016-01-01

    Drift ordered fluid models are widely applied in studies of low-frequency turbulence in the edge and scrape-off layer regions of magnetically confined plasmas. Here, we show how collisional transport across the magnetic field is self-consistently incorporated into drift-fluid models without...

  8. Preheating Mechanism in F-term SUSY Hybrid Inflation

    International Nuclear Information System (INIS)

    Mazumdar, Arindam

    2012-01-01

    Supersymmetric F-term hybrid inflation is one of the most popular models of inflation. Preheating process occurs in this model via two different mechanism. Firstly the standard parametric resonance and secondly, the tachyonic preheating. Generally tachyonic preheating dominates the parametric resonance for this type of models. For different values of the parameters of the theory dominance of tachyonic preheating can vary.

  9. Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

    International Nuclear Information System (INIS)

    Sukop, M.C.; Or, Dani

    2003-01-01

    Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elements on a lattice. In reality, fluid interfaces and connectivity in porous media are naturally controlled by the details of the pore geometry, its dynamic interaction with the fluid, and the ambient fluid potential. The multiphase LBM approach admits realistic pore geometry derived from imaging techniques and incorporation of realistic hydrodynamics into invasion percolation models

  10. Numerical Modeling and Investigation of Fluid-Driven Fracture Propagation in Reservoirs Based on a Modified Fluid-Mechanically Coupled Model in Two-Dimensional Particle Flow Code

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2016-09-01

    Full Text Available Hydraulic fracturing is a useful tool for enhancing rock mass permeability for shale gas development, enhanced geothermal systems, and geological carbon sequestration by the high-pressure injection of a fracturing fluid into tight reservoir rocks. Although significant advances have been made in hydraulic fracturing theory, experiments, and numerical modeling, when it comes to the complexity of geological conditions knowledge is still limited. Mechanisms of fluid injection-induced fracture initiation and propagation should be better understood to take full advantage of hydraulic fracturing. This paper presents the development and application of discrete particle modeling based on two-dimensional particle flow code (PFC2D. Firstly, it is shown that the modeled value of the breakdown pressure for the hydraulic fracturing process is approximately equal to analytically calculated values under varied in situ stress conditions. Furthermore, a series of simulations for hydraulic fracturing in competent rock was performed to examine the influence of the in situ stress ratio, fluid injection rate, and fluid viscosity on the borehole pressure history, the geometry of hydraulic fractures, and the pore-pressure field, respectively. It was found that the hydraulic fractures in an isotropic medium always propagate parallel to the orientation of the maximum principal stress. When a high fluid injection rate is used, higher breakdown pressure is needed for fracture propagation and complex geometries of fractures can develop. When a low viscosity fluid is used, fluid can more easily penetrate from the borehole into the surrounding rock, which causes a reduction of the effective stress and leads to a lower breakdown pressure. Moreover, the geometry of the fractures is not particularly sensitive to the fluid viscosity in the approximate isotropic model.

  11. Thermal conductivity of the Lennard-Jones chain fluid model.

    Science.gov (United States)

    Galliero, Guillaume; Boned, Christian

    2009-12-01

    Nonequilibrium molecular dynamics simulations have been performed to estimate, analyze, and correlate the thermal conductivity of a fluid composed of short Lennard-Jones chains (up to 16 segments) over a large range of thermodynamic conditions. It is shown that the dilute gas contribution to the thermal conductivity decreases when the chain length increases for a given temperature. In dense states, simulation results indicate that the residual thermal conductivity of the monomer increases strongly with density, but is weakly dependent on the temperature. Compared to the monomer value, it has been noted that the residual thermal conductivity of the chain was slightly decreasing with its length. Using these results, an empirical relation, including a contribution due to the critical enhancement, is proposed to provide an accurate estimation of the thermal conductivity of the Lennard-Jones chain fluid model (up to 16 segments) over the domain 0.8values of the Lennard-Jones chain fluid model merge on the same "universal" curve when plotted as a function of the excess entropy. Furthermore, it is shown that the reduced configurational thermal conductivity of the Lennard-Jones chain fluid model is approximately proportional to the reduced excess entropy for all fluid states and all chain lengths.

  12. Rotating fluid models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Arvieu, R.; Troudet, T.

    1979-01-01

    To describe the behavior of high-spin nuclei it is necessary to refer back to the classical mechanics of fluids in rotation where some results are general enough to apply to the rotational nuclear fluid. It is then shown that the quantum model of rotational oscillator gives a simple classification of rotating configurations [fr

  13. Computational modelling in fluid mechanics

    International Nuclear Information System (INIS)

    Hauguel, A.

    1985-01-01

    The modelling of the greatest part of environmental or industrial flow problems gives very similar types of equations. The considerable increase in computing capacity over the last ten years consequently allowed numerical models of growing complexity to be processed. The varied group of computer codes presented are now a complementary tool of experimental facilities to achieve studies in the field of fluid mechanics. Several codes applied in the nuclear field (reactors, cooling towers, exchangers, plumes...) are presented among others [fr

  14. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  15. Vacuum stability with tachyonic boundary Higgs masses in no-scale supersymmetry or gaugino mediation

    International Nuclear Information System (INIS)

    Evans, Jason L.; Wells, James D.; Morrissey, David E.

    2009-01-01

    No-scale supersymmetry or gaugino mediation augmented with large negative Higgs soft masses at the input scale provides a simple solution to the supersymmetric flavor problem while giving rise to a neutralino lightest superpartner particle. However, to obtain a neutralino lightest superpartner particle it is often necessary to have tachyonic input Higgs soft masses that can give rise to charge-and-color-breaking minima and unbounded-from-below directions in the low-energy theory. We investigate the vacuum structure in these theories to determine when such problematic features are present. When the standard electroweak vacuum is only metastable, we compute its lifetime under vacuum tunneling. We find that vacuum metastability leads to severe restrictions on the parameter space for larger tanβ∼30, while for smaller tanβ∼10, only minor restrictions are found. Along the way, we derive an exact bounce solution for tunneling through an inverted parabolic potential.

  16. A computational model for doctoring fluid films in gravure printing

    Energy Technology Data Exchange (ETDEWEB)

    Hariprasad, Daniel S., E-mail: dshari@unm.edu [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Grau, Gerd [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94720-1770 (United States); Schunk, P. Randall [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185-0826 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Tjiptowidjojo, Kristianto [Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States); Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131-0001 (United States)

    2016-04-07

    The wiping, or doctoring, process in gravure printing presents a fundamental barrier to resolving the micron-sized features desired in printed electronics applications. This barrier starts with the residual fluid film left behind after wiping, and its importance grows as feature sizes are reduced, especially as the feature size approaches the thickness of the residual fluid film. In this work, various mechanical complexities are considered in a computational model developed to predict the residual fluid film thickness. Lubrication models alone are inadequate, and deformation of the doctor blade body together with elastohydrodynamic lubrication must be considered to make the model predictive of experimental trends. Moreover, model results demonstrate that the particular form of the wetted region of the blade has a significant impact on the model's ability to reproduce experimental measurements.

  17. Modeling the cometary environment using a fluid approach

    Science.gov (United States)

    Shou, Yinsi

    Comets are believed to have preserved the building material of the early solar system and to hold clues to the origin of life on Earth. Abundant remote observations of comets by telescopes and the in-situ measurements by a handful of space missions reveal that the cometary environments are complicated by various physical and chemical processes among the neutral gases and dust grains released from comets, cometary ions, and the solar wind in the interplanetary space. Therefore, physics-based numerical models are in demand to interpret the observational data and to deepen our understanding of the cometary environment. In this thesis, three models using a fluid approach, which include important physical and chemical processes underlying the cometary environment, have been developed to study the plasma, neutral gas, and the dust grains, respectively. Although models based on the fluid approach have limitations in capturing all of the correct physics for certain applications, especially for very low gas density environment, they are computationally much more efficient than alternatives. In the simulations of comet 67P/Churyumov-Gerasimenko at various heliocentric distances with a wide range of production rates, our multi-fluid cometary neutral gas model and multi-fluid cometary dust model have achieved comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid in all collisional regimes. Therefore, our model is a powerful alternative to the particle-based model, especially for some computationally intensive simulations. Capable of accounting for the varying heating efficiency under various physical conditions in a self-consistent way, the multi-fluid cometary neutral gas model is a good tool to study the dynamics of the cometary coma with different production rates and heliocentric distances. The modeled H2O expansion speeds reproduce the general trend and the speed's nonlinear dependencies of production rate

  18. Two-equation and multi-fluid turbulence models for Rayleigh–Taylor mixing

    International Nuclear Information System (INIS)

    Kokkinakis, I.W.; Drikakis, D.; Youngs, D.L.; Williams, R.J.R.

    2015-01-01

    Highlights: • We present a new improved version of the K–L model. • The improved K–L is found in good agreement with the multi-fluid model and ILES. • The study concerns Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. - Abstract: This paper presents a new, improved version of the K–L model, as well as a detailed investigation of K–L and multi-fluid models with reference to high-resolution implicit large eddy simulations of compressible Rayleigh–Taylor mixing. The accuracy of the models is examined for different interface pressures and specific heat ratios for Rayleigh–Taylor flows at initial density ratios 3:1 and 20:1. It is shown that the original version of the K–L model requires modifications in order to provide comparable results to the multi-fluid model. The modifications concern the addition of an enthalpy diffusion term to the energy equation; the formulation of the turbulent kinetic energy (source) term in the K equation; and the calculation of the local Atwood number. The proposed modifications significantly improve the results of the K–L model, which are found in good agreement with the multi-fluid model and implicit large eddy simulations with respect to the self-similar mixing width; peak turbulent kinetic energy growth rate, as well as volume fraction and turbulent kinetic energy profiles. However, a key advantage of the two-fluid model is that it can represent the degree of molecular mixing in a direct way, by transferring mass between the two phases. The limitations of the single-fluid K–L model as well as the merits of more advanced Reynolds-averaged Navier–Stokes models are also discussed throughout the paper.

  19. Micro-poromechanics model of fluid-saturated chemically active fibrous media.

    Science.gov (United States)

    Misra, Anil; Parthasarathy, Ranganathan; Singh, Viraj; Spencer, Paulette

    2015-02-01

    We have developed a micromechanics based model for chemically active saturated fibrous media that incorporates fiber network microstructure, chemical potential driven fluid flow, and micro-poromechanics. The stress-strain relationship of the dry fibrous media is first obtained by considering the fiber behavior. The constitutive relationships applicable to saturated media are then derived in the poromechanics framework using Hill's volume averaging. The advantage of this approach is that the resultant continuum model accounts for the discrete nature of the individual fibers while retaining a form suitable for porous materials. As a result, the model is able to predict the influence of micro-scale phenomena, such as the fiber pre-strain caused by osmotic effects and evolution of fiber network structure with loading, on the overall behavior and in particular, on the poromechanics parameters. Additionally, the model can describe fluid-flow related rate-dependent behavior under confined and unconfined conditions and varying chemical environments. The significance of the approach is demonstrated by simulating unconfined drained monotonic uniaxial compression under different surrounding fluid bath molarity, and fluid-flow related creep and relaxation at different loading-levels and different surrounding fluid bath molarity. The model predictions conform to the experimental observations for saturated soft fibrous materials. The method can potentially be extended to other porous materials such as bone, clays, foams and concrete.

  20. Closed string tachyons on AdS orbifolds and dual Yang-Mills instantons

    Energy Technology Data Exchange (ETDEWEB)

    Hikida, Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Iizuka, N. [California Univ., Santa Barbara, CA (United States). Kavli Inst. for Theoretical Physics

    2007-06-15

    We study the condensation of localized closed string tachyons on AdS orbifolds both from the bulk and boundary theory viewpoints. We first extend the known results for AdS{sub 5}/Z{sub k} to AdS{sub 3}/Z{sub k} case, and we proposed that the AdS{sub 3}/Z{sub k} decays into AdS{sub 3}/Z{sub k'} with k{sup '} < k. From the bulk viewpoint, we obtain a time-dependent gravity solution describing the decay of AdS orbifold numerically. From the dual gauge theory viewpoint, we calculated the Casimir energies of gauge theory vacua and it is found that their values are exactly the same as the masses of dual geometries, even though they are in different parameter regimes of 't Hooft coupling. We also consider AdS{sub 5} orbifold. The decay of AdS{sub 5}/Z{sub k} is dual to the transition between the vacua of dual gauge theory on R{sub t} x S{sup 3}/Z{sub k}. We constructed the instanton solutions describing the transitions by making use of instanton solutions on R{sub t} x S{sup 2}. (orig.)

  1. A Quality Function Deployment-Based Model for Cutting Fluid Selection

    Directory of Open Access Journals (Sweden)

    Kanika Prasad

    2016-01-01

    Full Text Available Cutting fluid is applied for numerous reasons while machining a workpiece, like increasing tool life, minimizing workpiece thermal deformation, enhancing surface finish, flushing away chips from cutting surface, and so on. Hence, choosing a proper cutting fluid for a specific machining application becomes important for enhanced efficiency and effectiveness of a manufacturing process. Cutting fluid selection is a complex procedure as the decision depends on many complicated interactions, including work material’s machinability, rigorousness of operation, cutting tool material, metallurgical, chemical, and human compatibility, reliability and stability of fluid, and cost. In this paper, a decision making model is developed based on quality function deployment technique with a view to respond to the complex character of cutting fluid selection problem and facilitate judicious selection of cutting fluid from a comprehensive list of available alternatives. In the first example, HD-CUTSOL is recognized as the most suitable cutting fluid for drilling holes in titanium alloy with tungsten carbide tool and in the second example, for performing honing operation on stainless steel alloy with cubic boron nitride tool, CF5 emerges out as the best honing fluid. Implementation of this model would result in cost reduction through decreased manpower requirement, enhanced workforce efficiency, and efficient information exploitation.

  2. Computational fluid-dynamic model of laser-induced breakdown in air

    International Nuclear Information System (INIS)

    Dors, Ivan G.; Parigger, Christian G.

    2003-01-01

    Temperature and pressure profiles are computed by the use of a two-dimensional, axially symmetric, time-accurate computational fluid-dynamic model for nominal 10-ns optical breakdown laser pulses. The computational model includes a kinetics mechanism that implements plasma equilibrium kinetics in ionized regions and nonequilibrium, multistep, finite-rate reactions in nonionized regions. Fluid-physics phenomena following laser-induced breakdown are recorded with high-speed shadowgraph techniques. The predicted fluid phenomena are shown by direct comparison with experimental records to agree with the flow patterns that are characteristic of laser spark decay

  3. Mathematical and numerical analysis of a multi-velocity multi-fluid model for interpenetration of miscible fluids

    International Nuclear Information System (INIS)

    Enaux, C.

    2007-11-01

    The simulation of indirect laser implosion requires an accurate knowledge of the inter-penetration of the laser target materials turned into plasma. This work is devoted to the study of a multi-velocity multi-fluid model recently proposed by Scannapieco and Cheng (SC) to describe the inter-penetration of miscible fluids. In this document, we begin with presenting the SC model in the context of miscible fluids flow modelling. Afterwards, the mathematical analysis of the model is carried out (study of the hyperbolicity, existence of a strictly convex mathematical entropy, asymptotic analysis and diffusion limit). As a conclusion the problem is well set. Then, we focus on the problem of numerical resolution of systems of conservation laws with a relaxation source term, because SC model belongs to this class. The main difficulty of this task is to capture on a coarse grid the asymptotic behaviour of the system when the source term is stiff. The main contribution of this work lies in the proposition of a new technique, allowing us to construct a Lagrangian numerical flux taking into account the presence of the source term. This technique is applied first on the model-problem of a one-dimensional Euler system with friction, and then on the multi-fluid SC model. In both cases, we prove that the new scheme is asymptotic-preserving and entropic under a CFL-like condition. The two-dimensional extension of the scheme is done by using a standard alternate directions method. Some numerical results highlight the contribution of the new flux, compared with a standard Lagrange plus Remap scheme where the source term is processed using an operator splitting. (author)

  4. Generalized Roe's numerical scheme for a two-fluid model

    International Nuclear Information System (INIS)

    Toumi, I.; Raymond, P.

    1993-01-01

    This paper is devoted to a mathematical and numerical study of a six equation two-fluid model. We will prove that the model is strictly hyperbolic due to the inclusion of the virtual mass force term in the phasic momentum equations. The two-fluid model is naturally written under a nonconservative form. To solve the nonlinear Riemann problem for this nonconservative hyperbolic system, a generalized Roe's approximate Riemann solver, is used, based on a linearization of the nonconservative terms. A Godunov type numerical scheme is built, using this approximate Riemann solver. 10 refs., 5 figs,

  5. Spherically symmetric Einstein-aether perfect fluid models

    Energy Technology Data Exchange (ETDEWEB)

    Coley, Alan A.; Latta, Joey [Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Leon, Genly [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4950, Valparaíso (Chile); Sandin, Patrik, E-mail: aac@mathstat.dal.ca, E-mail: genly.leon@ucv.cl, E-mail: patrik.sandin@aei.mpg.de, E-mail: lattaj@mathstat.dal.ca [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2015-12-01

    We investigate spherically symmetric cosmological models in Einstein-aether theory with a tilted (non-comoving) perfect fluid source. We use a 1+3 frame formalism and adopt the comoving aether gauge to derive the evolution equations, which form a well-posed system of first order partial differential equations in two variables. We then introduce normalized variables. The formalism is particularly well-suited for numerical computations and the study of the qualitative properties of the models, which are also solutions of Horava gravity. We study the local stability of the equilibrium points of the resulting dynamical system corresponding to physically realistic inhomogeneous cosmological models and astrophysical objects with values for the parameters which are consistent with current constraints. In particular, we consider dust models in (β−) normalized variables and derive a reduced (closed) evolution system and we obtain the general evolution equations for the spatially homogeneous Kantowski-Sachs models using appropriate bounded normalized variables. We then analyse these models, with special emphasis on the future asymptotic behaviour for different values of the parameters. Finally, we investigate static models for a mixture of a (necessarily non-tilted) perfect fluid with a barotropic equations of state and a scalar field.

  6. Instabilities and diffusion in a hydrodynamic model of a fluid membrane coupled to a thin active fluid layer.

    Science.gov (United States)

    Sarkar, N; Basu, A

    2012-11-01

    We construct a coarse-grained effective two-dimensional (2d hydrodynamic theory as a theoretical model for a coupled system of a fluid membrane and a thin layer of a polar active fluid in its ordered state that is anchored to the membrane. We show that such a system is prone to generic instabilities through the interplay of nonequilibrium drive, polar order and membrane fluctuation. We use our model equations to calculate diffusion coefficients of an inclusion in the membrane and show that their values depend strongly on the system size, in contrast to their equilibrium values. Our work extends the work of S. Sankararaman and S. Ramaswamy (Phys. Rev. Lett., 102, 118107 (2009)) to a coupled system of a fluid membrane and an ordered active fluid layer. Our model is broadly inspired by and should be useful as a starting point for theoretical descriptions of the coupled dynamics of a cell membrane and a cortical actin layer anchored to it.

  7. Fluid Methods for Modeling Large, Heterogeneous Networks

    National Research Council Canada - National Science Library

    Towsley, Don; Gong, Weibo; Hollot, Kris; Liu, Yong; Misra, Vishal

    2005-01-01

    .... The resulting fluid models were used to develop novel active queue management mechanisms resulting in more stable TCP performance and novel rate controllers for the purpose of providing minimum rate...

  8. Validation of model predictions of pore-scale fluid distributions during two-phase flow

    Science.gov (United States)

    Bultreys, Tom; Lin, Qingyang; Gao, Ying; Raeini, Ali Q.; AlRatrout, Ahmed; Bijeljic, Branko; Blunt, Martin J.

    2018-05-01

    Pore-scale two-phase flow modeling is an important technology to study a rock's relative permeability behavior. To investigate if these models are predictive, the calculated pore-scale fluid distributions which determine the relative permeability need to be validated. In this work, we introduce a methodology to quantitatively compare models to experimental fluid distributions in flow experiments visualized with microcomputed tomography. First, we analyzed five repeated drainage-imbibition experiments on a single sample. In these experiments, the exact fluid distributions were not fully repeatable on a pore-by-pore basis, while the global properties of the fluid distribution were. Then two fractional flow experiments were used to validate a quasistatic pore network model. The model correctly predicted the fluid present in more than 75% of pores and throats in drainage and imbibition. To quantify what this means for the relevant global properties of the fluid distribution, we compare the main flow paths and the connectivity across the different pore sizes in the modeled and experimental fluid distributions. These essential topology characteristics matched well for drainage simulations, but not for imbibition. This suggests that the pore-filling rules in the network model we used need to be improved to make reliable predictions of imbibition. The presented analysis illustrates the potential of our methodology to systematically and robustly test two-phase flow models to aid in model development and calibration.

  9. A Bingham-plastic model for fluid mud transport under waves and currents

    Science.gov (United States)

    Liu, Chun-rong; Wu, Bo; Huhe, Ao-de

    2014-04-01

    Simplified equations of fluid mud motion, which is described as Bingham-Plastic model under waves and currents, are presented by order analysis. The simplified equations are non-linear ordinary differential equations which are solved by hybrid numerical-analytical technique. As the computational cost is very low, the effects of wave current parameters and fluid mud properties on the transportation velocity of the fluid mud are studied systematically. It is found that the fluid mud can move toward one direction even if the shear stress acting on the fluid mud bed is much smaller than the fluid mud yield stress under the condition of wave and current coexistence. Experiments of the fluid mud motion under current with fluctuation water surface are carried out. The fluid mud transportation velocity predicted by the presented mathematical model can roughly match that measured in experiments.

  10. Fluid model of dc glow discharge with nonlocal ionization source term

    International Nuclear Information System (INIS)

    Rafatov, I R; Bogdanov, E A; Kudryavtsev, A A

    2012-01-01

    We developed and tested a simple hybrid model for a glow discharge, which incorporates nonlocal ionization by fast electrons into the fluid framework. Calculations have been performed for an argon gas. Comparison with the experimental data as well as with the hybrid (particle) and fluid modelling results demonstated good applicability of the proposed model.

  11. Interface model conditions for a non-equilibrium heat transfer model for conjugate fluid/porous/solid domains

    International Nuclear Information System (INIS)

    Betchen, L.J.; Straatman, A.G.

    2005-01-01

    A mathematical and numerical model for the treatment of conjugate fluid flow and heat transfer problems in domains containing pure fluid, porous, and pure solid regions has been developed. The model is general and physically reasoned, and allows for local thermal non-equilibrium in the porous region. The model is developed for implementation on a simple collocated finite volume grid. Of particular novelty are the conditions implemented at the interfaces between porous regions, and those containing a pure solid or pure fluid. The model is validated by simulation of a three-dimensional porous plug problem for which experimental results are available. (author)

  12. Numerical Modeling of Porous Structure of Biomaterial and Fluid Flowing Through Biomaterial

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A Cellular Automata model of simulating body fluid flowing into porous bioceramic implants generated with stochastic methods is described, of which main parameters and evolvement rule are determined in terms of flow behavior of body fluid in porous biomaterials. The model is implemented by GUI( Graphical User Interface) program in MATLAB, and the results of numerical modeling show that the body fluid percolation is related to the size of pores and porosity.

  13. Two-Fluid Models for Simulating Dispersed Multiphase Flows-A Review

    Directory of Open Access Journals (Sweden)

    L.X. Zhou

    2009-01-01

    Full Text Available The development of two-fluid models for simulating dispersed multiphase flows (gas-particle, gas-droplet, bubble-liquid, liquid-particle flows by the present author within the last 20 years is systematically reviewed. The two-fluid models based on Reynolds expansion, time averaging and mass-weighed averaging, and also PDF transport equations are described. Different versions of two-phase turbulence models, including the unified second-order moment (USM and k-ε-kp models, the DSM-PDF model, the SOM-MC model, the nonlinear k-e-kp model, and the USM-Θ model for dense gas-particle flows and their application and experimental validation are discussed.

  14. Two-fluid model with droplet size distribution for condensing steam flows

    International Nuclear Information System (INIS)

    Wróblewski, Włodzimierz; Dykas, Sławomir

    2016-01-01

    The process of energy conversion in the low pressure part of steam turbines may be improved using new and more accurate numerical models. The paper presents a description of a model intended for the condensing steam flow modelling. The model uses a standard condensation model. A physical and a numerical model of the mono- and polydispersed wet-steam flow are presented. The proposed two-fluid model solves separate flow governing equations for the compressible, inviscid vapour and liquid phase. The method of moments with a prescribed function is used for the reconstruction of the water droplet size distribution. The described model is presented for the liquid phase evolution in the flow through the de Laval nozzle. - Highlights: • Computational Fluid Dynamics. • Steam condensation in transonic flows through the Laval nozzles. • In-house CFD code – two-phase flow, two-fluid monodispersed and polydispersed model.

  15. Development of models of the magnetorheological fluid damper

    Energy Technology Data Exchange (ETDEWEB)

    Kazakov, Yu.B., E-mail: elmash@em.ispu.ru; Morozov, N.A.; Nesterov, S.A., E-mail: sergeinesterov37@gmail.com

    2017-06-01

    The algorithm for analytical calculation of a power characteristic of magnetorheological (MR) dampers taking into account the rheological properties of MR fluid is considered. The nonlinear magnetorheological characteristics are represented by piecewise linear approximation to MR fluid areas with different viscosities. The extended calculated power characteristics of a MR damper are received and they coincide with actual results. The finite element model of a MR damper is developed; it allows carrying out the analysis of a MR damper taking into account the mutual influence of electromagnetic, hydrodynamic and thermal fields. The results of finite element simulation coincide with analytical solutions that allows using them for design development of a MR damper. - Highlights: • Division of a MR fluid rheological curve into two sections with different viscosities. • Algorithm for calculation of a power characteristic of MR dampers is proposed. • Finite element model of a MR damper is developed. • Results of finite element simulation coincide with analytical solutions.

  16. Fluid Dynamic Models for Bhattacharyya-Based Discriminant Analysis.

    Science.gov (United States)

    Noh, Yung-Kyun; Hamm, Jihun; Park, Frank Chongwoo; Zhang, Byoung-Tak; Lee, Daniel D

    2018-01-01

    Classical discriminant analysis attempts to discover a low-dimensional subspace where class label information is maximally preserved under projection. Canonical methods for estimating the subspace optimize an information-theoretic criterion that measures the separation between the class-conditional distributions. Unfortunately, direct optimization of the information-theoretic criteria is generally non-convex and intractable in high-dimensional spaces. In this work, we propose a novel, tractable algorithm for discriminant analysis that considers the class-conditional densities as interacting fluids in the high-dimensional embedding space. We use the Bhattacharyya criterion as a potential function that generates forces between the interacting fluids, and derive a computationally tractable method for finding the low-dimensional subspace that optimally constrains the resulting fluid flow. We show that this model properly reduces to the optimal solution for homoscedastic data as well as for heteroscedastic Gaussian distributions with equal means. We also extend this model to discover optimal filters for discriminating Gaussian processes and provide experimental results and comparisons on a number of datasets.

  17. A Landau fluid model for dissipative trapped electron modes

    International Nuclear Information System (INIS)

    Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.

