WorldWideScience

Sample records for model surface temperatures

  1. Modeling of global surface air temperature

    Science.gov (United States)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  2. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment

  3. Modelling global fresh surface water temperature

    NARCIS (Netherlands)

    Beek, L.P.H. van; Eikelboom, T.; Vliet, M.T.H. van; Bierkens, M.F.P.

    2011-01-01

    Temperature directly determines a range of water physical properties including vapour pressure, surface tension, density and viscosity, and the solubility of oxygen and other gases. Indirectly water temperature acts as a strong control on fresh water biogeochemistry, influencing sediment concentrati

  4. A model of the ground surface temperature for micrometeorological analysis

    Science.gov (United States)

    Leaf, Julian S.; Erell, Evyatar

    2017-07-01

    Micrometeorological models at various scales require ground surface temperature, which may not always be measured in sufficient spatial or temporal detail. There is thus a need for a model that can calculate the surface temperature using only widely available weather data, thermal properties of the ground, and surface properties. The vegetated/permeable surface energy balance (VP-SEB) model introduced here requires no a priori knowledge of soil temperature or moisture at any depth. It combines a two-layer characterization of the soil column following the heat conservation law with a sinusoidal function to estimate deep soil temperature, and a simplified procedure for calculating moisture content. A physically based solution is used for each of the energy balance components allowing VP-SEB to be highly portable. VP-SEB was tested using field data measuring bare loess desert soil in dry weather and following rain events. Modeled hourly surface temperature correlated well with the measured data (r 2 = 0.95 for a whole year), with a root-mean-square error of 2.77 K. The model was used to generate input for a pedestrian thermal comfort study using the Index of Thermal Stress (ITS). The simulation shows that the thermal stress on a pedestrian standing in the sun on a fully paved surface, which may be over 500 W on a warm summer day, may be as much as 100 W lower on a grass surface exposed to the same meteorological conditions.

  5. Modeling Apple Surface Temperature Dynamics Based on Weather Data

    Directory of Open Access Journals (Sweden)

    Lei Li

    2014-10-01

    Full Text Available The exposure of fruit surfaces to direct sunlight during the summer months can result in sunburn damage. Losses due to sunburn damage are a major economic problem when marketing fresh apples. The objective of this study was to develop and validate a model for simulating fruit surface temperature (FST dynamics based on energy balance and measured weather data. A series of weather data (air temperature, humidity, solar radiation, and wind speed was recorded for seven hours between 11:00–18:00 for two months at fifteen minute intervals. To validate the model, the FSTs of “Fuji” apples were monitored using an infrared camera in a natural orchard environment. The FST dynamics were measured using a series of thermal images. For the apples that were completely exposed to the sun, the RMSE of the model for estimating FST was less than 2.0 °C. A sensitivity analysis of the emissivity of the apple surface and the conductance of the fruit surface to water vapour showed that accurate estimations of the apple surface emissivity were important for the model. The validation results showed that the model was capable of accurately describing the thermal performances of apples under different solar radiation intensities. Thus, this model could be used to more accurately estimate the FST relative to estimates that only consider the air temperature. In addition, this model provides useful information for sunburn protection management.

  6. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  7. A model of the tropical Pacific sea surface temperature climatology

    Science.gov (United States)

    Seager, Richard; Zebiak, Stephen E.; Cane, Mark A.

    1988-01-01

    A model for the climatological mean sea surface temperature (SST) of the tropical Pacific Ocean is developed. The upper ocean response is computed using a time dependent, linear, reduced gravity model, with the addition of a constant depth frictional surface layer. The full three-dimensional temperature equation and a surface heat flux parameterization that requires specification of only wind speed and total cloud cover are used to evaluate the SST. Specification of atmospheric parameters, such as air temperature and humidity, over which the ocean has direct influence, is avoided. The model simulates the major features of the observed tropical Pacific SST. The seasonal evolution of these features is generally captured by the model. Analysis of the results demonstrates the control the ocean has over the surface heat flux from ocean to atmosphere and the crucial role that dynamics play in determining the mean SST in the equatorial Pacific. The sensitivity of the model to perturbations in the surface heat flux, cloud cover specification, diffusivity, and mixed layer depth is discussed.

  8. Surface air temperature variability in global climate models

    CERN Document Server

    Davy, Richard

    2012-01-01

    New results from the Coupled Model Inter-comparison Project phase 5 (CMIP5) and multiple global reanalysis datasets are used to investigate the relationship between the mean and standard deviation in the surface air temperature. A combination of a land-sea mask and orographic filter were used to investigate the geographic region with the strongest correlation and in all cases this was found to be for low-lying over-land locations. This result is consistent with the expectation that differences in the effective heat capacity of the atmosphere are an important factor in determining the surface air temperature response to forcing.

  9. Modeling the surface temperature of Earth-like planets

    CERN Document Server

    Vladilo, G; Murante, G; Filippi, L; Provenzale, A

    2015-01-01

    We introduce a novel Earth-like planet surface temperature model (ESTM) for habitability studies based on the spatial-temporal distribution of planetary surface temperatures. The ESTM adopts a surface Energy Balance Model complemented by: radiative-convective atmospheric column calculations, a set of physically-based parameterizations of meridional transport, and descriptions of surface and cloud properties more refined than in standard EBMs. The parameterization is valid for rotating terrestrial planets with shallow atmospheres and moderate values of axis obliquity (epsilon >= 45^o). Comparison with a 3D model of atmospheric dynamics from the literature shows that the equator-to-pole temperature differences predicted by the two models agree within ~5K when the rotation rate, insolation, surface pressure and planet radius are varied in the intervals 0.5 <= Omega/Omega_o <= 2, 0.75 <= S/S_o <= 1.25, 0.3 <= p/(1 bar) <= 10, and 0.5 <= R/R_o <= 2, respectively. The ESTM has an extremely l...

  10. Global Surface Temperature Response Explained by Multibox Energy Balance Models

    Science.gov (United States)

    Fredriksen, H. B.; Rypdal, M.

    2016-12-01

    We formulate a multibox energy balance model, from which global temperature evolution can be described by convolving a linear response function and a forcing record. We estimate parameters in the response function from instrumental data and historic forcing, such that our model can produce a response to both deterministic forcing and stochastic weather forcing consistent with observations. Furthermore, if we make separate boxes for upper ocean layer and atmosphere over land, we can also make separate response functions for global land and sea surface temperature. By describing internal variability as a linear response to white noise, we demonstrate that the power-law form of the observed temperature spectra can be described by linear dynamics, contrary to a common belief that these power-law spectra must arise from nonlinear processes. In our multibox model, the power-law form can arise due to the multiple response times. While one of our main points is that the climate system responds over a wide range of time scales, we cannot find one set of time scales that can be preferred compared to other choices. Hence we think the temperature response can best be characterized as something that is scale-free, but still possible to approximate by a set of well separated time scales.

  11. Computer Modeling of Planetary Surface Temperatures in Introductory Astronomy Courses

    Science.gov (United States)

    Barker, Timothy; Goodman, J.

    2013-01-01

    Barker, T., and Goodman, J. C., Wheaton College, Norton, MA Computer modeling is an essential part of astronomical research, and so it is important that students be exposed to its powers and limitations in the first (and, perhaps, only) astronomy course they take in college. Building on the ideas of Walter Robinson (“Modeling Dynamic Systems,” Springer, 2002) we have found that STELLA software (ISEE Systems) allows introductory astronomy students to do sophisticated modeling by the end of two classes of instruction, with no previous experience in computer programming or calculus. STELLA’s graphical interface allows students to visualize systems in terms of “flows” in and out of “stocks,” avoiding the need to invoke differential equations. Linking flows and stocks allows feedback systems to be constructed. Students begin by building an easily understood system: a leaky bucket. This is a simple negative feedback system in which the volume in the bucket (a “stock”) depends on a fixed inflow rate and an outflow that increases in proportion to the volume in the bucket. Students explore how changing inflow rate and feedback parameters affect the steady-state volume and equilibration time of the system. This model is completed within a 50-minute class meeting. In the next class, students are given an analogous but more sophisticated problem: modeling a planetary surface temperature (“stock”) that depends on the “flow” of energy from the Sun, the planetary albedo, the outgoing flow of infrared radiation from the planet’s surface, and the infrared return from the atmosphere. Students then compare their STELLA model equilibrium temperatures to observed planetary temperatures, which agree with model ones for worlds without atmospheres, but give underestimates for planets with atmospheres, thus introducing students to the concept of greenhouse warming. We find that if we give the students part of this model at the start of a 50-minute class they are

  12. Investigating the effect of surface water - groundwater interactions on stream temperature using Distributed temperature sensing and instream temperature model

    DEFF Research Database (Denmark)

    Karthikeyan, Matheswaran; Blemmer, Morten; Mortensen, Julie Flor;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using...... the Distributed Temperature Sensing (DTS) system and instream temperature modelling. Locations of surface water–groundwater interactions were identified from the temperature data collected over a 2-km stream reach using a DTS system with 1-m spatial and 5-min temporal resolution. The stream under consideration...... exhibits three distinct thermal regimes within a 2 km reach length due to two major interactions. An energy balance model is used to simulate the instream temperature and to quantify the effect of these interactions on the stream temperature. This research demonstrates the effect of reach level small scale...

  13. Long-term surface temperature modeling of Pluto

    Science.gov (United States)

    Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.

    2017-05-01

    NASA's New Horizons' reconnaissance of the Pluto system has revealed at high resolution the striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as the sharpness of boundaries for longitudinal variations. These contrasts suggest that Pluto must undergo dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, we explore the surface temperature variations driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (peak-to-peak amplitude of 23° over 3 million years) and regression of the orbital longitude of perihelion (3.7 million years). These orbital variations create epochs of ;Extreme Seasons; where one pole receives a short, relatively warm summer and long winter, while the other receives a much longer, but less intense summer and short winter. We use thermal modeling to build upon the long-term insolation history model described by Earle and Binzel (2015) and investigate how these seasons couple with Pluto's albedo contrasts to create temperature effects. From this study we find that a bright region at the equator, once established, can become a site for net deposition. We see the region informally known as Sputnik Planitia as an example of this, and find it will be able to perpetuate itself as an ;always available; cold trap, thus having the potential to survive on million year or substantially longer timescales. Meanwhile darker, low-albedo, regions near the equator will remain relative warm and generally not attract volatile deposition. We argue that the equatorial region is a ;preservation zone; for whatever albedo is seeded there. This offers insight as to why the equatorial band of Pluto displays the planet's greatest albedo contrasts.

  14. A physically based model of global freshwater surface temperature

    NARCIS (Netherlands)

    Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  15. A physically based model of global freshwater surface temperature

    NARCIS (Netherlands)

    Beek, van L.P.H.; Eikelboom, T.; Vliet, van M.T.H.; Bierkens, M.F.P.

    2012-01-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through

  16. Simulation of land surface temperatures: comparison of two climate models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. M. Edwards

    2009-03-01

    Full Text Available Recently there has been significant progress in the retrieval of land surface temperature from satellite observations. Satellite retrievals of surface temperature offer several advantages, including broad spatial coverage, and such data are potentially of great value in assessing general circulation models of the atmosphere. Here, retrievals of the land surface temperature over the contiguous United States are compared with simulations from two climate models. The models generally simulate the diurnal range realistically, but show significant warm biases during the summer. The models' diurnal cycle of surface temperature is related to their surface flux budgets. Differences in the diurnal cycle of the surface flux budget between the models are found to be more pronounced than those in the diurnal cycle of surface temperature.

  17. Age-surface temperature estimation model: When will oil palm plantation reach the same surface temperature as natural forest?

    Science.gov (United States)

    Rushayati, S. B.; Hermawan, R.; Meilani, R.

    2017-01-01

    Oil palm plantation has often been accused as the cause of global warming. However, along with its growth, it would be able to decrease surface temperature. The question is ‘when will the plantation be able to reach the same surface temperature as natural forest’. This research aimed to estimate the age of oil palm plantation that create similar surface temperature to those in natural forest (land cover before the opening and planting of oil palm). The method used in this research was spatial analysis of land cover and surface temperature distribution. Based on the spatial analysis of surface temperature, five points was randomly taken from each planting age (age 1 15 years). Linear regression was then employed in the analysis. The linear regression formula between surface temperature and age of oil palm plantation was Y = 26.002 – 0.1237X. Surface temperature will decrease as much as 0.1237 ° C with one year age growth oil palm. Surface temperature that was similar to the initial temperature, when the land cover was natural forest (23.04 °C), was estimated to occur when the oil palm plantation reach the age 24 year.

  18. Using SMOS brightness temperature and derived surface-soil moisture to characterize surface conditions and validate land surface models.

    Science.gov (United States)

    Polcher, Jan; Barella-Ortiz, Anaïs; Piles, Maria; Gelati, Emiliano; de Rosnay, Patricia

    2017-04-01

    The SMOS satellite, operated by ESA, observes the surface in the L-band. On continental surface these observations are sensitive to moisture and in particular surface-soil moisture (SSM). In this presentation we will explore how the observations of this satellite can be exploited over the Iberian Peninsula by comparing its results with two land surface models : ORCHIDEE and HTESSEL. Measured and modelled brightness temperatures show a good agreement in their temporal evolution, but their spatial structures are not consistent. An empirical orthogonal function analysis of the brightness temperature's error identifies a dominant structure over the south-west of the Iberian Peninsula which evolves during the year and is maximum in autumn and winter. Hypotheses concerning forcing-induced biases and assumptions made in the radiative transfer model are analysed to explain this inconsistency, but no candidate is found to be responsible for the weak spatial correlations. The analysis of spatial inconsistencies between modelled and measured TBs is important, as these can affect the estimation of geophysical variables and TB assimilation in operational models, as well as result in misleading validation studies. When comparing the surface-soil moisture of the models with the product derived operationally by ESA from SMOS observations similar results are found. The spatial correlation over the IP between SMOS and ORCHIDEE SSM estimates is poor (ρ 0.3). A single value decomposition (SVD) analysis of rainfall and SSM shows that the co-varying patterns of these variables are in reasonable agreement between both products. Moreover the first three SVD soil moisture patterns explain over 80% of the SSM variance simulated by the model while the explained fraction is only 52% of the remotely sensed values. These results suggest that the rainfall-driven soil moisture variability may not account for the poor spatial correlation between SMOS and ORCHIDEE products. Other reasons have to

  19. A temperature-dependent surface free energy model for solid single crystals

    Science.gov (United States)

    Cheng, Tianbao; Fang, Daining; Yang, Yazheng

    2017-01-01

    A temperature-dependent theoretical model for the surface free energy of the solid single crystals is established. This model relates the surface free energy at the elevated temperatures to that at the reference temperature, the temperature-dependent specific heat at constant pressure and coefficient of the linear thermal expansion, the heat of phase transition, the melting heat, and the vapor heat. As examples, the surface free energies of Fe, Cu, Al, Ni, and Pb from 0 K to melting points are calculated and are in reasonable agreement with these from Tyson's theories and the experimental results. This model has obvious advantages compared to Tyson's semi-empirical equations from the aspect of physical meaning, applicable condition, and accuracy. The study shows that the surface free energy of the solid single crystals firstly remains approximately constant and then decreases linearly as temperature increases from 0 K to melting point.

  20. Comparison of Observed Surface Temperatures of 4 Vesta to the KRC Thermal Model

    Science.gov (United States)

    Titus, T. N.; Becker, K. J.; Anderson, J. A.; Capria, M. T.; Tosi, F.; DeSanctis, M. C.; Palomba, E.; Grassi, D.; Capaccioni, F.; Ammannito, E.; Combe, J.-P.; McCord, T. B.; Li, J.-Y.; Russell, C. T.; Ryamond, C. A.; Mittlefehldt, D.; Toplis, M.; Forni, O.; Sykes, M. V.

    2012-01-01

    In this work, we will compare ob-served temperatures of the surface of Vesta using data acquired by the Dawn [1] Visible and Infrared Map-ping Spectrometer (VIR-MS) [2] during the approach phase to model results from the KRC thermal model. High thermal inertia materials, such as bedrock, resist changes in temperature while temperatures of low thermal inertia material, such as dust, respond quickly to changes in solar insolation. The surface of Vesta is expected to have low to medium thermal inertia values, with the most commonly used value being extremely low at 15 TIU [4]. There are several parameters which affect observed temperatures in addition to thermal inertia: bond albedo, slope, and surface roughness. In addition to these parameters, real surfaces are rarely uniform monoliths that can be described by a single thermal inertia value. Real surfaces are often vertically layered or are mixtures of dust and rock. For Vesta's surface, with temperature extremes ranging from 50 K to 275 K and no atmosphere, even a uniform monolithic surface may have non-uniform thermal inertia due to temperature dependent thermal conductivity.

  1. An assessment of precipitation and surface air temperature over China by regional climate models

    Science.gov (United States)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  2. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    This PhD-thesis investigates the directional effects in land surface temperature (LST) estimates from the SEVIRI sensor onboard the Meteosat Second Generation (MSG) satellites. The directional effects are caused by the land surface structure (i.e. tree size and shape) interacting with the changing...... sun-target-sensor geometry. The directional effects occur because the different surface components, e.g. tree canopies and bare soil surfaces, will in many cases have significantly different temperatures. Depending on the viewing angle, different fractions of each of the components will be viewed......; shaded and sunlit canopy and background, respectively. Given data on vegetation structure and density, the model estimates the fractions of the four components as well as the directional composite temperature in the view of a sensor, given the illumination and viewing geometry. The modeling results show...

  3. Approximating snow surface temperature from standard temperature and humidity data: new possibilities for snow model and remote sensing validation (Invited)

    Science.gov (United States)

    Raleigh, M. S.; Landry, C.; Hayashi, M.; Quinton, W. L.; Lundquist, J. D.

    2013-12-01

    The snow surface skin temperature (Ts) is important in the snowmelt energy balance, land-atmosphere interactions, weak layer formation (avalanche risk), and winter recreation, but is rarely measured at observational networks. Reliable Ts datasets are needed to validate remote sensing and distributed modeling, in order to represent land-atmosphere feedbacks. Previous research demonstrated that the dew point temperature (Td) close to the snow surface approximates Ts well because air is saturated immediately above snow. However, standard height (2 to 4 m) measurements of the saturation temperatures, Td and wet-bulb temperature (Tw), are much more readily available than measurements of Ts or near-surface Td. There is limited understanding of how these standard height variables approximate Ts, and how the approximations vary with climate, seasonality, time of day, and atmospheric conditions (stability and radiation). We used sub-daily measurements from seven sites in varying snow climates and environments to test Ts approximations with standard height temperature and moisture. Td produced the lowest bias (-2.2 °C to +2.6 °C) and root mean squared error (RMSE) when approximating mean daily Ts, but tended to underestimate daily extremes in Ts. For comparison, air temperature (Ta) was biased +3.2 °C to +6.8 °C. Ts biases increased with increasing frequency in nighttime stability and daytime clear sky conditions. We illustrate that mean daily Td can be used to detect systematic input data bias in physically-based snowmelt modeling, a useful tool when validating spatially distributed snow models in data sparse regions. Thus, improved understanding of Td variations can advance understanding of Ts in space and time, providing a simple yet robust measure of surface feedback to the atmospheric energy budget.

  4. Assessing Confidence in Pliocene Sea Surface Temperatures to Evaluate Predictive Models

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling. M.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; hide

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.33.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history.This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  5. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Haywood, Alan M.; Hill, Daniel J.; Dolan, Aisling M.; Stoll, Danielle K.; Chan, Wing-Le; Abe-Ouchi, Ayako; Chandler, Mark A.; Rosenbloom, Nan A.; Otto-Bliesner, Bette L.; Bragg, Fran J.; Lunt, Daniel J.; Foley, Kevin M.; Riesselman, Christina R.

    2012-01-01

    In light of mounting empirical evidence that planetary warming is well underway, the climate research community looks to palaeoclimate research for a ground-truthing measure with which to test the accuracy of future climate simulations. Model experiments that attempt to simulate climates of the past serve to identify both similarities and differences between two climate states and, when compared with simulations run by other models and with geological data, to identify model-specific biases. Uncertainties associated with both the data and the models must be considered in such an exercise. The most recent period of sustained global warmth similar to what is projected for the near future occurred about 3.3–3.0 million years ago, during the Pliocene epoch. Here, we present Pliocene sea surface temperature data, newly characterized in terms of level of confidence, along with initial experimental results from four climate models. We conclude that, in terms of sea surface temperature, models are in good agreement with estimates of Pliocene sea surface temperature in most regions except the North Atlantic. Our analysis indicates that the discrepancy between the Pliocene proxy data and model simulations in the mid-latitudes of the North Atlantic, where models underestimate warming shown by our highest-confidence data, may provide a new perspective and insight into the predictive abilities of these models in simulating a past warm interval in Earth history. This is important because the Pliocene has a number of parallels to present predictions of late twenty-first century climate.

  6. Modeling of surface temperature effects on mixed material migration in NSTX-U

    Science.gov (United States)

    Nichols, J. H.; Jaworski, M. A.; Schmid, K.

    2016-10-01

    NSTX-U will initially operate with graphite walls, periodically coated with thin lithium films to improve plasma performance. However, the spatial and temporal evolution of these films during and after plasma exposure is poorly understood. The WallDYN global mixed-material surface evolution model has recently been applied to the NSTX-U geometry to simulate the evolution of poloidally inhomogenous mixed C/Li/O plasma-facing surfaces. The WallDYN model couples local erosion and deposition processes with plasma impurity transport in a non-iterative, self-consistent manner that maintains overall material balance. Temperature-dependent sputtering of lithium has been added to WallDYN, utilizing an adatom sputtering model developed from test stand experimental data. Additionally, a simplified temperature-dependent diffusion model has been added to WallDYN so as to capture the intercalation of lithium into a graphite bulk matrix. The sensitivity of global lithium migration patterns to changes in surface temperature magnitude and distribution will be examined. The effect of intra-discharge increases in surface temperature due to plasma heating, such as those observed during NSTX Liquid Lithium Divertor experiments, will also be examined. Work supported by US DOE contract DE-AC02-09CH11466.

  7. Modeled Seasonal Variations of Firn Density Induced by Steady State Surface Air Temperature Cycle

    Science.gov (United States)

    Jun, Li; Zwally, H. Jay; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Seasonal variations of firn density in ice-sheet firn layers have been attributed to variations in deposition processes or other processes within the upper firn. A recent high-resolution (mm scale) density profile, measured along a 181 m core from Antarctica, showed small-scale density variations with a clear seasonal cycle that apparently was not-related to seasonal variations in deposition or known near-surface processes (Gerland and others 1999). A recent model of surface elevation changes (Zwally and Li, submitted) produced a seasonal variation in firn densification, and explained the seasonal surface elevation changes observed by satellite radar altimeters. In this study, we apply our 1-D time-dependent numerical model of firn densification that includes a temperature-dependent formulation of firn densification based on laboratory measurements of grain growth. The model is driven by a steady-state seasonal surface temperature and a constant accumulation rate appropriate for the measured Antarctic ice core. The modeled seasonal variations in firn density show that the layers of snow deposited during spring to mid-summer with the highest temperature history compress to the highest density, and the layers deposited during later summer to autumn with the lowest temperature history compress to the lowest density. The initial amplitude of the seasonal difference of about 0.13 reduces to about 0.09 in five years and asymptotically to 0.92 at depth, which is consistent with the core measurements.

  8. Evaluation of near-surface temperature, humidity, and equivalent temperature from regional climate models applied in type II downscaling

    Science.gov (United States)

    Pryor, S. C.; Schoof, J. T.

    2016-04-01

    Atmosphere-surface interactions are important components of local and regional climates due to their key roles in dictating the surface energy balance and partitioning of energy transfer between sensible and latent heat. The degree to which regional climate models (RCMs) represent these processes with veracity is incompletely characterized, as is their ability to capture the drivers of, and magnitude of, equivalent temperature (Te). This leads to uncertainty in the simulation of near-surface temperature and humidity regimes and the extreme heat events of relevance to human health, in both the contemporary and possible future climate states. Reanalysis-nested RCM simulations are evaluated to determine the degree to which they represent the probability distributions of temperature (T), dew point temperature (Td), specific humidity (q) and Te over the central U.S., the conditional probabilities of Td|T, and the coupling of T, q, and Te to soil moisture and meridional moisture advection within the boundary layer (adv(Te)). Output from all RCMs exhibits discrepancies relative to observationally derived time series of near-surface T, q, Td, and Te, and use of a single layer for soil moisture by one of the RCMs does not appear to substantially degrade the simulations of near-surface T and q relative to RCMs that employ a four-layer soil model. Output from MM5I exhibits highest fidelity for the majority of skill metrics applied herein, and importantly most realistically simulates both the coupling of T and Td, and the expected relationships of boundary layer adv(Te) and soil moisture with near-surface T and q.

  9. An Empirical Jet-Surface Interaction Noise Model with Temperature and Nozzle Aspect Ratio Effects

    Science.gov (United States)

    Brown, Cliff

    2015-01-01

    An empirical model for jet-surface interaction (JSI) noise produced by a round jet near a flat plate is described and the resulting model evaluated. The model covers unheated and hot jet conditions (1 less than or equal to jet total temperature ratio less than or equal to 2.7) in the subsonic range (0.5 less than or equal to M(sub a) less than or equal to 0.9), surface lengths 0.6 less than or equal to (axial distance from jet exit to surface trailing edge (inches)/nozzle exit diameter) less than or equal to 10, and surface standoff distances (0 less than or equal to (radial distance from jet lipline to surface (inches)/axial distance from jet exit to surface trailing edge (inches)) less than or equal to 1) using only second-order polynomials to provide predictable behavior. The JSI noise model is combined with an existing jet mixing noise model to produce exhaust noise predictions. Fit quality metrics and comparisons to between the predicted and experimental data indicate that the model is suitable for many system level studies. A first-order correction to the JSI source model that accounts for the effect of nozzle aspect ratio is also explored. This correction is based on changes to the potential core length and frequency scaling associated with rectangular nozzles up to 8:1 aspect ratio. However, more work is needed to refine these findings into a formal model.

