WorldWideScience

Sample records for model systems mechanisms

  1. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2009-01-01

    This third volume completes the Work Mechanical Systems, Classical Models. The first two volumes dealt with particle dynamics and with discrete and continuous mechanical systems. The present volume studies analytical mechanics. Topics like Lagrangian and Hamiltonian mechanics, the Hamilton-Jacobi method, and a study of systems with separate variables are thoroughly discussed. Also included are variational principles and canonical transformations, integral invariants and exterior differential calculus, and particular attention is given to non-holonomic mechanical systems. The author explains in detail all important aspects of the science of mechanics, regarded as a natural science, and shows how they are useful in understanding important natural phenomena and solving problems of interest in applied and engineering sciences. Professor Teodorescu has spent more than fifty years as a Professor of Mechanics at the University of Bucharest and this book relies on the extensive literature on the subject as well as th...

  2. Mechanical Systems, Classical Models

    CERN Document Server

    Teodorescu, Petre P

    2007-01-01

    All phenomena in nature are characterized by motion; this is an essential property of matter, having infinitely many aspects. Motion can be mechanical, physical, chemical or biological, leading to various sciences of nature, mechanics being one of them. Mechanics deals with the objective laws of mechanical motion of bodies, the simplest form of motion. In the study of a science of nature mathematics plays an important role. Mechanics is the first science of nature which was expressed in terms of mathematics by considering various mathematical models, associated to phenomena of the surrounding nature. Thus, its development was influenced by the use of a strong mathematical tool; on the other hand, we must observe that mechanics also influenced the introduction and the development of many mathematical notions. In this respect, the guideline of the present book is precisely the mathematical model of mechanics. A special accent is put on the solving methodology as well as on the mathematical tools used; vectors, ...

  3. Aerodynamic and Mechanical System Modelling

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix

    This thesis deals with mechanical multibody-systems applied to the drivetrain of a 500 kW wind turbine. Particular focus has been on gearbox modelling of wind turbines. The main part of the present project involved programming multibody systems to investigate the connection between forces, moments...

  4. Model reduction of linear conservative mechanical systems

    NARCIS (Netherlands)

    Schaft, van der A.J.; Oeloff, J.E.

    1990-01-01

    An approach for model reduction of linear conservative or weakly damped mechanical systems is proposed. It is based on the balancing of an associated gradient system. It uses the joint knowledge of the system matrix and the input and output matrices of the Hamiltonian system. The key idea is to asso

  5. Composite modeling method in dynamics of planar mechanical system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a composite modeling method of the forward dynamics in general planar mechanical system. In the modeling process, the system dynamic model is generated by assembling the model units which are kinematical determinate in planar mechanisms rather than the body/joint units in multi-body system. A state space formulation is employed to model both the unit and system models. The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism. The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure. The formulation reveals the relationship between the topology and dynamics of the planar mechanism to some extent.

  6. Composite modeling method in dynamics of planar mechanical system

    Institute of Scientific and Technical Information of China (English)

    WANG Hao; LIN ZhongQin; LAI XinMin

    2008-01-01

    This paper presents a composite modeling method of the forward dynamics in general planar mechanical system.In the modeling process,the system dynamic model is generated by assembling the model units which are kinematical determi-nate in planar mechanisms rather than the body/joint units in multi-body system.A state space formulation is employed to model both the unit and system models.The validation and feasibility of the method are illustrated by a case study of a four-bar mechanism.The advantage of this method is that the models are easier to reuse and the system is easier to reconfigure.The formulation reveals the rela-tionship between the topology and dynamics of the planar mechanism to some extent.

  7. Fault evolution-test dependency modeling for mechanical systems

    Institute of Scientific and Technical Information of China (English)

    Xiao-dong TAN; Jian-lu LUO; Qing LI; Bing LU; Jing QIU

    2015-01-01

    Tracking the process of fault growth in mechanical systems using a range of tests is important to avoid catastrophic failures. So, it is necessary to study the design for testability (DFT). In this paper, to improve the testability performance of me-chanical systems for tracking fault growth, a fault evolution-test dependency model (FETDM) is proposed to implement DFT. A testability analysis method that considers fault trackability and predictability is developed to quantify the testability performance of mechanical systems. Results from experiments on a centrifugal pump show that the proposed FETDM and testability analysis method can provide guidance to engineers to improve the testability level of mechanical systems.

  8. 6th Conference on Design and Modeling of Mechanical Systems

    CERN Document Server

    Fakhfakh, Tahar; Daly, Hachmi; Aifaoui, Nizar; Chaari, Fakher

    2015-01-01

    This book offers a collection of original peer-reviewed contributions presented at the 6th International Congress on Design and Modeling of Mechanical Systems (CMSM’2015), held in Hammamet, Tunisia, from the 23rd to the 25th of March 2015. It reports on both recent research findings and innovative industrial applications in the fields of mechatronics and robotics, dynamics of mechanical systems, fluid structure interaction and vibroacoustics, modeling and analysis of materials and structures, and design and manufacturing of mechanical systems. Since its first edition in 2005, the CMSM Congress has been held every two years with the aim of bringing together specialists from universities and industry to present the state-of-the-art in research and applications, discuss the most recent findings and exchange and develop expertise in the field of design and modeling of mechanical systems. The CMSM Congress is jointly organized by three Tunisian research laboratories: the Mechanical Engineering Laboratory of th...

  9. MATHEMATICAL MODEL FOR ESTIMATION OF MECHANICAL SYSTEM CONDITION IN DYNAMICS

    Directory of Open Access Journals (Sweden)

    D. N. Mironov

    2011-01-01

    Full Text Available The paper considers an estimation of a complicated mechanical system condition in dynamics with due account of material degradation and accumulation of micro-damages. An element of continuous medium has been simulated and described with the help of a discrete element. The paper contains description of a model for determination of mechanical system longevity in accordance with number of cycles and operational period.

  10. Dynamic Response of Linear Mechanical Systems Modeling, Analysis and Simulation

    CERN Document Server

    Angeles, Jorge

    2012-01-01

    Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems—the first step on the long way to the more elaborate study of multi-degree-of-freedom systems—using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic compu...

  11. Mechanics and model-based control of advanced engineering systems

    CERN Document Server

    Irschik, Hans; Krommer, Michael

    2014-01-01

    Mechanics and Model-Based Control of Advanced Engineering Systems collects 32 contributions presented at the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines, which took place in St. Petersburg, Russia in July 2012. The workshop continued a series of international workshops, which started with a Japan-Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures and a Russia-Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. In the present volume, 10 full-length papers based on presentations from Russia, 9 from Austria, 8 from Japan, 3 from Italy, one from Germany and one from Taiwan are included, which represent the state of the art in the field of mechanics and model based control, with particular emphasis on the application of advanced structures and machines.

  12. A NEW STATIC MECHANICS MODEL TO SOLVE CONTACT PROBLEMS IN MECHANICAL SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    陆志华; 叶庆泰

    2004-01-01

    The coupling of the local contact problems between the components and the deformation of the components in the mechanical system were discovered. A series of coordinate systems have been founded to describe the mechanical system with the contact problems. The method of isolating the boundary of contact body from others has been used to describe the constraint between the contacting points. A more generalized static mechanics model of the mechanical system with the contact problems has been founded through the principle of virtual work. As an application, the model was used to study the multi-teeth engagement problems in the inner meshed planet gear systems. The stress distribution of contact gears was got. A test has verified that the static contact model and the computational method are right.

  13. A discrete model to study reaction-diffusion-mechanics systems.

    Science.gov (United States)

    Weise, Louis D; Nash, Martyn P; Panfilov, Alexander V

    2011-01-01

    This article introduces a discrete reaction-diffusion-mechanics (dRDM) model to study the effects of deformation on reaction-diffusion (RD) processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material). Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  14. A discrete model to study reaction-diffusion-mechanics systems.

    Directory of Open Access Journals (Sweden)

    Louis D Weise

    Full Text Available This article introduces a discrete reaction-diffusion-mechanics (dRDM model to study the effects of deformation on reaction-diffusion (RD processes. The dRDM framework employs a FitzHugh-Nagumo type RD model coupled to a mass-lattice model, that undergoes finite deformations. The dRDM model describes a material whose elastic properties are described by a generalized Hooke's law for finite deformations (Seth material. Numerically, the dRDM approach combines a finite difference approach for the RD equations with a Verlet integration scheme for the equations of the mass-lattice system. Using this framework results were reproduced on self-organized pacemaking activity that have been previously found with a continuous RD mechanics model. Mechanisms that determine the period of pacemakers and its dependency on the medium size are identified. Finally it is shown how the drift direction of pacemakers in RDM systems is related to the spatial distribution of deformation and curvature effects.

  15. Integrated Modeling of Advanced Opto-Mechanical Systems

    Science.gov (United States)

    Briggs, Hugh C.; Phillips, Charles J.; Orzewalla, Mathew A.

    2006-01-01

    The design of optical hardware for space applications is particularly challenging when developing high performance, novel systems that have no precedent. Integrated modeling and analysis of such opto-mechanical systems seeks to describe the end-to-end performance of the hardware using mission-relevant metrics. This multidisciplinary analysis might start with thermal disturbances from observation maneuvers, compute the system temperatures, compute the distorted positions and shapes of the hardware and compute the resulting optical performance. Dynamic disturbances such as reaction wheel imbalance or inertia imbalance of optical delay lines might be applied to a structural dynamic model and used in a guidance and control analysis. Mission-relevant science metrics might include wavefront quality, pointing error or imaging stability. Assembling a tool chain that can be both nimble and effective when scaled to the high fidelity models of detail design has been challenging. An integrated thermal, mechanical and optical analysis capability suitable for detail design has been developed and verified through experimental measurement. This capability was used in the design of flight-like breadboard hardware and development of a test apparatus that established both the level of performance of the hardware and the validity of the analysis. The analysis includes prediction of the thermal environment of the test chamber, detailed temperature distributions on the breadboard hardware, fine scale deformations of the optical elements, and computation of the wavefront quality using geometric optics. A battery of tests were conducted to assess the experiment data acquisition, measurement and control system and to establish the performance of the hardware design and accuracy of the integrated modeling. Thermal loads that represent operational observing maneuvers were imposed and the hardware optical performance was measured and compared to analytical predictions.

  16. Reintrepreting the cardiovascular system as a mechanical model

    Science.gov (United States)

    Lemos, Diogo; Machado, José; Minas, Graça; Soares, Filomena; Barros, Carla; Leão, Celina Pinto

    2013-10-01

    The simulation of the different physiological systems is very useful as a pedagogical tool, allowing a better understanding of the mechanisms and the functions of the processes. The observation of the physiological phenomena through mechanical simulators represents a great asset. Furthermore, the development of these simulators allows reinterpreting physiological systems, with the advantage of using the same transducers and sensors that are commonly used in diagnostic and therapeutic cardiovascular procedures for the monitoring of system' parameters. The cardiovascular system is one of the most important systems of the human body and has been the target of several biomedical studies. The present work describes a mechanical simulation of the cardiovascular system, in particularly, the systemic circulation, which can be described in terms of its hemodynamic variables. From the mechanical process and parameters, physiological system's behavior was reproduced, as accurately as possible.

  17. A Review on Mechanical and Hydraulic System Modeling of Excavator Manipulator System

    Directory of Open Access Journals (Sweden)

    Jiaqi Xu

    2016-01-01

    Full Text Available A recent trend in the development of off-highway construction equipment, such as excavators, is to use a system model for model-based system design in a virtual environment. Also, control system design for advanced excavation systems, such as automatic excavators and hybrid excavators, requires system models in order to design and simulate the control systems. Therefore, modeling of an excavator is an important first step toward the development of advanced excavators. This paper reviews results of recent studies on the modeling of mechanical and hydraulic subsystems for the simulation, design, and control development of excavator systems. Kinematic and dynamic modeling efforts are reviewed first. Then, various approaches in the hydraulic system modeling are presented.

  18. Modeling of Task Planning for Multirobot System Using Reputation Mechanism

    Directory of Open Access Journals (Sweden)

    Zhiguo Shi

    2014-01-01

    Full Text Available Modeling of task planning for multirobot system is developed from two parts: task decomposition and task allocation. In the part of task decomposition, the conditions and processes of decomposition are elaborated. In the part of task allocation, the collaboration strategy, the framework of reputation mechanism, and three types of reputations are defined in detail, which include robot individual reputation, robot group reputation, and robot direct reputation. A time calibration function and a group calibration function are designed to improve the effectiveness of the proposed method and proved that they have the characteristics of time attenuation, historical experience related, and newly joined robot reward. Tasks attempt to be assigned to the robot with higher overall reputation, which can help to increase the success rate of the mandate implementation, thereby reducing the time of task recovery and redistribution. Player/Stage is used as the simulation platform, and three biped-robots are established as the experimental apparatus. The experimental results of task planning are compared with the other allocation methods. Simulation and experiment results illustrate the effectiveness of the proposed method for multi-robot collaboration system.

  19. Mechanism-based modeling of complex biomedical systems

    DEFF Research Database (Denmark)

    Mosekilde, Erik; Sosnovtseva, Olga; Holstein-Rathlou, N.-H.

    2005-01-01

    Mechanism-based modeling is an approach in which the physiological, pathological and pharmacological processes of relevance to a given problem are represented as directly as possible. This approach allows us (i) to test whether assumed hypotheses are consistent with observed behaviour, (ii) to ex...

  20. A control strategy for electro-magneto-mechanical system based on virtual system model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Youn; Heo, Hoon [Dept. of Control and Instrumentation Engineering, Korea University, Seoul (Korea, Republic of); Yun, Young Min [TPC Mechatronics Co., Ltd., Incheon (Korea, Republic of)

    2016-09-15

    A new approach to the control of electro-magneto-mechanical system is proposed in this paper. Conventionally, these systems are controlled based on the Maxwell system model via an on-off or PID control technique, which displays acceptable performance in the low frequency region, but not in the high frequency region where position control performance is greatly degraded. In order to improve the performance, a newly developed virtual 2nd order system modeling technique, SSID, is adopted for a complex electro-magnetomechanical system in the study. This technique states that any unknown system exposed to a random disturbance with unknown intensity can be identified in terms of a virtual 2nd order system model via the inverse process of a certain stochastic analysis. As a typical hybrid system, a solenoid valve is used as the target electro-magneto-mechanical system to study the modeling of the virtual 2nd order system. In order to confirm the performance of the proposed control strategy, autotuning PID controller in PWM mode is utilized. Simulations based on the conventional Maxwell system model with control via the bang-bang, autotuning PID, and the proposed virtual 2nd order system model approaches are conducted using MATLAB Simulink. Performance of these three systems in the low and high frequency bands is also compared. The simulation results reveal that the control performance of the virtual 2nd order system model is much improved compared with that of the Maxwell system model under autotuning PID and bang-bang controls in both low and high frequency regions, where the error is drastically reduced to approximately 1/5 of the original value.

  1. Mathematical Modeling of Insurance Mechanisms for E-commerce Systems

    OpenAIRE

    Xie, Hong; Lui, John C. S.

    2015-01-01

    Electronic commerce (a.k.a. E-commerce) systems such as eBay and Taobao of Alibaba are becoming increasingly popular. Having an effective reputation system is critical to this type of internet service because it can assist buyers to evaluate the trustworthiness of sellers, and it can also improve the revenue for reputable sellers and E-commerce operators. We formulate a stochastic model to analyze an eBay-like reputation system and propose four measures to quantify its effectiveness: (1) new ...

  2. Stochastic modeling of friction force and vibration analysis of a mechanical system using the model

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Won Seok; Choi, Chan Kyu; Yoo, Hong Hee [Hanyang University, Seoul (Korea, Republic of)

    2015-09-15

    The squeal noise generated from a disk brake or chatter occurred in a machine tool primarily results from friction-induced vibration. Since friction-induced vibration is usually accompanied by abrasion and lifespan reduction of mechanical parts, it is necessary to develop a reliable analysis model by which friction-induced vibration phenomena can be accurately analyzed. The original Coulomb's friction model or the modified Coulomb friction model employed in most commercial programs employs deterministic friction coefficients. However, observing friction phenomena between two contact surfaces, one may observe that friction coefficients keep changing due to the unevenness of contact surface, temperature, lubrication and humidity. Therefore, in this study, friction coefficients are modeled as random parameters that keep changing during the motion of a mechanical system undergoing friction force. The integrity of the proposed stochastic friction model was validated by comparing the analysis results obtained by the proposed model with experimental results.

  3. Analysis and Application of Mechanical System Reliability Model Based on Copula Function

    Directory of Open Access Journals (Sweden)

    An Hai

    2016-10-01

    Full Text Available There is complicated correlations in mechanical system. By using the advantages of copula function to solve the related issues, this paper proposes the mechanical system reliability model based on copula function. And makes a detailed research for the serial and parallel mechanical system model and gets their reliability function respectively. Finally, the application research is carried out for serial mechanical system reliability model to prove its validity by example. Using Copula theory to make mechanical system reliability modeling and its expectation, studying the distribution of the random variables (marginal distribution of the mechanical product’ life and associated structure of variables separately, can reduce the difficulty of multivariate probabilistic modeling and analysis to make the modeling and analysis process more clearly.

  4. Mechanism of scuffing——a dynamic system model

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Scuffing, a major cause of failure in automobile engines, is considered as a dynamicprocess in this study. Local adhesions may occur randomly in lubricated contacts due to the exis-tence of asperity contact and breakdown of lubricating films. Scuffing would take place if the localevents develop rapidly into a large-scale plastic deformation and catastrophic failure. A systemdynamic established in the present paper allows one to predict dynamic behavior of a tribologicalsystem through numerical solutions of a group of differential equations. A simplified analysis basedon this model confirms that the system will develop into a state of instability if the friction force atthe interface increases with temperature.

  5. Dynamic Modeling and Control of Electromechanical Coupling for Mechanical Elastic Energy Storage System

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2013-01-01

    Full Text Available The structural scheme of mechanical elastic energy storage (MEES system served by permanent magnet synchronous motor (PMSM and bidirectional converters is designed. The aim of the research is to model and control the complex electromechanical system. The mechanical device of the complex system is considered as a node in generalized coordinate system, the terse nonlinear dynamic model of electromechanical coupling for the electromechanical system is constructed through Lagrange-Maxwell energy method, and the detailed deduction of the mathematical model is presented in the paper. The theory of direct feedback linearization (DFL is applied to decouple the nonlinear dynamic model and convert the developed model from nonlinear to linear. The optimal control theory is utilized to accomplish speed tracking control for the linearized system. The simulation results in three different cases show that the proposed nonlinear dynamic model of MEES system is correct; the designed algorithm has a better control performance in contrast with the conventional PI control.

  6. 5th international conference on design and modeling of mechanical systems

    CERN Document Server

    Romdhane, Lotfi; Louati, Jamel; Amara, Abdelmajid

    2013-01-01

    The 5th International Congress on Design and Modeling of Mechanical Systems (CMSM) was held in Djerba, Tunisia on March 25-27, 2013 and followed four previous successful editions, which brought together international experts in the fields of design and modeling of mechanical systems, thus contributing to the exchange of information and skills and leading to a considerable progress in research among the participating teams. The fifth edition of the congress (CMSM´2013), organized by the Unit of Mechanics, Modeling and Manufacturing (U2MP) of the National School of Engineers of Sfax, Tunisia, the Mechanical Engineering Laboratory (MBL) of the National School of Engineers of Monastir, Tunisia and the Mechanics Laboratory of Sousse (LMS) of the National School of Engineers of Sousse, Tunisia, saw a significant increase of the international participation. This edition brought together nearly 300 attendees who exposed their work on the following topics: mechatronics and robotics, dynamics of mechanical systems, fl...

  7. A dynamic systems model of basic developmental mechanisms : Piaget, Vygotsky, and beyond

    NARCIS (Netherlands)

    van Geert, P

    1998-01-01

    A dynamic systems model is proposed on the basis of a general developmental mechanism adopted from the theories of J. Piaget and L. S. Vygotsky, more particularly a mechanism based on the concepts assimilation versus accommodation and actual development versus zone of proximal development. In the

  8. A dynamic systems model of basic developmental mechanisms : Piaget, Vygotsky, and beyond

    NARCIS (Netherlands)

    van Geert, P

    1998-01-01

    A dynamic systems model is proposed on the basis of a general developmental mechanism adopted from the theories of J. Piaget and L. S. Vygotsky, more particularly a mechanism based on the concepts assimilation versus accommodation and actual development versus zone of proximal development. In the mo

  9. Ideas and perspectives: climate-relevant marine biologically driven mechanisms in Earth system models

    Science.gov (United States)

    Hense, Inga; Stemmler, Irene; Sonntag, Sebastian

    2017-01-01

    The current generation of marine biogeochemical modules in Earth system models (ESMs) considers mainly the effect of marine biota on the carbon cycle. We propose to also implement other biologically driven mechanisms in ESMs so that more climate-relevant feedbacks are captured. We classify these mechanisms in three categories according to their functional role in the Earth system: (1) biogeochemical pumps, which affect the carbon cycling; (2) biological gas and particle shuttles, which affect the atmospheric composition; and (3) biogeophysical mechanisms, which affect the thermal, optical, and mechanical properties of the ocean. To resolve mechanisms from all three classes, we find it sufficient to include five functional groups: bulk phyto- and zooplankton, calcifiers, and coastal gas and surface mat producers. We strongly suggest to account for a larger mechanism diversity in ESMs in the future to improve the quality of climate projections.

  10. Computational modeling of chemo-bio-mechanical coupling: a systems-biology approach toward wound healing.

    Science.gov (United States)

    Buganza Tepole, A; Kuhl, E

    2016-01-01

    Wound healing is a synchronized cascade of chemical, biological, and mechanical phenomena, which act in concert to restore the damaged tissue. An imbalance between these events can induce painful scarring. Despite intense efforts to decipher the mechanisms of wound healing, the role of mechanics remains poorly understood. Here, we establish a computational systems biology model to identify the chemical, biological, and mechanical mechanisms of scar formation. First, we introduce the generic problem of coupled chemo-bio-mechanics. Then, we introduce the model problem of wound healing in terms of a particular chemical signal, inflammation, a particular biological cell type, fibroblasts, and a particular mechanical model, isotropic hyperelasticity. We explore the cross-talk between chemical, biological, and mechanical signals and show that all three fields have a significant impact on scar formation. Our model is the first step toward rigorous multiscale, multifield modeling in wound healing. Our formulation has the potential to improve effective wound management and optimize treatment on an individualized patient-specific basis.

  11. Modelling of Nonlinear Dynamic of Mechanic Systems with the Force Tribological Interaction

    Directory of Open Access Journals (Sweden)

    K.A. Nuzhdin

    2015-09-01

    Full Text Available This paper considers the mechanisms with different structure: tribometric device and a mechanism for handling of optical glasses. In the first device, the movement of the upper platform is due to a reciprocating friction interaction. In the second device, the processing of the optical element or group of elements occurs due to the rotational motion. Modelling of the dynamic of these systems with Matlab/Simmechanic allowed carrying out the analysis of dynamic of mechanisms, considering nonlinearity tribological interactions for these systems. The article shows that using of the computer models can effectively carry out the selection of the control parameters to create the desired mode of operation, as well as to investigate the behaviour of systems with nonlinear parameters and processes of self-oscillations. The organization of the managed self-oscillation process is realized to create the relevant high-performance manufacturing, for example, for the processing of optical glasses.

  12. Simplifications in modelling of dynamical response of coupled electro-mechanical system

    Science.gov (United States)

    Darula, Radoslav; Sorokin, Sergey

    2016-12-01

    The choice of a most suitable model of an electro-mechanical system depends on many variables, such as a scale of the system, type and frequency range of its operation, or power requirements. The article focuses on the model of the electromagnetic element used in passive regime (no feedback loops are assumed) and a general lumped parameter model (a conventional mass-spring-damper system coupled to an electric circuit consisting of a resistance, an inductance and a capacitance) is compared with its simplified version, where the full RLC circuit is replaced with its RL simplification, i.e. the capacitance of the electric system is neglected and just its inductance and the resistance are considered. From the comparison of dynamical responses of these systems, the range of applicability of a simplified model is assessed for free as well as forced vibration.

  13. Controlling fractional order chaotic systems based on Takagi-Sugeno fuzzy model and adaptive adjustment mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yongai, E-mail: zhengyongai@163.co [Department of Computer, Yangzhou University, Yangzhou, 225009 (China); Nian Yibei [School of Energy and Power Engineering, Yangzhou University, Yangzhou, 225009 (China); Wang Dejin [Department of Computer, Yangzhou University, Yangzhou, 225009 (China)

    2010-12-01

    In this Letter, a kind of novel model, called the generalized Takagi-Sugeno (T-S) fuzzy model, is first developed by extending the conventional T-S fuzzy model. Then, a simple but efficient method to control fractional order chaotic systems is proposed using the generalized T-S fuzzy model and adaptive adjustment mechanism (AAM). Sufficient conditions are derived to guarantee chaos control from the stability criterion of linear fractional order systems. The proposed approach offers a systematic design procedure for stabilizing a large class of fractional order chaotic systems from the literature about chaos research. The effectiveness of the approach is tested on fractional order Roessler system and fractional order Lorenz system.

  14. A mesh-free mechanical model of the upper gastrointestinal system.

    Science.gov (United States)

    Gastélum, Alfonso; Mosso, Jose L; Delmas, Patrice; Márquez, Jorge

    2008-01-01

    Realistic behavior in Computer Simulation of biological system (e.g. humans organs) is essential to 3D modeling in medicine. In order to improve realistic responses of 3D organ model it is essential to use mechanical models that can deal with multiple objects internal and external interactions in a reasonable time frame. We will apply the Smooth Particles Hydrodynamics (SPH) to model the esophagus and the stomach, thus constructing a physical background for interaction. We used a multilayer model of particles related to a single triangle mesh. Each particle layers represent distinct biological tissues of the esophagus and the stomach.

  15. Modeling Mechanical and Electrical Uncertain Systems using Functions of Robust Control MATLAB Toolbox®3

    Directory of Open Access Journals (Sweden)

    Mohammed Tawfik Hussein

    2015-04-01

    Full Text Available Uncertainty is inherent property of all real life control systems, and this is due to that there is nothing constant practically; all parameters are going to change under some environmental circumstances, therefore control engineers must not ignore this changing since it can affect the behavior and the performance of the system. In this paper a critical research method for modeling uncertain systems is demonstrated with the utilization of built in robust control Matlab Toolbox®3 functions. Good results were obtained for testing the stability of interval linear time invariant systems. Finally mechanical and electrical uncertain systems were implemented as practical example to validate the uncertainty.

  16. Feeding Behavior of Aplysia: A Model System for Comparing Cellular Mechanisms of Classical and Operant Conditioning

    Science.gov (United States)

    Baxter, Douglas A.; Byrne, John H.

    2006-01-01

    Feeding behavior of Aplysia provides an excellent model system for analyzing and comparing mechanisms underlying appetitive classical conditioning and reward operant conditioning. Behavioral protocols have been developed for both forms of associative learning, both of which increase the occurrence of biting following training. Because the neural…

  17. State-Space Modeling, System Identification and Control of a 4th Order Rotational Mechanical System

    Science.gov (United States)

    2009-12-01

    state-space form. Identification of the state-space parameters was accomplished using the parameter estimation function in Matlab’s System ... Identification Toolbox utilizing experimental input/output data. The identified model was then constructed in Simulink and the accuracy of the identified model

  18. Barrier Lyapunov function-based model-free constraint position control for mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seong Ik; Ha, Hyun Uk; Lee, Jang Myung [Pusan National University, Busan (Korea, Republic of)

    2016-07-15

    In this article, a motion constraint control scheme is presented for mechanical systems without a modeling process by introducing a barrier Lyapunov function technique and adaptive estimation laws. The transformed error and filtered error surfaces are defined to constrain the motion tracking error in the prescribed boundary layers. Unknown parameters of mechanical systems are estimated using adaptive laws derived from the Lyapunov function. Then, robust control used the conventional sliding mode control, which give rise to excessive chattering, is changed to finite time-based control to alleviate undesirable chattering in the control action and to ensure finite-time error convergence. Finally, the constraint controller from the barrier Lyapunov function is designed and applied to the constraint of the position tracking error of the mechanical system. Two experimental examples for the XY table and articulated manipulator are shown to evaluate the proposed control scheme.

  19. A novel approach of testability modeling and analysis for PHM systems based on failure evolution mechanism

    Institute of Scientific and Technical Information of China (English)

    Tan Xiaodong; Qiu Jing; Liu Guanjun; Lv Kehong; Yang Shuming; Wang Chao

    2013-01-01

    Prognostics and health management (PHM) significantly improves system availability and reliability,and reduces the cost of system operations.Design for testability (DFT) developed concurrently with system design is an important way to improve PHM capability.Testability modeling and analysis are the foundation of DFT.This paper proposes a novel approach of testability modeling and analysis based on failure evolution mechanisms.At the component level,the fault progression-related information of each unit under test (UUT) in a system is obtained by means of failure modes,evolution mechanisms,effects and criticality analysis (FMEMECA),and then the failure-symptom dependency can be generated.At the system level,the dynamic attributes of UUTs are assigned by using the bond graph methodology,and then the symptom-test dependency can be obtained by means of the functional flow method.Based on the failure-symptom and symptom-test dependencies,testability analysis for PHM systems can be realized.A shunt motor is used to verify the application of the approach proposed in this paper.Experimental results show that this approach is able to be applied to testability modeling and analysis for PHM systems very well,and the analysis results can provide a guide for engineers to design for testability in order to improve PHM performance.

  20. Residual stresses in coating-based systems, part Ⅰ:Mechanisms and analytical modeling

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiancheng; WU Yixiong; XU Binshi; WANG Haidou

    2007-01-01

    Thin films and multi-layered coatings comprised of different classes of materials are often used for various fimctional devices. The thermo-mechanical integrity of these systems is becoming a major concern and is strongly related to the residual stresses because of the fabrication processes. In this paper, the sources of the residual stresses in the coating-based systems and the concept of"misfit strain" were briefly reviewed. Analytical models were developed to predict the residual stresses in multi-layered film structures or coating-based systems using the force and moment balances. In addition, the residual stress distributions in the functionally and compositionally graded coatings were also analyzed.

  1. Gradient systems and mechanical systems

    Institute of Scientific and Technical Information of China (English)

    Fengxiang Mei; Huibin Wu

    2016-01-01

    All types of gradient systems and their properties are discussed. Two problems connected with gradient sys-tems and mechanical systems are studied. One is the direct problem of transforming a mechanical system into a gradi-ent system, and the other is the inverse problem, which is transforming a gradient system into a mechanical system.

  2. Modeling of a Micro-Electronic Mechanical Systems (MEMS) Deformable Mirror for Simulation and Characterization

    Science.gov (United States)

    2016-09-01

    25  B.  MODEL USER APPLICABILITY ........................................................29  V.  CONCLUSION AND FUTURE WORK...this research, as it is the most complex mirror type. This device is composed of two mechanical systems: an array of actuations and a non- linear ...3.5) Equation (3.5) can be adapted into an algebraic expression in order to solve for the plate

  3. Estimation of trunk mechanical properties using system identification: effects of experimental setup and modelling assumptions.

    Science.gov (United States)

    Bazrgari, Babak; Nussbaum, Maury A; Madigan, Michael L

    2012-01-01

    The use of system identification to quantify trunk mechanical properties is growing in biomechanics research. The effects of several experimental and modelling factors involved in the system identification of trunk mechanical properties were investigated. Trunk kinematics and kinetics were measured in six individuals when exposed to sudden trunk perturbations. Effects of motion sensor positioning and properties of elements between the perturbing device and the trunk were investigated by adopting different models for system identification. Results showed that by measuring trunk kinematics at a location other than the trunk surface, the deformation of soft tissues is erroneously included into trunk kinematics and results in the trunk being predicted as a more damped structure. Results also showed that including elements between the trunk and the perturbing device in the system identification model did not substantially alter model predictions. Other important parameters that were found to substantially affect predictions were the cut-off frequency used when low-pass filtering raw data and the data window length used to estimate trunk properties.

  4. Modeling of the bacterial mechanism of methicillin-resistance by a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Ida Autiero

    Full Text Available BACKGROUND: A microorganism is a complex biological system able to preserve its functional features against external perturbations and the ability of the living systems to oppose to these external perturbations is defined "robustness". The antibiotic resistance, developed by different bacteria strains, is a clear example of robustness and of ability of the bacterial system to acquire a particular functional behaviour in response to environmental changes. In this work we have modeled the whole mechanism essential to the methicillin-resistance through a systems biology approach. The methicillin is a beta-lactamic antibiotic that act by inhibiting the penicillin-binding proteins (PBPs. These PBPs are involved in the synthesis of peptidoglycans, essential mesh-like polymers that surround cellular enzymes and are crucial for the bacterium survival. METHODOLOGY: The network of genes, mRNA, proteins and metabolites was created using CellDesigner program and the data of molecular interactions are stored in Systems Biology Markup Language (SBML. To simulate the dynamic behaviour of this biochemical network, the kinetic equations were associated with each reaction. CONCLUSIONS: Our model simulates the mechanism of the inactivation of the PBP by methicillin, as well as the expression of PBP2a isoform, the regulation of the SCCmec elements (SCC: staphylococcal cassette chromosome and the synthesis of peptidoglycan by PBP2a. The obtained results by our integrated approach show that the model describes correctly the whole phenomenon of the methicillin resistance and is able to respond to the external perturbations in the same way of the real cell. Therefore, this model can be useful to develop new therapeutic approaches for the methicillin control and to understand the general mechanism regarding the cellular resistance to some antibiotics.

  5. Hybrid Quantum Mechanics/Molecular Mechanics/Coarse Grained Modeling: A Triple-Resolution Approach for Biomolecular Systems.

    Science.gov (United States)

    Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa

    2015-04-14

    We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.

  6. The bond graph model of planar flexible multibody mechanical systems and its dynamic principle

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to increase the efficiency and reliability of the dynamic analysis for flexible planar linkage containing the coupling of multi-energy domains, a method based on bond graph is introduced. From the viewpoint of power conservation, the peculiar property of bond graph multiport element MTF is discussed. The procedure of modeling planar flexible multibody mechanical systems by bond graphs and its dynamic principle are described. To overcome the algebraic difficulty brought by differential causality and nonlinear junction structure, the constraint forces at joints can be considered as unknown effort sources and added to the corresponding O-junctions of system bond graph model. As a result, the automatic modeling on a computer is realized. The validity of the procedure is illustrated by a practical example.

  7. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    Directory of Open Access Journals (Sweden)

    Najl V Valeyev

    Full Text Available Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  8. Model systems to unravel the molecular mechanisms of heavy metal tolerance in the ericoid mycorrhizal symbiosis.

    Science.gov (United States)

    Daghino, Stefania; Martino, Elena; Perotto, Silvia

    2016-05-01

    Ericoid mycorrhizal plants dominate in harsh environments where nutrient-poor, acidic soil conditions result in a higher availability of potentially toxic metals. Although metal-tolerant plant species and ecotypes are known in the Ericaceae, metal tolerance in these plants has been mainly attributed to their association with ericoid mycorrhizal fungi. The mechanisms underlying plant protection by the fungal symbiont are poorly understood, whereas some insights have been achieved regarding the molecular mechanisms of heavy metal tolerance in the fungal symbiont. This review will briefly introduce the general features of heavy metal tolerance in mycorrhizal fungi and will then focus on the use of "omics" approaches and heterologous expression in model organisms to reveal the molecular bases of fungal response to heavy metals. Functional complementation in Saccharomyces cerevisiae has allowed the identification of several ericoid mycorrhizal fungi genes (i.e., antioxidant enzymes, metal transporters, and DNA damage repair proteins) that may contribute to metal tolerance in a metal-tolerant ericoid Oidiodendron maius isolate. Although a powerful system, the use of the yeast complementation assay to study metal tolerance in mycorrhizal symbioses has limitations. Thus, O. maius has been developed as a model system to study heavy metal tolerance mechanisms in mycorrhizal fungi, thanks to its high metal tolerance, easy handling and in vitro mycorrhization, stable genetic transformation, genomics, transcriptomic and proteomic resources.

  9. Optimal Determination of Respiratory Airflow Patterns Using a Nonlinear Multicompartment Model for a Lung Mechanics System

    Directory of Open Access Journals (Sweden)

    Hancao Li

    2012-01-01

    Full Text Available We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles.

  10. Optimal determination of respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system.

    Science.gov (United States)

    Li, Hancao; Haddad, Wassim M

    2012-01-01

    We develop optimal respiratory airflow patterns using a nonlinear multicompartment model for a lung mechanics system. Specifically, we use classical calculus of variations minimization techniques to derive an optimal airflow pattern for inspiratory and expiratory breathing cycles. The physiological interpretation of the optimality criteria used involves the minimization of work of breathing and lung volume acceleration for the inspiratory phase, and the minimization of the elastic potential energy and rapid airflow rate changes for the expiratory phase. Finally, we numerically integrate the resulting nonlinear two-point boundary value problems to determine the optimal airflow patterns over the inspiratory and expiratory breathing cycles.

  11. System analysis with improved thermo-mechanical fuel rod models for modeling current and advanced LWR materials in accident scenarios

    Science.gov (United States)

    Porter, Ian Edward

    A nuclear reactor systems code has the ability to model the system response in an accident scenario based on known initial conditions at the onset of the transient. However, there has been a tendency for these codes to lack the detailed thermo-mechanical fuel rod response models needed for accurate prediction of fuel rod failure. This proposed work will couple today's most widely used steady-state (FRAPCON) and transient (FRAPTRAN) fuel rod models with a systems code TRACE for best-estimate modeling of system response in accident scenarios such as a loss of coolant accident (LOCA). In doing so, code modifications will be made to model gamma heating in LWRs during steady-state and accident conditions and to improve fuel rod thermal/mechanical analysis by allowing axial nodalization of burnup-dependent phenomena such as swelling, cladding creep and oxidation. With the ability to model both burnup-dependent parameters and transient fuel rod response, a fuel dispersal study will be conducted using a hypothetical accident scenario under both PWR and BWR conditions to determine the amount of fuel dispersed under varying conditions. Due to the fuel fragmentation size and internal rod pressure both being dependent on burnup, this analysis will be conducted at beginning, middle and end of cycle to examine the effects that cycle time can play on fuel rod failure and dispersal. Current fuel rod and system codes used by the Nuclear Regulatory Commission (NRC) are compilations of legacy codes with only commonly used light water reactor materials, Uranium Dioxide (UO2), Mixed Oxide (U/PuO 2) and zirconium alloys. However, the events at Fukushima Daiichi and Three Mile Island accident have shown the need for exploration into advanced materials possessing improved accident tolerance. This work looks to further modify the NRC codes to include silicon carbide (SiC), an advanced cladding material proposed by current DOE funded research on accident tolerant fuels (ATF). Several

  12. AUTOPILOT-BT: a system for knowledge and model based mechanical ventilation.

    Science.gov (United States)

    Lozano, S; Möller, K; Brendle, A; Gottlieb, D; Schumann, S; Stahl, C A; Guttmann, J

    2008-01-01

    A closed-loop system (AUTOPILOT-BT) for the control of mechanical ventilation was designed to: 1) autonomously achieve goals specified by the clinician, 2) optimize the ventilator settings with respect to the underlying disease and 3) automatically adapt to the individual properties and specific disease status of the patient. The current realization focuses on arterial oxygen saturation (SpO(2)), end-tidal CO(2) pressure (P(et)CO(2)), and positive end-expiratory pressure (PEEP) maximizing respiratory system compliance (C(rs)). The "AUTOPILOT-BT" incorporates two different knowledge sources: a fuzzy logic control reflecting expert knowledge and a mathematical model based system that provides individualized patient specific information. A first evaluation test with respect to desired end-tidal-CO(2)-level was accomplished using an experimental setup to simulate three different metabolic CO(2) production rates by means of a physical lung simulator. The outcome of ventilator settings made by the "AUTOPILOT-BT" system was compared to those produced by clinicians. The model based control system proved to be superior to the clinicians as well as to a pure fuzzy logic based control with respect to precision and required settling time into the optimal ventilation state.

  13. The mechanisms of North Atlantic CO2 uptake in a large Earth System Model ensemble

    Directory of Open Access Journals (Sweden)

    P. R. Halloran

    2014-10-01

    vary rapidly. Given the importance of this sink and its apparent variability, it is critical that we understand the mechanisms behind its operation. Here we explore subpolar North Atlantic CO2 uptake across a large ensemble of Earth System Model simulations, and find that models show a peak in sink strength around the middle of the century after which CO2 uptake begins to decline. We identify different drivers of change on interannual and multidecadal timescales. Short-term variability appears to be driven by fluctuations in regional seawater temperature and alkalinity, whereas the longer-term evolution throughout the coming century is largely occurring through a counterintuitive response to rising atmospheric CO2 concentrations. At high atmospheric CO2 concentrations the contrasting Ravelle factors between the subtropical and subpolar gyres, combined with the transport of surface waters from the subtropical to subpolar gyre, means that the subpolar CO2 uptake capacity is largely satisfied from its southern boundary rather than through air–sea CO2 flux. Our findings indicate that: (i we can explain the mechanisms of subpolar North Atlantic CO2 uptake variability across a broad range of Earth System Models, (ii a focus on understanding the mechanisms behind contemporary variability may not directly tell us about how the sink will change in the future, (iii to identify long-term change in the North Atlantic CO2 sink we should focus observational resources on monitoring subtropical as well as the subpolar seawater CO2, (iv recent observations of a weakening subpolar North Atlantic CO2 sink suggests that the sink strength is already in long-term decline.

  14. On the integration of the baroreflex control mechanism in a heterogeneous model of the cardiovascular system.

    Science.gov (United States)

    Blanco, P J; Trenhago, P R; Fernandes, L G; Feijóo, R A

    2012-04-01

    The aim of the present work is to describe the integration of a mathematical model for the baroreceptor reflex mechanism to provide regulatory action into a dimensionally heterogeneous (3D-1D-0D) closed-loop model of the cardiovascular system. Such heterogeneous model comprises a 1D description of the arterial tree, a 0D network for the venous, cardiac and pulmonary circulations and 3D patient-specific geometries for vascular districts of interest. Thus, the detailed topological description of the arterial network allows us to perform vasomotor control actions in a differentiated way, while gaining insight about the effects of the baroreflex regulation over hemodynamic quantities of interest throughout the entire network. Two examples of application are presented. Firstly, we simulate the hemorrhage in the abdominal aorta artery and analyze the action of the baroreflex over the system. Secondly, the self-regulated closed-loop model is applied to study the influence of the control action in the hemodynamic environment that determines the blood flow pattern in a cerebral aneurism in the presence of a regurgitating aortic valve.

  15. Solutions Stability of Initial Boundary Problem, Modeling of Dynamics of Some Discrete Continuum Mechanical System

    Directory of Open Access Journals (Sweden)

    D. A. Eliseev

    2015-01-01

    Full Text Available The solution stability of an initial boundary problem for a linear hybrid system of differential equations, which models the rotation of a rigid body with two elastic rods located in the same plane is studied in the paper. To an axis passing through the mass center of the rigid body perpendicularly to the rods location plane is applied the stabilizing moment proportional to the angle of the system rotation, derivative of the angle, integral of the angle. The external moment provides a feedback. A method of studying the behavior of solutions of the initial boundary problem is proposed. This method allows to exclude from the hybrid system of differential equations partial differential equations, which describe the dynamics of distributed elements of a mechanical system. It allows us to build one equation for an angle of the system rotation. Its characteristic equation defines the stability of solutions of all the system. In the space of feedback-coefficients the areas that provide the asymptotic stability of solutions of the initial boundary problem are built up.

  16. Semiclassical modeling of quantum-mechanical multiparticle systems using parallel particle-in-cell methods

    Science.gov (United States)

    Dauger, Dean Edward

    2001-08-01

    We are successful in building a code that models many particle dynamic quantum systems by combining a semiclassical approximation of Feynman path integrals with parallel computing techniques (particle-in-cell) and numerical methods developed for simulating plasmas, establishing this approach as a viable technique for multiparticle time-dependent quantum mechanics. Run on high-performance parallel computers, this code applies semiclassical methods to simulate the time evolution of wavefunctions of many particles. We describe the analytical derivation and computational implementation of these techniques in detail. We present a study to thoroughly demonstrate the code's fidelity to quantum mechanics, resulting in innovative visualization and analysis techniques. We introduce and exhibit a method to address fermion particle statistics. We present studies of two quantum-mechanical problems: a two-electron, one- dimensional atom, resulting in high-quality extractions of one- and two-electron eigenstates, and electrostatic quasi-modes due to quantum effects in a hot electron plasma, relevant for predictions about stellar evolution. We supply discussions of alternative derivations, alternative implementations of the derivations, and an exploration of their consequences. Source code is shown throughout this dissertation. Finally, we present an extensive discussion of applications and extrapolations of this work, with suggestions for future direction.

  17. An automatic modeling system of the reaction mechanisms for chemical vapor deposition processes using real-coded genetic algorithms.

    Science.gov (United States)

    Takahashi, Takahiro; Nakai, Hiroyuki; Kinpara, Hiroki; Ema, Yoshinori

    2011-09-01

    The identification of appropriate reaction models is very helpful for developing chemical vapor deposition (CVD) processes. In this study, we have developed an automatic system to model reaction mechanisms in the CVD processes by analyzing the experimental results, which are cross-sectional shapes of the deposited films on substrates with micrometer- or nanometer-sized trenches. We designed the inference engine to model the reaction mechanism in the system by the use of real-coded genetic algorithms (RCGAs). We studied the dependence of the system performance on two methods using simple genetic algorithms (SGAs) and the RCGAs; the one involves the conventional GA operators and the other involves the blend crossover operator (BLX-alpha). Although we demonstrated that the systems using both the methods could successfully model the reaction mechanisms, the RCGAs showed the better performance with respect to the accuracy and the calculation cost for identifying the models.

  18. Excited electronic state decomposition mechanisms and dynamics of nitramine energetic materials and model systems

    Science.gov (United States)

    Greenfield, Margo

    Energetic materials play an important role in aeronautics, the weapon industry, and the propellant industry due to their broad applications as explosives and fuels. RDX (1,3,5-trinitrohexahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) are compounds which contain high energy density. Although RDX and HMX have been studied extensively over the past several decades a complete understanding of their decomposition mechanisms and dynamics is unknown. Time of flight mass spectroscopy (TOFMS) UV photodissociation (ns) experiments of gas phase RDX, HMX, and CL-20 generate the NO molecule as the initial decomposition product. Four different vibronic transitions of the initial decomposition product, the NO molecule, are observed: A2Sigma(upsilon'=0)←X 2pi(upsilon"=0,1,2,3). Simulations of the rovibronic intensities for the A←X transitions demonstrate that NO dissociated from RDX, HMX, and CL-20 is rotationally cold (˜20 K) and vibrationally hot (˜1800 K). Conversely, experiments on the five model systems (nitromethane, dimethylnitramine (DMNA), nitropyrrolidine, nitropiperidine and dinitropiperazine) produce rotationally hot and vibrationally cold spectra. Laser induced fluorescence (LIF) experiments are performed to rule out the possible decomposition product OH, generated along with NO, perhaps from the suggested HONO elimination mechanism. The OH radical is not observed in the fluorescence experiments, indicating the HONO decomposition intermediate is not an important pathway for the excited electronic state decomposition of cyclic nitramines. The NO molecule is also employed to measure the dynamics of the excited state decomposition. A 226 nm, 180 fs light pulse is utilized to photodissociate the gas phase systems. Stable ion states of DMNA and nitropyrrolidine are observed while the energetic materials and remaining model systems present the NO molecule as the only

  19. Computer-based Creativity Enhanced Conceptual Design Model for Non-routine Design of Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    LI Yutong; WANG Yuxin; DUFFY Alex H B

    2014-01-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  20. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    Science.gov (United States)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  1. Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies

    Directory of Open Access Journals (Sweden)

    Jean-Paul Lasserre

    2015-06-01

    Full Text Available Mitochondrial diseases are severe and largely untreatable. Owing to the many essential processes carried out by mitochondria and the complex cellular systems that support these processes, these diseases are diverse, pleiotropic, and challenging to study. Much of our current understanding of mitochondrial function and dysfunction comes from studies in the baker's yeast Saccharomyces cerevisiae. Because of its good fermenting capacity, S. cerevisiae can survive mutations that inactivate oxidative phosphorylation, has the ability to tolerate the complete loss of mitochondrial DNA (a property referred to as ‘petite-positivity’, and is amenable to mitochondrial and nuclear genome manipulation. These attributes make it an excellent model system for studying and resolving the molecular basis of numerous mitochondrial diseases. Here, we review the invaluable insights this model organism has yielded about diseases caused by mitochondrial dysfunction, which ranges from primary defects in oxidative phosphorylation to metabolic disorders, as well as dysfunctions in maintaining the genome or in the dynamics of mitochondria. Owing to the high level of functional conservation between yeast and human mitochondrial genes, several yeast species have been instrumental in revealing the molecular mechanisms of pathogenic human mitochondrial gene mutations. Importantly, such insights have pointed to potential therapeutic targets, as have genetic and chemical screens using yeast.

  2. Modeling Multi-Mobile Agents System Based on Coalition Signature Mechanism Using UML

    Institute of Scientific and Technical Information of China (English)

    SUNZhixin; HUANGHaiping; WANGRuchuan

    2004-01-01

    With the development of electronic commerce and agent techniques, multi-mobile agents cooperation can not only improve the efficiency of electronic business trade, but more importantly, it has a comprehensive applicative value in solving the security issues of mobile agent system. This paper firstly describes the mechanism of multi-mobile agents coalition signature aiming at the system security. Subsequently it brings forward a basic architecture of Multi-mobile agents system (MMAS) based on the design pattern of multi-mobile agents. The paper uses the diagrs_rn of UML, such as use case diagram, class diagram and sequence diagram to build the detailed model of the coalition signature and multi-mobile agents cooperation results. Through security analysis, we find that multimobile agents cooperation and interaction can solve some security problems of mobile agents in transfer, and also it can improve the efficiency of business trade. These results indicate that MMAS has a high security performance and can be widely used in E-commerce trade.

  3. A structuring mechanism for embedded control systems using co-modelling and co-simulation

    NARCIS (Netherlands)

    Zhang, Xiaochen; Broenink, Jan F.