    1995-09-01

    A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths

  18. Modeling interfacial area transport in multi-fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, Stephen Lee [Univ. of California, Berkeley, CA (United States)

    1996-11-01

    Many typical chemical engineering operations are multi-fluid systems. They are carried out in distillation columns (vapor/liquid), liquid-liquid contactors (liquid/liquid) and other similar devices. An important parameter is interfacial area concentration, which determines the rate of interfluid heat, mass and momentum transfer and ultimately, the overall performance of the equipment. In many cases, the models for determining interfacial area concentration are empirical and can only describe the cases for which there is experimental data. In an effort to understand multiphase reactors and the mixing process better, a multi-fluid model has been developed as part of a research effort to calculate interfacial area transport in several different types of in-line static mixers. For this work, the ensemble-averaged property conservation equations have been derived for each fluid and for the mixture. These equations were then combined to derive a transport equation for the interfacial area concentration. The final, one-dimensional model was compared to interfacial area concentration data from two sizes of Kenics in-line mixer, two sizes of concurrent jet and a Tee mixer. In all cases, the calculated and experimental data compared well with the highest scatter being with the Tee mixer comparison.

  19. Dual models with SL(2, C) symmetry

    CERN Document Server

    Brink, L

    1972-01-01

    Making use of homogeneous space techniques, the authors construct a class of dual models, which is a generalization of the Virasoro- Shapiro type of model. The integrand in the integral representation for the N-point function depends not only on the modulus of the distances between two-dimensional Koba-Nielsen variables, but also on the corresponding phases. This is in fact the most general SL(2, C) invariant amplitude that can be constructed using complex integration variables. The extra phase factors in the integrand provide a possible means of avoiding tachyons both as external particles and as intermediate states in the amplitude. When factorized in a simple- minded fashion the intercepts are fixed to be integers. Although the external particles can be chosen not to be tachyons, such states appear as intermediate states. Within this factorization one can show that there are gauge conditions for the amplitude that can provide a ghostkilling mechanism. (19 refs).

  20. Two-fluid model stability, simulation and chaos

    CERN Document Server

    Bertodano, Martín López de; Clausse, Alejandro; Ransom, Victor H

    2017-01-01

    This book addresses the linear and nonlinear two-phase stability of the one-dimensional Two-Fluid Model (TFM) material waves and the numerical methods used to solve it. The TFM fluid dynamic stability is a problem that remains open since its inception more than forty years ago. The difficulty is formidable because it involves the combined challenges of two-phase topological structure and turbulence, both nonlinear phenomena. The one dimensional approach permits the separation of the former from the latter. The authors first analyze the kinematic and Kelvin-Helmholtz instabilities with the simplified one-dimensional Fixed-Flux Model (FFM). They then analyze the density wave instability with the well-known Drift-Flux Model. They demonstrate that the Fixed-Flux and Drift-Flux assumptions are two complementary TFM simplifications that address two-phase local and global linear instabilities separately. Furthermore, they demonstrate with a well-posed FFM and a DFM two cases of nonlinear two-phase behavior that are ...

  1. Bulk viscous Zel'dovich fluid model and its asymptotic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Nair, K.R.; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2016-10-15

    In this paper we consider a flat FLRW universe with bulk viscous Zel'dovich fluid as the cosmic component. Considering the bulk viscosity as characterized by a constant bulk viscous coefficient, we analyze the evolution of the Hubble parameter. Type Ia Supernovae data is used for constraining the model and for extracting the constant bulk viscous parameter and present the Hubble parameter. We also present the analysis of the scale factor, equation of state, and deceleration parameter. The model predicts the later time acceleration and is also compatible with the age of the universe as given by the oldest globular clusters. Study of the phase-space behavior of the model shows that a universe dominated by bulk viscous Zel'dovich fluid is stable. But the inclusion of a radiation component in addition to the Zel'dovich fluid makes the model unstable. Hence, even though the bulk viscous Zel'dovich fluid dominated universe is a feasible one, the model as such fails to predict a prior radiation dominated phase. (orig.)

  2. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    Science.gov (United States)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  3. Yield shear stress model of magnetorheological fluids based on exponential distribution

    International Nuclear Information System (INIS)

    Guo, Chu-wen; Chen, Fei; Meng, Qing-rui; Dong, Zi-xin

    2014-01-01

    The magnetic chain model that considers the interaction between particles and the external magnetic field in a magnetorheological fluid has been widely accepted. Based on the chain model, a yield shear stress model of magnetorheological fluids was proposed by introducing the exponential distribution to describe the distribution of angles between the direction of magnetic field and the chain formed by magnetic particles. The main influencing factors were considered in the model, such as magnetic flux density, intensity of magnetic field, particle size, volume fraction of particles, the angle of magnetic chain, and so on. The effect of magnetic flux density on the yield shear stress was discussed. The yield stress of aqueous Fe 3 O 4 magnetreological fluids with volume fraction of 7.6% and 16.2% were measured by a device designed by ourselves. The results indicate that the proposed model can be used for calculation of yield shear stress with acceptable errors. - Highlights: • A yield shear stress model of magnetorheological fluids was proposed. • Use exponential distribution to describe the distribution of magnetic chain angles. • Experimental and predicted results were in good agreement for 2 types of MR

  4. Landau fluid models of collisionless magnetohydrodynamics

    International Nuclear Information System (INIS)

    Snyder, P.B.; Hammett, G.W.; Dorland, W.

    1997-01-01

    A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas

  5. Development of the tube bundle structure for fluid-structure interaction analysis model - Intermediate Report -

    International Nuclear Information System (INIS)

    Yoon, Kyung Ho; Kim, Jae Yong; Lee, Kang Hee; Lee, Young Ho; Kim, Hyung Kyu

    2009-07-01

    Tube bundle structures within a Boiler or heat exchanger are laid the fluid-structure, thermal-structure and fluid-thermal-structure coupled boundary condition. In these complicated boundary conditions, Fluid-structure interaction (FSI) occurs when fluid flow causes deformation of the structure. This deformation, in turn, changes the boundary conditions for the fluid flow. The structural analysis have been executed as follows. First of all, divide the fluid and structural analysis discipline, and then independently analyzed each other. However, the fluid dynamic force effect the behavior of the structure, and the vibration amplitude of the structure to fluid. FSI analysis model was separately created fluid and structure model, and then defined the fsi boundary condition, and simultaneously analyzed in one domain. The analysis results were compared with those of the experimental method for validating the analysis model. Flow-induced vibration test was executed with single rod configuration. The vibration amplitudes of a fuel rod were measured by the laser vibro-meter system in x and y-direction. The analyses results were not closely with the test data, but the trend was very similar with the test result. In fsi coupled analysis case, the turbulent model was very important with the reliability of the accuracy of the analysis model. Therefore, the analysis model will be needed to further study

  6. A numerical model for dynamic crustal-scale fluid flow

    Science.gov (United States)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  7. Contribution to the modeling of particulate hypersonic flows. Study and validation of a discrete two-fluid model

    International Nuclear Information System (INIS)

    Papin, M.

    2005-06-01

    This work dedicated to the study of the hypersonic re-entry of vehicles in the atmosphere crossing clouds of particles implies the study of two-fluid flow and it is shown that some developments can be applied to the two-fluid models used to describe the phase transformation occurring in a target irradiated by laser beams. The calculation of wall fluxes on hypersonic re-entry vehicles requires the modeling of the interactions with clouds. Two-fluid flows posing many physical and mathematical problems, one studies an alternative model due to Abgrall and Saurel: the discrete equation method (DEM). Three axis are chosen. The first proposes a finite volume discretization of the Navier-Stokes equations on hybrid grids adapted to the context. The second extends the DEM within a multi-fluid not-structured N-D framework. A limit study associates an original continuous model to him: it allows to modify usual two-fluid seven equations models to obtain a phasic entropy principle. In spite of good properties, the continuous description of the particles is unsuited to the problem. The last axis is a study of the follow-up of pointwise particles which does not allow realistic calculation of parietal fluxes. An original model, extending the usual hydro-erosion models, however makes it possible to evaluate rebounds, erosion of the body and wall fluxes. The appendices expose approximate and exact Riemann solvers between pure fluids, discretization of the Baer and Nunziato model, and relations describing the atmosphere, water and heat fluxes

  8. A Modeling of Compressible Droplets in a Fluid

    OpenAIRE

    Boudin, Laurent; Desvilletter, Laurent; Motte, Renaud

    2003-01-01

    In this work, we are interested in a complex fluid-kinetic model that aims to take into account the compressibility of the droplets of the spray. The ambient fluid is described by Euler-like equations, in which the transfer of momentum and energy form the droplets is taken into account, while the spray is represented by a probability density function satisfying a Vlasov-like equation. Implicit terms crop up because of the compressibility of the droplets. After having derived...

  9. Lattice Boltzmann model for three-phase viscoelastic fluid flow

    Science.gov (United States)

    Xie, Chiyu; Lei, Wenhai; Wang, Moran

    2018-02-01

    A lattice Boltzmann (LB) framework is developed for simulation of three-phase viscoelastic fluid flows in complex geometries. This model is based on a Rothman-Keller type model for immiscible multiphase flows which ensures mass conservation of each component in porous media even for a high density ratio. To account for the viscoelastic effects, the Maxwell constitutive relation is correctly introduced into the momentum equation, which leads to a modified lattice Boltzmann evolution equation for Maxwell fluids by removing the normal but excess viscous term. Our simulation tests indicate that this excess viscous term may induce significant errors. After three benchmark cases, the displacement processes of oil by dispersed polymer are studied as a typical example of three-phase viscoelastic fluid flow. The results show that increasing either the polymer intrinsic viscosity or the elastic modulus will enhance the oil recovery.

  10. The assessment of two-fluid models using critical flow data

    International Nuclear Information System (INIS)

    Shome, B.; Lahey, R.T. Jr.

    1992-01-01

    The behavior of two-phase flow is governed by the thermal-hydraulic transfers occurring across phasic interfaces. If correctly formulated, two-fluid models should yield all conceivable evolutions. Moreover, some experiments may be uniquely qualified for model assessment if they can isolate important closure models. This paper is primarily concerned with the possible assessment of the virtual mass force using air-water critical flow data, in which phase-change effects do not take place. The following conclusions can be drawn from this study: (1) The closure parameters, other than those for cirtual mass, were found to have an insignificant effect on critical flow. In contrast, the void fraction profile and the slip ratio were observed to be sensitive to the virtual mass model. (2) It appears that air-water critical flow experiments may be effectively used for the assessment of the virtual mass force used in two-fluid models. In fact, such experiments are unique in their ability to isolate the spatial gradients in a vm models. It is hoped that this study will help stimulate the conduct of further critical flow experiments for the assessment of two fluid models

  11. The study of lossy compressive method with different interpolation for holographic reconstruction in optical scanning holography

    Directory of Open Access Journals (Sweden)

    HU Zhijuan

    2015-08-01

    Full Text Available We study the cosmological inflation models driven by the rolling tachyon field which has a Born-Infeld-type action.We drive the Hamilton-Jacobi equation for the cosmological dynamics of tachyon inflation and the mode equations for the scalar and tensor perturbations of tachyon field and spacetime, then a solution under the slow-roll condition is given. In the end,a realistic model from string theory is discussed.

  12. Computational electrochemo-fluid dynamics modeling in a uranium electrowinning cell

    International Nuclear Information System (INIS)

    Kim, K.R.; Choi, S.Y.; Kim, S.H.; Shim, J.B.; Paek, S.; Kim, I.T.

    2014-01-01

    A computational electrochemo-fluid dynamics model has been developed to describe the electrowinning behavior in an electrolyte stream through a planar electrode cell system. Electrode reaction of the uranium electrowinning process from a molten-salt electrolyte stream was modeled to illustrate the details of the flow-assisted mass transport of ions to the cathode. This modeling approach makes it possible to represent variations of the convective diffusion limited current density by taking into account the concentration profile at the electrode surface as a function of the flow characteristics and applied current density in a commercially available computational fluid dynamics platform. It was possible to predict the conventional current-voltage relation in addition to details of electrolyte fluid dynamics and electrochemical variables, such as the flow field, species concentrations, potential, and current distributions throughout the galvanostatic electrolysis cell. (author)

  13. Numerical modelling of cuttings transport in horizontal wells using conventional drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Bjorndalen, E.; Kuru, E. [Alberta Univ., Edmonton, AB (Canada)

    2004-07-01

    Some of the problems associated with poor wellbore cleaning include high drag or torque, slower rate of penetration, formation fractures and difficulty in wellbore steering. Some of the factors that affect cuttings transport include drilling fluid velocity, inclination angle, drilling fluid viscosity and drilling rate. The general practice is to stop drilling when necessary to clean boreholes with viscous pills, pipe rotation or drilling fluid circulation. It is important to predict when drilling should be stopped for remedial wellbore cleaning. This can be accomplished with a transient cuttings transport model which can improve drilling hydraulics, particularly in long horizontal well sections and extended reach (ERD) wells. This paper presents a newly developed 1-dimensional transient mechanistic model of cuttings transport with conventional (incompressible) drilling fluids in horizontal wells. The numerically solved model predicts the height of cutting beds as a function of different drilling operational parameters such as fluid flow rate and rheological characteristics, drilling rates, wellbore geometry and drillpipe eccentricity. Sensitivity analysis has demonstrated the effects of these parameters on the efficiency of solids transport. The proposed model can be used in the creation of computer programs designed to optimize drilling fluid rheology and flow rates for horizontal well drilling. 29 refs., 3 tabs., 12 figs.

  14. Static/dynamic fluid-structure interaction analysis for 3-D rotary blade model

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Kim, Yu Sung; Kim, Dong Man; Park, Kang Kyun

    2009-01-01

    In this study, static/dynamic fluid-structure interaction analyses have been conducted for a 3D rotary blade model like a turbo-machinery or wind turbine blade. Advanced computational analysis system based on Computational Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) has been developed in order to investigate detailed dynamic responses of rotary type models. Fluid domains are modeled using the computational grid system with local grid deforming techniques. Reynolds-averaged Navier-Stokes equations with various turbulence model are solved for unsteady flow problems of the rotating blade model. Detailed static/dynamic responses and instantaneous pressure contours on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating blades.

  15. Unsteady Model for Transverse Fluid Elastic Instability of Heat Exchange Tube Bundle

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2014-01-01

    Full Text Available From the viewpoint of practical application, based on the unsteady analytical model for transverse fluid elastic instability of tube array proposed by Yetisir and the linear attenuation function introduced by Li Ming, a new explicit model based on nonsteady state “streamtube” hypothesis is proposed and solved using complex number method. In the model, numerical integral is avoided and inappropriate aspects in Li Ming model are modified. Using the model, the fluid elastic instability analysis of a single flexible tube is made. The stability graphs for four typical types of tube array are plotted and contrasted with experimental results. It is found that the current explicit model is effective in the analysis of transverse fluid elastic instability of tube bundle.

  16. Complex fluids modeling and algorithms

    CERN Document Server

    Saramito, Pierre

    2016-01-01

    This book presents a comprehensive overview of the modeling of complex fluids, including many common substances, such as toothpaste, hair gel, mayonnaise, liquid foam, cement and blood, which cannot be described by Navier-Stokes equations. It also offers an up-to-date mathematical and numerical analysis of the corresponding equations, as well as several practical numerical algorithms and software solutions for the approximation of the solutions. It discusses industrial (molten plastics, forming process), geophysical (mud flows, volcanic lava, glaciers and snow avalanches), and biological (blood flows, tissues) modeling applications. This book is a valuable resource for undergraduate students and researchers in applied mathematics, mechanical engineering and physics.

  17. Exactly solvable field-theoretical model with tachyons

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.

    1988-01-01

    Explicit soliton solutions describing the inelastic interaction between sub- and superluminal particles are found within the framework of a new integrable model of relativistic classical field theory. The corresponding energies are nonnegative irrespective of the choice of reference frame

  18. Experimental Evaluation of Equivalent-Fluid Models for Melamine Foam

    Science.gov (United States)

    Allen, Albert R.; Schiller, Noah H.

    2016-01-01

    Melamine foam is a soft porous material commonly used in noise control applications. Many models exist to represent porous materials at various levels of fidelity. This work focuses on rigid frame equivalent fluid models, which represent the foam as a fluid with a complex speed of sound and density. There are several empirical models available to determine these frequency dependent parameters based on an estimate of the material flow resistivity. Alternatively, these properties can be experimentally educed using an impedance tube setup. Since vibroacoustic models are generally sensitive to these properties, this paper assesses the accuracy of several empirical models relative to impedance tube measurements collected with melamine foam samples. Diffuse field sound absorption measurements collected using large test articles in a laboratory are also compared with absorption predictions determined using model-based and measured foam properties. Melamine foam slabs of various thicknesses are considered.

  19. Modeling fluid-rock interaction at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Viani, B.E.; Bruton, C.J.

    1992-08-01

    Volcanic rocks at Yucca Mountain, Nevada aie being assessed for their suitability as a potential repository for high-level nuclear waste. Recent progress in modeling fluid-rock interactions, in particular the mineralogical and chemical changes that may accompany waste disposal at Yucca Mountain, will be reviewed in this publication. In Part 1 of this publication, ''Geochemical Modeling of Clinoptilolite-Water Interactions,'' solid-solution and cation-exchange models for the zeolite clinoptilolite are developed and compared to experimental and field observations. At Yucca Mountain, clinoptilolite which is found lining fractures and as a major component of zeolitized tuffs, is expected to play an important role in sequestering radionuclides that may escape from a potential nuclear waste repository. The solid-solution and ion-exchange models were evaluated by comparing predicted stabilities and exchangeable cation distributions of clinoptilolites with: (1) published binary exchange data; (2) compositions of coexisting clinoptilolites and formation waters at Yucca Mountain; (3) experimental sorption isotherms of Cs and Sr on zeolitized tuff, and (4) high temperature experimental data. Good agreement was found between predictions and expertmental data, especially for binary exchange and Cs and Sr sorption on clinoptilolite. Part 2 of this publication, ''Geochemical Simulation of Fluid-Rock Interactions at Yucca Mountain,'' describes preliminary numerical simulations of fluid-rock interactions at Yucca Mountain. The solid-solution model developed in the first part of the paper is used to evaluate the stability and composition of clinciptilolite and other minerals in the host rock under ambient conditions and after waste emplacement

  20. A General Nonlinear Fluid Model for Reacting Plasma-Neutral Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Meier, E T; Shumlak, U

    2012-04-06

    A generalized, computationally tractable fluid model for capturing the effects of neutral particles in plasmas is derived. The model derivation begins with Boltzmann equations for singly charged ions, electrons, and a single neutral species. Electron-impact ionization, radiative recombination, and resonant charge exchange reactions are included. Moments of the reaction collision terms are detailed. Moments of the Boltzmann equations for electron, ion, and neutral species are combined to yield a two-component plasma-neutral fluid model. Separate density, momentum, and energy equations, each including reaction transfer terms, are produced for the plasma and neutral equations. The required closures for the plasma-neutral model are discussed.

  1. Mathematical and numerical analysis of a multi-velocity multi-fluid model for interpenetration of miscible fluids; Analyse mathematique et numerique d'un modele multifluide multivitesse pour l'interpenetration de fluides miscibles

    Energy Technology Data Exchange (ETDEWEB)

    Enaux, C

    2007-11-15

    The simulation of indirect laser implosion requires an accurate knowledge of the inter-penetration of the laser target materials turned into plasma. This work is devoted to the study of a multi-velocity multi-fluid model recently proposed by Scannapieco and Cheng (SC) to describe the inter-penetration of miscible fluids. In this document, we begin with presenting the SC model in the context of miscible fluids flow modelling. Afterwards, the mathematical analysis of the model is carried out (study of the hyperbolicity, existence of a strictly convex mathematical entropy, asymptotic analysis and diffusion limit). As a conclusion the problem is well set. Then, we focus on the problem of numerical resolution of systems of conservation laws with a relaxation source term, because SC model belongs to this class. The main difficulty of this task is to capture on a coarse grid the asymptotic behaviour of the system when the source term is stiff. The main contribution of this work lies in the proposition of a new technique, allowing us to construct a Lagrangian numerical flux taking into account the presence of the source term. This technique is applied first on the model-problem of a one-dimensional Euler system with friction, and then on the multi-fluid SC model. In both cases, we prove that the new scheme is asymptotic-preserving and entropic under a CFL-like condition. The two-dimensional extension of the scheme is done by using a standard alternate directions method. Some numerical results highlight the contribution of the new flux, compared with a standard Lagrange plus Remap scheme where the source term is processed using an operator splitting. (author)

  2. Direct modeling for computational fluid dynamics

    Science.gov (United States)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  3. AFDM: An Advanced Fluid-Dynamics Model

    International Nuclear Information System (INIS)

    Bohl, W.R.; Parker, F.R.; Wilhelm, D.; Goutagny, L.; Ninokata, H.

    1990-09-01

    AFDM, or the Advanced Fluid-Dynamics Model, is a computer code that investigates new approaches simulating the multiphase-flow fluid-dynamics aspects of severe accidents in fast reactors. The AFDM formalism starts with differential equations similar to those in the SIMMER-II code. These equations are modified to treat three velocity fields and supplemented with a variety of new models. The AFDM code has 12 topologies describing what material contacts are possible depending on the presence or absence of a given material in a computational cell, on the dominant liquid, and on the continuous phase. Single-phase, bubbly, churn-turbulent, cellular, and dispersed flow regimes are permitted for the pool situations modeled. Virtual mass terms are included for vapor in liquid-continuous flow. Interfacial areas between the continuous and discontinuous phases are convected to allow some tracking of phenomenological histories. Interfacial areas are also modified by models of nucleation, dynamic forces, turbulence, flashing, coalescence, and mass transfer. Heat transfer is generally treated using engineering correlations. Liquid-vapor phase transitions are handled with the nonequilibrium, heat-transfer-limited model, whereas melting and freezing processes are based on equilibrium considerations. Convection is treated using a fractional-step method of time integration, including a semi-implicit pressure iteration. A higher-order differencing option is provided to control numerical diffusion. The Los Alamos SESAME equation-of-state has been implemented using densities and temperatures as the independent variables. AFDM programming has vectorized all computational loops consistent with the objective of producing an exportable code. 24 refs., 4 figs

  4. Fully coupled thermal-mechanical-fluid flow model for nonliner geologic systems

    International Nuclear Information System (INIS)

    Hart, R.D.

    1981-01-01

    A single model is presented which describes fully coupled thermal-mechanical-fluid flow behavior of highly nonlinear, dynamic or quasistatic, porous geologic systems. The mathematical formulation for the model utilizes the continuum theory of mixtures to describe the multiphase nature of the system, and incremental linear constitutive theory to describe the path dependency of nonlinear material behavior. The model, incorporated in an explicit finite difference numerical procedure, was implemented in two different computer codes. A special-purpose one-dimensional code, SNEAKY, was written for initial validation of the coupling mechanisms and testing of the coupled model logic. A general purpose commercially available code, STEALTH, developed for modeling dynamic nonlinear thermomechanical processes, was modified to include fluid flow behavior and the coupling constitutive model. The fully explicit approach in the coupled calculation facilitated the inclusion of the coupling mechanisms and complex constitutive behavior. Analytical solutions pertaining to consolidation theory for soils, thermoelasticity for solids, and hydrothermal convection theory provided verification of stress and fluid flow, stress and conductive heat transfer, and heat transfer and fluid flow couplings, respectively, in the coupled model. A limited validation of the adequacy of the coupling constitutive assumptions was also performed by comparison with the physical response from two laboratory tests. Finally, the full potential of the coupled model is illustrated for geotechnical applications in energy-resource related areas. Examples in the areas of nuclear waste isolation and cut-and-fill mining are cited

  5. A Mathematical Model for Swallowing of Concentrated Fluids in Oesophagus

    OpenAIRE

    Pandey, S. K.; Tripathi, Dharmendra

    2011-01-01

    This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis N...

  6. Fluid flow and heat transfer modeling for castings

    International Nuclear Information System (INIS)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs

  7. Geophysical fluid dynamics understanding (almost) everything with rotating shallow water models

    CERN Document Server

    Zeitlin, Vladimir

    2018-01-01

    The book explains the key notions and fundamental processes in the dynamics of the fluid envelopes of the Earth (transposable to other planets), and methods of their analysis, from the unifying viewpoint of rotating shallow-water model (RSW). The model, in its one- or two-layer versions, plays a distinguished role in geophysical fluid dynamics, having been used for around a century for conceptual understanding of various phenomena, for elaboration of approaches and methods, to be applied later in more complete models, for development and testing of numerical codes and schemes of data assimilations, and many other purposes. Principles of modelling of large-scale atmospheric and oceanic flows, and corresponding approximations, are explained and it is shown how single- and multi-layer versions of RSW arise from the primitive equations by vertical averaging, and how further time-averaging produces celebrated quasi-geostrophic reductions of the model. Key concepts of geophysical fluid dynamics are exposed and inte...

  8. Including fluid shear viscosity in a structural acoustic finite element model using a scalar fluid representation.

    Science.gov (United States)

    Cheng, Lei; Li, Yizeng; Grosh, Karl

    2013-08-15

    An approximate boundary condition is developed in this paper to model fluid shear viscosity at boundaries of coupled fluid-structure system. The effect of shear viscosity is approximated by a correction term to the inviscid boundary condition, written in terms of second order in-plane derivatives of pressure. Both thin and thick viscous boundary layer approximations are formulated; the latter subsumes the former. These approximations are used to develop a variational formation, upon which a viscous finite element method (FEM) model is based, requiring only minor modifications to the boundary integral contributions of an existing inviscid FEM model. Since this FEM formulation has only one degree of freedom for pressure, it holds a great computational advantage over the conventional viscous FEM formulation which requires discretization of the full set of linearized Navier-Stokes equations. The results from thick viscous boundary layer approximation are found to be in good agreement with the prediction from a Navier-Stokes model. When applicable, thin viscous boundary layer approximation also gives accurate results with computational simplicity compared to the thick boundary layer formulation. Direct comparison of simulation results using the boundary layer approximations and a full, linearized Navier-Stokes model are made and used to evaluate the accuracy of the approximate technique. Guidelines are given for the parameter ranges over which the accurate application of the thick and thin boundary approximations can be used for a fluid-structure interaction problem.

  9. Smoothed particle hydrodynamics model for phase separating fluid mixtures. I. General equations

    NARCIS (Netherlands)

    Thieulot, C; Janssen, LPBM; Espanol, P

    We present a thermodynamically consistent discrete fluid particle model for the simulation of a recently proposed set of hydrodynamic equations for a phase separating van der Waals fluid mixture [P. Espanol and C.A.P. Thieulot, J. Chem. Phys. 118, 9109 (2003)]. The discrete model is formulated by

  10. Modelling Laccoliths: Fluid-Driven Fracturing in the Lab

    Science.gov (United States)

    Ball, T. V.; Neufeld, J. A.