  10. Response surface and neural network based predictive models of cutting temperature in hard turning

    Directory of Open Access Journals (Sweden)

    Mozammel Mia

    2016-11-01

    Full Text Available The present study aimed to develop the predictive models of average tool-workpiece interface temperature in hard turning of AISI 1060 steels by coated carbide insert. The Response Surface Methodology (RSM and Artificial Neural Network (ANN were employed to predict the temperature in respect of cutting speed, feed rate and material hardness. The number and orientation of the experimental trials, conducted in both dry and high pressure coolant (HPC environments, were planned using full factorial design. The temperature was measured by using the tool-work thermocouple. In RSM model, two quadratic equations of temperature were derived from experimental data. The analysis of variance (ANOVA and mean absolute percentage error (MAPE were performed to suffice the adequacy of the models. In ANN model, 80% data were used to train and 20% data were employed for testing. Like RSM, herein, the error analysis was also conducted. The accuracy of the RSM and ANN model was found to be ⩾99%. The ANN models exhibit an error of ∼5% MAE for testing data. The regression coefficient was found to be greater than 99.9% for both dry and HPC. Both these models are acceptable, although the ANN model demonstrated a higher accuracy. These models, if employed, are expected to provide a better control of cutting temperature in turning of hardened steel.

  11. The sensitivity of multiple equilibria in a cloud resolving model to sea surface temperature changes in weak temperature gradient simulations

    Science.gov (United States)

    Sentic, Stipo; Sessions, Sharon

    2012-10-01

    In the tropics, gravity waves quickly redistribute buoyancy anomalies, which leads to approximately weak temperature gradients (WTG) in the horizontal. In our cloud resolving model (CRM), the WTG approximation is enforced by relaxing potential temperature perturbations to a reference profile which represents the mean state of the atmosphere. To obtain reference profiles, the model is run in a non-WTG mode until radiative convective equilibrium (RCE). RCE vertical profiles of temperature and moisture are then used as reference profiles for WTG simulations. Continuing the work of Sessions et al (2010), we investigate the sensitivity of multiple equilibria in a CRM to changes in sea surface temperatures (SST). Multiple equilibria refers to a precipitating or non-precipitating steady state under identical forcing conditions. Specifically, we run RCE simulations for different SSTs to generate reference profiles representing different large scale environments for WTG simulations. We then perform WTG experiments for each SST with varying surface wind speeds. The model domain is initialized either with a completely dry troposphere, or with a RCE moisture profile. We find that the range of wind speeds maintaining both a dry and a precipitating steady state is strongly dependent on SST.

  12. Estimation and Modelling of Land Surface Temperature Using Landsat 7 ETM+ Images and Fuzzy System Techniques

    Science.gov (United States)

    Bisht, K.; Dodamani, S. S.

    2016-12-01

    Modelling of Land Surface Temperature is essential for short term and long term management of environmental studies and management activities of the Earth's resources. The objective of this research is to estimate and model Land Surface Temperatures (LST). For this purpose, Landsat 7 ETM+ images period from 2007 to 2012 were used for retrieving LST and processed through MATLAB software using Mamdani fuzzy inference systems (MFIS), which includes pre-monsoon and post-monsoon LST in the fuzzy model. The Mangalore City of Karnataka state, India has been taken for this research work. Fuzzy model inputs are considered as the pre-monsoon and post-monsoon retrieved temperatures and LST was chosen as output. In order to develop a fuzzy model for LST, seven fuzzy subsets, nineteen rules and one output are considered for the estimation of weekly mean air temperature. These are very low (VL), low (L), medium low (ML), medium (M), medium high (MH), high (H) and very high (VH). The TVX (Surface Temperature Vegetation Index) and the empirical method have provided estimated LST. The study showed that the Fuzzy model M4/7-19-1 (model 4, 7 fuzzy sets, 19 rules and 1 output) which developed over Mangalore City has provided more accurate outcomes than other models (M1, M2, M3, M5). The result of this research was evaluated according to statistical rules. The best correlation coefficient (R) and root mean squared error (RMSE) between estimated and measured values for pre-monsoon and post-monsoon LST found to be 0.966 - 1.607 K and 0.963- 1.623 respectively.

  13. Variational assimilation of land surface temperature within the ORCHIDEE Land Surface Model Version 1.2.6

    Science.gov (United States)

    Benavides Pinjosovsky, Hector Simon; Thiria, Sylvie; Ottlé, Catherine; Brajard, Julien; Badran, Fouad; Maugis, Pascal

    2017-01-01

    The SECHIBA module of the ORCHIDEE land surface model describes the exchanges of water and energy between the surface and the atmosphere. In the present paper, the adjoint semi-generator software called YAO was used as a framework to implement a 4D-VAR assimilation scheme of observations in SECHIBA. The objective was to deliver the adjoint model of SECHIBA (SECHIBA-YAO) obtained with YAO to provide an opportunity for scientists and end users to perform their own assimilation. SECHIBA-YAO allows the control of the 11 most influential internal parameters of the soil water content, by observing the land surface temperature or remote sensing data such as the brightness temperature. The paper presents the fundamental principles of the 4D-VAR assimilation, the semi-generator software YAO and a large number of experiments showing the accuracy of the adjoint code in different conditions (sites, PFTs, seasons). In addition, a distributed version is available in the case for which only the land surface temperature is observed.

  14. Modeling of ground temperatures in South Shetlands (Antarctic Peninsula): Forcing a land surface model with the reanalysis ERA-Interim

    Science.gov (United States)

    João Rocha, Maria; Dutra, Emanuel; Vieira, Gonçalo; Miranda, Pedro; Ramos, Miguel

    2010-05-01

    This study focus on Livingston Island (South Shetlands Antarctic Peninsula), one of the Earth's regions where warming has been more significant in the last 50 years. Our work is integrated in a project focusing on studying the influence of climate change on permafrost temperatures, which includes systematic and long-term terrain monitoring and also modeling using land surface models. A contribution will be the evaluation of the possibilities for using land surface modeling approaches to areas of the Antarctic Peninsula with lack of data on observational meteorological forcing data, as well as on permafrost temperatures. The climate variability of the Antarctic Peninsula region was studied using the new reanalysis product from European Centre for Medium-Range Weather Forecasts (ECMWF) Era-Interim and observational data from boreholes run by our group. Monthly and annual cycles of near surface climate variables are compared. The modeling approach includes the HTESSEL (Hydrology Tiled ECMWF Scheme for Surface Exchanges over Land) forced with ERA-Interim for modeling ground temperatures in the study region. The simulation results of run of HTESSEL are compared against soil temperature observations. The results show a favorable match between simulated and observed soil temperatures. The use of different forcing parameters is compared and the model vs. observation results from different results is analyzed. The main variable needing further improvement in the modeling is snow cover. The developed methodology provides a good tool for the analysis of the influence of climate variability on permafrost of the Maritime Antarctic.

  15. Comparison of kinetic models for atom recombination on high-temperature reusable surface insulation

    Science.gov (United States)

    Willey, Ronald J.

    1993-01-01

    Five kinetic models are compared for their ability to predict recombination coefficients for oxygen and nitrogen atoms over high-temperature reusable surface insulation (HRSI). Four of the models are derived using Rideal-Eley or Langmuir-Hinshelwood catalytic mechanisms to describe the reaction sequence. The fifth model is an empirical expression that offers certain features unattainable through mechanistic description. The results showed that a four-parameter model, with temperature as the only variable, works best with data currently available. The model describes recombination coefficients for oxygen and nitrogen atoms for temperatures from 300 to 1800 K. Kinetic models, with atom concentrations, demonstrate the influence of atom concentration on recombination coefficients. These models can be used for the prediction of heating rates due to catalytic recombination during re-entry or aerobraking maneuvers. The work further demonstrates a requirement for more recombination experiments in the temperature ranges of 300-1000 K, and 1500-1850 K, with deliberate concentration variation to verify model requirements.

  16. Heat Transfer Measurement and Modeling in Rigid High-Temperature Reusable Surface Insulation Tiles

    Science.gov (United States)

    Daryabeigi, Kamran; Knutson, Jeffrey R.; Cunnington, George R.

    2011-01-01

    Heat transfer in rigid reusable surface insulations was investigated. Steady-state thermal conductivity measurements in a vacuum were used to determine the combined contribution of radiation and solid conduction components of heat transfer. Thermal conductivity measurements at higher pressures were then used to estimate the effective insulation characteristic length for gas conduction modeling. The thermal conductivity of the insulation can then be estimated at any temperature and pressure in any gaseous media. The methodology was validated by comparing estimated thermal conductivities with published data on a rigid high-temperature silica reusable surface insulation tile. The methodology was also applied to the alumina enhanced thermal barrier tiles. Thermal contact resistance for thermal conductivity measurements on rigid tiles was also investigated. A technique was developed to effectively eliminate thermal contact resistance on the rigid tile s cold-side surface for the thermal conductivity measurements.

  17. Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran

    Directory of Open Access Journals (Sweden)

    Vahid Eisavi

    2016-01-01

    Full Text Available Wetland Surface Temperature (WST maps are an increasingly important parameter to understand the extensive range of existing processes in wetlands. The Wetlands placed in neighborhoods of agricultural and industrial lands are exposed to more chemical pollutants and pesticides that can lead to spatial and temporal variations of their surface temperature. Therefore, more studies are required for temperature modeling and the management and conservation of these variations in their ecosystem. Landsat 8 time series data of Sulduz region, Western Azerbaijan province, Iran were used in this study. The WST was derived using a mono-window algorithm after implementation of atmospheric correction. The NDVI (Normalized Differential Vegetation Index threshold method was also employed to determine the surface emissivity. Our findings show that the WST experienced extensive spatial and temporal variations. It reached its maximum value in June and also experienced the highest mean in the same month. In this research, August (2013.12.08 had a lowest spatial standard deviation regarding surface temperature and June (2013.06.28 had the highest one. Wetlands' watersides adjacent to industrial zones have a higher surface temperature than the middle lands of these places. The map obtained from the WST variance over time can be exploited to reveal thermal stable and unstable zones. The outcome demonstrates that land use, land cover effectively contribute to wetland ecosystem health. The results are useful in the water management, preventive efforts against drying of wetland and evapotranspiration modeling. The approach employed in this research indicates that remote sensing is a valuable, low-cost and stable tool for thermal monitoring of wetlands health.

  18. Multiyear predictability of Northern Hemisphere surface air temperature in the Kiel Climate Model

    Science.gov (United States)

    Wu, Y.; Latif, M.; Park, W.

    2016-08-01

    The multiyear predictability of Northern Hemisphere surface air temperature (SAT) is examined in a multi-millennial control integration of the Kiel Climate Model, a coupled ocean-atmosphere-sea ice general circulation model. A statistical method maximizing average predictability time (APT) is used to identify the most predictable SAT patterns in the model. The two leading APT modes are much localized and the physics are discussed that give rise to the enhanced predictability of SAT in these limited regions. Multiyear SAT predictability exists near the sea ice margin in the North Atlantic and mid-latitude North Pacific sector. Enhanced predictability in the North Atlantic is linked to the Atlantic Multidecadal Oscillation and to the sea ice changes. In the North Pacific, the most predictable SAT pattern is characterized by a zonal band in the western and central mid-latitude Pacific. This pattern is linked to the Pacific Decadal Oscillation, which drives sea surface temperature anomalies. The temperature anomalies subduct into deeper ocean layers and re-emerge at the sea surface during the following winters, providing multiyear memory. Results obtained from the Coupled Model Intercomparison Project Phase 5 ensemble yield similar APT modes. Overall, the results stress the importance of ocean dynamics in enhancing predictability in the atmosphere.

  19. Mid-Piacensian mean annual sea surface temperature: an analysis for data-model comparisons

    Science.gov (United States)

    Dowsett, Harry J.; Robinson, Marci M.; Foley, Kevin M.; Stoll, Danielle K.

    2010-01-01

    Numerical models of the global climate system are the primary tools used to understand and project climate disruptions in the form of future global warming. The Pliocene has been identified as the closest, albeit imperfect, analog to climate conditions expected for the end of this century, making an independent data set of Pliocene conditions necessary for ground truthing model results. Because most climate model output is produced in the form ofmean annual conditions, we present a derivative of the USGS PRISM3 Global Climate Reconstruction which integrates multiple proxies of sea surface temperature (SST) into single surface temperature anomalies. We analyze temperature estimates from faunal and floral assemblage data,Mg/Ca values and alkenone unsaturation indices to arrive at a single mean annual SST anomaly (Pliocene minus modern) best describing each PRISM site, understanding that multiple proxies should not necessarily show concordance. The power of themultiple proxy approach lies within its diversity, as no two proxies measure the same environmental variable. This data set can be used to verify climate model output, to serve as a starting point for model inter-comparisons, and for quantifying uncertainty in Pliocene model prediction in perturbed physics ensembles.

  20. Modelling snowpack surface temperature in the Canadian Prairies using simplified heat flow models

    Science.gov (United States)

    Singh, Purushottam Raj; Yew Gan, Thian

    2005-11-01

    Three practical schemes for computing the snow surface temperature Ts, i.e. the force-restore method (FRM), the surface conductance method (SCM), and the Kondo and Yamazaki method (KYM), were assessed with respect to Ts retrieved from cloud-free, NOAA-AVHRR satellite data for three land-cover types of the Paddle River basin of central Alberta. In terms of R2, the mean Ts, the t-test and F-test, the FRM generally simulated more accurate Ts than the SCM and KYM. The bias in simulated Ts is usually within several degrees Celsius of the NOAA-AVHRR Ts for both the calibration and validation periods, but larger errors are encountered occasionally, especially when Ts is substantially above 0 °C. Results show that the simulated Ts of the FRM is more consistent than that of the SCM, which in turn was more consistent than that of the KYM. This is partly because the FRM considers two aspects of heat conduction into snow, a stationary-mean diurnal (sinusoidal) temperature variation at the surface coupled to a near steady-state ground heat flux, whereas the SCM assumes a near steady-state, simple heat conduction, and other simplifying assumptions, and the KYM does not balance the snowpack heat fluxes by assuming the snowpack having a vertical temperature profile that is linear. Copyright

  1. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    Science.gov (United States)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  2. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  3. The magnitudes and timescales of global mean surface temperature feedbacks in climate models

    Directory of Open Access Journals (Sweden)

    A. Jarvis

    2011-12-01

    Full Text Available Because of the fundamental role feedbacks play in determining the response of surface temperature to perturbations in radiative forcing, it is important we understand the dynamic characteristics of these feedbacks. Rather than attribute the aggregate surface temperature feedback to particular physical processes, this paper adopts a linear systems approach to investigate the partitioning with respect to the timescale of the feedbacks regulating global mean surface temperature in climate models. The analysis reveals that there is a dominant net negative feedback realised on an annual timescale and that this is partially attenuated by a spectrum of positive feedbacks with characteristic timescales in the range 10 to 1000 yr. This attenuation was composed of two discrete phases which are attributed to the equilibration of "diffusive – mixed layer" and "circulatory – deep ocean" ocean heat uptake. The diffusive equilibration was associated with time constants on the decadal timescale and accounted for approximately 75 to 80 percent of the overall ocean heat feedback, whilst the circulatory equilibration operated on a centennial timescale and accounted for the remaining 20 to 25 percent of the response. This suggests that the dynamics of the transient ocean heat uptake feedback first discussed by Baker and Roe (2009 tends to be dominated by loss of diffusive heat uptake in climate models, rather than circulatory deep ocean heat equilibration.

  4. The magnitude-timescale relationship of surface temperature feedbacks in climate models

    Directory of Open Access Journals (Sweden)

    A. Jarvis

    2011-07-01

    Full Text Available Because of the fundamental role feedbacks play in determining the characteristics of climate it is important we are able to specify both the magnitude and response timescale of the feedbacks we are interested in. This paper employs three different climate models driven to equilibrium with a 4 × CO2 forcing to analyze the magnitude and timescales of surface temperature feedbacks. These models are a global energy balance model, an intermediate complexity climate model and a general circulation model. Rather than split surface temperature feedback into characteristic physical processes, this paper adopts a linear systems approach to split feedback according to their time constants and corresponding feedback amplitudes. The analysis reveals that there is a dominant net negative feedback realised during the first year. However, this is partially attenuated by a spectrum of positive feedbacks for time constants in the range 10 to 1000 years. This attenuation was composed of two discrete phases which are attributed to the effects of ''diffusive – mixed layer'' and ''circulatory – deep ocean'' ocean heat equilibration processes. The diffusive equilibration was associated with time constants on the decadal timescale and accounted for approximately 75 to 80 % of the overall ocean heat equilibration feedback, whilst the circulatory feedback operated on a centennial timescale and accounted for the remaining 20 to 25 % of the response. It is important to quantify these decadal and centennial feedback processes to understand the range of climate model projections on these longer timescales.

  5. Modeling the impact of changes in Atlantic sea surface temperature on the climate of West Africa

    Science.gov (United States)

    Adeniyi, Mojisola O.

    2016-08-01

    This study assesses the impacts of warming/cooling of the Atlantic sea surface temperature (SST) on the climate of West Africa using Version 4.4 of Regional Climate Model (RegCM4.4) of International Center for Theoretical Physics, Trieste, Italy. The 1-2 K cooling and warming of the Atlantic SST both result in tripole temperature and precipitation change structure, having a northwest-southeast orientation over West Africa. Findings reveal that the responses of precipitation and temperature to the Atlantic SST cooling are opposite to those for the Atlantic SST warming and these responses intensify with increased warming/cooling of the Atlantic SST. The structure of the change in climate is attributed to the response of atmospheric/soil moisture gradient and orientation of orography in West Africa.

  6. Sea Surface Infrared Radiance Simulator. Part 1: Roughness and Temperature Models of the Sea Surface Radiance

    Science.gov (United States)

    2010-12-01

    simulateur infrarouge de la radiance de la surface de l’eau. Des documents ultérieurs suivront pour décrire le modèle de discrétisation de l’espace...géométrique, le modèle infrarouge de sillages des navires ainsi que la performance du simulateur. vi DRDC Atlantic TM 2010-280 Table of contents

  7. Modelling of composition and stress profiles in low temperature surface engineered stainless steel

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard; Hattel, Jesper Henri; Somers, Marcel A. J.

    2015-01-01

    stresses are introduced in the developing case, arising from the volume expansion that accompanies the dissolution of high interstitial contents in expanded austenite. Modelling of the composition and stress profiles developing during low temperature surface engineering from the processing parameters...... temperature, time and gas composition is a prerequisite for targeted process optimization. A realistic model to simulate the developing case has to take the following influences on composition and stress into account: - a concentration dependent diffusion coefficient - trapping of nitrogen by chromium atoms...... - the effect of residual stress on diffusive flux - the effect of residual stress on solubility of interstitials - plastic accommodation of residual stress. The effect of all these contributions on composition and stress profiles will be addressed....

  8. The use of screening effects in modelling route-based daytime road surface temperature

    Science.gov (United States)

    Hu, Yumei; Almkvist, Esben; Lindberg, Fredrik; Bogren, Jörgen; Gustavsson, Torbjörn

    2016-07-01

    Winter road maintenance is essential for road safety. Accurate predictions of the road surface temperature (RST) and conditions can enhance the efficiency of winter road maintenance. Screening effects, which encompass shading effects and the influence of the sky-view factor ( ψ s ), influence RST distributions because they affect road surface radiation fluxes. In this work, light detection and ranging (Lidar) data are used to derive shadow patterns and ψ s values, and the resulting shadow patterns are used to model route-based RST distributions along two stretches of road in Sweden. The shading patterns and road surface radiation fluxes calculated from the Lidar data generally agreed well with measured RST values. Variation in land use types and the angle between the road direction and solar azimuth may introduce uncertainties, and accounting for these factors may improve the results obtained in certain cases. A simple shading model that only accounts for the direct radiation at the instant of measurement is often sufficient to provide reasonably accurate RST estimates. However, in certain cases, such as those involving measurements close to sunset, it is important to consider the radiation accumulated over several hours. The inclusion of ψ s improves the model performance even more in such cases. Overall, RST models based on the accumulated direct shortwave radiation offered an optimal balance of simplicity and accuracy. General radiation models were built for country road and highway environments, explaining up to 70 and 65 %, respectively, of the observed variation in RST along the corresponding stretches of road.

  9. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models

    Science.gov (United States)

    Kostov, Yavor; Marshall, John; Hausmann, Ute; Armour, Kyle C.; Ferreira, David; Holland, Marika M.

    2017-03-01

    We investigate how sea surface temperatures (SSTs) around Antarctica respond to the Southern Annular Mode (SAM) on multiple timescales. To that end we examine the relationship between SAM and SST within unperturbed preindustrial control simulations of coupled general circulation models (GCMs) included in the Climate Modeling Intercomparison Project phase 5 (CMIP5). We develop a technique to extract the response of the Southern Ocean SST (55°S-70°S) to a hypothetical step increase in the SAM index. We demonstrate that in many GCMs, the expected SST step response function is nonmonotonic in time. Following a shift to a positive SAM anomaly, an initial cooling regime can transition into surface warming around Antarctica. However, there are large differences across the CMIP5 ensemble. In some models the step response function never changes sign and cooling persists, while in other GCMs the SST anomaly crosses over from negative to positive values only 3 years after a step increase in the SAM. This intermodel diversity can be related to differences in the models' climatological thermal ocean stratification in the region of seasonal sea ice around Antarctica. Exploiting this relationship, we use observational data for the time-mean meridional and vertical temperature gradients to constrain the real Southern Ocean response to SAM on fast and slow timescales.

  10. Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

    KAUST Repository

    Ryu, Duchwan

    2013-03-01

    The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online. © 2013 American Statistical Association.

  11. 3D transient model to predict temperature and ablated areas during laser processing of metallic surfaces

    Science.gov (United States)

    Naghshine, Babak. B.; Kiani, Amirkianoosh

    2017-02-01

    Laser processing is one of the most popular small-scale patterning methods and has many applications in semiconductor device fabrication and biomedical engineering. Numerical modelling of this process can be used for better understanding of the process, optimization, and predicting the quality of the final product. An accurate 3D model is presented here for short laser pulses that can predict the ablation depth and temperature distribution on any section of the material in a minimal amount of time. In this transient model, variations of thermal properties, plasma shielding, and phase change are considered. Ablation depth was measured using a 3D optical profiler. Calculated depths are in good agreement with measured values on laser treated titanium surfaces. The proposed model can be applied to a wide range of materials and laser systems.

  12. How can we use MODIS land surface temperature to validate long-term urban model simulations?

    Science.gov (United States)

    Hu, Leiqiu; Brunsell, Nathaniel A.; Monaghan, Andrew J.; Barlage, Michael; Wilhelmi, Olga V.

    2014-03-01

    High spatial resolution urban climate modeling is essential for understanding urban climatology and predicting the human health impacts under climate change. Satellite thermal remote-sensing data are potential observational sources for urban climate model validation with comparable spatial scales, temporal consistency, broad coverage, and long-term archives. However, sensor view angle, cloud distribution, and cloud-contaminated pixels can confound comparisons between satellite land surface temperature (LST) and modeled surface radiometric temperature. The impacts of sensor view angles on urban LST values are investigated and addressed. Three methods to minimize the confounding factors of clouds are proposed and evaluated using 10years of Moderate Resolution Imaging Spectroradiometer (MODIS) data and simulations from the High-Resolution Land Data Assimilation System (HRLDAS) over Greater Houston, Texas, U.S. For the satellite cloud mask (SCM) method, prior to comparison, the cloud mask for each MODIS scene is applied to its concurrent HRLDAS simulation. For the max/min temperature (MMT) method, the 50 warmest days and coolest nights for each data set are selected and compared to avoid cloud impacts. For the high clear-sky fraction (HCF) method, only those MODIS scenes that have a high percentage of clear-sky pixels are compared. The SCM method is recommended for validation of long-term simulations because it provides the largest sample size as well as temporal consistency with the simulations. The MMT method is best for comparison at the extremes. And the HCF method gives the best absolute temperature comparison due to the spatial and temporal consistency between simulations and observations.

  13. Using Historical Precipitation, Temperature, and Runoff Observations to Evaluate Evaporation Formulations in Land Surface Models

    Science.gov (United States)

    Koster, Randal D.; Mahanama, P. P.

    2012-01-01

    Key to translating soil moisture memory into subseasonal precipitation and air temperature forecast skill is a realistic treatment of evaporation in the forecast system used - in particular, a realistic treatment of how evaporation responds to variations in soil moisture. The inherent soil moisture-evaporation relationships used in today's land surface models (LSMs), however, arguably reflect little more than guesswork given the lack of evaporation and soil moisture data at the spatial scales represented by regional and global models. Here we present a new approach for evaluating this critical aspect of LSMs. Seasonally averaged precipitation is used as a proxy for seasonally-averaged soil moisture, and seasonally-averaged air temperature is used as a proxy for seasonally-averaged evaporation (e.g., more evaporative cooling leads to cooler temperatures) the relationship between historical precipitation and temperature measurements accordingly mimics in certain important ways nature's relationship between soil moisture and evaporation. Additional information on the relationship is gleaned from joint analysis of precipitation and streamflow measurements. An experimental framework that utilizes these ideas to guide the development of an improved soil moisture-evaporation relationship is described and demonstrated.