    2012-01-01

    In most embedded control system (ECS) designs, multiple engineering disciplines and various domain-specific models are involved, such as embedded software models in discrete-event (DE) domain and dynamic plant model in continuous-time (CT) domain. In this paper, we advocate collaborative modelling a

  4. Deep geothermal systems interpreted by coupled thermo-hydraulic-mechanical-chemical numerical modeling

    Science.gov (United States)

    Peters, Max; Lesueur, Martin; Held, Sebastian; Poulet, Thomas; Veveakis, Manolis; Regenauer-Lieb, Klaus; Kohl, Thomas

    2017-04-01

    The dynamic response of the geothermal reservoirs of Soultz-sous-Forêts (NE France) and a new site in Iceland are theoretically studied upon fluid injection and production. Since the Soultz case can be considered the most comprehensive project in the area of enhanced geothermal systems (EGS), it is tailored for the testing of forward modeling techniques that aim at the characterization of fluid dynamics and mechanical properties in any deeply-seated fractured cystalline reservoir [e.g. Held et al., 2014]. We present multi-physics finite element models using the recently developed framework MOOSE (mooseframework.org) that implicitly consider fully-coupled feedback mechanisms of fluid-rock interaction at depth where EGS are located (depth > 5 km), i.e. the effects of dissipative strain softening on chemical reactions and reactive transport [Poulet et al., 2016]. In a first suite of numerical experiments, we show that an accurate simulation of propagation fronts allows studying coupled fluid and heat transport, following preferred pathways, and the transport time of the geothermal fluid between injection and production wells, which is in good agreement with tracer experiments performed inside the natural reservoir. Based on induced seismicity experiments and related damage along boreholes, we concern with borehole instabilities resulting from pore pressure variations and (a)seismic creep in a second series of simulations. To this end, we account for volumetric and deviatoric components, following the approach of Veveakis et al. (2016), and discuss the mechanisms triggering slow earthquakes in the stimulated reservoirs. Our study will allow applying concepts of unconventional geomechanics, which were previously reviewed on a theoretical basis [Regenauer-Lieb et al., 2015], to substantial engineering problems of deep geothermal reservoirs in the future. REFERENCES Held, S., Genter, A., Kohl, T., Kölbel, T., Sausse, J. and Schoenball, M. (2014). Economic evaluation of

  5. Agent autonomy approach to probabilistic physics-of-failure modeling of complex dynamic systems with interacting failure mechanisms

    Science.gov (United States)

    Gromek, Katherine Emily

    A novel computational and inference framework of the physics-of-failure (PoF) reliability modeling for complex dynamic systems has been established in this research. The PoF-based reliability models are used to perform a real time simulation of system failure processes, so that the system level reliability modeling would constitute inferences from checking the status of component level reliability at any given time. The "agent autonomy" concept is applied as a solution method for the system-level probabilistic PoF-based (i.e. PPoF-based) modeling. This concept originated from artificial intelligence (AI) as a leading intelligent computational inference in modeling of multi agents systems (MAS). The concept of agent autonomy in the context of reliability modeling was first proposed by M. Azarkhail [1], where a fundamentally new idea of system representation by autonomous intelligent agents for the purpose of reliability modeling was introduced. Contribution of the current work lies in the further development of the agent anatomy concept, particularly the refined agent classification within the scope of the PoF-based system reliability modeling, new approaches to the learning and the autonomy properties of the intelligent agents, and modeling interacting failure mechanisms within the dynamic engineering system. The autonomous property of intelligent agents is defined as agent's ability to self-activate, deactivate or completely redefine their role in the analysis. This property of agents and the ability to model interacting failure mechanisms of the system elements makes the agent autonomy fundamentally different from all existing methods of probabilistic PoF-based reliability modeling. 1. Azarkhail, M., "Agent Autonomy Approach to Physics-Based Reliability Modeling of Structures and Mechanical Systems", PhD thesis, University of Maryland, College Park, 2007.

  6. The Conceptual Mechanism for Viable Organizational Learning Based on Complex System Theory and the Viable System Model

    Science.gov (United States)

    Sung, Dia; You, Yeongmahn; Song, Ji Hoon

    2008-01-01

    The purpose of this research is to explore the possibility of viable learning organizations based on identifying viable organizational learning mechanisms. Two theoretical foundations, complex system theory and viable system theory, have been integrated to provide the rationale for building the sustainable organizational learning mechanism. The…

  7. Modeling of magneto-mechanical response of magnetorheological elastomers (MRE) and MRE-based systems: a review

    Science.gov (United States)

    Asun Cantera, M.; Behrooz, Majid; Gibson, Ronald F.; Gordaninejad, Faramarz

    2017-02-01

    This article is a review of models that capture the magneto-mechanical response of magnetorheological elastomers (MREs) and MRE-based systems. Where available, experimental validations of models are also discussed. The models are categorized as either particle interaction-based, magnetoelastic response-based, magnetoviscoelastic response-based, or models including the effects of environmental conditions and fatigue. Analytical, numerical, finite element, and phenomenological investigations that explore changes in stiffness and damping of anisotropic MREs are reviewed. Phenomenological models of MRE systems used in different applications are also examined.

  8. Can percolation model describe the evolution of mechanical properties of compacts of binary systems?

    Science.gov (United States)

    Evesque, Pierre; Busignies, Virginie; Porion, Patrice; Leclerc, Bernard; Tchoreloff, Pierre

    2009-06-01

    In pharmaceutical field, the percolation theory is used to describe the change of tablet's properties with the relative density. It defines critical tablet densities from which the mechanical properties start to change. The exponent in the law is expected to be universal for a mechanical property and numerical values are proposed in the literature. In this work, the percolation model was applied to the tensile strength and the reduced modulus of elasticity of three compacted pharmaceutical excipients. This work showed that the exponent seems not universal and that the model must be used carefully.

  9. Competing mechanisms for perfluoroalkyl acid accumulation in plants revealed using an Arabidopsis model system.

    Science.gov (United States)

    Müller, Claudia E; LeFevre, Gregory H; Timofte, Anca E; Hussain, Fatima A; Sattely, Elizabeth S; Luthy, Richard G

    2016-05-01

    Perfluoroalkyl acids (PFAAs) bioaccumulate in plants, presenting a human exposure route if present in irrigation water. Curiously, accumulation of PFAAs in plant tissues is greatest for both the short-chain and long-chain PFAAs, generating a U-shaped relationship with chain length. In the present study, the authors decouple competing mechanisms of PFAA accumulation using a hydroponic model plant system (Arabidopsis thaliana) exposed to a suite of 10 PFAAs to determine uptake, depuration, and translocation kinetics. Rapid saturation of root concentrations occurred for all PFAAs except perfluorobutanoate, the least-sorptive (shortest-chain) PFAA. Shoot concentrations increased continuously, indicating that PFAAs are efficiently transported and accumulate in shoots. Tissue concentrations of PFAAs during depuration rapidly declined in roots but remained constant in shoots, demonstrating irreversibility of the translocation process. Root and shoot concentration factors followed the U-shaped trend with perfluoroalkyl chain length; however, when normalized to dead-tissue sorption, this relationship linearized. The authors therefore introduce a novel term, the "sorption normalized concentration factor," to describe PFAA accumulation in plants; because of their hydrophobicity, sorption is the determining factor for long-chain PFAAs, whereas the shortest-chain PFAAs are most effectively transported in the plant. The present study provides a mechanistic explanation for previously unexplained PFAA accumulation trends in plants and suggests that shorter-chained PFAAs may bioaccumulate more readily in edible portions.

  10. An influence of the stepping motor control and friction models on precise positioning of the complex mechanical system

    Science.gov (United States)

    Konowrocki, Robert; Szolc, Tomasz; Pochanke, Andrzej; Pręgowska, Agnieszka

    2016-03-01

    This paper aims to investigate, both experimentally and theoretically, the electromechanical dynamic interaction between a driving stepping motor and a driven laboratory belt-transporter system. A test-rig imitates the operation of a robotic device in the form of a working tool-carrier under translational motion. The object under consideration is equipped with measurement systems, which enable the registration of electrical and mechanical quantities. Analytical considerations are performed by means of a circuit model of the electric motor and a discrete, non-linear model of the mechanical system. Various scenarios of the working tool-carrier motion and positioning by the belt-transporter are measured and simulated; in all cases the electric current control of the driving motor has been applied. The main goal of this study is to investigate the influence of the stepping motor control parameters along with various mechanical friction models on the precise positioning of a laboratory robotic device.

  11. Abstractions for Mechanical Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer; Wisniewski, Rafael

    2012-01-01

    This paper proposes a method for discretizing the state space of mechanical systems. This is a first attempt in using reduction techniques for mechanical systems in the partitioning of the state space. The method relies on a combination of transversal and tangential manifolds for the conservative...... mechanical system. The tangential manifolds are generated using constants of motion, which can be derived from Noether's theorem. The transversal manifolds are subsequently generated on a reduced space, given by the Routhian, via action-angle coordinates. The method fully applies for integrable systems. We...

  12. Model reduction of flexible multibody systems with application to large-stroke compliant precision mechanisms

    NARCIS (Netherlands)

    Boer, S.E.

    2013-01-01

    Numerical simulations are essential to determine the characteristics, performance and structural integrity of mechanisms and robots. With increasingly higher demands on the specifications of such devices, the demands on the accuracy of the numerical models increases as well. Increasing the complexit

  13. The dynamics of general developmental mechanisms : From Piaget and Vygotsky to dynamic systems models

    NARCIS (Netherlands)

    van Geert, P

    2000-01-01

    Dynamic systems theory conceives of development as a self-organizational process. Both complexity and order emerge as a product of elementary principles of interaction between components involved in the developmental process. This article presents a dynamic systems model based on a general dual deve

  14. Modeling of short-term mechanism of arterial pressure control in the cardiovascular system: object-oriented and acausal approach.

    Science.gov (United States)

    Kulhánek, Tomáš; Kofránek, Jiří; Mateják, Marek

    2014-11-01

    This letter introduces an alternative approach to modeling the cardiovascular system with a short-term control mechanism published in Computers in Biology and Medicine, Vol. 47 (2014), pp. 104-112. We recommend using abstract components on a distinct physical level, separating the model into hydraulic components, subsystems of the cardiovascular system and individual subsystems of the control mechanism and scenario. We recommend utilizing an acausal modeling feature of Modelica language, which allows model variables to be expressed declaratively. Furthermore, the Modelica tool identifies which are the dependent and independent variables upon compilation. An example of our approach is introduced on several elementary components representing the hydraulic resistance to fluid flow and the elastic response of the vessel, among others. The introduced model implementation can be more reusable and understandable for the general scientific community.

  15. Dynamic Characteristics of Mechanical Ventilation System of Double Lungs with Bi-Level Positive Airway Pressure Model

    Directory of Open Access Journals (Sweden)

    Dongkai Shen

    2016-01-01

    Full Text Available In recent studies on the dynamic characteristics of ventilation system, it was considered that human had only one lung, and the coupling effect of double lungs on the air flow can not be illustrated, which has been in regard to be vital to life support of patients. In this article, to illustrate coupling effect of double lungs on flow dynamics of mechanical ventilation system, a mathematical model of a mechanical ventilation system, which consists of double lungs and a bi-level positive airway pressure (BIPAP controlled ventilator, was proposed. To verify the mathematical model, a prototype of BIPAP system with a double-lung simulators and a BIPAP ventilator was set up for experimental study. Lastly, the study on the influences of key parameters of BIPAP system on dynamic characteristics was carried out. The study can be referred to in the development of research on BIPAP ventilation treatment and real respiratory diagnostics.

  16. Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture

    Science.gov (United States)

    Yuan, Jinlong; Zhang, Xu; Zhu, Xi; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2014-06-01

    The bio-dissimilation of glycerol to 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae (K. pneumoniae) can be characterized by a complex metabolic system of interactions among biochemical fluxes, metabolic compounds, key enzymes and genetic regulation. In this paper, in consideration of the fact that the transport ways of 1,3-PD and glycerol with different weights across cell membrane are still unclear in batch culture, we consider 121 possible metabolic pathways and establish a novel mathematical model which is represented by a complex metabolic system. Taking into account the difficulty in accurately measuring the concentration of intracellular substances and the absence of equilibrium point for the metabolic system of batch culture, the novel approach used here is to define quantitatively biological robustness of the intracellular substance concentrations for the overall process of batch culture. To determine the most possible metabolic pathway, we take the defined biological robustness as cost function and establish an identification model, in which 1452 system parameters and 484 pathway parameters are involved. Simultaneously, the identification model is subject to the metabolic system, continuous state constraints and parameter constraints. As such, solving the identification model by a serial program is a very complicated task. We propose a parallel migration particle swarm optimization algorithm (MPSO) capable of solving the identification model in conjunction with the constraint transcription and smoothing approximation techniques. Numerical results show that the most possible metabolic pathway and the corresponding metabolic system can reasonably describe the process of batch culture.

  17. Reduced-Order Modeling of Parametrically Excited Micro-Electro-Mechanical Systems (MEMS

    Directory of Open Access Journals (Sweden)

    Sangram Redkar

    2010-01-01

    Full Text Available Reduced-order modeling is a systematic way of constructing models with smaller number of states that can capture the “essential dynamics” of the large-scale systems, accurately. In this paper, reduced-order modeling and control techniques for parametrically excited MEMS are presented. The techniques proposed here use the Lyapunov-Floquet (L-F transformation that makes the linear part of transformed equations time invariant. In this work, three model reduction techniques for MEMS are suggested. First method is simply an application of the well-known Guyan-like reduction method to nonlinear systems. The second technique is based on singular perturbation, where the transformed system dynamics is partitioned as fast and slow dynamics and the system of differential equations is converted into a differential algebraic (DAE system. In the third technique, the concept of invariant manifold for time-periodic systems is used. The “time periodic invariant manifold” based technique yields “reducibility conditions”. This is an important result because it helps us to understand the various types of resonances present in the system. These resonances indicate a tight coupling between the system states, and in order to retain the dynamic characteristics, one has to preserve all these “resonant” states in the reduced-order model. Thus, if the “reducibility conditions” are satisfied, only then a nonlinear order reduction based on invariant manifold approach is possible. It is found that the invariant manifold approach yields the most accurate results followed by the nonlinear projection and linear technique. These methodologies are general, free from small parameter assumptions, and can be applied to a variety of MEM systems like resonators, sensors and filters. The reduced-order models can be used for parametric study, sensitivity analysis and/or controller design. The controller design is based on the reduced-order system. Thus, first the

  18. Interaction mechanism between hydrophobic and hydrophilic surfaces: using polystyrene and mica as a model system.

    Science.gov (United States)

    Faghihnejad, Ali; Zeng, Hongbo

    2013-10-08

    The interactions between hydrophobic and hydrophilic molecules, particles, or surfaces occur in many biological phenomena and industrial processes. In this work, polystyrene (PS) and mica were chosen as a model system to investigate the interaction mechanism between hydrophilic and hydrophobic surfaces. Using a surface forces apparatus (SFA) coupled with a top-view optical microscope, interaction forces between PS and mica surfaces were directly probed in five different electrolyte solutions (i.e., NaCl, CaCl2, NaOH, HCl, and CH3COOH) of various concentrations. Long-range repulsion was observed in low electrolyte concentration (e.g., 0.001 M) which was mainly due to the presence of microscopic and submicroscopic bubbles on PS surface. A modified Derjaguin-Landau-Verwey-Overbeek (DLVO) theory well fits the interaction forces by taking into account the effect of bubbles on PS surface. The range of the repulsion was dramatically reduced in 1.0 M solutions of NaCl, CaCl2, and NaOH but did not significantly change in 1.0 M HCl and CH3COOH, which was due to ion specificity effect on the formation and stability of bubbles on PS surface. The range of repulsion was also significantly reduced to forces dominate the interaction between hydrophilic surface (i.e., mica) and hydrophobic polymer (i.e., PS), while the types of electrolytes (ion specificity), electrolyte concentration, degassing, and surface hydrophobicity can significantly affect the formation and stability of bubbles on the interacting surfaces, thus affecting the range and magnitude of the interaction forces.

  19. Modeling cardiac mechano-electrical feedback using reaction-diffusion-mechanics systems

    Science.gov (United States)

    Keldermann, R. H.; Nash, M. P.; Panfilov, A. V.

    2009-06-01

    In many practically important cases, wave propagation described by the reaction-diffusion equation initiates deformation of the medium. Mathematically, such processes are described by coupled reaction-diffusion-mechanics (RDM) systems. RDM systems were recently used to study the effects of deformation on wave propagation in cardiac tissue, so called mechano-electrical feedback (MEF). In this article, we review the results of some of these studies, in particular those relating to the effects of deformation on pacemaker activity and spiral wave dynamics in the heart. We also provide brief descriptions of the numerical methods used, and the underlying cardiac physiology.

  20. Discrete fracture modeling of hydro-mechanical damage processes in geological systems

    Science.gov (United States)

    Kim, K.; Rutqvist, J.; Houseworth, J. E.; Birkholzer, J. T.

    2014-12-01

    This study presents a modeling approach for investigating coupled thermal-hydrological-mechanical (THM) behavior, including fracture development, within geomaterials and structures. In the model, the coupling procedure consists of an effective linkage between two codes: TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach; and an implementation of the rigid-body-spring network (RBSN) method, a discrete (lattice) modeling approach to represent geomechanical behavior. One main advantage of linking these two codes is that they share the same geometrical mesh structure based on the Voronoi discretization, so that a straightforward representation of discrete fracture networks (DFN) is available for fluid flow processes. The capabilities of the TOUGH-RBSN model are demonstrated through simulations of hydraulic fracturing, where fluid pressure-induced fracturing and damage-assisted flow are well represented. The TOUGH-RBSN modeling methodology has been extended to enable treatment of geomaterials exhibiting anisotropic characteristics. In the RBSN approach, elastic spring coefficients and strength parameters are systematically formulated based on the principal bedding direction, which facilitate a straightforward representation of anisotropy. Uniaxial compression tests are simulated for a transversely isotropic material to validate the new modeling scheme. The model is also used to simulate excavation fracture damage for the HG-A microtunnel in the Opalinus Clay rock, located at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. The Opalinus Clay has transversely isotropic material properties caused by natural features such as bedding, foliation, and flow structures. Preferential fracturing and tunnel breakouts were observed following excavation, which are believed to be strongly influenced by the mechanical anisotropy of the rock material. The simulation results are qualitatively

  1. Tracking control of nonlinear lumped mechanical continuous-time systems: A model-based iterative learning approach

    Science.gov (United States)

    Smolders, K.; Volckaert, M.; Swevers, J.

    2008-11-01

    This paper presents a nonlinear model-based iterative learning control procedure to achieve accurate tracking control for nonlinear lumped mechanical continuous-time systems. The model structure used in this iterative learning control procedure is new and combines a linear state space model and a nonlinear feature space transformation. An intuitive two-step iterative algorithm to identify the model parameters is presented. It alternates between the estimation of the linear and the nonlinear model part. It is assumed that besides the input and output signals also the full state vector of the system is available for identification. A measurement and signal processing procedure to estimate these signals for lumped mechanical systems is presented. The iterative learning control procedure relies on the calculation of the input that generates a given model output, so-called offline model inversion. A new offline nonlinear model inversion method for continuous-time, nonlinear time-invariant, state space models based on Newton's method is presented and applied to the new model structure. This model inversion method is not restricted to minimum phase models. It requires only calculation of the first order derivatives of the state space model and is applicable to multivariable models. For periodic reference signals the method yields a compact implementation in the frequency domain. Moreover it is shown that a bandwidth can be specified up to which learning is allowed when using this inversion method in the iterative learning control procedure. Experimental results for a nonlinear single-input-single-output system corresponding to a quarter car on a hydraulic test rig are presented. It is shown that the new nonlinear approach outperforms the linear iterative learning control approach which is currently used in the automotive industry on durability test rigs.

  2. Control mechanisms for ecological-economic systems

    CERN Document Server

    Burkov, Vladimir N; Shchepkin, Alexander V

    2015-01-01

    This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.

  3. Design of Feed-forward Controller with Stick-slip Friction Modeling in Electro-mechanical Brake System

    Directory of Open Access Journals (Sweden)

    Park Giseo

    2016-01-01

    Full Text Available Electro-Mechanical Brake (EMB is expected to be one of the future brake system. Feedback controller with sensor measuring is commonly used for control of EMB. However, this controller has some issues like delayed response and extra cost about sensor installation. In this paper, Feed-forward controller in EMB is proposed for solving these problems of feedback control. Also, it is very necessary to describe dynamical phenomenon of friction in actual EMB system. The actual EMB system shows stick-slip friction of mechanical parts which is difficult to model and apply to design of controller. This research is focused on exquisitely describing this stick-slip friction. In order to do this, the experiment about EMB is proceeded in the open loop system with the motor current command and data from the experiment is used for identification of model parameters during stiction. Then, parameters during slip is estimated in the closed loop system. Finally, developed friction model of EMB is proposed and it is utilized for design of feed-forward controller. Matlab Simulink is used for design of EMB simulation model and EMB test bench is utilized for experiment. Performance of proposed control system is compared with that of feedback control system.

  4. New quantum mechanical model

    Institute of Scientific and Technical Information of China (English)

    吴宁; 阮图南

    1996-01-01

    A quantum mechanical model with one bosonic degree of freedom is discussed in detail. Conventionally, when a quantum mechanical model is constructed, one must know the corresponding classical model. And by applying the correspondence between the classical Poisson brackets and the canonical commutator, the canonical quantization condition can be obtained. In the quantum model, study of the corresponding classical model is needed first. In this model, the Lagrangian is an operator gauge invariant. After localization, in order to keep gauge invariance, the operator gauge potential must be introduced. The Eular-Lagrange equation of motion of the dynamical argument gives the usual operator equation of motion. And the operator gauge potential just gjves a constraint. This constraint is just the usual canonical quantization condition.

  5. Application of an electronic bulletin board, as a mechanism of coordination of actions in complex systems - reference model

    Directory of Open Access Journals (Sweden)

    Katarzyna Grzybowska

    2015-06-01

    Full Text Available Background: In her previous research, the author of this publication indicates that coordination is a dependent variable which has a great driving force and is a very unstable factor. This results in the fact that all of the actions connected with coordination have an impact on other factors of cooperation as well as the integration of the enterprises in the structures of a supply chain type structure. Material and methods:  The article has been divided into two basic parts. The first part regards the reference models in complex systems (supply chain systems. They can constitute a starting point for the modelling of target processes in the built supply chain structure. The second part presents template process models (Reference Models for selected action coordination mechanisms during enterprise cooperation. The aim of the article is the presentation the model an Electronic Bulletin Board (EBB, as a mechanism of coordination of actions in complex systems. Results: The article was prepared on the basis of literature from the researched area. The material was also prepared on the basis of interviews with practitioners. They have allowed for the preparation of template process models (Reference Models for selected action coordination methods in the supply chain. Conclusions: The result of the work is a prepared model as well as its description in the use of IDEF0. The presented model is a demonstrative model. The proposed reference model makes it possible to define the parameters of a selected mechanism of coordination of actions, and forms a basis for affecting the progression of the process through an analysis of values of identified parameters. The parameterization of elements constitutes the foundation for the monitoring of the process via 1 unambiguous identification of the object of monitoring and 2 analysis of different variants of the progression of the process.

  6. Modeling of R/C Servo Motor and Application to Underactuated Mechanical Systems

    Science.gov (United States)

    Ishikawa, Masato; Kitayoshi, Ryohei; Wada, Takashi; Maruta, Ichiro; Sugie, Toshiharu

    An R/C servo motor is a compact package of a DC geard-motor associated with a position servo controller. They are widely used in small-sized robotics and mechatronics by virtue of their compactness, easiness-to-use and high/weight ratio. However, it is crucial to clarify their internal model (including the embedded position servo) in order to improve control performance of mechatronic systems using R/C servo motors, such as biped robots or underactuted sysyems. In this paper, we propose a simple and realistic internal model of the R/C servo motors including the embedded servo controller, and estimate their physical parameters using continuous-time system identification method. We also provide a model of reference-to-torque transfer function so that we can estimate the internal torque acting on the load.

  7. Mechanism-based model of a mass rapid transit system: A perspective

    Science.gov (United States)

    Legara, Erika Fille; Khoon, Lee Kee; Guang, Hung Gih; Monterola, Christopher

    2015-01-01

    In this paper, we discuss our findings on the spatiotemporal dynamics within the mass rapid transit (MRT) system of Singapore. We show that the trip distribution of Origin-Destination (OD) station pairs follows a power-law, implying the existence of critical OD pairs. We then present and discuss the empirically validated agent-based model (ABM) we have developed. The model allows recreation of the observed statistics and the setting up of various scenarios and their effects on the system, such as increasing the commuter population and the propagation of travel delays within the transportation network. The proposed model further enables identification of bottlenecks that can cause the MRT to break down, and consequently provide foresight on how such disruptions can possibly be managed. This can potentially provide a versatile approach for transport planners and government regulators to make quantifiable policies that optimally balance cost and convenience as a function of the number of the commuting public.

  8. Mechanics of materials model

    Science.gov (United States)

    Meister, Jeffrey P.

    1987-01-01

    The Mechanics of Materials Model (MOMM) is a three-dimensional inelastic structural analysis code for use as an early design stage tool for hot section components. MOMM is a stiffness method finite element code that uses a network of beams to characterize component behavior. The MOMM contains three material models to account for inelastic material behavior. These include the simplified material model, which assumes a bilinear stress-strain response; the state-of-the-art model, which utilizes the classical elastic-plastic-creep strain decomposition; and Walker's viscoplastic model, which accounts for the interaction between creep and plasticity that occurs under cyclic loading conditions.

  9. Mechanisms and time scales of glacial inception simulated with an Earth system model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    R. Calov

    2009-02-01

    Full Text Available We investigate glacial inception and glacial thresholds in the climate-cryosphere system utilising the Earth system model of intermediate complexity CLIMBER-2, which includes modules for atmosphere, terrestrial vegetation, ocean and interactive ice sheets. The latter are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. A bifurcation which represents glacial inception is analysed with two different model setups: one setup with dynamical ice-sheet model and another setup without it. The respective glacial thresholds differ in terms of maximum boreal summer insolation at 65° N (hereafter referred as Milankovich forcing (MF. The glacial threshold of the configuration without ice-sheet dynamics corresponds to a much lower value of the MF compared to the full model. If MF attains values only slightly below the aforementioned threshold there is fast transient response. Depending on the value of MF relative to the glacial threshold, the transient response time of inland-ice volume in the model configuration with ice-sheet dynamics ranges from 10 000 to 100 000 years. We investigate implications of these time scales for past glacial inceptions and for the overdue Holocene glaciation hypothesis by Ruddiman (W. F. Ruddiman, Climatic Change 2003, Vol. 61, 261–293. We also have shown that the asynchronous coupling between climate and inland-ice components allows one sufficient realistic simulation of glacial inception and, at the same time, a considerable reduction of computational costs.

  10. Catalytic conversion reactions in nanoporous systems with concentration-dependent selectivity: Statistical mechanical modeling

    Science.gov (United States)

    García, Andrés; Wang, Jing; Windus, Theresa L.; Sadow, Aaron D.; Evans, James W.

    2016-05-01

    Statistical mechanical modeling is developed to describe a catalytic conversion reaction A →Bc or Bt with concentration-dependent selectivity of the products, Bc or Bt, where reaction occurs inside catalytic particles traversed by narrow linear nanopores. The associated restricted diffusive transport, which in the extreme case is described by single-file diffusion, naturally induces strong concentration gradients. Furthermore, by comparing kinetic Monte Carlo simulation results with analytic treatments, selectivity is shown to be impacted by strong spatial correlations induced by restricted diffusivity in the presence of reaction and also by a subtle clustering of reactants, A .

  11. Mechanisms and time scales of glacial inception simulated with an Earth system model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    R. Calov

    2009-06-01

    Full Text Available We investigate glacial inception and glacial thresholds in the climate-cryosphere system utilising the Earth system model of intermediate complexity CLIMBER-2, which includes modules for atmosphere, terrestrial vegetation, ocean and interactive ice sheets. The latter are described by the three-dimensional polythermal ice-sheet model SICOPOLIS. A bifurcation which represents glacial inception is analysed with two different model setups: one setup with dynamical ice-sheet model and another setup without it. The respective glacial thresholds differ in terms of maximum boreal summer insolation at 65° N (hereafter referred as Milankovitch forcing (MF. The glacial threshold of the configuration without ice-sheet dynamics corresponds to a much lower value of MF compared to the full model. If MF attains values only slightly below the aforementioned threshold there is fast transient response. Depending on the value of MF relative to the glacial threshold, the transient response time of inland-ice volume in the model configuration with ice-sheet dynamics ranges from 10 000 to 100 000 years. Due to these long response times, a glacial threshold obtained in an equilibrium simulation is not directly applicable to the transient response of the climate-cryosphere system to time-dependent orbital forcing. It is demonstrated that in transient simulations just crossing of the glacial threshold does not imply large-scale glaciation of the Northern Hemisphere. We found that in transient simulations MF has to drop well below the glacial threshold determined in an equilibrium simulation to initiate glacial inception. Finally, we show that the asynchronous coupling between climate and inland-ice components allows one sufficient realistic simulation of glacial inception and, at the same time, a considerable reduction of computational costs.

  12. A fluid mechanical model for mixing in a plankton predator-prey system

    Science.gov (United States)

    Peng, J.; Dabiri, J. O.

    2009-04-01

    A Lagrangian method is developed to study mixing of small particles in open flows. Particle Lagrangian Coherent Structures (pLCS) are identified as transport barriers in the dynamical systems of particles. We apply this method to a planktonic predator-prey system in which moon jellyfish Aurelia aurita uses its body motion to generate fluid currents which carry their prey to the vicinity of their capture appendages. With the flow generated by the jellyfish experimentally measured and the dynamics of prey particles in the flow described by a modified Maxey-Riley equation, we use pLCS to identify the capture region in which prey can be captured. The properties of the capture region enable analysis of the effects of several physiological and mechanical parameters on the predator-prey interaction, such as prey size, escape force, predator perception, etc. The method provides a new methodology to study dynamics and mixing of small organisms in general.

  13. Electro-Mechanical Modeling and Performance Analysis of Floating Wave Energy Converters Utilizing Yo-Yo Vibrating System

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyuho; Park, Jisu [Seoul National University, Seoul (Korea, Republic of); Jang, Seon-Jun [Innovation KR, Seoul (Korea, Republic of)

    2015-01-15

    This paper proposes a floating-type wave energy conversion system that consists of a mechanical part (yo-yo vibrating system, motion rectifying system, and power transmission system) and electrical part (power generation system). The yo-yo vibrating system, which converts translational input to rotational motion, is modeled as a single degree-of-freedom system. It can amplify the wave input via the resonance phenomenon and enhance the energy conversion efficiency. The electromechanical model is established from impedance matching of the mechanical part to the electrical system. The performance was analyzed at various wave frequencies and damping ratios for a wave input acceleration of 0.14 g. The maximum output occurred at the resonance frequency and optimal load resistance, where the power conversion efficiency and electrical output power reached 48% and 290 W, respectively. Utilizing the resonance phenomenon was found to greatly enhance the performance of the wave energy converter, and there exists a maximum power point at the optimum load resistance.

  14. Integrated network modelling for identifying microbial mechanisms of particulate organic carbon accumulation in coastal marine systems

    Science.gov (United States)

    McDonald, Karlie; Turk, Valentina; Mozetič, Patricija; Tinta, Tinkara; Malfatti, Francesca; Hannah, David; Krause, Stefan

    2016-04-01

    Accumulation of particulate organic carbon (POC) has the potential to change the structure and function of marine ecosystems. High abidance of POC can develop into aggregates, known as marine snow or mucus aggregates that can impair essential marine ecosystem functioning and services. Currently marine POC formation, accumulation and sedimentation processes are being explored as potential pathways to remove CO2 from the atmosphere by CO2 sequestration via fixation into biomass by phytoplankton. However, the current ability of scientists, environmental managers and regulators to analyse and predict high POC concentrations is restricted by the limited understanding of the dynamic nature of the microbial mechanisms regulating POC accumulation events in marine environments. We present a proof of concept study that applies a novel Bayesian Networks (BN) approach to integrate relevant biological and physical-chemical variables across spatial and temporal scales in order to identify the interactions of the main contributing microbial mechanisms regulating POC accumulation in the northern Adriatic Sea. Where previous models have characterised only the POC formed, the BN approach provides a probabilistic framework for predicting the occurrence of POC accumulation by linking biotic factors with prevailing environmental conditions. In this paper the BN was used to test three scenarios (diatom, nanoflagellate, and dinoflagellate blooms). The scenarios predicted diatom blooms to produce high chlorophyll a at the water surface while nanoflagellate blooms were predicted to occur at lower depths (> 6m) in the water column and produce lower chlorophyll a concentrations. A sensitivity analysis identified the variables with the greatest influence on POC accumulation being the enzymes protease and alkaline phosphatase, which highlights the importance of microbial community interactions. The developed proof of concept BN model allows for the first time to quantify the impacts of

  15. System dynamics for mechanical engineers

    CERN Document Server

    Davies, Matthew

    2015-01-01

    This textbook is ideal for mechanical engineering students preparing to enter the workforce during a time of rapidly accelerating technology, where they will be challenged to join interdisciplinary teams. It explains system dynamics using analogies familiar to the mechanical engineer while introducing new content in an intuitive fashion. The fundamentals provided in this book prepare the mechanical engineer to adapt to continuous technological advances with topics outside traditional mechanical engineering curricula by preparing them to apply basic principles and established approaches to new problems. This book also: ·         Reinforces the connection between the subject matter and engineering reality ·         Includes an instructor pack with the online publication that describes in-class experiments with minimal preparation requirements ·         Provides content dedicated to the modeling of modern interdisciplinary technological subjects, including opto-mechanical systems, high...

  16. PARALLEL MOVING MECHANICAL SYSTEMS

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberius Petrescu

    2014-09-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Moving mechanical systems parallel structures are solid, fast, and accurate. Between parallel systems it is to be noticed Stewart platforms, as the oldest systems, fast, solid and precise. The work outlines a few main elements of Stewart platforms. Begin with the geometry platform, kinematic elements of it, and presented then and a few items of dynamics. Dynamic primary element on it means the determination mechanism kinetic energy of the entire Stewart platforms. It is then in a record tail cinematic mobile by a method dot matrix of rotation. If a structural mottoelement consists of two moving elements which translates relative, drive train and especially dynamic it is more convenient to represent the mottoelement as a single moving components. We have thus seven moving parts (the six motoelements or feet to which is added mobile platform 7 and one fixed.

  17. Subordinated continuous-time AR processes and their application to modeling behavior of mechanical system

    Science.gov (United States)

    Gajda, Janusz; Wyłomańska, Agnieszka; Zimroz, Radosław

    2016-12-01

    Many real data exhibit behavior adequate to subdiffusion processes. Very often it is manifested by so-called "trapping events". The visible evidence of subdiffusion we observe not only in financial time series but also in technical data. In this paper we propose a model which can be used for description of such kind of data. The model is based on the continuous time autoregressive time series with stable noise delayed by the infinitely divisible inverse subordinator. The proposed system can be applied to real datasets with short-time dependence, visible jumps and mentioned periods of stagnation. In this paper we extend the theoretical considerations in analysis of subordinated processes and propose a new model that exhibits mentioned properties. We concentrate on the main characteristics of the examined subordinated process expressed mainly in the language of the measures of dependence which are main tools used in statistical investigation of real data. We present also the simulation procedure of the considered system and indicate how to estimate its parameters. The theoretical results we illustrate by the analysis of real technical data.

  18. Mechanical Parking System Logistics

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the number of motor vehicles increases rapidly in many populated countries, t he shortage of parking space has become a difficult problem to all cities around the world. The contradiction between the shortage of parking space and the incr easing number of motor vehicles is still growing in the recent years. The utiliz ation of various kinds of mechanical parking facilities is an effective solution to this problem. How to organize a reasonable logistics system in a mechanical parking lot so that as man...

  19. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Steve P. Crampton

    2014-09-01

    Full Text Available Systemic lupus erythematosus (SLE represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease.

  20. Linking susceptibility genes and pathogenesis mechanisms using mouse models of systemic lupus erythematosus

    Science.gov (United States)

    Crampton, Steve P.; Morawski, Peter A.; Bolland, Silvia

    2014-01-01

    Systemic lupus erythematosus (SLE) represents a challenging autoimmune disease from a clinical perspective because of its varied forms of presentation. Although broad-spectrum steroids remain the standard treatment for SLE, they have many side effects and only provide temporary relief from the symptoms of the disease. Thus, gaining a deeper understanding of the genetic traits and biological pathways that confer susceptibility to SLE will help in the design of more targeted and effective therapeutics. Both human genome-wide association studies (GWAS) and investigations using a variety of mouse models of SLE have been valuable for the identification of the genes and pathways involved in pathogenesis. In this Review, we link human susceptibility genes for SLE with biological pathways characterized in mouse models of lupus, and discuss how the mechanistic insights gained could advance drug discovery for the disease. PMID:25147296

  1. Mechanical effects in cookoff modeling

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R.J.; Baer, M.R.; Hobbs, M.L.

    1994-07-01

    Complete cookoff modeling of energetic material in confined geometries must couple thermal, chemical and mechanical effects. In the past, modeling has focused on the prediction of the onset of combustion behavior based only on thermal-chemistry effects with little or no regard to the mechanical behavior of the energetic material. In this paper, an analysis tool is outlined which couples thermal, chemical, and mechanical behavior for one-dimensional Geometries comprised of multi-materials. A reactive heat flow code, XCHEM, and a quasistatic mechanics code, SANTOS, have been completely coupled using, a reactive, elastic-plastic constitutive model describing pressurization of the energetic material. This new Thermally Reactive Elastic-plastic explosive code, TREX, was developed to assess the coupling, of mechanics with thermal chemistry making multidimensional cookoff analysis possible. In this study, TREX is applied to confined and unconfined systems. The confined systems simulate One-Dimensional Time to explosion (ODTX) experiments in both spherical and cylindrical configurations. The spherical ODTX system is a 1.27 cm diameter sphere of TATB confined by aluminum exposed to a constant external temperature. The cylindrical ODTX system is an aluminum tube filled with HMX, NC, and inert exposed to a constant temperature bath. Finally. an unconfined system consisting of a hollow steel cylinder filled with a propellant composed of Al, RMX, and NC, representative of a rocket motor, is considered. This model system is subjected to transient internal and external radiative/convective boundary conditions representative of 5 minutes exposure to a fire. The confined systems show significant pressure prior to ignition, and the unconfined system shows extrusion of the propellent suggesting that the energetic material becomes more shock sensitive.

  2. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    Science.gov (United States)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  3. Modifiers and mechanisms of multi-system polyglutamine neurodegenerative disorders: lessons from fly models

    Indian Academy of Sciences (India)

    Moushami Mallik; Subhash C. Lokhotia

    2010-12-01

    Polyglutamine (polyQ) diseases, resulting from a dynamic expansion of glutamine repeats in a polypeptide, are a class of genetically inherited late onset neurodegenerative disorders which, despite expression of the mutated gene widely in brain and other tissues, affect defined subpopulations of neurons in a disease-specific manner. We briefly review the different poly Q-expansion-induced neurodegenerative disorders and the advantages of modelling them in Drosophila. Studies using the fly models have successfully identified a variety of genetic modifiers and have helped in understanding some of the molecular events that follow expression of the abnormal polyQ proteins. Expression of the mutant polyQ proteins causes, as a consequence of intra-cellular and inter-cellular networking, mis-regulation at multiple steps like transcriptional and post-transcriptional regulations, cell signalling, protein quality control systems (protein folding and degradation networks), axonal transport machinery etc., in the sensitive neurons, resulting ultimately in their death. The diversity of genetic modifiers of polyQ toxicity identified through extensive genetic screens in fly and other models clearly reflects a complex network effect of the presence of the mutated protein. Such network effects pose a major challenge for therapeutic applications.

  4. Modelling Cochlear Mechanics

    Directory of Open Access Journals (Sweden)

    Guangjian Ni

    2014-01-01

    Full Text Available The cochlea plays a crucial role in mammal hearing. The basic function of the cochlea is to map sounds of different frequencies onto corresponding characteristic positions on the basilar membrane (BM. Sounds enter the fluid-filled cochlea and cause deflection of the BM due to pressure differences between the cochlear fluid chambers. These deflections travel along the cochlea, increasing in amplitude, until a frequency-dependent characteristic position and then decay away rapidly. The hair cells can detect these deflections and encode them as neural signals. Modelling the mechanics of the cochlea is of help in interpreting experimental observations and also can provide predictions of the results of experiments that cannot currently be performed due to technical limitations. This paper focuses on reviewing the numerical modelling of the mechanical and electrical processes in the cochlea, which include fluid coupling, micromechanics, the cochlear amplifier, nonlinearity, and electrical coupling.

  5. Theoretical modeling of large molecular systems. Advances in the local self consistent field method for mixed quantum mechanics/molecular mechanics calculations.

    Science.gov (United States)

    Monari, Antonio; Rivail, Jean-Louis; Assfeld, Xavier

    2013-02-19

    Molecular mechanics methods can efficiently compute the macroscopic properties of a large molecular system but cannot represent the electronic changes that occur during a chemical reaction or an electronic transition. Quantum mechanical methods can accurately simulate these processes, but they require considerably greater computational resources. Because electronic changes typically occur in a limited part of the system, such as the solute in a molecular solution or the substrate within the active site of enzymatic reactions, researchers can limit the quantum computation to this part of the system. Researchers take into account the influence of the surroundings by embedding this quantum computation into a calculation of the whole system described at the molecular mechanical level, a strategy known as the mixed quantum mechanics/molecular mechanics (QM/MM) approach. The accuracy of this embedding varies according to the types of interactions included, whether they are purely mechanical or classically electrostatic. This embedding can also introduce the induced polarization of the surroundings. The difficulty in QM/MM calculations comes from the splitting of the system into two parts, which requires severing the chemical bonds that link the quantum mechanical subsystem to the classical subsystem. Typically, researchers replace the quantoclassical atoms, those at the boundary between the subsystems, with a monovalent link atom. For example, researchers might add a hydrogen atom when a C-C bond is cut. This Account describes another approach, the Local Self Consistent Field (LSCF), which was developed in our laboratory. LSCF links the quantum mechanical portion of the molecule to the classical portion using a strictly localized bond orbital extracted from a small model molecule for each bond. In this scenario, the quantoclassical atom has an apparent nuclear charge of +1. To achieve correct bond lengths and force constants, we must take into account the inner shell of

  6. The Optimization Model for Interregional Power System Planning considering Carbon Emissions Trading and Renewable Energy Quota Mechanism

    Directory of Open Access Journals (Sweden)

    Liwei Ju

    2016-01-01

    Full Text Available In China, the rapid construction of ultra-high-voltage (UHV transmission lines promotes interregional resource optimizing configuration and interregional power system planning. This paper analyzes external environment of interregional power system planning from geographical, technical, and policy environments. Then, the paper takes the minimum system investment cost as the optimization objective and constructs the optimization model of interregional power system planning considering carbon emissions trading (CET and renewable energy quota mechanism (REQ. Finally, this paper sets base scenario, carbon emissions trading scenario, renewable energy quota mechanism scenario, and comprehensive scenario for case simulation. The results show that interregional power system planning could connect power grids in different regions, enlarge wind power consumption space, and relieve the inconformity problem between power resource and load demand. CET and REQ can increase the installed proportion of clean energy and reduce carbon dioxide emissions, but the cost of transmission lines construction and system reserve will increase correspondingly. The optimization effect of REQ on power system planning is better than CET. When they are both introduced, the power structure will reach the best, carbon dioxide emissions will achieve the minimum, and comprehensive benefits will become more balanced.

  7. Continuous system modeling

    Science.gov (United States)

    Cellier, Francois E.

    1991-01-01

    A comprehensive and systematic introduction is presented for the concepts associated with 'modeling', involving the transition from a physical system down to an abstract description of that system in the form of a set of differential and/or difference equations, and basing its treatment of modeling on the mathematics of dynamical systems. Attention is given to the principles of passive electrical circuit modeling, planar mechanical systems modeling, hierarchical modular modeling of continuous systems, and bond-graph modeling. Also discussed are modeling in equilibrium thermodynamics, population dynamics, and system dynamics, inductive reasoning, artificial neural networks, and automated model synthesis.

  8. Mechanical Vibrations Modeling and Measurement

    CERN Document Server

    Schmitz, Tony L

    2012-01-01

    Mechanical Vibrations:Modeling and Measurement describes essential concepts in vibration analysis of mechanical systems. It incorporates the required mathematics, experimental techniques, fundamentals of modal analysis, and beam theory into a unified framework that is written to be accessible to undergraduate students,researchers, and practicing engineers. To unify the various concepts, a single experimental platform is used throughout the text to provide experimental data and evaluation. Engineering drawings for the platform are included in an appendix. Additionally, MATLAB programming solutions are integrated into the content throughout the text. This book also: Discusses model development using frequency response function measurements Presents a clear connection between continuous beam models and finite degree of freedom models Includes MATLAB code to support numerical examples that are integrated into the text narrative Uses mathematics to support vibrations theory and emphasizes the practical significanc...

  9. Monitoring of intratidal lung mechanics: a Graphical User Interface for a model-based decision support system for PEEP-titration in mechanical ventilation.

    Science.gov (United States)

    Buehler, S; Lozano-Zahonero, S; Schumann, S; Guttmann, J

    2014-12-01

    In mechanical ventilation, a careful setting of the ventilation parameters in accordance with the current individual state of the lung is crucial to minimize ventilator induced lung injury. Positive end-expiratory pressure (PEEP) has to be set to prevent collapse of the alveoli, however at the same time overdistension should be avoided. Classic approaches of analyzing static respiratory system mechanics fail in particular if lung injury already prevails. A new approach of analyzing dynamic respiratory system mechanics to set PEEP uses the intratidal, volume-dependent compliance which is believed to stay relatively constant during one breath only if neither atelectasis nor overdistension occurs. To test the success of this dynamic approach systematically at bedside or in an animal study, automation of the computing steps is necessary. A decision support system for optimizing PEEP in form of a Graphical User Interface (GUI) was targeted. Respiratory system mechanics were analyzed using the gliding SLICE method. The resulting shapes of the intratidal compliance-volume curve were classified into one of six categories, each associated with a PEEP-suggestion. The GUI should include a graphical representation of the results as well as a quality check to judge the reliability of the suggestion. The implementation of a user-friendly GUI was successfully realized. The agreement between modelled and measured pressure data [expressed as root-mean-square (RMS)] tested during the implementation phase with real respiratory data from two patient studies was below 0.2 mbar for data taken in volume controlled mode and below 0.4 mbar for data taken in pressure controlled mode except for two cases with RMS < 0.6 mbar. Visual inspections showed, that good and medium quality data could be reliably identified. The new GUI allows visualization of intratidal compliance-volume curves on a breath-by-breath basis. The automatic categorisation of curve shape into one of six shape

  10. A knowledge- and model-based system for automated weaning from mechanical ventilation: technical description and first clinical application.

    Science.gov (United States)

    Schädler, Dirk; Mersmann, Stefan; Frerichs, Inéz; Elke, Gunnar; Semmel-Griebeler, Thomas; Noll, Oliver; Pulletz, Sven; Zick, Günther; David, Matthias; Heinrichs, Wolfgang; Scholz, Jens; Weiler, Norbert

    2014-10-01

    To describe the principles and the first clinical application of a novel prototype automated weaning system called Evita Weaning System (EWS). EWS allows an automated control of all ventilator settings in pressure controlled and pressure support mode with the aim of decreasing the respiratory load of mechanical ventilation. Respiratory load takes inspired fraction of oxygen, positive end-expiratory pressure, pressure amplitude and spontaneous breathing activity into account. Spontaneous breathing activity is assessed by the number of controlled breaths needed to maintain a predefined respiratory rate. EWS was implemented as a knowledge- and model-based system that autonomously and remotely controlled a mechanical ventilator (Evita 4, Dräger Medical, Lübeck, Germany). In a selected case study (n = 19 patients), ventilator settings chosen by the responsible physician were compared with the settings 10 min after the start of EWS and at the end of the study session. Neither unsafe ventilator settings nor failure of the system occurred. All patients were successfully transferred from controlled ventilation to assisted spontaneous breathing in a mean time of 37 ± 17 min (± SD). Early settings applied by the EWS did not significantly differ from the initial settings, except for the fraction of oxygen in inspired gas. During the later course, EWS significantly modified most of the ventilator settings and reduced the imposed respiratory load. A novel prototype automated weaning system was successfully developed. The first clinical application of EWS revealed that its operation was stable, safe ventilator settings were defined and the respiratory load of mechanical ventilation was decreased.

  11. Chaos Control in Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Marcelo A. Savi

    2006-01-01

    Full Text Available Chaos has an intrinsically richness related to its structure and, because of that, there are benefits for a natural system of adopting chaotic regimes with their wide range of potential behaviors. Under this condition, the system may quickly react to some new situation, changing conditions and their response. Therefore, chaos and many regulatory mechanisms control the dynamics of living systems, conferring a great flexibility to the system. Inspired by nature, the idea that chaotic behavior may be controlled by small perturbations of some physical parameter is making this kind of behavior to be desirable in different applications. Mechanical systems constitute a class of system where it is possible to exploit these ideas. Chaos control usually involves two steps. In the first, unstable periodic orbits (UPOs that are embedded in the chaotic set are identified. After that, a control technique is employed in order to stabilize a desirable orbit. This contribution employs the close-return method to identify UPOs and a semi-continuous control method, which is built up on the OGY method, to stabilize some desirable UPO. As an application to a mechanical system, a nonlinear pendulum is considered and, based on parameters obtained from an experimental setup, analyses are carried out. Signals are generated by numerical integration of the mathematical model and two different situations are treated. Firstly, it is assumed that all state variables are available. After that, the analysis is done from scalar time series and therefore, it is important to evaluate the effect of state space reconstruction. Delay coordinates method and extended state observers are employed with this aim. Results show situations where these techniques may be used to control chaos in mechanical systems.

  12. Modeling of the dynamics of GBB1005 Ball & Beam Educational Control System as a controlled mechanical system with a redundant coordinate

    Directory of Open Access Journals (Sweden)

    A. Ya. Krasinskii

    2014-01-01

    Full Text Available The method of research stability and stabilization of equilibrium of systems with geometrical constraints is elaborated and used for equilibrium for real mechatronic arrangement GBB1005 Ball & Beam. For mathematical model construction is used Shul'gin's equations with redundant coordinates. The through differentiation geometrical constraints obtained kinematic (holonomic constraints is necessary add for stability analysis. Asymptotic stability equilibrium for mechanical systems with redundant coordinates is possible , in spite of formal reduction to Lyapunov's especial case, if the number zero roots is equal the number constraints . More exact nonlinear mathematical model of the mechanical component Ball &Beam is considered in this paper. One nonlinear geometric constrain in this problem is allow find the new equilibrium position. The choice of linear control subsystem is depend from the choice of redundant coordinate.