    2017-12-01

    Current modelling of the formation of laccoliths neglects the necessity to fracture rock layers for propagation to occur [1]. In magmatic intrusions at depth the idea of fracture toughness is used to characterise fracturing, however an analogue for near surface intrusions has yet to be explored [2]. We propose an analytical model for laccolith emplacement that accounts for the energy required to fracture at the tip of an intrusion. For realistic physical parameters we find that a lag region exists between the fluid magma front and the crack tip where large negative pressures in the tip cause volatiles to exsolve from the magma. Crucially, the dynamics of this tip region controls the spreading due to the competition between viscous forces and fracture energy. We conduct a series of complementary experiments to investigate fluid-driven fracturing of adhered layers and confirm the existence of two regimes: viscosity dominant spreading, controlled by the pressure in the lag region, and fracture energy dominant spreading, controlled by the energy required to fracture layers. Our experiments provide the first observations, and evolution, of a vapour tip. These experiments and our simplified model provide insight into the key physical processes in near surface magmatic intrusions with applications to fluid-driven fracturing more generally. Michaut J. Geophys. Res. 116(B5), B05205. Bunger & Cruden J. Geophys. Res. 116(B2), B02203.

  11. On modelling, simulation and measurement of fluid power pumps and pipelines

    International Nuclear Information System (INIS)

    Weddfelt, K.

    1992-01-01

    Pressure ripple in fluid power systems is often considered to be a nuisance. It is a major reason for vibrations and noise emission but can also cause functional problems, in extreme causes even fatigue and breakdown of pipes and connections. In order to examine this problem both the sources of pressure ripple and its transmission properties must be considered. A major source of pressure ripple in fluid power systems is positive displacement pumps, a component which is actually a source of flow ripple. A positive displacement pump can be characterized and modelled as a flow source with an internal source impedance. Special measurement techniques must be developed in order to determine these source properties experimentally. Pressure and flow ripple propagate through the pipeline of a fluid power system as waves. When the impedance of the system changes, part of the energy in the wave is being transmitted while the remaining part is reflected. Therefore, the mechanism for standing waves to occur is present, causing resonances and possibly very large pressure pulsations at certain frequencies. Destructive interference between these waves can be used to design so-called reactive attenuators, similar to an automobile muffler, which can be used to acoustically separate the source of flow ripple from the rest of the fluid power system. A mathematical model of wave transmission in pipelines is of fundamental importance to the design of acoustical sound systems. It is of equal importance when modelling and measuring the source characteristics of fluid power pumps. Such a mathematical model must include the transmission and reflection of waves as well as the frequency-dependent losses from viscous friction in the fluid. (au)

  12. A Mathematical Model for Swallowing of Concentrated Fluids in Oesophagus

    Directory of Open Access Journals (Sweden)

    S. K. Pandey

    2011-01-01

    Full Text Available This model investigates particularly the impact of an integral and a non-integral number of waves on the swallowing of food stuff such as jelly, tomato puree, soup, concentrated fruits juices and honey transported peristaltically through the oesophagus. The fluid is considered as a Casson fluid. Emphasis is on the study of the dependence of local pressure distribution on space and time. Mechanical efficiency, reflux limit and trapping are also discussed. The effect of Casson fluid vis-à-vis Newtonian fluid is investigated analytically and numerically too. The result is physically interpreted as that the oesophagus makes more efforts to swallow fluids with higher concentration. It is observed that the pressure is uniformly distributed when an integral number of waves is there in the oesophagus; but it is non-uniform when a non-integral number of waves is present therein. It is further observed that as the plug flow region widens, the pressure difference increases, which indicates that the averaged flow rate will reduce for a Casson fluid. It is also concluded that Casson fluids are more prone to reflux.

  13. Eight equation model for arbitrary shaped pipe conveying fluid

    International Nuclear Information System (INIS)

    Gale, J.; Tiselj, I.

    2006-01-01

    Linear eight-equation system for two-way coupling of single-phase fluid transient and arbitrary shaped one-dimensional pipeline movement is described and discussed. The governing phenomenon described with this system is also known as Fluid-Structure Interaction. Standard Skalak's four-equation model for axial coupling was improved with additional four Timoshenko's beam equations for description of flexural displacements and rotations. In addition to the conventional eight-equation system that enables coupling of straight sections, the applied mathematical model was improved for description of the arbitrary shaped pipeline located in two-dimensional plane. The applied model was solved with second-order accurate numerical method that is based on Godounov's characteristic upwind schemes. The model was successfully used for simulation of the rod impact induced transient and conventional instantaneous valve closure induced transient in the tank-pipe-valve system. (author)

  14. Deriving a blood-mimicking fluid for particle image velocimetry in Sylgard-184 vascular models.

    Science.gov (United States)

    Yousif, Majid Y; Holdsworth, David W; Poepping, Tamie L

    2009-01-01

    A new blood-mimicking fluid (BMF) has been developed for particle image velocimetry (PIV), which enables flow studies in vascular models (phantoms). A major difficulty in PIV that affects measurement accuracy is the refraction and distortion of light passing through the interface between the model and the fluid, due to the difference in refractive index (n) between the two materials. The problem can be eliminated by using a fluid with a refractive index matching that of the model. Such fluids are not commonly available, especially for vascular research where the fluid should also have a viscosity similar to human blood. In this work, a blood-mimicking fluid, composed of water (47.38% by weight), glycerol (36.94% by weight) and sodium iodide salt (15.68% by weight), was developed for compatibility with our silicone (Sylgard 184; n = 1.414) phantoms. The fluid exhibits a dynamic viscosity of 4.31+/-0.03 cP which lies within the range of human blood viscosity (4.4+/-0.6 cP). Both refractive index and viscosity were attained at 22.2+/-0.2 degrees C, which is a feasible room temperature, thus eliminating the need for a temperature-control system. The fluid will be used to study hemodynamics in vascular flow models fabricated from Sylgard 184.

  15. A Modelling Approach to Multibody Dynamics of Fluid Power Machinery with Hydrodynamic Lubrication

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2013-01-01

    The efficiency potential of the digital displacement technology and the increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for development of high efficiency fluid power machinery. Modelling and analysis of fluid power machinery loss...... mechanisms is necessary in order to accommodate this demand. At present fully coupled thermo-elastic models for various tribological interfaces has been presented. However, in order to analyse the interaction between tribological interfaces in fluid power pumps and motors, these interface models needs...

  16. Computational fluid dynamic modeling of fluidized-bed polymerization reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rokkam, Ram [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

  17. Complex fluid network optimization and control integrative design based on nonlinear dynamic model

    International Nuclear Information System (INIS)

    Sui, Jinxue; Yang, Li; Hu, Yunan

    2016-01-01

    In view of distribution according to complex fluid network’s needs, this paper proposed one optimization computation method of the nonlinear programming mathematical model based on genetic algorithm. The simulation result shows that the overall energy consumption of the optimized fluid network has a decrease obviously. The control model of the fluid network is established based on nonlinear dynamics. We design the control law based on feedback linearization, take the optimal value by genetic algorithm as the simulation data, can also solve the branch resistance under the optimal value. These resistances can provide technical support and reference for fluid network design and construction, so can realize complex fluid network optimization and control integration design.

  18. Modelling of reactive fluid transport in deformable porous rocks

    Science.gov (United States)

    Yarushina, V. M.; Podladchikov, Y. Y.

    2009-04-01

    One outstanding challenge in geology today is the formulation of an understanding of the interaction between rocks and fluids. Advances in such knowledge are important for a broad range of geologic settings including partial melting and subsequent migration and emplacement of a melt into upper levels of the crust, or fluid flow during regional metamorphism and metasomatism. Rock-fluid interaction involves heat and mass transfer, deformation, hydrodynamic flow, and chemical reactions, thereby necessitating its consideration as a complex process coupling several simultaneous mechanisms. Deformation, chemical reactions, and fluid flow are coupled processes. Each affects the others. Special effort is required for accurate modelling of the porosity field through time. Mechanical compaction of porous rocks is usually treated under isothermal or isoentropic simplifying assumptions. However, joint consideration of both mechanical compaction and reactive porosity alteration requires somewhat greater than usual care about thermodynamic consistency. Here we consider the modelling of multi-component, multi-phase systems, which is fundamental to the study of fluid-rock interaction. Based on the conservation laws for mass, momentum, and energy in the form adopted in the theory of mixtures, we derive a thermodynamically admissible closed system of equations describing the coupling of heat and mass transfer, chemical reactions, and fluid flow in a deformable solid matrix. Geological environments where reactive transport is important are located at different depths and accordingly have different rheologies. In the near surface, elastic or elastoplastic properties would dominate, whereas viscoplasticity would have a profound effect deeper in the lithosphere. Poorly understood rheologies of heterogeneous porous rocks are derived from well understood processes (i.e., elasticity, viscosity, plastic flow, fracturing, and their combinations) on the microscale by considering a

  19. Numerical analysis of splashing fluid using hybrid method of mesh-based and particle-based modelings

    International Nuclear Information System (INIS)

    Tanaka, Nobuatsu; Ogawara, Takuya; Kaneda, Takeshi; Maseguchi, Ryo

    2009-01-01

    In order to simulate splashing and scattering fluid behaviors, we developed a hybrid method of mesh-based model for large-scale continuum fluid and particle-based model for small-scale discrete fluid particles. As for the solver of the continuum fluid, we adopt the CIVA RefIned Multiphase SimulatiON (CRIMSON) code to evaluate two phase flow behaviors based on the recent computational fluid dynamics (CFD) techniques. The phase field model has been introduced to the CRIMSON in order to solve the problem of loosing phase interface sharpness in long-term calculation. As for the solver of the discrete fluid droplets, we applied the idea of Smoothed Particle Hydrodynamics (SPH) method. Both continuum fluid and discrete fluid interact each other through drag interaction force. We verified our method by applying it to a popular benchmark problem of collapse of water column problems, especially focusing on the splashing and scattering fluid behaviors after the column collided against the wall. We confirmed that the gross splashing and scattering behaviors were well reproduced by the introduction of particle model while the detailed behaviors of the particles were slightly different from the experimental results. (author)

  20. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  1. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  2. Hamiltonian structure of reduced fluid models for plasmas obtained from a kinetic description

    International Nuclear Information System (INIS)

    Guillebon, L. de; Chandre, C.

    2012-01-01

    We consider the Hamiltonian structure of reduced fluid models obtained from a kinetic description of collisionless plasmas by Vlasov–Maxwell equations. We investigate the possibility of finding Poisson subalgebras associated with fluid models starting from the Vlasov–Maxwell Poisson algebra. In this way, we show that the only possible Poisson subalgebra involves the moments of zeroth and first order of the Vlasov distribution, meaning the fluid density and the fluid velocity. We find that the bracket derived in [B.A. Shadwick, G.M. Tarkenton, E.H. Esarey, Phys. Rev. Lett. 93 (2004) 175002] which involves moments of order 2 is not a Poisson bracket since it does not satisfy the Jacobi identity. -- Highlights: ► We investigate fluid reductions from the Vlasov–Maxwell Poisson bracket. ► The only Poisson subalgebra involves fluid density and fluid velocity. ► The bracket derived in [B.A. Shadwick, G.M. Tarkenton, E.H. Esarey, Phys. Rev. Lett. 93 (2004) 175002] is not Hamiltonian.

  3. Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction

    Directory of Open Access Journals (Sweden)

    Groenenboom P. H. L.

    2009-06-01

    Full Text Available Within this study, the implementation of the smoothed particle hydrodynamics (SPH method solving the complex problem of interaction between a quasi-incompressible fluid involving a free surface and an elastic structure is outlined. A brief description of the SPH model for both the quasi-incompressible fluid and the isotropic elastic solid is presented. The interaction between the fluid and the elastic structure is realised through the contact algorithm. The results of numerical computations are confronted with the experimental as well as computational data published in the literature.

  4. Rotating spacetimes of Goedel-type

    International Nuclear Information System (INIS)

    Reboucas, M.J.; Teixeira, A.F.F.

    1986-01-01

    The Goedel-type Riemannian manifolds are examined under two different assumptions on the algebraic structure of the energy-momentum tensor. All Goedel-type manifolds of either Segre type [1,(1,111)] or [(1,11)1] are shown to be spacetime-homogeneous. A generalization of Bampi-Zordan theorem is presented. All Goedel-type Riemannian manifolds of the algebric tachyon fluid type are shown to be conformally flat and isometric to Reboucas-Tiomno model. The conformal form of Reboucas-Tiomno is given. (Author) [pt

  5. Computational modelling of the flow of viscous fluids in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Khosravian, N [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2007-11-21

    Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases.

  6. Computational modelling of the flow of viscous fluids in carbon nanotubes

    International Nuclear Information System (INIS)

    Khosravian, N; Rafii-Tabar, H

    2007-01-01

    Carbon nanotubes will have extensive application in all areas of nano-technology, and in particular in the field of nano-fluidics, wherein they can be used for molecular separation, nano-scale filtering and as nano-pipes for conveying fluids. In the field of nano-medicine, nanotubes can be functionalized with various types of receptors to act as bio-sensors for the detection and elimination of cancer cells, or be used as bypasses and even neural connections. Modelling fluid flow inside nanotubes is a very challenging problem, since there is a complex interplay between the motion of the fluid and the stability of the walls. A critical issue in the design of nano-fluidic devices is the induced vibration of the walls, due to the fluid flow, which can promote structural instability. It has been established that the resonant frequencies depend on the flow velocity. We have studied, for the first time, the flow of viscous fluids through multi-walled carbon nanotubes, using the Euler-Bernoulli classical beam theory to model the nanotube as a continuum structure. Our aim has been to compute the effect of the fluid flow on the structural stability of the nanotubes, without having to consider the details of the fluid-walls interaction. The variations of the resonant frequencies with the flow velocity are obtained for both unembedded nanotubes, and when they are embedded in an elastic medium. It is found that a nanotube conveying a viscous fluid is more stable against vibration-induced buckling than a nanotube conveying a non-viscous fluid, and that the aspect ratio plays the same role in both cases

  7. Optimization of morphing flaps based on fluid structure interaction modeling

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Akay, Busra

    2018-01-01

    This article describes the design optimization of morphing trailing edge flaps for wind turbines with ‘smart blades’. A high fidelity Fluid Structure Interaction (FSI) simulation framework is utilized, comprised of 2D Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) models....... A coupled aero-structural simulation of a 10% chordwise length morphing trailing edge flap for a 4 MW wind turbine rotor is carried out and response surfaces are produced with respect to the flap internal geometry design parameters for the design conditions. Surrogate model based optimization is applied...

  8. A Brief Review on the Baer-Nunziato type Multi-pressure Multi-fluid Models

    International Nuclear Information System (INIS)

    Lee, Sang Yong; Park, Chan Eok; Lee, Gyu Cheon

    2010-01-01

    Single pressure two-fluid flow equations have complex characteristics. This causes ill-posedness problem. Even though some authors show that the numerical solutions are well behaved if the number of mesh points is sufficiently small, the stability of the solution is always challenged. There have been several attempts to overcome these problems. Multi-pressure multi-fluid models are one of them. Among them, Baer and Nunziato (BN) derived an interesting two-fluid model. BN model has independent phase pressures. It is closed by inserting volume fraction evolution equation. In this paper, several aspects of the BN type model will be reviewed and some suggestion for the future study will be made

  9. Equation-of-State Modeling of Phase Equilibria in Petroleum Fluids

    DEFF Research Database (Denmark)

    Jørgensen, Marianne

    1996-01-01

    The Soave-Redlich-Kwong (SRK) equation of state was used to investigate and develop several aspects of the modeling of natural petroleum fluids.A new method was presented for numerical evaluation of PVT experiments. This method was used in the estimation of binary interaction parameters. A comphr......The Soave-Redlich-Kwong (SRK) equation of state was used to investigate and develop several aspects of the modeling of natural petroleum fluids.A new method was presented for numerical evaluation of PVT experiments. This method was used in the estimation of binary interaction parameters....... A comphrensive study of pseudoization procedures is presented. It is concluded that the compared methods exhibit results of comparable accuracy, and that six to eight pseudocomponents are needed for optimal representation of petroleum fluids.Finally, it is investigated how well the EOS can represent the VLLE...

  10. External gear pumps operating with non-Newtonian fluids: Modelling and experimental validation

    Science.gov (United States)

    Rituraj, Fnu; Vacca, Andrea

    2018-06-01

    External Gear Pumps are used in various industries to pump non-Newtonian viscoelastic fluids like plastics, paints, inks, etc. For both design and analysis purposes, it is often a matter of interest to understand the features of the displacing action realized by meshing of the gears and the description of the behavior of the leakages for this kind of pumps. However, very limited work can be found in literature about methodologies suitable to model such phenomena. This article describes the technique of modelling external gear pumps that operate with non-Newtonian fluids. In particular, it explains how the displacing action of the unit can be modelled using a lumped parameter approach which involves dividing fluid domain into several control volumes and internal flow connections. This work is built upon the HYGESim simulation tool, conceived by the authors' research team in the last decade, which is for the first time extended for the simulation of non-Newtonian fluids. The article also describes several comparisons between simulation results and experimental data obtained from numerous experiments performed for validation of the presented methodology. Finally, operation of external gear pump with fluids having different viscosity characteristics is discussed.

  11. Peristaltic Transport of a Rheological Fluid: Model for Movement of Food Bolus Through Esophagus

    OpenAIRE

    Misra, J. C.; Maiti, S.

    2011-01-01

    Fluid mechanical peristaltic transport through esophagus has been of concern in the paper. A mathematical model has been developed with an aim to study the peristaltic transport of a rheological fluid for arbitrary wave shapes and tube lengths. The Ostwald-de Waele power law of viscous fluid is considered here to depict the non-Newtonian behaviour of the fluid. The model is formulated and analyzed with the specific aim of exploring some important information concerning the movement of food bo...

  12. Methods and models for accelerating dynamic simulation of fluid power circuits

    Energy Technology Data Exchange (ETDEWEB)

    Aaman, R.

    2011-07-01

    The objective of this dissertation is to improve the dynamic simulation of fluid power circuits. A fluid power circuit is a typical way to implement power transmission in mobile working machines, e.g. cranes, excavators etc. Dynamic simulation is an essential tool in developing controllability and energy-efficient solutions for mobile machines. Efficient dynamic simulation is the basic requirement for the real-time simulation. In the real-time simulation of fluid power circuits there exist numerical problems due to the software and methods used for modelling and integration. A simulation model of a fluid power circuit is typically created using differential and algebraic equations. Efficient numerical methods are required since differential equations must be solved in real time. Unfortunately, simulation software packages offer only a limited selection of numerical solvers. Numerical problems cause noise to the results, which in many cases leads the simulation run to fail. Mathematically the fluid power circuit models are stiff systems of ordinary differential equations. Numerical solution of the stiff systems can be improved by two alternative approaches. The first is to develop numerical solvers suitable for solving stiff systems. The second is to decrease the model stiffness itself by introducing models and algorithms that either decrease the highest eigenvalues or neglect them by introducing steady-state solutions of the stiff parts of the models. The thesis proposes novel methods using the latter approach. The study aims to develop practical methods usable in dynamic simulation of fluid power circuits using explicit fixed-step integration algorithms. In this thesis, two mechanisms which make the system stiff are studied. These are the pressure drop approaching zero in the turbulent orifice model and the volume approaching zero in the equation of pressure build-up. These are the critical areas to which alternative methods for modelling and numerical simulation

  13. Dimopoulos–Dvali and Randall–Sundrum models

    Indian Academy of Sciences (India)

    attempt to deal with the hierarchy problem. These models can lead to rather unique and spectacular ... We also need to know how. ¯MPl and the more fundamental scale M are related. To this ... Of course, we still need to insure that the usual KK gravitons and the new KK scalars are non-tachyonic so that FR > 0 will also be ...

  14. Compound waves in a higher order nonlinear model of thermoviscous fluids

    DEFF Research Database (Denmark)

    Rønne Rasmussen, Anders; Sørensen, Mads Peter; Gaididei, Yuri B.

    2016-01-01

    A generalized traveling wave ansatz is used to investigate compound shock waves in a higher order nonlinear model of a thermoviscous fluid. The fluid velocity potential is written as a traveling wave plus a linear function of space and time. The latter offers the possibility of predicting...

  15. Modelling Emission from Building Materials with Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    This paper presents a numerical model that by means of computational fluid dynamics (CFD) is capable of dealing with both pollutant transport across the boundary layer and internal diffusion in the source without prior knowledge of which is the limiting process. The model provides the concentration...

  16. Cardioplegia heat exchanger design modelling using computational fluid dynamics.

    Science.gov (United States)

    van Driel, M R

    2000-11-01

    A new cardioplegia heat exchanger has been developed by Sorin Biomedica. A three-dimensional computer-aided design (CAD) model was optimized using computational fluid dynamics (CFD) modelling. CFD optimization techniques have commonly been applied to velocity flow field analysis, but CFD analysis was also used in this study to predict the heat exchange performance of the design before prototype fabrication. The iterative results of the optimization and the actual heat exchange performance of the final configuration are presented in this paper. Based on the behaviour of this model, both the water and blood fluid flow paths of the heat exchanger were optimized. The simulation predicted superior heat exchange performance using an optimal amount of energy exchange surface area, reducing the total contact surface area, the device priming volume and the material costs. Experimental results confirm the empirical results predicted by the CFD analysis.

  17. Computational fluid dynamics modelling in cardiovascular medicine.

    Science.gov (United States)

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. Published by the BMJ Publishing Group Limited. For permission

  18. Neural Network Modeling of Cutting Fluid Impact on Energy Consumption during Turning

    Directory of Open Access Journals (Sweden)

    M. Bachraty

    2016-06-01

    Full Text Available This paper presents a part of research on power consumption differences between various cutting fluids used during turning operations. An attempt was made to study the possibility of artificial neural network to model the behavior function and predicting the electrical power consumption. Friction factor of examined cutting fluids was also measured to describe a more complete picture of investigated cutting fluids characteristics. It was discovered that wide spectrum of characteristics is present in today’s market and that artificial neural networks are suitable for purpose of modeling the power consumption of the lathe during machining. This paper could be used as a foundation for later database building where it would be possible to predict how certain cutting fluid will behave in a specific machining parameter combination.

  19. Fluid coupling in a discrete model of cochlear mechanics.

    Science.gov (United States)

    Elliott, Stephen J; Lineton, Ben; Ni, Guangjian

    2011-09-01

    A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea. © 2011 Acoustical Society of America

  20. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  1. Mathematical modeling of the dynamic stability of fluid conveying pipe based on integral equation formulations

    International Nuclear Information System (INIS)

    Elfelsoufi, Z.; Azrar, L.

    2016-01-01

    In this paper, a mathematical modeling of flutter and divergence analyses of fluid conveying pipes based on integral equation formulations is presented. Dynamic stability problems related to fluid pressure, velocity, tension, topography slope and viscoelastic supports and foundations are formulated. A methodological approach is presented and the required matrices, associated to the influencing fluid and pipe parameters, are explicitly given. Internal discretizations are used allowing to investigate the deformation, the bending moment, slope and shear force at internal points. Velocity–frequency, pressure-frequency and tension-frequency curves are analyzed for various fluid parameters and internal elastic supports. Critical values of divergence and flutter behaviors with respect to various fluid parameters are investigated. This model is general and allows the study of dynamic stability of tubes crossed by stationary and instationary fluid on various types of supports. Accurate predictions can be obtained and are of particular interest for a better performance and for an optimal safety of piping system installations. - Highlights: • Modeling the flutter and divergence of fluid conveying pipes based on RBF. • Dynamic analysis of a fluid conveying pipe with generalized boundary conditions. • Considered parameters fluid are the pressure, tension, slopes topography, velocity. • Internal support increase the critical velocity value. • This methodologies determine the fluid parameters effects.

  2. Modeling Studies to Constrain Fluid and Gas Migration Associated with Hydraulic Fracturing Operations

    Science.gov (United States)

    Rajaram, H.; Birdsell, D.; Lackey, G.; Karra, S.; Viswanathan, H. S.; Dempsey, D.

    2015-12-01

    The dramatic increase in the extraction of unconventional oil and gas resources using horizontal wells and hydraulic fracturing (fracking) technologies has raised concerns about potential environmental impacts. Large volumes of hydraulic fracturing fluids are injected during fracking. Incidents of stray gas occurrence in shallow aquifers overlying shale gas reservoirs have been reported; whether these are in any way related to fracking continues to be debated. Computational models serve as useful tools for evaluating potential environmental impacts. We present modeling studies of hydraulic fracturing fluid and gas migration during the various stages of well operation, production, and subsequent plugging. The fluid migration models account for overpressure in the gas reservoir, density contrast between injected fluids and brine, imbibition into partially saturated shale, and well operations. Our results highlight the importance of representing the different stages of well operation consistently. Most importantly, well suction and imbibition both play a significant role in limiting upward migration of injected fluids, even in the presence of permeable connecting pathways. In an overall assessment, our fluid migration simulations suggest very low risk to groundwater aquifers when the vertical separation from a shale gas reservoir is of the order of 1000' or more. Multi-phase models of gas migration were developed to couple flow and transport in compromised wellbores and subsurface formations. These models are useful for evaluating both short-term and long-term scenarios of stray methane release. We present simulation results to evaluate mechanisms controlling stray gas migration, and explore relationships between bradenhead pressures and the likelihood of methane release and transport.

  3. Revisiting low-fidelity two-fluid models for gas–solids transport

    Energy Technology Data Exchange (ETDEWEB)

    Adeleke, Najeem, E-mail: najm@psu.edu; Adewumi, Michael, E-mail: m2a@psu.edu; Ityokumbul, Thaddeus

    2016-08-15

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  4. Revisiting low-fidelity two-fluid models for gas–solids transport

    International Nuclear Information System (INIS)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-01-01

    Two-phase gas–solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas–solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe–Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  5. Revisiting low-fidelity two-fluid models for gas-solids transport

    Science.gov (United States)

    Adeleke, Najeem; Adewumi, Michael; Ityokumbul, Thaddeus

    2016-08-01

    Two-phase gas-solids transport models are widely utilized for process design and automation in a broad range of industrial applications. Some of these applications include proppant transport in gaseous fracking fluids, air/gas drilling hydraulics, coal-gasification reactors and food processing units. Systems automation and real time process optimization stand to benefit a great deal from availability of efficient and accurate theoretical models for operations data processing. However, modeling two-phase pneumatic transport systems accurately requires a comprehensive understanding of gas-solids flow behavior. In this study we discuss the prevailing flow conditions and present a low-fidelity two-fluid model equation for particulate transport. The model equations are formulated in a manner that ensures the physical flux term remains conservative despite the inclusion of solids normal stress through the empirical formula for modulus of elasticity. A new set of Roe-Pike averages are presented for the resulting strictly hyperbolic flux term in the system of equations, which was used to develop a Roe-type approximate Riemann solver. The resulting scheme is stable regardless of the choice of flux-limiter. The model is evaluated by the prediction of experimental results from both pneumatic riser and air-drilling hydraulics systems. We demonstrate the effect and impact of numerical formulation and choice of numerical scheme on model predictions. We illustrate the capability of a low-fidelity one-dimensional two-fluid model in predicting relevant flow parameters in two-phase particulate systems accurately even under flow regimes involving counter-current flow.

  6. Fluid analog model for boundary effects in field theory

    International Nuclear Information System (INIS)

    Ford, L. H.; Svaiter, N. F.

    2009-01-01

    Quantum fluctuations in the density of a fluid with a linear phonon dispersion relation are studied. In particular, we treat the changes in these fluctuations due to nonclassical states of phonons and to the presence of boundaries. These effects are analogous to similar effects in relativistic quantum field theory, and we argue that the case of the fluid is a useful analog model for effects in field theory. We further argue that the changes in the mean squared density are, in principle, observable by light scattering experiments.