  14. Prediction of lake surface temperature using the air2water model: guidelines, challenges, and future perspectives

    Directory of Open Access Journals (Sweden)

    Sebastiano Piccolroaz

    2016-04-01

    Full Text Available Water temperature plays a primary role in controlling a wide range of physical, geochemical and ecological processes in lakes, with considerable influences on lake water quality and ecosystem functioning. Being able to reliably predict water temperature is therefore a desired goal, which stimulated the development of models of different type and complexity, ranging from simple regression-based models to more sophisticated process-based numerical models. However, both types of models suffer of some limitations: the first are not able to address some fundamental physical processes as e.g., thermal stratification, while the latter generally require a large amount of data in input, which are not always available. In this work, lake surface temperature is simulated by means of air2water, a hybrid physically-based/statistical model, which is able to provide a robust, predictive understanding of LST dynamics knowing air temperature only. This model showed performances that are comparable with those obtained by using process based models (a root mean square error on the order of 1°C, at daily scale, while retaining the simplicity and parsimony of regression-based models, thus making it a good candidate for long-term applications.The aim of the present work is to provide the reader with useful and practical guidelines for proper use of the air2water model and for critical analysis of results. Two case studies have been selected for the analysis: Lake Superior and Lake Erie. These are clear and emblematic examples of a deep and a shallow temperate lake characterized by markedly different thermal responses to external forcing, thus are ideal for making the results of the analysis the most general and comprehensive. Particular attention is paid to assessing the influence of missing data on model performance, and to evaluating when an observed time series is sufficiently informative for proper model calibration or, conversely, data are too scarce thus

  15. Multiyear Predictability of Surface Air Temperature in the Kiel Climate Model

    Science.gov (United States)

    Wu, Yanling; Latif, Mojib; Park, Wonsun

    2015-04-01

    The multiyear predictability of unforced surface air temperature (SAT) variability is examined in the Kiel Climate Model (KCM), a coupled ocean-atmosphere-sea ice general circulation model. A statistical method that maximizes Average Predictability Time (APT) is used to find the most predictable patterns in the model. Multiyear SAT predictability is detected in the North Atlantic and North Pacific sectors. In both regions, ocean dynamics enhances predictability, while the net heat flux is a damping factor. Enhanced predictability in the North Atlantic sector is concentrated near the sea ice margin. The multiyear predictability there is linked to the Atlantic Multidecadal Oscillation/Variability (AMO/V) and also associated with variability of the subpolar gyre. In the North Pacific, the most predictable pattern is characterized by a zonal band in the western and central mid-latitude Pacific. It is linked to the Pacific Decadal Oscillation (PDO) which produces temperature anomalies in the surface layer during winter. These are subducted into deeper layers and re-emerge during the following winters, giving rise to multiyear predictability. The results are consistent with those obtained from the CMIP5 ensemble.

  16. Assessment of Sea Surface Temperature and Sea Ice Initial Conditions on Coupled Model Forecasts

    Science.gov (United States)

    Intrieri, J. M.; Solomon, A.; Persson, O. P. G.; Capotondi, A.; LaFontaine, F.; Jedlovec, G.

    2016-12-01

    We present weather-scale (0-10 day) sea ice forecast validation and skill results from an experimental coupled ice-ocean-atmosphere model during the fall freeze-up periods for 2015 and 2016. The model is a mesoscale, coupled atmosphere-ice-ocean mixed-layer model, termed RASM-ESRL, that was developed from the larger-scale Regional Arctic System Model (RASM) architecture. The atmospheric component of RASM-ESRL consists of the Weather Research and Forecasting (WRF) model, the sea-ice component is the Los Alamos CICE model, and the ocean model is POP. Experimental 5-day forecasts were run daily with RASM-ESRL from July through mid-November in 2015 and 2016. Our project focuses on how the modeled sea ice evolution compares to observed physical processes including atmospheric forcing of sea ice movement, melt, and freeze-up through energy fluxes. Model hindcast output is validated against buoy observations, satellite measurements, and concurrent in situ flux observations made from the R/V Sikuliaq in the fall of 2015. Model skill in predicting atmospheric state variables, wind and boundary layer structures, synoptic features, cloud microphysical and ocean properties will be discussed. We will show results of using different initializations of ocean sea surface temperature and sea ice extent and the impacts on sea ice edge prediction.

  17. Model study on the dependence of primary marine aerosol emission on the sea surface temperature

    Directory of Open Access Journals (Sweden)

    S. Barthel

    2014-01-01

    Full Text Available Primary marine aerosol composed of sea salt and organic material is an important contributor to the global aerosol load. By comparing measurements from two EMEP (co-operative programme for monitoring and evaluation of the long-range transmissions of air-pollutants in Europe intensive campaigns in June 2006 and January 2007 with results from an atmospheric transport model this work shows that accounting for the influence of the sea surface temperature on the emission of primary marine aerosol improves the model results towards the measurements in both months. Different sea surface temperature dependencies were evaluated. Using correction functions based on Sofiev et al. (2011 and Jaeglé et al. (2011 improves the model results for coarse mode particles. In contrast, for the fine mode aerosols no best correction function could be found. The model captures the low sodium concentrations at the marine station Virolahti II (Finland, which is influenced by air masses from the low salinity Baltic Sea, as well as the higher concentrations at Cabauw (Netherlands and Auchencorth Moss (Scotland. These results indicate a shift towards smaller sizes with lower salinity for the emission of dry sea salt aerosols. Organic material was simulated as part of primary marine aerosol assuming an internal mixture with sea salt. A comparison of the model results for primary organic carbon with measurements by a Berner-impactor at Sao Vincente (Cape Verde indicated that the model underpredicted the observed organic carbon concentration. This leads to the conclusion that the formation of secondary organic material needs to be included in the model to improve the agreement with the measurements.

  18. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available Understanding when and how groundwater affects surface temperature and energy fluxes is significant for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To investigate the shallow groundwater effect under bare soil conditions, we numerically exposed two soil profiles to identical metrological forcing. One of the profiles had shallow groundwater. The different responses that the two profiles manifested were inspected regarding soil moisture, temperature and energy balance at the land surface. The findings showed that the two profiles differed in three aspects: the absorbed and emitted amounts of energy, the portioning out of the available energy and the heat fluency in the soil. We concluded that due to their lower albedo, shallow groundwater areas reflect less shortwave radiation and consequently get a higher magnitude of net radiation. When potential evaporation demand is sufficiently high, a large portion of the energy received by these areas is consumed for evaporation. This increases the latent heat flux and reduces the energy that could have heated the soil. Consequently, lower magnitudes of both sensible and ground heat fluxes are caused to occur. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. For the reliability of remote sensors in detecting shallow groundwater effect, it was concluded that this effect can be sufficiently clear to be detected if at least one of the following conditions occurs: high potential evaporation and high contrast between day and night temperatures. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  19. Shallow groundwater effect on land surface temperature and surface energy balance under bare soil conditions: modeling and description

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2011-09-01

    Full Text Available Appreciating when and how groundwater affects surface temperature and energy fluxes is important for utilizing remote sensing in groundwater studies and for integrating aquifers within land surface models. To explore the shallow groundwater effect, we numerically exposed two soil profiles – one having shallow groundwater – to the same meteorological forcing, and inspected their different responses regarding surface soil moisture, temperature and energy balance. We found that the two profiles differed in the absorbed and emitted amounts of energy, in portioning out the available energy and in heat fluency within the soil. We conclude that shallow groundwater areas reflect less shortwave radiation due to their lower albedo and therefore they get higher magnitude of net radiation. When potential evaporation demand is high enough, a large portion of the energy received by these areas is spent on evaporation. This makes the latent heat flux predominant, and leaves less energy to heat the soil. Consequently, this induces lower magnitudes of both sensible and ground heat fluxes. The higher soil thermal conductivity in shallow groundwater areas facilitates heat transfer between the top soil and the subsurface, i.e. soil subsurface is more thermally connected to the atmosphere. In view of remote sensors' capability of detecting shallow groundwater effect, we conclude that this effect can be sufficiently clear to be sensed if at least one of two conditions is met: high potential evaporation and big contrast in air temperature between day and night. Under these conditions, most day and night hours are suitable for shallow groundwater depth detection.

  20. Sea surface temperature of the mid-Piacenzian ocean: a data-model comparison.

    Science.gov (United States)

    Dowsett, Harry J; Foley, Kevin M; Stoll, Danielle K; Chandler, Mark A; Sohl, Linda E; Bentsen, Mats; Otto-Bliesner, Bette L; Bragg, Fran J; Chan, Wing-Le; Contoux, Camille; Dolan, Aisling M; Haywood, Alan M; Jonas, Jeff A; Jost, Anne; Kamae, Youichi; Lohmann, Gerrit; Lunt, Daniel J; Nisancioglu, Kerim H; Abe-Ouchi, Ayako; Ramstein, Gilles; Riesselman, Christina R; Robinson, Marci M; Rosenbloom, Nan A; Salzmann, Ulrich; Stepanek, Christian; Strother, Stephanie L; Ueda, Hiroaki; Yan, Qing; Zhang, Zhongshi

    2013-01-01

    The mid-Piacenzian climate represents the most geologically recent interval of long-term average warmth relative to the last million years, and shares similarities with the climate projected for the end of the 21(st) century. As such, it represents a natural experiment from which we can gain insight into potential climate change impacts, enabling more informed policy decisions for mitigation and adaptation. Here, we present the first systematic comparison of Pliocene sea surface temperature (SST) between an ensemble of eight climate model simulations produced as part of PlioMIP (Pliocene Model Intercomparison Project) with the PRISM (Pliocene Research, Interpretation and Synoptic Mapping) Project mean annual SST field. Our results highlight key regional and dynamic situations where there is discord between the palaeoenvironmental reconstruction and the climate model simulations. These differences have led to improved strategies for both experimental design and temporal refinement of the palaeoenvironmental reconstruction.

  1. The Wind, Temperature, and Surface Pressure on Pluto from a Pluto General Circulation Model

    Science.gov (United States)

    Zalucha, A. M.; Gulbis, A.

    2011-12-01

    A variety of methods have been used to derive Pluto's atmospheric temperature, composition, and surface pressure from spectra and stellar occultation data, while wind is less easily determined. Gravity wave dissipation has been investigated [1] in the 18 March 2007 stellar occultation dataset [2], demonstrating that wind is occurring in the form of perturbations about a mean. Rossby waves have also been proposed [2] as an explanation to the 2007 dataset; however the method was used incorrectly. General circulation models (GCMs) are a ubiquitous tool in the field of planetary atmospheres to solve for the global state of the atmosphere in a physically consistent manner, but only recently have they began to be developed for Pluto. We use a Pluto version of the Massachusetts Institute of Technology (MIT) GCM to solve for the first time for wind, temperature, and surface pressure globally in Pluto's atmosphere. The Pluto version of the MIT GCM (PGCM) uses the MIT GCM dynamical core [3] with a radiative-conductive model [4]. It includes vertical thermal conduction and non-local thermodynamic equilibrium heating and cooling by methane at 3.3 um and 7.6 um, respectively. We perform a parameter sweep with methane volume mixing ratios of 0.2, 0.6, and 1% and initial global mean surface pressures of 6-26 ubar. We ran the model from rest starting in the model year 1973. We compared the PGCM results with occultation data from the years 1988, 2002, 2006, and 2007. Model light curves were calculated from the PGCM temperature output (averaged at 90 day intervals) at the corresponding date and Pluto latitudes of each occultation. The match between data and PGCM is better than between data and the radiative-conductive equilibrium solution (i.e. no wind), but the PGCM light curves contain wave-like features while the data do not. We do not believe that this feature represents an atmospheric wave; rather, it is numerical noise known to occur in 2D GCMs. The PGCM-predicted zonal

  2. Global Assessment of Land Surface Temperature From Geostationary Satellites and Model Estimates

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Q.; Minnis, P.; daSilva, A. M., Jr.; Palikonda, R.; Yost, C. R.

    2012-01-01

    Land surface (or 'skin') temperature (LST) lies at the heart of the surface energy balance and is a key variable in weather and climate models. In this research we compare two global and independent data sets: (i) LST retrievals from five geostationary satellites generated at the NASA Langley Research Center (LaRC) and (ii) LST estimates from the quasi-operational NASA GEOS-5 global modeling and assimilation system. The objective is to thoroughly understand both data sets and their systematic differences in preparation for the assimilation of the LaRC LST retrievals into GEOS-5. As expected, mean differences (MD) and root-mean-square differences (RMSD) between modeled and retrieved LST vary tremendously by region and time of day. Typical (absolute) MD values range from 1-3 K in Northern Hemisphere mid-latitude regions to near 10 K in regions where modeled clouds are unrealistic, for example in north-eastern Argentina, Uruguay, Paraguay, and southern Brazil. Typically, model estimates of LST are higher than satellite retrievals during the night and lower during the day. RMSD values range from 1-3 K during the night to 2-5 K during the day, but are larger over the 50-120 W longitude band where the LST retrievals are derived from the FY2E platform

  3. Modeling Heat Transfer to Explain Observed Temperature Anomalies in Near-Surface Ice, Greenland Ice Sheet Ablation Area

    Science.gov (United States)

    Hills, B. H.; Harper, J. T.; Meierbachtol, T. W.; Humphrey, N. F.; Johnson, J. V.

    2016-12-01

    Measured ice temperatures in over 30 boreholes at 6 different field sites within the Greenland Ice Sheet ablation area indicate that the near-surface ice temperature warms toward the margin. The rate of warming is significantly greater than the atmospheric lapse rate, meaning that the mean annual ice temperature is far warmer than the mean annual air temperature near the margin. Theoretically, ice within 15 meters of the surface should oscillate seasonally around the mean air temperature. However, observations of mean ice and air temperatures differ by as much as 5 degrees Celsius. Here we numerically model heat transfer in ice to investigate the physical processes that could drive this discrepancy. Modeling results are compared to measured ice temperatures in the first 20 meters of ice below the surface. First, we model pure conduction to analyze the thermal effect of snow accumulation, a fixed melting temperature, ablation at the ice surface, emergent flow of ice, and long-term changes in the mean air temperature. Next, we consider a secondary process beyond pure conduction with the air - a latent heat flux which adds energy by refreezing meltwater below the surface. While our measurement locations have no open crevasses exposed to the surface, borehole field observations reveal that void spaces exist below the ice surface. These subsurface voids could provide a route for water to move to depth where it then refreezes and adds energy to the surrounding ice, thus warming ice above the mean air temperature. Finally, we use the near-surface results as a boundary condition for heat transfer through the full thickness of the ice column. The subsequent model output is compared to borehole temperature measurements at depth to examine the effect of near-surface heat transfer on the rest of the ice column.

  4. Assimilation of SMOS brightness temperatures or soil moisture retrievals into a land surface model

    Science.gov (United States)

    De Lannoy, Gabriëlle J. M.; Reichle, Rolf H.

    2016-12-01

    Three different data products from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated separately into the Goddard Earth Observing System Model, version 5 (GEOS-5) to improve estimates of surface and root-zone soil moisture. The first product consists of multi-angle, dual-polarization brightness temperature (Tb) observations at the bottom of the atmosphere extracted from Level 1 data. The second product is a derived SMOS Tb product that mimics the data at a 40° incidence angle from the Soil Moisture Active Passive (SMAP) mission. The third product is the operational SMOS Level 2 surface soil moisture (SM) retrieval product. The assimilation system uses a spatially distributed ensemble Kalman filter (EnKF) with seasonally varying climatological bias mitigation for Tb assimilation, whereas a time-invariant cumulative density function matching is used for SM retrieval assimilation. All assimilation experiments improve the soil moisture estimates compared to model-only simulations in terms of unbiased root-mean-square differences and anomaly correlations during the period from 1 July 2010 to 1 May 2015 and for 187 sites across the US. Especially in areas where the satellite data are most sensitive to surface soil moisture, large skill improvements (e.g., an increase in the anomaly correlation by 0.1) are found in the surface soil moisture. The domain-average surface and root-zone skill metrics are similar among the various assimilation experiments, but large differences in skill are found locally. The observation-minus-forecast residuals and analysis increments reveal large differences in how the observations add value in the Tb and SM retrieval assimilation systems. The distinct patterns of these diagnostics in the two systems reflect observation and model errors patterns that are not well captured in the assigned EnKF error parameters. Consequently, a localized optimization of the EnKF error parameters is needed to further improve Tb or SM retrieval

  5. Convective organization in the super-parameterized community atmosphere model with constant surface temperature

    Science.gov (United States)

    Kuang, Z.

    2015-12-01

    Organization in a moist convecting atmosphere is investigated using the super-parameterized community atmosphere model (SPCAM) in aquaplanet setting with constant surface temperature, with and without planetary rotation. Without radiative and surface feedbacks, convective organization is dominated by convectively coupled gravity waves without planetary rotation and convectively coupled equatorial waves when there is planetary rotation. This behavior is well captured when the cloud resolving model (CRM) in SPCAM is replaced by its linear response function, computed following Kuang (2010), for the state of radiative convective equilibrium (RCE). With radiative feedback, however, convection self-aggregates, and with planetary rotation, the tropical zonal wavenumber-frequency spectrum features a red noise background. These behaviors in the presence of the radiative feedback are not captured when the CRM is replaced by its linear response function around the RCE state with radiative feedback included in the construction. Implications to organization in a moist convecting atmosphere will be discussed. Kuang, Z., Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962, (2010)

  6. Chlorophyll modulation of sea surface temperature in the Arabian Sea in a mixed-layer isopycnal general circulation model

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamoto, S.; PrasannaKumar, S.; Muneyama, K.; Frouin, R.

    Remotely sensed chlorophyll pigment concentrations from the Coastal Zone Color Scanner (CZCS) are used to estimate biological heating rate and investigate the biological modulation of the sea surface temperature (SST) in a bulk mixed layer model...

  7. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  8. Diffusion Filters for Variational Data Assimilation of Sea Surface Temperature in an Intermediate Climate Model

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhang

    2015-01-01

    Full Text Available Sequential, adaptive, and gradient diffusion filters are implemented into spatial multiscale three-dimensional variational data assimilation (3DVAR as alternative schemes to model background error covariance matrix for the commonly used correction scale method, recursive filter method, and sequential 3DVAR. The gradient diffusion filter (GDF is verified by a two-dimensional sea surface temperature (SST assimilation experiment. Compared to the existing DF, the new GDF scheme shows a superior performance in the assimilation experiment due to its success in extracting the spatial multiscale information. The GDF can retrieve successfully the longwave information over the whole analysis domain and the shortwave information over data-dense regions. After that, a perfect twin data assimilation experiment framework is designed to study the effect of the GDF on the state estimation based on an intermediate coupled model. In this framework, the assimilation model is subject to “biased” initial fields from the “truth” model. While the GDF reduces the model bias in general, it can enhance the accuracy of the state estimation in the region that the observations are removed, especially in the South Ocean. In addition, the higher forecast skill can be obtained through the better initial state fields produced by the GDF.

  9. Unravelling the Sources of Climate Model Errors in Subpolar Gyre Sea-Surface Temperatures

    Science.gov (United States)

    Rubino, Angelo; Zanchettin, Davide

    2017-04-01

    Climate model biases are systematic errors affecting geophysical quantities simulated by coupled general circulation models and Earth system models against observational targets. To this regard, biases affecting sea-surface temperatures (SSTs) are a major concern due to the crucial role of SST in the dynamical coupling between the atmosphere and the ocean, and for the associated variability. Strong SST biases can be detrimental for the overall quality of historical climate simulations, they contribute to uncertainty in simulated features of climate scenarios and complicate initialization and assessment of decadal climate prediction experiments. We use a dynamic linear model developed within a Bayesian hierarchical framework for a probabilistic assessment of spatial and temporal characteristics of SST errors in ensemble climate simulations. In our formulation, the statistical model distinguishes between local and regional errors, further separated into seasonal and non-seasonal components. This contribution, based on a framework developed for the study of biases in the Tropical Atlantic in the frame of the European project PREFACE, focuses on the subpolar gyre region in the North Atlantic Ocean, where climate models are typically affected by a strong cold SST bias. We will use results from an application of our statistical model to an ensemble of hindcasts with the MiKlip prototype system for decadal climate predictions to demonstrate how the decadal evolution of model errors toward the subpolar gyre cold bias is substantially shaped by a seasonal signal. We will demonstrate that such seasonal signal stems from the superposition of propagating large-scale seasonal errors originated in the Labrador Sea and of large-scale as well as mesoscale seasonal errors originated along the Gulf Stream. Based on these results, we will discuss how pronounced distinctive characteristics of the different error components distinguished by our model allow for a clearer connection

  10. Multi-criterion model ensemble of CMIP5 surface air temperature over China

    Science.gov (United States)

    Yang, Tiantian; Tao, Yumeng; Li, Jingjing; Zhu, Qian; Su, Lu; He, Xiaojia; Zhang, Xiaoming

    2017-05-01

    The global circulation models (GCMs) are useful tools for simulating climate change, projecting future temperature changes, and therefore, supporting the preparation of national climate adaptation plans. However, different GCMs are not always in agreement with each other over various regions. The reason is that GCMs' configurations, module characteristics, and dynamic forcings vary from one to another. Model ensemble techniques are extensively used to post-process the outputs from GCMs and improve the variability of model outputs. Root-mean-square error (RMSE), correlation coefficient (CC, or R) and uncertainty are commonly used statistics for evaluating the performances of GCMs. However, the simultaneous achievements of all satisfactory statistics cannot be guaranteed in using many model ensemble techniques. In this paper, we propose a multi-model ensemble framework, using a state-of-art evolutionary multi-objective optimization algorithm (termed MOSPD), to evaluate different characteristics of ensemble candidates and to provide comprehensive trade-off information for different model ensemble solutions. A case study of optimizing the surface air temperature (SAT) ensemble solutions over different geographical regions of China is carried out. The data covers from the period of 1900 to 2100, and the projections of SAT are analyzed with regard to three different statistical indices (i.e., RMSE, CC, and uncertainty). Among the derived ensemble solutions, the trade-off information is further analyzed with a robust Pareto front with respect to different statistics. The comparison results over historical period (1900-2005) show that the optimized solutions are superior over that obtained simple model average, as well as any single GCM output. The improvements of statistics are varying for different climatic regions over China. Future projection (2006-2100) with the proposed ensemble method identifies that the largest (smallest) temperature changes will happen in the

  11. Spatial validation of large scale land surface models against monthly land surface temperature patterns using innovative performance metrics.

    Science.gov (United States)

    Koch, Julian; Siemann, Amanda; Stisen, Simon; Sheffield, Justin

    2016-04-01

    Land surface models (LSMs) are a key tool to enhance process understanding and to provide predictions of the terrestrial hydrosphere and its atmospheric coupling. Distributed LSMs predict hydrological states and fluxes, such as land surface temperature (LST) or actual evapotranspiration (aET), at each grid cell. LST observations are widely available through satellite remote sensing platforms that enable comprehensive spatial validations of LSMs. In spite of the availability of LST data, most validation studies rely on simple cell to cell comparisons and thus do not regard true spatial pattern information. This study features two innovative spatial performance metrics, namely EOF- and connectivity-analysis, to validate predicted LST patterns by three LSMs (Mosaic, Noah, VIC) over the contiguous USA. The LST validation dataset is derived from global High-Resolution-Infrared-Radiometric-Sounder (HIRS) retrievals for a 30 year period. The metrics are bias insensitive, which is an important feature in order to truly validate spatial patterns. The EOF analysis evaluates the spatial variability and pattern seasonality, and attests better performance to VIC in the warm months and to Mosaic and Noah in the cold months. Further, more than 75% of the LST variability can be captured by a single pattern that is strongly driven by air temperature. The connectivity analysis assesses the homogeneity and smoothness of patterns. The LSMs are most reliable at predicting cold LST patterns in the warm months and vice versa. Lastly, the coupling between aET and LST is investigated at flux tower sites and compared against LSMs to explain the identified LST shortcomings.

  12. Calibration of the Distributed Hydrological Model mHM using Satellite derived Land Surface Temperature

    Science.gov (United States)

    Zink, M.; Samaniego, L. E.; Cuntz, M.

    2012-12-01

    A combined investigation of the water and energy balance in hydrologic models can lead to a more accurate estimation of hydrological fluxes and state variables, such as evapotranspiration and soil moisture. Hydrologic models are usually calibrated against discharge measurements, and thus are only trained on information of few points within a catchment. This procedure does not take into account any spatio-temporal variability of fluxes or state variables. Satellite data are a useful source of information to account for this spatial distributions. The objective of this study is to calibrate the distributed hydrological model mHM with satellite derived Land Surface Temperature (LST) fields provided by the Land Surface Analysis - Satellite Application Facility (LSA-SAF). LST is preferred to other satellite products such as soil moisture or evapotranspiration due to its higher precision. LST is obtained by solving the energy balance by assuming that the soil heat flux and the storage term are negligible on a daily time step. The evapotranspiration is determined by closing the water balance in mHM. The net radiation is calculated by using the incoming short- and longwave radiation, albedo and emissivity data provided by LSA-SAF. The Multiscale Parameter Regionalization technique (MPR, Samaniego et al. 2010) is used to determine the aerodynamic resistance among other parameters. The optimization is performed within the time period 2008-2010 using three objective functions that consider 1) only discharge, 2) only LST, and 3) a combination of both. The proposed method is applied to seven major German river basins: Danube, Ems, Main, Mulde, Neckar, Saale, and Weser. The annual coefficient of correlation between LSA-SAF incoming shortwave radiation and 28 meteorological stations operated by the German Weather Service (DWD) is 0.94 (RMSE = 29 W m-2) in 2009. LSA-SAF incoming longwave radiation could be further evaluated at two eddy covariance stations with a very similar

  13. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    Science.gov (United States)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2016-04-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  14. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    Science.gov (United States)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2017-02-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  15. Teleconnections between Ethiopian summer rainfall and sea surface temperature: Part I - observation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Diro, G.T. [The Abdus salam International Centre for Theoretical Physics, Earth System Physics section, Trieste (Italy); University of Reading, Department of Meteorology, Reading (United Kingdom); Grimes, D.I.F.; Black, E. [University of Reading, Department of Meteorology, Reading (United Kingdom)

    2011-07-15

    In this study, the oceanic regions that are associated with anomalous Ethiopian summer rains were identified and the teleconnection mechanisms that give rise to these associations have been investigated. Because of the complexities of rainfall climate in the horn of Africa, Ethiopia has been subdivided into six homogeneous rainfall zones and the influence of SST anomalies was analysed separately for each zone. The investigation made use of composite analysis and modelling experiments. Two sets of composites of atmospheric fields were generated, one based on excess/deficit rainfall anomalies and the other based on warm/cold SST anomalies in specific oceanic regions. The aim of the composite analysis was to determine the link between SST and rainfall in terms of large scale features. The modelling experiments were intended to explore the causality of these linkage. The results show that the equatorial Pacific, the midlatitude northwest Pacific and the Gulf of Guinea all exert an influence on the summer rainfall in various part of the country. The results demonstrate that different mechanisms linked to sea surface temperature control variations in rainfall in different parts of Ethiopia. This has important consequences for seasonal forecasting models which are based on statistical correlations between SST and seasonal rainfall totals. It is clear that such statistical models should take account of the local variations in teleconnections. (orig.)