  13. Src Family Kinases and Receptors: Analysis of Three Activation Mechanisms by Dynamic Systems Modeling

    OpenAIRE

    Fuß, Hendrik; Dubitzky, Werner; Downes, C. Stephen; Kurth, Mary Jo

    2007-01-01

    Src family kinases (SFKs) interact with a number of cellular receptors. They participate in diverse signaling pathways and cellular functions. Most of the receptors involved in SFK signaling are characterized by similar modes of regulation. This computational study discusses a general kinetic model of SFK-receptor interaction. The analysis of the model reveals three major ways of SFK activation: release of inhibition by C-terminal Src kinase, weakening of the inhibitory intramolecular phospho...

  14. Probabilistic Approach to System Reliability of Mechanism with Correlated Failure Models

    Directory of Open Access Journals (Sweden)

    Xianzhen Huang

    2012-01-01

    Full Text Available In this paper, based on the kinematic accuracy theory and matrix-based system reliability analysis method, a practical method for system reliability analysis of the kinematic performance of planar linkages with correlated failure modes is proposed. The Taylor series expansion is utilized to derive a general expression of the kinematic performance errors caused by random variables. A proper limit state function (performance function for reliability analysis of the kinematic performance of planar linkages is established. Through the reliability theory and the linear programming method the upper and lower bounds of the system reliability of planar linkages are provided. In the course of system reliability analysis, the correlation of different failure modes is considered. Finally, the practicality, efficiency, and accuracy of the proposed method are shown by a numerical example.

  15. Advantages of using the CRISPR/Cas9 system of genome editing to investigate male reproductive mechanisms using mouse models

    Directory of Open Access Journals (Sweden)

    Samantha A. M. Young

    2015-01-01

    Full Text Available Gene disruption technology has long been beneficial for the study of male reproductive biology. However, because of the time and cost involved, this technology was not a viable method except in specialist laboratories. The advent of the CRISPR/Cas9 system of gene disruption has ushered in a new era of genetic investigation. Now, it is possible to generate gene-disrupted mouse models in very little time and at very little cost. This Highlight article discusses the application of this technology to study the genetics of male fertility and looks at some of the future uses of this system that could be used to reveal the essential and nonessential genetic components of male reproductive mechanisms.

  16. Antiorthostatic test as a model to study antigravity mechanisms of the cardiovascular system.

    Science.gov (United States)

    Yarullin, K K; Vasilyeva, T D; Alekseev, D A

    1976-01-01

    The paper presents rheographic investigations of regional haemodynamics (brain, lungs, liver and limbs) during antiorthostatic exposures of varying intensity (-15, -30, -45 degrees, times of exposure 20, 40 and 60 min). Our findings show that the pattern and time of the function of compensatory mechanisms preventing excessive vascular compliance [correction of complicance] under the influence of the hydrostatic blood column depend on the value and length of antiorthostasis, because prolonged venous congestion results not only in congestive circulatory hypoxia but also in arterial hypoxia due to compensatory limitation of arterial inflow.

  17. Kriging Surrogate Models for Predicting the Complex Eigenvalues of Mechanical Systems Subjected to Friction-Induced Vibration

    Directory of Open Access Journals (Sweden)

    E. Denimal

    2016-01-01

    Full Text Available This study focuses on the kriging based metamodeling for the prediction of parameter-dependent mode coupling instabilities. The high cost of the currently used parameter-dependent Complex Eigenvalue Analysis (CEA has induced a growing need for alternative methods. Hence, this study investigates capabilities of kriging metamodels to be a suitable alternative. For this aim, kriging metamodels are proposed to predict the stability behavior of a four-degree-of-freedom mechanical system submitted to friction-induced vibrations. This system is considered under two configurations defining two stability behaviors with coalescence patterns of different complexities. Efficiency of kriging is then assessed on both configurations. In this framework, the proposed kriging surrogate approach includes a mode tracking method based on the Modal Assurance Criterion (MAC in order to follow the physical modes of the mechanical system. Based on the numerical simulations, it is demonstrated by a comparison with the reference parameter-dependent CEA that the proposed kriging surrogate model can provide efficient and reliable predictions of mode coupling instabilities with different complex patterns.

  18. Modelling "reality" in tectonics: Simulation of the mechanical evolution of the Jura Mountains-Molasse Basin system, and routes to forward-inverse modelling of fold thrust belts.

    Science.gov (United States)

    Hindle, David; Kley, Jonas

    2016-04-01

    The ultimate validation of any numerical model of any geological process comes when it can accurately forward model a case study from the geological record. However, as the example of the Jura-Molasse fold thrust belt demonstrates, geological information on even the most basic aspects of the present day state of such systems is highly incomplete and usually known only with large uncertainties. Fold thrust-belts are studied and understood by geologists in an iterative process of constructing their subsurface geometries and structures (folds, faults, bedding etc) based on limited subsurface information from boreholes, tunnels or seismic data where available, and surface information on outcrops of different layers and their dips. This data is usually processed through geometric models which involve conservation of line length of different beds over the length of an entire cross section. Constructing such sections is the art of cross section balancing. A balanced cross section can be easily restored to its pre-deformation state, assuming (usually) originally horizontal bedding to remove the effects of folding and faulting. Such a pre-deformation state can then form an initial condition for a forward mechanical model of the section. A mechanical model introduces new parameters into the system such as rock elasticity, cohesion, and frictional properties. However, a forward mechanical model can also potentially show the continuous evolution of a fold thrust belt, including dynamic quantities like stress. Moreover, a forward mechanical model, if correct in most aspects, should match in its final state, the present day geological cross section it is simulating. However, when attempting to achieve a match between geometric and mechanical models, it becomes clear that many more aspects of the geodynamic history of a fold thrust belt have to be taken into account. Erosion of the uppermost layers of an evolving thrust belt is the most obvious one of these. This can potentially

  19. Dynamic Response of a Planetary Gear System Using a Finite Element/Contact Mechanics Model

    Science.gov (United States)

    Parker, Robert G.; Agashe, Vinayak; Vijayakar, Sandeep M.

    2000-01-01

    The dynamic response of a helicopter planetary gear system is examined over a wide range of operating speeds and torques. The analysis tool is a unique, semianalytical finite element formulation that admits precise representation of the tooth geometry and contact forces that are crucial in gear dynamics. Importantly, no a priori specification of static transmission error excitation or mesh frequency variation is required; the dynamic contact forces are evaluated internally at each time step. The calculated response shows classical resonances when a harmonic of mesh frequency coincides with a natural frequency. However, peculiar behavior occurs where resonances expected to be excited at a given speed are absent. This absence of particular modes is explained by analytical relationships that depend on the planetary configuration and mesh frequency harmonic. The torque sensitivity of the dynamic response is examined and compared to static analyses. Rotation mode response is shown to be more sensitive to input torque than translational mode response.

  20. An Effective Security Mechanism for M-Commerce Applications Exploiting Ontology Based Access Control Model for Healthcare System

    Directory of Open Access Journals (Sweden)

    S.M. Roychoudri

    2016-09-01

    Full Text Available Health organizations are beginning to move mobile commerce services in recent years to enhance services and quality without spending much investment for IT infrastructure. Medical records are very sensitive and private to any individuals. Hence effective security mechanism is required. The challenges of our research work are to maintain privacy for the users and provide smart and secure environment for accessing the application. It is achieved with the help of personalization. Internet has provided the way for personalization. Personalization is a term which refers to the delivery of information that is relevant to individual or group of individuals in the format, layout specified and in time interval. In this paper we propose an Ontology Based Access Control (OBAC Model that can address the permitted access control among the service providers and users. Personal Health Records sharing is highly expected by the users for the acceptance in mobile commerce applications in health care systems.

  1. Disruption of Saccharomyces cerevisiae by Plantaricin 149 and investigation of its mechanism of action with biomembrane model systems.

    Science.gov (United States)

    Lopes, José Luiz S; Nobre, Thatyane M; Siano, Alvaro; Humpola, Verónica; Bossolan, Nelma R S; Zaniquelli, Maria E D; Tonarelli, Georgina; Beltramini, Leila M

    2009-10-01

    The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 muM is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption.

  2. Advanced dynamics of mechanical systems

    CERN Document Server

    Cheli, Federico

    2015-01-01

    This book introduces a general approach for schematization of mechanical systems with rigid and deformable bodies. It proposes a systems approach to reproduce the interaction of the mechanical system with different force fields such as those due to the action of fluids or contact forces between bodies, i.e., with forces dependent on the system states, introducing the concepts of the stability of motion. In the first part of the text mechanical systems with one or more degrees of freedom with large motion and subsequently perturbed in the neighborhood of the steady state position are analyzed. Both discrete and continuous systems (modal approach, finite elements) are analyzed. The second part is devoted to the study of mechanical systems subject to force fields, the rotor dynamics, techniques of experimental identification of the parameters, and random excitations. The book will be especially valuable for students of engineering courses in Mechanical Systems, Aerospace, Automation, and Energy but will also b...

  3. Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe

    Science.gov (United States)

    Cloetingh, S.; van Wees, J. D.; Ziegler, P. A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Bonté, D.; Genter, A.; Guillou-Frottier, L.; Ter Voorde, M.; Sokoutis, D.; Willingshofer, E.; Cornu, T.; Worum, G.

    2010-10-01

    Knowledge of temperature at drillable depth is a prerequisite in site selection for geothermal exploration and development of enhanced geothermal systems (EGS). Equally important, the thermo-mechanical signature of the lithosphere and crust provides critical constraints for the crustal stress field and basement temperatures where borehole observations are rare. The stress and temperature field in Europe is subject to strong spatial variations often linked to polyphase extensional and compressional reactivation of the lithosphere, in different modes of deformation. The development of innovative combinations of numerical and analogue modelling techniques is key to thoroughly understand the spatial and temporal variations in crustal stress and temperature. In this paper we present an overview of advances in developing and applying analogue and numerical thermo-mechanical models to quantitatively assess the interplay of lithosphere dynamics and basin (de)formation. Field studies of kinematic indicators and numerical modelling of present-day and paleo-stress fields in selected areas yield new constraints on the causes and the expression of intraplate stress fields in the lithosphere, driving basin (de)formation. The actual basin response to intraplate stress is strongly affected by the rheological structure of the underlying lithosphere, the basin geometry, fault dynamics and interplay with surface processes. Integrated basin studies show that the rheological structure of the lithosphere plays an important role in the spatial and temporal distribution of stress-induced vertical motions, varying from subtle faulting to basin reactivation and large wavelength patterns of lithospheric folding. These findings demonstrate that sedimentary basins are sensitive recorders of the intraplate stress field. The long lasting memory of the lithosphere, in terms of lithospheric scale weak zones, plays a far more important role in basin formation and reactivation than hitherto assumed

  4. Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases

    Directory of Open Access Journals (Sweden)

    Carmen I. Nussbaum-Krammer

    2014-01-01

    Full Text Available Caenorhabditis elegans has a number of distinct advantages that are useful for understanding the basis for cellular and organismal dysfunction underlying age-associated diseases of protein misfolding. Although protein aggregation, a key feature of human neurodegenerative diseases, has been typically explored in vivo at the single-cell level using cells in culture, there is now increasing evidence that proteotoxicity has a non-cell-autonomous component and is communicated between cells and tissues in a multicellular organism. These discoveries have opened up new avenues for the use of C. elegans as an ideal animal model system to study non-cell-autonomous proteotoxicity, prion-like propagation of aggregation-prone proteins, and the organismal regulation of stress responses and proteostasis. This Review focuses on recent evidence that C. elegans has mechanisms to transmit certain classes of toxic proteins between tissues and a complex stress response that integrates and coordinates signals from single cells and tissues across the organism. These findings emphasize the potential of C. elegans to provide insights into non-cell-autonomous proteotoxic mechanisms underlying age-related protein-misfolding diseases.

  5. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  6. Generalized statistical mechanics for superstatistical systems.

    Science.gov (United States)

    Beck, Christian

    2011-01-28

    Mesoscopic systems in a slowly fluctuating environment are often well described by superstatistical models. We develop a generalized statistical mechanics formalism for superstatistical systems, by mapping the superstatistical complex system onto a system of ordinary statistical mechanics with modified energy levels. We also briefly review recent examples of applications of the superstatistics concept for three very different subject areas, namely train delay statistics, turbulent tracer dynamics and cancer survival statistics.

  7. Systems biology modeling reveals a possible mechanism of the tumor cell death upon oncogene inactivation in EGFR addicted cancers.

    Directory of Open Access Journals (Sweden)

    Jian-Ping Zhou

    Full Text Available Despite many evidences supporting the concept of "oncogene addiction" and many hypotheses rationalizing it, there is still a lack of detailed understanding to the precise molecular mechanism underlying oncogene addiction. In this account, we developed a mathematic model of epidermal growth factor receptor (EGFR associated signaling network, which involves EGFR-driving proliferation/pro-survival signaling pathways Ras/extracellular-signal-regulated kinase (ERK and phosphoinositol-3 kinase (PI3K/AKT, and pro-apoptotic signaling pathway apoptosis signal-regulating kinase 1 (ASK1/p38. In the setting of sustained EGFR activation, the simulation results show a persistent high level of proliferation/pro-survival effectors phospho-ERK and phospho-AKT, and a basal level of pro-apoptotic effector phospho-p38. The potential of p38 activation (apoptotic potential due to the elevated level of reactive oxygen species (ROS is largely suppressed by the negative crosstalk between PI3K/AKT and ASK1/p38 pathways. Upon acute EGFR inactivation, the survival signals decay rapidly, followed by a fast increase of the apoptotic signal due to the release of apoptotic potential. Overall, our systems biology modeling together with experimental validations reveals that inhibition of survival signals and concomitant release of apoptotic potential jointly contribute to the tumor cell death following the inhibition of addicted oncogene in EGFR addicted cancers.

  8. Mechanisms responsible for postmenopausal hypertension in a rat model: Roles of the renal sympathetic nervous system and the renin-angiotensin system.

    Science.gov (United States)

    Maranon, Rodrigo O; Reckelhoff, Jane F

    2016-02-01

    Hypertension in postmenopausal women is less well controlled than in age-matched men. The aging female SHR is a model of postmenopausal hypertension that is mediated in part by activation of the renin-angiotensin system (RAS) and by the renal sympathetic nervous system. In this study, the hypothesis was tested that renal denervation would lower the blood pressure in old female SHR and would attenuate the antihypertensive effects of AT1 receptor antagonism. Retired breeder female SHR were subjected to right uninephrectomy (UNX) and left renal denervation (RD) or UNX and sham, and 2 weeks later, baseline mean arterial pressure (MAP; radiotelemetry) was measured for 4 days, and then rats were treated with angiotensin (AT1) receptor antagonist, losartan (40 mg/kg/day po) for 6 days. Renal denervation reduced MAP in old females compared to sham (172 ± 6 vs. 193 ± 6 mm Hg; P system and the RAS have independent effects to control the blood pressure in old female SHR. Since the denervated rats treated with losartan remained hypertensive, the data also suggest that other mechanisms than the RAS and renal sympathetic nervous system contribute to the hypertension in old female SHR. The data also suggest that multiple mechanisms may mediate the elevated blood pressure in postmenopausal women.

  9. New frontiers in information and production systems modelling and analysis incentive mechanisms, competence management, knowledge-based production

    CERN Document Server

    Novikov, Dmitry; Bakhtadze, Natalia; Zaikin, Oleg

    2016-01-01

    This book demonstrates how to apply modern approaches to complex system control in practical applications involving knowledge-based systems. The dimensions of knowledge-based systems are extended by incorporating new perspectives from control theory, multimodal systems and simulation methods.  The book is divided into three parts: theory, production system and information system applications. One of its main focuses is on an agent-based approach to complex system analysis. Moreover, specialised forms of knowledge-based systems (like e-learning, social network, and production systems) are introduced with a new formal approach to knowledge system modelling.   The book, which offers a valuable resource for researchers engaged in complex system analysis, is the result of a unique cooperation between scientists from applied computer science (mainly from Poland) and leading system control theory researchers from the Russian Academy of Sciences’ Trapeznikov Institute of Control Sciences.

  10. Flight mechanics expert systems

    Science.gov (United States)

    Burns, Rowland E.

    1991-01-01

    A method is established which can be used to solve any problem in equation-driven disciplines. This is accomplished by solving all applicable equations of the given discipline for all variables which occur in each of the equations. The system then provides logic tests to determine if enough information is available to calculate a new variable. By recording the order in which the equations are used, the machine can also supply a derivation of the answer to each problem.

  11. Quantum mechanics in complex systems

    Science.gov (United States)

    Hoehn, Ross Douglas

    This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown

  12. THE SYSTEM APPROACH TO MEASURING CHANNEL MODELLING AS THE MECHANISM OF MAINTENANCE OF TRUST TO RESULTS OF MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    P. S. Serenkov

    2012-01-01

    Full Text Available Necessity of system approach development to measurement modeling for the purpose of maintenance of the trust set level to their results is proved. The decision of a measuring problem subject to determined aim is considered as creation of models sequence: measurement process model and complex measuring channel model. As a demonstrative basis of maintenance of trust to result of measurements the complex of criteria of completeness and irredundant is formulated.

  13. The mechanism behind internally generated centennial-to-millennial scale climate variability in an earth system model of intermediate complexity

    Directory of Open Access Journals (Sweden)

    T. Friedrich

    2010-08-01

    Full Text Available The mechanism triggering centennial-to-millennial-scale variability of the Atlantic Meridional Overturning Circulation (AMOC in the earth system model of intermediate complexity LOVECLIM is investigated. It is found that for several climate boundary conditions such as low obliquity values (~22.1° or LGM-albedo, internally generated centennial-to-millennial-scale variability occurs in the North Atlantic region. Stochastic excitations of the density-driven overturning circulation in the Nordic Seas can create regional sea-ice anomalies and a subsequent reorganization of the atmospheric circulation. The resulting remote atmospheric anomalies over the Hudson Bay can release freshwater pulses into the Labrador Sea and significantly increase snow fall in this region leading to a subsequent reduction of convective activity. The millennial-scale AMOC oscillations disappear if LGM bathymetry (with closed Hudson Bay is prescribed or if freshwater pulses are suppressed artificially. Furthermore, our study documents the process of the AMOC recovery as well as the global marine and terrestrial carbon cycle response to centennial-to-millennial-scale AMOC variability.

  14. Mathematical modelling in solid mechanics

    CERN Document Server

    Sofonea, Mircea; Steigmann, David

    2017-01-01

    This book presents new research results in multidisciplinary fields of mathematical and numerical modelling in mechanics. The chapters treat the topics: mathematical modelling in solid, fluid and contact mechanics nonconvex variational analysis with emphasis to nonlinear solid and structural mechanics numerical modelling of problems with non-smooth constitutive laws, approximation of variational and hemivariational inequalities, numerical analysis of discrete schemes, numerical methods and the corresponding algorithms, applications to mechanical engineering numerical aspects of non-smooth mechanics, with emphasis on developing accurate and reliable computational tools mechanics of fibre-reinforced materials behaviour of elasto-plastic materials accounting for the microstructural defects definition of structural defects based on the differential geometry concepts or on the atomistic basis interaction between phase transformation and dislocations at nano-scale energetic arguments bifurcation and post-buckling a...

  15. Infinite Random Graphs as Statistical Mechanical Models

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria

    2011-01-01

    We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe...

  16. Reaction mechanisms in the radiolysis of peptides, polypeptides and proteins II reactions at side-chain loci in model systems

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, W.M.

    1983-11-01

    The major emphasis in radiation biology at the molecular level has been on the nucleic acid component of the nucleic acid-protein complex because of its primary genetic importance. But there is increasing evidence that radiation damage to the protein component also has important biological implications. Damage to capsid protein now appears to be a major factor in the radiation inactivation of phage and other viruses. And, there is increasing evidence that radiation-chemical change in the protein component of chromation leads to changes in the stability of the repressor-operator complexes involved in gene expression. Knowledge of the radiation chemistry of protein is also of importance in other fields such as the application of radiation sterilization to foods and drugs. Recent findings that a class of compounds, the ..cap alpha..,..cap alpha..'-diaminodicarboxylic acids, not normally present in food proteins, are formed in protein radiolysis is of particular significance since certain of their peptide derivatives have been showing to exhibit immunological activity. The purpose of this review is to bring together and to correlate our present knowledge of products and mechanisms in the radiolysis of peptides, polypeptides and proteins both aqueous and solid-state. In part 1 we presented a discussion of the radiation-induced reactions of the peptide main-chain in model peptide and polypeptide systems. Here in part 2 the emphasis is on the competing radiation chemistry at side-chain loci of peptide derivatives of aliphatic, aromatic-unsaturated and sulfur-containing amino acids in similar systems. Information obtained with the various experimental techniques of product analysis, competition kinetics, spin-trapping, pulse radiolysis, and ESR spectroscopy are included.

  17. DYNAMIC MODELING OF METAMORPHIC MECHANISM

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The concept of metamorphic mechanism is put forward according to the change of configurations from one state to another. Different configurations of metamorphic mechanism are described through the method of Huston lower body arrays. Kinematics analyses for metamorphic mechanism with generalized topological structure, including the velocity, angular velocity, acceleration and angular acceleration, are given. Dynamic equations for an arbitrary configuration, including close-loop constraints, are formed by using Kane's equations. For an arbitrary metamorphic mechanism, the transformation matrix of generalized speeds between configuration (*)and(*)+1 is obtained for the first time. Furthermore, configuration-complete dynamic modeling of metamorphic mechanism including all configurations is completely established.

  18. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the c

  19. Lithosphere tectonics and thermo-mechanical properties: An integrated modeling approach for enhanced geothermal systems exploration in Europe

    NARCIS (Netherlands)

    Wees, J.D. van; Cloetingh, S.; Ziegler, P.A.; Lenkey, L.; Beekman, F.; Tesauro, M.; Förster, A.; Norden, B.; Kaban, M.; Hardebol, N.; Voorde, M.T.; Willingshofer, E.; Cornu, T.; Bonté, D.

    2009-01-01

    For geothermal exploration and the development of enhanced geothermal systems (EGS) knowlegde of temperature at drillable depth is a prerequisite for site selection. Equally important is the thermo-mechanical signature of the lithosphere and crust which allow to obtain critical constraints for the c

  20. Mechanics Model of Plug Welding

    Science.gov (United States)

    Zuo, Q. K.; Nunes, A. C., Jr.

    2015-01-01

    An analytical model has been developed for the mechanics of friction plug welding. The model accounts for coupling of plastic deformation (material flow) and thermal response (plastic heating). The model predictions of the torque, energy, and pull force on the plug were compared to the data of a recent experiment, and the agreements between predictions and data are encouraging.

  1. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  2. SMAP Instrument Mechanical System Engineering

    Science.gov (United States)

    Slimko, Eric; French, Richard; Riggs, Benjamin

    2013-01-01

    The Soil Moisture Active Passive (SMAP) mission, scheduled for launch by the end of 2014, is being developed to measure the soil moisture and soil freeze/thaw state on a global scale over a three-year period. The accuracy, resolution, and global coverage of SMAP measurements are invaluable across many science and applications disciplines including hydrology, climate, carbon cycle, and the meteorological, environment, and ecology applications communities. The SMAP observatory is composed of a despun bus and a spinning instrument platform that includes both a deployable 6 meter aperture low structural frequency Astromesh reflector and a spin control system. The instrument section has engendered challenging mechanical system issues associated with the antenna deployment, flexible antenna pointing in the context of a multitude of disturbances, spun section mass properties, spin control system development, and overall integration with the flight system on both mechanical and control system levels. Moreover, the multitude of organizations involved, including two major vendors providing the spin subsystem and reflector boom assembly plus the flight system mechanical and guidance, navigation, and control teams, has led to several unique system engineering challenges. Capturing the key physics associated with the function of the flight system has been challenging due to the many different domains that are applicable. Key interfaces and operational concepts have led to complex negotiations because of the large number of organizations that integrate with the instrument mechanical system. Additionally, the verification and validation concerns associated with the mechanical system have had required far-reaching involvement from both the flight system and other subsystems. The SMAP instrument mechanical systems engineering issues and their solutions are described in this paper.

  3. Familial Dysautonomia: Mechanisms and Models

    Directory of Open Access Journals (Sweden)

    Paula Dietrich

    Full Text Available Abstract Hereditary Sensory and Autonomic Neuropathies (HSANs compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD, also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies.

  4. Experimental Characterisation and Multi-Physic Modelling of Direct Bonding Mechanical Behaviour: Application to Spatial Optical Systems

    Science.gov (United States)

    Cocheteau, N.; Maurel-Pantel, A.; Lebon, F.; Rosu, I.; Ait-Zaid, S.; Savin de Larclause, I.; Salaun, Y.

    2014-06-01

    Direct bonding is a well-known process. However in order to use this process in spatial instrument fabrication the mechanical resistance needs to be quantified precisely. In order to improve bonded strength, optimal parameters of the process are found by studying the influence of annealing time, temperature and roughness which are studied using three experimental methods: double shear, cleavage and wedge tests. Those parameters are chosen thanks to the appearance of time/temperature equivalence. All results brought out the implementation of a multi-physic model to predict the mechanical behavior of direct bonding interface.

  5. Modelling the molecular mechanisms of aging

    Science.gov (United States)

    Mc Auley, Mark T.; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M.; Morgan, Amy E.

    2017-01-01

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field. PMID:28096317

  6. Modelling the molecular mechanisms of aging.

    Science.gov (United States)

    Mc Auley, Mark T; Guimera, Alvaro Martinez; Hodgson, David; Mcdonald, Neil; Mooney, Kathleen M; Morgan, Amy E; Proctor, Carole J

    2017-02-28

    The aging process is driven at the cellular level by random molecular damage that slowly accumulates with age. Although cells possess mechanisms to repair or remove damage, they are not 100% efficient and their efficiency declines with age. There are many molecular mechanisms involved and exogenous factors such as stress also contribute to the aging process. The complexity of the aging process has stimulated the use of computational modelling in order to increase our understanding of the system, test hypotheses and make testable predictions. As many different mechanisms are involved, a wide range of models have been developed. This paper gives an overview of the types of models that have been developed, the range of tools used, modelling standards and discusses many specific examples of models that have been grouped according to the main mechanisms that they address. We conclude by discussing the opportunities and challenges for future modelling in this field.

  7. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  8. Mechanism test bed. Flexible body model report

    Science.gov (United States)

    Compton, Jimmy

    1991-01-01

    The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.

  9. System dynamics model of the support-surrounding rock system in fully mechanized mining with large mining height face and its application

    Institute of Scientific and Technical Information of China (English)

    Yuan Yong; Tu Shihao; Zhang Xiaogang; Li Bo

    2013-01-01

    Fully mechanized mining with large mining height (FMMLMH) is widely used in thick coal seam mining face for its higher recovery ratio, especially where the thickness is less than 7.0 m. However, because of the great mining height and intense rock pressure, the coal wall rib spalling, roof falling and the instabil-ity of support occur more likely in FMMLMH working face, and the above three types of disasters interact with each other with complicated relationships. In order to get the relationship between each two of coal wall, roof, floor and support, and reduce the occurrence probability of the three types of disasters, we established the system dynamics (SD) model of the support-surrounding rock system which is composed of‘coal wall-roof-floor-support’ (CW-R-F-S) in a FMMLMH working face based on the condition of No. 15104 working face in Sijiazhuang coal mine. With the software of Vensim, we also simulated the inter-action process between each two factors of roof, floor, coal wall and the support. The results show that the SD model of ‘CW-R-F-S’ system can reveal the complicated and interactive relationship clearly between the support and surrounding rock in the FMMLMH working face. By increasing the advancing speed of working face, the support resistance or the length of support guard, or by decreasing the tip-to-face distance, the stability of ‘CW-R-F-S’ system will be higher and the happening probability of the disasters such as coal wall rib spalling, roof falling or the instability of support will be lower. These research findings have been testified in field application in No. 15104 working face, which can provide a new approach for researching the interaction relationship of support and surrounding rock.

  10. Dynamics of mechanical systems with variable mass

    CERN Document Server

    Belyaev, Alexander

    2014-01-01

    The book presents up-to-date and unifying formulations for treating dynamics of different types of mechanical systems with variable mass. The starting point is overview of the continuum mechanics relations of balance and jump for open systems from which extended Lagrange and Hamiltonian formulations are derived. Corresponding approaches are stated at the level of analytical mechanics with emphasis on systems with a position-dependent mass and at the level of structural mechanics. Special emphasis is laid upon axially moving structures like belts and chains, and on pipes with an axial flow of fluid. Constitutive relations in the dynamics of systems with variable mass are studied with particular reference to modeling of multi-component mixtures. The dynamics of machines with a variable mass are treated in detail and conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics are presented.

  11. 基于Copula的机械系统可靠性模型及其应用%A Copula-based Mechanical System Reliability Model and Its Application

    Institute of Scientific and Technical Information of China (English)

    何成铭; 吴纬; 孟庆均

    2012-01-01

    There is a complex correlation in the reliability of mechanical system. A reliability model of Copula-based mechanical system is presented by taking the advantage of Copula in describing correlation. The application of the model in mechanical system reliability prediction is described by taking a suspension system of some type armored vehicle for example. The result shows that the model can be perfectly used in the reliability prediction of mechanical system.%机械系统可靠性中存在复杂的相关性,利用连接函数Copula在描述相关性方面的优势,提出了基于Copula的机械系统可靠性模型.以某型装甲车辆悬挂系统为例,阐述了其在系统可靠性预计中的应用.结果表明,该模型可以较好地解决机械系统的可靠性预计问题.

  12. Nonsmooth mechanics models, dynamics and control

    CERN Document Server

    Brogliato, Bernard

    2016-01-01

    Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...

  13. Material and structural mechanical modelling and reliability of thin-walled bellows at cryogenic temperatures. Application to LHC compensation system

    CERN Document Server

    Garion, Cédric; Skoczen, Blazej

    The present thesis is dedicated to the behaviour of austenitic stainless steels at cryogenic temperatures. The plastic strain induced martensitic transformation and ductile damage are taken into account in an elastic-plastic material modelling. The kinetic law of →’ transformation and the evolution laws of kinematic/isotropic mixed hardening are established. Damage issue is analysed by different ways: mesoscopic isotropic or orthotropic model and a microscopic approach. The material parameters are measured from 316L fine gauge sheet at three levels of temperature: 293 K, 77 K and 4.2 K. The model is applied to thin-walled corrugated shell, used in the LHC interconnections. The influence of the material properties on the stability is studied by a modal analysis. The reliability of the components, defined by the Weibull distribution law, is analysed from fatigue tests. The impact on reliability of geometrical imperfections and thermo-mechanical loads is also analysed.

  14. Simulation modeling based method for choosing an effective set of fault tolerance mechanisms for real-time avionics systems

    Science.gov (United States)

    Bakhmurov, A. G.; Balashov, V. V.; Glonina, A. B.; Pashkov, V. N.; Smeliansky, R. L.; Volkanov, D. Yu.

    2013-12-01

    In this paper, the reliability allocation problem (RAP) for real-time avionics systems (RTAS) is considered. The proposed method for solving this problem consists of two steps: (i) creation of an RTAS simulation model at the necessary level of abstraction and (ii) application of metaheuristic algorithm to find an optimal solution (i. e., to choose an optimal set of fault tolerance techniques). When during the algorithm execution it is necessary to measure the execution time of some software components, the simulation modeling is applied. The procedure of simulation modeling also consists of the following steps: automatic construction of simulation model of the RTAS configuration and running this model in a simulation environment to measure the required time. This method was implemented as an experimental software tool. The tool works in cooperation with DYANA simulation environment. The results of experiments with the implemented method are presented. Finally, future plans for development of the presented method and tool are briefly described.

  15. Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression

    Directory of Open Access Journals (Sweden)

    Daphne Ezer

    2014-07-01

    Full Text Available The organization of binding sites in cis-regulatory elements (CREs can influence gene expression through a combination of physical mechanisms, ranging from direct interactions between TF molecules to DNA looping and transient chromatin interactions. The study of simple and common building blocks in promoters and other CREs allows us to dissect how all of these mechanisms work together. Many adjacent TF binding sites for the same TF species form homotypic clusters, and these CRE architecture building blocks serve as a prime candidate for understanding interacting transcriptional mechanisms. Homotypic clusters are prevalent in both bacterial and eukaryotic genomes, and are present in both promoters as well as more distal enhancer/silencer elements. Here, we review previous theoretical and experimental studies that show how the complexity (number of binding sites and spatial organization (distance between sites and overall distance from transcription start sites of homotypic clusters influence gene expression. In particular, we describe how homotypic clusters modulate the temporal dynamics of TF binding, a mechanism that can affect gene expression, but which has not yet been sufficiently characterized. We propose further experiments on homotypic clusters that would be useful in developing mechanistic models of gene expression.

  16. Homotypic clusters of transcription factor binding sites: A model system for understanding the physical mechanics of gene expression.

    Science.gov (United States)

    Ezer, Daphne; Zabet, Nicolae Radu; Adryan, Boris

    2014-07-01

    The organization of binding sites in cis-regulatory elements (CREs) can influence gene expression through a combination of physical mechanisms, ranging from direct interactions between TF molecules to DNA looping and transient chromatin interactions. The study of simple and common building blocks in promoters and other CREs allows us to dissect how all of these mechanisms work together. Many adjacent TF binding sites for the same TF species form homotypic clusters, and these CRE architecture building blocks serve as a prime candidate for understanding interacting transcriptional mechanisms. Homotypic clusters are prevalent in both bacterial and eukaryotic genomes, and are present in both promoters as well as more distal enhancer/silencer elements. Here, we review previous theoretical and experimental studies that show how the complexity (number of binding sites) and spatial organization (distance between sites and overall distance from transcription start sites) of homotypic clusters influence gene expression. In particular, we describe how homotypic clusters modulate the temporal dynamics of TF binding, a mechanism that can affect gene expression, but which has not yet been sufficiently characterized. We propose further experiments on homotypic clusters that would be useful in developing mechanistic models of gene expression.

  17. Mechanism study of pulsus paradoxus using mechanical models.

    Directory of Open Access Journals (Sweden)

    Chang-yang Xing

    Full Text Available Pulsus paradoxus is an exaggeration of the normal inspiratory decrease in systolic blood pressure. Despite a century of attempts to explain this sign consensus is still lacking. To solve the controversy and reveal the exact mechanism, we reexamined the characteristic anatomic arrangement of the circulation system in the chest and designed these mechanical models based on related hydromechanic principles. Model 1 was designed to observe the primary influence of respiratory intrathoracic pressure change (RIPC on systemic and pulmonary venous return systems (SVR and PVR respectively. Model 2, as an equivalent mechanical model of septal swing, was to study the secondary influence of RIPC on the motion of the interventriclar septum (IVS, which might be the direct cause for pulsus paradoxus. Model 1 demonstrated that the simulated RIPC had different influence on the simulated SVR and PVR. It increased the volume of the simulated right ventricle (SRV when the internal pressure was kept constant (8.16 cmH2O, while it had the opposite effect on PVR. Model 2 revealed the three major factors determining the respiratory displacement of IVS in normal and different pathophysiological conditions: the magnitude of RIPC, the pressure difference between the two ventricles and the intrapericardial pressure. Our models demonstrate that the different anatomical arrangement of the two venous return systems leads to a different effect of RIPC on right and left ventricles, and thus a pressure gradient across IVS that tends to shift IVS left- and rightwards. When the leftward displacement of IVS reaches a considerable amplitude in some pathologic condition such as cardiac tamponade, the pulsus paradoxus occurs.

  18. Optimal Control of Mechanical Systems

    OpenAIRE

    Vadim Azhmyakov

    2007-01-01

    In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some ...

  19. Micro-Electro-Mechanical Systems

    NARCIS (Netherlands)

    Sarro, P.M.

    2008-01-01

    Micro-electro-mechanical systems (MEMS) or Microsystems technology (MST) is a fascinating and exciting field which significantly contributes to build a bridge between science and society. Physical properties and material characteristics are translated into structures and devices that can have a larg

  20. Micro-Electro-Mechanical Systems

    NARCIS (Netherlands)

    Sarro, P.M.

    2008-01-01

    Micro-electro-mechanical systems (MEMS) or Microsystems technology (MST) is a fascinating and exciting field which significantly contributes to build a bridge between science and society. Physical properties and material characteristics are translated into structures and devices that can have a

  1. Mechanical model of a single tendon finger

    Science.gov (United States)

    Rossi, Cesare; Savino, Sergio

    2013-10-01

    The mechanical model of a single tendon three phalanxes finger is presented. By means of the model both kinematic and dynamical behavior of the finger itself can be studied. This finger is a part of a more complex mechanical system that consists in a four finger grasping device for robots or in a five finger human hand prosthesis. A first prototype has been realized in our department in order to verify the real behavior of the model. Some results of both kinematic and dynamical behavior are presented.

  2. Proactive maintenance for mechanical systems

    CERN Document Server

    Fitch, EC

    1992-01-01

    Written by Dr. E.C. Fitch, the book contains over 340 double column pages which include 400 figures and tables, a comprehensive bibliography, and index. There is no root cause of mechanical failure, known to the author, that has been ignored or left out. Nowhere in the world is this information put together in such a concise and comprehensive manner, and the book will serve as a reference and guide to designers, practising engineers, maintenance technicians, plant managers and operators who must design, maintain and operate fluid-dependent mechanical systems.

  3. Mechanics based model for predicting structure-induced rolling resistance (SRR) of the tire-pavement system

    Science.gov (United States)

    Shakiba, Maryam; Ozer, Hasan; Ziyadi, Mojtaba; Al-Qadi, Imad L.

    2016-11-01

    The structure-induced rolling resistance of pavements, and its impact on vehicle fuel consumption, is investigated in this study. The structural response of pavement causes additional rolling resistance and fuel consumption of vehicles through deformation of pavement and various dissipation mechanisms associated with inelastic material properties and damping. Accurate and computationally efficient models are required to capture these mechanisms and obtain realistic estimates of changes in vehicle fuel consumption. Two mechanistic-based approaches are currently used to calculate vehicle fuel consumption as related to structural rolling resistance: dissipation-induced and deflection-induced methods. The deflection-induced approach is adopted in this study, and realistic representation of pavement-vehicle interactions (PVIs) is incorporated. In addition to considering viscoelastic behavior of asphalt concrete layers, the realistic representation of PVIs in this study includes non-uniform three-dimensional tire contact stresses and dynamic analysis in pavement simulations. The effects of analysis type, tire contact stresses, pavement viscoelastic properties, pavement damping coefficients, vehicle speed, and pavement temperature are then investigated.

  4. Estimation of mechanical dispersion and dispersivity in a soil-gas system by column experiments and the dusty gas model.

    Science.gov (United States)

    Hibi, Yoshihiko; Kanou, Yuki; Ohira, Yuki

    2012-04-01

    In a previous study, column experiments were carried out with Toyoura sand (permeability 2.05×10(-11)m(2)) and Toyoura sand mixed with bentonite (permeability 9.96×10(-13)m(2)) to obtain the molecular diffusion coefficient, the Knudsen diffusion coefficient, the tortuosity for the molecular diffusion coefficient, and the mechanical dispersion coefficient of soil-gas systems. In this study, we conducted column experiments with field soil (permeability 2.0×10(-13)m(2)) and showed that the above parameters can be obtained for both less-permeable and more-permeable soils by using the proposed method for obtaining the parameters and performing column experiments. We then estimated dispersivity from the mechanical dispersion coefficients obtained by the column experiments. We found that the dispersivity depended on the mole fraction of the tracer gas and could be represented by a quadratic equation. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Elucidating the digital control mechanism for DNA damage repair with the p53-Mdm2 system: single cell data analysis and ensemble modelling.

    Science.gov (United States)

    Ogunnaike, Babatunde A

    2006-02-22

    Recent experimental evidence about DNA damage response using the p53-Mdm2 system has raised some fundamental questions about the control mechanism employed. In response to DNA damage, an ensemble of cells shows a damped oscillation in p53 expression whose amplitude increases with increased DNA damage--consistent with 'analogue' control. Recent experimental results, however, show that the single cell response is a series of discrete pulses in p53; and with increase in DNA damage, neither the height nor the duration of the pulses change, but the mean number of pulses increase--consistent with 'digital' control. Here we present a system engineering model that uses published data to elucidate this mechanism and resolve the dilemma of how digital behaviour at the single cell level can manifest as analogue ensemble behaviour. First, we develop a dynamic model of the p53-Mdm2 system that produces non-oscillatory responses to a stress signal. Second, we develop a probability model of the distribution of pulses in a cell population, and combine the two with the simplest digital control algorithm to show how oscillatory responses whose amplitudes grow with DNA damage can arise from single cell behaviour in which each single pulse response is independent of the extent of DNA damage. A stochastic simulation of the hypothesized control mechanism reproduces experimental observations remarkably well.

  6. Insight into electric field-induced rupture mechanism of water-in-toluene emulsion films from a model system

    Science.gov (United States)

    Dimova, Desislava; Pisov, Stoyan; Panchev, Nikolay; Nedyalkova, Miroslava; Madurga, Sergio; Proykova, Ana

    2017-05-01

    This paper presents a model, which we have designed to get insight into the development of electro-induced instability of a thin toluene emulsion film in contact with the saline aqueous phase. Molecular dynamics (MD) simulations demonstrate the role of charge accumulation in the toluene-film rupture induced by a DC electric field. Two ensembles—NVT and NPT—are used to determine the critical value of the external field at which the film ruptures, the charge distribution and capacitance of the thin film, number densities, and the film structure. The rupture mechanism as seen from this model is the following: in both NVT and NPT ensembles, condenser plates, where the charge density is maximal, are situated at the very border between the bulk aqueous (water) phase and the mixed layer. No ion penetration is observed within the toluene core, thus leaving all the distribution of charges within the mixed zone and the bulk phase that could be attributed to the formation of hydration shells. When the critical electric field is reached within a certain time after the field application, electric discharge occurs indicating the beginning of the rupturing process. The MD simulations indicate that the NPT ensemble predicts a value of the critical field that is closer to the experimental finding.

  7. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  8. Model Systems

    Directory of Open Access Journals (Sweden)

    Francisco Rodríguez-Trelles

    1998-12-01

    Full Text Available Current efforts to study the biological effects of global change have focused on ecological responses, particularly shifts in species ranges. Mostly ignored are microevolutionary changes. Genetic changes may be at least as important as ecological ones in determining species' responses. In addition, such changes may be a sensitive indicator of global changes that will provide different information than that provided by range shifts. We discuss potential candidate systems to use in such monitoring programs. Studies of Drosophila subobscura suggest that its chromosomal inversion polymorphisms are responding to global warming. Drosophila inversion polymorphisms can be useful indicators of the effects of climate change on populations and ecosystems. Other species also hold the potential to become important indicators of global change. Such studies might significantly influence ecosystem conservation policies and research priorities.

  9. Supersymmetry and integrability in planar mechanical systems

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Leonardo P.G. de; Helayel-Neto, Jose A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: lpgassis@cbpf.br; helayel@cbpf.br; Paschoal, Ricardo C. [Centro de Tecnologia da Industria Quimica e/ Textil (SENAI/CETIQT), Rio de Janeiro, RJ (Brazil)]. E-mail: paschoal@cbpf.br

    2005-05-15

    We present an N = 2-supersymmetric mechanical system whose bosonic sector, with two degrees of freedom, stems from the reduction of an SU(2) Yang-Mills theory with the assumption of spatially homogeneous field configurations and a particular Ansatz imposed on the gauge potentials in the dimensional reduction procedure. The Painleve test is adopted to discuss integrability and we focus on the role of supersymmetry and parity invariance in two space dimensions for the attainment of integrable or chaotic models. Our conclusion is that the relationships among the parameters imposed by supersymmetry seem to drastically reduce the number of possibilities for integrable interaction potentials of the mechanical system under consideration. (author)

  10. Mechanics and dynamics of reconstituted cytoskeletal systems.

    Science.gov (United States)

    Jensen, Mikkel H; Morris, Eliza J; Weitz, David A

    2015-11-01

    The intracellular cytoskeleton is an active dynamic network of filaments and associated binding proteins that control key cellular properties, such as cell shape and mechanics. Due to the inherent complexity of the cell, reconstituted model systems have been successfully employed to gain an understanding of the fundamental physics governing cytoskeletal processes. Here, we review recent advances and key aspects of these reconstituted systems. We focus on the importance of assembly kinetics and dynamic arrest in determining network mechanics, and highlight novel emergent behavior occurring through interactions between cytoskeletal components in more complex networks incorporating multiple biopolymers and molecular motors.

  11. Mechanical models of amplitude and frequency modulation

    Energy Technology Data Exchange (ETDEWEB)

    Bellomonte, L; Guastella, I; Sperandeo-Mineo, R M [GRIAF - Research Group on Teaching/Learning Physics, DI.F.TE.R. -Dipartimento di Fisica e Tecnologie Relative, University of Palermo, Viale delle Scienze, Edificio 18, 90128 Palermo (Italy)

    2005-05-01

    This paper presents some mechanical models for amplitude and frequency modulation. The equations governing both modulations are deduced alongside some necessary approximations. Computer simulations of the models are carried out by using available educational software. Amplitude modulation is achieved by using a system of two weakly coupled pendulums, whereas the frequency modulation is obtained by using a pendulum of variable length. Under suitable conditions (small oscillations, appropriate initial conditions, etc) both types of modulation result in significantly accurate and visualized simulations.

  12. Statistical Mechanics of Dynamical Systems

    Science.gov (United States)

    Mori, H.; Hata, H.; Horita, T.; Kobayashi, T.

    A statistical-mechanical formalism of chaos based on the geometry of invariant sets in phase space is discussed to show that chaotic dynamical systems can be treated by a formalism analogous to that of thermodynamic systems if one takes a relevant coarse-grained quantity, but their statistical laws are quite different from those of thermodynamic systems. This is a generalization of statistical mechanics for dealing with dissipative and hamiltonian (i.e., conservative) dynamical systems of a few degrees of freedom. Thus the sum of the local expansion rate of nearby orbits along relevant orbit over a long but finite time has been introduced in order to describe and characterize (1) a drastic change of the structure of a chaotic attractor at a bifurcation and anomalous phenomena associated, (2) a critical scaling of chaos in the neighborhood of a critical point for the bifurcation to a nonexotic state, and a self-similar temporal structure of a critical orbit on the critical 2^∞ attractor an the critical golden tori without mixing, (3) the critical KAM torus, diffusion and repeated sticking of a chaotic orbit to a critical torus in hamiltonian systems. Here a q-phase transition, analogous to the ferromagnetic phase transition, plays an important role. They are illustrated numerically and theoretically by treating the driven damped pendulum, the driven Duffing equation, the Henon map, and the dissipative and conservative standard maps. This description of chaos breaks the time-reversal symmetry of hamiltonian dynamical laws analogously to statistical mechanics of irreversible processes. The broken time-reversal symmetry is brought about by orbital instability of chaos.

  13. Multiscale Cloud System Modeling

    Science.gov (United States)

    Tao, Wei-Kuo; Moncrieff, Mitchell W.

    2009-01-01

    The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.

  14. Free radicals in biological energy conversion: EPR studies of model systems. Final report. [Mechanism of chlorophyll participation in photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Tollin, G.

    1976-08-31

    Energy conversion in photosynthesis is known to proceed via light-induced one-electron transfer reactions involving chlorophyll and electron donors and acceptors. Although the chemical identities of all of the components have not as yet been elucidated, considerable evidence has been accumulated which points to quinones (Q) as primary electron acceptors in both green plants and bacterial photosynthesis. Furthermore, it has been established that the initial photoprocess leads to the formation of a chlorophyll cation radical (C./sup +/). The research described in this report has as its goal the elucidation of the molecular-electronic mechanism of chlorophyll participation in photosynthesis. The following reactions have been observed: (a) Photoproduction of C./sup +/ in solution in the absence of added electron acceptors. This is a low quantum yield reaction which proceeds via the lowest excited singlet state. Bacteriochlorophyll also undergoes this reaction, whereas pheophytin does not. (b) One-electron phototransfer between the chlorophyll lowest triplet state and quinones to yield a radical pair (C./sup +/ - Q./sup +/). This may either recombine or separate. The C./sup +/ formed upon separation is unstable and reacts with hydroxylic compounds to regenerate chlorophyll. The Q./sup -/ species partly reacts with oxidized solvent and partly disproportionates. Both bacteriochlorophyll and pheophytin are also able to react with quinones in this manner. The quenching of the chlorophyll lowest singlet state by quinones does not, however, lead to detectable radical formation. These reactions seem to provide acceptable models for certain aspects of photosynthetic energy conversion, and thus elucidation of their detailed mechanisms should lead to useful insights into the nature of the biological process.

  15. Verification of a 2 kWe Closed-Brayton-Cycle Power Conversion System Mechanical Dynamics Model

    Science.gov (United States)

    Ludwiczak, Damian R.; Le, Dzu K.; McNelis, Anne M.; Yu, Albert C.; Samorezov, Sergey; Hervol, Dave S.

    2005-01-01

    Vibration test data from an operating 2 kWe closed-Brayton-cycle (CBC) power conversion system (PCS) located at the NASA Glenn Research Center was used for a comparison with a dynamic disturbance model of the same unit. This effort was performed to show that a dynamic disturbance model of a CBC PCS can be developed that can accurately predict the torque and vibration disturbance fields of such class of rotating machinery. The ability to accurately predict these disturbance fields is required before such hardware can be confidently integrated onto a spacecraft mission. Accurate predictions of CBC disturbance fields will be used for spacecraft control/structure interaction analyses and for understanding the vibration disturbances affecting the scientific instrumentation onboard. This paper discusses how test cell data measurements for the 2 kWe CBC PCS were obtained, the development of a dynamic disturbance model used to predict the transient torque and steady state vibration fields of the same unit, and a comparison of the two sets of data.

  16. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  17. Multiscale modelling of DNA mechanics

    Science.gov (United States)

    Dršata, Tomáš; Lankaš, Filip

    2015-08-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.

  18. Evaluation of mechanical load in the musculoskeletal system : development of experimental and modeling methodologies for the study of the effect of exercise in human models

    OpenAIRE

    João, Filipa Oliveira da Silva

    2013-01-01

    Doutoramento em Motricidade Humana, na especialidade de Biomecânica A major concern of Biomechanics research is the evaluation of the mechanical load and power that the human body develops and endorses when performing high to moderate sport activities. With the purpose of increasing performance and reducing the risk of injury, substantial advances were accomplished to pursuit this goal, either on the laboratory techniques as well as modelling and simulation. Traditionally, the main focus w...