  7. Study on application of two-fluid model in narrow annular channel

    International Nuclear Information System (INIS)

    Chen Jun; Yang Yanhua; Zhao Hua

    2007-01-01

    The Chexal-Harrison two-phase wall and inter-phase friction models developed by EPRI newly and the simple two-phase wall and inter-phase heat transfer models put forward by the paper are used to set up the two-fluid model which is fitted for boiling heat transfer and flow in narrow annular channel. On the base of the two-fluid model, a thermal hydraulic code-THYME is accomplished. Then the thermal hydraulic characteristic of narrow annular channel is analyzed by RELAP5/MOD3.2 code and THYME code. Compared with experimental data, RELAP5/MOD3.2 underestimates the outlet steam, and the results of THYME is agreed with the experimental data. (authors)

  8. Comments on Frequency Swept Rotating Input Perturbation Techniques and Identification of the Fluid Force Models in Rotor/bearing/seal Systems and Fluid Handling Machines

    Science.gov (United States)

    Muszynska, Agnes; Bently, Donald E.

    1991-01-01

    Perturbation techniques used for identification of rotating system dynamic characteristics are described. A comparison between two periodic frequency-swept perturbation methods applied in identification of fluid forces of rotating machines is presented. The description of the fluid force model identified by inputting circular periodic frequency-swept force is given. This model is based on the existence and strength of the circumferential flow, most often generated by the shaft rotation. The application of the fluid force model in rotor dynamic analysis is presented. It is shown that the rotor stability is an entire rotating system property. Some areas for further research are discussed.

  9. The isotropic local Wigner-Seitz model: An accurate theoretical model for the quasi-free electron energy in fluids

    Science.gov (United States)

    Evans, Cherice; Findley, Gary L.

    The quasi-free electron energy V0 (ρ) is important in understanding electron transport through a fluid, as well as for modeling electron attachment reactions in fluids. Our group has developed an isotropic local Wigner-Seitz model that allows one to successfully calculate the quasi-free electron energy for a variety of atomic and molecular fluids from low density to the density of the triple point liquid with only a single adjustable parameter. This model, when coupled with the quasi-free electron energy data and the thermodynamic data for the fluids, also can yield optimized intermolecular potential parameters and the zero kinetic energy electron scattering length. In this poster, we give a review of the isotropic local Wigner-Seitz model in comparison to previous theoretical models for the quasi-free electron energy. All measurements were performed at the University of Wisconsin Synchrotron Radiation Center. This work was supported by a Grants from the National Science Foundation (NSF CHE-0956719), the Petroleum Research Fund (45728-B6 and 5-24880), the Louisiana Board of Regents Support Fund (LEQSF(2006-09)-RD-A33), and the Professional Staff Congress City University of New York.

  10. Mathematical modeling of fluid flow in aluminum ladles for degasification with impeller - injector

    Science.gov (United States)

    Ramos-Gómez, E.; González-Rivera, C.; Ramírez-Argáez, M. A.

    2012-09-01

    In this work a fundamental Eulerian mathematical model was developed to simulate fluid flow in a water physical model of an aluminum ladle equipped with impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate on the fluid flow and vortex formation was analyzed with this model. Commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this twophase fluid flow system. The mathematical model was successfully validated against experimentally measured liquid velocity and turbulent profiles in a physical model. From the results it was concluded that the angular speed of the impeller is the most important parameter promoting better stirred baths. Pumping effect of the impeller is increased as impeller rotation speed increases. Gas flow rate is detrimental on bath stirring and diminishes pumping effect of impeller.

  11. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a finite volume method

  12. Modeling of dilute and dense dispersed fluid-particle flow

    Energy Technology Data Exchange (ETDEWEB)

    Laux, Harald

    1998-08-01

    A general two-fluid model is derived and applied in CFD computations to various test cases of important industrial multiphase flows. It is general in the sense of its applicability to dilute and dense dispersed fluid-particle flows. The model is limited to isothermal flow without mass transfer and only one particle phase is described. The instantaneous fluid phase equations, including the phase interaction terms, are derived from a volume averaging technique, and the instantaneous particle phase equations are derived from the kinetic theory of granular material. Whereas the averaging procedure, the treatment of the interaction terms, and the kinetic theory approach have been reported in literature prior to this work the combination of the approaches is new. The resulting equations are derived without ambiguity in the interpretation of the particle phase pressure (equation-of-state of particle phase). The basic modeling for the particle phase is improved in two steps. Because in the basic modeling only stresses due to kinetic and collisional interactions are included, a simple model for an effective viscosity is developed in order to allow also frictional stresses within the particle phase. Moreover, turbulent stresses and turbulent dispersion of particles play often an important role for the transport processes. Therefore in a second step, a two-equation turbulence model for both fluid and particle phase turbulence is derived by applying the phasic average to the instantaneous equations. The resulting k-{epsilon}-k{sup d}-{epsilon}{sup d} model is new. Mathematical closure is attempted such that the resulting set of equations is valid for both dilute arid dense flows. During the development of the closure relations a clear distinction is made between granular or ''viscous'' microscale fluctuations and turbulent macro scale fluctuations (true particle turbulence) within the particle phase. The set of governing equations is discretized by using a

  13. On Equilibria of the Two-fluid Model in Magnetohydrodynamics

    International Nuclear Information System (INIS)

    Frantzeskakis, Dimitri J.; Stratis, Ioannis G.; Yannacopoulos, Athanasios N.

    2004-01-01

    We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria

  14. Transport of fluid and solutes in the body I. Formulation of a mathematical model.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.

  15. Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas

    International Nuclear Information System (INIS)

    Crouseilles, N.

    2004-12-01

    For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)

  16. Fluid mechanics and heat transfer advances in nonlinear dynamics modeling

    CERN Document Server

    Asli, Kaveh Hariri

    2015-01-01

    This valuable new book focuses on new methods and techniques in fluid mechanics and heat transfer in mechanical engineering. The book includes the research of the authors on the development of optimal mathematical models and also uses modern computer technology and mathematical methods for the analysis of nonlinear dynamic processes. It covers technologies applicable to both fluid mechanics and heat transfer problems, which include a combination of physical, mechanical, and thermal techniques. The authors develop a new method for the calculation of mathematical models by computer technology, using parametric modeling techniques and multiple analyses for mechanical system. The information in this book is intended to help reduce the risk of system damage or failure. Included are sidebar discussions, which contain information and facts about each subject area that help to emphasize important points to remember.

  17. Numerical modelling of fluid-rock interactions: Lessons learnt from carbonate rocks diagenesis studies

    Science.gov (United States)

    Nader, Fadi; Bachaud, Pierre; Michel, Anthony

    2015-04-01

    Quantitative assessment of fluid-rock interactions and their impact on carbonate host-rocks has recently become a very attractive research topic within academic and industrial realms. Today, a common operational workflow that aims at predicting the relevant diagenetic processes on the host rocks (i.e. fluid-rock interactions) consists of three main stages: i) constructing a conceptual diagenesis model including inferred preferential fluids pathways; ii) quantifying the resulted diagenetic phases (e.g. depositing cements, dissolved and recrystallized minerals); and iii) numerical modelling of diagenetic processes. Most of the concepts of diagenetic processes operate at the larger, basin-scale, however, the description of the diagenetic phases (products of such processes) and their association with the overall petrophysical evolution of sedimentary rocks remain at reservoir (and even outcrop/ well core) scale. Conceptual models of diagenetic processes are thereafter constructed based on studying surface-exposed rocks and well cores (e.g. petrography, geochemistry, fluid inclusions). We are able to quantify the diagenetic products with various evolving techniques and on varying scales (e.g. point-counting, 2D and 3D image analysis, XRD, micro-CT and pore network models). Geochemical modelling makes use of thermodynamic and kinetic rules as well as data-bases to simulate chemical reactions and fluid-rock interactions. This can be through a 0D model, whereby a certain process is tested (e.g. the likelihood of a certain chemical reaction to operate under specific conditions). Results relate to the fluids and mineral phases involved in the chemical reactions. They could be used as arguments to support or refute proposed outcomes of fluid-rock interactions. Coupling geochemical modelling with transport (reactive transport model; 1D, 2D and 3D) is another possibility, attractive as it provides forward simulations of diagenetic processes and resulting phases. This

  18. Complex matrix model duality

    International Nuclear Information System (INIS)

    Brown, T.W.

    2010-11-01

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  19. Complex matrix model duality

    Energy Technology Data Exchange (ETDEWEB)

    Brown, T.W.

    2010-11-15

    The same complex matrix model calculates both tachyon scattering for the c=1 non-critical string at the self-dual radius and certain correlation functions of half-BPS operators in N=4 super- Yang-Mills. It is dual to another complex matrix model where the couplings of the first model are encoded in the Kontsevich-like variables of the second. The duality between the theories is mirrored by the duality of their Feynman diagrams. Analogously to the Hermitian Kontsevich- Penner model, the correlation functions of the second model can be written as sums over discrete points in subspaces of the moduli space of punctured Riemann surfaces. (orig.)

  20. A New Equivalent Statistical Damage Constitutive Model on Rock Block Mixed Up with Fluid Inclusions

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2018-01-01

    Full Text Available So far, there are few studies concerning the effect of closed “fluid inclusions” on the macroscopic constitutive relation of deep rock. Fluid-matrix element (FME is defined based on rock element in statistical damage model. The properties of FME are related to the size of inclusions, fluid properties, and pore pressure. Using FME, the equivalent elastic modulus of rock block containing fluid inclusions is obtained with Eshelby inclusion theory and the double M-T homogenization method. The new statistical damage model of rock is established on the equivalent elastic modulus. Besides, the porosity and confining pressure are important influencing factors of the model. The model reflects the initial damage (void and fluid inclusion and the macroscopic deformation law of rock, which is an improvement of the traditional statistical damage model. Additionally, the model can not only be consistent with the rock damage experiment date and three-axis compression experiment date of rock containing pore water but also describe the locked-in stress experiment in rock-like material. It is a new fundamental study of the constitutive relation of locked-in stress in deep rock mass.

  1. A critical review of the data requirements for fluid flow models through fractured rock

    International Nuclear Information System (INIS)

    Priest, S.D.

    1986-01-01

    The report is a comprehensive critical review of the data requirements for ten models of fluid flow through fractured rock, developed in Europe and North America. The first part of the report contains a detailed review of rock discontinuities and how their important geometrical properties can be quantified. This is followed by a brief summary of the fundamental principles in the analysis of fluid flow through two-dimensional discontinuity networks and an explanation of a new approach to the incorporation of variability and uncertainty into geotechnical models. The report also contains a review of the geological and geotechnical properties of anhydrite and granite. Of the ten fluid flow models reviewed, only three offer a realistic fracture network model for which it is feasible to obtain the input data. Although some of the other models have some valuable or novel features, there is a tendency to concentrate on the simulation of contaminant transport processes, at the expense of providing a realistic fracture network model. Only two of the models reviewed, neither of them developed in Europe, have seriously addressed the problem of analysing fluid flow in three-dimensional networks. (author)

  2. Mesoscale Models of Fluid Dynamics

    Science.gov (United States)

    Boghosian, Bruce M.; Hadjiconstantinou, Nicolas G.

    During the last half century, enormous progress has been made in the field of computational materials modeling, to the extent that in many cases computational approaches are used in a predictive fashion. Despite this progress, modeling of general hydrodynamic behavior remains a challenging task. One of the main challenges stems from the fact that hydrodynamics manifests itself over a very wide range of length and time scales. On one end of the spectrum, one finds the fluid's "internal" scale characteristic of its molecular structure (in the absence of quantum effects, which we omit in this chapter). On the other end, the "outer" scale is set by the characteristic sizes of the problem's domain. The resulting scale separation or lack thereof as well as the existence of intermediate scales are key to determining the optimal approach. Successful treatments require a judicious choice of the level of description which is a delicate balancing act between the conflicting requirements of fidelity and manageable computational cost: a coarse description typically requires models for underlying processes occuring at smaller length and time scales; on the other hand, a fine-scale model will incur a significantly larger computational cost.

  3. AFDM: An advanced fluid-dynamics model

    International Nuclear Information System (INIS)

    Henneges, G.; Kleinheins, S.

    1994-01-01

    This volume of the Advanced Fluid-Dynamics Model (AFDM) documents the modeling of the equation of state (EOS) in the code. The authors present an overview of the basic concepts underlying the thermodynamics modeling and resulting EOS, which is a set of relations between the thermodynamic properties of materials. The AFDM code allows for multiphase-multimaterial systems, which they explore in three phase models: two-material solid, two-material liquid, and three-material vapor. They describe and compare two ways of specifying the EOS of materials: (1) as simplified analytic expressions, or (2) as tables that precisely describe the properties of materials and their interactions for mechanical equilibrium. Either of the two EOS models implemented in AFDM can be selected by specifying the option when preprocessing the source code for compilation. Last, the authors determine thermophysical properties such as surface tension, thermal conductivities, and viscosities in the model for the intracell exchanges of AFDM. Specific notations, routines, EOS data, plots, test results, and corrections to the code are available in the appendices

  4. Two-fluid modeling of thermal-hydraulic phenomena for best-estimate LWR safety analysis

    International Nuclear Information System (INIS)

    Yadigaroglu, G.; Andreani, M.

    1989-01-01

    Two-fluid formulation of the conservation equations has allowed modelling of the two-phase flow and heat transfer phenomena and situations involving strong departures in thermal and velocity equilibrium between the phases. The paper reviews the state of the art in modelling critical flows, and certain phase separation phenomena, as well as post-dryout heat transfer situations. Although the two-fluid models and the codes have the potential for correctly modelling such situations, this potential has not always been fully used in practice. (orig.)

  5. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    Science.gov (United States)

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  6. Geometrical approach to fluid models

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  7. Formation of intermediate shocks in both two-fluid and hybrid models

    International Nuclear Information System (INIS)

    Wu, C.C.; Hada, T.

    1991-01-01

    Intermediate shocks are shocks with shock frame fluid velocities greater than the Alfven speed ahead and less than the Alfven speed behind, or equivalently, across intermediate shocks the sign of the transverse component of the magnetic field changes. These shocks had been considered extraneous, or nonevolutionary, or unstable, and they had been thought not to correspond to physical reality [Germain, 1960; Jeffrey and Taniuti, 1964; Kantrowitz and Petschek, 1966]. However, it has been shown that intermediate shocks can be formed from continuous waves according to dissipative magnetohydrodynamics (MHD) [Wu, 1987, 1988a, b, 1990]. Thus according to the formation argument which requires that physical shocks be formed by the wave steepening process, the intermediate shocks should be considered physical. Here, intermediate shocks are studied in a two-fluid model that includes finite ion inertia dispersion and in a hybrid model in which the full ion dynamics is retained while the electrons are treated as a massless fluid. The authors show that in both models intermediate shocks can be formed through wave steepening, meaning that they are stable and possess shock structures

  8. Extinction properties of single-walled carbon nanotubes: Two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Moradi, Afshin, E-mail: a.moradi@kut.ac.ir [Department of Basic Sciences, Kermanshah University of Technology, Kermanshah, Iran and Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran (Iran, Islamic Republic of)

    2014-03-15

    The extinction spectra of a single-walled carbon nanotube are investigated, within the framework of the vector wave function method in conjunction with the hydrodynamic model. Both polarizations of the incident plane wave (TE and TM with respect to the x-z plane) are treated. Electronic excitations on the nanotube surface are modeled by an infinitesimally thin layer of a two-dimensional electron gas represented by two interacting fluids, which takes into account the different nature of the σ and π electrons. Numerical results show that strong interaction between the fluids gives rise to the splitting of the extinction spectra into two peaks in quantitative agreement with the π and σ + π plasmon energies.

  9. Quantum rings and recursion relations in 2D quantum gravity

    International Nuclear Information System (INIS)

    Kachru, S.

    1992-01-01

    This paper discusses tachyon condensate perturbations to the action of the two-dimensional string theory corresponding to the c + 1 matrix model. These are shown to deform the action of the ground ring on the tachyon modules, confirming a conjecture of Witten. The ground ring structure is used to derive recursion relations which relate (N + 1) and N tachyon bulk scattering amplitudes. These recursion relations allow one to compute all bulk amplitudes

  10. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    Science.gov (United States)

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  11. Modeling heat transfer in supercritical fluid using the lattice Boltzmann method.

    Science.gov (United States)

    Házi, Gábor; Márkus, Attila

    2008-02-01

    A lattice Boltzmann model has been developed to simulate heat transfer in supercritical fluids. A supercritical viscous fluid layer between two plates heated from the bottom has been studied. It is demonstrated that the model can be used to study heat transfer near the critical point where the so-called piston effect speeds up the transfer of heat and results in homogeneous heating in the bulk of the layer. We have also studied the onset of convection in a Rayleigh-Bénard configuration. It is shown that our model can well predict qualitatively the onset of convection near the critical point, where there is a crossover between the Rayleigh and Schwarzschild criteria.

  12. A discrete element model for the influence of surfactants on sedimentation characteristics of magnetorheological fluids

    Science.gov (United States)

    Son, Kwon Joong

    2018-02-01

    Hindering particle agglomeration and re-dispersion processes, gravitational sedimentation of suspended particles in magnetorheological (MR) fluids causes inferior performance and controllability of MR fluids in response to a user-specified magnetic field. Thus, suspension stability is one of the principal factors to be considered in synthesizing MR fluids. However, only a few computational studies have been reported so far on the sedimentation characteristics of suspended particles under gravity. In this paper, the settling dynamics of paramagnetic particles suspended in MR fluids was investigated via discrete element method (DEM) simulations. This work focuses particularly on developing accurate fluid-particle and particle-particle interaction models which can account for the influence of stabilizing surfactants on the MR fluid sedimentation. Effect of the stabilizing surfactants on interparticle interactions was incorporated into the derivation of a reliable contact-impact model for DEM computation. Also, the influence of the stabilizing additives on fluid-particle interactions was considered by incorporating Stokes drag with shape and wall correction factors into DEM formulation. The results of simulations performed for model validation purposes showed a good agreement with the published sedimentation measurement data in terms of an initial sedimentation velocity and a final sedimentation ratio.

  13. Microtomography and pore-scale modeling of two-phase Fluid Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Silin, D.; Tomutsa, L.; Benson, S.; Patzek, T.

    2010-10-19

    Synchrotron-based X-ray microtomography (micro CT) at the Advanced Light Source (ALS) line 8.3.2 at the Lawrence Berkeley National Laboratory produces three-dimensional micron-scale-resolution digital images of the pore space of the reservoir rock along with the spacial distribution of the fluids. Pore-scale visualization of carbon dioxide flooding experiments performed at a reservoir pressure demonstrates that the injected gas fills some pores and pore clusters, and entirely bypasses the others. Using 3D digital images of the pore space as input data, the method of maximal inscribed spheres (MIS) predicts two-phase fluid distribution in capillary equilibrium. Verification against the tomography images shows a good agreement between the computed fluid distribution in the pores and the experimental data. The model-predicted capillary pressure curves and tomography-based porosimetry distributions compared favorably with the mercury injection data. Thus, micro CT in combination with modeling based on the MIS is a viable approach to study the pore-scale mechanisms of CO{sub 2} injection into an aquifer, as well as more general multi-phase flows.

  14. Magnetoviscosity in magnetic fluids: Testing different models of the magnetization equation

    Directory of Open Access Journals (Sweden)

    Huei Chu Weng

    2013-09-01

    Full Text Available Despite a long research history, theoretical predictions for the material properties as well as the flow fields and characteristics of magnetic fluids were not well consistent with the experimental data. The lack of a universally accepted magnetization equation for accurately modeling hydrodynamics of magnetic fluids/nanofluids is particularly a major issue. In this paper, we give an overview on the continuum theory and test the six well-known models via comparisons with magnetoviscosity measurements to make clear the magnetization relaxation due to the rotation of magnetic particles and see how well they make predictions on the basis of numerical calculations. Results reveal that the ML model leads to unexplainable behavior. Moreover, the WC model with a ‘relaxation rate’ modification is found to reproduce the predictions of the MRSh model, which agree well with experimental data. The revised WC model (WCC should therefore be preferred.

  15. Mathematical Modelling of Fluid Flow in Cone and Cavitation Formation

    Directory of Open Access Journals (Sweden)

    Milada KOZUBKOVÁ

    2011-06-01

    Full Text Available Problem of cavitation is the undesirable phenomena occuring in the fluid flow in many hydraulic application (pumps, turbines, valves, etc.. Therefore this is in the focus of interest using experimental and mathematical methods. Based on cavitation modelling in Laval nozzle results and experience [1], [2], [4], following problem described as the water flow at the outlet from turbine blade wheel was solved. Primarily the problem is simplified into modelling of water flow in cone. Profiles of axial, radial and tangential velocity are defined on inlet zone. The value of pressure is defined on the outlet. Boundary conditions were defined by main investigator of the grant project – Energy Institute, Victor Kaplan’s Department of Fluid Engineering, Faculty of Mechanical Engineering, Brno University of Technology. The value of air volume was insignificant. Cavitation was solved by Singhal model of cavitation.

  16. Modelling Transcapillary Transport of Fluid and Proteins in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Mauro Pietribiasi

    Full Text Available The kinetics of protein transport to and from the vascular compartment play a major role in the determination of fluid balance and plasma refilling during hemodialysis (HD sessions. In this study we propose a whole-body mathematical model describing water and protein shifts across the capillary membrane during HD and compare its output to clinical data while evaluating the impact of choosing specific values for selected parameters.The model follows a two-compartment structure (vascular and interstitial space and is based on balance equations of protein mass and water volume in each compartment. The capillary membrane was described according to the three-pore theory. Two transport parameters, the fractional contribution of large pores (αLP and the total hydraulic conductivity (LpS of the capillary membrane, were estimated from patient data. Changes in the intensity and direction of individual fluid and solute flows through each part of the transport system were analyzed in relation to the choice of different values of small pores radius and fractional conductivity, lymphatic sensitivity to hydraulic pressure, and steady-state interstitial-to-plasma protein concentration ratio.The estimated values of LpS and αLP were respectively 10.0 ± 8.4 mL/min/mmHg (mean ± standard deviation and 0.062 ± 0.041. The model was able to predict with good accuracy the profiles of plasma volume and serum total protein concentration in most of the patients (average root-mean-square deviation < 2% of the measured value.The applied model provides a mechanistic interpretation of fluid transport processes induced by ultrafiltration during HD, using a minimum of tuned parameters and assumptions. The simulated values of individual flows through each kind of pore and lymphatic absorption rate yielded by the model may suggest answers to unsolved questions on the relative impact of these not-measurable quantities on total vascular refilling and fluid balance.

  17. Mathematical modeling of impact of two metal plates using two-fluid approach

    Science.gov (United States)

    Utkin, P. S.; Fortova, S. V.

    2018-01-01

    The paper is devoted to the development of the two-fluid mathematical model and the computational algorithm for the modeling of two metal plates impact. In one-dimensional case the governing system of equations comprises seven equations: three conservation laws for each fluid and transfer equation for the volume fraction of one of the fluids. Both fluids are considered to be compressible and equilibrium on velocities. Pressures equilibrium is used as fluids interface condition. The system has hyperbolic type but could not be written in the conservative form because of nozzling terms in the right-hand side of the equations. The algorithm is based on the Harten-Lax-van Leer numerical flux function. The robust computation in the presence of the interface boundary is carried out due to the special pressure relaxation procedure. The problem is solved using stiffened gas equations of state for each fluid. The parameters in the equations of state are calibrated using the results of computations using wide-range equations of state for the metals. In simulations of metal plates impact we get two shocks after the initial impact that propagate to the free surfaces of the samples. The characteristics of shock waves are close (maximum relative error in characteristics of shocks is not greater than 7%) to the data from the wide-range equations of states computations.

  18. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.

  19. Numerical simulation of countercurrent flow based on two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.D. [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China); School of Electric Power, South China University of Technology, Guangzhou 510640 (China); Zhang, X.Y., E-mail: zxiaoying@mail.sysu.edu.cn [Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 (China)

    2017-03-15

    Highlights: • Using one-dimensional two-fluid model to help understanding counter-current flow two-phase flows. • Using surface tension model to make the one-dimensional two-fluid flow model well-posed. • Solving the governing equations with a modified SIMPLE algorithm. • Validating code with experimental data and applying it to vertical air/steam countercurrent flow condition - Abstract: In order to improve the understanding of counter-current two-phase flows, a transient analysis code is developed based on one-dimensional two-fluid model. A six equation model has been established and a two phase pressure model with surface tension term, wall drag force and interface shear terms have been used. Taking account of transport phenomenon, heat and mass transfer models of interface were incorporated. The staggered grids have been used in discretization of equations. For validation of the model and code, a countercurrent air-water problem in one experimental horizontal stratified flow has been considered firstly. Comparison of the computed results and the experimental one shows satisfactory agreement. As the full problem for investigation, one vertical pipe with countercurrent flow of steam-water and air-water at same boundary condition has been taken for study. The transient distribution of liquid fraction, liquid velocity and gas velocity for selected positions of steam-water and air-water problem were presented and discussed. The results show that these two simulations have similar transient behavior except that the distribution of gas velocity for steam-water problem have larger oscillation than the one for air-water. The effect of mesh size on wavy characteristics of interface surface was also investigated. The mesh size has significant influence on the simulated results. With the increased refinement, the oscillation gets stronger.

  20. Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Pazanin, Igor [Zagreb Univ. (Croatia). Dept. of Mathematics; Siddheshwar, Pradeep G. [Bangalore Univ., Bengaluru (India). Dept. of Mathematics

    2017-06-01

    In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.

  1. Cellular-automata supercomputers for fluid-dynamics modeling

    International Nuclear Information System (INIS)

    Margolus, N.; Toffoli, T.; Vichniac, G.

    1986-01-01

    We report recent developments in the modeling of fluid dynamics, and give experimental results (including dynamical exponents) obtained using cellular automata machines. Because of their locality and uniformity, cellular automata lend themselves to an extremely efficient physical realization; with a suitable architecture, an amount of hardware resources comparable to that of a home computer can achieve (in the simulation of cellular automata) the performance of a conventional supercomputer

  2. Modelling non-dust fluids in cosmology

    International Nuclear Information System (INIS)

    Christopherson, Adam J.; Hidalgo, Juan Carlos; Malik, Karim A.

    2013-01-01

    Currently, most of the numerical simulations of structure formation use Newtonian gravity. When modelling pressureless dark matter, or 'dust', this approach gives the correct results for scales much smaller than the cosmological horizon, but for scenarios in which the fluid has pressure this is no longer the case. In this article, we present the correspondence of perturbations in Newtonian and cosmological perturbation theory, showing exact mathematical equivalence for pressureless matter, and giving the relativistic corrections for matter with pressure. As an example, we study the case of scalar field dark matter which features non-zero pressure perturbations. We discuss some problems which may arise when evolving the perturbations in this model with Newtonian numerical simulations and with CMB Boltzmann codes

  3. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    International Nuclear Information System (INIS)

    Khosravian, N; Rafii-Tabar, H

    2008-01-01

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities

  4. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    Energy Technology Data Exchange (ETDEWEB)

    Khosravian, N; Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: rafii-tabar@nano.ipm.ac.ir

    2008-07-09

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities.