  16. Regression analysis in modeling of air surface temperature and factors affecting its value in Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim Mohammed; Jafri, Mohd. Zubir Mat; Lim, Hwee San; Abdullah, Khiruddin

    2012-10-01

    This study encompasses air surface temperature (AST) modeling in the lower atmosphere. Data of four atmosphere pollutant gases (CO, O3, CH4, and H2O) dataset, retrieved from the National Aeronautics and Space Administration Atmospheric Infrared Sounder (AIRS), from 2003 to 2008 was employed to develop a model to predict AST value in the Malaysian peninsula using the multiple regression method. For the entire period, the pollutants were highly correlated (R=0.821) with predicted AST. Comparisons among five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the southwest monsoon (SWM) season, within 1.3 K, and for in situ data, within 1 to 2 K. The validation results of AST with AST from AIRS showed high correlation coefficient (R=0.845 to 0.918), indicating the model's efficiency and accuracy. Statistical analysis in terms of β showed that H2O (0.565 to 1.746) tended to contribute significantly to high AST values during the northeast monsoon season. Generally, these results clearly indicate the advantage of using the satellite AIRS data and a correlation analysis study to investigate the impact of atmospheric greenhouse gases on AST over the Malaysian peninsula. A model was developed that is capable of retrieving the Malaysian peninsulan AST in all weather conditions, with total uncertainties ranging between 1 and 2 K.

  17. Can satellite land surface temperature data be used similarly to ground discharge measurements for distributed hydrological model calibration?

    NARCIS (Netherlands)

    Corbari, C.; Mancini, M.; Li, J.; Su, Zhongbo

    2015-01-01

    This study proposes a new methodology for the calibration of distributed hydrological models at basin scale by constraining an internal model variable using satellite data of land surface temperature. The model algorithm solves the system of energy and mass balances in terms of a representative equi

  18. A new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Zhao, Jianing; Olesen, Bjarne W.

    2015-01-01

    In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed that the ......In this paper, a new simplified model to calculate surface temperature and heat transfer of radiant floor heating and cooling system was proposed and established using the conduction shape factor. Measured data from references were used to validate the proposed model. The results showed...... that the maximum differences between the calculated surface temperature and heat transfer using the proposed model and the measured data were 0.8 ºC and 8.1 W/m2 for radiant floor heating system when average water temperature between 40 ºC and 60 ºC. For the corresponding values were 0.3 ºC and 2.0 W/m2...... for radiant floor cooling systems when average water temperature between 10 ºC and 20 ºC. Numerically simulated data in this study were also used to validate the proposed model. The results showed that the surface temperature and heat transfer of radiant floor calculated by the proposed model agreed very well...

  19. A model-data comparison of the Holocene global sea surface temperature evolution

    NARCIS (Netherlands)

    Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.

    2013-01-01

    We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate

  20. A model-data comparison of the Holocene global sea surface temperature evolution

    NARCIS (Netherlands)

    Lohmann, G.; Pfeiffer, M.; Laepple, T.; Leduc, G.; Kim, J.-H.

    2013-01-01

    We compare the ocean temperature evolution of the Holocene as simulated by climate models and reconstructed from marine temperature proxies. We use transient simulations from a coupled atmosphere-ocean general circulation model, as well as an ensemble of time slice simulations from the Paleoclimate

  1. A model of sea surface temperature front detection based on a threshold interval

    Institute of Scientific and Technical Information of China (English)

    PING Bo; SU Fenzhen; MENG Yunshan; FANG Shenghui; DU Yunyan

    2014-01-01

    A model (Bayesian oceanic front detection, BOFD) of sea surface temperature (SST) front detection in satel-lite-derived SST images based on a threshold interval is presented, to be used in different applications such as climatic and environmental studies or fisheries. The model first computes the SST gradient by using a Sobel algorithm template. On the basis of the gradient value, the threshold interval is determined by a gradi-ent cumulative histogram. According to this threshold interval, front candidates can be acquired and prior probability and likelihood can be calculated. Whether or not the candidates are front points can be deter-mined by using the Bayesian decision theory. The model is evaluated on the Advanced Very High-Resolution Radiometer images of part of the Kuroshio front region. Results are compared with those obtained by using several SST front detection methods proposed in the literature. This comparison shows that the BOFD not only suppresses noise and small-scale fronts, but also retains continuous fronts.

  2. Improving climate model simulation of tropical Atlantic sea surface temperature: The importance of enhanced vertical atmosphere model resolution

    Science.gov (United States)

    Harlaß, Jan; Latif, Mojib; Park, Wonsun

    2015-04-01

    A long-standing problem in climate modeling is the inaccurate simulation of tropical Atlantic (TA) sea surface temperature (SST), known as the TA SST bias. It has far-reaching consequences for climate prediction in that area as it goes along, among others, with erroneous precipitation patterns. We show that the TA SST bias can be largely reduced by increasing both the atmospheric horizontal and vertical resolutions in a climate model. At high horizontal resolution, enhanced vertical resolution is indispensable to substantially improve the simulation of TA SST by enhancing surface wind stress. This also reduces biases in the upper ocean thermal structure and precipitation patterns. Although, enhanced horizontal resolution alone leads to some improvement in the mean climate, typical bias patterns characterized by a reversed zonal SST gradient at the equator and too warm SST in the Benguela upwelling region are mostly unchanged at a coarser vertical resolution.

  3. Model Study of the Influence of Ambient Temperature and Installation Types on Surface Temperature Measurement by Using a Fiber Bragg Grating Sensor.

    Science.gov (United States)

    Liu, Yi; Zhang, Jun

    2016-07-01

    Surface temperature is an important parameter in clinical diagnosis, equipment state control, and environmental monitoring fields. The Fiber Bragg Grating (FBG) temperature sensor possesses numerous significant advantages over conventional electrical sensors, thus it is an ideal choice to achieve high-accuracy surface temperature measurements. However, the effects of the ambient temperature and installation types on the measurement of surface temperature are often overlooked. A theoretical analysis is implemented and a thermal transfer model of a surface FBG sensor is established. The theoretical and simulated analysis shows that both substrate strain and the temperature difference between the fiber core and hot surface are the most important factors which affect measurement accuracy. A surface-type temperature standard setup is proposed to study the measurement error of the FBG temperature sensor. Experimental results show that there are two effects influencing measurement results. One is the "gradient effect". This results in a positive linear error with increasing surface temperature. Another is the "substrate effect". This results in a negative non-linear error with increasing surface temperature. The measurement error of the FBG sensor with single-ended fixation are determined by the gradient effect and is a linear error. It is not influenced by substrate expansion. Thus, it can be compensated easily. The measurement errors of the FBG sensor with double-ended fixation are determined by the two effects and the substrate effect is dominant. The measurement error change trend of the FBG sensor with fully-adhered fixation is similar to that with double-ended fixation. The adhesive layer can reduce the two effects and measurement error. The fully-adhered fixation has lower error, however, it is easily affected by substrate strain. Due to its linear error and strain-resistant characteristics, the single-ended fixation will play an important role in the FBG sensor

  4. Global warming and tropical Pacific sea surface temperature: Why models and observations do not agree

    Science.gov (United States)

    Coats, Sloan; Karnauskas, Kristopher

    2017-04-01

    The pattern of sea surface temperature (SST) in the tropical Pacific Ocean provides an important control on global climate, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease is, in part, a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), we provide evidence that a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a weakening Walker circulation and thus can help to reconcile the range of opposing theories and observations of anthropogenic climate change in the tropical Pacific Ocean. Because of a newly identified bias in their simulation of equatorial coupled atmosphere-ocean dynamics, however, CMIP5 models do not capture the magnitude of the response of the EUC to anthropogenic radiative forcing. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific Ocean.

  5. Estimating the Surface Air Temperature by Remote Sensing in Northwest China Using an Improved Advection-Energy Balance for Air Temperature Model

    Directory of Open Access Journals (Sweden)

    Suhua Liu

    2016-01-01

    Full Text Available To estimate the surface air temperature by remote sensing, the advection-energy balance for the surface air temperature (ADEBAT model is developed which assumes the surface air temperature is driven by the local driving force and the advective driving force. The local driving force produces a local surface air temperature whereas the advective driving force changes it by adding an exotic air temperature. An advection factor f is defined to measure the quantity of the exotic air brought by the advection. Since the f is determined by the advection, this paper improves it to a regional scale by using the Inverse Distance Weighting (IDW method whereas the original ADEBAT model uses a constant of f for a block of area. Results retrieved by the improved ADEBAT (IADEBAT model are evaluated and comparison was made with the in situ measurements, with an R2 (correlation coefficient of 0.77, an RMSE (Root Mean Square Error of 0.31 K, and a MAE (Mean Absolute Error of 0.24 K. The evaluation shows that the IADEBAT model has higher accuracy than the original ADEBAT model. Evaluations together with a t-test of the MAD (Mean Absolute Deviation reveal that the IADEBAT model has a significant improvement.

  6. Seasonal and decadal forecasts of Atlantic Sea surface temperatures using a linear inverse model

    Science.gov (United States)

    Huddart, Benjamin; Subramanian, Aneesh; Zanna, Laure; Palmer, Tim

    2017-09-01

    Predictability of Atlantic Ocean sea surface temperatures (SST) on seasonal and decadal timescales is investigated using a suite of statistical linear inverse models (LIM). Observed monthly SST anomalies in the Atlantic sector (between 22°S and 66°N) are used to construct the LIMs for seasonal and decadal prediction. The forecast skills of the LIMs are then compared to that from two current operational forecast systems. Results indicate that the LIM has good forecast skill for time periods of 3-4 months on the seasonal timescale with enhanced predictability in the spring season. On decadal timescales, the impact of inter-annual and intra-annual variability on the predictability is also investigated. The results show that the suite of LIMs have forecast skill for about 3-4 years over most of the domain when we use only the decadal variability for the construction of the LIM. Including higher frequency variability helps improve the forecast skill and maintains the correlation of LIM predictions with the observed SST anomalies for longer periods. These results indicate the importance of temporal scale interactions in improving predictability on decadal timescales. Hence, LIMs can not only be used as benchmarks for estimates of statistical skill but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

  7. Modeling short wave radiation and ground surface temperature: a validation experiment in the Western Alps

    Science.gov (United States)

    Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.

    2009-12-01

    Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo

  8. Modeling the influence of open water surfaces on summertime temperatures and thermal comfort in the city

    NARCIS (Netherlands)

    Theeuwes, N.E.; Solcerova, A.; Steeneveld, G.J.

    2013-01-01

    [1] Due to the combination of rapid global urbanization and climate change, urban climate issues are becoming relatively more important and are gaining interest. Compared to rural areas, the temperature in cities is higher (the urban heat island effect ) due to the modifications in the surface radia

  9. Modeling the influence of open water surfaces on summertime temperatures and thermal comfort in the city

    NARCIS (Netherlands)

    Theeuwes, N.E.; Solcerova, A.; Steeneveld, G.J.

    2013-01-01

    [1] Due to the combination of rapid global urbanization and climate change, urban climate issues are becoming relatively more important and are gaining interest. Compared to rural areas, the temperature in cities is higher (the urban heat island effect ) due to the modifications in the surface radia

  10. Investigat ing the effect of surface water – groundwater interactions on stream temperature using D istributed Temperature Sensing and instream temperature model

    DEFF Research Database (Denmark)

    Matheswaran, K.; Blemmer, M.; Mortensen, J.

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  11. Investigat ing the effect of surface water – groundwater interactions on stream temperature using D istributed Temperature Sensing and instream temperature model

    DEFF Research Database (Denmark)

    Matheswaran, K.; Blemmer, M.; Mortensen, J.;

    2011-01-01

    Surface water–groundwater interactions at the stream interface influences, and at times controls the stream temperature, a critical water property driving biogeochemical processes. This study investigates the effects of these interactions on temperature of Stream Elverdamsåen in Denmark using the...

  12. A coupled force-restore model of surface temperature and soil moisture using the maximum entropy production model of heat fluxes

    Science.gov (United States)

    Huang, S.-Y.; Wang, J.

    2016-07-01

    A coupled force-restore model of surface soil temperature and moisture (FRMEP) is formulated by incorporating the maximum entropy production model of surface heat fluxes and including the gravitational drainage term. The FRMEP model driven by surface net radiation and precipitation are independent of near-surface atmospheric variables with reduced sensitivity to the uncertainties of model input and parameters compared to the classical force-restore models (FRM). The FRMEP model was evaluated using observations from two field experiments with contrasting soil moisture conditions. The modeling errors of the FRMEP predicted surface temperature and soil moisture are lower than those of the classical FRMs forced by observed or bulk formula based surface heat fluxes (bias 1 ~ 2°C versus ~4°C, 0.02 m3 m-3 versus 0.05 m3 m-3). The diurnal variations of surface temperature, soil moisture, and surface heat fluxes are well captured by the FRMEP model measured by the high correlations between the model predictions and observations (r ≥ 0.84). Our analysis suggests that the drainage term cannot be neglected under wet soil condition. A 1 year simulation indicates that the FRMEP model captures the seasonal variation of surface temperature and soil moisture with bias less than 2°C and 0.01 m3 m-3 and correlation coefficients of 0.93 and 0.9 with observations, respectively.

  13. GODAE, SFCOBS - Surface Temperature Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GODAE, SFCOBS - Surface Temperature Observations: Ship, fixed/drifting buoy, and CMAN in-situ surface temperature. Global Telecommunication System (GTS) Data. The...

  14. A response surface methodology and desirability approach for predictive modeling and optimization of cutting temperature in machining hardened steel

    Directory of Open Access Journals (Sweden)

    Ashok Kumar Sahoo

    2014-06-01

    Full Text Available This paper presents an experimental investigation on cutting temperature during hard turning of EN 24 steel (50 HRC using TiN coated carbide insert under dry environment. The prediction model is developed using response surface methodology and optimization of process parameter is performed by desirability approach. A stiff rise in cutting temperature is noticed when feed and cutting speed are elevated. The effect of depth of cut on cutting temperature is not that much significant compared with cutting speed and feed as observed from main effects plot. The response surface second order model presented high correlation coefficient (R2 = 0.992 explaining 99.2 % of the variability in the cutting temperature which indicates the goodness of fit for the model to the actual data and high statistical significance of the model. The experimental and predicted values are very close to each other. The calculated error for cutting temperature lies between 1.88-3.19 % during confirmation trial. Therefore, the developed second order model correlates the relationship of the cutting temperature with the process parameters with good degree of approximation. The optimal combination for process parameter is depth of cut at 0.2mm, feed of 0.1597 mm/rev and cutting speed of 70m/min. Based on these combination, the value of cutting temperature is 302.950C whose desirability is one.

  15. Improving snow process modeling with satellite-based estimation of near-surface-air-temperature lapse rate

    Science.gov (United States)

    Wang, Lei; Sun, Litao; Shrestha, Maheswor; Li, Xiuping; Liu, Wenbin; Zhou, Jing; Yang, Kun; Lu, Hui; Chen, Deliang

    2016-10-01

    In distributed hydrological modeling, surface air temperature (Tair) is of great importance in simulating cold region processes, while the near-surface-air-temperature lapse rate (NLR) is crucial to prepare Tair (when interpolating Tair from site observations to model grids). In this study, a distributed biosphere hydrological model with improved snow physics (WEB-DHM-S) was rigorously evaluated in a typical cold, large river basin (e.g., the upper Yellow River basin), given a mean monthly NLRs. Based on the validated model, we have examined the influence of the NLR on the simulated snow processes and streamflows. We found that the NLR has a large effect on the simulated streamflows, with a maximum difference of greater than 24% among the various scenarios for NLRs considered. To supplement the insufficient number of monitoring sites for near-surface-air-temperature at developing/undeveloped mountain regions, the nighttime Moderate Resolution Imaging Spectroradiometer land surface temperature is used as an alternative to derive the approximate NLR at a finer spatial scale (e.g., at different elevation bands, different land covers, different aspects, and different snow conditions). Using satellite-based estimation of NLR, the modeling of snow processes has been greatly refined. Results show that both the determination of rainfall/snowfall and the snowpack process were significantly improved, contributing to a reduced summer evapotranspiration and thus an improved streamflow simulation.

  16. Extension of the prognostic model of sea surface temperature to rain-induced cool and fresh lenses

    Science.gov (United States)

    Bellenger, Hugo; Drushka, Kyla; Asher, William; Reverdin, Gilles; Katsumata, Masaki; Watanabe, Michio

    2017-01-01

    The Zeng and Beljaars (2005) sea surface temperature prognostic scheme, developed to represent diurnal warming, is extended to represent rain-induced freshening and cooling. Effects of rain on salinity and temperature in the molecular skin layer (first few hundred micrometers) and the near-surface turbulent layer (first few meters) are separately parameterized by taking into account rain-induced fluxes of sensible heat and freshwater, surface stress, and mixing induced by droplets penetrating the water surface. Numerical results from this scheme are compared to observational data from two field studies of near-surface ocean stratifications caused by rain, to surface drifter observations and to previous computations with an idealized ocean mixed layer model, demonstrating that the scheme produces temperature variations consistent with in situ observations and model results. It reproduces the dependency of salinity on wind and rainfall rate and the lifetime of fresh lenses. In addition, the scheme reproduces the observed lag between temperature and salinity minimum at low wind speed and is sensitive to the peak rain rate for a given amount of rain. Finally, a first assessment of the impact of these fresh lenses on ocean surface variability is given for the near-equatorial western Pacific. In particular, the variability due to the mean rain-induced cooling is comparable to the variability due to the diurnal warming so that they both impact large-scale horizontal surface temperature gradients. The present parameterization can be used in a variety of models to study the impact of rain-induced fresh and cool lenses at different spatial and temporal scales.

  17. Assessing the radiative impacts of precipitating clouds on winter surface air temperatures and land surface properties in general circulation models using observations

    Science.gov (United States)

    Li, J.-L. F.; Lee, Wei-Liang; Wang, Yi-Hui; Richardson, Mark; Yu, Jia-Yuh; Suhas, E.; Fetzer, Eric; Lo, Min-Hui; Yue, Qing

    2016-10-01

    Using CloudSat-CALIPSO ice water, cloud fraction, and radiation; Clouds and the Earth's Radiant Energy System (CERES) radiation; and long-term station-measured surface air temperature (SAT), we identified a substantial underestimation of the total ice water path, total cloud fraction, land surface radiative flux, land surface temperature (LST), and SAT during Northern Hemisphere winter in Coupled Model Intercomparison Project Phase 5 (CMIP5) models. We perform sensitivity experiments with the National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) in fully coupled modes to identify processes driving these biases. We found that biases in land surface properties are associated with the exclusion of downwelling longwave heating from precipitating ice during Northern Hemisphere winter. The land surface temperature biases introduced by the exclusion of precipitating ice radiative effects in CESM1 and CMIP5 both spatially correlate with winter biases over Eurasia and North America. The underestimated precipitating ice radiative effect leads to colder LST, associated surface energy-budget adjustments, and cooler SAT. This bias also shifts regional soil moisture state from liquid to frozen, increases snow cover, and depresses evapotranspiration (ET) and total leaf area index in Northern Hemisphere winter. The inclusion of the precipitating ice radiative effects largely reduces the model biases of surface radiative fluxes (more than 15 W m-2), SAT (up to 2-4 K), and snow cover and ET (25-30%), compared with those without snow-radiative effects.

  18. Decoupled Method for Reconstruction of Surface Conditions From Internal Temperatures On Ablative Materials With Uncertain Recession Model

    Science.gov (United States)

    Oliver, A. Brandon

    2017-01-01

    Obtaining measurements of flight environments on ablative heat shields is both critical for spacecraft development and extremely challenging due to the harsh heating environment and surface recession. Thermocouples installed several millimeters below the surface are commonly used to measure the heat shield temperature response, but an ill-posed inverse heat conduction problem must be solved to reconstruct the surface heating environment from these measurements. Ablation can contribute substantially to the measurement response making solutions to the inverse problem strongly dependent on the recession model, which is often poorly characterized. To enable efficient surface reconstruction for recession model sensitivity analysis, a method for decoupling the surface recession evaluation from the inverse heat conduction problem is presented. The decoupled method is shown to provide reconstructions of equivalent accuracy to the traditional coupled method but with substantially reduced computational effort. These methods are applied to reconstruct the environments on the Mars Science Laboratory heat shield using diffusion limit and kinetically limited recession models.

  19. Turbulent flux modelling with a simple 2-layer soil model and extrapolated surface temperature applied at Nam Co Lake basin on the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    T. Gerken

    2012-04-01

    Full Text Available This paper introduces a surface model with two soil-layers for use in a high-resolution circulation model that has been modified with an extrapolated surface temperature, to be used for the calculation of turbulent fluxes. A quadratic temperature profile based on the layer mean and base temperature is assumed in each layer and extended to the surface. The model is tested at two sites on the Tibetan Plateau near Nam Co Lake during four days during the 2009 Monsoon season. In comparison to a two-layer model without explicit surface temperature estimate, there is a greatly reduced delay in diurnal flux cycles and the modelled surface temperature is much closer to observations. Comparison with a SVAT model and eddy covariance measurements shows an overall reasonable model performance based on RMSD and cross correlation comparisons between the modified and original model. A potential limitation of the model is the need for careful initialisation of the initial soil temperature profile, that requires field measurements. We show that the modified model is capable of reproducing fluxes of similar magnitudes and dynamics when compared to more complex methods chosen as a reference.

  20. A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models

    Science.gov (United States)

    Gutmann, Ethan D.; Small, Eric E.

    2010-06-01

    Soil hydraulic properties (SHPs) play an important role in land-surface models, but their spatial distribution is poorly known, and it is not feasible to make field measurements of SHPs everywhere they are needed. In addition, the scale SHPs are measured on (10 cm) is substantially smaller than the scale at which land-surface models are run (>1 km). As a result, land-surface models need landscape hydraulic properties (LHPs), not SHPs. We present a method for identifying LHPs from MODIS surface temperatures. We calibrated LHPs in the Noah land-surface model using MODIS surface temperatures in 2005 at 14 sites from the Atmospheric Radiation Measurement Program (ARM) using locally observed forcing data from 2005. We then used observed flux data during this same time period for model verification. Next, we determined LHPs from MODIS surface temperature at five sites using High Resolution Land Data Assimilation forcing data from 2002. We then used these LHPS to run Noah with 2005 ARM forcing data and compared the output to the same observed 2005 fluxes. Fitting LHPs to MODIS data decreases the error in modeled latent heat flux from 98 W/m2 to 67 W/m2. Fitting LHPs to these same latent heat flux measurements decreases the error to 50 W/m2. Therefore, two thirds of the parameter estimation improvement from calibration to in situ flux data can be achieved using remotely sensed surface temperature. These results are insensitive to errors in other parameters. For example, changing albedo by 0.1 changes the saturated conductivity (Ks) by 10% and the van Genuchten "m" parameter by 1%. However, changing minimum canopy resistance by 40 s/m produced a significant but mutually compensating change in both Ks and "m."

  1. An Indirect Data Assimilation Scheme for Deep Soil Temperature in the Pleim-Xiu Land Surface Model

    Science.gov (United States)

    The Pleim-Xiu land surface model (PX LSM) has been improved by the addition of a 2nd indirect data assimilation scheme. The first, which was described previously, is a technique where soil moisture in nudged according to the biases in 2-m air temperature and relative humidity be...

  2. Surface Temperature Variation Prediction Model Using Real-Time Weather Forecasts

    Science.gov (United States)

    Karimi, M.; Vant-Hull, B.; Nazari, R.; Khanbilvardi, R.

    2015-12-01

    Combination of climate change and urbanization are heating up cities and putting the lives of millions of people in danger. More than half of the world's total population resides in cities and urban centers. Cities are experiencing urban Heat Island (UHI) effect. Hotter days are associated with serious health impacts, heart attaches and respiratory and cardiovascular diseases. Densely populated cities like Manhattan, New York can be affected by UHI impact much more than less populated cities. Even though many studies have been focused on the impact of UHI and temperature changes between urban and rural air temperature, not many look at the temperature variations within a city. These studies mostly use remote sensing data or typical measurements collected by local meteorological station networks. Local meteorological measurements only have local coverage and cannot be used to study the impact of UHI in a city and remote sensing data such as MODIS, LANDSAT and ASTER have with very low resolution which cannot be used for the purpose of this study. Therefore, predicting surface temperature in urban cities using weather data can be useful.Three months of Field campaign in Manhattan were used to measure spatial and temporal temperature variations within an urban setting by placing 10 fixed sensors deployed to measure temperature, relative humidity and sunlight. Fixed instrument shelters containing relative humidity, temperature and illumination sensors were mounted on lampposts in ten different locations in Manhattan (Vant-Hull et al, 2014). The shelters were fixed 3-4 meters above the ground for the period of three months from June 23 to September 20th of 2013 making measurements with the interval of 3 minutes. These high resolution temperature measurements and three months of weather data were used to predict temperature variability from weather forecasts. This study shows that the amplitude of spatial and temporal variation in temperature for each day can be predicted

  3. Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries

    Science.gov (United States)

    Pattnayak, K. C.; Kar, S. C.; Dalal, Mamta; Pattnayak, R. K.