  19. Statistical mechanics of driven diffusive systems

    CERN Document Server

    Schmittmann, B

    1995-01-01

    Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension. Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail. Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these syst...

  20. Electron transfer mechanism and the locality of the system-bath interaction: a comparison of local, semilocal, and pure dephasing models.

    Science.gov (United States)

    Weiss, Emily A; Katz, Gil; Goldsmith, Randall H; Wasielewski, Michael R; Ratner, Mark A; Kosloff, Ronnie; Nitzan, Abraham

    2006-02-21

    We simulate the effects of two types of dephasing processes, a nonlocal dephasing of system eigenstates and a dephasing of semilocal eigenstates, on the rate and mechanism of electron transfer (eT) through a series of donor-bridge-acceptor systems, D-B(N)-A, where N is the number of identical bridge units. Our analytical and numerical results show that pure dephasing, defined as the perturbation of system eigenstates through the system-bath interaction, does not disrupt coherent eT because it induces no localization; electron transfer may proceed through superexchange in a system undergoing only pure dephasing. A more physically reasonable description may be obtained via a system-bath interaction that reflects the perturbation of more local electronic structure by local nuclear distortions and dipole interactions. The degree of locality of this interaction is guided by the structure of the system Hamiltonian and by the nature of the measurement performed on the system (i.e., the nature of the environment). We compare our result from this "semilocal" model with an even more local phenomenological dephasing model. We calculate electron transfer rate by obtaining nonequilibrium steady-state solutions for the elements of a reduced density matrix; a semigroup formalism is used to write down the dissipative part of the equation of motion.

  1. Mechanisms of Resilience in Common-pool Resource Management Systems: an Agent-based Model of Water Use in a River Basin

    Directory of Open Access Journals (Sweden)

    Maja Schlüter

    2007-12-01

    Full Text Available The concept of resilience is widely promoted as a promising notion to guide new approaches to ecosystem and resource management that try to enhance a system's capacity to cope with change. A variety of mechanisms of resilience specific for different systems have been proposed. In the context of resource management those include but are not limited to the diversity of response options and flexibility of the social system to adaptively respond to changes on an adequate scale. However, implementation of resilience-based management in specific real-world systems has often proven difficult because of a limited understanding of suitable interventions and their impact on the resilience of the coupled social-ecological system. We propose an agent-based modeling approach to explore system characteristics and mechanisms of resilience in a complex resource management system, based on a case study of water use in the Amudarya River, which is a semiarid river basin. Water resources in its delta are used to sustain irrigated agriculture as well as aquatic ecosystems that provide fish and other ecosystem services. The three subsystems of the social-ecological system, i.e., the social system, the irrigation system, and an aquatic ecosystem, are linked by resource flows and the allocation decision making of actors on different levels. Simulation experiments are carried out to compare the resilience of different institutional settings of water management to changes in the variability and uncertainty of water availability. The aim is to investigate the influence of (1 the organizational structure of water management, (2 information on water availability, and (3 the diversity of water uses on the resilience of the system to short and long-term water scarcity. In this paper, the model concept and first simulation results are presented. As a first illustration of the approach the performances of a centralized and a decentralized regime are compared under different

  2. Metal Ion Modeling Using Classical Mechanics.

    Science.gov (United States)

    Li, Pengfei; Merz, Kenneth M

    2017-02-08

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems.

  3. Metal Ion Modeling Using Classical Mechanics

    Science.gov (United States)

    2017-01-01

    Metal ions play significant roles in numerous fields including chemistry, geochemistry, biochemistry, and materials science. With computational tools increasingly becoming important in chemical research, methods have emerged to effectively face the challenge of modeling metal ions in the gas, aqueous, and solid phases. Herein, we review both quantum and classical modeling strategies for metal ion-containing systems that have been developed over the past few decades. This Review focuses on classical metal ion modeling based on unpolarized models (including the nonbonded, bonded, cationic dummy atom, and combined models), polarizable models (e.g., the fluctuating charge, Drude oscillator, and the induced dipole models), the angular overlap model, and valence bond-based models. Quantum mechanical studies of metal ion-containing systems at the semiempirical, ab initio, and density functional levels of theory are reviewed as well with a particular focus on how these methods inform classical modeling efforts. Finally, conclusions and future prospects and directions are offered that will further enhance the classical modeling of metal ion-containing systems. PMID:28045509

  4. Classical mechanics of nonconservative systems.

    Science.gov (United States)

    Galley, Chad R

    2013-04-26

    Hamilton's principle of stationary action lies at the foundation of theoretical physics and is applied in many other disciplines from pure mathematics to economics. Despite its utility, Hamilton's principle has a subtle pitfall that often goes unnoticed in physics: it is formulated as a boundary value problem in time but is used to derive equations of motion that are solved with initial data. This subtlety can have undesirable effects. I present a formulation of Hamilton's principle that is compatible with initial value problems. Remarkably, this leads to a natural formulation for the Lagrangian and Hamiltonian dynamics of generic nonconservative systems, thereby filling a long-standing gap in classical mechanics. Thus, dissipative effects, for example, can be studied with new tools that may have applications in a variety of disciplines. The new formalism is demonstrated by two examples of nonconservative systems: an object moving in a fluid with viscous drag forces and a harmonic oscillator coupled to a dissipative environment.

  5. Modelling on fuzzy control systems

    Institute of Scientific and Technical Information of China (English)

    LI; Hongxing(李洪兴); WANG; Jiayin(王加银); MIAO; Zhihong(苗志宏)

    2002-01-01

    A kind of modelling method for fuzzy control systems is first proposed here, which is calledmodelling method based on fuzzy inference (MMFI). It should be regarded as the third modelling method thatis different from two well-known modelling methods, that is, the first modelling method, mechanism modellingmethod (MMM), and the second modelling method, system identification modelling method (SlMM). Thismethod can, based on the interpolation mechanism on fuzzy logic system, transfer a group of fuzzy inferencerules describing a practice system into a kind of nonlinear differential equation with variable coefficients, calledHX equations, so that the mathematical model of the system can be obtained. This means that we solve thedifficult problem of how to get a model represented as differential equations on a complicated or fuzzy controlsystem.

  6. Modelling of volatility in monetary transmission mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Dobešová, Anna; Klepáč, Václav; Kolman, Pavel [Department of Statistics and Operation Analysis, Faculty of Business and Economics, Mendel University in Brno, Zemědělská 1, 61300, Brno (Czech Republic); Bednářová, Petra [Institute of Technology and Business, Okružní 517/10, 370 01, České Budějovice (Czech Republic)

    2015-03-10

    The aim of this paper is to compare different approaches to modeling of volatility in monetary transmission mechanism. For this purpose we built time-varying parameter VAR (TVP-VAR) model with stochastic volatility and VAR-DCC-GARCH model with conditional variance. The data from three European countries are included in the analysis: the Czech Republic, Germany and Slovakia. Results show that VAR-DCC-GARCH system captures higher volatility of observed variables but main trends and detected breaks are generally identical in both approaches.

  7. Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

    Directory of Open Access Journals (Sweden)

    Marco A. Velasco

    2016-10-01

    Full Text Available Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.

  8. Mechanism Modeling and Simulation Based on Dimensional Deviation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    To analyze the effects on motion characteristics of mechanisms of dimensional variations, a study on random dimensional deviation generation techniques for 3D models on the basis of the present mechanical modeling software was carried out, which utilized the redeveloped interfaces provided by the modeling software to develop a random dimensional deviation generation system with certain probability distribution characteristics. This system has been used to perform modeling and simulation of the specific mechanical time delayed mechanism under multiple deviation varieties, simulation results indicate the dynamic characteristics of the mechanism are influenced significantly by the dimensional deviation in the tolerance distribution range, which should be emphasized in the design.

  9. Micro electromechanical systems (MEMS) for mechanical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  10. A streptozotocin-induced diabetic neuropathic pain model for static or dynamic mechanical allodynia and vulvodynia: validation using topical and systemic gabapentin.

    Science.gov (United States)

    Ali, Gowhar; Subhan, Fazal; Abbas, Muzaffar; Zeb, Jehan; Shahid, Muhammad; Sewell, Robert D E

    2015-11-01

    Neuropathic vulvodynia is a state of vulval discomfort characterized by a burning sensation, diffuse pain, pruritus or rawness with an acute or chronic onset. Diabetes mellitus may cause this type of vulvar pain in several ways, so this study was conducted to evaluate streptozotocin-induced diabetes as a neuropathic pain model for vulvodynia in female rats. The presence of streptozotocin (50 mg/kg i.p.)-induced diabetes was initially verified by disclosure of pancreatic tissue degeneration, blood glucose elevation and body weight loss 5-29 days after a single treatment. Dynamic (shortened paw withdrawal latency to light brushing) and static (diminished von Frey filament threshold pressure) mechanical allodynia was then confirmed on the plantar foot surface. Subsequently, both static and dynamic vulvodynia was detected by application of the paradigm to the vulval region. Systemic gabapentin (75 mg/kg, i.p.) and topical gabapentin (10 % gel) were finally tested against allodynia and vulvodynia. Topical gabapentin and the control gel vehicle significantly increased paw withdrawal threshold in the case of the static allodynia model and also paw withdrawal latency in the model for dynamic allodynia when compared with the streptozotocin-pretreated group. Likewise, in the case of static and dynamic vulvodynia, there was a significant antivulvodynia effect of systemic and topical gabapentin treatment. These outcomes substantiate the value of this model not only for allodynia but also for vulvodynia, and this was corroborated by the findings not only with systemic but also with topical gabapentin.

  11. On a quantum mechanical system theory of the origin of life: from the Stapp-model to the origin of natural symbols

    Science.gov (United States)

    Balázs, András

    2016-01-01

    The Heisenberg-James-Stapp (quantum mechanical) mind model is surveyed and criticized briefly. The criticism points out that the model, while being essentially consistent concerning (human) consciousness, fundamentally lacks the evolutional point of view both onto- and phylogenetically. Ethology and other than Jamesian psychology is quoted and a quantum mechanical theoretical scheme is suggested to essentially extend Stapp's frame in an evolutionary context. It is proposed that its central supposition, spontaneous quantum measurement can be better utilized in an investigation of the origin of the "subjective" process, having come about concomitantly with the chemistry of the origin of life. We dwell on its applicability at this latter process, at its heart standing, it is supposed, the endophysical nonlinear "self-measurement" of (quantum mechanically describable) matter, and so our investigation is extended to this primeval phenomenon. It is suggested that the life phenomenon is an indirect C* → (W*) → C* quantum algebraic process transition, where the (W*) system would represent the living state. Summarized also are our previous results on an internalized, "reversed", time process, introduced originally by Gunji, which is subordinated to the external "forwards" time evolution, driving towards symmetry by gradual space-mappings, where the original splitting-up must have come about in a spontaneous symmetry breaking nonlinear "self-measurement" of matter in an endophysical World.

  12. An Effective Security Mechanism for M-Commerce Applications Exploiting Ontology Based Access Control Model for Healthcare System

    OpenAIRE

    S.M. Roychoudri; Dr. M. Aramudhan

    2016-01-01

    Health organizations are beginning to move mobile commerce services in recent years to enhance services and quality without spending much investment for IT infrastructure. Medical records are very sensitive and private to any individuals. Hence effective security mechanism is required. The challenges of our research work are to maintain privacy for the users and provide smart and secure environment for accessing the application. It is achieved with the help of personalization. Internet has pr...

  13. Mechanisms of Geomagnetic Field Influence on Gene Expression Using Influenza as a Model System: Basics of Physical Epidemiology

    Directory of Open Access Journals (Sweden)

    Andriy Ponomarenko

    2010-03-01

    Full Text Available Recent studies demonstrate distinct changes in gene expression in cells exposed to a weak magnetic field (MF. Mechanisms of this phenomenon are not understood yet. We propose that proteins of the Cryptochrome family (CRY are "epigenetic sensors" of the MF fluctuations, i.e., magnetic field-sensitive part of the epigenetic controlling mechanism. It was shown that CRY represses activity of the major circadian transcriptional complex CLOCK/BMAL1. At the same time, function of CRY, is apparently highly responsive to weak MF because of radical pairs that periodically arise in the functionally active site of CRY and mediate the radical pair mechanism of magnetoreception. It is known that the circadian complex influences function of every organ and tissue, including modulation of both NF-κB- and glucocorticoids- dependent signaling pathways. Thus, MFs and solar cycles-dependent geomagnetic field fluctuations are capable of altering expression of genes related to function of NF-κB, hormones and other biological regulators. Notably, NF-κB, along with its significant role in immune response, also participates in differential regulation of influenza virus RNA synthesis. Presented data suggests that in the case of global application (example—geomagnetic field, MF-mediated regulation may have epidemiological and other consequences.

  14. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain, and displac......The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain...

  15. Modelling and simulation of photocatalytic oxidation mechanism of chlorohalogenated substituted phenols in batch systems: Langmuir-Hinshelwood approach.

    Science.gov (United States)

    Khuzwayo, Z; Chirwa, E M N

    2015-12-30

    This study investigated, modelled and simulated the influence of multi-chlorohalogenation in heterogeneous photocatalytic degradation of substituted phenols (pentachlorophenol (PCP), trichlorophenol (TCP), dichlorophenol (DCP), and monochlorophenol (CP)). The Langmuir-Hinshelwood approach was applied to determine oxidation kinetics. Aquasim 2.0 computational software was used to model, simulate and estimate model parameters of the different chlorophenols. Chemical adsorption equilibrium isotherms for the four chlorophenols and phenol were studied and modelled for adsorption onto titanium dioxide (TiO2) semiconductor catalyst. Langmuir adsorption parameters were determined and used to calculate adsorption constant and maximum adsorption capacity. The adsorption of chloride phenolics onto titanium dioxide catalyst increased in the order of 4 - CP Photocatalytic studies analysed the efficiency of oxidation and found improved degradation with higher chloride substituted phenolics in the order of PCP > TCP > DCP ≥ 4 - CP. Photocatalytic parameters were calculated and estimated along with sensitivity and uncertainty analyses.

  16. A Reaction-Diffusion Model of the Cadherin-Catenin System: A Possible Mechanism for Contact Inhibition and Implications for Tumorigenesis

    CERN Document Server

    Basan, Markus; Lenz, Martin; Joanny, Jean-François; Risler, Thomas

    2015-01-01

    Contact inhibition is the process by which cells switch from a motile growing state to a passive and stabilized state upon touching their neighbors. When two cells touch, an adhesion link is created between them by means of transmembrane E-cadherin proteins. Simultaneously, their actin filaments stop polymerizing in the direction perpendicular to the membrane and reorganize to create an apical belt that colocalizes with the adhesion links. Here, we propose a detailed quantitative model of the role of the cytoplasmic $\\beta$-catenin and $\\alpha$-catenin proteins in this process, treated as a reaction-diffusion system. Upon cell-cell contact, the concentration in $\\alpha$-catenin dimers increases, inhibiting actin branching and thereby reducing cellular motility and expansion pressure. This model provides a mechanism for contact inhibition that could explain previously unrelated experimental findings on the role played by E-cadherin, $\\beta$-catenin and $\\alpha$-catenin in the cellular phenotype and in tumorige...

  17. Modelling the elastin, collagen and smooth muscle contribution to the duodenal mechanical behaviour in patients with systemic sclerosis

    DEFF Research Database (Denmark)

    Gao, F.; Liao, Donghua; Drewes, Asbjørn Mohr

    2009-01-01

    Abstract Systemic sclerosis (SS) is a connective tissue disease that involves the gastrointestinal tract. Previous experiments have shown abnormal intestinal motility, dilatation, wall stiffening and impaired smooth muscle function. Consequently, understanding the association between intestinal...

  18. A Systems Biology Approach to Understanding Alcoholic Liver Disease Molecular Mechanism: The Development of Static and Dynamic Models.

    Science.gov (United States)

    Shafaghati, Leila; Razaghi-Moghadam, Zahra; Mohammadnejad, Javad

    2017-08-28

    Alcoholic liver disease (ALD) is a complex disease characterized by damages to the liver and is the consequence of excessive alcohol consumption over years. Since this disease is associated with several pathway failures, pathway reconstruction and network analysis are likely to explicit the molecular basis of the disease. To this aim, in this paper, a network medicine approach was employed to integrate interactome (protein-protein interaction and signaling pathways) and transcriptome data to reconstruct both a static network of ALD and a dynamic model for it. Several data sources were exploited to assemble a set of ALD-associated genes which further was used for network reconstruction. Moreover, a comprehensive literature mining reveals that there are four signaling pathways with crosstalk (TLR4, NF- [Formula: see text]B, MAPK and Apoptosis) which play a major role in ALD. These four pathways were exploited to reconstruct a dynamic model of ALD. The results assure that these two models are consistent with a number of experimental observations. The static network of ALD and its dynamic model are the first models provided for ALD which offer potentially valuable information for researchers in this field.

  19. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Uma S. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Wackerbauer, Renate [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Polyakov, Igor V. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Newman, David E. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Sanchez, Raul E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fusion Energy Division; Univ. Carlos III de Madrid (Spain)

    2015-11-13

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were applied to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.

  20. Internet Resource Pricing Models, Mechanisms, and Methods

    CERN Document Server

    He, Huan; Liu, Ying

    2011-01-01

    With the fast development of video and voice network applications, CDN (Content Distribution Networks) and P2P (Peer-to-Peer) content distribution technologies have gradually matured. How to effectively use Internet resources thus has attracted more and more attentions. For the study of resource pricing, a whole pricing strategy containing pricing models, mechanisms and methods covers all the related topics. We first introduce three basic Internet resource pricing models through an Internet cost analysis. Then, with the evolution of service types, we introduce several corresponding mechanisms which can ensure pricing implementation and resource allocation. On network resource pricing methods, we discuss the utility optimization in economics, and emphasize two classes of pricing methods (including system optimization and entities' strategic optimizations). Finally, we conclude the paper and forecast the research direction on pricing strategy which is applicable to novel service situation in the near future.

  1. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism

    DEFF Research Database (Denmark)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik;

    2016-01-01

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R......)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers...... indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site...

  2. Infinite Random Graphs as Statistical Mechanical Models

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria

    2011-01-01

    We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe...... a relation to the so-called uniform infinite tree and results on the Hausdorff and spectral dimension of two-dimensional space-time obtained in B. Durhuus, T. Jonsson, J.F. Wheater, J. Stat. Phys. 139, 859 (2010) are briefly outlined. For the latter we discuss results on the absence of spontaneous...... magnetization and argue that, in the generic case, the values of the Hausdorff and spectral dimension of the underlying infinite trees are not influenced by the coupling to an Ising model in a constant magnetic field (B. Durhuus, G.M. Napolitano, in preparation)...

  3. Modeling molecular mechanisms in the axon

    Science.gov (United States)

    de Rooij, R.; Miller, K. E.; Kuhl, E.

    2017-03-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena—both in isolation and in interaction—to explore emergent cellular-level features under physiological and pathological conditions.

  4. System Identification Modeling of Rotorcraft Flight Mechanics%旋翼飞行器飞行动力学系统辨识建模算法

    Institute of Scientific and Technical Information of China (English)

    宋彦国; 孙涛

    2011-01-01

    描述了旋翼飞行器飞行力学模型的系统辨识建模算法,从旋翼飞行器飞行动力学建模的共性问题入手,首先采用机理建模的方法分析了旋翼飞行嚣主要气动部件所受气动力.考虑旋翼挥舞运动对旋翼飞行器飞行动力学特性的影响,建立了旋翼飞行器的飞行力学系统辨识参数化模型集.其次以子空间方法辨识初始飞行动力学模型,采用加权频域预报误差法获得最优模型的两步辨识方法解决旋翼飞行器这一非线性不稳定,多输入-多输出系统辨识问题,且所辨识模型与机理模型具有相同的结构.最后对样例直升机的悬停飞行状态模型辨识进行了数值与试飞试验验证,表明了方法的有效性.%Based on common characteristics of rotorcraft flight mechanics modeling, theories and algorithm of model identification are studied. Firstly, by using mechanism modeling method and considering blades flapping, the parameter identification model group is established. Secondly, in order to solve multi input and output system identification problems, a two step identification method is proposed. It identifies the initial model by subspace identification method and then the optimized model by frequency prediction error method. Finally, with this two-step identification method, the simulation and flight tests are conducted to identify the example helicopter flight mechanics model in the hover state. The result shows that the method is effective and accurate.

  5. Sandbox modelling of sequential thrusting in a mechanically two-layered system and its implications in fold-and-thrust belts

    Science.gov (United States)

    Saha, Puspendu; Bose, Santanu; Mandal, Nibir

    2016-10-01

    Many fold-and-thrust belts display multi-storied thrust sequences, characterizing a composite architecture of the thrust wedges. Despite dramatic progress in sandbox modelling over the last three decades, our understanding of such composite thrust-wedge mechanics is limited and demands a re-visit to the problem of sequential thrusting in mechanically layered systems. This study offers a new approach to sandbox modelling, designed with a two-layered sandpack simulating a mechanically weak Coulomb layer, resting coherently upon a stronger Coulomb layer. Our experimental models reproduce strikingly similar styles of the multi-storied frontal thrust sequences observed in natural fold-and- thrust belts. The upper weak horizon undergoes sequential thrusting at a high spatial frequency, forming numerous, closely spaced frontal thrusts, whereas the lower strong horizon produces widely spaced thrusts with progressive horizontal shortening. This contrasting thrust progression behaviour gives rise to composite thrust architecture in the layered sandpack. We show the evolution of such composite thrust sequences as a function of frictional strength (μb) at the basal detachment and thickness ratio (Tr) between the weak and strong layers. For any given values of Tr and μb, the two thrust sequences progress at different rates; the closely-spaced, upper thrust sequence advances forelandward at a faster rate than the widely-spaced, lower thrust sequence. Basal friction (μb) has little effects on the vergence of thrusts in the upper weak layer; they verge always towards foreland, irrespective of Tr values. But, the lower strong layer develops back-vergent thrusts when μb is low (∼0.36). In our experiments, closely spaced thrusts in the upper sequence experience intense reactivation due to their interaction with widely spaced thrusts in the lower sequence. The interaction eventually affects the wedge topography, leading to two distinct parts: inner and outer wedges

  6. Thermal, chemical, and mechanical cookoff modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, M.L.; Baer, M.R.; Gross, R.J.

    1994-08-01

    A Thermally Reactive, Elastic-plastic eXplosive code, TREX, has been developed to analyze coupled thermal, chemical and mechanical effects associated with cookoff simulation of confined or unconfined energetic materials. In confined systems, pressure buildup precedes thermal runaway, and unconfined energetic material expands to relieve high stress. The model was developed based on nucleation, decomposition chemistry, and elastic/plastic mechanical behavior of a material with a distribution of internal defects represented as clusters of spherical inclusions. A local force balance, with mass continuity constraints, forms the basis of the model requiring input of temperature and reacted gas fraction. This constitutive material model has been incorporated into a quasistatic mechanics code SANTOS as a material module which predicts stress history associated with a given strain history. The thermal-chemical solver XCHEM has been coupled to SANTOS to provide temperature and reacted gas fraction. Predicted spatial history variables include temperature, chemical species, solid/gas pressure, solid/gas density, local yield stress, and gas volume fraction. One-Dimensional Time to explosion (ODTX) experiments for TATB and PBX 9404 (HMX and NC) are simulated using global multistep kinetic mechanisms and the reactive elastic-plastic constitutive model. Pressure explosions, rather than thermal runaway, result in modeling slow cookoff experiments of confined conventional energetic materials such as TATB. For PBX 9404, pressure explosions also occur at fast cookoff conditions because of low temperature reactions of nitrocellulose resulting in substantial pressurization. A demonstrative calculation is also presented for reactive heat flow in a hollow, propellant-filled, stainless steel cylinder, representing a rocket motor. This example simulation show

  7. Non lineal respiratory systems mechanics simulation of acute respiratory distress syndrome during mechanical ventilation.

    Science.gov (United States)

    Madorno, Matias; Rodriguez, Pablo O

    2010-01-01

    Model and simulation of biological systems help to better understand these systems. In ICUs patients often reach a complex situation where supportive maneuvers require special expertise. Among them, mechanical ventilation in patients suffering from acuter respiratory distress syndrome (ARDS) is specially challenging. This work presents a model which can be simulated and use to help in training of physicians and respiratory therapists to analyze the respiratory mechanics in this kind of patients. We validated the model in 2 ARDS patients.

  8. Histaminergic Mechanisms for Modulation of Memory Systems

    Directory of Open Access Journals (Sweden)

    Cristiano André Köhler

    2011-01-01

    Full Text Available Encoding for several memory types requires neural changes and the activity of distinct regions across the brain. These areas receive broad projections originating in nuclei located in the brainstem which are capable of modulating the activity of a particular area. The histaminergic system is one of the major modulatory systems, and it regulates basic homeostatic and higher functions including arousal, circadian, and feeding rhythms, and cognition. There is now evidence that histamine can modulate learning in different types of behavioral tasks, but the exact course of modulation and its mechanisms are controversial. In the present paper we review the involvement of the histaminergic system and the effects histaminergic receptor agonists/antagonists have on the performance of tasks associated with the main memory types as well as evidence provided by studies with knockout models. Thus, we aim to summarize the possible effects histamine has on modulation of circuits involved in memory formation.

  9. Mathematical Modeling in Continuum Mechanics

    Science.gov (United States)

    Temam, Roger; Miranville, Alain

    2005-06-01

    Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.

  10. Mechanical sensitivity reveals evolutionary dynamics of mechanical systems.

    Science.gov (United States)

    Anderson, P S L; Patek, S N

    2015-04-07

    A classic question in evolutionary biology is how form-function relationships promote or limit diversification. Mechanical metrics, such as kinematic transmission (KT) in linkage systems, are useful tools for examining the evolution of form and function in a comparative context. The convergence of disparate systems on equivalent metric values (mechanical equivalence) has been highlighted as a source of potential morphological diversity under the assumption that morphology can evolve with minimal impact on function. However, this assumption does not account for mechanical sensitivity-the sensitivity of the metric to morphological changes in individual components of a structure. We examined the diversification of a four-bar linkage system in mantis shrimp (Stomatopoda), and found evidence for both mechanical equivalence and differential mechanical sensitivity. KT exhibited variable correlations with individual linkage components, highlighting the components that influence KT evolution, and the components that are free to evolve independently from KT and thereby contribute to the observed pattern of mechanical equivalence. Determining the mechanical sensitivity in a system leads to a deeper understanding of both functional convergence and morphological diversification. This study illustrates the importance of multi-level analyses in delineating the factors that limit and promote diversification in form-function systems. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  11. On Concept of Mechanical System

    OpenAIRE

    Cheremensky, Al

    2013-01-01

    The paper gives a screw axiomatics of rational mechanics, namely: 1. introduces the main measures of mechanics: the mass measure, the scalar and (vector) screw measures of motion, the (vector) screw measure of impressed action, the increment velocity of the vector measure of motion, the (vector) screw measure of constraint action; 2. postulates the (stronger) local integral form of conservation law for the vector measuare of motion (fundamental principle of dynamics), and 3. defines the centr...

  12. Dynamics modeling and simulation of mechanism with joint clearance

    Institute of Scientific and Technical Information of China (English)

    BAI Zheng-feng; TIAN Hao; ZHAO Yang

    2010-01-01

    The existence of clearance in the joints of mechanisms system is inevitable.The movements of the real mechanism are deftection from the ideal mechanism due to the clearances and the motion accuracv is decreased.The effects of the hinge clearance on the crank and rocker mechanism system are studied.The svstem dynamics equation with clearance is presented.The contact dynamics model is established using the nonlinear equivalent spring-damp model and the friction effect is considered by using Coulomb friction model.Then the models are incorporated into ADAMS,and based on the model,large numbers numeric simulations are made.The regularity of contact forces in clearance are studied in detail.And the effects of clearance size.clearance friction on the mechanism dynamics characteristic are analyzed.The simulation resuhs Can predict the effects of clearance on the mechanism dynamics characteristic preferably.

  13. A thermodynamic and mechanical model for the earliest Solar System: Formation via 3-d collapse of dust in the pre-Solar nebula

    Science.gov (United States)

    Criss, R. E.; Hofmeister, A.

    2012-12-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive ΔUg ˜= ΔR.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E. ˜= R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.depends on the contraction of orbits during collapse. Orbital data for the inner planets follow 0.04xR.E.f ˜= -Ug which confirms conservation of angular momentum. Measured spins of the youngest stars confirm that R.E.˜= -Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d Solar System, and infer the evolution of dust and gas densities. Duration of events is obtained from the time

  14. A thermodynamic and mechanical model for formation of the Solar System via 3-dimensional collapse of the dusty pre-solar nebula

    Science.gov (United States)

    Hofmeister, Anne M.; Criss, Robert E.

    2012-03-01

    The fundamental and shared rotational characteristics of the Solar System (nearly circular, co-planar orbits and mostly upright axial spins of the planets) record conditions of origin, yet are not explained by prevailing 2-dimensional disk models. Current planetary spin and orbital rotational energies (R.E.) each nearly equal and linearly depend on gravitational self-potential of formation (Ug), revealing mechanical energy conservation. We derive -ΔUg≅Δ.R.E. and stability criteria from thermodynamic principles, and parlay these relationships into a detailed model of simultaneous accretion of the protoSun and planets from the dust-bearing 3-d pre-solar nebula (PSN). Gravitational heating is insignificant because Ug is negative, the 2nd law of thermodynamics must be fulfilled, and ideal gas conditions pertain to the rarified PSN until the objects were nearly fully formed. Combined conservation of angular momentum and mechanical energy during 3-dimensional collapse of spheroidal dust shells in a contracting nebula provides ΔR.E.≅R.E. for the central body, whereas for formation of orbiting bodies, ΔR.E.≅R.E.f(1-If/Ii), where I is the moment of inertia. Orbital data for the inner planets follow 0.04×R.E.f≅-Ug which confirms conservation of angular momentum. Significant loss of spin, attributed to viscous dissipation during differential rotation, masks the initial spin of the un-ignited protoSun predicted by R.E.=-Ug. Heat production occurs after nearly final sizes are reached via mechanisms such as shear during differential rotation and radioactivity. We focus on the dilute stage, showing that the PSN was compositionally graded due to light molecules diffusing preferentially, providing the observed planetary chemistry, and set limits on PSN mass, density, and temperature. From measured planetary masses and orbital characteristics, accounting for dissipation of spin, we deduce mechanisms and the sequence of converting a 3-d dusty cloud to the present 2-d

  15. A model for chemically-induced mechanical loading on MEMS

    DEFF Research Database (Denmark)

    Amiot, Fabien

    2007-01-01

    , and displacements). As these phenomena usually arise from species adsorption, adsorbate modification or surface reconstruction, they are surface-related by nature and thus require some dedicated mechanical modeling. The accompanying mechanical modeling proposed herein is intended to represent the chemical part......The development of full displacement field measurements as an alternative to the optical lever technique to measure the mechanical response for microelectro-mechanical systems components in their environment calls for a modeling of chemically-induced mechanical fields (stress, strain...

  16. Damage-mitigating control of mechanical systems

    Science.gov (United States)

    Holmes, Michael S.

    Damage-Mitigating Control is a field of research involving the integration of two distinct disciplines: Systems Sciences and Mechanics of Materials. This dissertation presents a feedback control architecture for mechanical systems to achieve a tradeoff between dynamic performance and structural durability of critical plant components. The proposed damage-mitigating control system has a two-tier structure: (i) A lower-level linear output feedback controller for plant output tracking and stability robustness over a specified operating range; and (ii) An upper-level nonlinear feedback controller which takes advantage of the real-time information generated by a physics-based model of material damage. The advantages and disadvantages of various methods available for the design of linear tracking controllers are discussed. A robust sampled-data Hsbinfty controller is designed for a reusable rocket engine, similar to the Space Shuttle Main Engine, based on a 2-input/2-output, 20-state model. The mu-synthesis technique is used to design a robust sampled-data controller for a commercial-scale fossil-fueled power plant based on a 4-input/4-output, 27-state model. A procedure for the design of damage-mitigating linear tracking controllers is also presented. The concept of fuzzy control is used to synthesize upper-level nonlinear feedback controllers based on real-time damage information. Damage-mitigating controllers are designed for the reusable rocket engine and the fossil-fueled power plant. A major advantage of using the fuzzy method for damage-mitigating controller design is that the controller can be synthesized without directly dealing with the inherent nonlinearities of the damage model. Simulation results for the reusable rocket engine and the fossil-fueled power plant suggest that the fuzzy method of damage mitigation is a practical way to design damage controllers for mechanical systems. The damage controller parameter optimization method is presented as an

  17. A power-based perspective of mechanical systems

    NARCIS (Netherlands)

    Jeltsema, D.; Scherpen, J. M. A.

    2005-01-01

    This paper is concerned with the construction of a power-based modeling framework for a large class of mechanical systems. Mathematically this is formalized by proving that every standard mechanical system (with or without dissipation) can be written as a gradient vector field with respect to an ind

  18. Formulation of statistical mechanics for chaotic systems

    Indian Academy of Sciences (India)

    Vishnu M Bannur; Ramesh Babu Thayyullathil

    2009-02-01

    We formulate the statistical mechanics of chaotic system with few degrees of freedom and investigated the quartic oscillator system using microcanonical and canonical ensembles. Results of statistical mechanics are numerically verified by considering the dynamical evolution of quartic oscillator system with two degrees of freedom.

  19. Advanced mechanics in robotic systems

    CERN Document Server

    Nava Rodríguez, Nestor Eduardo

    2011-01-01

    Illustrates original and ambitious mechanical designs and techniques for the development of new robot prototypes Includes numerous figures, tables and flow charts Discusses relevant applications in robotics fields such as humanoid robots, robotic hands, mobile robots, parallel manipulators and human-centred robots

  20. Models of Cerebral System Mechanics.

    Science.gov (United States)

    1986-07-20

    F) compartments (RCF ), the Capillary (c) and Brain Tissue (i) compartments (RCB), the Capillary (C) and Vein (v) compartments ( hCV ), the Brain...the ml i nfl ii 67 values of a and B. Figures 2 and 3 describe an example of the surfaces HCV (a,a) and CV(0,CV BV respectively Figs. 2,3 The figures...picture in occult hydrocephalus. Clin. Neurosurgy, 24:270-284I, 1977. Z. Karni, T. Bear, S. Sorek and Z. Pinczewski "A quasi-steady state compartmental

  1. Mathematical model I. Electron and quantum mechanics

    Science.gov (United States)

    Gadre, Nitin Ramchandra

    2011-03-01

    The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  2. Mathematical model I. Electron and quantum mechanics

    Directory of Open Access Journals (Sweden)

    Nitin Ramchandra Gadre

    2011-03-01

    Full Text Available The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is ‘difficult’ to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.

  3. Statistical Mechanical Models of Integer Factorization Problem

    Science.gov (United States)

    Nakajima, Chihiro H.; Ohzeki, Masayuki

    2017-01-01

    We formulate the integer factorization problem via a formulation of the searching problem for the ground state of a statistical mechanical Hamiltonian. The first passage time required to find a correct divisor of a composite number signifies the exponential computational hardness. The analysis of the density of states of two macroscopic quantities, i.e., the energy and the Hamming distance from the correct solutions, leads to the conclusion that the ground state (correct solution) is completely isolated from the other low-energy states, with the distance being proportional to the system size. In addition, the profile of the microcanonical entropy of the model has two peculiar features that are each related to two marked changes in the energy region sampled via Monte Carlo simulation or simulated annealing. Hence, we find a peculiar first-order phase transition in our model.

  4. Regulation mechanisms in spatial stochastic development models

    CERN Document Server

    Finkelshtein, Dmitri

    2008-01-01

    The aim of this paper is to analyze different regulation mechanisms in spatial continuous stochastic development models. We describe the density behavior for models with global mortality and local establishment rates. We prove that the local self-regulation via a competition mechanism (density dependent mortality) may suppress a unbounded growth of the averaged density if the competition kernel is superstable.

  5. A Process Model of Quantum Mechanics

    OpenAIRE

    Sulis, William

    2014-01-01

    A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space upon which can be defined a self-consistent quantum mechanics. An emergent space-time M and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). The model has th...

  6. Kinetics and mechanism of oxidation of the anti-tubercular prodrug isoniazid and its analog by iridium(iv) as models for biological redox systems.

    Science.gov (United States)

    Dong, Jingran; Ren, Yanli; Sun, Sufang; Yang, Jiao; Nan, Chunxia; Shi, Hongmei; Xu, Jianzhong; Duan, Jie; Shi, Tiesheng; Elding, Lars I

    2017-07-04

    A complex reaction mechanism of oxidation of the anti-tubercular prodrug isoniazid (isonicotinic hydrazide, INH) by [IrCl6](2-) as a model for redox processes of such drugs in biological systems has been studied in aqueous solution as a function of pH between 0 and 8.5. Similar experiments have been performed with its isomer nicotinic hydrazide (NH). All reactions are overall second-order, first-order in [IrCl6](2-) and hydrazide, and the observed second-order rate constants k' have been determined as a function of pH. Spectrophotometric titrations indicate a stoichiometry of [Ir(iv)] : [hydrazide] = 4 : 1. HPLC analysis shows that the oxidation product of INH is isonicotinic acid. The derived reaction mechanism, based on rate law, time-resolved spectra and stoichiometry, involves parallel attacks by [IrCl6](2-) on all four protolytic species of INH and NH as rate-determining steps, depending on pH. These steps are proposed to generate two types of hydrazyl free radicals. These radicals react further in three rapid consecutive processes, leading to the final oxidation products. Rate constants for the rate-determining steps have been determined for all protolytic species I-IV of INH and NH. They are used to calculate reactivity-pH diagrams. These diagrams demonstrate that for both systems, species IV is ca. 10(5) times more reactive in the redox process than the predominant species III at the physiological pH of 7.4. Thus, species IV will be the main reactant, in spite of the fact that its concentration at this pH is extremely low, a fact that has not been considered in previous work. The results indicate that pH changes might be an important factor in the activation process of INH in biological systems also, and that in such systems this process most likely is more complicated than previously assumed.

  7. METAMORPHIC MECHANISMS AND THEIR CONFIGURATION MODELS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The concept of metamorphic mechanisms is presented, configuration models and configuration transformations relating to a set of new matrix operations are discussed and proposed. The configuration of a m etamorphic mechanism reflects the connectivity change in the mechanism during motions which r esults in mobility change and presents the characteristics of the mechanism which is discussed in various applications particularly in decorative artifacts. The characteristics is further investigated with mobility analysis.

  8. Descriptive Analyses of Mechanical Systems

    DEFF Research Database (Denmark)

    Andreasen, Mogens Myrup; Hansen, Claus Thorp

    2003-01-01

    Forord Produktanalyse og teknologianalyse kan gennmføres med et bredt socio-teknisk sigte med henblik på at forstå kulturelle, sociologiske, designmæssige, forretningsmæssige og mange andre forhold. Et delområde heri er systemisk analyse og beskrivelse af produkter og systemer. Nærværende kompend...

  9. The characteristics of mechanical engineering systems

    CERN Document Server

    Holmes, R

    1977-01-01

    The Characteristics of Mechanical Engineering Systems focuses on the characteristics that must be considered when designing a mechanical engineering system. Mechanical systems are presented on the basis of component input-output relationships, paying particular attention to lumped-parameter problems and the interrelationships between lumped components or """"black-boxes"""" in an engineering system. Electric motors and generators are treated in an elementary manner, and the principles involved are explained as far as possible from physical and qualitative reasoning. This book is comprised of

  10. Modelling Railway Interlocking Systems

    DEFF Research Database (Denmark)

    Lindegaard, Morten Peter; Viuf, P.; Haxthausen, Anne Elisabeth

    2000-01-01

    In this report we present a model of interlocking systems, and describe how the model may be validated by simulation. Station topologies are modelled by graphs in which the nodes denote track segments, and the edges denote connectivity for train traÆc. Points and signals are modelled by annotatio...

  11. Development of a Virtual Maintenance System for Complex Mechanical Product

    Directory of Open Access Journals (Sweden)

    Xin-hua Liu

    2013-01-01

    Full Text Available In order to improve the maintenance training effect of complex mechanical product, a virtual maintenance system was developed. The system framework was proposed, and the main functional modules were elaborated. A multilevel information representation model for complex mechanical product was put forward, and the flowchart of model transformation technology was designed. Moreover, a collision detection method based on hierarchical bounding volume was proposed, and the maintainability analysis and evaluation solution based on maintenance knowledge was presented. Finally, a prototype system was developed, and the proposed system was provedto be efficient through an example of hydraulic winch.

  12. A cellular mechanism for system memory consolidation

    Directory of Open Access Journals (Sweden)

    Michiel W. H. Remme

    2014-03-01

    Full Text Available Declarative memories initially depend on the hippocampus. Over a period of weeks to years, however, these memories become hippocampus-independent through a process called system memory consolidation. The underlying cellular mechanisms are unclear. Here, we suggest a consolidation mechanism, which is based on STDP and a ubiquitous anatomical network motif. As a first step in the memory consolidation process, we consider pyramidal neurons in the hippocampal CA1 area. These cells receive Schaffer collateral (SC input from the CA3 area at the proximal dendrites, and perforant path (PP input from entorhinal cortex at the distal dendrites. Both pathways carry sensory information that has been processed by cortical networks and that enters the hippocampus through the entorhinal cortex. Hence, information from entorhinal cortex reaches CA1 cells through an indirect pathway (via CA3 and SC and a direct pathway (PP. Memories are assumed to be initially stored in the recurrent CA3 network and the SC synapses during the awake, exploratory state. During a subsequent consolidation phase (during slow-wave sleep SC-dependent memories are partly transferred to the PP synapses. Through mathematical analysis and numerical simulations we show that this consolidation process occurs as a natural result from the combination of (1 STDP at PP synapses and (2 the temporal correlations between SC and PP activities, since the (indirect SC input is delayed compared to the (direct PP input by about 5-10 ms. With a detailed compartmental model we then show that the spatial tuning of a CA1 cell is copied from the proximal SC-synaptic inputs to the distal PP-inputs. Next, we repeated the network motif across many levels in a hierarchical network model: each direct connection at one level is part of the indirect pathway of the next level. Analysis and simulations of this hierarchical system demonstrate that memories gradually move from hippocampus into neocortex. Moreover, the

  13. On Stability of the Mechanical Lagrangian Systems

    Directory of Open Access Journals (Sweden)

    Valer Niminet

    2011-12-01

    Full Text Available

    We consider MLS (mechanical Lagrangian systems with
    external forces. We give some conditions of stability and dissipativity and show that the energy of the system decreases on the integral curves.


    Key words: LMS, stability, dissipative system.

  14. Mechanical Engineering Refrigeration Systems for Cold Storage

    Science.gov (United States)

    1981-10-01

    LEVELK NAVFAC-DM -3.4 OCTOBER 1981 ,T O MECHANICAL ENGINEERING let REFRIGERATION SYSTEMS FOR COLD STORAGE * ,DESIGN MANUAL 3.4 APPROVED FOR PUBLIC...NUMBERNAVFAC DM3. 4- TITLE (and Subtlte) S. TYPE OF REPORT & PERIOD COVERED NAVFAC Design Manual DM-3.4 Design Criteria Mechanical Engineering Final...U S.Navy I Naval Facilities Engineering Command I r DT I, - - __ IM, *r 3i 3.4-v MECHANICAL ENGINEERING DESIGN MANUALS Chapter superseded DM Number

  15. Modeling and Computer Simulation of the Pulsed Powering of Mechanical D.C. Circuit Breakers for the CERN/LHC Superconducting Magnet Energy Extraction System

    CERN Document Server

    Anushat, V; Erokhin, A; Kussul, A; Medvedko, A S

    2000-01-01

    This article presents the results of modeling and computer simulation of non-linear devices such as the Electromagnetic Driver of a D.C. Circuit Breaker. The mechanical and electromagnetic parts of the Driver are represented as equivalent electrical circuits and all basic processes of the Driver's magnetic circuit are calculated.

  16. Continuum mechanics the birthplace of mathematical models

    CERN Document Server

    Allen, Myron B

    2015-01-01

    Continuum mechanics is a standard course in many graduate programs in engineering and applied mathematics as it provides the foundations for the various differential equations and mathematical models that are encountered in fluid mechanics, solid mechanics, and heat transfer.  This book successfully makes the topic more accessible to advanced undergraduate mathematics majors by aligning the mathematical notation and language with related courses in multivariable calculus, linear algebra, and differential equations; making connections with other areas of applied mathematics where parial differe

  17. Extreme Environment Sampling System Deployment Mechanism Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Future Venus or Comet mission architectures may feature robotic sampling systems comprised of a Sampling Tool and Deployment Mechanism. Since 2005, Honeybee has been...

  18. Myoblast fusion: Experimental systems and cellular mechanisms.

    Science.gov (United States)

    Schejter, Eyal D

    2016-12-01

    Fusion of myoblasts gives rise to the large, multi-nucleated muscle fibers that power and support organism motion and form. The mechanisms underlying this prominent form of cell-cell fusion have been investigated by a variety of experimental approaches, in several model systems. The purpose of this review is to describe and discuss recent progress in the field, as well as point out issues currently unresolved and worthy of further investigation. Following a description of several new experimental settings employed in the study of myoblast fusion, a series of topics relevant to the current understanding of the process are presented. These pertain to elements of three major cellular machineries- cell-adhesion, the actin-based cytoskeleton and membrane-associated elements- all of which play key roles in mediating myoblast fusion. Among the issues raised are the diversity of functions ascribed to different adhesion proteins (e.g. external cell apposition and internal recruitment of cytoskeleton regulators); functional significance of fusion-associated actin structures; and discussion of alternative mechanisms employing single or multiple fusion pore formation as the basis for muscle cell fusion.

  19. A quantum mechanical model of "dark matter"

    CERN Document Server

    Belokurov, V V

    2014-01-01

    The role of singular solutions in some simple quantum mechanical models is studied. The space of the states of two-dimensional quantum harmonic oscillator is shown to be separated into sets of states with different properties.

  20. Solid mechanics theory, modeling, and problems

    CERN Document Server

    Bertram, Albrecht

    2015-01-01

    This textbook offers an introduction to modeling the mechanical behavior of solids within continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of the most important models in one dimension. Tensor calculus, which is called for in three-dimensional modeling, is concisely presented in the second part of the book. Once the reader is equipped with these essential mathematical tools, the third part of the book develops the foundations of continuum mechanics right from the beginning. Lastly, the book’s fourth part focuses on modeling the mechanics of materials and in particular elasticity, viscoelasticity and plasticity. Intended as an introductory textbook for students and for professionals interested in self-study, it also features numerous worked-out examples to aid in understanding.

  1. Modeling mechanical response of heterogeneous materials

    Science.gov (United States)

    Pal, Siladitya

    developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.

  2. Detailed reduction of reaction mechanisms for flame modeling

    Science.gov (United States)

    Wang, Hai; Frenklach, Michael

    1991-01-01

    A method for reduction of detailed chemical reaction mechanisms, introduced earlier for ignition system, was extended to laminar premixed flames. The reduction is based on testing the reaction and reaction-enthalpy rates of the 'full' reaction mechanism using a zero-dimensional model with the flame temperature profile as a constraint. The technique is demonstrated with numerical tests performed on the mechanism of methane combustion.

  3. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...... in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...

  4. Structured detailed opto-mechanical tolerance modeling

    Science.gov (United States)

    Swart, P. C.

    2016-02-01

    Opto-mechanical tolerancing is a complex art, which is often reduced to inadequate tabled data of allowable tilts and decentres. During the process the respective roles of optical- and mechanical designers can become entangled and a source of conflict. A framework of principles is introduced to guide the design team through these murky waters. From these principles the development of a catalogue of models, practices and past precedents are proposed. An example is presented to serve as illustration. The final result is a model, of opto-mechanical tolerances, which allows a structured flow of tolerances into optical performance prediction.

  5. Introduction to Dynamical Systems and Geometric Mechanics

    Science.gov (United States)

    Maruskin, Jared M.

    2012-01-01

    Introduction to Dynamical Systems and Geometric Mechanics provides a comprehensive tour of two fields that are intimately entwined: dynamical systems is the study of the behavior of physical systems that may be described by a set of nonlinear first-order ordinary differential equations in Euclidean space, whereas geometric mechanics explores similar systems that instead evolve on differentiable manifolds. In the study of geometric mechanics, however, additional geometric structures are often present, since such systems arise from the laws of nature that govern the motions of particles, bodies, and even galaxies. In the first part of the text, we discuss linearization and stability of trajectories and fixed points, invariant manifold theory, periodic orbits, Poincaré maps, Floquet theory, the Poincaré-Bendixson theorem, bifurcations, and chaos. The second part of the text begins with a self-contained chapter on differential geometry that introduces notions of manifolds, mappings, vector fields, the Jacobi-Lie bracket, and differential forms. The final chapters cover Lagrangian and Hamiltonian mechanics from a modern geometric perspective, mechanics on Lie groups, and nonholonomic mechanics via both moving frames and fiber bundle decompositions. The text can be reasonably digested in a single-semester introductory graduate-level course. Each chapter concludes with an application that can serve as a springboard project for further investigation or in-class discussion.

  6. Modeling thermal/chemical/mechanical response of energetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Baer, M.R.; Hobbs, M.L.; Gross, R.J. [and others

    1995-07-01

    An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

  7. Finite-time Control of One-link Mechanical System

    Science.gov (United States)

    Matoba, Shunsuke; Nakamura, Nami; Nakamura, Hisakazu; Akiba, Hideyuki

    This paper considers finite-time position control of an one-link mechanical system. The system is modeled by discontinuous differential equations. In this paper, we prove that the Nakamura's local homogeneous controller based on a control Lyapunov function is valid to the position control of the robot manipulators, and show the effectiveness of the controller by experiments.

  8. Finite element modeling of retinal prosthesis mechanics

    Science.gov (United States)

    Basinger, B. C.; Rowley, A. P.; Chen, K.; Humayun, M. S.; Weiland, J. D.

    2009-10-01

    Epiretinal prostheses used to treat degenerative retina diseases apply stimulus via an electrode array fixed to the ganglion cell side of the retina. Mechanical pressure applied by these arrays to the retina, both during initial insertion and throughout chronic use, could cause sufficient retinal damage to reduce the device's effectiveness. In order to understand and minimize potential mechanical damage, we have used finite element analysis to model mechanical interactions between an electrode array and the retina in both acute and chronic loading configurations. Modeling indicates that an acute tacking force distributes stress primarily underneath the tack site and heel edge of the array, while more moderate chronic stresses are distributed more evenly underneath the array. Retinal damage in a canine model chronically implanted with a similar array occurred in correlating locations, and model predictions correlate well with benchtop eyewall compression tests. This model provides retinal prosthesis researchers with a tool to optimize the mechanical electrode array design, but the techniques used here represent a unique effort to combine a modifiable device and soft biological tissues in the same model and those techniques could be extended to other devices that come into mechanical contact with soft neural tissues.