  5. Squid-inspired vehicle design using coupled fluid-solid analytical modeling

    Science.gov (United States)

    Giorgio-Serchi, Francesco; Weymouth, Gabriel

    2017-11-01

    The need for enhanced automation in the marine and maritime fields is fostering research into robust and highly maneuverable autonomous underwater vehicles. To address these needs we develop design principles for a new generation of soft-bodied aquatic vehicles similar to octopi and squids. In particular, we consider the capability of pulsed-jetting bodies to boost thrust by actively modifying their external body-shape and in this way benefit of the contribution from added-mass variation. We present an analytical formulation of the coupled fluid-structure interaction between the elastic body and the ambient fluid. The model incorporates a number of new salient contributions to the soft-body dynamics. We highlight the role of added-mass variation effects of the external fluid in enhancing thrust and assess how the shape-changing actuation is impeded by a confinement-related unsteady inertial term and by an external shape-dependent fluid stiffness contribution. We show how the analysis of these combined terms has guided us to the design of a new prototype of a squid-inspired vehicle tuning of the natural frequency of the coupled fluid-solid system with the purpose of optimizing its actuation routine.

  6. A Fluid Model for Performance Analysis in Cellular Networks

    Directory of Open Access Journals (Sweden)

    Coupechoux Marceau

    2010-01-01

    Full Text Available We propose a new framework to study the performance of cellular networks using a fluid model and we derive from this model analytical formulas for interference, outage probability, and spatial outage probability. The key idea of the fluid model is to consider the discrete base station (BS entities as a continuum of transmitters that are spatially distributed in the network. This model allows us to obtain simple analytical expressions to reveal main characteristics of the network. In this paper, we focus on the downlink other-cell interference factor (OCIF, which is defined for a given user as the ratio of its outer cell received power to its inner cell received power. A closed-form formula of the OCIF is provided in this paper. From this formula, we are able to obtain the global outage probability as well as the spatial outage probability, which depends on the location of a mobile station (MS initiating a new call. Our analytical results are compared to Monte Carlo simulations performed in a traditional hexagonal network. Furthermore, we demonstrate an application of the outage probability related to cell breathing and densification of cellular networks.

  7. Experiments and Modeling of G-Jitter Fluid Mechanics

    Science.gov (United States)

    Leslie, F. W.; Ramachandran, N.; Whitaker, Ann F. (Technical Monitor)

    2002-01-01

    While there is a general understanding of the acceleration environment onboard an orbiting spacecraft, past research efforts in the modeling and analysis area have still not produced a general theory that predicts the effects of multi-spectral periodic accelerations on a general class of experiments nor have they produced scaling laws that a prospective experimenter can use to assess how an experiment might be affected by this acceleration environment. Furthermore, there are no actual flight experimental data that correlates heat or mass transport with measurements of the periodic acceleration environment. The present investigation approaches this problem with carefully conducted terrestrial experiments and rigorous numerical modeling for better understanding the effect of residual gravity and gentler on experiments. The approach is to use magnetic fluids that respond to an imposed magnetic field gradient in much the same way as fluid density responds to a gravitational field. By utilizing a programmable power source in conjunction with an electromagnet, both static and dynamic body forces can be simulated in lab experiments. The paper provides an overview of the technique and includes recent results from the experiments.

  8. Electrorheological fluids modeling and mathematical theory

    CERN Document Server

    Růžička, Michael

    2000-01-01

    This is the first book to present a model, based on rational mechanics of electrorheological fluids, that takes into account the complex interactions between the electromagnetic fields and the moving liquid. Several constitutive relations for the Cauchy stress tensor are discussed. The main part of the book is devoted to a mathematical investigation of a model possessing shear-dependent viscosities, proving the existence and uniqueness of weak and strong solutions for the steady and the unsteady case. The PDS systems investigated possess so-called non-standard growth conditions. Existence results for elliptic systems with non-standard growth conditions and with a nontrivial nonlinear r.h.s. and the first ever results for parabolic systems with a non-standard growth conditions are given for the first time. Written for advanced graduate students, as well as for researchers in the field, the discussion of both the modeling and the mathematics is self-contained.

  9. Mathematical modelling and numerical resolution of multi-phase compressible fluid flows problems

    International Nuclear Information System (INIS)

    Lagoutiere, Frederic

    2000-01-01

    This work deals with Eulerian compressible multi-species fluid dynamics, the species being either mixed or separated (with interfaces). The document is composed of three parts. The first parts devoted to the numerical resolution of model problems: advection equation, Burgers equation, and Euler equations, in dimensions one and two. The goal is to find a precise method, especially for discontinuous initial conditions, and we develop non dissipative algorithms. They are based on a downwind finite-volume discretization under some stability constraints. The second part treats of the mathematical modelling of fluids mixtures. We construct and analyse a set of multi-temperature and multi-pressure models that are entropy, symmetrizable, hyperbolic, not ever conservative. In the third part, we apply the ideas developed in the first part (downwind discretization) to the numerical resolution of the partial differential problems we have constructed for fluids mixtures in the second part. We present some numerical results in dimensions one and two. (author) [fr

  10. 25-years three-fluid modeling-experience: successes and limits

    International Nuclear Information System (INIS)

    Kolev, N.I.

    2004-01-01

    The paper presents many examples of successful use of the three fluid processes modeling in 1D-networks, 3D-single volumes and 3D-boundary fitted volumes in the nuclear engineering. Fig. 1 shows 2700K hot molten aluminum oxide dropped in water and 3000K uranium oxide dropped in water as a demonstration for mathematical modeling of very complex real processes. (author)

  11. A computational model for thermal fluid design analysis of nuclear thermal rockets

    International Nuclear Information System (INIS)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated

  12. Fluid structure interaction in LMFBR cores modelling by an homogenization method

    International Nuclear Information System (INIS)

    Brochard, D.

    1988-01-01

    The upper plenum of the internals of PWR, the steam generator bundle, the nuclear reactor core, may be schematically represented by a beam bundle immersed in a fluid. The dynamical study of such a system needs to take into account fluid structure interaction. A refined model at the scale of the tubes can be used but leads to a very difficult problem to solve even on the largest computers. The homogenization method allows to have an approximation of the fluid structure interaction for the global behaviour of the bundle. It consists of replacing the heterogeneous physical medium (tubes and fluid) by an equivalent homogeneous medium whose characteristics are determined from the resolution of a set of problems on the elementary cell. The aim of this paper is to present the main steps of the determination of this equivalent medium in the case of small displacements (acoustic behaviour of the fluid). Then an application to LMFBR core geometry has been realised, which shows the lowering effect on eigenfrequencies due to the fluid. Some comparisons with test results will be presented. 6 refs, 7 figs, 2 tabs

  13. A discontinuous finite element approach to cracking in coupled poro-elastic fluid flow models

    Science.gov (United States)

    Wilson, C. R.; Spiegelman, M. W.; Evans, O.; Ulven, O. I.; Sun, W.

    2016-12-01

    Reaction-driven cracking is a coupled process whereby fluid-induced reactions drive large volume changes in the host rock which produce stresses leading to crack propagation and failure. This in turn generates new surface area and fluid-flow pathways for subsequent reaction in a potentially self-sustaining system. This mechanism has has been proposed for the pervasive serpentinization and carbonation of peridotite, as well as applications to mineral carbon sequestration and hydrocarbon extraction. The key computational issue in this problem is implementing algorithms that adequately model the formation of discrete fractures. Here we present models using a discontinuous finite element method for modeling fracture formation (Radovitsky et al., 2011). Cracks are introduced along facets of the mesh by the relaxation of penalty parameters once a failure criterion is met. It is fully described in the weak form of the equations, requiring no modification of the underlying mesh structure and allowing fluid properties to be easily adjusted along cracked facets. To develop and test the method, we start by implementing the algorithm for the simplified Biot equations for poro-elasticity using the finite element model assembler TerraFERMA. We consider hydro-fracking around a borehole (Grassl et al., 2015), where elevated fluid pressure in the poro-elastic solid causes it to fail radially in tension. We investigate the effects of varying the Biot coefficient and adjusting the fluid transport properties in the vicinity of the crack and compare our results to related dual-graph models (Ulven & Sun, submitted). We discuss issues arising from this method, including the formation of null spaces and appropriate preconditioning and solution strategies. Initial results suggest that this method provides a promising way to incorporate cracking into our reactive fluid flow models and future work aims to integrate the mechanical and chemical aspects of this process.

  14. Fluid friction and wall viscosity of the 1D blood flow model.

    Science.gov (United States)

    Wang, Xiao-Fei; Nishi, Shohei; Matsukawa, Mami; Ghigo, Arthur; Lagrée, Pierre-Yves; Fullana, Jose-Maria

    2016-02-29

    We study the behavior of the pulse waves of water into a flexible tube for application to blood flow simulations. In pulse waves both fluid friction and wall viscosity are damping factors, and difficult to evaluate separately. In this paper, the coefficients of fluid friction and wall viscosity are estimated by fitting a nonlinear 1D flow model to experimental data. In the experimental setup, a distensible tube is connected to a piston pump at one end and closed at another end. The pressure and wall displacements are measured simultaneously. A good agreement between model predictions and experiments was achieved. For amplitude decrease, the effect of wall viscosity on the pulse wave has been shown as important as that of fluid viscosity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Cosmological effects of a class of fluid dark energy models

    International Nuclear Information System (INIS)

    Carturan, Daniela; Finelli, Fabio

    2003-01-01

    We study the impact of a generalized Chaplygin gas as a candidate for dark energy on density perturbations and on cosmic microwave background (CMB) anisotropies. The generalized Chaplygin gas is a fluid component with an exotic equation of state p=-A/ρ α (a polytropic gas with negative constant and exponent). Such a component interpolates in time between dust and a cosmological constant, with an intermediate behavior as p=A 1/(1+α) +αρ. Perturbations of this fluid are stable on small scales but behave in a very different way with respect to standard quintessence. Moreover, a generalized Chaplygin gas could also represent an archetypal example of the phenomenological unified models of dark energy and dark matter. The results presented here show how CMB anisotropies and density perturbations in this class of models differ from those of a cold dark matter model with a cosmological constant

  16. Cosmological models described by a mixture of van der Waals fluid and dark energy

    International Nuclear Information System (INIS)

    Kremer, G.M.

    2003-01-01

    The Universe is modeled as a binary mixture whose constituents are described by a van der Waals fluid and by a dark energy density. The dark energy density is considered either as quintessence or as the Chaplygin gas. The irreversible processes concerning the energy transfer between the van der Waals fluid and the gravitational field are taken into account. This model can simulate (a) an inflationary period where the acceleration grows exponentially and the van der Waals fluid behaves like an inflaton, (b) an accelerated period where the acceleration is positive but it decreases and tends to zero whereas the energy density of the van der Waals fluid decays, (c) a decelerated period which corresponds to a matter dominated period with a non-negative pressure, and (d) a present accelerated period where the dark energy density outweighs the energy density of the van der Waals fluid

  17. Development of artificial neural network models for supercritical fluid solvency in presence of co-solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shokir, Eissa Mohamed El-Moghawry; El-Midany, Ayman Abdel-Hamid [Cairo University, Giza (Egypt); Al-Homadhi, Emad Souliman; Al-Mahdy, Osama [King Saud University, Riyadh (Saudi Arabia)

    2014-08-15

    This paper presents the application of artificial neural networks (ANN) to develop new models of liquid solvent dissolution of supercritical fluids with solutes in the presence of cosolvents. The neural network model of the liquid solvent dissolution of CO{sub 2} was built as a function of pressure, temperature, and concentrations of the solutes and cosolvents. Different experimental measurements of liquid solvent dissolution of supercritical fluids (CO{sub 2}) with solutes in the presence of cosolvents were collected. The collected data are divided into two parts. The first part was used in building the models, and the second part was used to test and validate the developed models against the Peng- Robinson equation of state. The developed ANN models showed high accuracy, within the studied variables range, in predicting the solubility of the 2-naphthol, anthracene, and aspirin in the supercritical fluid in the presence and absence of co-solvents compared to (EoS). Therefore, the developed ANN models could be considered as a good tool in predicting the solubility of tested solutes in supercritical fluid.

  18. Model for the radionuclide measurement of ascitic fluid volumes

    International Nuclear Information System (INIS)

    Kaplan, W.D.; Davis, M.A.; Uren, R.F.; Wisotsky, T.; LaTegola, M.

    1978-01-01

    Technetium-99m phytate colloids formed in vitro and in vivo were examined as radioindicators for estimation of the volume of third-space fluid in an ovarian ascites model using C3HeB/FeJ mice. In double-label experiments, the accuracy of the colloids for dilution analysis was found to be equal or superior to that of I-125 HSA. Sampling times 3 to 5 min after intraperitoneal administration were found to produce the best volume estimates. Four needle-stopcock assemblies inserted sequentially into the quadrants of the peritoneal cavity were used for administration and sampling of the radioindicators. The stopcocks could be closed to prevent leakage of ascitic fluid during the procedure. In contrast to radiolabeled albumin, Tc-99m phytate colloids have clinical use for simultaneous imaging of radiotracer migration to assess potential occlusion of diaphragmatic lymphatics by neoplastic cells, and for dilution analysis to estimate volume of ascitic fluid

  19. Mesoscopic dispersion of colloidal agglomerate in a complex fluid modelled by a hybrid fluid-particle model.

    Science.gov (United States)

    Dzwinel, Witold; Yuen, David A

    2002-03-15

    The dispersion of the agglomerating fluid process involving colloids has been investigated at the mesoscale level by a discrete particle approach--the hybrid fluid-particle model (FPM). Dynamical processes occurring in the granulation of colloidal agglomerate in solvents are severely influenced by coupling between the dispersed microstructures and the global flow. On the mesoscale this coupling is further exacerbated by thermal fluctuations, particle-particle interactions between colloidal beds, and hydrodynamic interactions between colloidal beds and the solvent. Using the method of FPM, we have tackled the problem of dispersion of a colloidal slab being accelerated in a long box filled with a fluid. Our results show that the average size of the agglomerated fragments decreases with increasing shearing rate gamma, according to the power law A x gamma(k), where k is around 2. For larger values of gamma, the mean size of the agglomerate S(avg) increases slowly with gamma from the collisions between the aggregates and the longitudinal stretching induced by the flow. The proportionality constant A increases exponentially with the scaling factor of the attractive forces acting between the colloidal particles. The value of A shows a rather weak dependence on the solvent viscosity. But A increases proportionally with the scaling factor of the colloid-solvent dissipative interactions. Similar type of dependence can be found for the mixing induced by Rayleigh-Taylor instabilities involving the colloidal agglomerate and the solvent. Three types of fragmentation structures can be identified, which are called rupture, erosion, and shatter. They generate very complex structures with multiresolution character. The aggregation of colloidal beds is formed by the collisions between aggregates, which are influenced by the flow or by the cohesive forces for small dispersion energies. These results may be applied to enhance our understanding concerning the nonlinear complex

  20. An accurate model for numerical prediction of piezoelectric energy harvesting from fluid structure interaction problems

    International Nuclear Information System (INIS)

    Amini, Y; Emdad, H; Farid, M

    2014-01-01

    Piezoelectric energy harvesting (PEH) from ambient energy sources, particularly vibrations, has attracted considerable interest throughout the last decade. Since fluid flow has a high energy density, it is one of the best candidates for PEH. Indeed, a piezoelectric energy harvesting process from the fluid flow takes the form of natural three-way coupling of the turbulent fluid flow, the electromechanical effect of the piezoelectric material and the electrical circuit. There are some experimental and numerical studies about piezoelectric energy harvesting from fluid flow in literatures. Nevertheless, accurate modeling for predicting characteristics of this three-way coupling has not yet been developed. In the present study, accurate modeling for this triple coupling is developed and validated by experimental results. A new code based on this modeling in an openFOAM platform is developed. (paper)

  1. Working fluid charge oriented off-design modeling of a small scale Organic Rankine Cycle system

    International Nuclear Information System (INIS)

    Liu, Liuchen; Zhu, Tong; Ma, Jiacheng

    2017-01-01

    Highlights: • Organic Rankine Cycle model considering working fluid charge has been established. • Overall solution algorithm of system off-design performance is proposed. • Variation trend of different zones in both heat exchangers can be observed. • Optimal working fluid charge volume for different output work has been estimated. - Abstract: Organic Rankine Cycle system is one of the most widely used technique for low-grade waste heat recovery. Developing of dynamic Organic Rankine Cycle models played an increasingly important part in system performance prediction. The present paper developed a working fluid charge oriented model for an small scale Organic Rankine Cycle to calculate the theoretical value of working fluid charge level for the system under rated condition. The two heat exchangers are divided into three different zones and related heat transfer correlations are employed to estimate the length variation of each zones. Steady state models have been applied to describe the performance of pump and expander. Afterwards, an overall solution algorithm based on the established model has been proposed in order to exact simulate the system’s off-design performance. Additionally, the impact of different working fluid charge volumes has also been discussed. Simulation results clearly shows the variation trend of different zones in both heat exchangers, as well as the variation trend of system operating parameters under various expander output work. Furthermore, the highest thermal efficiency can be reached 6.37% under rated conditions with a working fluid charge volume of 34.6 kg.

  2. Fluid model of the magnetic presheath in a turbulent plasma

    International Nuclear Information System (INIS)

    Stanojevic, M; Duhovnik, J; Jelic, N; Kendl, A; Kuhn, S

    2005-01-01

    A fluid model of the magnetic presheath in a turbulent boundary plasma is presented. Turbulent transport corrections of the classical three-dimensional fluid transport equations, which can be used to study magnetic presheaths in various geometries, are derived by means of the ensemble averaging procedure from the statistical theory of plasma turbulence. Then, the magnetic presheath in front of an infinite plane surface is analysed in detail. The linearized planar magnetic presheath equations are applied to the plasma-presheath-magnetic-presheath boundary (i.e. the magnetic presheath edge), whereas the original non-linear planar magnetic presheath equations are used for the entire magnetic presheath, allowing for various sets of experimentally relevant free model parameters to be applied. Important new results of this study are, among others, new expressions for the fluid Bohm criterion at the Debye sheath edge and for the ion flux density perpendicular to the wall. These new results, which exhibit corrections due to the turbulent charged particle transport, can qualitatively explain the fact that whenever the angle between the magnetic field and the wall is very small (i.e. several degrees) or zero, electric currents, measured by Langmuir probes in the boundary regions of nuclear fusion devices and in various low-temperature plasmas, are anomalously enhanced in comparison with those expected or predicted by other theoretical models

  3. Validation of mathematical models to describe fluid dynamics of a cold riser by gamma ray attenuation

    International Nuclear Information System (INIS)

    Melo, Ana Cristina Bezerra Azedo de

    2004-12-01

    The fluid dynamic behavior of a riser in a cold type FCC model was investigated by means of catalyst concentration distribution measured with gamma attenuation and simulated with a mathematical model. In the riser of the cold model, MEF, 0,032 m in diameter, 2,30 m in length the fluidized bed, whose components are air and FCC catalyst, circulates. The MEF is operated by automatic control and instruments for measuring fluid dynamic variables. An axial catalyst concentration distribution was measured using an Am-241 gamma source and a NaI detector coupled to a multichannel provided with a software for data acquisition and evaluation. The MEF was adapted for a fluid dynamic model validation which describes the flow in the riser, for example, by introducing an injector for controlling the solid flow in circulation. Mathematical models were selected from literature, analyzed and tested to simulate the fluid dynamic of the riser. A methodology for validating fluid dynamic models was studied and implemented. The stages of the work were developed according to the validation methodology, such as data planning experiments, study of the equations which describe the fluidodynamic, computational solvers application and comparison with experimental data. Operational sequences were carried out keeping the MEF conditions for measuring catalyst concentration and simultaneously measuring the fluid dynamic variables, velocity of the components and pressure drop in the riser. Following this, simulated and experimental values were compared and statistical data treatment done, aiming at the required precision to validate the fluid dynamic model. The comparison tests between experimental and simulated data were carried out under validation criteria. The fluid dynamic behavior of the riser was analyzed and the results and the agreement with literature were discussed. The adopt model was validated under the MEF operational conditions, for a 3 to 6 m/s gas velocity in the riser and a slip

  4. Mathematical model of renal elimination of fluid and small ions during hyper- and hypovolemic conditions.

    Science.gov (United States)

    Gyenge, Christina C; Bowen, Bruce D; Reed, Rolf K; Bert, Joel L

    2003-02-01

    This study is concerned with the formulation of a 'kidney module' linked to the plasma compartment of a larger mathematical model previously developed. Combined, these models can be used to predict, amongst other things, fluid and small ion excretion rates by the kidney; information that should prove useful in evaluating values and trends related to whole-body fluid balance for different clinical conditions to establish fluid administration protocols and for educational purposes. The renal module assumes first-order, negative-feedback responses of the kidney to changes in plasma volume and/or plasma sodium content from their normal physiological set points. Direct hormonal influences are not explicitly formulated in this empiric model. The model also considers that the renal excretion rates of small ions other than sodium are proportional to the excretion rate of sodium. As part of the model development two aspects are emphasized (1): the estimation of parameters related to the renal elimination of fluid and small ions, and (2) model validation via comparisons between the model predictions and selected experimental data. For validation, model predictions of the renal dynamics are compared with new experimental data for two cases: plasma overload resulting from external fluid infusion (e.g. infusions of iso-osmolar solutions and/or hypertonic/hyperoncotic saline solutions), and untreated hypo volemic conditions that result from the external loss of blood. The present study demonstrates that the empiric kidney module presented above can provide good short-term predictions with respect to all renal outputs considered here. Physiological implications of the model are also presented. Copyright Acta Anaesthesiologica Scandinavica 47 (2003)

  5. Approaches to Validation of Models for Low Gravity Fluid Behavior

    Science.gov (United States)

    Chato, David J.; Marchetta, Jeffery; Hochstein, John I.; Kassemi, Mohammad

    2005-01-01

    This paper details the author experiences with the validation of computer models to predict low gravity fluid behavior. It reviews the literature of low gravity fluid behavior as a starting point for developing a baseline set of test cases. It examines authors attempts to validate their models against these cases and the issues they encountered. The main issues seem to be that: Most of the data is described by empirical correlation rather than fundamental relation; Detailed measurements of the flow field have not been made; Free surface shapes are observed but through thick plastic cylinders, and therefore subject to a great deal of optical distortion; and Heat transfer process time constants are on the order of minutes to days but the zero-gravity time available has been only seconds.

  6. Mathematical and numerical modelling of fluids at Nano-metric scales

    International Nuclear Information System (INIS)

    Joubaud, R.

    2012-01-01

    This work presents some contributions to the mathematical and numerical modelling of fluids at Nano-metric scales. We are interested in two levels of modelling. The first level consists in an atomic description. We consider the problem of computing the shear viscosity of a fluid from a microscopic description. More precisely, we study the mathematical properties of the nonequilibrium Langevin dynamics allowing to compute the shear viscosity. The second level of description is a continuous description, and we consider a class of continuous models for equilibrium electrolytes, which incorporate on the one hand a confinement by charged solid objects and on the other hand non-ideality effects stemming from electrostatic correlations and steric exclusion phenomena due to the excluded volume effects. First, we perform the mathematical analysis of the case where the free energy is a convex function (mild non-ideality). Second, we consider numerically the case where the free energy is a non convex function (strong non-ideality) leading in particular to phase separation. (author)

  7. Modified two-fluid model for the two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Sun Xiaodong; Ishii, Mamoru; Kelly, Joseph M.

    2003-01-01

    This paper presents a modified two-fluid model that is ready to be applied in the approach of the two-group interfacial area transport equation. The two-group interfacial area transport equation was developed to provide a mechanistic constitutive relation for the interfacial area concentration in the two-fluid model. In the two-group transport equation, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 while cap/slug/churn-turbulent bubbles as Group 2. Therefore, this transport equation can be employed in the flow regimes spanning from bubbly, cap bubbly, slug to churn-turbulent flows. However, the introduction of the two groups of bubbles requires two gas velocity fields. Yet it is not practical to solve two momentum equations for the gas phase alone. In the current modified two-fluid model, a simplified approach is proposed. The momentum equation for the averaged velocity of both Group-1 and Group-2 bubbles is retained. By doing so, the velocity difference between Group-1 and Group-2 bubbles needs to be determined. This may be made either based on simplified momentum equations for both Group-1 and Group-2 bubbles or by a modified drift-flux model

  8. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  9. Fluid, solid and fluid-structure interaction simulations on patient-based abdominal aortic aneurysm models.

    Science.gov (United States)

    Kelly, Sinead; O'Rourke, Malachy

    2012-04-01

    This article describes the use of fluid, solid and fluid-structure interaction simulations on three patient-based abdominal aortic aneurysm geometries. All simulations were carried out using OpenFOAM, which uses the finite volume method to solve both fluid and solid equations. Initially a fluid-only simulation was carried out on a single patient-based geometry and results from this simulation were compared with experimental results. There was good qualitative and quantitative agreement between the experimental and numerical results, suggesting that OpenFOAM is capable of predicting the main features of unsteady flow through a complex patient-based abdominal aortic aneurysm geometry. The intraluminal thrombus and arterial wall were then included, and solid stress and fluid-structure interaction simulations were performed on this, and two other patient-based abdominal aortic aneurysm geometries. It was found that the solid stress simulations resulted in an under-estimation of the maximum stress by up to 5.9% when compared with the fluid-structure interaction simulations. In the fluid-structure interaction simulations, flow induced pressure within the aneurysm was found to be up to 4.8% higher than the value of peak systolic pressure imposed in the solid stress simulations, which is likely to be the cause of the variation in the stress results. In comparing the results from the initial fluid-only simulation with results from the fluid-structure interaction simulation on the same patient, it was found that wall shear stress values varied by up to 35% between the two simulation methods. It was concluded that solid stress simulations are adequate to predict the maximum stress in an aneurysm wall, while fluid-structure interaction simulations should be performed if accurate prediction of the fluid wall shear stress is necessary. Therefore, the decision to perform fluid-structure interaction simulations should be based on the particular variables of interest in a given

  10. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Science.gov (United States)

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  11. Improving students’ conceptions on fluid dynamics through peer teaching model with PDEODE (PTM-PDEODE)

    Science.gov (United States)

    Samsudin, A.; Fratiwi, N.; Amin, N.; Wiendartun; Supriyatman; Wibowo, F.; Faizin, M.; Costu, B.

    2018-05-01

    This study based on an importance of improving students’ conceptions and reduces students’ misconceptions on fluid dynamics concepts. Consequently, should be done the study through combining Peer Teaching Model (PTM) and PDEODE (Prediction, Discuss, Explain, Observe, Discuss and Explain) learning strategy (PTM-PDEODE). For the research methods, we used the 4D model (Defining, Designing, Developing, and Disseminating). The samples are 38 students (their ages were an average of 17 years-old) at one of the senior high schools in Bandung. The improvement of students’ conceptions was diagnosed through a four-tier test of fluid dynamics. At the disseminating phase, students’ conceptions of fluid dynamics concepts are increase after the use of PTM-PDEODE. In conclusion, the development of PTM-PDEODE is respectable enough to improve students’ conceptions on dinamics fluid.