    2017-05-01

    Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) comprising Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand brings together 21% of the world population. Thus the impact of climate change in this region is a major concern for all. To study the climate change, fifth phase of Climate Model Inter-comparison Project (CMIP5) models have been used to project the climate for the 21st century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 over the BIMSTEC countries for the period 1901 to 2100 (initial 105 years are historical period and the later 95 years are projected period). Climate change in the projected period has been examined with respect to the historical period. In order to validate the models, the mean annual rainfall has been compared with observations from multiple sources and temperature has been compared with the data from Climatic Research Unit (CRU) during the historical period. Comparison reveals that ensemble mean of the models is able to represent the observed spatial distribution of rainfall and temperature over the BIMSTEC countries. Therefore, data from these models may be used to study the future changes in the 21st century. Four out of six models show that the rainfall over India, Thailand and Myanmar has decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka show an increasing trend in both the RCP scenarios. In case of temperature, all the models show an increasing trend over all the BIMSTEC countries in both the scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. The rate of increase/decrease in rainfall and temperature are relatively more in RCP8.5 than RCP4.5 over all these countries. Inter-model comparison show that there are uncertainties within the CMIP5 model projections. More similar studies are required to be done for better understanding the model uncertainties in climate projections over this region.

  4. Model for seawater fouling and effects of temperature, flow velocity and surface free energy on seawater fouling☆

    Institute of Scientific and Technical Information of China (English)

    Dazhang Yang; Jianhua Liu; Xiaoxue E; Linlin Jiang

    2016-01-01

    A kinetic model was proposed to predict the seawater fouling process in the seawater heat exchangers. The new model adopted an expression combining depositional and removal behaviors for seawater fouling based on the Kern–Seaton model. The present model parameters include the integrated kinetic rate of deposition (kd) and the integrated kinetic rate of removal (kr), which have clear physical significance. A seawater-fouling monitoring de-vice was established to validate the model. The experimental data were wel fitted to the model, and the param-eters were obtained in different conditions. SEM and EDX analyses were performed after the experiments, and the results show that the main components of seawater fouling are magnesium hydroxide and aluminum hy-droxide. The effects of surface temperature, flow velocity and surface free energy were assessed by the model and the experimental data. The results indicate that the seawater fouling becomes aggravated as the surface tem-perature increased in a certain range, and the seawater fouling resistance reduced as the flow velocity of seawater increased. Furthermore, the effect of the surface free energy of metals was analyzed, showing that the lower sur-face free energy mitigates the seawater fouling accumulation.

  5. Temperature field modeling in laser-heated metals for laser cleaning of surfaces

    Science.gov (United States)

    Oane, Mihai; Apostol, Ileana; Timcu, Adrian

    2003-10-01

    Laser induced surface cleaning is the adequate method in a large variety of industrial domains as microelectronics, optics, photonics. By comparison to chemical and/or mechanical cleaning, laser cleaning has the advantage of a very good selectivity on the surface and in depth of the material, no surface contamination, without stress in the material volume and environmental safe. It seems that laser cleaning can be developed in a method to be currently used in microelectronic industry. For an efficient laser cleaning of metallic thin films without damage of the silicon wafer, a careful optimization of the incident laser energy, fluence, intensity and number of laser pulses is needed. We have developed an analytical procedure to study the temperature fields in pulsed laser heated solids, for a deeper knowledge of the laser-thin film substrate interaction.

  6. 水温—冰盖模式对大湖水面温度的模拟%SPATIALLY DISTRIBUTED WATER SURFACE TEMPERATURE MODELING FOR THE GREAT LAKES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper describes the development and validation of a water temperature model for the Great Lakes.This model is keyed to simulate horizontally and temporally varying surface temperature.An ice cover model is coupled with the water temper ature model,forming a spatially distributed thermodynamic model for the Great La kes.This model can be used to give long-term or short-term simulations of wate r surface temperature and ice cover for the Great Lakes.

  7. Evaluation of air-soil temperature relationships simulated by land surface models during winter across the permafrost region

    Science.gov (United States)

    Wang, Wenli; Rinke, Annette; Moore, John C.; Ji, Duoying; Cui, Xuefeng; Peng, Shushi; Lawrence, David M.; McGuire, A. David; Burke, Eleanor J.; Chen, Xiaodong; Delire, Christine; Koven, Charles; MacDougall, Andrew; Saito, Kazuyuki; Zhang, Wenxin; Alkama, Ramdane; Bohn, Theodore J.; Ciais, Philippe; Decharme, Bertrand; Gouttevin, Isabelle; Hajima, Tomohiro; Krinner, Gerhard; Lettenmaier, Dennis P.; Miller, Paul A.; Smith, Benjamin; Sueyoshi, Tetsuo

    2016-01-01

     A realistic simulation of snow cover and its thermal properties are important for accurate modelling of permafrost. We analyze simulated relationships between air and near-surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, with a particular focus on snow insulation effects in nine land surface models and compare them with observations from 268 Russian stations. There are large across-model differences as expressed by simulated differences between near-surface soil and air temperatures, (ΔT), of 3 to 14 K, in the gradients between soil and air temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The observed relationship between ΔT and snow depth can be used as a metric to evaluate the effects of each model's representation of snow insulation, and hence guide improvements to the model’s conceptual structure and process parameterizations. Models with better performance apply multi-layer snow schemes and consider complex snow processes. Some models show poor performance in representing snow insulation due to underestimation of snow depth and/or overestimation of snow conductivity. Generally, models identified as most acceptable with respect to snow insulation simulate reasonable areas of near-surface permafrost (12–16 million km2). However, there is not a simple relationship between the quality of the snow insulation in the acceptable models and the simulated area of Northern Hemisphere near-surface permafrost, likely because several other factors such as differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation also provide important controls on simulated permafrost distribution.

  8. Sensitivity of Venus surface emissivity retrieval to model variations of CO2 opacity, cloud features, and deep atmosphere temperature field

    Science.gov (United States)

    Kappel, David; Arnold, Gabriele; Haus, Rainer

    2012-07-01

    The Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) aboard ESA's Venus Express space probe has acquired a wealth of nightside emission spectra from Venus and provides the first global database for systematic atmospheric and surface studies in the IR. The infrared mapping channel (VIRTIS-M-IR) sounds the atmosphere and surface at high spatial and temporal resolution and coverage. Quantitative analyses of data call for a sophisticated radiative transfer simulation model of Venus' atmosphere to be used in atmospheric and surface parameter retrieval procedures that fit simulated spectra to the measured data. The surface emissivity can be retrieved from VIRTIS-M-IR measurements in the transparency windows around 1 μm, but it is not easy to derive, since atmospheric influences strongly interfere with surface information. There are mainly three atmospheric model parameters that may affect quantitative results of surface emissivity retrievals: CO_2 opacity, cloud features, and deep atmosphere temperature field. The CO_2 opacity with respect to allowed transitions is usually computed by utilizing a suitable line data base and certain line shape models that consider collisional line mixing. Both line data bases and shape models are not well established from measurements under the environmental conditions in the deep atmosphere of Venus. Pressure-induced additional continuum absorption introduces further opacity uncertainties. The clouds of Venus are usually modeled by a four-modal distribution of spherical droplets of about 75% sulfuric acid, where each mode is characterized by a different mean and standard deviation of droplet size distribution and a different initial altitude abundance profile. The influence of possible cloud mode variations on surface emissivity retrieval results is investigated in the paper. Future retrieval procedures will aim at a separation of cloud mode and surface emissivity variations using different atmospheric windows sounded by

  9. GISS Surface Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The GISTEMP dataset is a global 2x2 gridded temperature anomaly dataset. Temperature data is updated around the middle of every month using current data files from...

  10. A simple temperature domain two-source model for estimating agricultural field surface energy fluxes from Landsat images

    Science.gov (United States)

    Yao, Yunjun; Liang, Shunlin; Yu, Jian; Chen, Jiquan; Liu, Shaomin; Lin, Yi; Fisher, Joshua B.; McVicar, Tim R.; Cheng, Jie; Jia, Kun; Zhang, Xiaotong; Xie, Xianhong; Jiang, Bo; Sun, Liang

    2017-05-01

    A simple and robust satellite-based method for estimating agricultural field to regional surface energy fluxes at a high spatial resolution is important for many applications. We developed a simple temperature domain two-source energy balance (TD-TSEB) model within a hybrid two-source model scheme by coupling "layer" and "patch" models to estimate surface heat fluxes from Landsat thematic mapper/Enhanced Thematic Mapper Plus (TM/ETM+) imagery. For estimating latent heat flux (LE) of full soil, we proposed a temperature domain residual of the energy balance equation based on a simplified framework of total aerodynamic resistances, which provides a key link between thermal satellite temperature and subsurface moisture status. Additionally, we used a modified Priestley-Taylor model for estimating LE of full vegetation. The proposed method was applied to TM/ETM+ imagery and was validated using the ground-measured data at five crop eddy-covariance tower sites in China. The results show that TD-TSEB yielded root-mean-square-error values between 24.9 (8.9) and 78.2 (21.4) W/m2 and squared correlation coefficient (R2) values between 0.60 (0.51) and 0.97 (0.90), for the estimated instantaneous (daily) surface net radiation, soil, latent, and sensible heat fluxes at all five sites. The TD-TSEB model shows good accuracy for partitioning LE into soil (LEsoil) and canopy (LEcanopy) components with an average bias of 11.1% for the estimated LEsoil/LE ratio at the Daman site. Importantly, the TD-TSEB model produced comparable accuracy but requires fewer forcing data (i.e., no wind speed and roughness length are needed) when compared with two other widely used surface energy balance models. Sensitivity analyses demonstrated that this accurate operational model provides an alternative method for mapping field surface heat fluxes with satisfactory performance.

  11. Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model

    Science.gov (United States)

    Decharme, Bertrand; Brun, Eric; Boone, Aaron; Delire, Christine; Le Moigne, Patrick; Morin, Samuel

    2016-04-01

    In this study we analyzed how an improved representation of snowpack processes and soil properties in the multilayer snow and soil schemes of the Interaction Soil-Biosphere-Atmosphere (ISBA) land surface model impacts the simulation of soil temperature profiles over northern Eurasian regions. For this purpose, we refine ISBA's snow layering algorithm and propose a parameterization of snow albedo and snow compaction/densification adapted from the detailed Crocus snowpack model. We also include a dependency on soil organic carbon content for ISBA's hydraulic and thermal soil properties. First, changes in the snowpack parameterization are evaluated against snow depth, snow water equivalent, surface albedo, and soil temperature at a 10 cm depth observed at the Col de Porte field site in the French Alps. Next, the new model version including all of the changes is used over northern Eurasia to evaluate the model's ability to simulate the snow depth, the soil temperature profile, and the permafrost characteristics. The results confirm that an adequate simulation of snow layering and snow compaction/densification significantly impacts the snowpack characteristics and the soil temperature profile during winter, while the impact of the more accurate snow albedo computation is dominant during the spring. In summer, the accounting for the effect of soil organic carbon on hydraulic and thermal soil properties improves the simulation of the soil temperature profile. Finally, the results confirm that this last process strongly influences the simulation of the permafrost active layer thickness and its spatial distribution.

  12. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    Science.gov (United States)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.

  13. Mathematical modeling of temperature mapping over skin surface and its implementation in thermal disease diagnostics.

    Science.gov (United States)

    Deng, Zhong-Shan; Liu, Jing

    2004-09-01

    In non-invasive thermal diagnostics, accurate correlations between the thermal image on skin surface and interior human pathophysiology are often desired, which require general solutions for the bioheat equation. In this study, the Monte Carlo method was implemented to solve the transient three-dimensional bio-heat transfer problem with non-linear boundary conditions (simultaneously with convection, radiation and evaporation) and space-dependent thermal physiological parameters. Detailed computations indicated that the thermal states of biological bodies, reflecting physiological conditions, could be correlated to the temperature or heat flux mapping recorded at the skin surface. The effect of the skin emissivity and humidity, the convective heat transfer coefficient, the relative humidity and temperature of the surrounding air, the metabolic rate and blood perfusion rate in the tumor, and the tumor size and number on the sensitivity of thermography are comprehensively investigated. Moreover, several thermal criteria for disease diagnostic were proposed based on statistical principles. Implementations of this study for the clinical thermal diagnostics are discussed.

  14. Advancing the retrievals of surface emissivity by modelling the spatial distribution of temperature in the thermal hyperspectral scene

    Science.gov (United States)

    Shimoni, M.; Haelterman, R.; Lodewyckx, P.

    2016-05-01

    Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are commonly retrieved from thermal hyperspectral imaging. However, their retrieval is not a straightforward procedure because the mathematical problem is ill-posed. This procedure becomes more challenging in an urban area where the spatial distribution of temperature varies substantially in space and time. For assessing the influence of several spatial variances on the deviation of the temperature in the scene, a statistical model is created. The model was tested using several images from various times in the day and was validated using in-situ measurements. The results highlight the importance of the geometry of the scene and its setting relative to the position of the sun during day time. It also shows that when the position of the sun is in zenith, the main contribution to the thermal distribution in the scene is the thermal capacity of the landcover materials. In this paper we propose a new Temperature and Emissivity Separation (TES) method which integrates 3D surface and landcover information from LIDAR and VNIR hyperspectral imaging data in an attempt to improve the TES procedure for a thermal hyperspectral scene. The experimental results prove the high accuracy of the proposed method in comparison to another conventional TES model.

  15. Impact of Rain Snow Threshold Temperature on Snow Depth Simulation in Land Surface and Regional Atmospheric Models

    Institute of Scientific and Technical Information of China (English)

    WEN Lijuan; Nidhi NAGABHATLA; L(U) Shihua; Shih-Yu WANG

    2013-01-01

    This study investigates the impact of rain snow threshold (RST) temperatures on snow depth simulation using the Community Land Model (CLM) and the Weather Research and Forecasting model (WRF coupled with the CLM and hereafter referred to as WRF_CLM),and the difference in impacts.Simulations were performed from 17 December 1994 to 30 May 1995 in the French Alps.Results showed that both the CLM and the WRF_CLM were able to represent a fair simulation of snow depth with actual terrain height and 2.5℃ RST temperature.When six RST methods were applied to the simulation using WRF_CLM,the simulated snow depth was the closest to observations using 2.5℃ RST temperature,followed by that with Pipes',USACE,Kienzle's,Dai's,and 0℃ RST temperature methods.In the case of using CLM,simulated snow depth was the closest to the observation with Dai's method,followed by with USACE,Pipes',2.5℃ RST temperature,Kienzle's,and 0℃ RST temperature method.The snow depth simulation using the WRF_CLM was comparatively sensitive to changes in RST temperatures,because the RST temperature was not only the factor to partition snow and rainfall.In addition,the simulated snow related to RST temperature could induce a significant feedback by influencing the meteorological variables forcing the land surface model in WRF_CLM.In comparison,the above variables did not change with changes in RST in CLM.Impacts of RST temperatures on snow depth simulation could also be influenced by the patterns of temperature and precipitation,spatial resolution,and input terrain heights.

  16. Modeling directional effects in land surface temperature derived from geostationary satellite data

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander

    varying magnitude and sign on both diurnal and seasonal scales, which will have implications if using LST products in downstream applications like hydrological or soil vegetation atmosphere transfer (SVAT) models. The directional effects will cause uncertainties in LST estimates that are different...... in terms of timing than the uncertainties in data from polar orbiting sensors, which will cause discrepancies between measurements from the two types of sensors. An assessment of the performance of current LST algorithms from MSG SEVIRI for semi-arid West Africa was carried out, using data from two field...... the illumination geometry changes both over the course of the day and with the seasons. In the present study, the directional effects are assessed at different scales using a modeling approach. The model applied, the Modified Geometry Projection (MGP) model, represents the surface as a composite of four components...

  17. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    Science.gov (United States)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  18. Spatial Modeling of Urban Vegetation and Land Surface Temperature: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Chudong Huang

    2015-07-01

    Full Text Available The coupling relationship between urban vegetation and land surface temperature (LST has been heatedly debated in a variety of environmental studies. This paper studies the urban vegetation information and LST by utilizing a series of remote sensing imagery covering the period from 1990 to 2007. Their coupling relationship is analyzed, in order to provide the basis for ecological planning and environment protection. The results show that the normalized difference vegetation index (NDVI, urban vegetation abundance (UVA and urban forest abundance (UFA are negatively correlated with LST, which means that both urban vegetation and urban forest are capable in decreasing LST. The apparent influence of urban vegetation and urban forest on LST varies with the spatial resolution of the imagery, and peaks at the resolutions ranging from 90 m to 120 m.

  19. Temperature dependence of surface nanobubbles

    NARCIS (Netherlands)

    Berkelaar, R.P.; Seddon, James Richard Thorley; Zandvliet, Henricus J.W.; Lohse, Detlef

    2012-01-01

    The temperature dependence of nanobubbles was investigated experimentally using atomic force microscopy. By scanning the same area of the surface at temperatures from 51 °C to 25 °C it was possible to track geometrical changes of individual nanobubbles as the temperature was decreased.

  20. A simple model for the short-time evolution of near-surface current and temperature profiles

    CERN Document Server

    Jenkins, A D; Jenkins, Alastair D.; Ward, Brian

    2005-01-01

    A simple analytical/numerical model has been developed for computing the evolution, over periods of up to a few hours, of the current and temperature profile in the upper layer of the ocean. The model is based upon conservation laws for heat and momentum, and employs an eddy diffusion parameterisation which is dependent on both the wind speed and the wind stress applied at the sea surface. Other parameters such as the bulk-skin surface temperature difference and CO$_2$ flux are determined by application of the Molecular Oceanic Boundary Layer Model (MOBLAM) of Schluessel and Soloviev. A similar model, for the current profile only, predicts a temporary increase in wave breaking intensity and decrease in wave height under conditions where the wind speed increases suddenly, such as, for example, during gusts and squalls. The model results are compared with measurements from the lagrangian Skin Depth Experimental Profiler (SkinDeEP) surface profiling instrument made during the 1999 MOCE-5 field experiment in the ...

  1. The TX-model - a quantitative heat loss analysis of district heating pipes by means of IR surface temperature measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zinki, Heimo [ZW Energiteknik, Nykoeping (Sweden)

    1996-11-01

    The aim of this study was to investigate the possibility of analysing the temperature profile at the ground surface above buried district heating pipes in such a way that would enable the quantitative determination of heat loss from the pair of pipes. In practical applications, it is supposed that this temperature profile is generated by means of advanced IR-thermography. For this purpose, the principle of the TX - model has been developed, based on the fact that the heat losses from pipes buried in the ground have a temperature signature on the ground surface. Qualitative analysis of this temperature signature is very well known and in practical use for detecting leaks from pipes. These techniques primarily make use of relative changes of the temperature pattern along the pipe. In the quantitative heat loss analysis, however, it is presumed that the temperature profile across the pipes is related to the pipe heat loss per unit length. The basic idea is that the integral of the temperature profile perpendicular to the pipe, called TX, is a function of the heat loss, but is also affected by other parameters such as burial depth, heat diffusivity, wind, precipitation and so on. In order to analyse the parameters influencing the TX- factor, a simulation model for the energy balance at the ground surface has been developed. This model includes the heat flow from the pipe to the surface and the heat exchange at the surface with the environment due to convection, latent heat change, solar and long wave radiation. The simulation gives the surprising result that the TX factor is by and large unaffected during the course of a day even when the sun is shining, as long as other climate conditions are relatively stable (low wind, no rain, no shadows). The results from the simulations were verified at different sites in Denmark, Finland, Sweden and USA through a co-operative research program organised and partially financed by the IEA District Heating Programme, Task III, and

  2. Surface wave effects on water temperature in the Baltic Sea: simulations with the coupled NEMO-WAM model

    Science.gov (United States)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-08-01

    Coupled circulation (NEMO) and wave model (WAM) system was used to study the effects of surface ocean waves on water temperature distribution and heat exchange at regional scale (the Baltic Sea). Four scenarios—including Stokes-Coriolis force, sea-state dependent energy flux (additional turbulent kinetic energy due to breaking waves), sea-state dependent momentum flux and the combination these forcings—were simulated to test the impact of different terms on simulated temperature distribution. The scenario simulations were compared to a control simulation, which included a constant wave-breaking coefficient, but otherwise was without any wave effects. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwelling's. Overall, when all three wave effects were accounted for, did the estimates of temperature improve compared to control simulation. During the summer, the wave-induced water temperature changes were up to 1 °C. In northern parts of the Baltic Sea, a warming of the surface layer occurs in the wave included simulations in summer months. This in turn reduces the cold bias between simulated and measured data, e.g. the control simulation was too cold compared to measurements. The warming is related to sea-state dependent energy flux. This implies that a spatio-temporally varying wave-breaking coefficient is necessary, because it depends on actual sea state. Wave-induced cooling is mostly observed in near-coastal areas and is the result of intensified upwelling in the scenario, when Stokes-Coriolis forcing is accounted for. Accounting for sea-state dependent momentum flux results in modified heat exchange at the water-air boundary which consequently leads to warming of surface water compared to control simulation.

  3. Variation of Surface Temperature during the Last Millennium in a Simulation with the FGOALS-g1 Climate System Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; Laurent LI; ZHOU Tianjun; XIN Xiaoge

    2013-01-01

    A reasonable past millennial climate simulation relies heavily on the specified external forcings,including both natural and anthropogenic forcing agents.In this paper,we examine the surface temperature responses to specified external forcing agents in a millennium-scale transient climate simulation with the fast version of LASG IAP Flexible Global Ocean-Atmosphere-Land System model (FGOALS-gl) developed in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics (LASG/IAP).The model presents a reasonable performance in comparison with reconstructions of surface temperature.Differentiated from significant changes in the 20th century at the global scale,changes during the natural-forcing-dominant period are mainly manifested in the Northern Hemisphere.Seasonally,modeled significant changes are more pronounced during the wintertime at higher latitudes.This may be a manifestation of polar amplification associated with sea-ice-temperature positive feedback.The climate responses to total external forcings can explain about half of the climate variance during the whole millennium period,especially at decadal timescales.Surface temperature in the Antarctic shows heterogeneous and insignificant changes during the preindustrial period and the climate response to external forcings is undetectable due to the strong internal variability.The model response to specified external forcings is modulated by cloud radiative forcing (CRF).The CRF acts against the fluctuations of external forcings.Effects of clouds are manifested in shortwave radiation by changes in cloud water during the natural-forcing-dominant period,but mainly in longwave radiation by a decrease in cloud amount in the anthropogenic-forcing-dominant period.

  4. The impact of sea surface temperature bias on equatorial Atlantic interannual variability in partially coupled model experiments

    Science.gov (United States)

    Ding, Hui; Greatbatch, Richard J.; Latif, Mojib; Park, Wonsun

    2015-07-01

    We examine the impact of sea surface temperature (SST) bias on interannual variability during boreal summer over the equatorial Atlantic using two suites of partially coupled model (PCM) experiments with and without surface heat flux correction. In the experiments, surface wind stress anomalies are specified from observations while the thermodynamic coupling between the atmospheric and oceanic components is still active as in the fully coupled model. The results show that the PCM can capture around 50% of the observed variability associated with the Atlantic Niño from 1958 to 2013, but only when the bias is substantially reduced using heat flux correction, with no skill otherwise. We further show that ocean dynamics explain a large part of the SST variability in the eastern equatorial Atlantic in both observations (50-60%) and the PCM experiments (50-70%) with heat flux correction, implying that the seasonal predictability potential may be higher than currently thought.

  5. Modelling Angular Dependencies in Land Surface Temperatures From the SEVIRI Instrument onboard the Geostationary Meteosat Second Generation Satellites

    DEFF Research Database (Denmark)

    Rasmussen, Mads Olander; Pinheiro, AC; Proud, Simon Richard

    2010-01-01

    Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence on vegetat......Satellite-based estimates of land surface temperature (LST) are widely applied as an input to models. A model output is often very sensitive to error in the input data, and high-quality inputs are therefore essential. One of the main sources of errors in LST estimates is the dependence...... on vegetation structure and viewing and illumination geometry. Despite this, these effects are not considered in current operational LST products from neither polar-orbiting nor geostationary satellites. In this paper, we simulate the angular dependence that can be expected when estimating LST with the viewing...... by different land covers. The results show that the sun-target-sensor geometry plays a significant role in the estimated temperature, with variations strictly due to the angular configuration of more than ±3°C in some cases. On the continental scale, the average error is small except in hot-spot conditions...

  6. Modelling dengue fever risk in the State of Yucatan, Mexico using regional-scale satellite-derived sea surface temperature.

    Science.gov (United States)

    Laureano-Rosario, Abdiel E; Garcia-Rejon, Julian E; Gomez-Carro, Salvador; Farfan-Ale, Jose A; Muller-Karger, Frank E

    2017-08-01

    Accurately predicting vector-borne diseases, such as dengue fever, is essential for communities worldwide. Changes in environmental parameters such as precipitation, air temperature, and humidity are known to influence dengue fever dynamics. Furthermore, previous studies have shown how oceanographic variables, such as El Niño Southern Oscillation (ENSO)-related sea surface temperature from the Pacific Ocean, influences dengue fever in the Americas. However, literature is lacking on the use of regional-scale satellite-derived sea surface temperature (SST) to assess its relationship with dengue fever in coastal areas. Data on confirmed dengue cases, demographics, precipitation, and air temperature were collected. Incidence of weekly dengue cases was examined. Stepwise multiple regression analyses (AIC model selection) were used to assess which environmental variables best explained increased dengue incidence rates. SST, minimum air temperature, precipitation, and humidity substantially explained 42% of the observed variation (r(2)=0.42). Infectious diseases are characterized by the influence of past cases on current cases and results show that previous dengue cases alone explained 89% of the variation. Ordinary least-squares analyses showed a positive trend of 0.20±0.03°C in SST from 2006 to 2015. An important element of this study is to help develop strategic recommendations for public health officials in Mexico by providing a simple early warning capability for dengue incidence. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Using Bayesian Model Averaging (BMA to calibrate probabilistic surface temperature forecasts over Iran

    Directory of Open Access Journals (Sweden)

    I. Soltanzadeh

    2011-07-01

    Full Text Available Using Bayesian Model Averaging (BMA, an attempt was made to obtain calibrated probabilistic numerical forecasts of 2-m temperature over Iran. The ensemble employs three limited area models (WRF, MM5 and HRM, with WRF used with five different configurations. Initial and boundary conditions for MM5 and WRF are obtained from the National Centers for Environmental Prediction (NCEP Global Forecast System (GFS and for HRM the initial and boundary conditions come from analysis of Global Model Europe (GME of the German Weather Service. The resulting ensemble of seven members was run for a period of 6 months (from December 2008 to May 2009 over Iran. The 48-h raw ensemble outputs were calibrated using BMA technique for 120 days using a 40 days training sample of forecasts and relative verification data.