  9. Selected System Models

    Science.gov (United States)

    Schmidt-Eisenlohr, F.; Puñal, O.; Klagges, K.; Kirsche, M.

    Apart from the general issue of modeling the channel, the PHY and the MAC of wireless networks, there are specific modeling assumptions that are considered for different systems. In this chapter we consider three specific wireless standards and highlight modeling options for them. These are IEEE 802.11 (as example for wireless local area networks), IEEE 802.16 (as example for wireless metropolitan networks) and IEEE 802.15 (as example for body area networks). Each section on these three systems discusses also at the end a set of model implementations that are available today.

  10. Structure versus solvent effects on nonlinear optical properties of push-pull systems: a quantum-mechanical study based on a polarizable continuum model.

    Science.gov (United States)

    Corozzi, Alessandro; Mennucci, Benedetta; Cammi, Roberto; Tomasi, Jacopo

    2009-12-31

    A quantum mechanical investigation on the effects of the solvent and the structure on nonlinear optical activity of a class of merocyanine compounds has been conducted. The interplay of the two effects on the first hyperpolarizability, computed at density functional theory and second-order Møller-Plesset level, has been analyzed in combination with ground state properties and geometries and excited state energies and dipoles. A critical analysis of the simplified two-level model has also been presented.

  11. Reliability design of mechanical systems a guide for mechanical and civil engineers

    CERN Document Server

    Woo, Seongwoo

    2017-01-01

    This book describes basic reliability concepts – parametric ALT plan, failure mechanism and design, and reliability testing with acceleration factor and sample size equation. A generalized life-stress failure model with a new effort concept has been derived and recommended to calculate the acceleration factor of the mechanical system. The new sample size equation with the acceleration factor has also been derived to carry out the parametric ALT. This new parametric ALT should help a mechanical/civil engineer to uncover the design parameters affecting reliability during the design process of the mechanical system. Consequently, it should help companies to improve product reliability and avoid recalls due to the product/structure failures in the field. As the improper or missing design parameters in the design phase are experimentally identified by this new reliability design method - parametric ALT, the mechanical/civil engineering system might improve in reliability by the increase in lifetime and the reduc...

  12. Analytical approach to robust design of nonlinear mechanical systems

    Institute of Scientific and Technical Information of China (English)

    Jian ZHANG; Nengsheng BAO; Guojun ZHANG; Peihua GU

    2009-01-01

    The robustness of mechanical systems is influenced by various factors. Their effects must be understood for designing robust systems. This paper proposes a model for describing the relationships among functional requirements, structural characteristics, design parameters and uncontrollable variables of nonlinear systems. With this model, the ensitivity of systems was analyzed to formulate a system sensitivity index and robust sensitivity matrix to determine the importance of the factors in relation to the robustness of systems. Based on the robust design principle, an optimization model was developed. Combining this optimization model and the Taguchi method for robust design, annalysis as carried out to reveal the characteristics of the systems. For a nonlinear mechanical system, relationships among structural characteristics of the system, design parameters, and uncontrollable variables can be formulated as a mathematical function. The characteristics of the system determine how design parameters affect the functional equirements of the system. Consequently, they affect the distribution of system performance functions. Nonlinearity of the system can facilitate the selection of design parameters to achieve the required functional requirements.

  13. Modeling the mechanical response of PBX 9501

    Energy Technology Data Exchange (ETDEWEB)

    Ragaswamy, Partha [Los Alamos National Laboratory; Lewis, Matthew W [Los Alamos National Laboratory; Liu, Cheng [Los Alamos National Laboratory; Thompson, Darla G [Los Alamos National Laboratory

    2010-01-01

    An engineering overview of the mechanical response of Plastic-Bonded eXplosives (PBXs), specifically PBX 9501, will be provided with emphasis on observed mechanisms associated with different types of mechanical testing. Mechanical tests in the form of uniaxial tension, compression, cyclic loading, creep (compression and tension), and Hopkinson bar show strain rate and temperature dependence. A range of mechanical behavior is observed which includes small strain recoverable response in the form of viscoelasticity; change in stiffness and softening beyond peak strength due to damage in the form microcracks, debonding, void formation and the growth of existing voids; inelastic response in the form of irrecoverable strain as shown in cyclic tests, and viscoelastic creep combined with plastic response as demonstrated in creep and recovery tests. The main focus of this paper is to elucidate the challenges and issues involved in modeling the mechanical behavior of PBXs for simulating thermo-mechanical responses in engineering components. Examples of validation of a constitutive material model based on a few of the observed mechanisms will be demonstrated against three point bending, split Hopkinson pressure bar and Brazilian disk geometry.

  14. Designer spin systems via inverse statistical mechanics

    Science.gov (United States)

    DiStasio, Robert A., Jr.; Marcotte, Étienne; Car, Roberto; Stillinger, Frank H.; Torquato, Salvatore

    2013-10-01

    In this work, we extend recent inverse statistical-mechanical methods developed for many-particle systems to the case of spin systems. For simplicity, we focus in this initial study on the two-state Ising model with radial spin-spin interactions of finite range (i.e., extending beyond nearest-neighbor sites) on the square lattice under periodic boundary conditions. Our interest herein is to find the optimal set of shortest-range pair interactions within this family of Hamiltonians, whose corresponding ground state is a targeted spin configuration such that the difference in energies between the energetically closest competitor and the target is maximized. For an exhaustive list of competitors, this optimization problem is solved exactly using linear programming. The possible outcomes for a given target configuration can be organized into the following three solution classes: unique (nondegenerate) ground state (class I), degenerate ground states (class II), and solutions not contained in the previous two classes (class III). We have chosen to study a general family of striped-phase spin configurations comprised of alternating parallel bands of up and down spins of varying thicknesses and a general family of rectangular block checkerboard spin configurations with variable block size, which is a generalization of the classic antiferromagnetic Ising model. Our findings demonstrate that the structurally anisotropic striped phases, in which the thicknesses of up- and down-spin bands are equal, are unique ground states for isotropic short-ranged interactions. By contrast, virtually all of the block checkerboard targets are either degenerate or fall within class III solutions. The degenerate class II spin configurations are identified up to a certain block size. We also consider other target spin configurations with different degrees of global symmetries and order. Our investigation reveals that the solution class to which a target belongs depends sensitively on the

  15. Notions of controllability for quantum mechanical systems

    CERN Document Server

    Albertini, F

    2001-01-01

    In this paper, we define four different notions of controllability of physical interest for multilevel quantum mechanical systems. These notions involve the possibility of driving the evolution operator as well as the state of the system. We establish the connections among these different notions as well as methods to verify controllability. The paper also contains results on the relation between the controllability in arbitrary small time of a system varying on a compact transformation Lie group and the corresponding system on the associated homogeneous space. As an application, we prove that, for the system of two interacting spin 1/2 particles, not every state transfer can be obtained in arbitrary small time.

  16. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  17. Mechanical models of physical fields and particles

    CERN Document Server

    Dmitriyev, V P

    1999-01-01

    Earlier obtained results on mechanical analogies of physical fields and particles are reviewed. The approach rests on the concept of the substratum - a mechanical medium, which occupies all the space and serves as a seat to support the light and to transmit interactions. A turbulent ideal fluid was chosen for the substratum. The turbulence is supposed to be homogeneous and isotropic in its ground state. Perturbations of the turbulence model physical fields. Particles originate from the voids in the fluid. Symmetrical pairs of particle-antiparticle find analogies in mechanical pairs of cyclone-anticyclone. A quantum particle is modeled by the dispersion of a point discontinuity (defect) in the stochastic medium. Gravitation relates to emitting by defects the continual flow of the transient point dilatation. The shock wave mechanism of the re-collection a discontinuity in the incompressible medium governs such phenomena as the "wave function collapse" and instantaneous quantum correlations. Microscopically, the...

  18. An aggregate model of grid-connected, large-scale, offshore wind farm for power stability investigations-importance of windmill mechanical system

    DEFF Research Database (Denmark)

    Akhmatov, Vladislav; Knudsen, H.

    2002-01-01

    An aggregate model of a large-scale offshore wind farm, comprising 72 wind turbines of 2 MW rating each, is set up. Representation of the shaft systems of the wind turbines shall be taken into account when a simplified aggregate model of the wind farm is used in voltage stability investigations. ...... and the entire network. All these phenomena are different compared to previous experiences with modelling of conventional power plants with synchronous generators and stiff shaft systems.......An aggregate model of a large-scale offshore wind farm, comprising 72 wind turbines of 2 MW rating each, is set up. Representation of the shaft systems of the wind turbines shall be taken into account when a simplified aggregate model of the wind farm is used in voltage stability investigations....... Because the shaft system gives a soft coupling between the rotating wind turbine and the induction generator, the large-scale wind farm cannot always be reduced to one-machine equivalent and use of multi-machine equivalents will be necessary for reaching accuracy of the investigation results...

  19. Analysis of mechanical systems with transversal vibrations in transportation

    Directory of Open Access Journals (Sweden)

    A. Buchacz

    2008-12-01

    Full Text Available Purpose: of this article are modelling and dynamic analysis of mechanical systems during the rotationalmovement. Nowadays technical problems are tied with high speeds of mechanisms, high precision of work,using lower density materials, and many other high demands for elements of work. Objective of this paper wasthe analysis with giving into consideration the interaction between working motion and local vibrations. Themodel is loaded by transverse forces and transformed to the global reference frame.Design/methodology/approach: derived equations of motion were made by the Lagrange equations methodwith generalized coordinates and generalized velocities assumed as orthogonal projections of individualcoordinates and velocities of each beam to axes of the global reference frame.Findings: systems of equations of motion of transversally vibrating systems in two-dimensional motion willbe put to use to derivation of the dynamical flexibility of these systems and complex systems. Those equationsare the beginning of the analysis of complex systems. They can also be used to derivation of the substitutedynamical flexibility of n-linked systems.Research limitations/implications: mechanical systems vibrating transversally in terms of two-dimensionalmotion were considered in the thesis. The consecutive problem of dynamical analysis is modelling of systemsin spatial motion and also the analysis of systems loaded by longitudinal forces.Practical implications: mathematical effects of this article can be put to use into many mechanisms andmachines running in rotational transportation. For example applications are: high speed turbines, wind powerplants, rotors, manipulators and in aerodynamics issues, etc. Of course results should be adopted and modifiedto appropriate system.Originality/value: High demands for parameters of work of mechanisms and machines are the postulation fornew research and new ways of modelling and analyzing those type systems. The example way

  20. Dynamic Systems Modeling

    Directory of Open Access Journals (Sweden)

    Sorin Dan ŞANDOR

    2003-01-01

    Full Text Available System Dynamics was introduced by Jay W. Forrester in the 1960s. Since then the methodology was adopted in many areas of natural or social sciences. This article tries to present briefly how this methodology works, both as Systems Thinking and as Modelling with Vensim computer software.

  1. Mechanical model of vulnerable atherosclerotic plaque rupture

    Institute of Scientific and Technical Information of China (English)

    SU; Haijun; ZHANG; Mei; ZHANG; Yun

    2004-01-01

    Rupture of atherosclerotic plaque is the main trigger of acute cardiovascular events, but the mechanism of plaque rupture is still unknown. We have constructed a model describing the motion of the fibrous cap of the plaque using the theory of elastic mechanics and studied the stability of the plaque theoretically. It has shown that plaque rupture is the result of a dynamic interplay between factors intrinsic to the plaque itself and extrinsic factors. We have proposed a new mechanism of plaque rupture, given a new explanation about the nonlinear dynamic progress of atherosclerosis and suggested a method to identify the vulnerable plaques to manage atherosclerosis.

  2. Mechanical alloying in the Fe-Cu system

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Gente, C.; Bormann, R.

    1998-01-01

    in the Fe-Cu system is; (3) where the positive energy is stored in the alloys; (4) what the decomposition process of the supersaturated alloys is; and (5) what type of magnetic properties the new materials have. The elucidation of these problems will shed light on the understanding of the mechanisms...... for the preparation of materials under highly non-equilibrium conditions in systems with positive heats of mixing by mechanical alloying.......The studies of mechanical alloying on the Fe-Cu system, as a model system for those with positive heats of mixing, are reviewed. Several problems involved in the mechanical alloying process are discussed. For example, (1) whether alloying occurs on an atomic level; (2) what the solid solubility...

  3. Statistical mechanics models for motion and force planning

    Science.gov (United States)

    Rodriguez, G.

    1990-01-01

    The models of statistical mechanics provide an alternative to the methods of classical mechanics more traditionally used in robotics. They have a potential to: improve analysis of object collisions; handle kinematic and dynamic contact interactions within the same frmework; and reduce the need for perfect deterministic world model information. The statistical mechanics models characterize the state of the system as a probability density function (p.d.f.) whose time evolution is governed by a partial differential equation subject to boundary and initial conditions. The boundary conditions when rigid objects collide reflect the conservation of momentum. The models are being developed to embedd in remote semi-autonomous systems with a need to reason and interact with a multiobject environment.

  4. Novel nervous system mechanisms in visceral pain.

    Science.gov (United States)

    De Winter, B Y; Deiteren, A; De Man, J G

    2016-03-01

    Visceral hypersensitivity is an important factor underlying abdominal pain in functional gastrointestinal disorders such as irritable bowel syndrome (IBS) and can result from aberrant signaling from the gut to the brain or vice versa. Over the last two decades, research has identified several selective, intertwining pathways that underlie IBS-related visceral nociception, including specific receptors on afferent and efferent nerve fibers such as transient receptor potential channels (TRP) channels, opioid, and cannabinoid receptors. In this issue of Neurogastroenterology and Motility Gil et al. demonstrate that in an animal model with reduced descending inhibitory control, the sympathetic nervous system outflow is enhanced, contributing to visceral and somatic hypersensitivity. They also provide evidence that interfering with the activation of adrenergic receptors on sensory nerves can be an interesting new strategy to treat visceral pain in IBS. This mini-review places these findings in a broader perspective by providing an overview of promising novel mechanisms to alter the nervous control of visceral pain interfering with afferent or efferent neuronal signaling. © 2016 John Wiley & Sons Ltd.

  5. ANALYSIS OF THE MECHANISM MODELS OF TECHNOLOGICAL INNOVATION DIFFUSION

    Institute of Scientific and Technical Information of China (English)

    XU Jiuping; HU Minan

    2004-01-01

    This paper analyzes the mechanism and principle of diffusion of technology diffusion on the basis of quantitative analysis. Then it sets up the diffusion model of innovation incorporating price, advertising and distribution, the diffusion model of innovation including various kinds of consumers, and the substitute model between the new technology and the old one applied systems dynamics, optimization method, probabilistic method and simulation method on computer. Finally this paper concludes with some practical observations from a case study.

  6. CISM Course on Analysis and Estimation of Stochastic Mechanical Systems

    CERN Document Server

    Wedig, Walter

    1988-01-01

    This book summarizes the developments in stochastic analysis and estimation. It presents novel applications to practical problems in mechanical systems. The main aspects of the course are random vibrations of discrete and continuous systems, analysis of nonlinear and parametric systems, stochastic modelling of fatigue damage, parameter estimation and identification with applications to vehicle road systems and process simulations by means of autoregressive models. The contributions will be of interest to engineers and research workers in industries and universities who want first hand information on present trends and problems in this topical field of engineering dynamics.

  7. Mechanics model for actin-based motility.

    Science.gov (United States)

    Lin, Yuan

    2009-02-01

    We present here a mechanics model for the force generation by actin polymerization. The possible adhesions between the actin filaments and the load surface, as well as the nucleation and capping of filament tips, are included in this model on top of the well-known elastic Brownian ratchet formulation. A closed form solution is provided from which the force-velocity relationship, summarizing the mechanics of polymerization, can be drawn. Model predictions on the velocity of moving beads driven by actin polymerization are consistent with experiment observations. This model also seems capable of explaining the enhanced actin-based motility of Listeria monocytogenes and beads by the presence of Vasodilator-stimulated phosphoprotein, as observed in recent experiments.

  8. Modeling Sustainable Food Systems

    Science.gov (United States)

    Allen, Thomas; Prosperi, Paolo

    2016-05-01

    The processes underlying environmental, economic, and social unsustainability derive in part from the food system. Building sustainable food systems has become a predominating endeavor aiming to redirect our food systems and policies towards better-adjusted goals and improved societal welfare. Food systems are complex social-ecological systems involving multiple interactions between human and natural components. Policy needs to encourage public perception of humanity and nature as interdependent and interacting. The systemic nature of these interdependencies and interactions calls for systems approaches and integrated assessment tools. Identifying and modeling the intrinsic properties of the food system that will ensure its essential outcomes are maintained or enhanced over time and across generations, will help organizations and governmental institutions to track progress towards sustainability, and set policies that encourage positive transformations. This paper proposes a conceptual model that articulates crucial vulnerability and resilience factors to global environmental and socio-economic changes, postulating specific food and nutrition security issues as priority outcomes of food systems. By acknowledging the systemic nature of sustainability, this approach allows consideration of causal factor dynamics. In a stepwise approach, a logical application is schematized for three Mediterranean countries, namely Spain, France, and Italy.

  9. Load Transfer Mechanisms in Anchored Geosynthetic Systems

    Science.gov (United States)

    1990-12-20

    TITLE (Include Security Classitcation) (U) Load Transfer Mechanisms in Anchored Geosynthetic Systems 12. PERSONAL AUTHOR(S) Hrvciw, Roman D. 13a... Geosynthetics 19. ABSTRACT (Continue on reverse it necessary and identity by block number) The success of an anchored geosynthetic system (AGS) depends on...the satisfactory transfer of load between the surface-deployed geosynthetic and anchors (typically ribbed reinforcing rods) driven into the slope

  10. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  11. Motion planning for variable inertia mechanical systems

    Science.gov (United States)

    Shammas, Elie A.; Choset, Howie; Rizzi, Alfred A.

    2006-05-01

    In this paper, we generate gaits for mixed systems, that is, dynamic systems that are subject to a set of nonholonomic constraints. What is unique about mixed systems is that when we express their dynamics in body coordinates, the motion of these systems can be attributed to two decoupled terms: the geometric and dynamic phase shifts. In our prior work, we analyzed systems whose dynamic phase shift was null by definition. Purely mechanical and principally kinematic systems are two classes of mechanical systems that have this property. We generated gaits for these two classes of systems by intuitively evaluating their geometric phase shift and relating it to a volume integral under well-defined height functions. One of the contributions of this paper is to present a similar intuitive approach for computing the dynamic phase shift. We achieve this, by introducing a new scaled momentum variable that not only simplifies the momentum evolution equation but also allows us to introduce a new set of well-defined gamma functions which enable us to intuitively evaluate the dynamic phase shift. More specifically, by analyzing these novel gamma functions in a similar way to how we analyzed height functions, and by analyzing the sign-definiteness of the scaled momentum variable, we are able to ensure that the dynamic phase shift is non-zero solely along the desired fiber direction. Finally, we also introduce a novel mechanical system, the variable inertia snakeboard, which is a generalization of the original snakeboard that was previously studied in the literature. Not only does this general system help us identify regions of the base space where we can not define a certain type of gaits, but also it helps us verify the generality and applicability of our gait generation approach.

  12. Introduction to JPL's Mechanical Systems Division

    Science.gov (United States)

    Short, Kendra

    2007-01-01

    This slide presentation reviews the work of the Mechanical Systems Division. It reviews the projects, both past and current that the engineers of this division have worked on. It also reviews the work environment as an exciting place for the entry level engineer.

  13. Interagency mechanical operations group numerical systems group

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report consists of the minutes of the May 20-21, 1971 meeting of the Interagency Mechanical Operations Group (IMOG) Numerical Systems Group. This group looks at issues related to numerical control in the machining industry. Items discussed related to the use of CAD and CAM, EIA standards, data links, and numerical control.

  14. Control Engineering Analysis of Mechanical Pitch Systems

    Science.gov (United States)

    Bernicke, Olaf; Gauterin, Eckhard; Schulte, Horst; Zajac, Michal

    2014-12-01

    With the help of a local stability analysis the coefficient range of a discrete damper, used for centrifugal forced, mechanical pitch system of small wind turbines (SWT), is gained for equilibrium points. - By a global stability analysis the gained coefficient range can be validated. An appropriate approach by Takagi-Sugeno is presented in the paper.

  15. Aircraft Environmental Systems Mechanic. Part 1.

    Science.gov (United States)

    Chanute AFB Technical Training Center, IL.

    This packet contains learning modules for a self-paced course in aircraft environmental systems mechanics that was developed for the Air Force. Each learning module consists of some or all of the following: objectives, instructions, equipment, procedures, information sheets, handouts, self-tests with answers, review section, tests, and response…

  16. Entropic fluctuations in statistical mechanics: I. Classical dynamical systems

    Science.gov (United States)

    Jakšić, V.; Pillet, C.-A.; Rey-Bellet, L.

    2011-03-01

    Within the abstract framework of dynamical system theory we describe a general approach to the transient (or Evans-Searles) and steady state (or Gallavotti-Cohen) fluctuation theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. In addition to its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.

  17. Entropic Fluctuations in Statistical Mechanics I. Classical Dynamical Systems

    CERN Document Server

    Jakšić, Vojkan; Rey-Bellet, Luc

    2010-01-01

    Within the abstract framework of dynamical system theory we describe a general approach to the Transient (or Evans-Searles) and Steady State (or Gallavotti-Cohen) Fluctuation Theorems of non-equilibrium statistical mechanics. Our main objective is to display the minimal, model independent mathematical structure at work behind fluctuation theorems. Besides its conceptual simplicity, another advantage of our approach is its natural extension to quantum statistical mechanics which will be presented in a companion paper. We shall discuss several examples including thermostated systems, open Hamiltonian systems, chaotic homeomorphisms of compact metric spaces and Anosov diffeomorphisms.

  18. NONLINEAR MICRO-MECHANICAL MODEL FOR PLAIN WOVEN FABRIC

    Institute of Scientific and Technical Information of China (English)

    ZhangYitong; XieYuxin

    2003-01-01

    The warp yarns and weft yarns of plain woven fabric which, being the principal axes of material of fabric, are orthogonal in the original configuration, but are obliquely crossed in the deformed configuration in general. The orthotropic constitutive model is unsuitable for fabric. In the oblique principal axes system the relations between loaded stress vectors and stress tensor are investigated, the stress fields of micro-weaving structures of fabric due to pure shear are carefully studied and, finally, a nonlinear micro-mechanical model for plain woven fabric is proposed. This model can accurately describe the nonlinear mechanical behavior of fabric observed in experiments. Under the assumption of small deformation and linearity of mechanical properties of fabric the model will degenerate into the existing linear model.

  19. Statistical mechanics of the Huxley-Simmons model.

    Science.gov (United States)

    Caruel, M; Truskinovsky, L

    2016-06-01

    The chemomechanical model of Huxley and Simmons (HS) [A. F. Huxley and R. M. Simmons, Nature 233, 533 (1971)NATUAS0028-083610.1038/233533a0] provides a paradigmatic description of mechanically induced collective conformational changes relevant in a variety of biological contexts, from muscles power stroke and hair cell gating to integrin binding and hairpin unzipping. We develop a statistical mechanical perspective on the HS model by exploiting a formal analogy with a paramagnetic Ising model. We first study the equilibrium HS model with a finite number of elements and compute explicitly its mechanical and thermal properties. To model kinetics, we derive a master equation and solve it for several loading protocols. The developed formalism is applicable to a broad range of allosteric systems with mean-field interactions.

  20. Statistical mechanics of the Huxley-Simmons model

    CERN Document Server

    Caruel, M

    2016-01-01

    The chemomechanical model of Huxley and Simmons (HS) [A. F. Huxley and R. M. Simmons, Nature 233, 533 (1971)] provides a paradigmatic description of mechanically induced collective conformational changes relevant in a variety of biological contexts, from muscles power-stroke and hair cell gating to integrin binding and hairpin unzipping. We develop a statistical mechanical perspective on the HS model by exploiting a formal analogy with a paramagnetic Ising model. We first study the equilibrium HS model with a finite number of elements and compute explicitly its mechanical and thermal properties. To model kinetics, we derive a master equation and solve it for several loading protocols. The developed formalism is applicable to a broad range of allosteric systems with mean-field interactions.

  1. Statistical mechanics of the Huxley-Simmons model

    Science.gov (United States)

    Caruel, M.; Truskinovsky, L.

    2016-06-01

    The chemomechanical model of Huxley and Simmons (HS) [A. F. Huxley and R. M. Simmons, Nature 233, 533 (1971), 10.1038/233533a0] provides a paradigmatic description of mechanically induced collective conformational changes relevant in a variety of biological contexts, from muscles power stroke and hair cell gating to integrin binding and hairpin unzipping. We develop a statistical mechanical perspective on the HS model by exploiting a formal analogy with a paramagnetic Ising model. We first study the equilibrium HS model with a finite number of elements and compute explicitly its mechanical and thermal properties. To model kinetics, we derive a master equation and solve it for several loading protocols. The developed formalism is applicable to a broad range of allosteric systems with mean-field interactions.

  2. Review: Modeling Damping in Mechanical Engineering Structures

    Directory of Open Access Journals (Sweden)

    Michel Lalanne

    2000-01-01

    Full Text Available This paper is concerned with the introduction of damping effects in the analysis of mechanical engineering structures. Damping can be considered as being generated by concentrated elements, by distributed elements, or by several effects existing simultaneously. Modeling damping for different engineering situations is described and some applications are presented briefly.

  3. Mechanical modelling of rapid cooling in porcelain tile-type systems; Modelizacion mecanica del enfriamiento rapido en sistemas tipo gres porcelanico

    Energy Technology Data Exchange (ETDEWEB)

    Dal Bo, M.; Cantavella, Y.; Sanchez, E.; Hotza, D.; Boschi, A.

    2012-07-01

    This paper analyses the effect of cooling on mechanical behaviour, in particular, on the residual stresses that appear when materials of the porcelain tile type are involved. However, these compositions have a very complex microstructure, in which there are several crystalline phases and the glassy phase is not homogeneous. In this study a simpler composition was therefore formulated, using sodium feldspar as starting material to which quartz with different particle sizes was added. A viscoelastic model was used to estimate the residual stresses that develop during cooling. The parameters of the model were obtained either from the literature or were determined in laboratory tests. An assembly was designed that allowed non-contact measurement of the temperature at the top and bottom surfaces of the test pieces during cooling. The test pieces were subjected to different types of cooling and their residual stresses were then determined by the strain relaxation slotting method. (Author)

  4. Modeling Complex Systems

    CERN Document Server

    Boccara, Nino

    2010-01-01

    Modeling Complex Systems, 2nd Edition, explores the process of modeling complex systems, providing examples from such diverse fields as ecology, epidemiology, sociology, seismology, and economics. It illustrates how models of complex systems are built and provides indispensable mathematical tools for studying their dynamics. This vital introductory text is useful for advanced undergraduate students in various scientific disciplines, and serves as an important reference book for graduate students and young researchers. This enhanced second edition includes: . -recent research results and bibliographic references -extra footnotes which provide biographical information on cited scientists who have made significant contributions to the field -new and improved worked-out examples to aid a student’s comprehension of the content -exercises to challenge the reader and complement the material Nino Boccara is also the author of Essentials of Mathematica: With Applications to Mathematics and Physics (Springer, 2007).

  5. Longitudinal vibrations of mechanical systems with the transportation effect

    Directory of Open Access Journals (Sweden)

    A. Buchacz

    2009-01-01

    Full Text Available Purpose: this thesis purpose is a new way of modelling systems working with high speeds of mechanisms. Systems are analyzed with taking into consideration the rotational movement and with criterions of using materials with high flexibility and high precision of work. The dynamical analysis was done with giving into consideration the interaction between working motion and local vibrations. During the motion a model is loaded by longitudinal forces.Design/methodology/approach: equations of motion were derived by the Lagrange method, with generalized coordinates and generalized velocities assumed as orthogonal projections of individual quantities of the rod and manipulators to axes of the global reference frame.Findings: the model of longitudinally vibrating systems in plane motion was derived, after that the model can be transformed to the dynamical flexibility of these systems. Derived equations are the beginning of analysis of complex systems, especially can be used in deducing of the substitute dynamical flexibility of multilinked systems in motion.Research limitations/implications: mechanical systems vibrating longitudinally in terms of rotation were considered in this thesis. Successive problem of the dynamical analysis is the analysis of systems in spatial transportation and systems loaded by transversal forces.Practical implications: effects of presented calculations can be applied into machines and mechanisms in transportation such as: high speed turbines, wind power plant, water-power plants, manipulators, aerodynamics issues, and in different rotors etc.Originality/value: the contemporary analysis of beams and rods were made in a separate way, first working motion of the main system and next the local vibrations. A new way of modelling took into consideration the interaction between those two displacement. There was defined the transportation effect for models vibrating longitudinally in this paper.

  6. Micro electro mechanical system optical switching

    Science.gov (United States)

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  7. Micro electro mechanical system optical switching

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Kevin J; Stevens, Rick C; Kryzak, Charles J; Leininger, Brian S; Kornrumpf, William P; Forman, Glenn A; Iannotti, Joseph A; Spahn, Olga B; Cowan, William D; Dagel, Daryl J

    2013-12-17

    The present disclosure includes apparatus, system, and method embodiments that provide micro electo mechanical system optical switching and methods of manufacturing switches. For example, one optical switch embodiment includes at least one micro electro mechanical system type pivot mirror structure disposed along a path of an optical signal, the structure having a mirror and an actuator, and the mirror having a pivot axis along a first edge and having a second edge rotatable with respect to the pivot axis, the mirror being capable of and arranged to be actuated to pivot betweeen a position parallel to a plane of an optical signal and a position substantially normal to the plane of the optical signal.

  8. Distributed generation systems model

    Energy Technology Data Exchange (ETDEWEB)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  9. Topological Expression Model of Satellite Gear Mechanism

    Institute of Scientific and Technical Information of China (English)

    Yang Ping

    2005-01-01

    By investigation of the topological characteristics of the kinematic structure of Satellite Gear Mechanism (SGM) with graph theory, the graph model of SGM is analyzed, and a topological expression model between input and output of SGM is established based on systematic design point. Meanwhile, the mathematical expression for SGM is deduced by integrating matrix theory and graph theory; thus, the topological characteristics of the kinematic structure of SGM can be converted into a matrix model, and the topological design problem of SGM into a matrix operation problem. In addition, a brief discussion about the measures for identification of isomorphism of the graph mode is made.

  10. Particle Mechanics Models with W-symmetries

    CERN Document Server

    Gomis, J P; Kamimura, K; Roca, J

    1995-01-01

    We introduce a particle mechanics model with Sp($2M$) gauge invariance. Different partial gauge-fixings by means of sl(2) embeddings on the gauge algebra lead to reduced models which are invariant under diffeomorphisms and classical non-linear \\W-transformations as the residual gauge symmetries thus providing a set of models of gauge and matter fields coupled in a \\W-invariant way. The equations of motion for the matter variables give Lax operators in a matrix form. We examine several examples in detail and discuss the issue of integration of infinitesimal \\W-transformations.

  11. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  12. The zebrafish Kupffer's vesicle as a model system for the molecular mechanisms by which the lack of Polycystin-2 leads to stimulation of CFTR.

    Science.gov (United States)

    Roxo-Rosa, Mónica; Jacinto, Raquel; Sampaio, Pedro; Lopes, Susana Santos

    2015-10-02

    In autosomal dominant polycystic kidney disease (ADPKD), cyst inflation and continuous enlargement are associated with marked transepithelial ion and fluid secretion into the cyst lumen via cystic fibrosis transmembrane conductance regulator (CFTR). Indeed, the inhibition or degradation of CFTR prevents the fluid accumulation within cysts. The in vivo mechanisms by which the lack of Polycystin-2 leads to CFTR stimulation are an outstanding challenge in ADPKD research and may bring important biomarkers for the disease. However, hampering their study, the available ADPKD in vitro cellular models lack the three-dimensional architecture of renal cysts and the ADPKD mouse models offer limited access for live-imaging experiments in embryonic kidneys. Here, we tested the zebrafish Kupffer's vesicle (KV) as an alternative model-organ. KV is a fluid-filled vesicular organ, lined by epithelial cells that express both CFTR and Polycystin-2 endogenously, being each of them easily knocked-down. Our data on the intracellular distribution of Polycystin-2 support its involvement in the KV fluid-flow induced Ca(2+)-signalling. Mirroring kidney cysts, the KV lumen inflation is dependent on CFTR activity and, as we clearly show, the knockdown of Polycystin-2 results in larger KV lumens through overstimulation of CFTR. In conclusion, we propose the zebrafish KV as a model organ to study the renal cyst inflation. Favouring its use, KV volume can be easily determined by in vivo imaging offering a live readout for screening compounds and genes that may prevent cyst enlargement through CFTR inhibition.

  13. Modeling and Generating Strategy Games Mechanics

    DEFF Research Database (Denmark)

    Mahlmann, Tobias

    of the game is, how players may manipulate the game world, etc. We present the Strategy Games Description Language (SGDL), a tree-based approach to model the game mechanics of strategy games. SGDL allows game designers to rapid prototype their game ideas with the help of our customisable game engine. We...... present several example games to demonstrate the capabilities of the language and how to model common strategy game elements. Furthermore, we present methods to procedurally generate and evaluate game mechanics modelled in SGDL in terms of enjoyability. We argue that an evolutionary process can be used......Strategy games are a popular genre of games with a long history, originating from games like Chess or Go. The first strategy games were published as “Kriegspiele” (engl. wargames) in the late 18th century, intended for the education of young cadets. Since then strategy games were refined...

  14. Equilibrium statistical mechanics of lattice models

    CERN Document Server

    Lavis, David A

    2015-01-01

    Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...

  15. Recent advances in theoretical models of respiratory mechanics

    Institute of Scientific and Technical Information of China (English)

    Bo Huo; Rui-Rong Fu

    2012-01-01

    As an important branch of biomedical engineering,respiratory mechanics helps to understand the physiology of the respiratory system and provides fundamental data for developing such clinical technologies as ventilators.To solve different clinical problems,researchers have developed numerous models at various scales that describe biological and mechanical properties of the respiratory system.During the past decade,benefiting from the continuous accumulation of clinical data and the dramatic progress of biomedical technologies (e.g.biomedical imaging),the theoretical modeling of respiratory mechanics has made remarkable progress regarding the macroscopic properties of the respiratory process,complexities of the respiratory system,gas exchange within the lungs,and the coupling interaction between lung and heart.The present paper reviews the advances in the above fields and proposes potential future projects.

  16. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    Energy Technology Data Exchange (ETDEWEB)

    Gaihede, Michael [Department of Otolaryngology, Head and Neck Surgery, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Liao Donghua [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark); Gregersen, Hans [Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital, Aarhus University Hospital, Aalborg (Denmark)

    2007-02-07

    The quasi-static elastic properties of the tympanic membrane system can be described by the areal modulus of elasticity determined by a middle ear model. The response of the tympanic membrane to quasi-static pressure changes is determined by its elastic properties. Several clinical problems are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between membrane tension and change of the surface area relative to the undeformed surface area. A middle ear model determined the tension-strain relationship in vivo based on data from experimental pressure-volume deformations of the human tympanic membrane system. The areal modulus was determined in both a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m{sup -1}, respectively) compared to the younger group (mean = 1.066 and 1.206 kN m{sup -1}, respectively), though not significantly (2p = 0.10 and 0.11, respectively). Based on the model the areal modulus was established describing the summated elastic properties of the tympanic membrane system. Future model improvements include exact determination of the tympanic membrane area accounting for its shape via 3D finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus.

  17. Driven optomechanical systems for mechanical entanglement distribution

    CERN Document Server

    Paternostro, M; Li, Jie

    2012-01-01

    We consider the distribution of entanglement from a multi-mode optical driving source to a network of remote and independent optomechanical systems. By focusing on the tripartite case, we analyse the effects that the features of the optical input states have on the degree and sharing-structure of the distributed, fully mechanical, entanglement. This study, which is conducted looking at the mechanical steady-state, highlights the structure of the entanglement distributed among the nodes and determines the relative efficiency between bipartite and tripartite entanglement transfer. We discuss a few open points, some of which directed towards the bypassing of such limitations.

  18. Statistical mechanics of a discrete nonlinear system

    Science.gov (United States)

    Rasmussen; Cretegny; Kevrekidis; Gronbech-Jensen

    2000-04-24

    Statistical mechanics of the discrete nonlinear Schrodinger equation is studied by means of analytical and numerical techniques. The lower bound of the Hamiltonian permits the construction of standard Gibbsian equilibrium measures for positive temperatures. Beyond the line of T = infinity, we identify a phase transition through a discontinuity in the partition function. The phase transition is demonstrated to manifest itself in the creation of breatherlike localized excitations. Interrelation between the statistical mechanics and the nonlinear dynamics of the system is explored numerically in both regimes.

  19. System dynamics an introduction for mechanical engineers

    CERN Document Server

    Seeler, Karl A

    2014-01-01

    This essential textbook takes the student from the initial steps in modeling a dynamic system through development of the mathematical models needed for feedback control.  The generously-illustrated, student-friendly text focuses on fundamental theoretical development rather than the application of commercial software.  Practical details of machine design are included to motivate the non-mathematically inclined student. This book also: Emphasizes the linear graph method for modeling dynamic systems Offers a systematic approach for creating an engineering model, extracting information, and formulating mathematical analyses Adopts a unifying theme of power flow as the dynamic agent that eases analysis of hybrid systems, such as machinery Presents differential equations as dynamic operators and stresses input/output relationships Introduces Mathcad and programming in MATLAB Allows for use of Open Source Computational Software (R or C) Features over 1000 illustrations

  20. Mechanics, Models and Methods in Civil Engineering

    CERN Document Server

    Maceri, Franco

    2012-01-01

    Mechanics, Models and Methods in Civil Engineering” collects leading papers dealing with actual Civil Engineering problems. The approach is in the line of the Italian-French school and therefore deeply couples mechanics and mathematics creating new predictive theories, enhancing clarity in understanding, and improving effectiveness in applications. The authors of the contributions collected here belong to the Lagrange Laboratory, an European Research Network active since many years. This book will be of a major interest for the reader aware of modern Civil Engineering.

  1. Mechanisms and Geochemical Models of Core Formation

    CERN Document Server

    Rubie, David C

    2015-01-01

    The formation of the Earth's core is a consequence of planetary accretion and processes in the Earth's interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earth's mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so m...

  2. Skewed factor models using selection mechanisms

    KAUST Repository

    Kim, Hyoung-Moon

    2015-12-21

    Traditional factor models explicitly or implicitly assume that the factors follow a multivariate normal distribution; that is, only moments up to order two are involved. However, it may happen in real data problems that the first two moments cannot explain the factors. Based on this motivation, here we devise three new skewed factor models, the skew-normal, the skew-tt, and the generalized skew-normal factor models depending on a selection mechanism on the factors. The ECME algorithms are adopted to estimate related parameters for statistical inference. Monte Carlo simulations validate our new models and we demonstrate the need for skewed factor models using the classic open/closed book exam scores dataset.

  3. Physical damping in IDA-PBC controlled underactuated mechanical systems

    NARCIS (Netherlands)

    Gomez-Estern, F.; Schaft, van der A.J.

    2004-01-01

    Energy shaping and passivity-based control designs have proven to be effective in solving control problems for tinderactttated mechanical systems. In recent works, interconnection and damping assignment passivity-based control (IDA-PEC) has been successfully applied to open-loop conservative models,

  4. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, Arvid Quintijn Leon; Keemink, A.Q.L.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    2012-01-01

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The innova

  5. Mechanical Design of a Manipulation System for Unmanned Aerial Vehicles

    NARCIS (Netherlands)

    Keemink, Arvid Quintijn Leon; Keemink, A.Q.L.; Fumagalli, Matteo; Stramigioli, Stefano; Carloni, Raffaella

    In this paper, we present the mechanical design and modeling of a manipulation system for unmanned aerial vehicles, which have to physically interact with environments and perform ultrasonic non-destructive testing experiments and other versatile tasks at unreachable locations for humans. The

  6. Visual computing model for immune system and medical system.

    Science.gov (United States)

    Gong, Tao; Cao, Xinxue; Xiong, Qin

    2015-01-01

    Natural immune system is an intelligent self-organizing and adaptive system, which has a variety of immune cells with different types of immune mechanisms. The mutual cooperation between the immune cells shows the intelligence of this immune system, and modeling this immune system has an important significance in medical science and engineering. In order to build a comprehensible model of this immune system for better understanding with the visualization method than the traditional mathematic model, a visual computing model of this immune system was proposed and also used to design a medical system with the immune system, in this paper. Some visual simulations of the immune system were made to test the visual effect. The experimental results of the simulations show that the visual modeling approach can provide a more effective way for analyzing this immune system than only the traditional mathematic equations.

  7. Opto-mechanical door locking system

    Science.gov (United States)

    Patil, Saurabh S.; Rodrigues, Vanessa M.; Patil, Ajeetkumar; Chidangil, Santhosh

    2015-09-01

    We present an Opto-mechanical Door Locking System which is an optical system that combines a simple combination of a coherent light source (Laser) and a photodiode based sensor with focus toward security applications. The basic construct of the KEY comprises a Laser source in a cylindrical enclosure that slides perfectly into the LOCK. The Laser is pulsed at a fixed encrypted frequency unique to that locking system. Transistor-transistor logic (TTL) circuitry is used to achieve encryption. The casing of the key is designed in such a way that it will power the pulsing laser only when the key is inserted in the slot provided for it. The Lock includes a photo-sensor that will convert the detected light intensity to a corresponding electrical signal by decrypting the frequency. The lock also consists of a circuit with a feedback system that will carry the digital information regarding the encryption frequency code. The information received from the sensor is matched with the stored code; if found a perfect match, a signal will be sent to the servo to unlock the mechanical lock or to carry out any other operation. This technique can be incorporated in security systems for residences and safe houses, and can easily replace all conventional locks which formerly used fixed patterns to unlock. The major advantage of this proposed optomechanical system over conventional ones is that it no longer relies on a solid/imprinted pattern to perform its task and hence makes it almost impossible to tamper with.

  8. Multiscale mechanical modeling of soft biological tissues

    Science.gov (United States)

    Stylianopoulos, Triantafyllos

    2008-10-01

    Soft biological tissues include both native and artificial tissues. In the human body, tissues like the articular cartilage, arterial wall, and heart valve leaflets are examples of structures composed of an underlying network of collagen fibers, cells, proteins and molecules. Artificial tissues are less complex than native tissues and mainly consist of a fiber polymer network with the intent of replacing lost or damaged tissue. Understanding of the mechanical function of these materials is essential for many clinical treatments (e.g. arterial clamping, angioplasty), diseases (e.g. arteriosclerosis) and tissue engineering applications (e.g. engineered blood vessels or heart valves). This thesis presents the derivation and application of a multiscale methodology to describe the macroscopic mechanical function of soft biological tissues incorporating directly their structural architecture. The model, which is based on volume averaging theory, accounts for structural parameters such as the network volume fraction and orientation, the realignment of the fibers in response to strain, the interactions among the fibers and the interactions between the fibers and the interstitial fluid in order to predict the overall tissue behavior. Therefore, instead of using a constitutive equation to relate strain to stress, the tissue microstructure is modeled within a representative volume element (RVE) and the macroscopic response at any point in the tissue is determined by solving a micromechanics problem in the RVE. The model was applied successfully to acellular collagen gels, native blood vessels, and electrospun polyurethane scaffolds and provided accurate predictions for permeability calculations in isotropic and oriented fiber networks. The agreement of model predictions with experimentally determined mechanical properties provided insights into the mechanics of tissues and tissue constructs, while discrepancies revealed limitations of the model framework.

  9. Mechanical-mathematical modeling for landslide process

    Science.gov (United States)

    Svalova, V.

    2009-04-01

    500 m and displacement of a landslide in the plan over 1 m. Last serious activization of a landslide has taken place in 2002 with a motion on 53 cm. Catastrophic activization of the deep blockglide landslide in the area of Khoroshevo in Moscow took place in 2006-2007. A crack of 330 m long appeared in the old sliding circus, along which a new 220 m long creeping block was separated from the plateau and began sinking with a displaced surface of the plateau reaching to 12 m. Such activization of the landslide process was not observed in Moscow since mid XIX century. The sliding area of Khoroshevo was stable during long time without manifestations of activity. Revealing of the reasons of deformation and development of ways of protection from deep landslide motions is extremely actual and difficult problem which decision is necessary for preservation of valuable historical monuments and modern city constructions. The reasons of activization and protective measures are discussed. Structure of monitoring system for urban territories is elaborated. Mechanical-mathematical model of high viscous fluid was used for modeling of matter behavior on landslide slopes. Equation of continuity and an approximated equation of the Navier-Stockes for slow motions in a thin layer were used. The results of modelling give possibility to define the place of highest velocity on landslide surface, which could be the best place for monitoring post position. Model can be used for calibration of monitoring equipment and gives possibility to investigate some fundamental aspects of matter movement on landslide slope.

  10. Control mechanisms for a nonlinear model of international relations

    Energy Technology Data Exchange (ETDEWEB)

    Pentek, A.; Kadtke, J. [Univ. of California, San Diego, La Jolla, CA (United States). Inst. for Pure and Applied Physical Sciences; Lenhart, S. [Univ. of Tennessee, Knoxville, TN (United States). Mathematics Dept.; Protopopescu, V. [Oak Ridge National Lab., TN (United States). Computer Science and Mathematics Div.

    1997-07-15

    Some issues of control in complex dynamical systems are considered. The authors discuss two control mechanisms, namely: a short range, reactive control based on the chaos control idea and a long-term strategic control based on an optimal control algorithm. They apply these control ideas to simple examples in a discrete nonlinear model of a multi-nation arms race.

  11. The Modelling of The Solids Solution Formation Mechanism in Systems In2O3-ZrO2 at Heating in Air

    Directory of Open Access Journals (Sweden)

    A.E. Soloviova

    2011-01-01

    Full Text Available The mathematical model for the simulation of the formation and dissociation processes of solid solutions in In2O3-ZrО2 system are proposed. It permit us to calculate the ionic radii of cations: indium, zirconium, anion and anion vacancy. Solid solutions in the system formed by the disordered phase of indium oxide type C1. It was revealed that at temperatures 1450, 1600° C in air d of the system formed limited solid solutions such as: subtraction – substitution, subtraction – replacement – introduction. It was established, the size of the cations of indium, zirconium, and the number of defects determines the type of solid solution in the system In2O3-ZrО2. The energies of the formation of solid solutions, energy of the electrical conductivity in this system were calculated. Using the sale conductivities data it was revealed that the conduction current density and charge carrier mobility depends on the type of solid solution, rather than on the valence of the cations of zirconium.

  12. Magnetic resonance elastography of the lung parenchyma in an in situ porcine model with a noninvasive mechanical driver: correlation of shear stiffness with trans-respiratory system pressures.

    Science.gov (United States)

    Mariappan, Yogesh K; Kolipaka, Arunark; Manduca, Armando; Hubmayr, Rolf D; Ehman, Richard L; Araoz, Philip; McGee, Kiaran P

    2012-01-01

    Quantification of the mechanical properties of lung parenchyma is an active field of research due to the association of this metric with normal function, disease initiation and progression. A phase contrast MRI-based elasticity imaging technique known as magnetic resonance elastography is being investigated as a method for measuring the shear stiffness of lung parenchyma. Previous experiments performed with small animals using invasive drivers in direct contact with the lungs have indicated that the quantification of lung shear modulus with (1) H based magnetic resonance elastography is feasible. This technique has been extended to an in situ porcine model with a noninvasive mechanical driver placed on the chest wall. This approach was tested to measure the change in parenchymal stiffness as a function of airway opening pressure (P(ao) ) in 10 adult pigs. In all animals, shear stiffness was successfully quantified at four different P(ao) values. Mean (±STD error of mean) pulmonary parenchyma density corrected stiffness values were calculated to be 1.48 (±0.09), 1.68 (±0.10), 2.05 (±0.13), and 2.23 (±0.17) kPa for P(ao) values of 5, 10, 15, and 20 cm H2O, respectively. Shear stiffness increased with increasing P(ao) , in agreement with the literature. It is concluded that in an in situ porcine lung shear stiffness can be quantitated with (1) H magnetic resonance elastography using a noninvasive mechanical driver and that it is feasible to measure the change in shear stiffness due to change in P(ao) .

  13. A fully coupled atmosphere-ocean wave modeling system for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms

    Science.gov (United States)

    Katsafados, P.; Papadopoulos, A.; Korres, G.; Varlas, G.

    2016-01-01

    It is commonly accepted that there is a need for a better understanding of the factors that contribute to air-sea interactions and their feedbacks. In this context it is important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface requires knowledge of the sea state and its evolution. This can be achieved by considering the sea surface and the atmosphere as a continuously cross-talking dynamic system. Following and adapting concepts already developed and implemented in large-scale numerical weather models and in hurricane simulations, this study aims to present the effort towards developing a new, high-resolution, two-way fully coupled atmosphere-ocean wave model in order to support both operational and research activities. A specific issue that is emphasized is the determination and parameterization of the air-sea momentum fluxes in conditions of extremely high and time-varying winds. Software considerations, data exchange as well as computational and scientific performance of the coupled system, the so-called WEW (worketa-wam), are also discussed. In a case study of a high-impact weather and sea-state event, the wind-wave parameterization scheme reduces the resulted wind speed and the significant wave height as a response to the increased aerodynamic drag over rough sea surfaces. Overall, WEW offers a more realistic representation of the momentum exchanges in the ocean wind-wave system and includes the effects of the resolved wave spectrum on the drag coefficient and its feedback on the momentum flux.

  14. Some Ecological Mechanisms to Generate Habitability in Planetary Subsurface Areas by Chemolithotrophic Communities: The Ro Tinto Subsurface Ecosystem as a Model System

    Science.gov (United States)

    Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  15. Dynamical time versus system time inquantum mechanics

    Institute of Scientific and Technical Information of China (English)

    Du(s)an Arsenovi(c); Nikola Buri(c); Dragomir Davidovi(c); Slobodan Prvanovi(c)

    2012-01-01

    Properties of an operator representing the dynamical time in the extended parameterization invariant formulation of quantum mechanics are studied.It is shown that this time operator is given by a positive operator measure analogously to the quantities that are known to represent various measurable time operators.The relation between the dynamical time of the extended formulation and the best known example of the system time operator,i.e.,for the free one-dimensional particle,is obtained.