  12. Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model

    NARCIS (Netherlands)

    Reid, Daniel A. P.; Hildenbrandt, H.; Hemelrijk, C. K.; Padding, J.T.

    2012-01-01

    The fluid dynamics of animal locomotion, such as that of an undulating fish, are of great interest to both biologists and engineers. However, experimentally studying these fluid dynamics is difficult and time consuming. Model studies can be of great help because of their simpler and more detailed

  13. Five decades of tackling models for stiff fluid dynamics problems a scientific autobiography

    CERN Document Server

    Zeytounian, Radyadour Kh

    2014-01-01

    Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of the...

  14. Entropic lattice Boltzmann model for charged leaky dielectric multiphase fluids in electrified jets.

    Science.gov (United States)

    Lauricella, Marco; Melchionna, Simone; Montessori, Andrea; Pisignano, Dario; Pontrelli, Giuseppe; Succi, Sauro

    2018-03-01

    We present a lattice Boltzmann model for charged leaky dielectric multiphase fluids in the context of electrified jet simulations, which are of interest for a number of production technologies including electrospinning. The role of nonlinear rheology on the dynamics of electrified jets is considered by exploiting the Carreau model for pseudoplastic fluids. We report exploratory simulations of charged droplets at rest and under a constant electric field, and we provide results for charged jet formation under electrospinning conditions.

  15. Modelling of heat transfer to fluids at a supercritical pressure

    International Nuclear Information System (INIS)

    Shuisheng, He

    2014-01-01

    A key feature of Supercritical Water-cooled Reactor (SCWR) is that, by raising the pressure of the reactor coolant fluid above the critical value, a phase change crisis is avoided. However, the changes in water density as it flows through the core of an SCWR are actually much higher than in the current water-cooled reactors. In a typical design, the ratio of the density of water at the core inlet to that at exit is as high as 7:1. Other fluid properties also vary significantly, especially around the pseudo-critical temperature (at which the specific heat capacity peaks). As a result, turbulent flow and heat transfer behaviour in the core is extremely complex and under certain conditions, significant heat transfer deterioration can potentially occur. Consequently, understanding and being able to predict flow and heat transfer phenomena under normal steady operation conditions and in start-up and hypothetical fault conditions are fundamental to the design of SCWR. There have been intensive studies on flow and heat transfer to fluids at supercritical pressure recently and several excellent review papers have been published. In the talk, we will focus on some turbulence modelling issues encountered in CFD simulations. The talk will first discuss some flow and heat transfer issues related to fluids at supercritical pressures and their potential implications in SCWR, and some recent developments in the understanding and modelling techniques of such problems, which will be followed by an outlook for some future developments.Factors which have a major influence on the flow and will be discussed are buoyancy and flow acceleration due to thermal expansion (both are due to density variations but involve different mechanisms) and the nonuniformity of other fluid properties. In addition, laminar-turbulent flow transition coupled with buoyancy and flow acceleration plays an important role in heat transfer effectiveness and wall temperature in the entrance region but such

  16. Refining the Subseafloor Circulation Model of the Middle Valley Hydrothermal System Using Fluid Geochemistry

    Science.gov (United States)

    Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.

    2014-12-01

    Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.

  17. A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu

    2016-12-01

    The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutral physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.

  18. A Note on Equivalence Among Various Scalar Field Models of Dark Energies

    Science.gov (United States)

    Mandal, Jyotirmay Das; Debnath, Ujjal

    2017-08-01

    In this work, we have tried to find out similarities between various available models of scalar field dark energies (e.g., quintessence, k-essence, tachyon, phantom, quintom, dilatonic dark energy, etc). We have defined an equivalence relation from elementary set theory between scalar field models of dark energies and used fundamental ideas from linear algebra to set up our model. Consequently, we have obtained mutually disjoint subsets of scalar field dark energies with similar properties and discussed our observation.

  19. Bianchi type-V cosmological models with perfect fluid and heat flow ...

    Indian Academy of Sciences (India)

    In the cosmology with the power-law, the solutions correspond to a cos- mological model .... where ρ is the energy density, p is the thermodynamic pressure, uµ is the four- velocity of the fluid and ..... In the first category of models, the. Universe ...

  20. Exact closed-form solutions of a fully nonlinear asymptotic two-fluid model

    Science.gov (United States)

    Cheviakov, Alexei F.

    2018-05-01

    A fully nonlinear model of Choi and Camassa (1999) describing one-dimensional incompressible dynamics of two non-mixing fluids in a horizontal channel, under a shallow water approximation, is considered. An equivalence transformation is presented, leading to a special dimensionless form of the system, involving a single dimensionless constant physical parameter, as opposed to five parameters present in the original model. A first-order dimensionless ordinary differential equation describing traveling wave solutions is analyzed. Several multi-parameter families of physically meaningful exact closed-form solutions of the two-fluid model are derived, corresponding to periodic, solitary, and kink-type bidirectional traveling waves; specific examples are given, and properties of the exact solutions are analyzed.

  1. A model of fluid and solute exchange in the human: validation and implications.

    Science.gov (United States)

    Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T

    2000-11-01

    In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.

  2. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Directory of Open Access Journals (Sweden)

    Ying Yan

    Full Text Available Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  3. Dynamic dielectrophoresis model of multi-phase ionic fluids.

    Science.gov (United States)

    Yan, Ying; Luo, Jing; Guo, Dan; Wen, Shizhu

    2015-01-01

    Ionic-based dielectrophoretic microchips have attracted significant attention due to their wide-ranging applications in electro kinetic and biological experiments. In this work, a numerical method is used to simulate the dynamic behaviors of ionic droplets in a microchannel under the effect of dielectrophoresis. When a discrete liquid dielectric is encompassed within a continuous fluid dielectric placed in an electric field, an electric force is produced due to the dielectrophoresis effect. If either or both of the fluids are ionic liquids, the magnitude and even the direction of the force will be changed because the net ionic charge induced by an electric field can affect the polarization degree of the dielectrics. However, using a dielectrophoresis model, assuming ideal dielectrics, results in significant errors. To avoid the inaccuracy caused by the model, this work incorporates the electrode kinetic equation and defines a relationship between the polarization charge and the net ionic charge. According to the simulation conditions presented herein, the electric force obtained in this work has an error exceeding 70% of the actual value if the false effect of net ionic charge is not accounted for, which would result in significant issues in the design and optimization of experimental parameters. Therefore, there is a clear motivation for developing a model adapted to ionic liquids to provide precise control for the dielectrophoresis of multi-phase ionic liquids.

  4. Preliminary model of fluid and solute distribution and transport during hemorrhage.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    2003-01-01

    The distribution and transport of fluid, ions, and other solutes (plasma proteins and glucose) are described in a mathematical model of unresuscitated hemorrhage. The model is based on balances of each material in both the circulation and its red blood cells, as well as in a whole-body tissue compartment along with its cells. Exchange between these four compartments occurs by a number of different mechanisms. The hemorrhage model has as its basis a validated model, due to Gyenge et al., of fluid and solute exchange in the whole body of a standard human. Hypothetical but physiologically based features such as glucose and small ion releases along with cell membrane changes are incorporated into the hemorrhage model to describe the system behavior, particularly during larger hemorrhages. Moderate (10%-30% blood volume loss) and large (> 30% blood loss) hemorrhage dynamics are simulated and compared with available data. The model predictions compare well with the available information for both types of hemorrhages and provide a reasonable description of the progression of a large hemorrhage from the compensatory phase through vascular collapse.

  5. On the use of semiempirical models of (solid + supercritical fluid) systems to determine solid sublimation properties

    International Nuclear Information System (INIS)

    Tabernero, Antonio; Martin del Valle, Eva M.; Galan, Miguel A.

    2011-01-01

    Research highlights: → We propose a method to determine sublimation properties of solids. → Low deviations were produced calculating sublimation enthalpies and pressures. → It is a required step to determine the vaporization enthalpy of the solid. → It is possible to determine solid properties using semiempirical models solid-SCF. - Abstract: Experimental solubility data of solid-supercritical fluids have significantly increased in the last few years, and semiempirical models are emerging as one of the best choices to fit this type of data. This work establishes a methodology to calculate sublimation pressures using this type of equations. It requires the use of Bartle's equation to model equilibria data solid-supercritical fluids with the aim of determining the vaporization enthalpy of the compound. Using this method, low deviations were obtained by calculating sublimation pressures and sublimation enthalpies. The values of the sublimation pressures were subsequently used to successfully model different multiphasic equilibria, as solid-supercritical fluids and solid-solvent-supercritical fluids with the Peng-Robinson equation of state (without considering the sublimation pressure as an adjustable parameter). On the other hand, the sublimation pressures were also used to calculate solid sublimation properties and acetaminophen solvation properties in some solvents. Also, solubility data solid-supercritical fluids from 62 pharmaceuticals were fitted with different semiempirical equations (Chrastil, Kumar-Johnston and Bartle models) in order to present the values of solvation enthalpies in sc-CO 2 and vaporization enthalpies for these compounds. All of these results highlight that semiempirical models can be used for any other purpose as well as modeling (solid + supercritical fluids) equilibria.

  6. Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Granziera, M.R.; Kazimi, M.S.

    1980-05-01

    A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions

  7. A computer model for dispersed fluid-solid turbulent flows

    International Nuclear Information System (INIS)

    Liu, C.H.; Tulig, T.J.

    1985-01-01

    A computer model is being developed to simulate two-phase turbulent flow phenomena in fluids containing finely dispersed solids. The model is based on a dual-continuum picture of the individual phases and an extension of a two-equation turbulence closure theory. The resulting set of nonlinear partial differential equations are solved using a finite difference procedure with special treatment to promote convergence. The model has been checked against a number of idealized flow problems with known solutions. The authors are currently comparing model predictions with measurements to determine a proper set of turbulence parameters needed for simulating two-phase turbulent flows

  8. Fluid and gyrokinetic modelling of particle transport in plasmas with hollow density profiles

    International Nuclear Information System (INIS)

    Tegnered, D; Oberparleiter, M; Nordman, H; Strand, P

    2016-01-01

    Hollow density profiles occur in connection with pellet fuelling and L to H transitions. A positive density gradient could potentially stabilize the turbulence or change the relation between convective and diffusive fluxes, thereby reducing the turbulent transport of particles towards the center, making the fuelling scheme inefficient. In the present work, the particle transport driven by ITG/TE mode turbulence in regions of hollow density profiles is studied by fluid as well as gyrokinetic simulations. The fluid model used, an extended version of the Weiland transport model, Extended Drift Wave Model (EDWM), incorporates an arbitrary number of ion species in a multi-fluid description, and an extended wavelength spectrum. The fluid model, which is fast and hence suitable for use in predictive simulations, is compared to gyrokinetic simulations using the code GENE. Typical tokamak parameters are used based on the Cyclone Base Case. Parameter scans in key plasma parameters like plasma β, R/L T , and magnetic shear are investigated. It is found that β in particular has a stabilizing effect in the negative R/L n region, both nonlinear GENE and EDWM show a decrease in inward flux for negative R/L n and a change of direction from inward to outward for positive R/L n . This might have serious consequences for pellet fuelling of high β plasmas. (paper)

  9. Dynamic analysis of electro- and magneto-rheological fluid dampers using duct flow models

    International Nuclear Information System (INIS)

    Esteki, Kambiz; Bagchi, Ashutosh; Sedaghati, Ramin

    2014-01-01

    Magneto-rheological (MR) and electro-rheological (ER) fluid dampers provide a semi-active control mechanism for suppressing vibration responses of a structure. MR and ER fluids change their viscosity under the influence of magnetic and electrical fields, respectively, which facilitates automatic control when these fluids are used in damping devices. The existing models, namely the phenomenological models for simulating the behavior of MR and ER dampers, rely on various parameters determined experimentally by the manufacturers for each damper configuration. It is of interest to develop mechanistic models of these dampers which can be applied to various configurations so that their fundamental characteristics can be studied to develop flexible design solutions for smart structures. This paper presents a formulation for dynamic analysis of electro-rheological (ER) and magneto-rheological (MR) fluid dampers in flow and mix mode configurations under harmonic and random excitations. The procedure employs the vorticity transport equation and the regularization function to deal with the unsteady flow and nonlinear behavior of ER/MR fluid in general motion. The finite difference method has been used to solve the governing differential equations. Using the developed approach, the damping force of ER/MR dampers can be calculated under any type of excitation. (paper)

  10. Internal Stress in a Model Elasto-Plastic Fluid

    OpenAIRE

    Ooshida, Takeshi; Sekimoto, Ken

    2004-01-01

    Plastic materials can carry memory of past mechanical treatment in the form of internal stress. We introduce a natural definition of the vorticity of internal stress in a simple two-dimensional model of elasto-plastic fluids, which generates the internal stress. We demonstrate how the internal stress is induced under external loading, and how the presence of the internal stress modifies the plastic behavior.

  11. Reconstructing interacting entropy-corrected holographic scalar field models of dark energy in the non-flat universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Khaledian, M S [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, Mubasher, E-mail: KKarami@uok.ac.ir, E-mail: MS.Khaledian@uok.ac.ir, E-mail: mjamil@camp.nust.edu.pk [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2011-02-15

    Here we consider the entropy-corrected version of the holographic dark energy (DE) model in the non-flat universe. We obtain the equation of state parameter in the presence of interaction between DE and dark matter. Moreover, we reconstruct the potential and the dynamics of the quintessence, tachyon, K-essence and dilaton scalar field models according to the evolutionary behavior of the interacting entropy-corrected holographic DE model.

  12. Critical Analysis of Underground Coal Gasification Models. Part II: Kinetic and Computational Fluid Dynamics Models

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2014-01-01

    Originality/value: This paper presents state of art in the field of coal gasification modeling using kinetic and computational fluid dynamics approach. The paper also presents own comparative analysis (concerned with mathematical formulation, input data and parameters, basic assumptions, obtained results etc. of the most important models of underground coal gasification.

  13. Multi-fluid modelling of pulsed discharges for flow control applications

    Science.gov (United States)

    Poggie, J.

    2015-02-01

    Experimental evidence suggests that short-pulse dielectric barrier discharge actuators are effective for speeds corresponding to take-off and approach of large aircraft, and thus are a fruitful direction for flow control technology development. Large-eddy simulations have reproduced some of the main fluid dynamic effects. The plasma models used in such simulations are semi-empirical, however, and need to be tuned for each flowfield under consideration. In this paper, the discharge physics is examined in more detail with multi-fluid modelling, comparing a five-moment model (continuity, momentum, and energy equations) to a two-moment model (continuity and energy equations). A steady-state, one-dimensional discharge was considered first, and the five-moment model was found to predict significantly lower ionisation rates and number densities than the two-moment model. A two-dimensional, transient discharge problem with an elliptical cathode was studied next. Relative to the two-moment model, the five-moment model predicted a slower response to the activation of the cathode, and lower electron velocities and temperatures as the simulation approached steady-state. The primary reason for the differences in the predictions of the two models can be attributed to the effects of particle inertia, particularly electron inertia in the cathode layer. The computational cost of the five-moment model is only about twice that of the simpler variant, suggesting that it may be feasible to use the more sophisticated model in practical calculations for flow control actuator design.

  14. Adaptive forward-inverse modeling of reservoir fluids away from wellbores; TOPICAL

    International Nuclear Information System (INIS)

    Ziagos, J P; Gelinas, R J; Doss, S K; Nelson, R G

    1999-01-01

    This Final Report contains the deliverables of the DeepLook Phase I project entitled, ''Adaptive Forward-Inverse Modeling of Reservoir Fluids Away from Wellbores''. The deliverables are: (i) a description of 2-D test problem results, analyses, and technical descriptions of the techniques used, (ii) a listing of program setup commands that construct and execute the codes for selected test problems (these commands are in mathematical terminology, which reinforces technical descriptions in the text), and (iii) an evaluation and recommendation regarding continuance of this project, including considerations of possible extensions to 3-D codes, additional technical scope, and budget for the out-years. The far-market objective in this project is to develop advanced technologies that can help locate and enhance the recovery of oil from heterogeneous rock formations. The specific technical objective in Phase I was to develop proof-of-concept of new forward and inverse (F-I) modeling techniques[Gelinas et al, 1998] that seek to enhance estimates (images) of formation permeability distributions and fluid motion away from wellbore volumes. This goes to the heart of improving industry's ability to jointly image reservoir permeability and flow predictions of trapped and recovered oil versus time. The estimation of formation permeability away from borehole measurements is an ''inverse'' problem. It is an inseparable part of modeling fluid flows throughout the reservoir in efforts to increase the efficiency of oil recovery at minimum cost. Classic issues of non-uniqueness, mathematical instability, noise effects, and inadequate numerical solution techniques have historically impeded progress in reservoir parameter estimations. Because information pertaining to fluid and rock properties is always sampled sparsely by wellbore measurements, a successful method for interpolating permeability and fluid data between the measurements must be: (i) physics-based, (ii) conditioned by signal

  15. Stability of stationary solutions for inflow problem on the micropolar fluid model

    Science.gov (United States)

    Yin, Haiyan

    2017-04-01

    In this paper, we study the asymptotic behavior of solutions to the initial boundary value problem for the micropolar fluid model in a half-line R+:=(0,∞). We prove that the corresponding stationary solutions of the small amplitude to the inflow problem for the micropolar fluid model are time asymptotically stable under small H1 perturbations in both the subsonic and degenerate cases. The microrotation velocity brings us some additional troubles compared with Navier-Stokes equations in the absence of the microrotation velocity. The proof of asymptotic stability is based on the basic energy method.

  16. Interstellar turbulence model : A self-consistent coupling of plasma and neutral fluids

    International Nuclear Information System (INIS)

    Shaikh, Dastgeer; Zank, Gary P.; Pogorelov, Nikolai

    2006-01-01

    We present results of a preliminary investigation of interstellar turbulence based on a self-consistent two-dimensional fluid simulation model. Our model describes a partially ionized magnetofluid interstellar medium (ISM) that couples a neutral hydrogen fluid to a plasma through charge exchange interactions and assumes that the ISM turbulent correlation scales are much bigger than the shock characteristic length-scales, but smaller than the charge exchange mean free path length-scales. The shocks have no influence on the ISM turbulent fluctuations. We find that nonlinear interactions in coupled plasma-neutral ISM turbulence are influenced substantially by charge exchange processes

  17. Fluid-structure interaction including volumetric coupling with homogenised subdomains for modeling respiratory mechanics.

    Science.gov (United States)

    Yoshihara, Lena; Roth, Christian J; Wall, Wolfgang A

    2017-04-01

    In this article, a novel approach is presented for combining standard fluid-structure interaction with additional volumetric constraints to model fluid flow into and from homogenised solid domains. The proposed algorithm is particularly interesting for investigations in the field of respiratory mechanics as it enables the mutual coupling of airflow in the conducting part and local tissue deformation in the respiratory part of the lung by means of a volume constraint. In combination with a classical monolithic fluid-structure interaction approach, a comprehensive model of the human lung can be established that will be useful to gain new insights into respiratory mechanics in health and disease. To illustrate the validity and versatility of the novel approach, three numerical examples including a patient-specific lung model are presented. The proposed algorithm proves its capability of computing clinically relevant airflow distribution and tissue strain data at a level of detail that is not yet achievable, neither with current imaging techniques nor with existing computational models. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    OpenAIRE

    Fan Chengxu; Sun Zhaoyang; Xu Lan

    2017-01-01

    A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  19. Moving on to the modeling and simulation using computational fluid dynamics

    International Nuclear Information System (INIS)

    Norasalwa Zakaria; Rohyiza Baan; Muhd Noor Muhd Yunus

    2006-01-01

    The heat is on but not at the co-combustor plant. Using the Computational Fluid Dynamics (CFD), modeling and simulation of an incinerator has been made easy and possible from the comfort of cozy room. CFD has become an important design tool in nearly every industrial field because it provides understanding of flow patterns. CFD provide values for fluid velocity, fluid temperature, pressure and species concentrations throughout a flow domain. MINT has acquired a complete CFD software recently, consisting of GAMBIT, which is use to build geometry and meshing, and FLUENT as the processor or solver. This paper discusses on several trial runs that was carried out on several parts of the co-combustor plant namely the under fire section and the mixing chamber section

  20. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    Full text of publication follows: The lateral phase distribution of a two phase duct flow in the cap bubble regime is analyzed with a three dimensional three field two-fluid CFD model based on the turbulent k-ε model for bubbly flows developed by Lopez de Bertodano et. al. [2]. The turbulent diffusion of the bubbles is the dominant phase distribution mechanism. A new analytic result is presented to support the development of the model for the bubble induced turbulent diffusion force. New experimental data obtained with a state-of-the-art four sensor miniature conductivity probe are used to validate the two-fluid model. The focus of this work is modeling the transport of the dispersed phase. Previous work (e.g., Lopez de Bertodano et. al.) was focused on the interfacial forces of drag, lift and virtual mass. However, the dispersion of the bubbles by the turbulent eddies of the continuous phase must be considered too. The rigorous formulation of a model for the turbulent dispersion of the bubbles results in a turbulent diffusion force which is obtained from a probability distribution function average (i.e., Boltzmann averaging) of the dispersed phase momentum equation. This force was recently applied to a turbulent bubbly jet with small bubbles (i.e., 1 mm diameter) without adjusting any coefficient. However, the application of this force to industrial conditions (i.e., larger bubbles) requires specific two-phase flow experimental data to calibrate the model due to the uncertainties of the flow around large bubbles. In particular the void distribution and the interfacial area concentration are measured in a mixture of big and small bubbles. The state-of-the-art miniaturized four-sensor conductivity probe developed by Kim et al. [3] is used to obtain the interfacial area concentration in complex two-phase flow situations. This probe can discriminate between small and large bubbles so it offers an opportunity to perform further developments of the multidimensional two-fluid

  1. Modeling the time evolution of the nanoparticle-protein corona in a body fluid.

    Directory of Open Access Journals (Sweden)

    Daniele Dell'Orco

    Full Text Available BACKGROUND: Nanoparticles in contact with biological fluids interact with proteins and other biomolecules, thus forming a dynamic corona whose composition varies over time due to continuous protein association and dissociation events. Eventually equilibrium is reached, at which point the continued exchange will not affect the composition of the corona. RESULTS: We developed a simple and effective dynamic model of the nanoparticle protein corona in a body fluid, namely human plasma. The model predicts the time evolution and equilibrium composition of the corona based on affinities, stoichiometries and rate constants. An application to the interaction of human serum albumin, high density lipoprotein (HDL and fibrinogen with 70 nm N-iso-propylacrylamide/N-tert-butylacrylamide copolymer nanoparticles is presented, including novel experimental data for HDL. CONCLUSIONS: The simple model presented here can easily be modified to mimic the interaction of the nanoparticle protein corona with a novel biological fluid or compartment once new data will be available, thus opening novel applications in nanotoxicity and nanomedicine.

  2. Off-the-Wall Higgs in the universal Randall-Sundrum model

    International Nuclear Information System (INIS)

    Davoudiasl, Hooman; Lillie, Ben; Rizzo, Thomas G.

    2006-01-01

    We outline a consistent Randall-Sundrum (RS) framework in which a fundamental 5-dimensional Higgs doublet induces electroweak symmetry breaking (EWSB). In this framework of a warped Universal Extra Dimension, the lightest Kaluza-Klein (KK) mode of the bulk Higgs is tachyonic leading to a vacuum expectation value (vev) at the TeV scale. The consistency of this picture imposes a set of constraints on the parameters in the Higgs sector. A novel feature of our scenario is the emergence of an adjustable bulk profile for the Higgs vev. We also find a tower of non-tachyonic Higgs KK modes at the weak scale. We consider an interesting implementation of this 'Off-the-Wall Higgs' mechanism where the 5-dimensional curvature-scalar coupling alone generates the tachyonic mode responsible for EWSB. In this case, additional relations among the parameters of the Higgs and gravitational sectors are established. We discuss the experimental signatures of the bulk Higgs in general, and those of the 'Gravity-Induced' EWSB in particular

  3. statistical fluid theory for associating fluids containing alternating ...

    Indian Academy of Sciences (India)

    Statistical associating fluid theory of homonuclear dimerized chain fluids and homonuclear ... The proposed models account for the appropriate .... where gHNM(1,1) is the expression for the contact value of the correlation func- tion of two ...

  4. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo; Lorz, Alexander

    2011-01-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  5. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo

    2011-09-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  6. Appplication of a general fluid mechanics program to NTP system modeling

    International Nuclear Information System (INIS)

    Lee, S.K.

    1993-01-01

    An effort is currently underway at NASA and the Department of Energy (DOE) to develop an accurate model for predicting nuclear thermal propulsion (NTP) system performance. The objective of the effort is to develop several levels of computer programs which vary in detail and complexity according to user's needs. The current focus is on the Level 1 steady-state, parametric system model. This system model will combine a general fluid mechanics program, SAFSIM, with the ability to analyze turbines, pumps, nozzles, and reactor physics. SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program that simulates integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM has the versatility to allow simulation of almost any system, including a nuclear reactor system. The focus of this paper is the validation of SAFSIM's capabilities as a base computational engine for a nuclear thermal propulsion system model. Validation is being accomplished by modeling of a nuclear engine test using SAFSIM and comparing the results to known experimental data

  7. Coupled distinct element-finite element numerical modelling of fluid circulation in deforming sedimentary basins.

    Science.gov (United States)

    Hindle, D.; Malz, A.; Donndorf, S.; Kley, J.; Kopp, H.

    2012-04-01

    We develop a coupled numerical model for fluid flow in deforming sedimentary basins. We combine a distinct element method for large deformations of crustal materials, with a finite element method for fluid flow according to a diffusion type equation. The key question in such a model is how to simulate evolving permeabilities due to upper and possibly middle crustal deformation, and the coupled issue of how localisation of deformation in faults and shear zones is itself influenced by fluid flow and fluid pressure and vice versa. Currently our knowledge of these issues is restricted, even sketchy. There are a number of hypotheses, based partly on geological and isotope geochemical observations, such as "seismic pumping" models, and fluid induced weak décollement models for thrust sheet transport which have gained quite wide acceptance. Observations around thrusts at the present day have also often been interpreted as showing deformation induced permeability. However, combining all the physics of these processes into a numerical simulation is a complicated task given the ranges of, in particular time scales of the processes we infer to be operating based on our various observations. We start this task by using an elastic fracture relationship between normal stresses across distinct element contacts (which we consider to be the equivalent of discrete, sliding fractures) and their openness and hence their transmissivity. This relates the mechanical state of the distinct element system to a discrete permeability field. Further than that, the geometry of the mechanical system is used to provide boundary conditions for fluid flow in a diffusion equation which also incorporates the permeability field. The next question we address is how to achieve a feedback between fluid pressures and deformation. We try two approaches: one treats pore space in the DEM as real, and calculates the force exerted locally by fluids and adds this to the force balance of the model; another

  8. Computational fluid dynamics modelling of displacement natural ventilation.

    OpenAIRE

    Ji, Yingchun

    2005-01-01

    Natural ventilation is widely recognised as contributing towards low-energy building design. The requirement to reduce energy usage in new buildings has rejuvenated interest in natural ventilation. This thesis deals with computer modelling of natural displacement ventilation driven either by buoyancy or buoyancy combined with wind forces. Two benchmarks have been developed using computational fluid dynamics (CFD) in order to evaluate the accuracy with which CFD is able to mo...