    The calibrated probabilistic forecasts were assessed using rank histogram and attribute diagrams. Results showed that application of BMA improved the reliability of the raw ensemble. Using the weighted ensemble mean forecast as a deterministic forecast it was found that the deterministic-style BMA forecasts performed usually better than the best member's deterministic forecast.

  8. Enhanced Vertical Atmosphere Resolution improves Climate Model Simulation of Tropical Atlantic Sea Surface Temperature and Interannual Variability

    Science.gov (United States)

    Harlass, Jan; Latif, Mojib; Park, Wonsun

    2015-04-01

    A long-standing problem in climate modelling is the inaccurate simulation of tropical Atlantic (TA) sea surface temperature (SST), known as the TA SST bias. Basically all state-of-the-art global climate models suffer from a reversed equatorial zonal SST gradient in the Atlantic and too warm surface temperatures in the Benguela upwelling region. These biases have far-reaching consequences for climate prediction as they go along, among others, with erroneous precipitation patterns. We used the coupled atmosphere-ocean-sea ice Kiel Climate Model (KCM) to conduct experiments with varying atmosphere model resolutions, while keeping the ocean component unchanged. Atmosphere model resolution has been increased not only in the horizontal (from T42 to T159), but also in the vertical (from L31 to L62). We show that the TA SST bias can be largely reduced by increasing both the atmospheric horizontal and vertical resolution. In particular, the zonal SST gradient along the equator is simulated with the correct sign. At high horizontal resolution, enhanced vertical resolution is indispensable to substantially improve the simulation of TA SST by enhancing the surface wind stress. This also reduces biases in the upper ocean thermal structure and precipitation. A major step forward is a more northward position of the Intertropical Convergence Zone. Although enhanced horizontal resolution alone leads to some improvement in the mean climate, typical bias patterns, characterized by a reversed zonal SST gradient at the equator and too warm SST along the Benguela Coast, remain. Notable changes in the pattern of interannual SST variability occur with increased resolution. Seasonal phase locking is captured only at high vertical resolution, although a phase lag of 2 months still exists. Our study highlights the importance of sufficiently high atmospheric model resolution and, equally important, a consistent choice of horizontal and vertical model resolution.

  9. Examining the Impact of Greenspace Patterns on Land Surface Temperature by Coupling LiDAR Data with a CFD Model

    Directory of Open Access Journals (Sweden)

    Weizhong Su

    2014-09-01

    Full Text Available Understanding the link between greenspace patterns and land surface temperature is very important for mitigating the urban heat island (UHI effect and is also useful for planners and decision-makers for providing a sustainable design for urban greenspace. Although coupling remote sensing data with a computational fluid dynamics (CFD model has widely been used to examine interactions between UHI and greenspace patterns, the paper aims to examine the impact of five theoretical models of greenspace patterns on land surface temperature based on the improvement of the accuracy of CFD modeling by the combination of LiDAR data with remote sensing images to build a 3D urban model. The simulated results demonstrated that the zonal pattern always had the obvious cooling effects when there are no large buildings or terrain obstacles. For ambient environments, the building or terrain obstacles and the type of greenspace have the hugest influence on mitigating the UHI, but the greenspace area behaves as having the least cooling effect. A dotted greenspace pattern shows the best cooling effect in the central area or residential district within a city, while a radial and a wedge pattern may result in a “cold source” for the urban thermal environment.

  10. On the contribution of lakes in predicting near-surface temperature in a global weather forecasting model

    Directory of Open Access Journals (Sweden)

    T. Stockdale

    2012-02-01

    Full Text Available The impact of lakes in numerical weather prediction is investigated in a set of global simulations performed with the ECMWF Integrated Forecasting System (IFS. A Fresh shallow-water Lake model (FLake is introduced allowing the coupling of both resolved and subgrid lakes (those that occupy less than 50% of a grid-box to the IFS atmospheric model. Global fields for the lake ancillary conditions (namely lake cover and lake depth, as well as initial conditions for the lake physical state, have been derived to initialise the forecast experiments. The procedure for initialising the lake variables is described and verified with particular emphasis on the importance of surface water temperature and freezing conditions. The response of short-range near surface temperature to the representation of lakes is examined in a set of forecast experiments covering one full year. It is shown that the impact of subgrid lakes is beneficial, reducing forecast error over the Northern territories of Canada and over Scandinavia particularly in spring and summer seasons. This is mainly attributed to the lake thermal effect, which delays the temperature response to seasonal radiation forcing.

  11. Numerical modelling of temperature fields in the flow boiling liquid through a vertical minichannel with an enhanced heating surface

    Directory of Open Access Journals (Sweden)

    Hożejowska Sylwia

    2014-03-01

    Full Text Available The paper presents results of heat transfer research on flow boiling in a rectangular minichannel positioned vertically, with an enhanced surface. One of the channel walls was made of thin foil powered by direct current. This foil is enhanced on the side contacting fluid in the minichannel. It is possible to observe both surfaces of the minichannel through two openings covered with glass panes. One allows detecting temperature of the plain side of the foil by liquid crystal thermography. The opposite surface of the minichannel (from the enhanced side of the foil can be observed through the other glass pane. The observations of the flow structures allowed to calculate the void fraction for some cross-sections of selected two phase flow images. In mathematical modelling of the considered process stationary heat transfer in a glass pane, heating foil and boiling liquid can be described with Laplace equation, Poisson equation and energy equation, respectively. For completeness of the model a corresponding system of boundary conditions was given. The two-dimensional temperature fields of glass pane, heating foil and fluid was computed with the Trefftz method. The equalizing calculus used to smooth the measured data has reduced errors.

  12. Assimilation of Sea Surface Temperature in a doubly, two-way nested primitive equation model of the Ligurian Sea

    Science.gov (United States)

    Barth, A.; Alvera-Azcarate, A.; Rixen, M.; Beckers, J.-M.; Testut, C.-E.; Brankart, J.-M.; Brasseur, P.

    2003-04-01

    The GHER 3D primitive equation model is implemented with three different resolutions: a low resolution model (1/4^o) covering the whole Mediterranean Sea, an intermediate resolution model (1/20^o) of the Liguro-Provençal basin and a high resolution model (1/60^o) simulating the fine mesoscale structures in the Ligurian Sea. Boundary conditions and the averaged fields (feedback) are exchanged between two successive nesting levels. The model of the Ligurian Sea is also coupled with the assimilation package SESAM. It allows to assimilate satellite data and in situ observations using the local adaptative SEEK (Singular Evolutive Extended Kalman) filter. Instead of evolving the error space by the numerically expensive Lyapunov equation, a simplified algebraic equation depending on the misfit between observation and model forecast is used. Starting from the 1st January 1998 the low and intermediate resolution models are spun up for 18 months. The initial conditions for the Ligurian Sea are interpolated from the intermediate resolution model. The three models are then integrated until August 1999. During this period AVHRR Sea Surface Temperature of the Ligurian Sea is assimilated. The results are validated by using CTD and XBT profiles of the SIRENA cruise from the SACLANT Center. The overall objective of this study is pre-operational. It should help to identify limitations and weaknesses of forecasting methods and to suggest improvements of existing operational models.

  13. The Utility of Remotely-Sensed Land Surface Temperature from Multiple Platforms For Testing Distributed Hydrologic Models over Complex Terrain

    Science.gov (United States)

    Xiang, T.; Vivoni, E. R.; Gochis, D. J.

    2011-12-01

    Land surface temperature (LST) is a key parameter in watershed energy and water budgets that is relatively unexplored as a validation metric for distributed hydrologic models. Ground-based or remotely-sensed LST datasets can provide insights into a model's ability in reproducing water and energy fluxes across a large range of terrain, vegetation, soil and meteorological conditions. As a result, spatiotemporal LST observations can serve as a strong constraint for distributed simulations and can augment other available in-situ data. LST fields are particular useful in mountainous areas where temperature varies with terrain properties and time-variable surface conditions. In this study, we collect and process remotely-sensed fields from several satellite platforms - Landsat 5/7, MODIS and ASTER - to capture spatiotemporal LST dynamics at multiple resolutions and with frequent repeat visits. We focus our analysis of these fields over the Sierra Los Locos basin (~100 km2) in Sonora, Mexico, for a period encompassing the Soil Moisture Experiment in 2004 and the North American Monsoon Experiment (SMEX04-NAME). Satellite observations are verified using a limited set of ground data from manual sampling at 30 locations and continuous measurements at 2 sites. First, we utilize the remotely-sensed fields to understand the summer seasonal evolution of LST in the basin in response to the arrival of summer storms and the vigorous ecosystem greening organized along elevation bands. Then, we utilize the ground and remote-sensing datasets to test the distributed predictions of the TIN-based Real-time Integrated Basin Simulator (tRIBS) under conditions accounting static and dynamic vegetation patterns. Basin-averaged and distributed comparisons are carried out for two different terrain products (INEGI aerial photogrammetry and ASTER stereo processing) used to derive the distributed model domain. Results from the comparisons are discussed in light of the utility of remotely-sensed LST

  14. Atmospheric circulation in regional climate models over Central Europe: links to surface air temperature and the influence of driving data

    Energy Technology Data Exchange (ETDEWEB)

    Plavcova, Eva [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic); Charles University, Faculty of Mathematics and Physics, Prague (Czech Republic); Kysely, Jan [Institute of Atmospheric Physics, Academy of Sciences of the Czech Republic, Prague 4 (Czech Republic); Technical University, Department of Applied Mathematics, Liberec (Czech Republic)

    2012-10-15

    The study examines simulation of atmospheric circulation, represented by circulation indices (flow direction, strength and vorticity), and links between circulation and daily surface air temperatures in regional climate models (RCMs) over Central Europe. We explore control simulations of five high-resolution RCMs from the ENSEMBLES project driven by re-analysis (ERA-40) and the same global climate model (ECHAM5 GCM) plus of one RCM (RCA) driven by different GCMs. The aims are to (1) identify errors in RCM-simulated distributions of circulation indices in individual seasons, (2) identify errors in simulated temperatures under particular circulation indices, and (3) compare performance of individual RCMs with respect to the driving data. Although most of the RCMs qualitatively reflect observed distributions of the airflow indices, each produces distributions significantly different from the observations. General biases include overestimation of the frequency of strong flow days and of strong cyclonic vorticity. Some circulation biases obviously propagate from the driving data. ECHAM5 and all simulations driven by ECHAM5 underestimate frequency of easterly flow, mainly in summer. Except for HIRHAM, however, all RCMs driven by ECHAM5 improve on the driving GCM in simulating atmospheric circulation. The influence on circulation characteristics in the nested RCM differs between GCMs, as demonstrated in a set of RCA simulations with different driving data. The driving data control on circulation in RCA is particularly weak for the BCM GCM, in which case RCA substantially modifies (but does not improve) the circulation from the driving data in both winter and summer. Those RCMs with the most distorted atmospheric circulation are HIRHAM driven by ECHAM5 and RCA driven by BCM. Relatively strong relationships between circulation indices and surface air temperatures were found in the observed data for Central Europe. The links differ by season and are usually stronger for

  15. Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: implications for global temperature projections

    Science.gov (United States)

    Power, Scott; Delage, François; Wang, Guomin; Smith, Ian; Kociuba, Greg

    2016-09-01

    Observed surface temperature trends over the period 1998-2012/2014 have attracted a great deal of interest because of an apparent slowdown in the rate of global warming, and contrasts between climate model simulations and observations of such trends. Many studies have addressed the statistical significance of these relatively short-trends, whether they indicate a possible bias in the model values and the implications for global warming generally. Here we re-examine these issues, but as they relate to changes over much longer-term changes. We find that on multi-decadal time scales there is little evidence for any change in the observed global warming rate, but some evidence for a recent temporary slowdown in the warming rate in the Pacific. This multi-decadal slowdown can be partly explained by a cool phase of the Interdecadal Pacific Oscillation and a short-term excess of La Niña events. We also analyse historical and projected changes in 38 CMIP climate models. All of the model simulations examined simulate multi-decadal warming in the Pacific over the past half-century that exceeds observed values. This difference cannot be fully explained by observed internal multi-decadal climate variability, even if allowance is made for an apparent tendency for models to underestimate internal multi-decadal variability in the Pacific. Models which simulate the greatest global warming over the past half-century also project warming that is among the highest of all models by the end of the twenty-first century, under both low and high greenhouse gas emission scenarios. Given that the same models are poorest in representing observed multi-decadal temperature change, confidence in the highest projections is reduced.

  16. Apparent limitations in the ability of CMIP5 climate models to simulate recent multi-decadal change in surface temperature: implications for global temperature projections

    Science.gov (United States)

    Power, Scott; Delage, François; Wang, Guomin; Smith, Ian; Kociuba, Greg

    2017-07-01

    Observed surface temperature trends over the period 1998-2012/2014 have attracted a great deal of interest because of an apparent slowdown in the rate of global warming, and contrasts between climate model simulations and observations of such trends. Many studies have addressed the statistical significance of these relatively short-trends, whether they indicate a possible bias in the model values and the implications for global warming generally. Here we re-examine these issues, but as they relate to changes over much longer-term changes. We find that on multi- decadal time scales there is little evidence for any change in the observed global warming rate, but some evidence for a recent temporary slowdown in the warming rate in the Pacific. This multi-decadal slowdown can be partly explained by a cool phase of the Interdecadal Pacific Oscillation and a short-term excess of La Niña events. We also analyse historical and projected changes in 38 CMIP climate models. All of the model simulations examined simulate multi-decadal warming in the Pacific over the past half-century that exceeds observed values. This difference cannot be fully explained by observed internal multi-decadal climate variability, even if allowance is made for an apparent tendency for models to underestimate internal multi-decadal variability in the Pacific. Models which simulate the greatest global warming over the past half-century also project warming that is among the highest of all models by the end of the twenty-first century, under both low and high greenhouse gas emission scenarios. Given that the same models are poorest in representing observed multi-decadal temperature change, confidence in the highest projections is reduced.

  17. Diffusion Filters for Variational Data Assimilation of Sea Surface Temperature in an Intermediate Climate Model

    Science.gov (United States)

    2015-01-01

    western boundary currents, gyre systems and the Antarctic Circumpolar Current (ACC). For and , reasonable temperature gradients are also... Specially , if , is a constant, which is equivalent to an isotropic filter, we know that = , ∈ [1, − 2] , = , ∈ [1, − 2

  18. Sensitivity of Greenland Ice Sheet surface mass balance to perturbations in sea surface temperature and sea ice cover: a study with the regional climate model MAR

    Science.gov (United States)

    Noël, B.; Fettweis, X.; van de Berg, W. J.; van den Broeke, M. R.; Erpicum, M.

    2014-10-01

    During recent summers (2007-2012), several surface melt records were broken over the Greenland Ice Sheet (GrIS). The extreme summer melt resulted in part from a persistent negative phase of the North Atlantic Oscillation (NAO), favoring warmer atmospheric conditions than normal over the GrIS. Simultaneously, large anomalies in sea ice cover (SIC) and sea surface temperature (SST) were observed in the North Atlantic, suggesting a possible connection. To assess the direct impact of 2007-2012 SIC and SST anomalies on GrIS surface mass balance (SMB), a set of sensitivity experiments was carried out with the regional climate model MAR forced by ERA-Interim. These simulations suggest that perturbations in SST and SIC in the seas surrounding Greenland do not considerably impact GrIS SMB, as a result of the katabatic wind blocking effect. These offshore-directed winds prevent oceanic near-surface air, influenced by SIC and SST anomalies, from penetrating far inland. Therefore, the ice sheet SMB response is restricted to coastal regions, where katabatic winds cease. A topic for further investigation is how anomalies in SIC and SST might have indirectly affected the surface melt by changing the general circulation in the North Atlantic region, hence favoring more frequent warm air advection towards the GrIS.

  19. A model study of the seasonal cycle of the Arabian Sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Shetye, S.R.

    The annual variation of the SST along a zonal strip from the coast of Somalia to the southwest coast of India was simulated using available data (monthly-mean heat and momentum fluxes across the air-sea interface, surface advective field, etc...

  20. Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach

    Science.gov (United States)

    Gilbert, A.; Vincent, C.; Six, D.; Wagnon, P.; Piard, L.; Ginot, P.

    2014-04-01

    Analysis of the thermal regime of glaciers is crucial for glacier hazard assessment, especially in the context of a changing climate. In particular, the transient thermal regime of cold accumulation zones needs to be modeled. A modeling approach has therefore been developed to determine this thermal regime using only near-surface boundary conditions coming from meteorological observations. In the first step, a surface energy balance (SEB) model accounting for water percolation and radiation penetration in firn was applied to identify the main processes that control the subsurface temperatures in cold firn. Results agree well with subsurface temperatures measured at Col du Dôme (4250 m above sea level (a.s.l.)), France. In the second step, a simplified model using only daily mean air temperature and potential solar radiation was developed. This model properly simulates the spatial variability of surface melting and subsurface firn temperatures and was used to accurately reconstruct the deep borehole temperature profiles measured at Col du Dôme. Results show that percolation and refreezing are efficient processes for the transfer of energy from the surface to underlying layers. However, they are not responsible for any higher energy uptake at the surface, which is exclusively triggered by increasing energy flux from the atmosphere due to SEB changes when surface temperatures reach 0 °C. The resulting enhanced energy uptake makes cold accumulation zones very vulnerable to air temperature rise.

  1. Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps: from a physical to a semi-parameterized approach

    Directory of Open Access Journals (Sweden)

    A. Gilbert

    2013-11-01

    Full Text Available Analysis of the thermal regime of glaciers is crucial for glacier hazard assessment, especially in the context of a changing climate. In particular, the transient thermal regime of cold accumulation zones needs to be modeled. A modeling approach has therefore been developed to determine this thermal regime using only near-surface boundary conditions coming from meteorological observations. In the first step, a surface energy-balance (SEB model accounting for water percolation was applied to identify the main processes that control the subsurface temperatures in cold firn. Results agree well with subsurface temperatures measured at Col du Dôme (4250 m a.s.l., France. In the second step, a simplified model using only daily mean air temperature and potential solar radiation was developed. This model properly simulates the spatial variability of surface melting and subsurface firn temperatures and was used to accurately reconstruct the deep borehole temperature profiles measured at Col du Dôme. Results show that percolation and refreezing are efficient processes for the transfer of energy from the surface to underlying layers. However, they are not responsible for any higher energy uptake at the surface, which is exclusively triggered by increasing energy flux from the atmosphere due to SEB changes when surface temperature reach 0 °C. The resulting enhanced energy uptake makes cold accumulation zones very vulnerable to air temperature rise.

  2. The surface temperature of Europa

    CERN Document Server

    Ashkenazy, Yosef

    2016-01-01

    Previous estimates of the surface temperature of Jupiter's moon, Europa, neglected the effect of the eccentricity of Jupiter's orbit around the Sun, the effect of the eclipse of Europa (i.e., the relative time that Europa is within the shadow of Jupiter), and the effect of Europa's internal heating. Here we estimate the surface temperature of Europa, when Europa's obliquity, eclipse and internal heating, as well as the eccentricity of Jupiter, are all taken into account. For a typical internal heating rate of 0.05 W/m$^2$ (corresponding to an ice thickness of about 10 kms), the equator, pole, and global mean surface temperatures are 101.7 K, 45.26 K, and 94.75 K, respectively. We found that the temperature at the high latitudes is significantly affected by the internal heating. We also studied the effect of the internal heating on the mean thickness of Europa's icy shell and conclude that the polar region temperature can be used to constrain the internal heating and the depth of the ice. Our approach and form...

  3. Can an Atmospherically Forced Ocean Model Accurately Simulate Sea Surface Temperature During ENSO Events?

    Science.gov (United States)

    2010-01-01

    and no date-specific assimilation of any data type. The ability of the model in simulating temporal variations of SST anomalies is discussed by...SST data and no date-specific assimilation of any datatype. The ability of the model in simulating temporal variations of SST anomalies is...directly provided by the originator. This clima - tology does not take the existence of ice into account (i.e. treats it as a data void). Thus, we

  4. Modelling the Relationship Between Land Surface Temperature and Landscape Patterns of Land Use Land Cover Classification Using Multi Linear Regression Models

    Science.gov (United States)

    Bernales, A. M.; Antolihao, J. A.; Samonte, C.; Campomanes, F.; Rojas, R. J.; dela Serna, A. M.; Silapan, J.

    2016-06-01

    The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC) and land surface temperature (LST). Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric "Effective mesh size" was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas) and looking for common predictors between LSTs of these two different farming periods.

  5. Single and Double ITCZ in Aqua-Planet Models with Globally Uniform Sea Surface Temperature and Solar Insolation: An Interpretation

    Science.gov (United States)

    Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)

    2001-01-01

    It has been known for more than a decade that an aqua-planet model with globally uniform sea surface temperature and solar insolation angle can generate ITCZ (intertropical convergence zone). Previous studies have shown that the ITCZ under such model settings can be changed between a single ITCZ over the equator and a double ITCZ straddling the equator through one of several measures. These measures include switching to a different cumulus parameterization scheme, changes within the cumulus parameterization scheme, and changes in other aspects of the model design such as horizontal resolution. In this paper an interpretation for these findings is offered. The latitudinal location of the ITCZ is the latitude where the balance of two types of attraction on the ITCZ, both due to earth's rotation, exists. The first type is equator-ward and is directly related to the earth's rotation and thus not sensitive to model design changes. The second type is poleward and is related to the convective circulation and thus is sensitive to model design changes. Due to the shape of the attractors, the balance of the two types of attractions is reached either at the equator or more than 10 degrees away from the equator. The former case results in a single ITCZ over the equator and the latter case a double ITCZ straddling the equator.

  6. Urban aerosol effects on surface insolation and surface temperature

    Science.gov (United States)

    Jin, M.; Burian, S. J.; Remer, L. A.; Shepherd, M. J.

    2007-12-01

    Urban aerosol particulates may play a fundamental role in urban microclimates and city-generated mesoscale circulations via its effects on energy balance of the surface. Key questions that need to be addressed include: (1) How do these particles affect the amount of solar energy reaching the surface and resulting surface temperature? (2) Is the effect the same in all cities? and (3) How does it vary from city to city? Using NASA AERONET in-situ observations, a radiative transfer model, and a regional climate mode (MM5), we assess aerosol effects on surface insolation and surf ace temperature for dense urban-polluted regions. Two big cities, one in a developing country (Beijing, P.R. China) and another in developed country (New York City, USA), are selected for inter-comparison. The study reveals that aerosol effects on surface temperature depends largely on aerosols' optical and chemical properties as well as atmosphere and land surface conditions, such as humidity and land cover. Therefore, the actual magnitudes of aerosol effects differ from city to city. Aerosol measurements from AERONET show both average and extreme cases for aerosol impacts on surface insolation. In general, aerosols reduce surface insolation by 30Wm-2. Nevertheless, in extreme cases, such reduction can exceed 100 Wm-2. Consequently, this reduces surface skin temperature 2-10C in an urban environment.