  16. Discrete mechanics, “time machines” and hybrid systems

    Directory of Open Access Journals (Sweden)

    Elze Hans-Thomas

    2013-09-01

    Full Text Available Modifying the discrete mechanics proposed by T.D. Lee, we construct a class of discrete classical Hamiltonian systems, in which time is one of the dynamical variables. This includes a toy model of “time machines” which can travel forward and backward in time and which differ from models based on closed timelike curves (CTCs. In the continuum limit, we explore the interaction between such time reversing machines and quantum mechanical objects, employing a recent description of quantum-classical hybrids.

  17. Numerical modelling in non linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    Viggo Tvergaard

    2007-07-01

    Full Text Available Some numerical studies of crack propagation are based on using constitutive models that accountfor damage evolution in the material. When a critical damage value has been reached in a materialpoint, it is natural to assume that this point has no more carrying capacity, as is done numerically in the elementvanish technique. In the present review this procedure is illustrated for micromechanically based materialmodels, such as a ductile failure model that accounts for the nucleation and growth of voids to coalescence, and a model for intergranular creep failure with diffusive growth of grain boundary cavities leading to micro-crack formation. The procedure is also illustrated for low cycle fatigue, based on continuum damage mechanics. In addition, the possibility of crack growth predictions for elastic-plastic solids using cohesive zone models to represent the fracture process is discussed.

  18. Interfacial Fluid Mechanics A Mathematical Modeling Approach

    CERN Document Server

    Ajaev, Vladimir S

    2012-01-01

    Interfacial Fluid Mechanics: A Mathematical Modeling Approach provides an introduction to mathematical models of viscous flow used in rapidly developing fields of microfluidics and microscale heat transfer. The basic physical effects are first introduced in the context of simple configurations and their relative importance in typical microscale applications is discussed. Then,several configurations of importance to microfluidics, most notably thin films/droplets on substrates and confined bubbles, are discussed in detail.  Topics from current research on electrokinetic phenomena, liquid flow near structured solid surfaces, evaporation/condensation, and surfactant phenomena are discussed in the later chapters. This book also:  Discusses mathematical models in the context of actual applications such as electrowetting Includes unique material on fluid flow near structured surfaces and phase change phenomena Shows readers how to solve modeling problems related to microscale multiphase flows Interfacial Fluid Me...

  19. A mechanical model of the smartphone's accelerometer

    CERN Document Server

    Gallitto, Aurelio Agliolo

    2015-01-01

    To increase the attention of students, several physics experiments can be performed at school, as well at home, by using the smartphone as laboratory tools. In the paper we describe a mechanical model of the smartphone's accelerometer, which can be used in classroom to allow students to better understand the principle of the accelerometer even by students at the beginning of the study in physics.

  20. Mechanically induced residual stresses: Modelling and characterisation

    Science.gov (United States)

    Stranart, Jean-Claude E.

    Accurate characterisation of residual stress represents a major challenge to the engineering community. This is because it is difficult to validate the measurement and the accuracy is doubtful. It is with this in mind that the current research program concerning the characterisation of mechanically induced residual stresses was undertaken. Specifically, the cold expansion of fastener holes and the shot peening treatment of aerospace alloys, aluminium 7075 and titanium Ti-6Al-4V, are considered. The objective of this study is to characterise residual stresses resulting from cold working using three powerful techniques. These are: (i) theoretical using three dimensional non-linear finite element modelling, (ii) semi-destructive using a modified incremental hole drilling technique and (iii) nondestructive using a newly developed guided wave method supplemented by traditional C-scan measurements. The three dimensional finite element results of both simultaneous and sequential cold expansion of two fastener holes revealed the importance of the separation distance, the expansion level and the loading history upon the development and growth of the plastic zone and unloading residual stresses. It further showed that the commonly adopted two dimensional finite element models are inaccurate and incapable of predicting these residual stresses. Similarly, the dynamic elasto-plastic finite element studies of shot peening showed that the depth of the compressed layer, surface and sub-surface residual stresses are significantly influenced by the shot characteristics. Furthermore, the results reveal that the separation distance between two simultaneously impacting shots governs the plastic zone development and its growth. In the semi-destructive incremental hole drilling technique, the accuracy of the newly developed calibration coefficients and measurement techniques were verified with a known stress field and the method was used to measure peening residual stresses. Unlike

  1. Mechanical systems a unified approach to vibrations and controls

    CERN Document Server

    Gans, Roger F

    2015-01-01

    This essential textbook covers analysis and control of engineering mechanisms, which include almost any apparatus with moving parts used in daily life, from musical instruments to robots. The text  presents both vibrations and controls with considerable breadth and depth using a unified notation. It strikes a nice balance between the analytical and the practical.  This text contains enough material for a two semester sequence, but it can also be used in a single semester course combining the two topics. Mechanical Systems: A Unified Approach to Vibrations and Controls presents a common notation and approach to these closely related areas. Examples from the both vibrations and controls components are integrated throughout this text. This book also: ·         Presents a unified approach to vibrations and controls, including an excellent diagram that simultaneously discusses embedding classical vibrations (mechanical systems) in a discussion of models, inverse models, and open and closed loop control ...

  2. Stabilization and synchronization of networked mechanical systems

    Science.gov (United States)

    Nair, Sujit S.

    The main theme of this thesis is coordination and stabilization of a network of mechanical systems or rigid bodies to achieve synchronized behaviour. The idea is to use controls derived from potentials to couple the systems such that the closed-loop system is also a mechanical system with a Lagrangian structure. This permits the closed-loop Hamiltonian to be used as a Lyapunov function for stability analysis. It is a big challenge to develop a provable, systematic methodology to control and coordinate a network of systems to perform a given task. The control law should be robust enough to handle environment uncertainties, avoid obstacles and collisions and keep the system formation going. The fact that these systems may even have unstable dynamics makes the problem even more interesting and exciting both from a theoretical and applied point of view. This work investigates the coordination problem when each individual system has its own (maybe unstable) dynamics; this distinguishes this work from many other recent works on coordination control where the individual system dynamics are assumed to be single/double integrators. We build coordination techniques for three kinds of systems. The first one consists of underactuated Lagrangian systems with Abelian symmetry groups lacking gyroscopic forces. Asymptotic stabilization is proved for two cases, one which yields convergence to synchronized motion restricted to a constant momentum surface and one in which the system converges asymptotically to a relative equilibrium. Next we consider rigid body systems where the configuration space of each individual body is the non Abelian Lie group SO(3) or SE(3). In the SO(3) case, the asymptotically stabilized solution corresponds to each rigid body rotating about its unstable middle axis and all the bodies synchronized and pointing in a particular direction in inertial space. In the SE(3) case, the asymptotically stabilized solution corresponds to each rigid body rotating about

  3. Triple Helix Model as an Efficient Mechanism of Food Security Provision in Regional Economic Entities and the Economic System as a Whole

    Directory of Open Access Journals (Sweden)

    Mihail N. Dudin

    2014-08-01

    Full Text Available The leading countries of the world consider food security the important condition of internal political and social-economic stability of the state and its external independence. The topic of the article is crucial due to the fact that the problem of food security is rather complicated and multilevel and should be considered at different interrelated hierarchical levels. In this context the efficient model of food security is the result of the permanent dialogue between the representatives of the state government, business entities, social organizations and scientific institutions. The article justifies the fact that the model of innovation development, known as ‘the triple helix model’ should be applied at the modern stage of economic development as an efficient tool for the food security provision, which can be implemented in the activity of regional economic entities and the whole economic system of the Russian Federation.

  4. Information model construction of MES oriented to mechanical blanking workshop

    Science.gov (United States)

    Wang, Jin-bo; Wang, Jin-ye; Yue, Yan-fang; Yao, Xue-min

    2016-11-01

    Manufacturing Execution System (MES) is one of the crucial technologies to implement informatization management in manufacturing enterprises, and the construction of its information model is the base of MES database development. Basis on the analysis of the manufacturing process information in mechanical blanking workshop and the information requirement of MES every function module, the IDEF1X method was adopted to construct the information model of MES oriented to mechanical blanking workshop, and a detailed description of the data structure feature included in MES every function module and their logical relationship was given from the point of view of information relationship, which laid the foundation for the design of MES database.

  5. New Models of Mechanisms for the Motion Transformation

    Science.gov (United States)

    Petrović, Tomislav; Ivanov, Ivan

    In this paper two new mechanisms for the motion transformations are presented: screw mechanism for the transformation of one-way circular into two-way linear motion with impulse control and worm-planetary gear train with extremely height gear ratio. Both mechanisms represent new models of construction solutions for which patent protection has been achieved. These mechanisms are based on the application of the differential gearbox with two degrees of freedom. They are characterized by series of kinematic impacts at motion transformation and the possibility of temporary or permanent changes in the structure by subtracting the redundant degree of freedom. Thus the desired characteristic of the motion transformation is achieved. For each mechanism separately the principles of motion and transformation are described and the basic equations that describe the interdependence of geometric and kinematic and kinetic parameters of the system dynamics are given. The basic principles of controlling new mechanisms for motion transformation have been pointed to and the basic constructional performances which may find practical application have been given. The physical models of new systems of motion transformation have been designed and their operation has been presented. Performed experimental researches confirmed the theoretical results and very favorable kinematic characteristics of the mechanisms.

  6. NEP systems model

    Science.gov (United States)

    George, Jeffrey A.

    A new nuclear electric propulsion (NEP) systems analysis code is discussed. The new code is modular and consists of a driver code and various subsystem models. The code models five different subsystems: (1) reactor/shield; (2) power conversion; (3) heat rejection; (4) power management and distribution (PMAD); and (5) thrusters. The code optimizes for the following design criteria: minimum mass; minimum radiator area; and low mass/low area. The code also optimizes the following parameters: separation distance; temperature ratio; pressure ratio; and transmission frequency. The discussion is presented in vugraph form.

  7. Towards an automatic model transformation mechanism from UML state machines to DEVS models

    Directory of Open Access Journals (Sweden)

    Ariel González

    2015-08-01

    Full Text Available The development of complex event-driven systems requires studies and analysis prior to deployment with the goal of detecting unwanted behavior. UML is a language widely used by the software engineering community for modeling these systems through state machines, among other mechanisms. Currently, these models do not have appropriate execution and simulation tools to analyze the real behavior of systems. Existing tools do not provide appropriate libraries (sampling from a probability distribution, plotting, etc. both to build and to analyze models. Modeling and simulation for design and prototyping of systems are widely used techniques to predict, investigate and compare the performance of systems. In particular, the Discrete Event System Specification (DEVS formalism separates the modeling and simulation; there are several tools available on the market that run and collect information from DEVS models. This paper proposes a model transformation mechanism from UML state machines to DEVS models in the Model-Driven Development (MDD context, through the declarative QVT Relations language, in order to perform simulations using tools, such as PowerDEVS. A mechanism to validate the transformation is proposed. Moreover, examples of application to analyze the behavior of an automatic banking machine and a control system of an elevator are presented.

  8. Analysis of the mechanical behaviour of the ITER magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Jong, C.T.J.

    1996-03-01

    The International Thermonuclear Experimental Reactor (ITER) is a tokamak fusion device with the objective of demonstrating controlled ignition and an extended burn for a duration sufficient to achieve stationary conditions. The design of ITER will be based on extensive new design work supported by new physical and technological results. As part of the ITER Engineering Design Activities, the mechanical behaviour of the toroidal field coil (TF coil) system during normal operating conditions and fault conditions has to be analyzed. The displacements and/or stresses in the components must be limited to prevent mechanical failure of parts of the overall structure. These Engineering Design Activities are supported by R and D programs in the European Union. This final report describes the work carried out by ECN to develop a finite element model (FE model) of the TF-coil system which is suitable for the analysis of the mechanical behaviour and presents results obtained with this model. For the analysis of the mechanical behaviour, a large three dimensional (3D) non-linear finite element model has been developed. With this FE model a large number of load cases has been analyzed which correspond with several time points during multiple pulses. (orig./WL).

  9. On the mechanical behavior of the human biliary system

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Luo; Wenguang Li; Nigel Bird; Swee Boon Chin; NA Hill; Alan G Johnson

    2007-01-01

    This paper reviews the progress made in understanding the mechanical behaviour of the biliary system.Gallstones and diseases of the biliary tract affect more than 10% of the adult population. The complications of gallstones, i.e. acute pancreatitis and obstructive jandice, can be lethal, and patients with acalculous gallbladder pain often pose diagnostic difficulties and undergo repeated ultrasound scans and oral cholecystograms. Moreover, surgery to remove the gallbladder in these patients, in an attempt to relieve the symptoms, gives variable results. Extensive research has been carried out to understand the physiological and pathological functions of the biliary system, but the mechanism of the pathogenesis of gallstones and pain production still remain poorly understood. It is believed that the mechanical factors play an essential role in the mechanisms of the gallstone formation and biliary diseases. However, despite the extensive literature in clinical studies, only limited work has been carried out to study the biliary system from the mechanical point of view. In this paper, we discuss the state of art knowledge of the fluid dynamics of bile flow in the biliary tract, the solid mechanics of the gallbladder and bile ducts, recent mathematical and numerical modelling of the system,and finally the future challenges in the area.

  10. National Energy Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, C.W. (Energy Information Administration, Washington, DC (United States))

    1993-01-01

    The Energy Information Administration is developing a new National Energy Modeling System to provide annual forecasts of energy supply, demand, and prices on a regional basis in the United States and, to a limited extent, in the rest of the world. The design for the system was based on a requirements analysis, a comparison of requirements with existing modeling capabilities, and a series of widely circulated issue papers defining the choices and tradeoffs for 13 key design decisions. An initial prototpye of the new NEMS was implemented in late 1992, with a more complete, operational version in 1993. NEMS is expected to provide EIA and other users with a greatly enhanced ability to illustrate quickly and effectively the effects of a wide range of energy policy proposals.

  11. Defect-related internal dissipation in mechanical resonators and the study of coupled mechanical systems.

    Energy Technology Data Exchange (ETDEWEB)

    Friedmann, Thomas Aquinas; Czaplewski, David A.; Sullivan, John Patrick; Modine, Normand Arthur; Wendt, Joel Robert; Aslam, Dean (Michigan State University, Lansing, MI); Sepulveda-Alancastro, Nelson (University of Puerto Rico, Mayaguez, PR)

    2007-01-01

    Understanding internal dissipation in resonant mechanical systems at the micro- and nanoscale is of great technological and fundamental interest. Resonant mechanical systems are central to many sensor technologies, and microscale resonators form the basis of a variety of scanning probe microscopies. Furthermore, coupled resonant mechanical systems are of great utility for the study of complex dynamics in systems ranging from biology to electronics to photonics. In this work, we report the detailed experimental study of internal dissipation in micro- and nanomechanical oscillators fabricated from amorphous and crystalline diamond materials, atomistic modeling of dissipation in amorphous, defect-free, and defect-containing crystalline silicon, and experimental work on the properties of one-dimensional and two-dimensional coupled mechanical oscillator arrays. We have identified that internal dissipation in most micro- and nanoscale oscillators is limited by defect relaxation processes, with large differences in the nature of the defects as the local order of the material ranges from amorphous to crystalline. Atomistic simulations also showed a dominant role of defect relaxation processes in controlling internal dissipation. Our studies of one-dimensional and two-dimensional coupled oscillator arrays revealed that it is possible to create mechanical systems that should be ideal for the study of non-linear dynamics and localization.

  12. Intelligent Acquisition System Used in Mechanical Laboratory

    Directory of Open Access Journals (Sweden)

    Rob Raluca

    2016-01-01

    Full Text Available The main purpose of this paper consists in determining of the parameters which characterize the functioning of the Teves MK 60 as an ABS-ESP braking laboratory stand. This braking system model is used by the Volkswagen Golf and Bora the since 2002. The braking laboratory stand is able to simulate many operations which are able to give information concerning the ABS-ESP braking system comparing to the classical braking system. An application designed in LabVIEW comes to acquire and to process in real time the electrical signals generated by the Teves MK 60 laboratory stand.

  13. Mechanical Model Development for Composite Structural Supercapacitors

    Science.gov (United States)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.

    2016-01-01

    Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.

  14. A fully coupled Atmosphere–Ocean Wave modeling system (WEW for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms

    Directory of Open Access Journals (Sweden)

    P. Katsafados

    2015-05-01

    Full Text Available It is commonly accepted that there is an urgent need for a better understanding of the factors that contribute to the air–sea interaction processes and their feedbacks. In this sense it is absolutely important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface, requires the exact knowledge of the sea state and its evolution. This can be achieved by considering the sea surface and the atmosphere as a continuously cross talking dynamic system. Therefore, this study aims to present the effort towards developing a new, high-resolution, two-way fully coupled atmosphere–ocean wave model in order to support operational and research activities. A specific issue that it is emphasized here is the determination and parameterization of the air–sea momentum fluxes under conditions of extremely high and time-varying winds. Software considerations, data exchange as well as computational and scientific performance of the coupled system, so-called WEW, are also discussed throughout this study. In a case study of high-impact weather and sea state event, the wind–wave parameterization scheme reduces the resulted wind speed and the significant wave height as a response to the increased aerodynamic drag over rough sea surfaces. Overall, WEW offers a more realistic representation of the momentum exchanges in the ocean wind–wave system and includes the effects of the resolved wave spectrum on the drag coefficient and its feedback on the momentum flux.

  15. Modeling Novo Nordisk Production Systems

    DEFF Research Database (Denmark)

    Miller, Thomas Dedenroth

    1997-01-01

    This report describes attributes of models and systems, and how models can be used for description of production systems. There are special attention on the 'Theory of Domains'.......This report describes attributes of models and systems, and how models can be used for description of production systems. There are special attention on the 'Theory of Domains'....

  16. Mechanical Model of Traditional Thai Massage for Integrated Healthcare

    Directory of Open Access Journals (Sweden)

    Salinee Rattanaphan

    2015-01-01

    Full Text Available In this study, a mechanical model was developed, aiming to provide standardized and programmable traditional Thai massage (TTM therapy to patients. The TTM was modeled and integrated into a mechanical hand (MH system, and a prototype massage chair was built and tested for user satisfaction. Three fundamental principles of Thai massage were integrated: pull, press, and pin. Based on these principles, the mechanics of Thai massage was studied and a mathematical model was developed to describe the dynamics and conditions for the design and prototyping of an MH. On average, it was found that users were satisfied with the treatment and felt that the treatment was similar to that performed by human hands. According to the interview results, users indicated that they were likely to utilize the MH as an alternative to traditional massage. Therefore, integrated TTM with an MH may help healthcare providers deliver standardized, programmable massage therapy to patients as opposed to variable, inconsistent human massage.

  17. Mechanical Model of Traditional Thai Massage for Integrated Healthcare.

    Science.gov (United States)

    Rattanaphan, Salinee; Srichandr, Panya

    2015-01-01

    In this study, a mechanical model was developed, aiming to provide standardized and programmable traditional Thai massage (TTM) therapy to patients. The TTM was modeled and integrated into a mechanical hand (MH) system, and a prototype massage chair was built and tested for user satisfaction. Three fundamental principles of Thai massage were integrated: pull, press, and pin. Based on these principles, the mechanics of Thai massage was studied and a mathematical model was developed to describe the dynamics and conditions for the design and prototyping of an MH. On average, it was found that users were satisfied with the treatment and felt that the treatment was similar to that performed by human hands. According to the interview results, users indicated that they were likely to utilize the MH as an alternative to traditional massage. Therefore, integrated TTM with an MH may help healthcare providers deliver standardized, programmable massage therapy to patients as opposed to variable, inconsistent human massage.

  18. Systematic development of reduced reaction mechanisms for dynamic modeling

    Science.gov (United States)

    Frenklach, M.; Kailasanath, K.; Oran, E. S.

    1986-01-01

    A method for systematically developing a reduced chemical reaction mechanism for dynamic modeling of chemically reactive flows is presented. The method is based on the postulate that if a reduced reaction mechanism faithfully describes the time evolution of both thermal and chain reaction processes characteristic of a more complete mechanism, then the reduced mechanism will describe the chemical processes in a chemically reacting flow with approximately the same degree of accuracy. Here this postulate is tested by producing a series of mechanisms of reduced accuracy, which are derived from a full detailed mechanism for methane-oxygen combustion. These mechanisms were then tested in a series of reactive flow calculations in which a large-amplitude sinusoidal perturbation is applied to a system that is initially quiescent and whose temperature is high enough to start ignition processes. Comparison of the results for systems with and without convective flow show that this approach produces reduced mechanisms that are useful for calculations of explosions and detonations. Extensions and applicability to flames are discussed.

  19. Physical modeling of transverse drainage mechanisms

    Science.gov (United States)

    Douglass, J. C.; Schmeeckle, M. W.

    2005-12-01

    Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from

  20. Improving Mechanical Characteristics of Inverter-induction Motor Drive System

    Directory of Open Access Journals (Sweden)

    Hussein Sarhan

    2006-01-01

    Full Text Available An inverter-three-phase squirrel-cage induction motor drive system with improved mechanical characteristics is presented. The proposed system provides mechanical characteristics with constant maximum torque or increased maximum torque and reduced slip speed at frequencies below the nominal frequency. The control algorithm is based on the constant volts per hertz principle using two improvement techniques: keeping maximum torque constant or keeping magnetic flux constant. Performance analysis of the system under different operation conditions was provided. For this purpose, a standard state-space model of three-phase squirrel-cage induction motor, with respect to a synchronously rotating d-q reference frame was derived. The correctness and validity of the derived model of induction motor was verified. The inverter was considered as a static linear element and modeled through its input-output equation based on the modulation index. Three types of controllers were modeled, simulated and experimentally tested. The results show that both suggested control methods improve the system performance. The slip speed has been decreased and the starting torque and maximum torque have been increased. Controller with constant maximum torque can be used in drive systems working with constant load, while controller with constant flux can be used in drive systems working with constant power.

  1. Probabilistic models for feedback systems.

    Energy Technology Data Exchange (ETDEWEB)

    Grace, Matthew D.; Boggs, Paul T.

    2011-02-01

    In previous work, we developed a Bayesian-based methodology to analyze the reliability of hierarchical systems. The output of the procedure is a statistical distribution of the reliability, thus allowing many questions to be answered. The principal advantage of the approach is that along with an estimate of the reliability, we also can provide statements of confidence in the results. The model is quite general in that it allows general representations of all of the distributions involved, it incorporates prior knowledge into the models, it allows errors in the 'engineered' nodes of a system to be determined by the data, and leads to the ability to determine optimal testing strategies. In this report, we provide the preliminary steps necessary to extend this approach to systems with feedback. Feedback is an essential component of 'complexity' and provides interesting challenges in modeling the time-dependent action of a feedback loop. We provide a mechanism for doing this and analyze a simple case. We then consider some extensions to more interesting examples with local control affecting the entire system. Finally, a discussion of the status of the research is also included.

  2. Cooperative folding of muscle myosins: I. Mechanical model

    CERN Document Server

    Caruel, Matthieu; Truskinovsky, Lev

    2013-01-01

    Mechanically induced folding of passive cross-linkers is a fundamental biological phenomenon. A typical example is a conformational change in myosin II responsible for the power-stroke in skeletal muscles. In this paper we present an athermal perspective on such folding by analyzing the simplest purely mechanical prototype: a parallel bundle of bi-stable units attached to a common backbone. We show that in this analytically transparent model, characterized by a rugged energy landscape, the ground states are always highly coherent, single-phase configurations. We argue that such cooperative behavior, ensuring collective conformational change, is due to the dominance of long- range interactions making the system non-additive. The detailed predictions of our model are in agreement with experimentally observed non-equivalence of fast force recovery in skeletal muscles loaded in soft and hard devices. Some features displayed by the model are also recognizable in the behavior of other biological systems with passiv...

  3. Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg. in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling

    Directory of Open Access Journals (Sweden)

    Kyung Ah Koo

    2015-04-01

    Full Text Available Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg. in the Great Smoky Mountains National Park (GSMNP, eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM, to a GIS spatial model, red spruce habitat model (ARIM.HAB. ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.

  4. Numerical modeling of polar mesocyclones generation mechanisms

    Science.gov (United States)

    Sergeev, Dennis; Stepanenko, Victor

    2013-04-01

    parameters, lateral boundary conditions are varied in the typically observed range. The approach is fully nonlinear: we use a three-dimensional non-hydrostatic mesoscale model NH3D_MPI [1] coupled with one-dimensional water body model LAKE. A key method used in the present study is the analysis of eddy kinetic and available potential energy budgets. References 1. Mikushin, D.N., and Stepanenko, V.M., The implementation of regional atmospheric model numerical algorithms for CBEA-based clusters. Lecture Notes in Computer Science, Parallel Processing and Applied Mathematics, 2010, vol. 6067, p. 525-534. 2. Rasmussen, E., and Turner, J. (eds), Polar Lows: Mesoscale Weather Systems in the Polar Regions. Cambridge: Cambridge University Press, 2003, 612 pp. 3. Yanase, W., and Niino, H., Dependence of Polar Low Development on Baroclinicity and Physical Processes: An Idealized High-Resolution Experiment, J. Atmos. Sci., 2006, vol. 64, p. 3044-3067.

  5. Biological Robustness: Paradigms, Mechanisms, and Systems Principles

    Directory of Open Access Journals (Sweden)

    James Michael Whitacre

    2012-05-01

    Full Text Available Robustness has been studied through the analysis of data sets, simulations, and a variety of experimental techniques that each have their own limitations but together confirm the ubiquity of biological robustness. Recent trends suggest that different types of perturbation (e.g. mutational, environmental are commonly stabilized by similar mechanisms, and system sensitivities often display a long-tailed distribution with relatively few perturbations representing the majority of sensitivities. Conceptual paradigms from network theory, control theory, complexity science, and natural selection have been used to understand robustness, however each paradigm has a limited scope of applicability and there has been little discussion of the conditions that determine this scope or the relationships between paradigms. Systems properties such as modularity, bow-tie architectures, degeneracy, and other topological features are often positively associated with robust traits, however common underlying mechanisms are rarely mentioned. For instance, many system properties support robustness through functional redundancy or through response diversity with responses regulated by competitive exclusion and cooperative facilitation. Moreover, few studies compare and contrast alternative strategies for achieving robustness such as homeostasis, adaptive plasticity, environment shaping, and environment tracking. These strategies share similarities in their utilization of adaptive and self-organization processes that are not well appreciated yet might be suggestive of reusable building blocks for generating robust behavior.

  6. Model error analyses of photochemistry mechanisms using the BEATBOX/BOXMOX data assimilation toy model

    Science.gov (United States)

    Knote, C. J.; Eckl, M.; Barré, J.; Emmons, L. K.

    2016-12-01

    Simplified descriptions of photochemistry in the atmosphere ('photochemical mechanisms') necessary to reduce the computational burden of a model simulation contribute significantly to the overall uncertainty of an air quality model. Understanding how the photochemical mechanism contributes to observed model errors through examination of results of the complete model system is next to impossible due to cancellation and amplification effects amongst the tightly interconnected model components. Here we present BEATBOX, a novel method to evaluate photochemical mechanisms using the underlying chemistry box model BOXMOX. With BOXMOX we can rapidly initialize various mechanisms (e.g. MOZART, RACM, CBMZ, MCM) with homogenized observations (e.g. from field campaigns) and conduct idealized 'chemistry in a jar' simulations under controlled conditions. BEATBOX is a data assimilation toy model built upon BOXMOX which allows to simulate the effects of assimilating observations (e.g., CO, NO2, O3) into these simulations. In this presentation we show how we use the Master Chemical Mechanism (MCM, U Leeds) as benchmark for more simplified mechanisms like MOZART, use BEATBOX to homogenize the chemical environment and diagnose errors within the more simplified mechanisms. We present BEATBOX as a new, freely available tool that allows researchers to rapidly evaluate their chemistry mechanism against a range of others under varying chemical conditions.

  7. System of systems modeling and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, James E.; Anderson, Dennis James; Longsine, Dennis E. (Intera, Inc., Austin, TX); Shirah, Donald N.

    2005-01-01

    This report documents the results of an LDRD program entitled 'System of Systems Modeling and Analysis' that was conducted during FY 2003 and FY 2004. Systems that themselves consist of multiple systems (referred to here as System of Systems or SoS) introduce a level of complexity to systems performance analysis and optimization that is not readily addressable by existing capabilities. The objective of the 'System of Systems Modeling and Analysis' project was to develop an integrated modeling and simulation environment that addresses the complex SoS modeling and analysis needs. The approach to meeting this objective involved two key efforts. First, a static analysis approach, called state modeling, has been developed that is useful for analyzing the average performance of systems over defined use conditions. The state modeling capability supports analysis and optimization of multiple systems and multiple performance measures or measures of effectiveness. The second effort involves time simulation which represents every system in the simulation using an encapsulated state model (State Model Object or SMO). The time simulation can analyze any number of systems including cross-platform dependencies and a detailed treatment of the logistics required to support the systems in a defined mission.

  8. A portable air jet actuator device for mechanical system identification.

    Science.gov (United States)

    Belden, Jesse; Staats, Wayne L; Mazumdar, Anirban; Hunter, Ian W

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon--the Coandă effect--is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  9. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  10. A mechanical model of bacteriophage DNA ejection

    Science.gov (United States)

    Arun, Rahul; Ghosal, Sandip

    2017-08-01

    Single molecule experiments on bacteriophages show an exponential scaling for the dependence of mobility on the length of DNA within the capsid. It has been suggested that this could be due to the ;capstan mechanism; - the exponential amplification of friction forces that result when a rope is wound around a cylinder as in a ship's capstan. Here we describe a desktop experiment that illustrates the effect. Though our model phage is a million times larger, it exhibits the same scaling observed in single molecule experiments.

  11. Modeling and optimization of magnetostrictive actuator amplified by compliant mechanism

    Science.gov (United States)

    Niu, Muqing; Yang, Bintang; Yang, Yikun; Meng, Guang

    2017-09-01

    Magnetostrictive actuators are commonly used in precision engineering with the advantages of high resolution and fast response. Their limited strokes are always amplified by compliant mechanisms without wear and backlash. This paper proposes a hybrid model for the actuation system considering the coupling of the actuator and the amplifier. The magnetostrictive model, based on the Jiles-Atherton model, is related to the input stiffness of the amplifier when quantifying the magneto-mechanical effects, including stress-dependent magnetization, stress-dependent magnetostriction and ΔE effect. The compliant mechanism model aims at constructing the flexibility matrix with the amplification ratio and input stiffness related to the spring factor of the load. The deformation and structural stress of the amplifier are also dependent on the output strain of magnetostrictive material. Experiments under both free load and spring load conditions have been done to verify the effectiveness of the hybrid model. The proposed model is suitable for parameter optimization and the performance indicators can be precisely quantified. Optimization based on hybrid model is more preferred than optimizing the actuator and amplifier independently for maximum output displacement. Furthermore, ‘stiffness match principle’ is no longer applicable when considering ΔE effect, and the optimal external stiffness problem can be numerically solved by the hybrid model for maximum output energy of magnetostrictive material.

  12. Assessing the role of deep rooted vegetation in the climate system with model simulations: mechanism, comparison to observations and implications for Amazonian deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Kleidon, A.; Heimann, M. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2000-02-01

    Deep rooted vegetation (of up to 68 m) has been found in many parts of the tropics. However, models of the general atmospheric circulation (GCMs) typically use rooting depths of less than 2 m in their land surface parametrizations. How does the incorporation of deep roots into such a model affect the simulated climate? We assess this question by using a GCM and find that deeper roots lead to a pronounced seasonal response. During the dry season, evapotranspiration and the associated latent heat flux are considerably increased over large regions leading to a cooling of up to 8 K. The enhanced atmospheric moisture is transported towards the main convection areas in the inner tropical convergence zone where it supplies more energy to convection thus intensifying the tropical circulation patterns. Comparison to different kinds of data reveals that the simulation with deeper roots is much closer to observations. The inclusion of deep roots also leads to a general increased climatic sensitivity to rooting depth change. We investigate this aspect in the context of the climatic effects of large-scale deforestation in Amazonia. Most of the regional and remote changes can be attributed to the removal of deep roots. We conclude that deep rooted vegetation is an important part of the tropical climate system. Without the consideration of deep roots, the present-day surface climate cannot adequately be simulated. (orig.)

  13. Mechanism reduction for the formation of secondary organic aerosol for integration into a 3-dimensional regional Air Quality Model: α-pinene oxidation system

    Directory of Open Access Journals (Sweden)

    D. V. Michelangeli

    2008-07-01

    Full Text Available A detailed α-pinene oxidation mechanism was reduced systematically through the successive application of five mechanism reduction techniques. The resulting reduced mechanism preserves the ozone- and organic aerosol-forming properties of the original mechanism, while using less species. The methodologies employed included a directed relation graph method with error propagation (DRGEP, which removed a large number of redundant species and reactions, principal component analysis of the rate sensitivity matrix (PCA, used to remove unnecessary reactions, the quasi-steady-state approximation (QSSA, used to remove some QSS species, an iterative screening method (ISSA, which removes redundant species and reactions simultaneously, and a new lumping approach dependant on the hydrocarbon to NOx ratio (which reduced the number of species in mechanism subsets for specific hydrocarbon to NOx ranges. This multistage methodology results in a reduction ratio of 2.5 for the number of both species and reactions compared with the full mechanism. The simplified mechanism reproduces the important gas and aerosol phase species (the latter are examined in detail by individual condensing species as well as in classes according to four functional groups: PANs, nitrates, organic peroxides, and organic acids. The total SOA mass is also well represented in the condensed mechanism, to within 16% of the detailed mechanism under a wide range of conditions. The methodology described here is general, and may be used in general mechanism reduction problems.

  14. 四旋翼飞行器力学模型与控制系统设计%Design of Mechanical Model and Control System of Quadrotor

    Institute of Scientific and Technical Information of China (English)

    王史春

    2014-01-01

    针对四旋翼飞行器系统具有非线性、强耦合性、多输入的欠驱动以及系统不确定性的问题,提出采用分段串级PID控制策略。将该方法与经典的PID控制相结合,可以很好地消除外部扰动。设计中首先对系统进行了动力学建模和姿态解算,然后对系统硬件和软件进行了优化设计。对该飞行器系统在近地环境下进行了飞行测试,结果表明:完成了垂直起降、悬停、任意旋转等动作,在对其施以外界干扰时能自动调节,并迅速恢复到平稳状态,实现了飞行器平衡稳定的飞行效果。%In view of the problems of nonlinear ,strong coupling ,multi-input underactuated and sys-tem uncertainty of the four rotor aircraft system ,sectional cascade PID control strategy was present-ed .The external disturbance could be eliminated commendably by the method combined with the clas-sical PID control .The design of the system dynamics modeling and attitude solution were made ,fol-lowed by optimizing of the design of system hardware and software .The flight tests at the near-earth environment show that aircraft system can complete the action of vertical takeoff and landing ,hover-ing ,arbitrary rotation ,and can automatically adjust to a steady state subjected to outside interfer-ence ,which achieve a balanced and stable flying effect .

  15. Preemptive queueing system with randomized push-out mechanism

    Science.gov (United States)

    Muliukha, Vladimir; Ilyashenko, Alexander; Zayats, Oleg; Zaborovsky, Vladimir

    2015-04-01

    In this article considered a queueing theory model with limited buffer size, one service channel, and two incoming flows. In this model one of the flows has a power to preempt other tasks. We call it a high-priority flow. Another one is low-priority. This priority mechanism is realized in a two different ways. The first one is a preemptive priority, which allows high-priority packets to interrupt low-priority packets in service channel and push them out. The second one is a randomized push-out mechanism with probability α, which allows us to choose what type of packets should be pushed out of the system when it is full. In this article we provide an algorithm for computing statistical characteristics of the model for all values of push-out probability α. We have used generating functions method to simplify the system of linear equations. This method allows us to reduce the order of linear equations system from k(k + 1)/2 to (k + 1). As the result we have got two effects in this model. The first one is a linear behavior of loss probabilities in the model with low overload. The second one is a "closing" of a system for low-priority packets with high overload.

  16. Vertex models: from cell mechanics to tissue morphogenesis

    Science.gov (United States)

    Alt, Silvanus; Ganguly, Poulami

    2017-01-01

    Tissue morphogenesis requires the collective, coordinated motion and deformation of a large number of cells. Vertex model simulations for tissue mechanics have been developed to bridge the scales between force generation at the cellular level and tissue deformation and flows. We review here various formulations of vertex models that have been proposed for describing tissues in two and three dimensions. We discuss a generic formulation using a virtual work differential, and we review applications of vertex models to biological morphogenetic processes. We also highlight recent efforts to obtain continuum theories of tissue mechanics, which are effective, coarse-grained descriptions of vertex models. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348254

  17. Three mechanical models for blebbing and multi-blebbing

    KAUST Repository

    Woolley, T. E.

    2014-06-17

    Membrane protrusions known as blebs play important roles in many cellular phenomena. Here we present three mathematical models of the bleb formation, which use biological insights to produce phenotypically accurate pressure-driven expansions. First, we introduce a recently suggested solid mechanics framework that is able to create blebs through stretching the membrane. This framework is then extended to include reference state reconfigurations, which models membrane growth. Finally, the stretching and reconfiguring mechanical models are compared with a much simpler geometrically constrained solution. This allows us to demonstrate that simpler systems are able to capture much of the biological complexity despite more restrictive assumptions. Moreover, the simplicity of the spherical model allows us to consider multiple blebs in a tractable framework. © 2014 The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  18. Anticipatory Mechanisms in Evolutionary Living Systems

    Science.gov (United States)

    Dubois, Daniel M.; Holmberg, Stig C.

    2010-11-01

    This paper deals firstly with a revisiting of Darwin's theory of Natural Selection. Darwin in his book never uses the word "evolution", but shows a clear position about mutability of species. Darwin's Natural Selection was mainly inspired by the anticipatory Artificial Selection by humans in domestication, and the Malthus struggle for existence. Darwin showed that the struggle for existence leads to the preservation of the most divergent offspring of any one species. He cited several times the canon of "Natura non facit saltum". He spoke about the origin of life from some one primordial form, into which life was first breathed. Finally, Darwin made anticipation about the future researches in psychology. This paper cites the work of Ernst Mayr who was the first, after 90 years of an intense scientific debate, to present a new and stable Darwinian paradigm as the "Evolutionary Synthesis" in 1942. To explain what is life, the Living Systems Theory (LST) by J. G. Miller is presented. It is showed that the Autopoietic Systems Theory of Varela et al is also a fundamental component of living systems. In agreement with Darwin, the natural selection is a necessary condition for transformation of biological systems, but is not a sufficient condition. Thus, in this paper we conjecture that an anticipatory evolutionary mechanism exists with the genetic code that is a self-replicating and self-modifying anticipatory program. As demonstrated by Nobel laureate McClintock, evolution in genomes is programmed. The word "program" comes from "pro-gram" meaning to write before, by anticipation, and means a plan for the programming of a mechanism, or a sequence of coded instructions that can be inserted into a mechanism, or a sequence of coded instructions, as genes of behavioural responses, that is part of an organism. For example, cell death may be programmed by what is called the apoptosis. This definitively is a great breakthrough in our understanding of biological evolution. Hence

  19. Time Perception Mechanisms at Central Nervous System

    Science.gov (United States)

    Fontes, Rhailana; Ribeiro, Jéssica; Gupta, Daya S.; Machado, Dionis; Lopes-Júnior, Fernando; Magalhães, Francisco; Bastos, Victor Hugo; Rocha, Kaline; Marinho, Victor; Lima, Gildário; Velasques, Bruna; Ribeiro, Pedro; Orsini, Marco; Pessoa, Bruno; Leite, Marco Antonio Araujo; Teixeira, Silmar

    2016-01-01

    The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks. PMID:27127597

  20. Time perception mechanisms at central nervous system

    Directory of Open Access Journals (Sweden)

    Rhailana Fontes

    2016-04-01

    Full Text Available The five senses have specific ways to receive environmental information and lead to central nervous system. The perception of time is the sum of stimuli associated with cognitive processes and environmental changes. Thus, the perception of time requires a complex neural mechanism and may be changed by emotional state, level of attention, memory and diseases. Despite this knowledge, the neural mechanisms of time perception are not yet fully understood. The objective is to relate the mechanisms involved the neurofunctional aspects, theories, executive functions and pathologies that contribute the understanding of temporal perception. Articles form 1980 to 2015 were searched by using the key themes: neuroanatomy, neurophysiology, theories, time cells, memory, schizophrenia, depression, attention-deficit hyperactivity disorder and Parkinson’s disease combined with the term perception of time. We evaluated 158 articles within the inclusion criteria for the purpose of the study. We conclude that research about the holdings of the frontal cortex, parietal, basal ganglia, cerebellum and hippocampus have provided advances in the understanding of the regions related to the perception of time. In neurological and psychiatric disorders, the understanding of time depends on the severity of the diseases and the type of tasks.

  1. Modeling the decomposition mechanism of artemisinin.

    Science.gov (United States)

    Moles, Pamela; Oliva, Mónica; Safont, Vicent S

    2006-06-08

    A theoretical study on artemisinin decomposition mechanisms is reported. The calculations have been done at the HF/3-21G and B3LYP/6-31G(d,p) theoretical levels, by using 6,7,8-trioxybicyclo[3.2.2]nonane as the molecular model for artemisinin, and a hydrogen atom, modeling the single electron transfer from heme or Fe(II) in the highly acidic parasite's food vacuole, as inductor of the initial peroxide bond cleavage. All relevant stationary points have been characterized, and the appearance of the final products can be explained in a satisfactory way. Several intermediates and radicals have been found as relatively stable species, thus giving support to the current hypothesis that some of these species can be responsible for the antimalarial action of artemisinin and its derivatives.

  2. Models on the boundary between classical and quantum mechanics.

    Science.gov (United States)

    Hooft, Gerard 't

    2015-08-06

    Arguments that quantum mechanics cannot be explained in terms of any classical theory using only classical logic seem to be based on sound mathematical considerations: there cannot be physical laws that require 'conspiracy'. It may therefore be surprising that there are several explicit quantum systems where these considerations apparently do not apply. In this report, several such counterexamples are shown. These are quantum models that do have a classical origin. The most curious of these models is superstring theory. So now the question is asked: how can such a model feature 'conspiracy', and how bad is that? Is there conspiracy in the vacuum fluctuations? Arguments concerning Bell's theorem are further sharpened.

  3. Global oscillation mechanism in the stochastic Lotka model.

    Science.gov (United States)

    Kashcheyevs, V; Kuzovkov, V N

    2001-06-01

    The microscopic one-parameter kinetic model of the oscillatory A+B-->2 B reaction (Lotka model) is studied using direct Monte Carlo simulations and analytical methods. Percolation is proposed as the mechanism of global oscillations that are not limited to any finite size of a system. An analytical estimate of the oscillation frequency is derived and compared to computer simulations. We also observe the transition from synchronized oscillations to specific f(-2) noise in two dimensions which was previously reported for self-organized critical models.

  4. Global oscillation mechanism in the stochastic Lotka model

    Energy Technology Data Exchange (ETDEWEB)

    Kashcheyevs, V.; Kuzovkov, V. N.

    2001-06-01

    The microscopic one-parameter kinetic model of the oscillatory A+B{r_arrow}2B reaction (Lotka model) is studied using direct Monte Carlo simulations and analytical methods. Percolation is proposed as the mechanism of global oscillations that are not limited to any finite size of a system. An analytical estimate of the oscillation frequency is derived and compared to computer simulations. We also observe the transition from synchronized oscillations to specific f{sup {minus}2} noise in two dimensions which was previously reported for self-organized critical models.

  5. Melanoma Brain Metastasis: Mechanisms, Models, and Medicine.

    Science.gov (United States)

    Kircher, David A; Silvis, Mark R; Cho, Joseph H; Holmen, Sheri L

    2016-09-02

    The development of brain metastases in patients with advanced stage melanoma is common, but the molecular mechanisms responsible for their development are poorly understood. Melanoma brain metastases cause significant morbidity and mortality and confer a poor prognosis; traditional therapies including whole brain radiation, stereotactic radiotherapy, or chemotherapy yield only modest increases in overall survival (OS) for these patients. While recently approved therapies have significantly improved OS in melanoma patients, only a small number of studies have investigated their efficacy in patients with brain metastases. Preliminary data suggest that some responses have been observed in intracranial lesions, which has sparked new clinical trials designed to evaluate the efficacy in melanoma patients with brain metastases. Simultaneously, recent advances in our understanding of the mechanisms of melanoma cell dissemination to the brain have revealed novel and potentially therapeutic targets. In this review, we provide an overview of newly discovered mechanisms of melanoma spread to the brain, discuss preclinical models that are being used to further our understanding of this deadly disease and provide an update of the current clinical trials for melanoma patients with brain metastases.

  6. Modal analysis of nonlinear mechanical systems

    CERN Document Server

    2014-01-01

    The book first introduces the concept of nonlinear normal modes (NNMs) and their two main definitions. The fundamental differences between classical linear normal modes (LNMs) and NNMs are explained and illustrated using simple examples. Different methods for computing NNMs from a mathematical model are presented. Both advanced analytical and numerical methods are described. Particular attention is devoted to the invariant manifold and normal form theories. The book also discusses nonlinear system identification.

  7. Molecular model with quantum mechanical bonding information.

    Science.gov (United States)

    Bohórquez, Hugo J; Boyd, Russell J; Matta, Chérif F

    2011-11-17

    The molecular structure can be defined quantum mechanically thanks to the theory of atoms in molecules. Here, we report a new molecular model that reflects quantum mechanical properties of the chemical bonds. This graphical representation of molecules is based on the topology of the electron density at the critical points. The eigenvalues of the Hessian are used for depicting the critical points three-dimensionally. The bond path linking two atoms has a thickness that is proportional to the electron density at the bond critical point. The nuclei are represented according to the experimentally determined atomic radii. The resulting molecular structures are similar to the traditional ball and stick ones, with the difference that in this model each object included in the plot provides topological information about the atoms and bonding interactions. As a result, the character and intensity of any given interatomic interaction can be identified by visual inspection, including the noncovalent ones. Because similar bonding interactions have similar plots, this tool permits the visualization of chemical bond transferability, revealing the presence of functional groups in large molecules.

  8. Planning Mechanisms for Regional Electric Power Supply System Development

    Directory of Open Access Journals (Sweden)

    Evgeniy Anatolyevich Malyshev

    2015-12-01

    Full Text Available Key problems of the regional electric power supply systems are examined. These problems result from a lack of regulated interaction mechanisms for uniting the different entities’ resources aimed at the realization of investment activities. One of the main problems of the power supply industry is physical and moral aging of both generating and networking equipment. In the article, the necessity of management system formation to control the development of power sector has been proved. The deficiencies of the modern investment procedure in power companies are described. The absence of continuity between the regional and local strategic planning documents and investment planning of a power company has been found out. The possibility to develop a new mechanism for attracting investment has been proposed. The regulation of joint activities to implement the development program for the regional power supply industry has been proposed. The management system to develop the Russian power industry has been proposed. The comparative analysis of generating capacity development mechanisms has been carried out, such as capacity supply agreement (CSA, investment support mechanism (ISM, and long-term power market (LPM. The interaction procedure of the planning of the power supply infrastructure development has been described. The mechanism connecting the state sectoral and regional planning and corporate planning of power supply infrastructure development has been proposed. The regional aspects of industrial policy and its legislative support have been considered. To successfully implement the public-private-partnership (PPP projects, it is necessary to create the effective PPP model within the federal and regional legislation framework; to develop the financial model providing the recoverability of investments; to provide a mutually beneficial cooperation between executive bodies and private investors. The possibility to apply the PPP mechanism for regional

  9. SIGNAL FLOW GRAPH ANALYSIS OF MECHANICAL ENGINEERING SYSTEMS

    Science.gov (United States)

    CONTROL SYSTEMS, *MECHANICS, *STRUCTURES, *THERMODYNAMICS, *TOPOLOGY, BEAMS(ELECTROMAGNETIC), BEAMS(STRUCTURAL), GAS FLOW, GEARS, HEAT EXCHANGERS, MATHEMATICAL ANALYSIS, MATHEMATICS, MECHANICAL ENGINEERING , RAMJET ENGINES.

  10. Ordinary differential equations and mechanical systems

    CERN Document Server

    Awrejcewicz, Jan

    2014-01-01

    This book applies a step-by-step treatment of the current state-of-the-art of ordinary differential equations used in modeling of engineering systems/processes and beyond. It covers systematically ordered problems, beginning with first and second order ODEs, linear and higher-order ODEs of polynomial form, theory and criteria of similarity, modeling approaches, phase plane and phase space concepts, stability optimization, and ending on chaos and synchronization. Presenting both an overview of the theory of the introductory differential equations in the context of applicability and a systematic treatment of modeling of numerous engineering and physical problems through linear and non-linear ODEs, the volume is self-contained, yet serves both scientific and engineering interests. The presentation relies on a general treatment, analytical and numerical methods, concrete examples, and engineering intuition. The scientific background used is well balanced between elementary and advanced level, making it as a uniqu...

  11. Modelling of the concentration--effect relationship of THC on central nervous system parameters and heart rate -- insight into its mechanisms of action and a tool for clinical research and development of cannabinoids.

    Science.gov (United States)

    Strougo, A; Zuurman, L; Roy, C; Pinquier, J L; van Gerven, J M A; Cohen, A F; Schoemaker, R C

    2008-09-01

    Pharmacokinetics after pulmonary administration of delta-9-tetrahydrocannabinol (THC) and its major metabolites 11-OH-THC and 11-nor-9-COOH-THC was quantified. Additionally, the relationship between THC and its effects on heart rate, body sway and several visual analogue scales was investigated using pharmacokinetic-pharmacodynamic (PK-PD) modelling. This provided insights useful for the research and development of novel cannabinoids and the physiology and pharmacology of cannabinoid systems. First, the PK-PD model gave information reflecting various aspects of cannabinoid systems. The delay between THC concentration and effect was quantified in equilibration half-lives of 7.68 min for heart rate and from 39.2 to 84.8 min for the CNS responses. This suggests that the effect of THC on the different responses could be due to different sites of action or different physiological mechanisms. Differences in the shape of the concentration-effect relationship could indicate various underlying mechanisms. Second, the PK-PD model can be used for prediction of THC concentration and effect profiles. It is illustrated how this can be used to optimise studies with entirely different trial designs. Third, many new cannabinoid agonists and antagonists are in development. PK-PD models for THC can be used as a reference for new agonists or as tools to quantitate the pharmacological properties of cannabinoid antagonists.