  9. Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models

    Energy Technology Data Exchange (ETDEWEB)

    Perin, M.; Chandre, C.; Tassi, E. [Aix-Marseille Université, Université de Toulon, CNRS, CPT UMR 7332, 13288 Marseille (France); Morrison, P. J. [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712-1060 (United States)

    2015-09-15

    Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.

  10. Travelling waves of density for a fourth-gradient model of fluids

    Science.gov (United States)

    Gouin, Henri; Saccomandi, Giuseppe

    2016-09-01

    In mean-field theory, the non-local state of fluid molecules can be taken into account using a statistical method. The molecular model combined with a density expansion in Taylor series of the fourth order yields an internal energy value relevant to the fourth-gradient model, and the equation of isothermal motions takes then density's spatial derivatives into account for waves travelling in both liquid and vapour phases. At equilibrium, the equation of the density profile across interfaces is more precise than the Cahn and Hilliard equation, and near the fluid's critical point, the density profile verifies an Extended Fisher-Kolmogorov equation, allowing kinks, which converges towards the Cahn-Hillard equation when approaching the critical point. Nonetheless, we also get pulse waves oscillating and generating critical opalescence.

  11. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  12. Multi-solid model modified to predict paraffin in petroleum fluids at high temperatures and pressures

    International Nuclear Information System (INIS)

    Escobar Remolina, Juan Carlos M; Barrios Ortiz, Wilson; Santoyo Ramirez Gildardo

    2009-01-01

    A thermodynamic structure has been modified in order to calculate cloud point, fluidity and amount of precipitated wax under a wide range of temperature conditions, composition, and high pressures. The model is based on a combination of ideal solution concepts, fluid characterization, and formation of multiple solid phases using Cubic State Equations. The experimental data utilized for testing the prediction capacity and potentiality of a model exhibit different characteristics: continuous series synthetic systems of heavy alkanes, discontinuous series, and dead or living petroleum fluids with indefinite fractions such as C7+, C10+, C20+, and C30+. The samples were taken from the literature, petroleum fluids from the main Colombian reservoirs, and some samples of Bolivian fluids. Results presented in this paper show the minimum standard deviations between experimental data and data calculated with a model. This allows a progress in decision-making processes for flow assurance in reservoirs, wells, and surface facilities in the petroleum industry.

  13. CFD Fuel Slosh Modeling of Fluid-Structure Interaction in Spacecraft Propellant Tanks with Diaphragms

    Science.gov (United States)

    Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon

    2010-01-01

    Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.

  14. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    Science.gov (United States)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  15. Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Ndanou, S., E-mail: serge.ndanou@univ-amu.fr; Favrie, N., E-mail: nicolas.favrie@univ-amu.fr; Gavrilyuk, S., E-mail: sergey.gavrilyuk@univ-amu.fr

    2015-08-15

    We extend the model of diffuse solid–fluid interfaces developed earlier by authors of this paper to the case of arbitrary number of interacting hyperelastic solids. Plastic transformations of solids are taken into account through a Maxwell type model. The specific energy of each solid is given in separable form: it is the sum of a hydrodynamic part of the energy depending only on the density and the entropy, and an elastic part of the energy which is unaffected by the volume change. It allows us to naturally pass to the fluid description in the limit of vanishing shear modulus. In spite of a large number of governing equations, the model has a quite simple mathematical structure: it is a duplication of a single visco-elastic model. The model is well posed both mathematically and thermodynamically: it is hyperbolic and compatible with the second law of thermodynamics. The resulting model can be applied in the situations involving an arbitrary number of fluids and solids. In particular, we show the ability of the model to describe spallation and penetration phenomena occurring during high velocity impacts.

  16. Influence of the potential well and the potential barrier on the density distribution of confined-model fluids

    CERN Document Server

    Lee, B H; Lee, C H; Seong Baek Seok

    2000-01-01

    A density functional perturbative approximation, which is based on the density functional expansion of the one-particle direct correlation function of model fluids with respect to the bulk density, has been employed to investigate the influence of the potential well and the potential barrier on the density behavior of confined-model fluids. The mean spherical approximation has been used to calculate the two-particle direct correlation function of the model fluids. At lower densities, the density distributions are strongly affected by the barrier height and the well depth of the model potential, the contribution from the short-range repulsive part being especially important. However, the effects of the barrier height and the well depth of the model potential decrease with increasing bulk density. The calculated results also show that in the region where the effect of the wall-fluid interaction is relatively weak, the square-barrier part of the model potential leads to a nonuniformity in the density distributio...

  17. Computational Fluid Dynamics model of stratified atmospheric boundary-layer flow

    DEFF Research Database (Denmark)

    Koblitz, Tilman; Bechmann, Andreas; Sogachev, Andrey

    2015-01-01

    For wind resource assessment, the wind industry is increasingly relying on computational fluid dynamics models of the neutrally stratified surface-layer. So far, physical processes that are important to the whole atmospheric boundary-layer, such as the Coriolis effect, buoyancy forces and heat...

  18. Principles of fluid mechanics

    International Nuclear Information System (INIS)

    Kreider, J.F.

    1985-01-01

    This book is an introduction on fluid mechanics incorporating computer applications. Topics covered are as follows: brief history; what is a fluid; two classes of fluids: liquids and gases; the continuum model of a fluid; methods of analyzing fluid flows; important characteristics of fluids; fundamentals and equations of motion; fluid statics; dimensional analysis and the similarity principle; laminar internal flows; ideal flow; external laminar and channel flows; turbulent flow; compressible flow; fluid flow measurements

  19. Fluid-mechanic model for fabrication of nanoporous fibers by electrospinning

    Directory of Open Access Journals (Sweden)

    Fan Chengxu

    2017-01-01

    Full Text Available A charged jet in the electrospinning process for fabrication of nanoporous fibers is studied theoretically. A fluid-mechanic model considering solvent evaporation is established to research the effect of solvent evaporation on nanopore structure formation. The model gives a powerful tool to offering in-depth physical under-standing and controlling over electrospinning parameters such as voltage, flow rate, and solvent evaporation rate.

  20. Modeling quantum fluid dynamics at nonzero temperatures

    Science.gov (United States)

    Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.

    2014-01-01

    The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874

  1. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  2. Two-phase flow modeling for low concentration spherical particle motion through a Newtonian fluid

    CSIR Research Space (South Africa)

    Smit GJF

    2010-11-01

    Full Text Available the necessity to model the discrete nature of sep- cite this article in press as: G.J.F. Smit et al., Two-phase flow modeling for low concentration spherical particle motion through a ian fluid, Appl. Math. Comput. (2010), doi:10.1016/j.amc.2010.07.055 2... and Ribberin large-scale and long term morphologica Please cite this article in press as: G.J.F. Smit Newtonian fluid, Appl. Math. Comput. (2010), � 2010 Elsevier Inc. All rights reserved. modeling of multiphase flow has increasingly become the subject...

  3. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.

    Science.gov (United States)

    Sefidgar, Mostafa; Soltani, M; Raahemifar, Kaamran; Bazmara, Hossein

    2015-01-01

    A solid tumor is investigated as porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multiscale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. The mathematical method involves processes such as blood flow through vessels and solute and fluid diffusion, convective transport in extracellular matrix, and extravasation from blood vessels. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model predicts.

  4. Study of Mururoa's basaltic massif alteration (French Polynesia): solid and fluid phases analysis and thermodynamical modeling

    International Nuclear Information System (INIS)

    Destrigneville, Christine

    1991-01-01

    The alteration processes occurring in the volcanics of Mururoa have been studied using petrological data on secondary minerals, chemical analyses of the interstitial fluids and isotopic analyses on both minerals and fluids. Chemical and isotopic exchanges were first modelled, then thermodynamical modeling characterized the chemical evolution during the alteration of the secondary assemblage and of the fluid. The main secondary sequences which have been observed in Mururoa volcanics result from the alteration occurring during the lavas setting. Two different processes have been evidenced. The first one is the deuteric alteration with the CO_2-rich magmatic fluid exsolved from the magma and trapped in the vesicles and the olivine microcracks of the lava intrusions. This alteration in a closed system is dominated by the solid phases when the CO_2 molar fraction in the fluid is higher than 0.25. The second process is the alteration of the lavas by seawater or a meteoric fluid. The basaltic flows present alteration assemblages composed of clay minerals and zeolites whose chemical composition has been forced by the fluid composition. Shallowness emissions of lavas result in completely argillized levels. The present interstitial fluids chemistry result from the percolation of seawater in the volcano. In the argillized levels the fluids have interacted with the clay minerals and their chemical compositions have been modified. The important chemical changes in the present interstitial fluids show that the present alteration in the volcano is higher than the fluids circulation. (author) [fr

  5. Expressions for linearized perturbations in ideal-fluid cosmological models

    International Nuclear Information System (INIS)

    Ratra, B.

    1988-01-01

    We present closed-form solutions of the relativistic linear perturbation equations (in synchronous gauge) that govern the evolution of inhomogeneities in homogeneous, spatially flat, ideal-fluid, cosmological models. These expressions, which are valid for irregularities on any scale, allow one to analytically interpolate between the known approximate solutions which are valid at early times and at late times

  6. An implicit second order numerical method for two-fluid models

    International Nuclear Information System (INIS)

    Toumi, I.

    1995-01-01

    We present an implicit upwind numerical method for a six equation two-fluid model based on a linearized Riemann solver. The construction of this approximate Riemann solver uses an extension of Roe's scheme. Extension to second order accurate method is achieved using a piecewise linear approximation of the solution and a slope limiter method. For advancing in time, a linearized implicit integrating step is used. In practice this new numerical method has proved to be stable and capable of generating accurate non-oscillating solutions for two-phase flow calculations. The scheme was applied both to shock tube problems and to standard tests for two-fluid codes. (author)

  7. Tribodynamic Modeling of Digital Fluid Power Motors

    DEFF Research Database (Denmark)

    Johansen, Per

    . In fluid power motoring and pumping units, a significant problem is that loss mechanisms do not scale down with diminishing power throughput. Although machines can reach peak efficiencies above 95%, the actual efficiency during operation, which includes part-load situations, is much lower. The invention...... of digital fluid power displacement units has been able to address this problem. The main idea of the digital fluid power displacement technology is to disable individual chambers, by use of electrical actuated valves. A displacement chamber is disabled by keeping the valve, between the chamber and the low...... design methods and tools are important to the development of digital fluid power machines. The work presented in this dissertation is part of a research program focusing on the development of digital fluid power MW-motors for use in hydraulic drive train in wind turbines. As part of this development...

  8. Perfect fluid models in noncomoving observational spherical coordinates

    International Nuclear Information System (INIS)

    Ishak, Mustapha

    2004-01-01

    We use null spherical (observational) coordinates to describe a class of inhomogeneous cosmological models. The proposed cosmological construction is based on the observer past null cone. A known difficulty in using inhomogeneous models is that the null geodesic equation is not integrable in general. Our choice of null coordinates solves the radial ingoing null geodesic by construction. Furthermore, we use an approach where the velocity field is uniquely calculated from the metric rather than put in by hand. Conveniently, this allows us to explore models in a noncomoving frame of reference. In this frame, we find that the velocity field has shear, acceleration, and expansion rate in general. We show that a comoving frame is not compatible with expanding perfect fluid models in the coordinates proposed and dust models are simply not possible. We describe the models in a noncomoving frame. We use the dust models in a noncomoving frame to outline a fitting procedure

  9. Two-fluid model LES of a bubble column

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Eckhard Krepper; Alexandr Zaruba; Horst-Michael Prasser

    2005-01-01

    The hydrodynamics of a rectangular bubble column operating in the dispersed bubbly regime has been numerically investigated using a two-fluid model Large Eddy Simulation (LES). Experimental data were obtained to validate the model. LES computational fluid dynamic calculations of the transient flow for the bubble column were performed to account for the turbulence in the liquid phase. The computational mesh is of the same scale as the bubble size. The sub grid-scale Reynolds stresses were calculated with the Smagorinsky model. Furthermore, the effect of the bubbles on the turbulence in the continuous phase was modeled using Sato's eddy viscosity model for bubble-induced turbulence. Mean quantities were computed by averaging over a time period that was longer than the dynamic time scales of the turbulence, in particular the void fraction and the average velocity of the bubbles. A systematic analysis of the effect of the interfacial momentum transfer terms on these quantities has been conducted. The bubble column was locally aerated using a sparger located in the center of the bottom plate. The experimental studies involve wire-mesh tomography measurements for void fraction and bubble size distributions and digital image processing of high speed camera images for estimation of bubble velocities, size distributions and flow patterns. Experiments were performed for various aspect ratios (height of water column to width ratio) and superficial gas velocities. It was found that the non-drag bubble forces play a very prominent role in the predicting the correct flow pattern and void fraction distributions. In the calculations, the lift force and the wall force were considered. A 'wall peak' in the time averaged void fraction distribution has been experimentally observed and this cannot be predicted without including these non-drag forces in the numerical calculations. In this paper, experimental data are compared with the results of the numerical simulations. (authors)

  10. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy.

    Science.gov (United States)

    Woodcock, T E; Woodcock, T M

    2012-03-01

    I.V. fluid therapy does not result in the extracellular volume distribution expected from Starling's original model of semi-permeable capillaries subject to hydrostatic and oncotic pressure gradients within the extracellular fluid. Fluid therapy to support the circulation relies on applying a physiological paradigm that better explains clinical and research observations. The revised Starling equation based on recent research considers the contributions of the endothelial glycocalyx layer (EGL), the endothelial basement membrane, and the extracellular matrix. The characteristics of capillaries in various tissues are reviewed and some clinical corollaries considered. The oncotic pressure difference across the EGL opposes, but does not reverse, the filtration rate (the 'no absorption' rule) and is an important feature of the revised paradigm and highlights the limitations of attempting to prevent or treat oedema by transfusing colloids. Filtered fluid returns to the circulation as lymph. The EGL excludes larger molecules and occupies a substantial volume of the intravascular space and therefore requires a new interpretation of dilution studies of blood volume and the speculation that protection or restoration of the EGL might be an important therapeutic goal. An explanation for the phenomenon of context sensitivity of fluid volume kinetics is offered, and the proposal that crystalloid resuscitation from low capillary pressures is rational. Any potential advantage of plasma or plasma substitutes over crystalloids for volume expansion only manifests itself at higher capillary pressures.

  11. Simulation of horizontal pipe two-phase slug flows using the two-fluid model

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Malca, Arturo J. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica. Nucleo de Simulacao Termohidraulica de Dutos (SIMDUT); Nieckele, Angela O. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Mecanica

    2005-07-01

    Slug flow occurs in many engineering applications, mainly in the transport of hydrocarbon fluids in pipelines. The intermittency of slug flow causes severe unsteady loading on the pipelines carrying the fluids, which gives rise to design problems. Therefore, it is important to be able to predict the onset and development of slug flow as well as slug characteristics. The present work consists in the simulation of two-phase flow in slug pattern through horizontal pipes using the two-fluid model in its transient and one-dimensional form. The advantage of this model is that the flow field is allowed to develop naturally from a given initial conditions as part of the transient calculation; the slug evolves automatically as a product of the computed flow development. Simulations are then carried out for a large number of flow conditions that lead a slug flow. (author)

  12. Transport of fluid and solutes in the body II. Model validation and implications.

    Science.gov (United States)

    Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L

    1999-09-01

    A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.

  13. Vortex dynamics in the two-fluid model

    International Nuclear Information System (INIS)

    Thouless, D. J.; Geller, M. R.; Vinen, W. F.; Fortin, J.-Y.; Rhee, S. W.

    2001-01-01

    We have used two-fluid dynamics to study the discrepancy between the work of Thouless, Ao, and Niu (TAN) and that of Iordanskii. In TAN no transverse force on a vortex due to normal fluid flow was found, whereas the earlier work found a transverse force proportional to normal fluid velocity u n and normal fluid density ρ n . We have linearized the time-independent two-fluid equations about the exact solution for a vortex, and find three solutions that are important in the region far from the vortex. Uniform superfluid flow gives rise to the usual superfluid Magnus force. Uniform normal fluid flow gives rise to no forces in the linear region, but does not satisfy reasonable boundary conditions at short distances. A logarithmically increasing normal fluid flow gives a viscous force. As in classical hydrodynamics, and as in the early work of Hall and Vinen, this logarithmic increase must be cut off by nonlinear effects at large distances; this gives a viscous force proportional to u n /lnu n , and a transverse contribution that goes like u n /(lnu n ) 2 , even in the absence of an explicit Iordanskii force. In the limit u n ->0 the TAN result is obtained, but at nonzero u n there are important corrections that were not found in TAN. We argue that the Magnus force in a superfluid at nonzero temperature is an example of a topological relation for which finite-size corrections may be large

  14. Multibody Dynamics of a Fluid Power Radial Piston Motor Including Transient Hydrodynamic Pressure Models of Lubricating Gaps

    DEFF Research Database (Denmark)

    Johansen, Per; Rømer, Daniel; Andersen, Torben Ole

    2014-01-01

    The increasing interest in hydraulic transmissions in wind and wave energy applications has created an incentive for the development of high efficiency fluid power machinery. Modeling and analysis of fluid power machinery loss mechanisms are necessary in order to accommodate this demand. At present...... fully coupled thermo-elastic models has been used to simulate and study loss mechanisms in various tribological interfaces. Consequently, a reasonable focus of further development is to couple the interface models and the rigid body mechanics of fluid power machinery. The focus of the current paper...

  15. Nonlinear modeling and testing of magneto-rheological fluids in low shear rate squeezing flows

    International Nuclear Information System (INIS)

    Farjoud, Alireza; Ahmadian, Mehdi; Craft, Michael; Mahmoodi, Nima; Zhang, Xinjie

    2011-01-01

    A novel analytical investigation of magneto-rheological (MR) fluids in squeezing flows is performed and the results are validated with experimental test data. The squeeze flow of MR fluids has recently been of great interest to researchers. This is due to the large force capacity of MR fluids in squeeze mode compared to other modes (valve and shear modes), which makes the squeeze mode appropriate for a wide variety of applications such as impact dampers and engine mounts. Tested MR fluids were capable of providing a large range of controllable force along a short stroke in squeeze mode. A mathematical model was developed using perturbation techniques to predict closed-form solutions for velocity field, shear rate distribution, pressure distribution and squeeze force. Therefore, the obtained solutions greatly help with the design process of intelligent devices that use MR fluids in squeeze mode. The mathematical model also reduces the need for complicated and computationally expensive numerical simulations. The analytical results are validated by performing experimental tests on a novel MR device called an 'MR pouch' in an MR squeeze mode rheometer, both designed and built at CVeSS

  16. Perfect fluid Bianchi Type-I cosmological models with time varying G ...

    Indian Academy of Sciences (India)

    Abstract. Bianchi Type-I cosmological models containing perfect fluid with time vary- ing G and Λ have been presented. The solutions obtained represent an expansion scalar θ bearing a constant ratio to the anisotropy in the direction of space-like unit vector λi. Of the two models obtained, one has negative vacuum energy ...

  17. The Impact of Solid Surface Features on Fluid-Fluid Interface Configuration

    Science.gov (United States)

    Araujo, J. B.; Brusseau, M. L. L.

    2017-12-01

    Pore-scale fluid processes in geological media are critical for a broad range of applications such as radioactive waste disposal, carbon sequestration, soil moisture distribution, subsurface pollution, land stability, and oil and gas recovery. The continued improvement of high-resolution image acquisition and processing have provided a means to test the usefulness of theoretical models developed to simulate pore-scale fluid processes, through the direct quantification of interfaces. High-resolution synchrotron X-ray microtomography is used in combination with advanced visualization tools to characterize fluid distributions in natural geologic media. The studies revealed the presence of fluid-fluid interface associated with macroscopic features on the surfaces of the solids such as pits and crevices. These features and respective fluid interfaces, which are not included in current theoretical or computational models, may have a significant impact on accurate simulation and understanding of multi-phase flow, energy, heat and mass transfer processes.

  18. A molecular Debye-Hückel theory of solvation in polar fluids: An extension of the Born model

    Science.gov (United States)

    Xiao, Tiejun; Song, Xueyu

    2017-12-01

    A dielectric response theory of solvation beyond the conventional Born model for polar fluids is presented. The dielectric response of a polar fluid is described by a Born response mode and a linear combination of Debye-Hückel-like response modes that capture the nonlocal response of polar fluids. The Born mode is characterized by a bulk dielectric constant, while a Debye-Hückel mode is characterized by its corresponding Debye screening length. Both the bulk dielectric constant and the Debye screening lengths are determined from the bulk dielectric function of the polar fluid. The linear combination coefficients of the response modes are evaluated in a self-consistent way and can be used to evaluate the electrostatic contribution to the thermodynamic properties of a polar fluid. Our theory is applied to a dipolar hard sphere fluid as well as interaction site models of polar fluids such as water, where the electrostatic contribution to their thermodynamic properties can be obtained accurately.

  19. Cloud fluid models of gas dynamics and star formation in galaxies

    Science.gov (United States)

    Struck-Marcell, Curtis; Scalo, John M.; Appleton, P. N.

    1987-01-01

    The large dynamic range of star formation in galaxies, and the apparently complex environmental influences involved in triggering or suppressing star formation, challenges the understanding. The key to this understanding may be the detailed study of simple physical models for the dominant nonlinear interactions in interstellar cloud systems. One such model is described, a generalized Oort model cloud fluid, and two simple applications of it are explored. The first of these is the relaxation of an isolated volume of cloud fluid following a disturbance. Though very idealized, this closed box study suggests a physical mechanism for starbursts, which is based on the approximate commensurability of massive cloud lifetimes and cloud collisional growth times. The second application is to the modeling of colliding ring galaxies. In this case, the driving processes operating on a dynamical timescale interact with the local cloud processes operating on the above timescale. The results is a variety of interesting nonequilibrium behaviors, including spatial variations of star formation that do not depend monotonically on gas density.

  20. Tachyons and virtual fields for elementary particles in strong interactions. Part 1

    International Nuclear Information System (INIS)

    Van der Spuy, E.

    1978-01-01

    An infinite component free field is constructed and carries an infinite tower of unstable selfcompounds which is defined by a mass-squared trajectory. The field transforms locally under the Poincare group, being a direct sum of spinor representations. The norm or propagator of the field can be written as an infinite partial series (in spin j) of contributions of positive definite metric, which permits transformation to a Regge pole plus background contribution. The Regge pole dominates in the relativistic domain p→infinity. The associated continuation to complex j values introduces an indefinite metric into the propagator and has associated oscillatory characteristic functions of the spinor representation. The constraint on the mass-squared function permits the propogator to be written in terms of partial propagators such that the resonances appear in the correct position on the second z sheet and the Regge poles in the correct Regge j-quadrants. The partial propagator can be written in a TCP invariant form in terms of a spectral function determined by the dispersion integral for a particular condition on the mass-squared trajectory and involving continua of the real mass-squared variable r (r>=4m 2 0 and r 0 is the stable mass corresponding to spin j=0). This allows the complete infinite component free field corresponding to the real mass-squared and spin spectrum to be constructed in such a way that it transforms locally under Lorentz transformatons and has a propagator which has the right resonances and motion of Regge poles. Since there is one mass spectral function, the field should be considered in toto and as a fully virtual field, and furthermore as a possible solution of nonlinear field equation of motion. The tachyonic field component r [af

  1. PVT modeling of reservoir fluids using PC-SAFT EoS and Soave-BWR EoS

    DEFF Research Database (Denmark)

    Yan, Wei; Varzandeh, Farhad; Stenby, Erling Halfdan

    2015-01-01

    non-cubic EoS models, such as the Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT) EoS and the Soave modified Benedict-Webb-Rubin (Soave-BWR) EoS, may partly replace the roles of these classical cubic models in the upstream oil industry. Here, we attempt to make a comparative study...... for the four models. For PVT prediction, the non-cubic models show advantages in some high pressure high temperature (HPHT) fluids but no clear advantages in general, indicating the necessity for further improvement of the characterization procedure....

  2. MATHEMATICAL MODELING OF SELF-EXCITED VIBRATION OF PIPES CONTAINING MOBILE BOILING FLUID CLOTS

    Directory of Open Access Journals (Sweden)

    Yevgeniy Tolbatov

    2015-06-01

    Full Text Available Numerical modeling dynamic behavior of a pipe containing inner nonhomogeneous flows of a boiling fluid has been carried out. The system vibrations at different values of the parameters of the flow nonhomogeneity and its velocity are observed. The possibility of forming stable and unstable flows depending on the character ofnonhomogeneity and the velocity of fluid clots has been found.

  3. Optimization of a Two-Fluid Hydrodynamic Model of Churn-Turbulent Flow

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen

    2009-07-01

    A hydrodynamic model of two-phase, churn-turbulent flows is being developed using the computational multiphase fluid dynamics (CMFD) code, NPHASE-CMFD. The numerical solutions obtained by this model are compared with experimental data obtained at the TOPFLOW facility of the Institute of Safety Research at the Forschungszentrum Dresden-Rossendorf. The TOPFLOW data is a high quality experimental database of upward, co-current air-water flows in a vertical pipe suitable for validation of computational fluid dynamics (CFD) codes. A five-field CMFD model was developed for the continuous liquid phase and four bubble size groups using mechanistic closure models for the ensemble-averaged Navier-Stokes equations. Mechanistic models for the drag and non-drag interfacial forces are implemented to include the governing physics to describe the hydrodynamic forces controlling the gas distribution. The closure models provide the functional form of the interfacial forces, with user defined coefficients to adjust the force magnitude. An optimization strategy was devised for these coefficients using commercial design optimization software. This paper demonstrates an approach to optimizing CMFD model parameters using a design optimization approach. Computed radial void fraction profiles predicted by the NPHASE-CMFD code are compared to experimental data for four bubble size groups.

  4. Computational Modeling of Cephalad Fluid Shift for Application to Microgravity-Induced Visual Impairment

    Science.gov (United States)

    Nelson, Emily S.; Best, Lauren M.; Myers, Jerry G.; Mulugeta, Lealem

    2013-01-01

    An improved understanding of spaceflight-induced ocular pathology, including the loss of visual acuity, globe flattening, optic disk edema and distension of the optic nerve and optic nerve sheath, is of keen interest to space medicine. Cephalad fluid shift causes a profoundly altered distribution of fluid within the compartments of the head and body, and may indirectly generate phenomena that are biomechanically relevant to visual function, such as choroidal engorgement, compromised drainage of blood and cerebrospinal fluid (CSF), and altered translaminar pressure gradient posterior to the eye. The experimental body of evidence with respect to the consequences of fluid shift has not yet been able to provide a definitive picture of the sequence of events. On earth, elevated intracranial pressure (ICP) is associated with idiopathic intracranial hypertension (IIH), which can produce ocular pathologies that look similar to those seen in some astronauts returning from long-duration flight. However, the clinically observable features of the Visual Impairment and Intracranial Pressure (VIIP) syndrome in space and IIH on earth are not entirely consistent. Moreover, there are at present no experimental measurements of ICP in microgravity. By its very nature, physiological measurements in spaceflight are sparse, and the space environment does not lend itself to well-controlled experiments. In the absence of such data, numerical modeling can play a role in the investigation of biomechanical causal pathways that are suspected of involvement in VIIP. In this work, we describe the conceptual framework for modeling the altered compartmental fluid distribution that represents an equilibrium fluid distribution resulting from the loss of hydrostatic pressure gradient.