  7. Spatial variability of the Black Sea surface temperature from high resolution modeling and satellite measurements

    Science.gov (United States)

    Mizyuk, Artem; Senderov, Maxim; Korotaev, Gennady

    2016-04-01

    Large number of numerical ocean models were implemented for the Black Sea basin during last two decades. They reproduce rather similar structure of synoptical variability of the circulation. Since 00-s numerical studies of the mesoscale structure are carried out using high performance computing (HPC). With the growing capacity of computing resources it is now possible to reconstruct the Black Sea currents with spatial resolution of several hundreds meters. However, how realistic these results can be? In the proposed study an attempt is made to understand which spatial scales are reproduced by ocean model in the Black Sea. Simulations are made using parallel version of NEMO (Nucleus for European Modelling of the Ocean). A two regional configurations with spatial resolutions 5 km and 2.5 km are described. Comparison of the SST from simulations with two spatial resolutions shows rather qualitative difference of the spatial structures. Results of high resolution simulation are compared also with satellite observations and observation-based products from Copernicus using spatial correlation and spectral analysis. Spatial scales of correlations functions for simulated and observed SST are rather close and differs much from satellite SST reanalysis. Evolution of spectral density for modelled SST and reanalysis showed agreed time periods of small scales intensification. Using of the spectral analysis for satellite measurements is complicated due to gaps. The research leading to this results has received funding from Russian Science Foundation (project № 15-17-20020)

  8. Cloud microphysical and rainfall responses to zonal perturbations of sea surface temperature:A cloud-resolving modeling study

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Cui; Xiaofan Li; Zhiping Zong

    2009-01-01

    The cloud microphysicai and rainfall responses to zonal perturbations of sea surface temperature (SST) are investigated by analyzing the equilibrium simulation data (from day 31-40) obtained from a series of two-dimensional cloud-resolving simulations with a zonal model domain of 768 km.Four experiments imposed by zonal SST perturbations of wavenumbers 1 (SST29ZI),2 (SST29Z2),4 (SST29Z4),and 8 (SST29Z8) are compared to the control experiment imposed by zonally uniform SST (SST29).The model domain mean SST is 29 ℃,and the two-dimensional cloud-resolving model with a cyclic lateral boundary is also imposed by zero vertical velocity and constant zonal wind.The time and model domain mean surface rain rates in SST29ZI,SST29Z2,and SST29Z8 are about 10% larger than those in SST29,whereas the mean surface rain rates in SST29Z4 and SST29 are similar.The analysis of mean surface rainfall budgets shows that local water vapor and hydrometeor changes play important roles in determining the differences and similarities in mean surface rain rate between the perturbation experiments and the control experiment.Both convective and stratiform rain rates are larger in SST29Z1 and SST29Z2 than in SST29 due to the smaller advection of rain from convective regions into raining stratiform regions and the larger vapor condensation rates associated with the larger water vapor convergence over raining stratiform regions in SST29ZI and SST29Z2.The convective rain rates are larger in SST29ZA and SST29Z8 than in SST29 because of the larger condensation rates associated with the larger water vapor convergence over convective regions in SST29Z4 and SST29Z8.The stratiform rain rates in SST29Z4 and SST29Z8 are smaller than in SST29 due to the smaller vapor condensation rates and smaller collection rates of cloud water by rain over raining stratiform regions in SST29Z4 and SST29Z8.(C) 2008 National Natural Science Foundation of China and Chinese Academy of Sciences.Published by Elsevier Limited

  9. Frost Monitoring and Forecasting Using MODIS Land Surface Temperature Data and a Numerical Weather Prediction Model Forecasts for Eastern Africa

    Science.gov (United States)

    Kabuchanga, Eric; Flores, Africa; Malaso, Susan; Mungai, John; Sakwa, Vincent; Shaka, Ayub; Limaye, Ashutosh

    2014-01-01

    Frost is a major challenge across Eastern Africa, severely impacting agricultural farms. Frost damages have wide ranging economic implications on tea and coffee farms, which represent a major economic sector. Early monitoring and forecasting will enable farmers to take preventive actions to minimize the losses. Although clearly important, timely information on when to protect crops from freezing is relatively limited. MODIS Land Surface Temperature (LST) data, derived from NASA's Terra and Aqua satellites, and 72-hr weather forecasts from the Kenya Meteorological Service's operational Weather Research Forecast model are enabling the Regional Center for Mapping of Resources for Development (RCMRD) and the Tea Research Foundation of Kenya to provide timely information to farmers in the region. This presentation will highlight an ongoing collaboration among the Kenya Meteorological Service, RCMRD, and the Tea Research Foundation of Kenya to identify frost events and provide farmers with potential frost forecasts in Eastern Africa.

  10. Five year ahead prediction of Sea Surface Temperature in the Tropical Atlantic: a comparison between IPCC climate models and simple statistical methods

    CERN Document Server

    Laepple, T; Laepple, Thomas; Jewson, Stephen

    2007-01-01

    There is a clear positive correlation between boreal summer tropical Atlantic sea-surface temperature and annual hurricane numbers. This motivates the idea of trying to predict the sea-surface temperature in order to be able to predict future hurricane activity. In previous work we have used simple statistical methods to make 5 year predictions of tropical Atlantic sea surface temperatures for this purpose. We now compare these statistical SST predictions with SST predictions made by an ensemble mean of IPCC climate models.

  11. Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models

    Science.gov (United States)

    Krishnamurti, T. N.; Kumar, Vinay; Simon, Anu; Thomas, Aype; Bhardwaj, Amit; Das, Sweta; Senroy, Soma; Roy Bhowmik, S. K.

    2016-06-01

    A major rain storm in Uttarakhand (India) caused heavy rains and major loss of life from floods and land slide during 16-18 June, 2013. The observed daily maximum rainfall rates (3-hourly) during the 16th and 17th June were 220 and 340 mm respectively. This event is addressed via sensitivity studies using a cloud resolving non-hydrostatic model with detailed microphysics. The streaming of moist air from the east-south-east and warmer air from the south-west contributed to the sustained large population and amplitude of buoyancy and the associated CAPE contributed to the longer period of heavy rains. This study addresses the concept of Buoyancy as a means for large vertical accelerations, stronger vertical motions, extreme rain rates and the mechanisms that relate to the time rates of change. A post-processing algorithm provides an analysis of time rate of change for the buoyancy. Moist air streams and warm/moist air intrusions into heavily raining clouds are part of this buoyancy enhancement framework. Improvements in modeling of the extreme rain event came from adaptive observational strategy that showed lack of moisture data sets in these vital regions. We show that a moist boundary layer near the Bay of Bengal leads to moist rivers of moisture where the horizontal convergence confines a large population of buoyancy elements with large magnitudes of buoyancy that streams towards the region of extreme orographic rains. The areas covered in this study include: (i) Use of high resolution cloud modeling (1-km), (ii) Now casting of rains using physical initialization with a Newtonian relaxation, (iii) Use of an adaptive observational strategy, (iii) Sensitivity of the evolution of fields and population of buoyancy elements to boundary layer moisture, (iv) Role of orography and details of buoyancy budget.

  12. Improving groundwater predictions utilizing seasonal precipitation forecasts from general circulation models forced with sea surface temperature forecasts

    Science.gov (United States)

    Almanaseer, Naser; Sankarasubramanian, A.; Bales, Jerad

    2014-01-01

    Recent studies have found a significant association between climatic variability and basin hydroclimatology, particularly groundwater levels, over the southeast United States. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater-level forecasts based on the precipitation forecasts from ECHAM 4.5 General Circulation Model Forced with Sea Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater Climate Response Network and Hydro-Climatic Data Network were selected to represent groundwater and surface water flows, respectively, having minimal anthropogenic influences within the Flint River Basin in Georgia, United States. The writers employ two low-dimensional models [principle component regression (PCR) and canonical correlation analysis (CCA)] for predicting groundwater and streamflow at both seasonal and monthly timescales. Three modeling schemes are considered at the beginning of January to predict winter (January, February, and March) and spring (April, May, and June) streamflow and groundwater for the selected sites within the Flint River Basin. The first scheme (model 1) is a null model and is developed using PCR for every streamflow and groundwater site using previous 3-month observations (October, November, and December) available at that particular site as predictors. Modeling schemes 2 and 3 are developed using PCR and CCA, respectively, to evaluate the role of precipitation forecasts in improving monthly and seasonal groundwater predictions. Modeling scheme 3, which employs a CCA approach, is developed for each site by considering observed groundwater levels from nearby sites as predictands. The performance of these three schemes is evaluated using two metrics (correlation coefficient and relative RMS error) by developing groundwater-level forecasts based on leave-five-out cross-validation. Results from the research reported in this paper show that using

  13. Estimation of Regional Evapotranspiration Using Remotely Sensed Land Surface Temperature. Part 2: Application of Equilibrium Evaporation Model to Estimate Evapotranspiration by Remote Sensing Technique. [Japan

    Science.gov (United States)

    Kotoda, K.; Nakagawa, S.; Kai, K.; Yoshino, M. M.; Takeda, K.; Seki, K.

    1985-01-01

    In a humid region like Japan, it seems that the radiation term in the energy balance equation plays a more important role for evapotranspiration then does the vapor pressure difference between the surface and lower atmospheric boundary layer. A Priestley-Taylor type equation (equilibrium evaporation model) is used to estimate evapotranspiration. Net radiation, soil heat flux, and surface temperature data are obtained. Only temperature data obtained by remotely sensed techniques are used.

  14. Effects of zonal perturbations of sea surface temperature on tropical equilibrium states: A cloud-resolving modeling study

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Cui; Shouting Gao

    2008-01-01

    The effects of zonal perturbations of sea surface temperature (SST) on tropical equilibrium states are investigated based on a series of two-dimensional cloud-resolving simulations with imposed zero vertical velocity, constant zonal wind, and a zonal model domain of 768 km. Four experiments with zonal SST perturbations of wavenumbers 1 (Cl), 2 (C2), 4 (C3), and 8 (C4) are compared to a control experiment with zonally uniform SST (CO). The 40-day integrations show that the temperatures reach quasi-equilibrium states with distinct differences. Cl and C2 produce warmer equilibrium states whereas C3 and C4 generate colder equilibrium states than CO does. The heat budgets in the five experiments are analyzed. Compared to CO, less IR cooling over smaller clear-sky regions in Cl and more condensational heating in C2 are responsible for wanner equilibrium states. A reduced condensational heating leads to the cold equilibrium state in C3. The interaction between convective systems in C4 causes a decrease of condensational heating, which accounts for the cold equilibrium state.

  15. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with the TEB model

    Science.gov (United States)

    Khalifa, A.; Marchetti, M.; Bouilloud, L.; Martin, E.; Bues, M.; Chancibaut, K.

    2016-02-01

    Snowfall forecasts help winter maintenance of road networks, ensure better coordination between services, cost control, and a reduction in environmental impacts caused by an inappropriate use of de-icers. In order to determine the possible accumulation of snow on pavements, forecasting the road surface temperature (RST) is mandatory. Weather outstations are used along these networks to identify changes in pavement status, and to make forecasts by analyzing the data they provide. Physical numerical models provide such forecasts, and require an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB) numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with two approaches to evaluate traffic incidence on RST. Experiments were then conducted to measure the effect of traffic on RST increase with respect to non-circulated areas. These field data were then used for comparison with the forecast provided by this traffic-implemented TEB version.

  16. Accounting for anthropic energy flux of traffic in winter urban road surface temperature simulations with TEB model

    Directory of Open Access Journals (Sweden)

    A. Khalifa

    2015-06-01

    Full Text Available A forecast of the snowfall helps winter coordination operating services, reducing the cost of the maintenance actions, and the environmental impacts caused by an inappropriate use of de-icing. In order to determine the possible accumulation of snow on pavement, the forecast of the road surface temperature (RST is mandatory. Physical numerical models provide such forecast, and do need an accurate description of the infrastructure along with meteorological parameters. The objective of this study was to build a reliable urban RST forecast with a detailed integration of traffic in the Town Energy Balance (TEB numerical model for winter maintenance. The study first consisted in generating a physical and consistent description of traffic in the model with all the energy interactions, with two approaches to evaluate the traffic incidence on RST. Experiments were then conducted to measure the traffic effect on RST increase with respect to non circulated areas. These field data were then used for comparison with forecast provided by this traffic-implemented TEB version.

  17. DISAGGREGATION OF GOES LAND SURFACE TEMPERATURES USING SURFACE EMISSIVITY

    Science.gov (United States)

    Accurate temporal and spatial estimation of land surface temperatures (LST) is important for modeling the hydrological cycle at field to global scales because LSTs can improve estimates of soil moisture and evapotranspiration. Using remote sensing satellites, accurate LSTs could be routine, but unfo...

  18. Characterizing Greenland ice sheet surface mass balance via assimilation of spaceborne surface temperature, albedo, and passive microwave data into a physically-based model

    Science.gov (United States)

    Navari, M.; Bateni, S.; Margulis, S. A.; Alexander, P. M.; Tedesco, M.

    2012-12-01

    The Greenland ice sheet (GrIS) has been the focus of climate studies due to its significant impact on sea level rise and Arctic climate. Accurate estimates of space-time maps of surface mass balance (SMB) components including precipitation, runoff, and evaporation over the GrIS would contribute to understanding the cause of its recent unprecedented changes (e.g., increase in melt amount and duration, thickening of ice sheet interior, and thinning at the margins) and forecasting its changes in the future. In situ measurement of the SMB components across the GrIS is difficult and costly, and thus there are only a limited number of sparse measurements. Remote sensing retrievals are capable of providing some estimates of SMB terms and/or SMB indicators (i.e. melt onset), but generally provide an incomplete picture of the SMB. Additional efforts have focused on the use of regional climate models coupled to surface models in an effort to obtain spatially and temporally continuous estimates of the SMB. However, these estimates are prone to model errors and are generally unconstrained by the remote sensing record. To overcome these uncertainties and consequently improve estimates of the GrIS SMB, an ensemble data assimilation approach is developed for characterizing the SMB and its uncertainty. The EnBS consists of two steps: forecast and update. In the forecast step, an unconditional estimate of SMB using the MAR regional climate model and an ensemble implementation of the CROCUS snow is obtained that includes appropriate uncertainty in key SMB forcings. In the update step, the estimate is conditioned on remotely sensed land surface temperature (LST), albedo, and passive microwave (1.4, 6.9, 18.7, 36.5, and 89 GHz) measurements to provide a posterior estimate of the GrIS SMB components. The end result is an estimate that benefits from the regional atmospheric and snow models, but is also constrained by remote sensing data streams. The assimilation approach is tested for

  19. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    to imperfect model forecasts. It remains a crucial challenge to account for system uncertainty, so as to provide model outputs accompanied by a quantified confidence interval. Properly characterizing and reducing uncertainty opens-up the opportunity for risk-based decision-making and more effective emergency...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...... temperature are explored in a multi-objective calibration experiment to optimize the parameters in a SVAT model in the Sahel. The two satellite derived variables were effective at constraining most land-surface and soil parameters. A data assimilation framework is developed and implemented with an integrated...

  20. MODELLING THE RELATIONSHIP BETWEEN LAND SURFACE TEMPERATURE AND LANDSCAPE PATTERNS OF LAND USE LAND COVER CLASSIFICATION USING MULTI LINEAR REGRESSION MODELS

    Directory of Open Access Journals (Sweden)

    A. M. Bernales

    2016-06-01

    Full Text Available The threat of the ailments related to urbanization like heat stress is very prevalent. There are a lot of things that can be done to lessen the effect of urbanization to the surface temperature of the area like using green roofs or planting trees in the area. So land use really matters in both increasing and decreasing surface temperature. It is known that there is a relationship between land use land cover (LULC and land surface temperature (LST. Quantifying this relationship in terms of a mathematical model is very important so as to provide a way to predict LST based on the LULC alone. This study aims to examine the relationship between LST and LULC as well as to create a model that can predict LST using class-level spatial metrics from LULC. LST was derived from a Landsat 8 image and LULC classification was derived from LiDAR and Orthophoto datasets. Class-level spatial metrics were created in FRAGSTATS with the LULC and LST as inputs and these metrics were analysed using a statistical framework. Multi linear regression was done to create models that would predict LST for each class and it was found that the spatial metric “Effective mesh size” was a top predictor for LST in 6 out of 7 classes. The model created can still be refined by adding a temporal aspect by analysing the LST of another farming period (for rural areas and looking for common predictors between LSTs of these two different farming periods.

  1. Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF

    Directory of Open Access Journals (Sweden)

    Cevahir Kilic

    2013-12-01

    Full Text Available The influence of sea surface temperature (SST anomalies on the hurricane characteristics are investigated in a set of sensitivity experiments employing the Weather Research and Forecasting (WRF model. The idealised experiments are performed for the case of Hurricane Katrina in 2005. The first set of sensitivity experiments with basin-wide changes of the SST magnitude shows that the intensity goes along with changes in the SST, i.e., an increase in SST leads to an intensification of Katrina. Additionally, the trajectory is shifted to the west (east, with increasing (decreasing SSTs. The main reason is a strengthening of the background flow. The second set of experiments investigates the influence of Loop Current eddies idealised by localised SST anomalies. The intensity of Hurricane Katrina is enhanced with increasing SSTs close to the core of a tropical cyclone. Negative nearby SST anomalies reduce the intensity. The trajectory only changes if positive SST anomalies are located west or north of the hurricane centre. In this case the hurricane is attracted by the SST anomaly which causes an additional moisture source and increased vertical winds.

  2. Extended Reconstructed Sea Surface Temperature (ERSST)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis derived from the International Comprehensive...

  3. NOAA Global Surface Temperature (NOAAGlobalTemp)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is a merged land–ocean surface temperature analysis (formerly known as MLOST) (link is external). It is...

  4. Closing the Seasonal Ocean Surface Temperature Balance in the Eastern Tropical Oceans from Remote Sensing and Model Reanalyses

    Science.gov (United States)

    Roberts, J. Brent; Clayson, C. A.

    2012-01-01

    Residual forcing necessary to close the MLTB on seasonal time scales are largest in regions of strongest surface heat flux forcing. Identifying the dominant source of error - surface heat flux error, mixed layer depth estimation, ocean dynamical forcing - remains a challenge in the eastern tropical oceans where ocean processes are very active. Improved sub-surface observations are necessary to better constrain errors. 1. Mixed layer depth evolution is critical to the seasonal evolution of mixed layer temperatures. It determines the inertia of the mixed layer, and scales the sensitivity of the MLTB to errors in surface heat flux and ocean dynamical forcing. This role produces timing impacts for errors in SST prediction. 2. Errors in the MLTB are larger than the historical 10Wm-2 target accuracy. In some regions, a larger accuracy can be tolerated if the goal is to resolve the seasonal SST cycle.

  5. Volatiles in a sausage surface model-influence of Penicillium nalgiovense, Pediococcus pentosaceus, ascorbate, nitrate and temperature

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Trihaas, Jeorgos; Stahnke, Louise Heller

    2003-01-01

    Thirty-two agar sausage models were arranged in a 2((5-1)) fractional factorial design to analyse the effects of Penicillium nalgio-vense growth, Pediococcus pentosaceus starter, sodium ascorbate, sodium nitrate and temperature on 79 volatiles produced during incubation. The model focused...

  6. The surface temperature of free evaporating drops

    Science.gov (United States)

    Borodulin, V. Y.; Letushko, V. N.; Nizovtsev, M. I.; Sterlyagov, A. N.

    2016-10-01

    Complex experimental and theoretical investigation of heat and mass transfer processes was performed at evaporation of free liquid drops. For theoretical calculation the emission-diffusion model was proposed. This allowed taking into account the characteristics of evaporation of small droplets, for which heat and mass transfer processes are not described in the conventional diffusion model. The calculation results of evaporation of droplets of different sizes were compared using two models: the conventional diffusion and emission-diffusion models. To verify the proposed physical model, the evaporation of droplets suspended on a polypropylene fiber was experimentally investigated. The form of droplets in the evaporation process was determined using microphotographing. The temperature was measured on the surfaces of evaporating drops using infrared thermography. The experimental results have showed good agreement with the numerical data for the time of evaporation and the temperature of evaporating drops.

  7. Surface defects and temperature on atomic friction

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, O Y; Mazo, J J, E-mail: yovany@unizar.es [Departamento de Fisica de la Materia Condensada and Instituto de Ciencia de Materiales de Aragon, CSIC-Universidad de Zaragoza, 50009 Zaragoza (Spain)

    2011-09-07

    We present a theoretical study of the effect of surface defects on atomic friction in the stick-slip dynamical regime of a minimalistic model. We focus on how the presence of defects and temperature change the average properties of the system. We have identified two main mechanisms which modify the mean friction force of the system when defects are considered. As expected, defects change the potential profile locally and thus affect the friction force. But the presence of defects also changes the probability distribution function of the tip slip length and thus the mean friction force. We corroborated both effects for different values of temperature, external load, dragging velocity and damping. We also show a comparison of the effects of surface defects and surface disorder on the dynamics of the system. (paper)

  8. Determining lake surface water temperatures (LSWTs worldwide using a tuned 1-dimensional lake model (FLake, v1

    Directory of Open Access Journals (Sweden)

    A. Layden

    2015-10-01

    Full Text Available FLake, a 1-dimensional freshwater lake model, is tuned for 244 globally distributed large lakes using lake surface water temperatures (LSWTs derived from Along-Track Scanning Radiometers (ATSRs. The model, tuned using only 3 lake properties; lake depth, albedo (snow and ice and light extinction co-efficient, substantially improves the measured biases in various features of the LSWT annual cycle, including the LSWTs of saline and high altitude lakes. The daily mean absolute differences (MAD and the spread of differences (±2 standard deviations across the trial seasonally ice covered lakes (lakes with a lake-mean LSWT remaining below 1 °C for part of the annual cycle is reduced from 3.01± 2.25 °C (pre-tuning to 0.84 ± 0.51 °C (post-tuning. For non-seasonally ice-covered trial lakes (lakes with a lake-mean LSWT remaining above 1 °C throughout its annual cycle, the average daily mean absolute difference (MAD is reduced from 3.55 ± 3.20 °C to 0.96 ± 0.63 °C. The post tuning results for the trial lakes (35 lakes are highly representative of the post tuning results of the 244 lakes. The sensitivity of the summer LSWTs of deeper lakes to changes in the timing of ice-off is demonstrated. The modelled summer LSWT response to changes in ice-off timing is found to be strongly affected by lake depth and latitude, explaining 0.50 (R2adj, p = 0.001 of the inter-lake variance in summer LSWTs. Lake depth alone explains 0.35 (p =0.003 of the variance. The tuning approach undertaken in this study, overcomes the obstacle of the lack of available lake characteristic information (snow and ice albedo and light extinction co-efficient for individual lakes. Furthermore, the tuned values for lake depth, snow and ice albedo and light extinction co-efficient for the 244 lakes provide guidance for improving LSWTs modelling in FLake.

  9. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling

    DEFF Research Database (Denmark)

    Vlassova, Lidia; Perez-Cabello, Fernando; Nieto Solana, Hector;

    2014-01-01

    Land Surface Temperature (LST) is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global ch...

  10. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling

    DEFF Research Database (Denmark)

    Vlassova, Lidia; Perez-Cabello, Fernando; Nieto Solana, Hector;

    2014-01-01

    Land Surface Temperature (LST) is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global...

  11. Modeling of mean radiant temperature based on comparison of airborne remote sensing data with surface measured data

    Science.gov (United States)

    Chen, Yu-Cheng; Chen, Chih-Yu; Matzarakis, Andreas; Liu, Jin-King; Lin, Tzu-Ping

    2016-06-01

    Assessment of outdoor thermal comfort is becoming increasingly important due to the urban heat island effect, which strongly affects the urban thermal environment. The mean radiant temperature (Tmrt) quantifies the effect of the radiation environment on humans, but it can only be estimated based on influencing parameters and factors. Knowledge of Tmrt is important for quantifying the heat load on human beings, especially during heat waves. This study estimates Tmrt using several methods, which are based on climatic data from a traditional weather station, microscale ground surface measurements, land surface temperature (LST) and light detection and ranging (LIDAR) data measured using airborne devices. Analytical results reveal that the best means of estimating Tmrt combines information about LST and surface elevation information with meteorological data from the closest weather station. The application in this method can eliminate the inconvenience of executing a wide range ground surface measurement, the insufficient resolution of satellite data and the incomplete data of current urban built environments. This method can be used to map a whole city to identify hot spots, and can be contributed to understanding human biometeorological conditions quickly and accurately.

  12. Inferring Land Surface Model Parameters for the Assimilation of Satellite-Based L-Band Brightness Temperature Observations into a Soil Moisture Analysis System

    Science.gov (United States)

    Reichle, Rolf H.; De Lannoy, Gabrielle J. M.

    2012-01-01

    The Soil Moisture and Ocean Salinity (SMOS) satellite mission provides global measurements of L-band brightness temperatures at horizontal and vertical polarization and a variety of incidence angles that are sensitive to moisture and temperature conditions in the top few centimeters of the soil. These L-band observations can therefore be assimilated into a land surface model to obtain surface and root zone soil moisture estimates. As part of the observation operator, such an assimilation system requires a radiative transfer model (RTM) that converts geophysical fields (including soil moisture and soil temperature) into modeled L-band brightness temperatures. At the global scale, the RTM parameters and the climatological soil moisture conditions are still poorly known. Using look-up tables from the literature to estimate the RTM parameters usually results in modeled L-band brightness temperatures that are strongly biased against the SMOS observations, with biases varying regionally and seasonally. Such biases must be addressed within the land data assimilation system. In this presentation, the estimation of the RTM parameters is discussed for the NASA GEOS-5 land data assimilation system, which is based on the ensemble Kalman filter (EnKF) and the Catchment land surface model. In the GEOS-5 land data assimilation system, soil moisture and brightness temperature biases are addressed in three stages. First, the global soil properties and soil hydraulic parameters that are used in the Catchment model were revised to minimize the bias in the modeled soil moisture, as verified against available in situ soil moisture measurements. Second, key parameters of the "tau-omega" RTM were calibrated prior to data assimilation using an objective function that minimizes the climatological differences between the modeled L-band brightness temperatures and the corresponding SMOS observations. Calibrated parameters include soil roughness parameters, vegetation structure parameters

  13. An Analysis of the Temperature and Field Dependence of the RF Surface Resistance of Nitrogen-Doped Niobium SRF Cavities with Respect to Existing Theoretical Models

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [Jefferson Lab, Newport News, VA; Palczewski, Ari D. [Jefferson Lab, Newport News, VA; Xiao, Binping [Brookhaven National Laboratory, Upton, NY

    2015-09-01

    Recent progress with the reduction of rf surface resistance (Rs) of niobium SRF cavities via the use of high temperature surface doping by nitrogen has opened a new regime for energy efficient accelerator applications. For particular doping conditions one observes dramatic decreases in Rs with increasing surface magnetic fields. The observed variations as a function of temperature may be analyzed in the context of recent theoretical treatments in hopes of gaining insight into the underlying beneficial mechanism of the nitrogen treatment. Systematic data sets of Q0 vs. Eacc vs. temperature acquired during the high Q0 R&D work of the past year will be compared with theoretical model predictions..