  12. A mobile care system with alert mechanism.

    Science.gov (United States)

    Lee, Ren-Guey; Chen, Kuei-Chien; Hsiao, Chun-Chieh; Tseng, Chwan-Lu

    2007-09-01

    Hypertension and arrhythmia are chronic diseases, which can be effectively prevented and controlled only if the physiological parameters of the patient are constantly monitored, along with the full support of the health education and professional medical care. In this paper, a role-based intelligent mobile care system with alert mechanism in chronic care environment is proposed and implemented. The roles in our system include patients, physicians, nurses, and healthcare providers. Each of the roles represents a person that uses a mobile device such as a mobile phone to communicate with the server setup in the care center such that he or she can go around without restrictions. For commercial mobile phones with Bluetooth communication capability attached to chronic patients, we have developed physiological signal recognition algorithms that were implemented and built-in in the mobile phone without affecting its original communication functions. It is thus possible to integrate several front-end mobile care devices with Bluetooth communication capability to extract patients' various physiological parameters [such as blood pressure, pulse, saturation of haemoglobin (SpO2), and electrocardiogram (ECG)], to monitor multiple physiological signals without space limit, and to upload important or abnormal physiological information to healthcare center for storage and analysis or transmit the information to physicians and healthcare providers for further processing. Thus, the physiological signal extraction devices only have to deal with signal extraction and wireless transmission. Since they do not have to do signal processing, their form factor can be further reduced to reach the goal of microminiaturization and power saving. An alert management mechanism has been included in back-end healthcare center to initiate various strategies for automatic emergency alerts after receiving emergency messages or after automatically recognizing emergency messages. Within the time

  13. Nonmonotonic Aging and Memory Retention in Disordered Mechanical Systems

    Science.gov (United States)

    Lahini, Yoav; Gottesman, Omer; Amir, Ariel; Rubinstein, Shmuel M.

    2017-02-01

    We observe nonmonotonic aging and memory effects, two hallmarks of glassy dynamics, in two disordered mechanical systems: crumpled thin sheets and elastic foams. Under fixed compression, both systems exhibit monotonic nonexponential relaxation. However, when after a certain waiting time the compression is partially reduced, both systems exhibit a nonmonotonic response: the normal force first increases over many minutes or even hours until reaching a peak value, and only then is relaxation resumed. The peak time scales linearly with the waiting time, indicating that these systems retain long-lasting memory of previous conditions. Our results and the measured scaling relations are in good agreement with a theoretical model recently used to describe observations of monotonic aging in several glassy systems, suggesting that the nonmonotonic behavior may be generic and that athermal systems can show genuine glassy behavior.

  14. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels;

    2003-01-01

    The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... for both upper and lower electrode systems. This has laid a foundation for modeling the welding process and selecting the welding parameters considering the machine factors. The method is straightforward and easy to be applied in industry since the whole procedure is based on tests with no requirements...

  15. A mechanical model of an axial piston machine

    OpenAIRE

    Löfstrand Grip, Rasmus

    2009-01-01

    A mechanical model of an axial piston-type machine with a so-called wobble plate and Z-shaft mechanism is presented. The overall aim is to design and construct an oil-free piston expander demonstrator as a first step to realizing an advanced and compact small-scale steam engine system. The benefits of a small steam engine are negligible NOx emissions (due to continuous, low-temperature combustion), no gearbox needed, fuel flexibility (e.g., can run on biofuel and solar), high part-load effici...

  16. CoF2: a model system for magnetoelastic coupling and elastic softening mechanisms associated with paramagnetic ↔ antiferromagnetic phase transitions.

    Science.gov (United States)

    Thomson, R I; Chatterji, T; Carpenter, M A

    2014-04-01

    Resonant ultrasound spectroscopy has been used to monitor variations in the elastic and anelastic behaviour of polycrystalline CoF2 through the temperature interval 10-290 K and in the frequency range ∼0.4-2 MHz. Marked softening, particularly of the shear modulus, and a peak in attenuation occur as the Néel point (TN=39 K) is approached from both high and low temperatures. Although the effective thermodynamic behaviour can be represented semiquantitatively with a Bragg-Williams model for a system with spin 1/2, the magnetoelastic coupling follows a pattern which is closely analogous to that of a Landau tricritical transition which is co-elastic in character. Analysis of lattice parameter data from the literature confirms that linear spontaneous strains scale with the square of the magnetic order parameter and combine to give effective shear and volume strains on the order of 1‰. Softening of the shear modulus at T>TN is attributed to coupling of acoustic modes with dynamical local ordering of spins and can be represented by a Vogel-Fulcher expression. At Tmechanism is attributed to spin-lattice relaxations under the influence of externally applied dynamic shear stress. CoF2 provides a reference or end-member behaviour against which the likely antiferromagnetic component of magnetoelastic behaviour in more complex multiferroic materials, with additional displacive instabilities, Jahn-Teller effects and ferroelastic microstructures, can be compared.

  17. A new mechanism for dendritic pattern formation in dense systems

    Science.gov (United States)

    Oikawa, Noriko; Kurita, Rei

    2016-06-01

    Patterns are often formed when particles cluster: Since patterns reflect the connectivity of different types of material, the emergence of patterns affects the physical and chemical properties of systems and shares a close relationship to their macroscopic functions. A radial dendritic pattern (RDP) is observed in many systems such as snow crystals, polymer crystals and biological systems. Although most of these systems are considered as dense particle suspensions, the mechanism of RDP formation in dense particle systems is not yet understood. It should be noted that the diffusion limited aggregation model is not applicable to RDP formation in dense systems, but in dilute particle systems. Here, we propose a simple model that exhibits RDP formation in a dense particle system. The model potential for the inter-particle interaction is composed of two parts, a repulsive and an attractive force. The repulsive force is applied to all the particles all the time and the attractive force is exerted only among particles inside a circular domain, which expands at a certain speed as a wave front propagating from a preselected centre. It is found that an RDP is formed if the velocity of the wave front that triggers the attractive interaction is of the same order of magnitude as the time scale defined by the aggregation speed.

  18. Mechanism of deactivation of triplet-excited riboflavin by ascorbate, carotenoids, and tocopherols in homogeneous and heterogeneous aqueous food model systems.

    Science.gov (United States)

    Cardoso, Daniel R; Olsen, Karsten; Skibsted, Leif H

    2007-07-25

    Tocopherols (alpha, beta, gamma, and delta) and Trolox were found to deactivate triplet-excited riboflavin in homogeneous aqueous solution (7:3 v/v tert-butanol/water) with second-order reaction rates close to diffusion control [k2 between 4.8 x 10(8) (delta-tocopherol) and 6.2 x 10(8) L mol(-1) s(-1) (Trolox) at 24.0 +/- 0.2 degrees C] as determined by laser flash photolysis transient absorption spectroscopy. In aqueous buffer (pH 6.4) the rate constant for Trolox was 2.6 x 10(9) L mol(-1) s1 and comparable to the rate constant found for ascorbate (2.0 x 10(9) L mol(-1) s(-1)). The deactivation rate constant was found to be inferior in heterogeneous systems as shown for alpha-tocopherol and Trolox in aqueous Tween-20 emulsion (approximately by a factor of 4 compared to 7:3 v/v tert-butanol/water). Neither beta-carotene (7:3 v/v tert-butanol/water and Tween-20 emulsion), lycopene (7:3 v/v tert-butanol/water), nor crocin (aqueous buffer at pH 6.4, 7:3 v/v tert-butanol/water, and Tween-20 emulsion) showed any quenching on the triplet excited state of riboflavin. Therefore, all carotenoids seem to reduce the formation of triplet-excited riboflavin through an inner-filter effect. Activation parameters were based on the temperature dependence of the triplet-excited deactivation between 15 and 35 degrees C, and the isokinetic behavior, which was found to include purine derivatives previously studied, confirms a common deactivation mechanism with a bimolecular diffusion-controlled encounter with electron (or hydrogen atom) transfer as rate-determining step. DeltaH for deactivation by ascorbic acid, Trolox, and homologue tocopherols (ranging from 18 kJ mol(-1) for Trolox in Tween-20 emulsion to 184 kJ mol(-1) for ascorbic acid in aqueous buffer at pH 6.4) showed a linear dependence on DeltaS (ranging from -19 J mol(-1) K(-1) for Trolox in aqueous buffer at pH 6.4 to +550 J mol(-1) K(-1) for ascorbic acid in aqueous buffer pH 6.4). Among photooxidation products from the

  19. PRECISION MOTION SYSTEM FOR OPTO-MECHANICAL EQUIPMENT OF MICROELECTRONICS

    Directory of Open Access Journals (Sweden)

    I. V. Dainiak

    2015-01-01

    Full Text Available The paper proposes a structure of precision motion system built on the basis of a circular multi-coordinate synchronous segment motor and reconfigurable parallel kinematic mechanism. The multi-coordinate synchronous segment motor may have from two to six movable segments depending on the design, and number of the segments generally defines an internal mobility of the motor. A specific feature of the parallel kinematic mechanism consists in the possibility of its structure reconfiguration by serial connection of two neighboring rods with the help of free elements of their spherical joints into triangular circuits with one spherical hinge at the common vertex. As result of this, the controlled motion of motor movable segments is transformed into the complex spatial displacement of circular platform with number of degrees of freedom up to six inclusively.A mathematical model for solution of the kinematic problem in the investigated parallel mechanism has been offered in the paper. The model allows to calculate a position of movable segments of multi-coordinate synchronous motor depending on the desired position and orientation of the executive circular platform. The parametric definition of base point positions in the motor segments in time allows eventually to form algorithms of programmable motions.The paper substantiates ability to embed the developed motion system into projection unit of opto-mechanical equipment while preserving traditional configuration scheme. This provides the possibility of adaptive adjustment of optical elements during operation; it allows to adjust the optical elements when the geometry of projection system is changed due to deterioration. As result, main characteristics of projection system: resolution, depth of field and image contrast and distortion are maintained at the required level. The developed motion system can be used as a coordinate system of positioning, alignment and scanning in the assembly and other

  20. Soft error mechanisms, modeling and mitigation

    CERN Document Server

    Sayil, Selahattin

    2016-01-01

    This book introduces readers to various radiation soft-error mechanisms such as soft delays, radiation induced clock jitter and pulses, and single event (SE) coupling induced effects. In addition to discussing various radiation hardening techniques for combinational logic, the author also describes new mitigation strategies targeting commercial designs. Coverage includes novel soft error mitigation techniques such as the Dynamic Threshold Technique and Soft Error Filtering based on Transmission gate with varied gate and body bias. The discussion also includes modeling of SE crosstalk noise, delay and speed-up effects. Various mitigation strategies to eliminate SE coupling effects are also introduced. Coverage also includes the reliability of low power energy-efficient designs and the impact of leakage power consumption optimizations on soft error robustness. The author presents an analysis of various power optimization techniques, enabling readers to make design choices that reduce static power consumption an...

  1. Numerical Modelling of Self Healing Mechanisms

    Science.gov (United States)

    Remmers, Joris J. C.; de Borst, René

    A number of self healing mechanisms for composite materials have been presented in the previous chapters of this book. These methods vary from the classical concept of micro-encapsulating of healing agents in polymer systems to the autonomous healing of concrete. The key feature of these self healing mechanisms is the transport of material to the damaged zone in order to establish the healing process. Generally, this material is a fluid and its motion is driven by capillary action which enables transportation over relatively large distances requiring little or no work. In the microencapsulated polymers as developed by White et al. [1], this liquid material is a healing agent, which is enclosed in the material by micro-encapsulation. When the capsule is ruptured by a crack, the healing agent will flow into the crack, driven by capillary action. Polymerisation of this healing agent is triggered by contact with catalysts which are inserted in the material and whose position is fixed. The new polymerised material will rebond the crack surfaces.

  2. ECO-BIOLOGICAL SYSTEM MODELING

    Directory of Open Access Journals (Sweden)

    T. I. Burak

    2015-01-01

    Full Text Available The methodology for computer modeling of complex eco-biological models is presented in this paper. It is based on system approach of J. Forrester. Developed methodology is universal for complex ecological and biological systems. Modeling algorithm considers specialties of eco-biological systems and shows adequate and accurate results in practice. 

  3. A simple mechanical system for studying adaptive oscillatory neural networks

    DEFF Research Database (Denmark)

    Jouffroy, Guillaume; Jouffroy, Jerome

    that the network oscillates in a suitable way, this tuning being a non trivial task. It also appears that the link with the physical body that these oscillatory entities control has a fundamental importance, and it seems that most bodies used for experimental validation in the literature (walking robots, lamprey...... model, etc.) might be too complex to study. In this paper, we use a comparatively simple mechanical system, the nonholonomic vehicle referred to as the Roller-Racer, as a means towards testing different learning strategies for an Recurrent Neural Network-based (RNN) controller/guidance system. After...

  4. Thermal and mechanical behavior of rubber systems

    Science.gov (United States)

    Macon, David James

    The study of the physical behavior of rubbery materials is motivated by the desire to use these materials in a variety of environments, different mechanical conditions, and at different temperatures. For this to be possible, accurate testing conditions and modeling schemes need to be devised. These tests can be difficult to perform and existing mathematical models often neglect several basic physical requirements. One model is the statistical thermodynamic approach for calculating the thermoelastic behavior of an ideal rubber network, which assumes affine deformation of crosslinked junctions and no internal energy change with isothermal deformation. Yet, when the same relations have been manipulated according to the laws of thermodynamics, an internal energy contribution is revealed. This result is an artifact of improperly referencing strain measures and elasticity coefficients with regard to temperature. When a proper strain reference state is selected, thermoelastic stress-strain-temperature relations result that are totally entropic yet reduce to the usual isothermal conditions. This work proposes a phenomenological model that accurately models existing thermoelastic data. Experimental methods to determine the entropic and energetic contributions to rubber elasticity usually focus on the force-temperature behavior of a uniaxial sample held at constant length. Ideally, these thermoelastic measurements would be made at constant volume. Measurements are made at constant pressure and require complex corrections. It is demonstrated that two dimensionally constrained membrane samples can overcome these difficulties. By using time-average vibrational holographic interferometry, the two principal stresses of a membrane in anisotropic biaxial extension can be directly determined as a function of temperature. This two dimensionally constrained stress-temperature response greatly simplifies the resulting mathematical relations and yields no difference between constant

  5. A-posteriori error estimation for second order mechanical systems

    Institute of Scientific and Technical Information of China (English)

    Thomas Ruiner; J(ǒ)rg Fehr; Bernard Haasdonk; Peter Eberhard

    2012-01-01

    One important issue for the simulation of flexible multibody systems is the reduction of the flexible bodies degrees of freedom.As far as safety questions are concerned knowledge about the error introduced by the reduction of the flexible degrees of freedom is helpful and very important.In this work,an a-posteriori error estimator for linear first order systems is extended for error estimation of mechanical second order systems.Due to the special second order structure of mechanical systems,an improvement of the a-posteriori error estimator is achieved· A major advantage of the a-posteriori error estimator is that the estimator is independent of the used reduction technique.Therefore,it can be used for moment-matching based,Gramian matrices based or modal based model reduction techniques.The capability of the proposed technique is demonstrated by the a-posteriori error estimation of a mechanical system,and a sensitivity analysis of the parameters involved in the error estimation process is conducted.

  6. Confocal microscopy indentation system for studying in situ chondrocyte mechanics.

    Science.gov (United States)

    Han, Sang-Kuy; Colarusso, Pina; Herzog, Walter

    2009-10-01

    Chondrocytes synthesize extracellular matrix molecules, thus they are essential for the development, adaptation and maintenance of articular cartilage. Furthermore, it is well accepted that the biosynthetic activity of chondrocytes is influenced by the mechanical environment. Therefore, their response to mechanical stimuli has been studied extensively. Much of the knowledge in this area of research has been derived from testing of isolated cells, cartilage explants, and fixed cartilage specimens: systems that differ in important aspects from chondrocytes embedded in articular cartilage and observed during loading conditions. In this study, current model systems have been improved by working with the intact cartilage in real time. An indentation system was designed on a confocal microscope that allows for simultaneous loading and observation of chondrocytes in their native environment. Cell mechanics were then measured under precisely controlled loading conditions. The indentation system is based on a light transmissible cylindrical glass indentor of 0.17 mm thickness and 1.64 mm diameter that is aligned along the focal axis of the microscope and allows for real time observation of live cells in their native environment. The system can be used to study cell deformation and biological responses, such as calcium sparks, while applying prescribed loads on the cartilage surface. It can also provide novel information on the relationship between cell loading and cartilage adaptive/degenerative processes in the intact tissue.

  7. The Perception-Action Model: Counting Computational Mechanisms

    DEFF Research Database (Denmark)

    Grünbaum, Thor

    2016-01-01

    Milner and Goodale’s Two Visual Systems Hypothesis (TVSH) is regarded as common ground in recent discussions of visual consciousness. A central part of TVSH is a functional model of vision and action (a functional perception-action model, PAM for short). In this paper, I provide a brief overview...... of these current discussions and argue that PAM is ambiguous between a strong and a weak version. I argue that, given a standard way of individuating computational mechanisms, the available evidence cannot be used to distinguish between these versions. This not only has consequences for philosophical theories...

  8. Biomimetic Control of Mechanical Systems Equipped with Musculotendon Actuators

    Institute of Scientific and Technical Information of China (English)

    Javier Moreno-Valenzuela; Adriana Salinas-Avila

    2011-01-01

    This paper addresses the problem of modelling, control, and simulation of a mechanical system actuated by an agonist-antagonist musculotendon subsystem. Contraction dynamics is given by case I of Zajac's model. Saturated semi positive proportional-derivative-type controllers with switching as neural excitation inputs are proposed. Stability theory of switched system and SOSTOOLS, which is a sum of squares optimization toolbox of Matlab, are used to determine the stability of the obtained closed-loop system. To corroborate the obtained theoretical results numerical simulations are carried out. As additional contribution, the discussed ideas are applied to the biomimetic control of a DC motor, i.e., the position control is addressed assuming the presence of musculotendon actuators. Real-experiments corroborate the expected results.

  9. Bohmian mechanics, collapse models and the emergence of classicality

    Science.gov (United States)

    Toroš, Marko; Donadi, Sandro; Bassi, Angelo

    2016-09-01

    We discuss the emergence of classical trajectories in Bohmian mechanics, when a macroscopic object interacts with an external environment. We show that in such a case the conditional wave function of the system follows a dynamics which, under reasonable assumptions, corresponds to that of the Ghirardi-Rimini-Weber (GRW) collapse model. As a consequence, Bohmian trajectories evolve classically. Our analysis also shows how the GRW (istantaneous) collapse process can be derived by an underlying continuous interaction of a quantum system with an external agent, thus throwing a light on how collapses can emerge from a deeper level theory.

  10. Dynamics and control of a class of underactuated mechanical systems

    NARCIS (Netherlands)

    Reyhanoglu, Mahmut; Schaft, van der Arjan; McClamroch, N. Harris; Kolmanovsky, Ilya

    1999-01-01

    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized b

  11. Dynamics and Control of a Class of Underactuated Mechanical Systems

    NARCIS (Netherlands)

    Reyhanoglu, Mahmut; Schaft, Arjan van der; McClamroch, N. Harris; Kolmanovsky, Ilya

    1999-01-01

    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized b

  12. Transfer function modeling of damping mechanisms in distributed parameter models

    Science.gov (United States)

    Slater, J. C.; Inman, D. J.

    1994-01-01

    This work formulates a method for the modeling of material damping characteristics in distributed parameter models which may be easily applied to models such as rod, plate, and beam equations. The general linear boundary value vibration equation is modified to incorporate hysteresis effects represented by complex stiffness using the transfer function approach proposed by Golla and Hughes. The governing characteristic equations are decoupled through separation of variables yielding solutions similar to those of undamped classical theory, allowing solution of the steady state as well as transient response. Example problems and solutions are provided demonstrating the similarity of the solutions to those of the classical theories and transient responses of nonviscous systems.

  13. Development and Integration of Control System Models

    Science.gov (United States)

    Kim, Young K.

    1998-01-01

    The computer simulation tool, TREETOPS, has been upgraded and used at NASA/MSFC to model various complicated mechanical systems and to perform their dynamics and control analysis with pointing control systems. A TREETOPS model of Advanced X-ray Astrophysics Facility - Imaging (AXAF-1) dynamics and control system was developed to evaluate the AXAF-I pointing performance for Normal Pointing Mode. An optical model of Shooting Star Experiment (SSE) was also developed and its optical performance analysis was done using the MACOS software.

  14. BlenX-based compositional modeling of complex reaction mechanisms

    CERN Document Server

    Zámborszky, Judit; 10.4204/EPTCS.19.6

    2010-01-01

    Molecular interactions are wired in a fascinating way resulting in complex behavior of biological systems. Theoretical modeling provides a useful framework for understanding the dynamics and the function of such networks. The complexity of the biological networks calls for conceptual tools that manage the combinatorial explosion of the set of possible interactions. A suitable conceptual tool to attack complexity is compositionality, already successfully used in the process algebra field to model computer systems. We rely on the BlenX programming language, originated by the beta-binders process calculus, to specify and simulate high-level descriptions of biological circuits. The Gillespie's stochastic framework of BlenX requires the decomposition of phenomenological functions into basic elementary reactions. Systematic unpacking of complex reaction mechanisms into BlenX templates is shown in this study. The estimation/derivation of missing parameters and the challenges emerging from compositional model buildin...

  15. Statistical mechanics of Monod-Wyman-Changeux (MWC) models.

    Science.gov (United States)

    Marzen, Sarah; Garcia, Hernan G; Phillips, Rob

    2013-05-13

    The 50th anniversary of the classic Monod-Wyman-Changeux (MWC) model provides an opportunity to survey the broader conceptual and quantitative implications of this quintessential biophysical model. With the use of statistical mechanics, the mathematical implementation of the MWC concept links problems that seem otherwise to have no ostensible biological connection including ligand-receptor binding, ligand-gated ion channels, chemotaxis, chromatin structure and gene regulation. Hence, a thorough mathematical analysis of the MWC model can illuminate the performance limits of a number of unrelated biological systems in one stroke. The goal of our review is twofold. First, we describe in detail the general physical principles that are used to derive the activity of MWC molecules as a function of their regulatory ligands. Second, we illustrate the power of ideas from information theory and dynamical systems for quantifying how well the output of MWC molecules tracks their sensory input, giving a sense of the "design" constraints faced by these receptors.

  16. Chaos and irreversibility in simple model systems.

    Science.gov (United States)

    Hoover, Wm. G.; Posch, Harald A.

    1998-06-01

    The multifractal link between chaotic time-reversible mechanics and thermodynamic irreversibility is illustrated for three simple chaotic model systems: the Baker Map, the Galton Board, and many-body color conductivity. By scaling time, or the momenta, or the driving forces, it can be shown that the dissipative nature of the three thermostated model systems has analogs in conservative Hamiltonian and Lagrangian mechanics. Links between the microscopic nonequilibrium Lyapunov spectra and macroscopic thermodynamic dissipation are also pointed out. (c) 1998 American Institute of Physics.

  17. Mathematical System Theory and System Modeling

    OpenAIRE

    1980-01-01

    Choosing models related effectively to the questions to be addressed is a central issue in the craft of systems analysis. Since the mathematical description the analyst chooses constrains the types of issues he candeal with, it is important for these models to be selected so as to yield limitations that are acceptable in view of the questions the systems analysis seeks to answer. In this paper, the author gives an overview of the central issues affecting the question of model choice. To ...

  18. Solid state amorphisation in binary systems prepared by mechanical alloying

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, G., E-mail: gemagonz@ivic.v [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Sagarzazu, A. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of); Bonyuet, D. [Instituto de Investigacion en Biomedicina y Ciencias Aplicadas, Universidad de Oriente, Cumana (Venezuela, Bolivarian Republic of); D' Angelo, L. [UNEXPO, Universidad Experimental Politecnica Luis Caballero Mejias, Dpto. Ing. Mecanica (Venezuela, Bolivarian Republic of); Villalba, R. [Lab. Ciencia e Ing. de Materiales, Instituto Venezolano de Investigaciones Cientificas, IVIC, Caracas (Venezuela, Bolivarian Republic of)

    2009-08-26

    In the present work a detailed study of amorphisation in different systems prepared by mechanical alloying under the same experimental conditions was carried out, milling up to 50 and 100 h in some cases. The systems studied were: AlTi, AlNi, AlFe, FeNi, FeCo, NiMo, NiW, NiCo, MoW, CoMo. These systems were chosen to study the effect of Al-transition metal, transition metal-transition metal and also systems with large and small negative heat of mixing, different and similar crystal structures, atomic sizes and diffusion coefficients. Calculations based on the Miedema model for alloy formation and amorphisation on all the alloys studied were performed. The experimental results from X-ray diffraction and transmission electron microscopy showed that the systems based on Fe (FeNi, FeCo and FeAl) did not amorphised, even after milling for 100 h, and formed a stable solid solution with a nanometric grain size of 7 nm. The systems NiMo, NiW, MoW and CoMo (systems with small negative heat of mixing), showed amorphisation after 50 h of milling. NiAl and TiAl form an intermediate amorphous phase after around 20 h of milling and with further milling they recrystallize into a fcc solid solution. Agreement between the theoretical calculations based on the Miedema model and the experimental results was found in most of the systems.

  19. Estimating seabed scattering mechanisms via Bayesian model selection.

    Science.gov (United States)

    Steininger, Gavin; Dosso, Stan E; Holland, Charles W; Dettmer, Jan

    2014-10-01

    A quantitative inversion procedure is developed and applied to determine the dominant scattering mechanism (surface roughness and/or volume scattering) from seabed scattering-strength data. The classification system is based on trans-dimensional Bayesian inversion with the deviance information criterion used to select the dominant scattering mechanism. Scattering is modeled using first-order perturbation theory as due to one of three mechanisms: Interface scattering from a rough seafloor, volume scattering from a heterogeneous sediment layer, or mixed scattering combining both interface and volume scattering. The classification system is applied to six simulated test cases where it correctly identifies the true dominant scattering mechanism as having greater support from the data in five cases; the remaining case is indecisive. The approach is also applied to measured backscatter-strength data where volume scattering is determined as the dominant scattering mechanism. Comparison of inversion results with core data indicates the method yields both a reasonable volume heterogeneity size distribution and a good estimate of the sub-bottom depths at which scatterers occur.

  20. Comparative analysis of compensation model of essential drug system and its compensation mechanism research%基本药物制度的补偿模式对比分析及补偿机制研究

    Institute of Scientific and Technical Information of China (English)

    袁倩; 汤少梁

    2012-01-01

    补偿机制是保证基本药物制度稳步高效实施的重要环节之一,也是难点环节之一.本文从分析基层医疗机构的补偿机制现状人手,对现有补偿机制模式进行比较分析及借鉴国外先进国家和我国港台地区的经验,总结出不同补偿模式的优缺点,取长补短,对基本药物制度的补偿机制提出政策建议.%Compensation mechanism is a difficult but important part to ensure the steady and efficient implementation of essential drug system. This article starts from analysis of compensation mechanism of primary health care sector in current situation, then comparatively analyzes the existing compensation mechanisms, references experience from foreign advanced countries, Hong Kong and Taiwan in China, summarizes up the advantages and disadvantages of different compensation modes, and puts forward policy recommendations for compensation model of essential drug system.

  1. Mathematical modeling of mechanical vibration assisted conductivity imaging

    CERN Document Server

    Ammari, Habib; Kwon, Hyeuknam; Seo, Jin Keun; Woo, Eung Je

    2014-01-01

    This paper aims at mathematically modeling a new multi-physics conductivity imaging system incorporating mechanical vibrations simultaneously applied to an imaging object together with current injections. We perturb the internal conductivity distribution by applying time-harmonic mechanical vibrations on the boundary. This enhances the effects of any conductivity discontinuity on the induced internal current density distribution. Unlike other conductivity contrast enhancing frameworks, it does not require a prior knowledge of a reference data. In this paper, we provide a mathematical framework for this novel imaging modality. As an application of the vibration-assisted impedance imaging framework, we propose a new breast image reconstruction method in electrical impedance tomography (EIT). As its another application, we investigate a conductivity anomaly detection problem and provide an efficient location search algorithm. We show both analytically and numerically that the applied mechanical vibration increas...

  2. Dynamical Systems Based Non Equilibrium Statistical Mechanics for Markov Chains

    Science.gov (United States)

    Prevost, Mireille

    We introduce an abstract framework concerning non-equilibrium statistical mechanics in the specific context of Markov chains. This framework encompasses both the Evans-Searles and the Gallavotti-Cohen fluctuation theorems. To support and expand on these concepts, several results are proven, among which a central limit theorem and a large deviation principle. The interest for Markov chains is twofold. First, they model a great variety of physical systems. Secondly, their simplicity allows for an easy introduction to an otherwise complicated field encompassing the statistical mechanics of Anosov and Axiom A diffeomorphisms. We give two examples relating the present framework to physical cases modelled by Markov chains. One of these concerns chemical reactions and links key concepts from the framework to their well known physical counterpart.

  3. Enzymatic hydrolysis of protein:mechanism and kinetic model

    Institute of Scientific and Technical Information of China (English)

    Qi Wei; He Zhimin

    2006-01-01

    The bioreaction mechanism and kinetic behavior of protein enzymatic hydrolysis for preparing active peptides were investigated to model and characterize the enzymatic hydrolysis curves.Taking into account single-substrate hydrolysis,enzyme inactivation and substrate or product inhibition,the reaction mechanism could be deduced from a series of experimental results carried out in a stirred tank reactor at different substrate concentrations,enzyme concentrations and temperatures based on M-M equation.An exponential equation dh/dt = aexp(-bh) was also established,where parameters a and b have different expressions according to different reaction mechanisms,and different values for different reaction systems.For BSA-trypsin model system,the regressive results agree with the experimental data,i.e.the average relative error was only 4.73%,and the reaction constants were determined as Km = 0.0748 g/L,Ks = 7.961 g/L,kd = 9.358/min,k2 =38.439/min,Ea= 64.826 kJ/mol,Ed= 80.031 kJ/mol in accordance with the proposed kinetic mode.The whole set of exponential kinetic equations can be used to model the bioreaction process of protein enzymatic hydrolysis,to calculate the thermodynamic and kinetic constants,and to optimize the operating parameters for bioreactor design.

  4. A New Lyapunov Based Robust Control for Uncertain Mechanical Systems

    Institute of Scientific and Technical Information of China (English)

    ZHEN Sheng-Chao; ZHAO Han; CHEN Ye-Hwa; HUANG Kang

    2014-01-01

    We design a new robust controller for uncertain mechanical systems. The inertia matrix0s singularity and upper bound property are first analyzed. It is shown that the inertia matrix may be positive semi-definite due to over-simplified model. Further-more, the inertia matrix0s being uniformly bounded above is also limited. A robust controller is proposed to suppress the effect of uncertainty in mechanical systems with the assumption of uniform positive definiteness and upper bound of the inertia matrix. We theoretically prove that the robust control renders uniform boundedness and uniform ultimate boundedness. The size of the ultimate boundedness ball can be made arbitrarily small by the designer. Simulation results are presented and discussed.

  5. Mirror neurons: functions, mechanisms and models.

    Science.gov (United States)

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. ONKALO rock mechanics model (RMM). Version 2.3

    Energy Technology Data Exchange (ETDEWEB)

    Haekkinen, T.; Merjama, S.; Moenkkoenen, H. [WSP Finland, Helsinki (Finland)

    2014-07-15

    The Rock Mechanics Model of the ONKALO rock volume includes the most important rock mechanics features and parameters at the Olkiluoto site. The main objective of the model is to be a tool to predict rock properties, rock quality and hence provide an estimate for the rock stability of the potential repository at Olkiluoto. The model includes a database of rock mechanics raw data and a block model in which the rock mechanics parameters are estimated through block volumes based on spatial rock mechanics raw data. In this version 2.3, special emphasis was placed on refining the estimation of the block model. The model was divided into rock mechanics domains which were used as constraints during the block model estimation. During the modelling process, a display profile and toolbar were developed for the GEOVIA Surpac software to improve visualisation and access to the rock mechanics data for the Olkiluoto area. (orig.)

  7. Development of 3D Oxide Fuel Mechanics Models

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Casagranda, A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pitts, S. A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-07-27

    This report documents recent work to improve the accuracy and robustness of the mechanical constitutive models used in the BISON fuel performance code. These developments include migration of the fuel mechanics models to be based on the MOOSE Tensor Mechanics module, improving the robustness of the smeared cracking model, implementing a capability to limit the time step size based on material model response, and improving the robustness of the return mapping iterations used in creep and plasticity models.

  8. Model Based Testing for Agent Systems

    Science.gov (United States)

    Zhang, Zhiyong; Thangarajah, John; Padgham, Lin

    Although agent technology is gaining world wide popularity, a hindrance to its uptake is the lack of proper testing mechanisms for agent based systems. While many traditional software testing methods can be generalized to agent systems, there are many aspects that are different and which require an understanding of the underlying agent paradigm. In this paper we present certain aspects of a testing framework that we have developed for agent based systems. The testing framework is a model based approach using the design models of the Prometheus agent development methodology. In this paper we focus on model based unit testing and identify the appropriate units, present mechanisms for generating suitable test cases and for determining the order in which the units are to be tested, present a brief overview of the unit testing process and an example. Although we use the design artefacts from Prometheus the approach is suitable for any plan and event based agent system.

  9. An Interacting N = 2 Supersymmetric Quantum Mechanical Model: Novel Symmetries

    CERN Document Server

    Krishna, S; Malik, R P

    2015-01-01

    We demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting N = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realization of the de Rham cohomological operators of differential geometry. We derive the nilpotent N = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our N = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables, obtained after the imposition of the SUSY invariant restrictions, and...

  10. ISSM: Ice Sheet System Model

    Science.gov (United States)

    Larour, Eric; Schiermeier, John E.; Seroussi, Helene; Morlinghem, Mathieu

    2013-01-01

    In order to have the capability to use satellite data from its own missions to inform future sea-level rise projections, JPL needed a full-fledged ice-sheet/iceshelf flow model, capable of modeling the mass balance of Antarctica and Greenland into the near future. ISSM was developed with such a goal in mind, as a massively parallelized, multi-purpose finite-element framework dedicated to ice-sheet modeling. ISSM features unstructured meshes (Tria in 2D, and Penta in 3D) along with corresponding finite elements for both types of meshes. Each finite element can carry out diagnostic, prognostic, transient, thermal 3D, surface, and bed slope simulations. Anisotropic meshing enables adaptation of meshes to a certain metric, and the 2D Shelfy-Stream, 3D Blatter/Pattyn, and 3D Full-Stokes formulations capture the bulk of the ice-flow physics. These elements can be coupled together, based on the Arlequin method, so that on a large scale model such as Antarctica, each type of finite element is used in the most efficient manner. For each finite element referenced above, ISSM implements an adjoint. This adjoint can be used to carry out model inversions of unknown model parameters, typically ice rheology and basal drag at the ice/bedrock interface, using a metric such as the observed InSAR surface velocity. This data assimilation capability is crucial to allow spinning up of ice flow models using available satellite data. ISSM relies on the PETSc library for its vectors, matrices, and solvers. This allows ISSM to run efficiently on any parallel platform, whether shared or distrib- ISSM: Ice Sheet System Model NASA's Jet Propulsion Laboratory, Pasadena, California uted. It can run on the largest clusters, and is fully scalable. This allows ISSM to tackle models the size of continents. ISSM is embedded into MATLAB and Python, both open scientific platforms. This improves its outreach within the science community. It is entirely written in C/C++, which gives it flexibility in its

  11. Mechanical modeling of porous oxide fuel pellet A Test Problem

    Energy Technology Data Exchange (ETDEWEB)

    Nukala, Phani K [ORNL; Barai, Pallab [ORNL; Simunovic, Srdjan [ORNL; Ott, Larry J [ORNL

    2009-10-01

    A poro-elasto-plastic material model has been developed to capture the response of oxide fuels inside the nuclear reactors under operating conditions. Behavior of the oxide fuel and variation in void volume fraction under mechanical loading as predicted by the developed model has been reported in this article. The significant effect of void volume fraction on the overall stress distribution of the fuel pellet has also been described. An important oxide fuel issue that can have significant impact on the fuel performance is the mechanical response of oxide fuel pellet and clad system. Specifically, modeling the thermo-mechanical response of the fuel pellet in terms of its thermal expansion, mechanical deformation, swelling due to void formation and evolution, and the eventual contact of the fuel with the clad is of significant interest in understanding the fuel-clad mechanical interaction (FCMI). These phenomena are nonlinear and coupled since reduction in the fuel-clad gap affects thermal conductivity of the gap, which in turn affects temperature distribution within the fuel and the material properties of the fuel. Consequently, in order to accurately capture fuel-clad gap closure, we need to account for fuel swelling due to generation, retention, and evolution of fission gas in addition to the usual thermal expansion and mechanical deformation. Both fuel chemistry and microstructure also have a significant effect on the nucleation and growth of fission gas bubbles. Fuel-clad gap closure leading to eventual contact of the fuel with the clad introduces significant stresses in the clad, which makes thermo-mechanical response of the clad even more relevant. The overall aim of this test problem is to incorporate the above features in order to accurately capture fuel-clad mechanical interaction. Because of the complex nature of the problem, a series of test problems with increasing multi-physics coupling features, modeling accuracy, and complexity are defined with the

  12. A fully coupled Atmosphere–Ocean Wave modeling system (WEW) for the Mediterranean Sea: interactions and sensitivity to the resolved scales and mechanisms

    OpenAIRE

    P. Katsafados; Papadopoulos, A; Korres, G.; G. Varlas

    2015-01-01

    It is commonly accepted that there is an urgent need for a better understanding of the factors that contribute to the air–sea interaction processes and their feedbacks. In this sense it is absolutely important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface, requires the exact knowledge of the sea state an...

  13. Neurodegenerative disease: models, mechanisms, and a new hope

    Directory of Open Access Journals (Sweden)

    Aaron D. Gitler

    2017-05-01

    Full Text Available Neurodegeneration is a feature of many debilitating, incurable diseases that are rapidly rising in prevalence, such as Parkinson's disease. There is an urgent need to develop new and more effective therapeutic strategies to combat these devastating diseases. Models – from cell-based systems, to unicellular organisms, to complex animals – have proven to be a useful tool to help the research community shed light on the mechanisms underlying neurodegenerative diseases, and these advances have now begun to provide promising therapeutic avenues. In this themed issue of Disease Models & Mechanisms, a special collection of articles focused on neurodegenerative diseases is introduced. The collection includes original research articles that provide new insights into the complex pathophysiology of such diseases, revealing candidate biomarkers or therapeutic targets. Some of the articles describe a new disease model that enables deeper exploration of key mechanisms. We also present a series of reviews that highlight some of the recent translational advances made in studies of neurodegenerative diseases. In this Editorial, we summarize the articles featured in this collection, emphasizing the impact that model-based studies have made in this exciting area of research.

  14. A Batesian mimic and its model share color production mechanisms

    Institute of Scientific and Technical Information of China (English)

    David W.KIKUCHI; David W.PFENNIG

    2012-01-01

    Batesian mimics are harmless prey species that resemble dangerous ones (models),and thus receive protection from predators.How such adaptive resemblances evolve is a classical problem in evolutionary biology.Mimicry is typically thought to be difficult to evolve,especially if the model and mimic produce the convergent phenotype through different proximate mechanisms.However,mimicry may evolve more readily if mimic and model share similar pathways for producing the convergent phenotype.In such cases,these pathways can be co-opted in ancestral mimic populations to produce high-fidelity mimicry without the need for major evolutionary innovations.Here,we show that a Batesian mimic,the scarlet kingsnake Lampropettis elapsoides,produces its coloration using the same physiological mechanisms as does its model,the eastern coral snake Micrurus fulvius.Therefore,precise color mimicry may have been able to evolve easily in this system.Generally,we know relatively little about the proximate mechanisms underlying mimicry.

  15. Dynamics and control of mechanical systems in offshore engineering

    CERN Document Server

    He, Wei; How, Bernard Voon Ee; Choo, Yoo Sang

    2014-01-01

    Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them. The text provides:                                                                                                                                 ...

  16. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    systems are derived in this thesis. The results are used for output feedback control of switched nonlinear systems. Model reduction of piecewise affine systems is also studied in this thesis. The proposed method is based on the reduction of linear subsystems inside the polytopes. The methods which......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...... of hybrid systems, designing controllers and implementations is very high so that the use of these models is limited in applications where the size of the state space is large. To cope with complexity, model reduction is a powerful technique. This thesis presents methods for model reduction and stability...

  17. Aging mechanism in model Pickering emulsion

    Science.gov (United States)

    Fouilloux, Sarah; Malloggi, Florent; Daillant, Jean; Thill, Antoine

    We study the stability of a model Pickering emulsion system. A special counter-flow microfluidics set-up was used to prepare monodisperse Pickering emulsions, with oil droplets in water. The wettability of the monodisperse silica nanoparticles (NPs) could be tuned by surface grafting and the surface coverage of the droplets was controlled using the microfluidics setup. A surface coverage as low as 23$\\%$ is enough to stabilize the emulsions and we evidence a new regime of Pickering emulsion stability where the surface coverage of emulsion droplets of constant size increases in time, in coexistence with a large amount of dispersed phase. Our results demonstrate that the previously observed limited coalescence regime where surface coverage tends to control the average size of the final droplets must be put in a broader perspective.

  18. Energy System Modeling with REopt

    Energy Technology Data Exchange (ETDEWEB)

    Simpkins, Travis; Anderson, Kate; Cutler, Dylan; Olis, Dan; Elgqvist, Emma; DiOrio, Nick; Walker, Andy

    2016-07-15

    This poster details how REopt - NREL's software modeling platform for energy systems integration and optimization - can help to model energy systems. Some benefits of modeling with REopt include optimizing behind the meter storage for cost and resiliency, optimizing lab testing, optimizing dispatch of utility scale storage, and quantifying renewable energy impact on outage survivability.

  19. Model systems for life processes on Mars

    Science.gov (United States)

    Mitz, M. A.

    1974-01-01

    In the evolution of life forms nonphotosynthetic mechanisms are developed. The question remains whether a total life system could evolve which is not dependent upon photosynthesis. In trying to visualize life on other planets, the photosynthetic process has problems. On Mars, the high intensity of light at the surface is a concern and alternative mechanisms need to be defined and analyzed. In the UV search for alternate mechanisms, several different areas may be identified. These involve activated inorganic compounds in the atmosphere, such as the products of photodissociation of carbon dioxide and the organic material which may be created by natural phenomena. In addition, a life system based on the pressure of the atmospheric constituents, such as carbon dioxide, is a possibility. These considerations may be important for the understanding of evolutionary processes of life on another planet. Model systems which depend on these alternative mechanisms are defined and related to presently planned and future planetary missions.

  20. Dynamic Modeling of Cascading Failure in Power Systems

    CERN Document Server

    Song, Jiajia; Ghanavati, Goodarz; Hines, Paul D H

    2014-01-01

    The modeling of cascading failure in power systems is difficult because of the many different mechanisms involved; no single model captures all of these mechanisms. Understanding the relative importance of these different mechanisms is an important step in choosing which mechanisms need to be modeled for particular types of cascading failure analysis. This work presents a dynamic simulation model of both power networks and protection systems, which can simulate a wider variety of cascading outage mechanisms, relative to existing quasi-steady state (QSS) models. The model allows one to test the impact of different load models and protections on cascading outage sizes. This paper describes each module of the developed dynamic model and demonstrates how different mechanisms interact. In order to test the model we simulated a batch of randomly selected $N-2$ contingencies for several different static load configurations, and found that the distribution of blackout sizes and event lengths from the proposed dynamic...

  1. The von Neumann model of measurement in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Pier A. [Instituto de Física, Universidad Nacional Autónoma de México, Apdo. Postal 20-364, 01000 México, D. F. (Mexico)

    2014-01-08

    We describe how to obtain information on a quantum-mechanical system by coupling it to a probe and detecting some property of the latter, using a model introduced by von Neumann, which describes the interaction of the system proper with the probe in a dynamical way. We first discuss single measurements, where the system proper is coupled to one probe with arbitrary coupling strength. The goal is to obtain information on the system detecting the probe position. We find the reduced density operator of the system, and show how Lüders rule emerges as the limiting case of strong coupling. The von Neumann model is then generalized to two probes that interact successively with the system proper. Now we find information on the system by detecting the position-position and momentum-position correlations of the two probes. The so-called 'Wigner's formula' emerges in the strong-coupling limit, while 'Kirkwood's quasi-probability distribution' is found as the weak-coupling limit of the above formalism. We show that successive measurements can be used to develop a state-reconstruction scheme. Finally, we find a generalized transform of the state and the observables based on the notion of successive measurements.

  2. Magneto-mechanical actuation model for fin-based locomotion

    CERN Document Server

    Carbajal, Juan Pablo; 10.2495/DN100331

    2011-01-01

    In this paper, we report the results from the analysis of a numerical model used for the design of a magnetic linear actuator with applications to fin-based locomotion. Most of the current robotic fish generate bending motion using rotary motors which implies at least one mechanical conversion of the motion. We seek a solution that directly bends the fin and, at the same time, is able to exploit the magneto-mechanical properties of the fin material. This strong fin-actuator coupling blends the actuator and the body of the robot, allowing cross optimization of the system's elements. We study a simplified model of an elastic element, a spring-mass system representing a flexible fin, subjected to nonlinear forcing, emulating magnetic interaction. The dynamics of the system is studied under unforced and periodic forcing conditions. The analysis is focused on the limit cycles present in the system, which allows the periodic bending of the fin and the generation of thrust. The frequency, maximum amplitude and cente...

  3. Fluid Mechanics of Liquid-Liquid Systems.

    Science.gov (United States)

    Richards, John Reed

    The detailed hydrodynamics of selected liquid -liquid flow systems are investigated to provide a firm foundation for the rational design of separation processes. The implementation of this objective centers on the development of a robust code to simulate liquid-liquid flows. We have applied this code to the realistic simulation of aspects of the complex fluid mechanical behavior, and developed quantitative insight into the underlying processes involved. The Volume of Fluid (VOF) method is combined with the Continuous Surface Force (CSF) algorithm to provide a numerically stable code capable of solving high Reynolds numbers free surface flows. One of the developments during the testing was an efficient method for solving the Young-Laplace equation describing the shape of the meniscus in a vertical cylinder for a constrained liquid volume. The steady-state region near the nozzle for the laminar flow of a Newtonian liquid jet injected vertically into another immiscible Newtonian liquid is investigated for various Reynolds numbers by solving the axisymmetric transient equations of motion and continuity. The analysis takes into account pressure, viscous, inertial, gravitational, and surface tension forces, and comparison with previous experimental measurements shows good agreement. Comparisons of the present numerical method with the numerical results of previous boundary-layer methods help establish their range of validity. A new approximate equation for the shape of the interface of the steady jet, based on an overall momentum balance, is also developed. The full transient from liquid-liquid jet startup to breakup into drops is also simulated numerically. In comparison with experiment, the results of the present numerical method show a greater sensitivity of the jet length to the Reynolds number than the best predictions of previous linear stability analyses. The formation of drops is investigated at low to high Reynolds numbers before and after jet formation. The

  4. Neural mechanisms of selective attention in the somatosensory system.

    Science.gov (United States)

    Gomez-Ramirez, Manuel; Hysaj, Kristjana; Niebur, Ernst

    2016-09-01

    Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates.

  5. Modeling soft interface dominated systems

    NARCIS (Netherlands)

    Lamorgese, A.; Mauri, R.; Sagis, L.M.C.

    2017-01-01

    The two main continuum frameworks used for modeling the dynamics of soft multiphase systems are the Gibbs dividing surface model, and the diffuse interface model. In the former the interface is modeled as a two dimensional surface, and excess properties such as a surface density, or surface energy

  6. Validation of systems biology models

    NARCIS (Netherlands)

    Hasdemir, D.

    2015-01-01

    The paradigm shift from qualitative to quantitative analysis of biological systems brought a substantial number of modeling approaches to the stage of molecular biology research. These include but certainly are not limited to nonlinear kinetic models, static network models and models obtained by the

  7. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    Science.gov (United States)

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  8. Modeling of deterministic chaotic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Y. [Department of Physics and Astronomy and Department of Mathematics, The University of Kansas, Lawrence, Kansas 66045 (United States); Grebogi, C. [Institute for Plasma Research, University of Maryland, College Park, Maryland 20742 (United States); Grebogi, C.; Kurths, J. [Department of Physics and Astrophysics, Universitaet Potsdam, Postfach 601553, D-14415 Potsdam (Germany)

    1999-03-01

    The success of deterministic modeling of a physical system relies on whether the solution of the model would approximate the dynamics of the actual system. When the system is chaotic, situations can arise where periodic orbits embedded in the chaotic set have distinct number of unstable directions and, as a consequence, no model of the system produces reasonably long trajectories that are realized by nature. We argue and present physical examples indicating that, in such a case, though the model is deterministic and low dimensional, statistical quantities can still be reliably computed. {copyright} {ital 1999} {ital The American Physical Society}

  9. Modelling of wastewater systems

    DEFF Research Database (Denmark)

    Bechmann, Henrik

    In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater treatment plants (WWTPs) as well as of suspended solids (SS) concentrations in the aeration tanks of an alternating WWTP and in the effluent from the aeration tanks are developed. The latter model is furthermore used...

  10. Dynamics and Control of a Class of Underactuated Mechanical Systems

    OpenAIRE

    Reyhanoglu, Mahmut; van der Schaft, Arjan; McClamroch, N. Harris; Kolmanovsky, Ilya

    1999-01-01

    This paper presents a theoretical framework for the dynamics and control of underactuated mechanical systems, defined as systems with fewer inputs than degrees of freedom. Control system formulation of underactuated mechanical systems is addressed and a class of underactuated systems characterized by nonintegrable dynamics relations is identified. Controllability and stabilizability results are derived for this class of underactuated systems. Examples are included to illustrate the results; t...

  11. Suppression of BDNF-induced expression of neuropeptide Y (NPY) in cortical cultures by oxygen-glucose deprivation: a model system to study ischemic mechanisms in the perinatal brain.