  5. A non-traditional fluid problem: transition between theoretical models from Stokes’ to turbulent flow

    Science.gov (United States)

    Salomone, Horacio D.; Olivieri, Néstor A.; Véliz, Maximiliano E.; Raviola, Lisandro A.

    2018-05-01

    In the context of fluid mechanics courses, it is customary to consider the problem of a sphere falling under the action of gravity inside a viscous fluid. Under suitable assumptions, this phenomenon can be modelled using Stokes’ law and is routinely reproduced in teaching laboratories to determine terminal velocities and fluid viscosities. In many cases, however, the measured physical quantities show important deviations with respect to the predictions deduced from the simple Stokes’ model, and the causes of these apparent ‘anomalies’ (for example, whether the flow is laminar or turbulent) are seldom discussed in the classroom. On the other hand, there are various variable-mass problems that students tackle during elementary mechanics courses and which are discussed in many textbooks. In this work, we combine both kinds of problems and analyse—both theoretically and experimentally—the evolution of a system composed of a sphere pulled by a chain of variable length inside a tube filled with water. We investigate the effects of different forces acting on the system such as weight, buoyancy, viscous friction and drag force. By means of a sequence of mathematical models of increasing complexity, we obtain a progressive fit that accounts for the experimental data. The contrast between the various models exposes the strengths and weaknessess of each one. The proposed experience can be useful for integrating concepts of elementary mechanics and fluids, and is suitable as laboratory practice, stressing the importance of the experimental validation of theoretical models and showing the model-building processes in a didactic framework.

  6. Collisionless kinetic-fluid model of zonal flows in toroidal plasmas

    International Nuclear Information System (INIS)

    Sugama, H.; Watanabe, T.-H.; Horton, W.

    2006-12-01

    A novel kinetic-fluid model is presented, which describes collisionless time evolution of zonal flows in tokamaks. In the new zonal-flow closure relations, the parallel heat fluxes are written by the sum of short- and long-time-evolution parts. The former part is given in the dissipative form of the parallel heat diffusion and relates to collisionless damping processes. The latter is derived from the long-time-averaged gyrocenter distribution and plays a major role in describing low-frequency or stationary zonal flows, for which the parallel heat fluxes are expressed in terms of the parallel flow as well as the nonlinear-source and initial-condition terms. It is shown analytically and numerically that, when applied to the zonal flow driven by either ion or electron temperature gradient turbulence, the kinetic-fluid equations including the new closure relations can reproduce the same long-time zonal-flow responses to the initial condition and to the turbulence source as those obtained from the gyrokinetic model. (author)

  7. The model of the relativistic particle with torsion

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1991-01-01

    The model of the relativistic particle with torsion, whose action appears in the Bose-Fermi transmutation mechanism, is canonically quantized in the Minkowski and euclidean spaces. In the Minkowski space there are massive, massless and tachyonic states in the spectrum of the model. In the massive sector the spectrum contains an infinite number of states, whose spin can take integer, half-integer, or fractional values. In the euclidean space, the spectrum is finite and the spin can only be integer, or half-integer. The reasons for the differences of the quantum theory of the model in the two spaces are elucidated. (orig.)

  8. Experimental and modeling hydraulic studies of foam drilling fluid flowing through vertical smooth pipes

    Directory of Open Access Journals (Sweden)

    Amit Saxena

    2017-06-01

    Full Text Available Foam has emerged as an efficient drilling fluid for the drilling of low pressure, fractured and matured reservoirs because of its the ability to reduce formation damage, fluid loss, differential sticking etc. However the compressible nature along with its complicated rheology has made its implementation a multifaceted task. Knowledge of the hydrodynamic behavior of drilling fluid within the borehole is the key behind successful implementation of drilling job. However, little effort has been made to develop the hydrodynamic models for the foam flowing with cuttings through pipes of variable diameter. In the present study, hydrodynamics of the foam fluid was investigated through the vertical smooth pipes of different pipe diameters, with variable foam properties in a flow loop system. Effect of cutting loading on pressure drop was also studied. Thus, the present investigation estimates the differential pressure loss across the pipe. The flow loop permits foam flow through 25.4 mm, 38.1 mm and 50.8 mm diameter pipes. The smaller diameter pipes are used to replicate the annular spaces between the drill string and wellbore. The developed model determines the pressure loss along the pipe and the results are compared with a number of existing models. The developed model is able to predict the experimental results more accurately.

  9. The constitutive distributed parameter model of multicomponent chemical processes in gas, fluid and solid phase

    International Nuclear Information System (INIS)

    Niemiec, W.

    1985-01-01

    In the literature of distributed parameter modelling of real processes is not considered the class of multicomponent chemical processes in gas, fluid and solid phase. The aim of paper is constitutive distributed parameter physicochemical model, constructed on kinetics and phenomenal analysis of multicomponent chemical processes in gas, fluid and solid phase. The mass, energy and momentum aspects of these multicomponent chemical reactions and adequate phenomena are utilized in balance operations, by conditions of: constitutive invariance for continuous media with space and time memories, reciprocity principle for isotropic and anisotropic nonhomogeneous media with space and time memories, application of definitions of following derivative and equation of continuity, to the construction of systems of partial differential constitutive state equations, in the following derivative forms for gas, fluid and solid phase. Couched in this way all physicochemical conditions of multicomponent chemical processes in gas, fluid and solid phase are new form of constitutive distributed parameter model for automatics and its systems of equations are new form of systems of partial differential constitutive state equations in sense of phenomenal distributed parameter control

  10. Batch top-spray fluid bed coating: Scale-up insight using dynamic heat- and mass-transfer modelling

    DEFF Research Database (Denmark)

    Hede, Peter Dybdahl; Bach, P.; Jensen, Anker Degn

    2009-01-01

    A mathematical model was developed for batch top-spray fluid bed coating processes based on Ronsse et al. [2007a.b. Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part I-model development and validation. journal of Food Engineering 78......, 296-307; Combined population balance and thermodynamic modelling of the batch top-spray fluidised bed coating process. Part II-model and process analysis. journal of Food Engineering 78, 308-322]. The model is based on one-dimensional discretisation of the fluid bed into a number of well-mixed control......-up principles by comparing simulation results with experimental temperature and humidity data obtained from inorganic salt coating of placebo cores in three pilot fluid bed scales being a 0.5kg small-scale (GEA Aeromatic-Fielder Strea-1), 4kg medium-scale (GEA Niro MP-1) and 24kg large-scale (GEA MP-2...

  11. Numerical study of shear thickening fluid with discrete particles embedded in a base fluid

    Directory of Open Access Journals (Sweden)

    W Zhu

    2016-09-01

    Full Text Available The Shear Thickening Fluid (STF is a dilatant material, which displays non-Newtonian characteristics in its unique ability to transit from a low viscosity fluid to a high viscosity fluid. The research performed investigates the STF behavior by modeling and simulation of the interaction between the base flow and embedded rigid particles when subjected to shear stress. The model considered the Lagrangian description of the rigid particles and the Eulerian description of fluid flow. The numerical analysis investigated key parameters such as applied flow acceleration, particle distribution and arrangement, volume concentration of particles, particle size, shape and their behavior in a Newtonian and non-Newtonian fluid base. The fluid-particle interaction model showed that the arrangement, size, shape and volume concentration of the particles had a significant effect on the behavior of the STF. Although non-conclusive, the addition of particles in non-Newtonian fluids showed a promising trend of improved shear thickening effects at high shear strain rates.

  12. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...

  13. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms.

    Science.gov (United States)

    Biasetti, Jacopo; Spazzini, Pier Giorgio; Swedenborg, Jesper; Gasser, T Christian

    2012-01-01

    Abdominal Aortic Aneurysms (AAAs) are frequently characterized by the presence of an Intra-Luminal Thrombus (ILT) known to influence their evolution biochemically and biomechanically. The ILT progression mechanism is still unclear and little is known regarding the impact of the chemical species transported by blood flow on this mechanism. Chemical agonists and antagonists of platelets activation, aggregation, and adhesion and the proteins involved in the coagulation cascade (CC) may play an important role in ILT development. Starting from this assumption, the evolution of chemical species involved in the CC, their relation to coherent vortical structures (VSs) and their possible effect on ILT evolution have been studied. To this end a fluid-chemical model that simulates the CC through a series of convection-diffusion-reaction (CDR) equations has been developed. The model involves plasma-phase and surface-bound enzymes and zymogens, and includes both plasma-phase and membrane-phase reactions. Blood is modeled as a non-Newtonian incompressible fluid. VSs convect thrombin in the domain and lead to the high concentration observed in the distal portion of the AAA. This finding is in line with the clinical observations showing that the thickest ILT is usually seen in the distal AAA region. The proposed model, due to its ability to couple the fluid and chemical domains, provides an integrated mechanochemical picture that potentially could help unveil mechanisms of ILT formation and development.

  14. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.b, E-mail: alexdc@ieav.cta.b, E-mail: eduardo@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear

    2011-07-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  15. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.

    2011-01-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  16. Fluid-structure interactions models, analysis and finite elements

    CERN Document Server

    Richter, Thomas

    2017-01-01

    This book starts by introducing the fundamental concepts of mathematical continuum mechanics for fluids and solids and their coupling. Special attention is given to the derivation of variational formulations for the subproblems describing fluid- and solid-mechanics as well as the coupled fluid-structure interaction problem. Two monolithic formulations for fluid-structure interactions are described in detail: the well-established ALE formulation and the modern Fully Eulerian formulation, which can effectively deal with problems featuring large deformation and contact. Further, the book provides details on state-of-the-art discretization schemes for fluid- and solid-mechanics and considers the special needs of coupled problems with interface-tracking and interface-capturing techniques. Lastly, advanced topics like goal-oriented error estimation, multigrid solution and gradient-based optimization schemes are discussed in the context of fluid-structure interaction problems.

  17. Two-Phase Fluid Simulation Using a Diffuse Interface Model with Peng--Robinson Equation of State

    KAUST Repository

    Qiao, Zhonghua; Sun, Shuyu

    2014-01-01

    In this paper, two-phase fluid systems are simulated using a diffusive interface model with the Peng-Robinson equation of state (EOS), a widely used realistic EOS for hydrocarbon fluid in the petroleum industry. We first utilize the gradient theory

  18. A coupled reaction and transport model for assessing the injection, migration and fate of waste fluids

    International Nuclear Information System (INIS)

    Liu, X.; Ortoleva, P.

    1996-01-01

    The use of reaction-transport modeling for reservoir assessment and management in the context of deep well waste injection is evaluated. The study is based on CIRF.A (Chemical Interaction of Rock and Fluid), a fully coupled multiphase flow, contaminant transport, and fluid and mineral reaction model. Although SWIFT (Sandia Waste-Isolation Flow and Transport Model) is often the numerical model of choice, it can not account for chemical reactions involving rock, wastes, and formation fluids and their effects on contaminant transport, rock permeability and porosity, and the integrity of the reservoir and confining units. CIRF.A can simulate all these processes. Two field cases of waste injection were simulated by CIRF.A. Both observation data and simulation results show mineral precipitation in one case and rock dissolution in another case. Precipitation and dissolution change rock porosity and permeability, and hence the pattern of fluid migration. The model is shown to be invaluable in analyzing near borehole and reservoir-scale effects during waste injection and predicting the 10,000 year fate of the waste plume. The benefits of using underpressured compartments as waste repositories were also demonstrated by CIRF.A simulations

  19. Fluid prediction using rock modelling and reconnaissance. AVO analysis - A case study from the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Osdal, Bard; Granli, John Reidar

    1998-12-31

    Seismic lithology and fluid phase prediction (LFP) is becoming an important part of seismic interpretation, and can contribute significantly to risk reduction prior to drilling. In this presentation there is focused on quantitative interpretation of the amplitudes in a 2-D dataset, with respect to presence of hydrocarbons. Different aspect of the working producer, like data quality (well data and seismic data), rock modelling and seismic modelling will be illustrated. In the present study only one well has been used for calibration and to investigate the seismic response for different fluid and lithology scenarios. The rock modelling included evaluation of seismic parameter effect for different fluid and porosities. 1 ref., 4 figs.

  20. Particle size distribution models of small angle neutron scattering pattern on ferro fluids

    International Nuclear Information System (INIS)

    Sistin Asri Ani; Darminto; Edy Giri Rachman Putra

    2009-01-01

    The Fe 3 O 4 ferro fluids samples were synthesized by a co-precipitation method. The investigation of ferro fluids microstructure is known to be one of the most important problems because the presence of aggregates and their internal structure influence greatly the properties of ferro fluids. The size and the size dispersion of particle in ferro fluids were determined assuming a log normal distribution of particle radius. The scattering pattern of the measurement by small angle neutron scattering were fitted by the theoretical scattering function of two limitation models are log normal sphere distribution and fractal aggregate. Two types of particle are detected, which are presumably primary particle of 30 Armstrong in radius and secondary fractal aggregate of 200 Armstrong with polydispersity of 0.47 up to 0.53. (author)

  1. Working fluid selection for organic Rankine cycles - Impact of uncertainty of fluid properties

    DEFF Research Database (Denmark)

    Frutiger, Jerome; Andreasen, Jesper Graa; Liu, Wei

    2016-01-01

    of processmodels and constraints 2) selection of property models, i.e. Penge Robinson equation of state 3)screening of 1965 possible working fluid candidates including identification of optimal process parametersbased on Monte Carlo sampling 4) propagating uncertainty of fluid parameters to the ORC netpower output......This study presents a generic methodology to select working fluids for ORC (Organic Rankine Cycles)taking into account property uncertainties of the working fluids. A Monte Carlo procedure is described as a tool to propagate the influence of the input uncertainty of the fluid parameters on the ORC....... The net power outputs of all the feasible working fluids were ranked including their uncertainties. The method could propagate and quantify the input property uncertainty of the fluidproperty parameters to the ORC model, giving an additional dimension to the fluid selection process. In the given analysis...

  2. Investigating models for associating fluids using spectroscopy

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Michelsen, Michael Locht; Passos, Claudia Pereira

    2005-01-01

    on the way the parameters were obtained. The selection of appropriate association schemes is also investigated using spectroscopic data. For pure water a four-site scheme is shown to be the most appropriate scheme. In the case of pure alcohols, a three-site scheme is best for methanol; two- or three......Two equations of state (PC-SAFT and CPA) are used to predict the monomer fraction of pure associating fluids. The models each require five pure-component parameters usually obtained by fitting to experimental liquid density and vapor pressure data. Here we also incorporate monomer fractions...

  3. Large Deviations for Stochastic Models of Two-Dimensional Second Grade Fluids

    International Nuclear Information System (INIS)

    Zhai, Jianliang; Zhang, Tusheng

    2017-01-01

    In this paper, we establish a large deviation principle for stochastic models of incompressible second grade fluids. The weak convergence method introduced by Budhiraja and Dupuis (Probab Math Statist 20:39–61, 2000) plays an important role.

  4. Large Deviations for Stochastic Models of Two-Dimensional Second Grade Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Jianliang, E-mail: zhaijl@ustc.edu.cn [University of Science and Technology of China, School of Mathematical Sciences (China); Zhang, Tusheng, E-mail: Tusheng.Zhang@manchester.ac.uk [University of Manchester, School of Mathematics (United Kingdom)

    2017-06-15

    In this paper, we establish a large deviation principle for stochastic models of incompressible second grade fluids. The weak convergence method introduced by Budhiraja and Dupuis (Probab Math Statist 20:39–61, 2000) plays an important role.

  5. New weighted sum of gray gases model applicable to Computational Fluid Dynamics (CFD) modeling of oxy-fuel combustion

    DEFF Research Database (Denmark)

    Yin, Chungen; Johansen, Lars Christian Riis; Rosendahl, Lasse

    2010-01-01

    gases model (WSGGM) is derived, which is applicable to computational fluid dynamics (CFD) modeling of both air-fuel and oxy-fuel combustion. First, a computer code is developed to evaluate the emissivity of any gas mixture at any condition by using the exponential wide band model (EWBM...

  6. Review and comparison of bi-fluid interpenetration mixing models

    International Nuclear Information System (INIS)

    Enaux, C.

    2006-01-01

    Today, there is a lot of bi-fluid models with two different speeds: Baer-Nunziato models; Godunov-Romensky models. coupled Euler's equations, and so on. In this report, one compares the most used models in the fields of physics and mathematics while basing this study on the literature. From the point of view of physics. for each model. one reviews: -) the type of mixture considered and modeling assumptions, -) the technique of construction, -) some properties like the respect of thermodynamical principles, the respect of the Galilean invariance principle, or the equilibrium conservation. From the point of view of mathematics, for each model, one looks at: -) the possibility of writing the equations in conservative form, -) hyperbolicity, -) the existence of a mathematical entropy. Finally, a unified review of the models is proposed. It is shown that under certain closing assumptions or for certain flow types. some of the models become equivalent. (author)

  7. Inhomogeneous generalizations of Bianchi type VIh models with perfect fluid

    Science.gov (United States)

    Roy, S. R.; Prasad, A.

    1991-07-01

    Inhomogeneous universes admitting an Abelian G2 of isometry and filled with perfect fluid have been derived. These contain as special cases exact homogeneous universes of Bianchi type VIh. Many of these universes asymptotically tend to homogeneous Bianchi VIh universes. The models have been discussed for their physical and kinematical behaviors.

  8. Analog model for quantum gravity effects: phonons in random fluids.

    Science.gov (United States)

    Krein, G; Menezes, G; Svaiter, N F

    2010-09-24

    We describe an analog model for quantum gravity effects in condensed matter physics. The situation discussed is that of phonons propagating in a fluid with a random velocity wave equation. We consider that there are random fluctuations in the reciprocal of the bulk modulus of the system and study free phonons in the presence of Gaussian colored noise with zero mean. We show that, in this model, after performing the random averages over the noise function a free conventional scalar quantum field theory describing free phonons becomes a self-interacting model.

  9. Modelling of Mass Transfer Phenomena in Chemical and Biochemical Reactor Systems using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Larsson, Hilde Kristina

    the velocity and pressure distributions in a fluid. CFD also enables the modelling of several fluids simultaneously, e.g. gas bubbles in a liquid, as well as the presence of turbulence and dissolved chemicals in a fluid, and many other phenomena. This makes CFD an appreciated tool for studying flow structures......, mixing, and other mass transfer phenomena in chemical and biochemical reactor systems. In this project, four selected case studies are investigated in order to explore the capabilities of CFD. The selected cases are a 1 ml stirred microbioreactor, an 8 ml magnetically stirred reactor, a Rushton impeller...... and an ion-exchange reaction are also modelled and compared to experimental data. The thesis includes a comprehensive overview of the fundamentals behind a CFD software, as well as a more detailed review of the fluid dynamic phenomena investigated in this project. The momentum and continuity equations...

  10. The use of paleo-thermo-barometers and coupled thermal, fluid flow and pore fluid pressure modelling for hydrocarbon and reservoir prediction in fold and thrust belts

    NARCIS (Netherlands)

    Roure, F.; Andriessen, P.A.M.; Callot, J.P.; Ferket, H.; Gonzales, E.; Guilhaumou, N.; Hardebol, N.J.; Lacombe, O.; Malandain, J.; Mougin, P.; Muska, K.; Ortuno, S.; Sassi, W.; Swennen, R.; Vilasi, N.

    2010-01-01

    Basin modelling tools are now more efficient to reconstruct palinspastic structural cross sections and compute the history of temperature, pore-fluid pressure and fluid flow circulations in complex structural settings. In many cases and especially in areas where limited erosion occurred, the use of

  11. Numerical Modeling of Pressurization of Cryogenic Propellant Tank for Integrated Vehicle Fluid System

    Science.gov (United States)

    Majumdar, Alok K.; LeClair, Andre C.; Hedayat, Ali

    2016-01-01

    This paper presents a numerical model of pressurization of a cryogenic propellant tank for the Integrated Vehicle Fluid (IVF) system using the Generalized Fluid System Simulation Program (GFSSP). The IVF propulsion system, being developed by United Launch Alliance, uses boiloff propellants to drive thrusters for the reaction control system as well as to run internal combustion engines to develop power and drive compressors to pressurize propellant tanks. NASA Marshall Space Flight Center (MSFC) has been running tests to verify the functioning of the IVF system using a flight tank. GFSSP, a finite volume based flow network analysis software developed at MSFC, has been used to develop an integrated model of the tank and the pressurization system. This paper presents an iterative algorithm for converging the interface boundary conditions between different component models of a large system model. The model results have been compared with test data.

  12. A development of two-fluid multifield model for low-quality boiling transition simulations

    International Nuclear Information System (INIS)

    Park, J.W.; Choi, H.B.

    1998-09-01

    A three-dimensional two-fluid model has been developed using ensemble-averaging techniques. The two-fluid model was closed for two-phase bubbly flows using cell averaging which accounted for the dispersed phase distribution in the region of the averaging volume. The phasic interfacial momentum exchange includes the surface stress developed on the interface which is induced by the relative motion of the phases. Since no direct mean for validating the interfacial pressure model is available, the void wae data has been used. Since the presented model has been rigorously constitute for the bubbly two-phase flow of spherical bubbles, dilute two-phase flow situations, such as the subcooled boiling, can be realistically simulated by the presented local instantaneous form of the average equations. Finally, this model should be able to predict local thermal-hydraulic conditions under which the critical heat flux occurs. (author). 25 refs., 6 figs

  13. Computational fluid dynamics application: slosh analysis of a fuel tank model

    International Nuclear Information System (INIS)

    Iu, H.S.; Cleghorn, W.L.; Mills, J.K.

    2004-01-01

    This paper presents the analysis of fluid slosh behaviour inside a fuel tank model. The fuel tank model was a simplified version of a stock fuel tank that has a sloshing noise problem. A commercial CFD software, FLOW-3D, was used to simulate the slosh behaviour. Slosh experiments were performed to verify the computer simulation results. High speed video equipment enhanced with a data acquisition system was used to record the slosh experiments and to obtain the instantaneous sound level of each video frame. Five baffle configurations including the no baffle configuration were considered in the computer simulations and the experiments. The simulation results showed that the best baffle configuration can reduce the mean kinetic energy by 80% from the no baffle configuration in a certain slosh situation. The experimental results showed that 15dB(A) noise reduction can be achieved by the best baffle configuration. The correlation analysis between the mean kinetic energy and the noise level showed that high mean kinetic energy of the fluid does not always correspond to high sloshing noise. High correlation between them only occurs for the slosh situations where the fluid hits the top of the tank and creates noise. (author)

  14. Cerebrospinal fluid dynamics in a simplified model of the human ventricular system

    International Nuclear Information System (INIS)

    Ammourah, S.; Aroussi, A.; Vloeberghs, M.

    2003-01-01

    This study investigates the flow of the Cerebrospinal Fluid (CSF) inside a simplified model of the human ventricular system. Both computational and experimental results are explored. Due to the complexity of the real geometry, a simplified three-dimensional (3-D) model of the ventricular system was constructed with the same volume as the real geometry. The numerical study was conducted using the commercial computational fluid dynamics (CFD) package FLUENT-6. Different CFD cases were solved for different flow rates range between 100-500 ml/day. A scaled up to 4:1 physical model with the same geometry as the computational model, was built. A diluted dye was injected into the physical model and visualized. From the CFD studies it was found that the flow pattern of the CSF is structured and has a 3-D motion. Recirculating motion takes place in the lateral ventricles in the form of small eddies at each plane. Experimentally, the dye reverse motion noticed confirms the CFD findings about the presence of a recirculating motion. (author)

  15. In search of superluminal quantum communications: recent experiments and possible improvements

    International Nuclear Information System (INIS)

    Cocciaro, B; Faetti, S; Fronzoni, L

    2013-01-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity v t > c in a preferred reference frame. For finite values of v t , Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities v t . Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities V t for any possible direction of velocity V-vector of the tachyons preferred frame.

  16. In search of superluminal quantum communications: recent experiments and possible improvements

    Science.gov (United States)

    Cocciaro, B.; Faetti, S.; Fronzoni, L.

    2013-06-01

    As shown in the famous EPR paper (Einstein, Podolsky e Rosen, 1935), Quantum Mechanics is non-local. The Bell theorem and the experiments by Aspect and many others, ruled out the possibility of explaining quantum correlations between entangled particles using local hidden variables models (except for implausible combinations of loopholes). Some authors (Bell, Eberhard, Bohm and Hiley) suggested that quantum correlations could be due to superluminal communications (tachyons) that propagate isotropically with velocity vt > c in a preferred reference frame. For finite values of vt, Quantum Mechanics and superluminal models lead to different predictions. Some years ago a Geneva group and our group did experiments on entangled photons to evidence possible discrepancies between experimental results and quantum predictions. Since no discrepancy was found, these experiments established only lower bounds for the possible tachyon velocities vt. Here we propose an improved experiment that should lead us to explore a much larger range of possible tachyon velocities Vt for any possible direction of velocity vec V of the tachyons preferred frame.

  17. Beyond Poiseuille: Preservation Fluid Flow in an Experimental Model

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    2013-01-01

    Full Text Available Poiseuille’s equation describes the relationship between fluid viscosity, pressure, tubing diameter, and flow, yet it is not known if cold organ perfusion systems follow this equation. We investigated these relationships in an ex vivo model and aimed to offer some rationale for equipment selection. Increasing the cannula size from 14 to 20 Fr increased flow rate by a mean (SD of 13 (12%. Marshall’s hyperosmolar citrate was three times less viscous than UW solution, but flows were only 45% faster. Doubling the bag pressure led to a mean (SD flow rate increase of only 19 (13%, not twice the rate. When external pressure devices were used, 100 mmHg of continuous pressure increased flow by a mean (SD of 43 (17% when compared to the same pressure applied initially only. Poiseuille’s equation was not followed; this is most likely due to “slipping” of preservation fluid within the plastic tubing. Cannula size made little difference over the ranges examined; flows are primarily determined by bag pressure and fluid viscosity. External infusor devices require continuous pressurisation to deliver high flow. Future studies examining the impact of perfusion variables on graft outcomes should include detailed equipment descriptions.

  18. Noncommutative geometry and fluid dynamics

    International Nuclear Information System (INIS)

    Das, Praloy; Ghosh, Subir

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  19. Noncommutative geometry and fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Das, Praloy; Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India)

    2016-11-15

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy, thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in the charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the study of kinematics and dynamics of NC fluid. In the second part we construct an extension of the Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing about anisotropy and inhomogeneity in the model. We also derive a NC extended Friedmann equation. (orig.)

  20. Spreading dynamics of power-law fluid droplets

    International Nuclear Information System (INIS)

    Liang Zhanpeng; Peng Xiaofeng; Wang Xiaodong; Lee, D-J; Su Ay

    2009-01-01

    This paper aims at providing a summary of the theoretical models available for non-Newtonian fluid spreading dynamics. Experimental findings and model predictions for a Newtonian fluid spreading test are briefly reviewed. Then how the complete wetting and partial wetting power-law fluids spread over a solid substrate is examined. The possible extension of Newtonian fluid models to power-law fluids is also discussed.