    Science.gov (United States)

    Barnea, Ayalla; Roberts, Jodie

    2002-04-15

    The aim of this study was to establish a culture system that can serve as a model to study hypoxic-ischemic mechanisms regulating the functional expression of NPY neurons in the perinatal brain. Using an aggregate culture system derived from the rat fetal cortex, we defined the effects of oxygen and glucose deprivation on NPY expression, using BDNF-induced production of NPY as a functional criterion. NPY neurons exhibited a differential susceptibility to oxygen and glucose deprivation. Although the neurons could withstand oxygen deprivation for 16 hr, they were dramatically damaged by 8 hr of glucose deprivation and by 1-4 hr of deprivation of both oxygen and glucose (N+Glu-). One-hour exposure to N+Glu- led to a transient inhibition ( approximately 50%) of NPY production manifesting within 24 hr and recovering by 5 days thereafter, a 2-hr exposure to N+Glu- led to a sustained inhibition (50-75%) manifesting 1-5 days thereafter, and a 4-hr exposure to N+Glu- led to a total irreversible suppression of BDNF-induced production of NPY manifesting within 24 hr and lasting 8 days after re-supply of oxygen and glucose. Moreover, 1-hr exposure to N+Glu- led to a substantial and 4-hr exposure led to a total disappearance of immunostaining for MAP-2 and NPY but not for GFAP; indicating that neurons are the primary cell-type damaged by oxygen-glucose deprivation. Analysis of cell viability (LDH, MTT) indicated that progressive changes in cell integrity take place during the 4-hr exposure to N+Glu- followed by massive cell death 24 hr thereafter. Thus, we defined a culture system that can serve as a model to study mechanisms by which ischemic insult leads to suppression and eventually death of NPY neurons. Importantly, changes in NPY neurons can be integrated into the overall scheme of ischemic injury in the perinatal brain.

  12. Nonlinear MPC and MHE for Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes

    OpenAIRE

    2012-01-01

    International audience; Mechanical applications often require a high control frequency to cope with fast dynamics. The control frequency of a nonlinear model predictive controller depends strongly on the symbolic complexity of the equations modeling the system. The symbolic complexity of the model equations for multi-body mechanical systems can often be dramatically reduced by using representations based on non-minimal coordinates, which result in index-3 differential-algebraic equations (DAE...

  13. Dimer Models, Free Fermions and Super Quantum Mechanics

    CERN Document Server

    Dijkgraaf, R; Reffert, S

    2007-01-01

    This note relates topics in statistical mechanics, graph theory and combinatorics, lattice quantum field theory, super quantum mechanics and string theory. We give a precise relation between the dimer model on a graph embedded on a torus and the massless free Majorana fermion living on the same lattice. A loop expansion of the fermion determinant is performed, where the loops turn out to be compositions of two perfect matchings. These loop states are sorted into co-chain groups using categorification techniques similar to the ones used for categorifying knot polynomials. The Euler characteristic of the resulting co-chain complex recovers the Newton polynomial of the dimer model. We re-interpret this system as supersymmetric quantum mechanics, where configurations with vanishing net winding number form the ground states. Finally, we make use of the quiver gauge theory - dimer model correspondence to obtain an interpretation of the loops in terms of the physics of D-branes probing a toric Calabi-Yau singularity...

  14. Application of RBAC Model in System Kernel

    Directory of Open Access Journals (Sweden)

    Guan Keqing

    2012-11-01

    Full Text Available In the process of development of some technologies about Ubiquitous computing, the application of embedded intelligent devices is booming. Meanwhile, information security will face more serious threats than before. To improve the security of information terminal’s operation system, this paper analyzed the threats to system’s information security which comes from the abnormal operation by processes, and applied RBAC model into the safety management mechanism of operation system’s kernel. We built an access control model of system’s process, and proposed an implement framework. And the methods of implementation of the model for operation systems were illustrated.

  15. Modelling Epistemic Systems

    CERN Document Server

    Martins, Andre C R

    2012-01-01

    In this Chapter, I will explore the use of modeling in order to understand how Science works. I will discuss the modeling of scientific communities, providing a general, non-comprehensive overview of existing models, with a focus on the use of the tools of Agent-Based Modeling and Opinion Dynamics. A special attention will be paid to models inspired by a Bayesian formalism of Opinion Dynamics. The objective of this exploration is to better understand the effect that different conditions might have on the reliability of the opinions of a scientific community. We will see that, by using artificial worlds as exploring grounds, we can prevent some epistemological problems with the definition of truth and obtain insights on the conditions that might cause the quest for more reliable knowledge to fail.

  16. From Numeric Models to Granular System Modeling

    Directory of Open Access Journals (Sweden)

    Witold Pedrycz

    2015-03-01

    To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.

  17. Stabilization and set-point regulation of underactuated mechanical systems

    Science.gov (United States)

    Loccufier, Mia

    2016-09-01

    Mechanical systems are referred to as underactuated if the number of independent actuators are fewer than the number of degrees of freedom, a general encountered problem in engineering applications. The considered mechanical systems belong to the class of Euler- Lagrange systems where both kinetic energy and potential energy are modeled in their most general form and energy dissipation is modeled according to the dissipation function of Rayleigh, i.e. viscous damping forces are assumed. The control objectives are stabilization and set-point regulation. The structure of the controller is a parallel combination of static output feedback with dynamic output feedback where nonlinear amplifiers are included. An energy based approach with Liapunov functions and the Kalman-Yacubovich-Popov main lemma yields alternative stability theorems. A number of conditions are introduced with respect to the controller's structure in order to guarantee stability. However, sufficient design freedom is left to choose a proper tuning principle and obtain the specified control objectives such as fast convergence to a set-point combined with disturbance rejection. A restriction on the control input energy can be incorporated as well. The applicability of the method will be illustrated with planar manipulators. The main contribution is that a methodology is developed which incorporates many controllers and tuning facilities.

  18. Modeling the heart and the circulatory system

    CERN Document Server

    2015-01-01

    The book comprises contributions by some of the most respected scientists in the field of mathematical modeling and numerical simulation of the human cardiocirculatory system. The contributions cover a wide range of topics, from the preprocessing of clinical data to the development of mathematical equations, their numerical solution, and both in-vivo and in-vitro validation. They discuss the flow in the systemic arterial tree and the complex electro-fluid-mechanical coupling in the human heart. Many examples of patient-specific simulations are presented. This book is addressed to all scientists interested in the mathematical modeling and numerical simulation of the human cardiocirculatory system.

  19. Local model for magnet-superconductor mechanical interaction: Experimental verification

    Science.gov (United States)

    Diez-Jimenez, Efren; Perez-Diaz, Jose-Luis; Garcia-Prada, Juan Carlos

    2011-03-01

    Several models exist for calculating superconducting repulsion forces in the Meissner state that are based on the method of images. The method of images, however, is limited to a small number of geometrical configurations that can be solved exactly, and the physical interpretation of the method is under discussion. A general local model based on the London equations and Maxwell's equations has been developed to describe the mechanics of the superconductor-permanent magnet system. Due to its differential form, this expression can be easily implemented in a finite elements analysis and, consequently, is easily applicable to any shape of superconductor in the Meissner state. It can solve both forces and torques. This paper reports different experiments undertaken in order to test the model's validity. The vertical forces and the angle of equilibrium between a magnet and a superconductor were measured, and a positive agreement between the experiments and theoretical calculations was found.

  20. INCREMENTAL MICRO-MECHANICAL MODEL OF PLAIN WOVEN FABRIC

    Institute of Scientific and Technical Information of China (English)

    ZhangYitong; HaoYongjiang; LiCuiyu

    2004-01-01

    Warp yarns and weft yarns of plain woven fabric are the principal axes of material of fabric. They are orthogonal in their original configuration, but are obliquely crisscross in deformed configuration in general. In this paper the expressions of incremental components of strain tensor are derived, the non-linear model of woven fabric is linearized physically and its geometric non-linearity survives. The convenience of determining the total deformation is shown by the choice of the coordinate system of the principal axes of the material, with the convergence of the incremental methods illustrated by examples. This incremental model furnishes a basis for numerical simulations of fabric draping and wrinkling based oll the micro-mechanical model of fabric.

  1. A Living-Systems Design Model for Web-based Knowledge Management Systems.

    Science.gov (United States)

    Plass, Jan L.; Salisbury, Mark W.

    2002-01-01

    Reviews currently available instructional systems design models and describes a new design model for Web-based knowledge management (KM) systems, based on a living-systems approach, and the mechanisms it contains for accommodating change and growth. Illustrates the application of the phases of the model in the development of a KM system with…

  2. Fracture Mechanical Markov Chain Crack Growth Model

    DEFF Research Database (Denmark)

    Gansted, L.; Brincker, Rune; Hansen, Lars Pilegaard

    1991-01-01

    On the basis of the B-model developed in [J. L. Bogdanoff and F. Kozin, Probabilistic Models of Cumulative Damage. John Wiley, New York (1985)] a new numerical model incorporating the physical knowledge of fatigue crack propagation is developed. The model is based on the assumption that the crack...

  3. Pluralistic Modeling of Complex Systems

    CERN Document Server

    Helbing, Dirk

    2010-01-01

    The modeling of complex systems such as ecological or socio-economic systems can be very challenging. Although various modeling approaches exist, they are generally not compatible and mutually consistent, and empirical data often do not allow one to decide what model is the right one, the best one, or most appropriate one. Moreover, as the recent financial and economic crisis shows, relying on a single, idealized model can be very costly. This contribution tries to shed new light on problems that arise when complex systems are modeled. While the arguments can be transferred to many different systems, the related scientific challenges are illustrated for social, economic, and traffic systems. The contribution discusses issues that are sometimes overlooked and tries to overcome some frequent misunderstandings and controversies of the past. At the same time, it is highlighted how some long-standing scientific puzzles may be solved by considering non-linear models of heterogeneous agents with spatio-temporal inte...

  4. Mathematical model of alternative mechanism of telomere length maintenance

    CERN Document Server

    Kollár, Richard; Nosek, Jozef; Tomaska, Lubomir

    2014-01-01

    Biopolymer length regulation is a complex process that involves a large number of subprocesses acting simultaneously across multiple spatial and temporal scales. An illustrative example important for genomic stability is the length regulation of telomeres---nucleo-protein structures at the ends of linear chromosomes. Maintenance of telomeres is often facilitated by the enzyme telomerase but, particularly in telomerase-free systems, the maintenance of chromosomal termini depends on alternative lengthening of telomeres (ALT) mechanisms mediated by recombination. Various linear and circular DNA structures were identified to participate in ALT, however, dynamics of the whole process is still poorly understood. We propose a chemical kinetics model of ALT with kinetic rates systematically derived from the biophysics of DNA diffusion and looping. The reaction system is reduced to a coagulation-fragmentation system by quasi-steady state approximation. The detailed treatment of kinetic rates yields explicit formulae f...

  5. Sea Urchin Spines as a Model-System for Permeable, Light-Weight Ceramics with Graceful Failure Behavior. Part I. Mechanical Behavior of Sea Urchin Spines under Compression

    Institute of Scientific and Technical Information of China (English)

    V. Presser; S. Schultheiβ; C. Berthold; K. G. Nickel

    2009-01-01

    The spines of pencil and lance urchins Heterocentrotus mammillatus and Phyllacanthus imperialis were studied as a model of light-weight material with high impact resistance. The complex and variable skeleton construction ("stereom") of body and spines of sea urchins consists of highly porous Mg-bearing calcium carbonate. This basically brittle material with pronounced single-crystal cleavage does not fracture by spontaneous catastrophic device failure but by graceful failure over the range of tens of millimeter of bulk compression instead. This was observed in bulk compression tests and blunt indentation experiments on regular, infiltrated and latex coated sea urchin spine segments. Microstructural characterization was carried out using X-ray computer tomography, optical and scanning electron microscopy. The behavior is interpreted to result from the hierarchic structure of sea urchin spines from the macroscale down to the nanoscale. Guidelines derived from this study see ceramics with layered porosity as a possible biomimetic construction for appropriate applications.

  6. Physical mechanisms of nonlinear conductivity: A model analysis

    Science.gov (United States)

    Heuer, Andreas; Lühning, Lars

    2014-03-01

    Nonlinear effects are omnipresent in thin films of ion conducting materials showing up as a significant increase of the conductivity. For a disordered hopping model general physical mechanisms are identified giving rise to the occurrence of positive or negative nonlinear effects, respectively. Analytical results are obtained in the limit of high but finite dimensions. They are compared with the numerical results for 3D up to 6D systems. A very good agreement can be found, in particular for higher dimensions. The results can also be used to rationalize previous numerical simulations. The implications for the interpretation of nonlinear conductivity experiments on inorganic ion conductors are discussed.

  7. In vivo areal modulus of elasticity estimation of the human tympanic membrane system: modelling of middle ear mechanical function in normal young and aged ears

    DEFF Research Database (Denmark)

    Gaihede, Michael Lyhne; Donghua, Liao; Gregersen, H.

    2007-01-01

    are related to these, but studies are few and mostly not comparable. The elastic properties of membranes can be described by the areal modulus, and these may also be susceptible to age-related changes reflected by changes in the areal modulus. The areal modulus is determined by the relationship between...... a younger (n = 10) and an older (n = 10) group of normal subjects. The areal modulus for lateral and medial displacement of the tympanic membrane system was smaller in the older group (mean = 0.686 and 0.828 kN m(-1), respectively) compared to the younger group (mean = 1.066 and 1.206 kN m(-1), respectively...... finite element analyses. In vivo estimates of Young's modulus in this study were a factor 2-3 smaller than previously found in vitro. No significant age-related differences were found in the elastic properties as expressed by the areal modulus....

  8. Propulsion System Models for Rotorcraft Conceptual Design

    Science.gov (United States)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  9. Tribo-chemical mechanisms of copper chemical mechanical planarization (CMP) - Fundamental investigations and integrated modeling

    Science.gov (United States)

    Tripathi, Shantanu

    In this work, copper Chemical Mechanical Planarization is identified primarily as a wear enhanced corrosion process (as opposed to the corrosion enhanced wear process assumed in existing modeling work), where intermittent abrasive action enhances the local oxidation rate, and is followed by time-dependant passivation of copper. Based on this mechanism, an integrated tribo-chemical model of material removal at the abrasive scale was developed based on oxidation of copper. This considers abrasive and pad properties, process parameters, and slurry chemistry. Three important components of this model -- the passivation kinetics of copper in CMP slurry chemicals; the mechanical properties of passive films on copper; and the interaction frequency of copper and abrasives -- are introduced. The first two components, in particular the passivation kinetics of copper, are extensively studied experimentally, while the third component is addressed theoretically. The passivation kinetics of copper (i.e. decrease in oxidation currents as passive films form on bare copper) were investigated by potential step chronoamperometry. Low cost microelectrodes were developed (first of its kind for studying copper CMP) to reduce many of the problems of traditional macroelectrodes, such as interference from capacitive charging, IR drops and low diffusion limited current. Electrochemical impedance spectroscopy (EIS) was used on copper microelectrodes in CMP slurry constituents to obtain equivalent circuit elements associated with different electrochemical phenomena (capacitive, kinetics, diffusion etc.) at different polarization potentials. The circuit elements were used to simulate chronoamperometry in a system where copper actively corrodes at anodic potentials; from the simulation and the experimental results, the current decay in this system was attributed entirely to capacitive charging. The circuit elements were also used to explain the chronoamperometry results in passivating and

  10. Micro-optical-mechanical system photoacoustic spectrometer

    Science.gov (United States)

    Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

    2013-01-01

    All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

  11. The cognitive life of mechanical molecular models.

    Science.gov (United States)

    Charbonneau, Mathieu

    2013-12-01

    The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations.

  12. Simple micromechanical model of protein crystals for their mechanical characterizations

    Directory of Open Access Journals (Sweden)

    Na S.

    2010-06-01

    Full Text Available Proteins have been known to perform the excellent mechanical functions and exhibit the remarkable mechanical properties such as high fracture toughness in spider silk protein [1]. This indicates that the mechanical characterization of protein molecules and/or crystals is very essential to understand such remarkable mechanical function of protein molecules. In this study, for gaining insight into mechanical behavior of protein crystals, we developed the micromechanical model by using the empirical potential field prescribed to alpha carbon atoms of a protein crystal in a unit cell. We consider the simple protein crystals for their mechanical behavior under tensile loading to be compared with full atomic models

  13. Model-based advice for mechanical ventilation: From research (INVENT) to product (Beacon Caresystem).

    Science.gov (United States)

    Rees, Stephen E; Karbing, Dan S

    2015-01-01

    This paper describes the structure and functionality of a physiological model-based system for providing advice on the settings of mechanical ventilation. Use of the system is presented with examples of patients on support and control modes of mechanical ventilation.

  14. Damping mechanisms and models in structural dynamics

    DEFF Research Database (Denmark)

    Krenk, Steen

    2002-01-01

    Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...

  15. Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems

    Science.gov (United States)

    2017-02-22

    AFRL-SA-WP-SR-2017-0006 Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems Thomas Blakeman, MSc, RRT; Dario...To) August 2014 – September 2016 4. TITLE AND SUBTITLE Evaluation of Mechanical Ventilator Use with Liquid Oxygen Systems 5a. CONTRACT NUMBER...Cleared, 88PA, Case # 2016-6491, 16 Dec 2016. 14. ABSTRACT Mechanical ventilators coupled with portable liquid oxygen (LOX) systems are critical

  16. Integrated Modeling Systems

    Science.gov (United States)

    1989-01-01

    American Economic Review , 71:1 (March 1981). 181 J.M. Jones and F. Zufryden. "Adding Explanatory Variables to a Consumer Purchase Behavior Model: An...McCall. "An Operational Measure of Liquidity," The American Economic Review , 761 (March 1986). WMSI Working Paper 329. 212 Nelson, R., R. Sarin, and R

  17. MODELLING OF AIR CONDITIONING SYSTEM BY FUZZY LOGIC APPROACH

    Directory of Open Access Journals (Sweden)

    Ahmet ÖZEK

    2004-03-01

    Full Text Available One of the main problems in control systems is the difficulty to form the mathematical model associated with the control mechanism. Even though this model can be formed, to realize the application with conventional logic may cause very complex problems. The fuzzy logic without using mathematical model of control system can create control mechanism only with the help of linguistic variables. In this article the modeling has been realized by fuzzy logic.

  18. Robust Disaster Recovery System Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Highly security-critical system should possess features of continuous service. We present a new Robust Disaster Recovery System Model (RDRSM). Through strengthening the ability of safe communications, RDRSM guarantees the secure and reliable command on disaster recovery. Its self-supervision capability can monitor the integrality and security of disaster recovery system itself. By 2D and 3D real-time visible platform provided by GIS, GPS and RS, the model makes the using, management and maintenance of disaster recovery system easier. RDRSM possesses predominant features of security, robustness and controllability. And it can be applied to highly security-critical environments such as E-government and bank. Conducted by RDRSM, an important E-government disaster recovery system has been constructed successfully. The feasibility of this model is verified by practice. We especially emphasize the significance of some components of the model, such as risk assessment, disaster recovery planning, system supervision and robust communication support.

  19. Investigation on Experimental Simulation System for Mechanism Motion Reliability Based on the Multibody Simulation Model%基于多体仿真模型的运动机构可靠性仿真试验系统研究

    Institute of Scientific and Technical Information of China (English)

    王慧; 宋笔锋; 喻天翔

    2011-01-01

    Based on the Monte Carlo simulation, a hybrid experimental simulation system for mechanism motion reliability is developed by using the LMS Virtual. Lab and the Visual Basic . NET. In the hybrid simulative experiment system,the LMS Virtual. Lab is used to perform the kinematic and dynamic analysis; the Visual Basic .NET is used to develop the user interface and huild the uncertainty models used for reliability analysis, as well as cxtract the useful result data from the output file of LMS Virtual. Lab. Finally, two examples, i. e. the mechanism motion reliability analysis of a crank-slider mechanism in which geometry errors and joint clearance errors are considered , and the multi-failure mode reliability analysis and sensitivity analvsis of a lock mechanism in which the effect of dynamic characteristics on the reliability are considered, are adopted to illustrate feasibility and efficiency of the hybrid simulation system.%以蒙特卡罗法为理论核心,利用多体运动学和动力学分析软件--LMS Virtual.Lab作为运动机构可靠性分析平台,通过Visual Basic.NET程序设计语言建立用户界面并实现对LMS Virtual.Lab的调用,以进行运动机构的可靠性仿真试验,采用得到的随机变量数据库和结果数据库对运动机构进行典型失效模式的可靠性分析,从而形成了一套可以实现运动机构的可靠性仿真与分析功能的可靠性仿真试验系统.以对心曲柄滑块机构为例,进行了几何尺寸误差和运动副间隙误差影响下的机构运动精度可靠性分析;以某锁机构为例,研究多失效模式下动力学特性对于机构定位可靠性的影响并进行了灵敏性分析.通过这两个实例验证该可靠性仿真试验系统进行机构可靠性仿真试验和可靠性分析的可行性和有效性.

  20. An introduction to mathematical modeling a course in mechanics

    CERN Document Server

    Oden, Tinsley J

    2011-01-01

    A modern approach to mathematical modeling, featuring unique applications from the field of mechanics An Introduction to Mathematical Modeling: A Course in Mechanics is designed to survey the mathematical models that form the foundations of modern science and incorporates examples that illustrate how the most successful models arise from basic principles in modern and classical mathematical physics. Written by a world authority on mathematical theory and computational mechanics, the book presents an account of continuum mechanics, electromagnetic field theory, quantum mechanics, and statistical mechanics for readers with varied backgrounds in engineering, computer science, mathematics, and physics. The author streamlines a comprehensive understanding of the topic in three clearly organized sections: Nonlinear Continuum Mechanics introduces kinematics as well as force and stress in deformable bodies; mass and momentum; balance of linear and angular momentum; conservation of energy; and constitutive equation...

  1. Analysis and control of underactuated mechanical systems

    CERN Document Server

    Choukchou-Braham, Amal; Djemaï, Mohamed; Busawon, Krishna

    2014-01-01

    This monograph provides readers with tools for the analysis, and control of systems with fewer control inputs than degrees of freedom to be controlled, i.e., underactuated systems. The text deals with the consequences of a lack of a general theory that would allow methodical treatment of such systems and the ad hoc approach to control design that often results, imposing a level of organization whenever the latter is lacking. The authors take as their starting point the construction of a graphical characterization or control flow diagram reflecting the transmission of generalized forces through the degrees of freedom. Underactuated systems are classified according to the three main structures by which this is found to happen—chain, tree, and isolated vertex—and control design procedures proposed. The procedure is applied to several well-known examples of underactuated systems: acrobot; pendubot; Tora system; ball and beam; inertia wheel; and robotic arm with elastic joint. The text is illustrated with MATL...

  2. Modeling the Q-cycle mechanism of transmembrane energy conversion

    CERN Document Server

    Smirnov, Anatoly Yu

    2011-01-01

    The Q-cycle mechanism plays an important role in the conversion of the redox energy into the energy of the proton electrochemical gradient across the biomembrane. The bifurcated electron transfer reaction, which is built into this mechanism, recycles one electron, thus, allowing to translocate two protons per one electron moving to the high-potential redox chain. We study a kinetic model of the Q-cycle mechanism in an artificial system which mimics the bf complex of plants and cyanobacteria in the regime of ferredoxin-dependent cyclic electron flow. Using methods of condensed matter physics, we derive a set of master equations and describe a time sequence of electron and proton transfer reactions in the complex. We find energetic conditions when the bifurcation of the electron pathways at the positive side of the membrane occurs naturally, without any additional gates. For reasonable parameter values, we show that this system is able to translocate more than 1.8 protons, on average, per one electron, with a t...

  3. Small-scale mechanical characterization of viscoelastic adhesive systems

    Science.gov (United States)

    Shean, T. A. V.

    Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical

  4. Research on Modeling and Filter of Micro Electro Mechanical System Gyroscope Random Drift%微机电系统陀螺仪随机漂移误差建模与滤波研究

    Institute of Scientific and Technical Information of China (English)

    宋吉磊; 吴训忠; 郭铃

    2012-01-01

    随机漂移是微机电系统(MEMS)陀螺的主要误差,建立其数学模型并在输出中加以补偿是抑制该项误差、提高MEMS陀螺精度的有效方法.采用Allan方差对MEMS陀螺实测数据进行了分析,并采用时间序列分析法建立了随机漂移模型.根据建立的漂移模型,就如何利用Kalman滤波抑制随机漂移误差进行了分析和研究.%Random drift is the main error of Micro Electro Mechanical System(MEMS) gyroscope. It's an efficient method to reduce the random drift and improve the accuracy by modeling and compensating in the output of MEMS gyroscope. Allan variance is used for analyzing the measured data of MEMS gyroscope, and its random drift is modeled by analytical method of time series. Based on the established model, it's analyzed and researched how to reduce the random drift by Kalman filter.

  5. GA-based stable control for a class of underactuated mechanical systems

    Science.gov (United States)

    Liu, Diantong; Guo, Weiping; Yi, Jianqiang

    2005-12-01

    A nonlinear dynamic model of a class of underactuated mechanical systems was built using the Lagrangian method. Some system properties such as the system passivity were analyzed. A GA(Genetic Algorithms)-based stable control algorithm was proposed for the class of underactuated mechanical systems. The Lyapunov stability theory and system properties were utilized to guarantee the system's asymptotic stability to its equilibrium. A real-valued GA was used to adjust the parameters of a stable controller to improve the system performance. An underactuated double-pendulum-type overhead crane system is used to validate the proposed control algorithm. Simulation results illustrate the validity of proposed control algorithm under different conditions.

  6. MODELING METHOD OF 4D INFORMATION MODEL FOR COOPERATIVE DESIGN OF MECHANICAL PRODUCTS

    Institute of Scientific and Technical Information of China (English)

    TAN Ying; YIN Guofu; HU Ruifei; FANG Hui

    2007-01-01

    The continuous developing features in the design of mechanical product and based on 3D entity model is aimed at, and the extension of the 4-dimensional model with the process of designing, the knowledge described model on the level of semantic understanding and summarizing the designing process and the way of discovering knowledge from multi-information model are studied. On the basis of designing the broad sensed collaborative system, through discussion of the relationship between the implicit knowledge of the users and the designing knowledge as well as commanding all the designing links, taking advantage of the way of concluding and deducting in the concept of the designers, the synthetic knowledge unit formed in the dynamic process from the conception design to the last design is schemed out, and the knowledge discovered principle in the dynamic designing process of the mechanical products and the key technology in its implementation under the milieu of network is brought forward.

  7. Intrinsic Optimal Control for Mechanical Systems on Lie Group

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2017-01-01

    Full Text Available The intrinsic infinite horizon optimal control problem of mechanical systems on Lie group is investigated. The geometric optimal control problem is built on the intrinsic coordinate-free model, which is provided with Levi-Civita connection. In order to obtain an analytical solution of the optimal problem in the geometric viewpoint, a simplified nominal system on Lie group with an extra feedback loop is presented. With geodesic distance and Riemann metric on Lie group integrated into the cost function, a dynamic programming approach is employed and an analytical solution of the optimal problem on Lie group is obtained via the Hamilton-Jacobi-Bellman equation. For a special case on SO(3, the intrinsic optimal control method is used for a quadrotor rotation control problem and simulation results are provided to show the control performance.

  8. The mechanism of signal transduction by two-component systems.

    Science.gov (United States)

    Casino, Patricia; Rubio, Vicente; Marina, Alberto

    2010-12-01

    Two-component systems, composed of a homodimeric histidine kinase (HK) and a response regulator (RR), are major signal transduction devices in bacteria. Typically the signal triggers HK autophosphorylation at one His residue, followed by phosphoryl transfer from the phospho-His to an Asp residue in the RR. Signal extinction frequently involves phospho-RR dephosphorylation by a phosphatase activity of the HK. Our understanding of these reactions and of the determinants of partner specificity among HK-RR couples has been greatly increased by recent crystal structures and biochemical experiments on HK-RR complexes. Cis-autophosphorylation (one subunit phosphorylates itself) occurs in some HKs while trans-autophosphorylation takes place in others. We review and integrate this new information, discuss the mechanism of the three reactions and propose a model for transmembrane signaling by these systems. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Generation Mechanism of Alternans in Luo-Rudy Model

    Science.gov (United States)

    Kitajima, Hiroyuki; Ioka, Eri; Yazawa, Toru

    Electrical alternans is the alternating amplitude from beat to beat in the action potential of the cardiac cell. It has been associated with ventricular arrhythmias in many clinical studies; however, its dynamical mechanisms remain unknown. The reason is that we do not have realistic network models of the heart system. Recently, Yazawa clarified the network structure of the heart and the central nerve system in the crustacean heart. In this study, we construct a simple model of the heart system based on Yazawa’s experimental data. Using this model, we clarify that two parameters (the conductance of sodium ions and free concentration of potassium ions in the extracellular compartment) play the key roles of generating alternans. In particular, we clarify that the inactivation gate of the time-independent potassium channel is the most important parameter. Moreover, interaction between the membrane potential and potassium ionic currents is significant for generating alternate rhythms. This result indicates that if the muscle cell has problems such as channelopathies, there is great risk of generating alternans.

  10. Mechanical characterization and modeling of curing thermosets

    NARCIS (Netherlands)

    Van 't Hof, C.

    2006-01-01

    Chemical shrinkage and simultaneous build-up of mechanical properties in curing thermosets leads to the build-up of residual stresses and strains. Depending on the constraints these may cause interface failure, dimensional inaccuracy or failure in the thermoset or its surrounding structure. The pre

  11. Modelagem matemática para seleção de conjuntos mecanizados agrícolas pelo menor custo operacional Mathematical modeling to select mechanized agricultural systems by the lowest operational cost

    Directory of Open Access Journals (Sweden)

    Fábio H. R. Baio

    2013-04-01

    Full Text Available A seleção de uma máquina agrícola pode tornar-se uma tarefa árdua, pois há diversas variáveis que devem ser consideradas. A escolha do equipamento mais adequado para uma propriedade agrícola é uma das etapas mais importantes do processo produtivo. O objetivo deste trabalho foi desenvolver um modelo de computador por programação linear em plataforma web para seleção automatizada de conjuntos mecanizados agrícolas, baseados no menor custo operacional. O programa, desenvolvido em linguagem ASP.NET, pode ser acessado gratuitamente pela Internet (http://www.maquinas.ufms.br. O usuário pode selecionar um conjunto mecanizado agrícola dentro de uma vasta lista de opções que contém suas especificações técnicas ou deixar que o programa lhe retorne automaticamente a melhor opção, pelo menor custo operacional. O programa desenvolvido proporciona ao usuário uma seleção racional via Internet de conjuntos mecanizados, permitindo o estudo econômico do uso das máquinas e implementos, sem a necessidade da instalação de programas dedicados no computador, que dificultariam a manutenção do banco de dados.The selection of an agricultural machine may become a challenging task, because there are several variables that must be considered. Choosing the more suitable equipment to a farm is one of the most important production process steps. The purpose of this study was to develop a computational model by linear programming based on web platform to select automatically mechanized agricultural systems founded on the lowest operational cost. The software was developed in ASP.NET language and can be accessed for free by the Internet (http://www.maquinas.ufms.br. The user can select a mechanized agricultural system in a list that contains the specifications or let the system returns automatically the best option at the lowest operational cost. The developed software brought to the user via Internet a rational selection of mechanized systems

  12. Studies of Catalytic Model Systems

    DEFF Research Database (Denmark)

    Holse, Christian

    The overall topic of this thesis is within the field of catalysis, were model systems of different complexity have been studied utilizing a multipurpose Ultra High Vacuum chamber (UHV). The thesis falls in two different parts. First a simple model system in the form of a ruthenium single crystal...... is investigated. Second the development of a complex Cu/ZnO nanoparticle model system is described and gas-induced dynamical changes in the model system is investigated. The ruthenium crystal serves as an extremely simple model for studying CO dissociation which is the rate limiting step of the methanation...... process. The Ru(0 1 54) surface is studied by means of Scanning Tunneling Microscopy (STM), Temperature Programmed Desoprtion (TPD), and Oxygen Titration (OT) experiments. Real space evidence of periodic features on every second monatomic step is observed via STM when the a clean ruthenium surface...

  13. Statistical mechanics models for multimode lasers and random lasers

    CERN Document Server

    Antenucci, F; Berganza, M Ibáñez; Marruzzo, A; Leuzzi, L

    2015-01-01

    We review recent statistical mechanical approaches to multimode laser theory. The theory has proved very effective to describe standard lasers. We refer of the mean field theory for passive mode locking and developments based on Monte Carlo simulations and cavity method to study the role of the frequency matching condition. The status for a complete theory of multimode lasing in open and disordered cavities is discussed and the derivation of the general statistical models in this framework is presented. When light is propagating in a disordered medium, the system can be analyzed via the replica method. For high degrees of disorder and nonlinearity, a glassy behavior is expected at the lasing threshold, providing a suggestive link between glasses and photonics. We describe in details the results for the general Hamiltonian model in mean field approximation and mention an available test for replica symmetry breaking from intensity spectra measurements. Finally, we summary some perspectives still opened for such...

  14. Aespoe Pillar Stability Experiment. Final coupled 3D thermo-mechanical modeling. Preliminary particle mechanical modeling

    Energy Technology Data Exchange (ETDEWEB)

    Wanne, Toivo; Johansson, Erik; Potyondy, David [Saanio and Riekkola Oy, Helsinki (Finland)

    2004-02-01

    SKB is planning to perform a large-scale pillar stability experiment called APSE (Aespoe Pillar Stability Experiment) at Aespoe HRL. The study is focused on understanding and control of progressive rock failure in hard crystalline rock and damage caused by high stresses. The elastic thermo-mechanical modeling was carried out in three dimensions because of the complex test geometry and in-situ stress tensor by using a finite-difference modeling software FLAC3D. Cracking and damage formation were modeled in the area of interest (pillar between two large scale holes) in two dimensions by using the Particle Flow Code (PFC), which is based on particle mechanics. FLAC and PFC were coupled to minimize the computer resources and the computing time. According to the modeling the initial temperature rises from 15 deg C to about 65 deg C in the pillar area during the heating period of 120 days. The rising temperature due to thermal expansion induces stresses in the pillar area and after 120 days heating the stresses have increased about 33% from the excavation induced maximum stress of 150 MPa to 200 MPa in the end of the heating period. The results from FLAC3D model showed that only regions where the crack initiation stress has exceeded were identified and they extended to about two meters down the hole wall. These could be considered the areas where damage may occur during the in-situ test. When the other hole is pressurized with a 0.8 MPa confining pressure it yields that 5 MPa more stress is needed to damage the rock than without confining pressure. This makes the damaged area in some degree smaller. High compressive stresses in addition to some tensile stresses might induce some AE (acoustic emission) activity in the upper part of the hole from the very beginning of the test and are thus potential areas where AE activities may be detected. Monitoring like acoustic emissions will be measured during the test execution. The 2D coupled PFC-FLAC modeling indicated that

  15. 基于模型降阶的平面三连杆欠驱动机械系统位置控制%Position Control of a Planar Three-link Underactuated Mechanical System Based on Model Reduction

    Institute of Scientific and Technical Information of China (English)

    盛洋; 赖旭芝; 吴敏

    2014-01-01

    This paper presents a position control method based on model reduction for a planar three-link passive-active-active (PAA) under-actuated mechanical system with a passive first joint. Firstly, a mathematical model of the system is built, and its integral characteristic is analyzed. Next, the partially integrable three-link system is reduced to two completely integrable two-link systems by the method of piecewise degree reduction, and the state constraint relationships of the system between the active link and the passive link can be obtained based on the two subsystems. Then, the target angles of the active links are calculated by particle swarm optimization (PSO) algorithm according to the target position of the end of the system. Finally, the controllers of the two link subsystems are designed respectively to achieve the system control objective from any initial position to any target position. Simulation results demonstrate the validity of the proposed control method.%针对第一关节为被动的平面三连杆欠驱动机械系统,提出一种基于模型降阶的位置控制方法。首先,建立平面三连杆欠驱动系统数学模型,并分析其积分特性;其次,将部分可积的三连杆系统分段降阶为两个完全可积的两连杆子系统,并基于两子系统获得系统驱动杆与欠驱动杆之间的状态约束关系;然后,利用粒子群优化算法,根据系统末端点目标位置计算驱动杆目标角度;最后,分别设计两连杆子系统控制器,实现系统从任意初始位置到任意目标位置的控制目标。仿真结果验证所提控制策略的有效性。

  16. Modeling Acoustically Driven Microbubbles by Macroscopic Discrete-Mechanical Analogues

    Directory of Open Access Journals (Sweden)

    Víctor Sánchez-Morcillo

    2013-06-01

    Full Text Available The dynamics of continuous systems that exhibit circular or spherical symmetry like drops, bubbles or some macromolecules, under the influence of some external excitation, develop surface patters that are hard to predict in most practical situations. In the particular case of acoustically driven microbubbles (ultrasound contrast agent, the study of the behavior of the bubble shell requires complex modeling even for describe the most simple oscillation patterns. Furthermore, due to the smallness of the spatio-temporal scale of the problem, an experimental approach requires expensive hardware setup. Despite the complexity of the particular physical problem, the basic dynamical features of some continuous physical systems can be captured by simple models of coupled oscillators. In this work we consider an analogy between a shelled-gas bubble cavitating under the action of an acoustic field and a discrete mechanical system. Thus, we present a theoretical and experimental study of the spatial instabilities of a circular ring of coupled pendulums parametrically driven by a vertical harmonic force. The system is capable of wave propagation and exhibit nonlinearities and dispersion, so manifest rich dynamics: normal oscillation modes (breathing, dipole, quadrupole... and localized patterns of different types (breathers and kinks witch are predicted by finite-differences numerical solutions and observed experimentally. On the basis of this analogy, the oscillation patterns and localized modes observed experimentally in acoustically driven bubbles are interpreted and discussed.

  17. Oral biofilm models for mechanical plaque removal

    NARCIS (Netherlands)

    Verkaik, Martinus J.; Busscher, Henk J.; Rustema-Abbing, Minie; Slomp, Anje M.; Abbas, Frank; van der Mei, Henny C.

    2010-01-01

    In vitro plaque removal studies require biofilm models that resemble in vivo dental plaque. Here, we compare contact and non-contact removal of single and dual-species biofilms as well as of biofilms grown from human whole saliva in vitro using different biofilm models. Bacteria were adhered to a sa

  18. Experimental Septic Shock: Models and Mechanisms

    Science.gov (United States)

    1976-06-14

    abnormally affected, although respiratory alkalosis and metabolic acidosis were regularly observed in both models. Significant differences in responses I...affected, although respiratory alkalosis and metabolic acidosis were regularly observed in both models. Significant differences in responses between...evidence of respiratory depression although data indicate the presence of metabolic acidosis . Lowered pCO2 in baboons given live E. coli organisms was

  19. Relocatable Coastal Modeling System

    Science.gov (United States)

    2016-06-07

    These relationships are stored on a variable-resolution grid (illustrated in figure 1b below) with sampling of 1 degree in deep water (and in data...version is referred to as MODAS2.1, which is now operational at NAVO. The NOMADS interface is being replaced by a system-independent, web -based version...inside the user’s web browser plus Perl CGI scripts which ran on a webserver. This permitted the user to run MODAS (and POM and other modules as they are

  20. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  1. DEFICIENT INFORMATION MODELING OF MECHANICAL PRODUCTS FOR CONCEPTUAL SHAPE DESIGN

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In allusion to the deficient feature of product information in conceptual design, a framework of deficient information modeling for conceptual shape design is put forward, which includes qualitative shape modeling (a qualitative solid model), uncertain shape modeling (an uncertain relation model) and imprecise shape modeling (an imprecise region model). In the framework, the qualitative solid model is the core, which represents qualitatively (using symbols) the conceptual shapes of mechanical products. The uncertain relation model regarding domain relations as objects and the imprecise region model regarding domains as objects are used to deal with the uncertain and imprecise issues respectively, which arise from qualitative shape modeling or exist in product information itself.

  2. Finite dimensional thermo-mechanical systems and second order constraints

    CERN Document Server

    Cendra, Hernán; Amaya, Maximiliano Palacios

    2016-01-01

    In this paper we study a class of physical systems that combine a finite number of mechanical and thermodynamic observables. We call them finite dimensional thermo-mechanical systems. We introduce these systems by means of simple examples. The evolution equations of the involved observables are obtained in each example by using, essentially, the Newton's law and the First Law of Thermodynamics only. We show that such equations are similar to those defining certain mechanical systems with higher order constraints. Moreover, we show that all of the given examples can be described in a variational formalism in terms of second order constrained systems.

  3. System Topology Optimization - An Approach to System Design of Electro-Hydraulic-Mechanical Systems

    DEFF Research Database (Denmark)

    Andersen, T. O.; Hansen, M. R.; Conrad, Finn

    2003-01-01

    design the procedure attempts to find the optimal topology and the related parameters. The topology considerations comprise the type of hydraulic pump, the employment of knee linkages or not as well as the type of hydraulic actuators. The design variables also include the signals to the proportional......The current paper presents an approach to system design of combined electro-hydraulic-mechanical systems. The approach is based on the concurrent handling of the topology as well as the design parameters of the mechanical, hydraulic and controller sub- systems, respectively. Based on an initial...... valve in a number of predefined load cases as well as the hydraulic and mechanical parameters....

  4. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    , for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical......Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a...

  5. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  6. Inflammation: maladies, models, mechanisms and molecules.

    Science.gov (United States)

    Stewart, A G; Beart, P M

    2016-02-01

    The continued focus of attention on the diversity of mechanisms underpinning inflammation has improved our understanding of the potential to target specific pathways in the inflammatory network to achieve meaningful therapeutic gains. In this themed issue of the British Journal of Pharmacology our scope was deliberately broad, ranging across both acute and chronic disease in various organs. Pro- and anti-inflammatory mechanisms receive attention as does the phenotype of macrophages. Whilst the manifestations of neuro-inflammation are less obvious than those in peripheral tissues, central innate and adaptive immunity in brain and the M1/M2 phenotypes of microglia are topics of special interest. The contributions to the inflammatory milieu of cytokines, chemokines and associated signalling cascades are considered. Overall, the coverage herein advances the basic science underpinning our understanding of inflammation and emphasizes its importance in different pathologies.

  7. STATISTICAL MECHANICS MODELING OF MESOSCALE DEFORMATION IN METALS

    Energy Technology Data Exchange (ETDEWEB)

    Anter El-Azab

    2013-04-08

    The research under this project focused on a theoretical and computational modeling of dislocation dynamics of mesoscale deformation of metal single crystals. Specifically, the work aimed to implement a continuum statistical theory of dislocations to understand strain hardening and cell structure formation under monotonic loading. These aspects of crystal deformation are manifestations of the evolution of the underlying dislocation system under mechanical loading. The project had three research tasks: 1) Investigating the statistical characteristics of dislocation systems in deformed crystals. 2) Formulating kinetic equations of dislocations and coupling these kinetics equations and crystal mechanics. 3) Computational solution of coupled crystal mechanics and dislocation kinetics. Comparison of dislocation dynamics predictions with experimental results in the area of statistical properties of dislocations and their field was also a part of the proposed effort. In the first research task, the dislocation dynamics simulation method was used to investigate the spatial, orientation, velocity, and temporal statistics of dynamical dislocation systems, and on the use of the results from this investigation to complete the kinetic description of dislocations. The second task focused on completing the formulation of a kinetic theory of dislocations that respects the discrete nature of crystallographic slip and the physics of dislocation motion and dislocation interaction in the crystal. Part of this effort also targeted the theoretical basis for establishing the connection between discrete and continuum representation of dislocations and the analysis of discrete dislocation simulation results within the continuum framework. This part of the research enables the enrichment of the kinetic description with information representing the discrete dislocation systems behavior. The third task focused on the development of physics-inspired numerical methods of solution of the coupled

  8. Pathway Model and Nonextensive Statistical Mechanics

    Science.gov (United States)

    Mathai, A. M.; Haubold, H. J.; Tsallis, C.

    2015-12-01

    The established technique of eliminating upper or lower parameters in a general hypergeometric series is profitably exploited to create pathways among confluent hypergeometric functions, binomial functions, Bessel functions, and exponential series. One such pathway, from the mathematical statistics point of view, results in distributions which naturally emerge within nonextensive statistical mechanics and Beck-Cohen superstatistics, as pursued in generalizations of Boltzmann-Gibbs statistics.

  9. System reliability analysis for kinematic performance of planar mechanisms

    Institute of Scientific and Technical Information of China (English)

    ZHANG YiMin; HUANG XianZhen; ZHANG XuFang; HE XiangDong; WEN BangChun

    2009-01-01

    Based on the reliability and mechanism kinematic accuracy theories, we propose a general methodology for system reliability analysis of kinematic performance of planar mechanisms. The loop closure equations are used to estimate the kinematic performance errors of planar mechanisms. Reliability and system reliability theories are introduced to develop the limit state functions (LSF) for failure of kinematic performance qualities. The statistical fourth moment method and the Edgeworth series technique are used on system reliability analysis for kinematic performance of planar mechanisms, which relax the restrictions of probability distribution of design variables. Finally, the practicality, efficiency and accuracy of the proposed method are demonstrated by numerical examples.

  10. Classical mechanics systems of particles and Hamiltonian dynamics

    CERN Document Server

    Greiner, Walter

    2010-01-01

    This textbook Classical Mechanics provides a complete survey on all aspects of classical mechanics in theoretical physics. An enormous number of worked examples and problems show students how to apply the abstract principles to realistic problems. The textbook covers Newtonian mechanics in rotating coordinate systems, mechanics of systems of point particles, vibrating systems and mechanics of rigid bodies. It thoroughly introduces and explains the Lagrange and Hamilton equations and the Hamilton-Jacobi theory. A large section on nonlinear dynamics and chaotic behavior of systems takes Classical Mechanics to newest development in physics. The new edition is completely revised and updated. New exercises and new sections in canonical transformation and Hamiltonian theory have been added.

  11. Mechanical design of SERT 2 thruster system

    Science.gov (United States)

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  12. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  13. Hydronic distribution system computer model

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.W.; Strasser, J.J.

    1994-10-01

    A computer model of a hot-water boiler and its associated hydronic thermal distribution loop has been developed at Brookhaven National Laboratory (BNL). It is intended to be incorporated as a submodel in a comprehensive model of residential-scale thermal distribution systems developed at Lawrence Berkeley. This will give the combined model the capability of modeling forced-air and hydronic distribution systems in the same house using the same supporting software. This report describes the development of the BNL hydronics model, initial results and internal consistency checks, and its intended relationship to the LBL model. A method of interacting with the LBL model that does not require physical integration of the two codes is described. This will provide capability now, with reduced up-front cost, as long as the number of runs required is not large.

  14. Data management system performance modeling

    Science.gov (United States)

    Kiser, Larry M.

    1993-01-01

    This paper discusses analytical techniques that have been used to gain a better understanding of the Space Station Freedom's (SSF's) Data Management System (DMS). The DMS is a complex, distributed, real-time computer system that has been redesigned numerous times. The implications of these redesigns have not been fully analyzed. This paper discusses the advantages and disadvantages for static analytical techniques such as Rate Monotonic Analysis (RMA) and also provides a rationale for dynamic modeling. Factors such as system architecture, processor utilization, bus architecture, queuing, etc. are well suited for analysis with a dynamic model. The significance of performance measures for a real-time system are discussed.

  15. Bipotential continuum models for granular mechanics

    Science.gov (United States)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  16. Traffic Congestion Mechanism in Two Ramp Systems

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xiao-Mei; SONG Gui-Cui; SONG Yu-Kun

    2011-01-01

    The aim of this paper is to study traffic properties in an on/off-ramp system with a bus stop close to the on/off ramp.The location of the bus stop in the on/off-ramp (thereafter downstream or upstream case) is discussed.The simulation results show that in the two ramp systems, the reasons for traffic congestions are different.In the on-ramp system, buses and cars coming from on-ramp interweave each other, while in the off-ramp system, buses interweave with cars exiting to off-ramp.Thus, in the on-ramp (off-ramp) system, the upstream (downstream) bus stop is helpful to reduce the interweaving situation.Moreover, the negative effect will disappear when the distance between the bus stop and the on/off-ramp is more than 20 cells (i.e.150 m).These qualitative findings may provide some suggestions on traffic management and optimization.

  17. Levers and linkages: mechanical trade-offs in a power-amplified system.

    Science.gov (United States)

    Anderson, Philip S L; Claverie, Thomas; Patek, S N

    2014-07-01

    Mechanical redundancy within a biomechanical system (e.g., many-to-one mapping) allows morphologically divergent organisms to maintain equivalent mechanical outputs. However, most organisms depend on the integration of more than one biomechanical system. Here, we test whether coupled mechanical systems follow a pattern of amplification (mechanical changes are congruent and evolve toward the same functional extreme) or independence (mechanisms evolve independently). We examined the correlated evolution and evolutionary pathways of the coupled four-bar linkage and lever systems in mantis shrimp (Stomatopoda) ultrafast raptorial appendages. We examined models of character evolution in the framework of two divergent groups of stomatopods-"smashers" (hammer-shaped appendages) and "spearers" (bladed appendages). Smashers tended to evolve toward force amplification, whereas spearers evolved toward displacement amplification. These findings show that coupled biomechanical systems can evolve synergistically, thereby resulting in functional amplification rather than mechanical redundancy. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  18. Chemical Mechanism Solvers in Air Quality Models

    Directory of Open Access Journals (Sweden)

    John C. Linford

    2011-09-01

    Full Text Available The solution of chemical kinetics is one of the most computationally intensivetasks in atmospheric chemical transport simulations. Due to the stiff nature of the system,implicit time stepping algorithms which repeatedly solve linear systems of equations arenecessary. This paper reviews the issues and challenges associated with the construction ofefficient chemical solvers, discusses several families of algorithms, presents strategies forincreasing computational efficiency, and gives insight into implementing chemical solverson accelerated computer architectures.

  19. Secure Mechanisms for E-Ticketing System

    Directory of Open Access Journals (Sweden)

    Toma Cristian

    2009-12-01

    Full Text Available

    The paper presents a secure authentication and encryption scheme for an automatic ticketing system based on symmetric and asymmetric cryptography. Some concepts and terms used in development of secure automatic ticketing system are presented. It is depicted an architecture of the secure automatic ticketing system with its components and their roles in this architecture. The section five presents the authentication and encryption scheme used for secure information from RFID cards. The authentication scheme is based on RSA and AES algorithms and it is inspired from SSL. Parts of this paper are in publishing process in [6], but the authentication and encryption scheme is described exclusivelly in this paper. The necessity of authentication and encryption scheme is given by the attack described in [7].

     

  20. Secure Mechanisms for E-Ticketing System

    Directory of Open Access Journals (Sweden)

    Toma Cristian

    2009-12-01

    Full Text Available The paper presents a secure authentication and encryption scheme for an automatic ticketing system based on symmetric and asymmetric cryptography. Some concepts and terms used in development of secure automatic ticketing system are presented. It is depicted an architecture of the secure automatic ticketing system with its components and their roles in this architecture. The section five presents the authentication and encryption scheme used for secure information from RFID cards. The authentication scheme is based on RSA and AES algorithms and it is inspired from SSL. Parts of this paper are in publishing process in [6], but the authentication and encryption scheme is described exclusivelly in this paper. The necessity of authentication and encryption scheme is given by the attack described in [7].