  14. Matlab based automatization of an inverse surface temperature modelling procedure for Greenland ice cores using an existing firn densification and heat diffusion model

    Science.gov (United States)

    Döring, Michael; Kobashi, Takuro; Kindler, Philippe; Guillevic, Myriam; Leuenberger, Markus

    2016-04-01

    In order to study Northern Hemisphere (NH) climate interactions and variability, getting access to high resolution surface temperature records of the Greenland ice sheet is an integral condition. For example, understanding the causes for changes in the strength of the Atlantic meridional overturning circulation (AMOC) and related effects for the NH [Broecker et al. (1985); Rahmstorf (2002)] or the origin and processes leading the so called Dansgaard-Oeschger events in glacial conditions [Johnsen et al. (1992); Dansgaard et al., 1982] demand accurate and reproducible temperature data. To reveal the surface temperature history, it is suitable to use the isotopic composition of nitrogen (δ15N) from ancient air extracted from ice cores drilled at the Greenland ice sheet. The measured δ15N record of an ice core can be used as a paleothermometer due to the nearly constant isotopic composition of nitrogen in the atmosphere at orbital timescales changes only through firn processes [Severinghaus et. al. (1998); Mariotti (1983)]. To reconstruct the surface temperature for a special drilling site the use of firn models describing gas and temperature diffusion throughout the ice sheet is necessary. For this an existing firn densification and heat diffusion model [Schwander et. al. (1997)] is used. Thereby, a theoretical δ15N record is generated for different temperature and accumulation rate scenarios and compared with measurement data in terms of mean square error (MSE), which leads finally to an optimization problem, namely the finding of a minimal MSE. The goal of the presented study is a Matlab based automatization of this inverse modelling procedure. The crucial point hereby is to find the temperature and accumulation rate input time series which minimizes the MSE. For that, we follow two approaches. The first one is a Monte Carlo type input generator which varies each point in the input time series and calculates the MSE. Then the solutions that fulfil a given limit

  15. The Impact of Boreal and Tropical Forests on Global Surface Temperature : A climate sensitivity study with an Energy Balance Model

    NARCIS (Netherlands)

    Laan van der, Sander

    2005-01-01

    In order to estimate the effect of drastic land use changes on the global mean temperature, a set of scenario experiments were performed with a one-dimensional energy balance model. The main focus of this project was on land use changes in the tropical an

  16. The Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Douglass, David H., E-mail: douglass@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States)

    2011-12-05

    The Pacific sea surface temperature data contains two components: N{sub L}, a signal that exhibits the familiar El Niño/La Niña phenomenon and N{sub H}, a signal of one-year period. Analysis reveals: (1) The existence of an annual solar forcing F{sub S}; (2) N{sub H} is phase locked directly to F{sub S} while N{sub L} is frequently phase locked to the 2nd or 3rd subharmonic of F{sub S}. At least ten distinct subharmonic time segments of N{sub L} since 1870 are found. The beginning or end dates of these segments have a near one-to-one correspondence with the abrupt climate changes previously reported. Limited predictability is possible. -- Highlights: ► El Niño/La Niña consists of 2 components phase-locked to annual solar cycle. ► The first component N{sub L} is the familiar El Niño/La Niña effect. ► The second N{sub H} component has a period of 1 cycle/year. ► N{sub L} can be phase-locked to 2nd or 3rd subharmonic of annual cycle. ► Ends of phase-locked segments correspond to abrupt previously reported climate changes.

  17. Reconstruction of the 500-year ground surface temperature history of northern Awaji Island, southwest Japan, using a layered thermal property model

    Science.gov (United States)

    Goto, Shusaku; Yamano, Makoto

    2010-12-01

    Changes in the ground surface temperature (GST), propagating underground, can be recorded as thermal perturbations to the background thermal field. This paper presents a forward model of conductive propagation of GST in a layered material model with uniform thermal properties in each layer and a series of step functions as GST history. This model, which is expressed using the same mathematical form of that for a uniform thermal property model with a series of step functions as GST history, calculates subsurface temperature perturbations that originate from the GST change by superimposing numerically solved solutions of the model with surface boundary condition of a unit function. Using this model, we reconstruct the recent 500-year GST history from borehole temperature data in northern Awaji Island, southwest Japan, by Bayesian inversion. The reconstructed GST history shows the onset of warming in the mid-18th century to the early 19th century and an increase of 1.1-1.3 K up to the mid-20th century. From the middle to late 20th century, the GST decreased by about 0.2 K. The GST change in the 20th century fits the trend of mean annual surface air temperature records in Kobe, opposite the coast of northern Awaji Island. The GST history in northern Awaji Island differs from that in Ulsan, in the southeastern Republic of Korea, which is located at the same latitude as northern Awaji Island. Differences of the GST histories of these regions most likely reflect differences in sea surface temperatures in these regions.

  18. MODIS Surface Temperatures for Cryosphere Studies (Invited)

    Science.gov (United States)

    Hall, D. K.; Comiso, J. C.; DiGirolamo, N. E.; Shuman, C. A.; Riggs, G. A.

    2013-12-01

    We have used Moderate-resolution Imaging Spectroradiometer (MODIS) land-surface temperature (LST) and ice-surface temperature (IST) products for several applications in studies of the cryosphere. A climate-quality climate data record (CDR) of the IST of the Greenland ice sheet has been developed and was one of the data sources used to monitor the extreme melt event covering nearly the entire Greenland ice sheet on 11 - 12 July 2012. The IST CDR is available online for users to employ in models, and to study temperature distributions and melt trends on the ice sheet. We continue to assess accuracy of the IST product through comparative analysis with air temperature data from the NOAA Logan temperature sensor at Summit Station, Greenland. We find a small offset between the air temperature and the IST with the IST being slightly lower which is consistent with findings of other studies. The LST data product has been applied in studies of snow melt in regions where snow is a significant water resource. We have used LST data in seasonally snow-covered areas such as the Wind River Range, Wyoming, to monitor the relationship between LST and seasonal streamflow. A close association between a sudden and sustained increase in LST and complete snowmelt, and between melt-season maximum LST and maximum daily streamflow has been documented. Use of LST and MODIS snow-cover and products in hydrological models increases the accuracy of the modeled prediction of runoff. The IST and LST products have also been applied to study of sea ice, e.g. extent and concentration, and lake ice, such as determining ice-out dates, and these efforts will also be described.

  19. Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces

    NARCIS (Netherlands)

    Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Supit, I.

    2015-01-01

    This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop sim

  20. A mathematical model of the global processes of plastic degradation in the World Ocean with account for the surface temperature distribution

    Science.gov (United States)

    Bartsev, S. I.; Gitelson, J. I.

    2016-02-01

    The suggested model of plastic garbage degradation allows us to obtain an estimate of the stationary density of their distribution over the surface of the World Ocean with account for the temperature dependence on the degradation rate. The model also allows us to estimate the characteristic time periods of degradation of plastic garbage and the dynamics of the mean density variation as the mean rate of plastic garbage entry into the ocean varies

  1. Surface temperature measurements of diamond

    CSIR Research Space (South Africa)

    Masina, BN

    2006-07-01

    Full Text Available ) and the waist position (z0) 3. TEMPERATURE MEASUREMENTS There are many methods to measure the temperature of a body. Here we used a thermocou- ple and a pyrometer, while future plans involve emission spectroscopy. A thermocouple is a temperature... sensor that consists of two wires con- nected together made from different metals, which produces an electrical voltage that is dependant on tem- perature. A Newport electronic thermocou- ple was used to meas- ured temperature. It can measure...

  2. Modelling water temperature in TOXSWA

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Deneer, J.W.; Adriaanse, P.I.

    2010-01-01

    A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the

  3. The Transition of High-Resolution NASA MODIS Sea Surface Temperatures into the WRF Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; Jedlove, Gary J.; Santos, Pablo; Medlin, Jeffrey M.; Rozumalski, Robert A.

    2009-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed a Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composite at 2-km resolution that has been implemented in version 3 of the National Weather Service (NWS) Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). The WRF EMS is a complete, full physics numerical weather prediction package that incorporates dynamical cores from both the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). The installation, configuration, and execution of either the ARW or NMM models is greatly simplified by the WRF EMS to encourage its use by NWS Weather Forecast Offices (WFOs) and the university community. The WRF EMS is easy to run on most Linux workstations and clusters without the need for compilers. Version 3 of the WRF EMS contains the most recent public release of the WRF-NMM and ARW modeling system (version 3 of the ARW is described in Skamarock et al. 2008), the WRF Pre-processing System (WPS) utilities, and the WRF Post-Processing program. The system is developed and maintained by the NWS National Science Operations Officer Science and Training Resource Coordinator. To initialize the WRF EMS with high-resolution MODIS SSTs, SPoRT developed the composite product consisting of MODIS SSTs over oceans and large lakes with the NCEP Real-Time Global (RTG) filling data over land points. Filling the land points is required due to minor inconsistencies between the WRF land-sea mask and that used to generate the MODIS SST composites. This methodology ensures a continuous field that adequately initializes all appropriate arrays in WRF. MODIS composites covering the Gulf of Mexico, western Atlantic Ocean and the Caribbean are generated daily at 0400, 0700, 1600, and 1900 UTC corresponding to overpass times of the NASA Aqua and Terra polar orbiting satellites. The MODIS SST product is output in gridded binary-1 (GRIB-1) data

  4. USING MCSST METHOD FOR MEASURING SEA SURFACE TEMPERATURE WITH MODIS IMAGERY AND MODELING AND PREDICTION OF REGIONAL VARIATIONS WITH LEAST SQUARES METHOD (CASE STUDY: PERSIAN GULF, IRAN

    Directory of Open Access Journals (Sweden)

    M. S. Pakdaman

    2013-10-01

    Full Text Available Nowadays, many researchers in the area of thermal remote sensing applications believe in the necessity of modeling in environmental studies. Modeling in the remotely sensed data and the ability to precisely predict variation of various phenomena, persuaded the experts to use this knowledge increasingly. Suitable model selection is the basis for modeling and is a defining parameter. So, firstly the model should be identified well. The least squares method is for data fitting. In the least squares method, the best fit model is the model that minimizes the sum of squared residuals. In this research, that has been done for modeling variations of the Persian Gulf surface temperature, after data preparation, data gathering has been done with multi-channel method using the MODIS Terra satellites imagery. All the temperature data has been recorded in the period of ten years in winter time from December 2003 to January 2013 with dimensions of 20*20 km and for an area of 400 km2. Subsequently, 12400 temperature samples and variation trend control based on their fluctuation time have been observed. Then 16 mathematical models have been created for model building. After model creation, the variance of all the models has been calculated with ground truth for model testing. But the lowest variance was in combined models from degree 1 to degree 4. The results have shown that outputs for combined models of degree 1 to degree 3 and degree 1 to degree 4 for variables does not show significant differences and implementation of degree 4 does not seem necessary. Employment of trigonometric functions on variables increased the variance in output data. Comparison of the most suitable model and the ground truth showed a variance of just 1⁰. The number of samples, after elimination of blunders reduced to 11600 samples. After this elimination, all the created models have been run on the variables. Also in this case, the highest variance has been obtained for the models

  5. The effect of temperature on adhesion forces between surfaces and model foods containing whey protein and sugar

    OpenAIRE

    Goode, K. R.; Bowen, James; Akhtar, N.; Robbins, P. T.; Fryer, P. J.

    2013-01-01

    The formation of fouling deposit from foods and food components is a severe problem in food processing and leads to frequent cleaning. The design of surfaces that resist fouling may decrease the need for cleaning and thus increase efficiency. Atomic force microscopy has been used to measure adhesion forces between stainless steel (SS) and fluoro-coated glass (FCG) microparticles and the model food deposits (i) whey protein (WPC), (ii) sweetened condensed milk, and (iii) caramel. Measurements ...

  6. Evaluation of surface air temperature and urban effects in Japan simulated by non-hydrostatic regional climate model

    Science.gov (United States)

    Murata, A.; Sasaki, H.; Hanafusa, M.; Kurihara, K.

    2012-12-01

    We evaluated the performance of a well-developed nonhydrostatic regional climate model (NHRCM) with a spatial resolution of 5 km with respect to temperature in the present-day climate of Japan, and estimated urban heat island (UHI) intensity by comparing the model results and observations. The magnitudes of root mean square error (RMSE) and systematic error (bias) for the annual average of daily mean (Ta), maximum (Tx), and minimum (Tn) temperatures are within 1.5 K, demonstrating that the temperatures of the present-day climate are reproduced well by NHRCM. These small errors indicate that temperature variability produced by local-scale phenomena is represented well by the model with a higher spatial resolution. It is also found that the magnitudes of RMSE and bias in the annually-average Tx are relatively large compared with those in Ta and Tn. The horizontal distributions of the error, defined as the difference between simulated and observed temperatures (simulated minus observed), illustrate negative errors in the annually-averaged Tn in three major metropolitan areas: Tokyo, Osaka, and Nagoya. These negative errors in urban areas affect the cold bias in the annually-averaged Tx. The relation between the underestimation of temperature and degree of urbanization is therefore examined quantitatively using National Land Numerical Information provided by the Ministry of Land, Infrastructure, Transport, and Tourism. The annually-averaged Ta, Tx, and Tn are all underestimated in the areas where the degree of urbanization is relatively high. The underestimations in these areas are attributed to the treatment of urban areas in NHRCM, where the effects of urbanization, such as waste heat and artificial structures, are not included. In contrast, in rural areas, the simulated Tx is underestimated and Tn is overestimated although the errors in Ta are small. This indicates that the simulated diurnal temperature range is underestimated. The reason for the relatively large

  7. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Thermodynamic modeling to explain the high degree of carbon solubility possible in austenitic grades under the LTCSS process and experimental validation of model results • Corrosion testing to determine the corrosion resistance improvement possible from the LTCSS process • Erosion testing to determine the erosion resistance improvement possible from the LTCSS process • Wear testing to quantify the wear resistance improvement possible from the LTCSS process • Fatigue testing for quantifying the extent of improvement from the LTCSS process • Component treating and testing under simulated and in-line commercial operations XRD verified expanded austenite lattice, with no evidence of carbide precipitation. Carbon concentration profiles via Auger and electron dispersion spectroscopy (EDS) showed carbon levels in excess of 12 at. % in treated, type 316 SS. Scanning electron microscopy (SEM) of pulled-to-failure treated tensile specimens showed slip bands and no de-cohesion of the treated layer, verifying that the layer remains ductile. Compressive stresses in excess of 2 GPa (300 ksi) have been calculated at the surface of the case. Phase diagram (CALPHAD) (ThermoCalc) and Wagner dilute solution thermodynamic models were developed that calculate the solubility of carbon in austenite as a function of alloying content for the process time and temperature. Several commercial alloys have been modeled, and the model has been used to design experimental alloys with enhanced affinity for carbon solubility at treatment temperatures. Four experimental alloys were melted, rolled, and manufactured into test specimens, and the LTCSS treatment indicated successfully enhanced results and validated the predictions based on thermodynamic modeling. Electrochemical polarization curves show a 600 to 800 mV increase in pitting potential in treated (900-1000 mV) versus non-treated (200-300 mV) type 316 in chloride solutions. Treated 316L showed crevice-corrosion behavior similar to that of Ti-6

  8. Modelling land surface - atmosphere interactions

    DEFF Research Database (Denmark)

    Rasmussen, Søren Højmark

    related to inaccurate land surface modelling, e.g. enhanced warm bias in warm dry summer months. Coupling the regional climate model to a hydrological model shows the potential of improving the surface flux simulations in dry periods and the 2 m air temperature in general. In the dry periods......The study is investigates modelling of land surface – atmosphere interactions in context of fully coupled climatehydrological model. With a special focus of under what condition a fully coupled model system is needed. Regional climate model inter-comparison projects as ENSEMBLES have shown bias...... representation of groundwater in the hydrological model is found to important and this imply resolving the small river valleys. Because, the important shallow groundwater is found in the river valleys. If the model does not represent the shallow groundwater then the area mean surface flux calculation...

  9. Surface temperature dataset for North America obtained by application of optimal interpolation algorithm merging tree-ring chronologies and climate model output

    Science.gov (United States)

    Chen, Xin; Xing, Pei; Luo, Yong; Nie, Suping; Zhao, Zongci; Huang, Jianbin; Wang, Shaowu; Tian, Qinhua

    2017-02-01

    A new dataset of surface temperature over North America has been constructed by merging climate model results and empirical tree-ring data through the application of an optimal interpolation algorithm. Errors of both the Community Climate System Model version 4 (CCSM4) simulation and the tree-ring reconstruction were considered to optimize the combination of the two elements. Variance matching was used to reconstruct the surface temperature series. The model simulation provided the background field, and the error covariance matrix was estimated statistically using samples from the simulation results with a running 31-year window for each grid. Thus, the merging process could continue with a time-varying gain matrix. This merging method (MM) was tested using two types of experiment, and the results indicated that the standard deviation of errors was about 0.4 °C lower than the tree-ring reconstructions and about 0.5 °C lower than the model simulation. Because of internal variabilities and uncertainties in the external forcing data, the simulated decadal warm-cool periods were readjusted by the MM such that the decadal variability was more reliable (e.g., the 1940-1960s cooling). During the two centuries (1601-1800 AD) of the preindustrial period, the MM results revealed a compromised spatial pattern of the linear trend of surface temperature, which is in accordance with the phase transition of the Pacific decadal oscillation and Atlantic multidecadal oscillation. Compared with pure CCSM4 simulations, it was demonstrated that the MM brought a significant improvement to the decadal variability of the gridded temperature via the merging of temperature-sensitive tree-ring records.

  10. Role of surface temperature in fluorocarbon plasma-surface interactions

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J. [Department of Electrical Engineering, University of Texas at Dallas, PO Box 830688, Richardson, TX 75083 (United States)

    2012-07-15

    This article examines plasma-surface reaction channels and the effect of surface temperature on the magnitude of those channels. Neutral species CF{sub 4}, C{sub 2}F{sub 6}, and C{sub 3}F{sub 8} are produced on surfaces. The magnitude of the production channel increases with surface temperature for all species, but favors higher mass species as the temperature is elevated. Additionally, the production rate of CF{sub 2} increases by a factor of 5 as the surface temperature is raised from 25 Degree-Sign C to 200 Degree-Sign C. Fluorine density, on the other hand, does not change as a function of either surface temperature or position outside of the plasma glow. This indicates that fluorine addition in the gas-phase is not a dominant reaction. Heating reactors can result in higher densities of depositing radical species, resulting in increased deposition rates on cooled substrates. Finally, the sticking probability of the depositing free radical species does not change as a function of surface temperature. Instead, the surface temperature acts together with an etchant species (possibly fluorine) to elevate desorption rates on that surface at temperatures lower than those required for unassisted thermal desorption.

  11. Impact of Atlantic sea surface temperatures on the warmest global surface air temperature of 1998

    Science.gov (United States)

    Lu, Riyu

    2005-03-01

    The year 1998 is the warmest year in the record of instrumental measurements. In this study, an atmospheric general circulation model is used to investigate the role of sea surface temperatures (SSTs) in this warmth, with a focus on the role of the Atlantic Ocean. The model forced with the observed global SSTs captures the main features of land surface air temperature anomalies in 1998. A sensitivity experiment shows that in comparison with the global SST anomalies, the Atlantic SST anomalies can explain 35% of the global mean surface air temperature (GMAT) anomaly, and 57% of the land surface air temperature anomaly in 1998. The mechanisms through which the Atlantic Ocean influences the GMAT are likely different from season to season. Possible detailed mechanisms involve the impact of SST anomalies on local convection in the tropical Atlantic region, the consequent excitation of a Rossby wave response that propagates into the North Atlantic and the Eurasian continent in winter and spring, and the consequent changes in tropical Walker circulation in summer and autumn that induce changes in convection over the tropical Pacific. This in turn affects climate in Asia and Australia. The important role of the Atlantic Ocean suggests that attention should be paid not only to the tropical Pacific Ocean, but also to the tropical Atlantic Ocean in understanding the GMAT variability and its predictability.

  12. A study on the direct effect of anthropogenic aerosols on near surface air temperature over Southeastern Europe during summer 2000 based on regional climate modeling

    Directory of Open Access Journals (Sweden)

    P. Zanis

    2009-10-01

    Full Text Available In the present work it is investigated the direct shortwave effect of anthropogenic aerosols on the near surface temperature over Southeastern Europe and the atmospheric circulation during summer 2000. In summer 2000, a severe heat-wave and droughts affected many countries in the Balkans. The study is based on two yearly simulations with and without the aerosol feedback of the regional climate model RegCM3 coupled with a simplified aerosol model. The surface radiative forcing associated with the anthropogenic aerosols is negative throughout the European domain with the more negative values in Central and Central-eastern Europe. A basic pattern of the aerosol induced changes in air temperature at the lower troposphere is a decrease over Southeastern Europe and the Balkan Peninsula (up to about 1.2°C thus weakening the pattern of the climatic temperature anomalies of summer 2000. The aerosol induced changes in air temperature from the lower troposphere to upper troposphere are not correlated with the respective pattern of the surface radiative forcing implying the complexity of the mechanisms linking the aerosol radiative forcing with the induced atmospheric changes through dynamical feedbacks of aerosols on atmospheric circulation. Investigation of the aerosol induced changes in the circulation indicates a southward shift of the subtropical jet stream playing a dominant role for the decrease in near surface air temperature over Southeastern Europe and the Balkan Peninsula. The southward shift of the jet exit region over the Balkan Peninsula causes a relative increase of the upward motion at the northern flank of the jet exit region, a relative increase of clouds, less solar radiation absorbed at the surface and hence relative cooler air temperatures in the lower troposphere between 45° N and 50° N. The southward extension of the lower troposphere aerosol induced negative temperature changes in the latitudinal band 35° N–45° N over the

  13. Volatiles in a sausage surface model-influence of Penicillium nalgiovense, Pediococcus pentosaceus, ascorbate, nitrate and temperature

    DEFF Research Database (Denmark)

    Sunesen, Lars Oddershede; Trihaas, Jeorgos; Stahnke, Louise Heller

    2003-01-01

    Thirty-two agar sausage models were arranged in a 2((5-1)) fractional factorial design to analyse the effects of Penicillium nalgio-vense growth, Pediococcus pentosaceus starter, sodium ascorbate, sodium nitrate and temperature on 79 volatiles produced during incubation. The model focused...... on the outer 10 millimeters of sausages. Ascorbate addition showed clear antioxidative effects, and reduced the amount of more than half of all volatiles but increased concentrations of 2-methyl-propanal and 3-methyl-butanal. The effects of P. pentosaceus and Micrococcaceae were confounded, but together...... they had pronounced antioxidative effects, lowering the amount of straight chain aldehydes, 2-alkenals, furanes and ketones. P. pentosaceus and Micrococcaceae growth increased the leucine catabolites 3-methyl-butanal and 3-methyl-1-butanol. P. nalgiovense decreased the concentrations of 2-heptanone, 2...

  14. Predictive Model of Supercooled Water Droplet Pinning/Repulsion Impacting a Superhydrophobic Surface: The Role of the Gas-Liquid Interface Temperature.

    Science.gov (United States)

    Mohammadi, Morteza; Tembely, Moussa; Dolatabadi, Ali

    2017-02-28

    Dynamical analysis of an impacting liquid drop on superhydrophobic surfaces is mostly carried out by evaluating the droplet contact time and maximum spreading diameter. In this study, we present a general transient model of the droplet spreading diameter developed from the previously defined mass-spring model for bouncing drops. The effect of viscosity was also considered in the model by definition of a dash-pot term extracted from experiments on various viscous liquid droplets on a superhydrophobic surface. Furthermore, the resultant shear force of the stagnation air flow was also considered with the help of the classical Homann flow approach. It was clearly shown that the proposed model predicts the maximum spreading diameter and droplet contact time very well. On the other hand, where stagnation air flow is present in contradiction to the theoretical model, the droplet contact time was reduced as a function of both droplet Weber numbers and incoming air velocities. Indeed, the reduction in the droplet contact time (e.g., 35% at a droplet Weber number of up to 140) was justified by the presence of a formed thin air layer underneath the impacting drop on the superhydrophobic surface (i.e., full slip condition). Finally, the droplet wetting model was also further developed to account for low temperature through the incorporation of classical nucleation theory. Homogeneous ice nucleation was integrated into the model through the concept of the reduction of the supercooled water drop surface tension as a function of the gas-liquid interface temperature, which was directly correlated with the Nusselt number of incoming air flow. It was shown that the experimental results was qualitatively predicted by the proposed model under all supercooling conditions (i.e., from -10 to -30 °C).

  15. Satellite Sensed Skin Sea Surface Temperature

    Science.gov (United States)

    Donlon, Craig

    1997-01-01

    Quantitative predictions of spatial and temporal changes the global climate rely heavily on the use of computer models. Unfortunately, such models cannot provide the basis for climate prediction because key physical processes are inadequately treated. Consequently, fine tuning procedures are often used to optimize the fit between model output and observational data and the validation of climate models using observations is essential if model based predictions of climate change are to be treated with any degree of confidence. Satellite Sea Surface Temperature (SST) observations provide high spatial and temporal resolution data which is extremely well suited to the initialization, definition of boundary conditions and, validation of climate models. In the case of coupled ocean-atmosphere models, the SST (or more correctly the 'Skin' SST (SSST)) is a fundamental diagnostic variable to consider in the validation process. Daily global SST maps derived from satellite sensors also provide adequate data for the detection of global patterns of change which, unlike any other SST data set, repeatedly extend into the southern hemisphere extra-tropical regions. Such data are essential to the success of the spatial 'fingerprint' technique, which seeks to establish a north-south asymmetry where warming is suppressed in the high latitude Southern Ocean. Some estimates suggest that there is a greater than 80% chance of directly detecting significant change (97.5 % confidence level) after 10-12 years of consistent global observations of mean sea surface temperature. However, these latter statements should be qualified with the assumption that a negligible drift in the observing system exists and that biases between individual instruments required to derive a long term data set are small. Given that current estimates for the magnitude of global warming of 0.015 K yr(sup -1) - 0.025 K yr(sup -1), satellite SST data sets need to be both accurate and stable if such a warming trend is to

  16. Turbulent Flow past High Temperature Surfaces

    Science.gov (United States)

    Mehmedagic, Igbal; Thangam, Siva; Carlucci, Pasquale; Buckley, Liam; Carlucci, Donald

    2014-11-01

    Flow over high-temperature surfaces subject to wall heating is analyzed with applications to projectile design. In this study, computations are performed using an anisotropic Reynolds-stress model to study flow past surfaces that are subject to radiative flux. The model utilizes a phenomenological treatment of the energy spectrum and diffusivities of momentum and heat to include the effects of wall heat transfer and radiative exchange. The radiative transport is modeled using Eddington approximation including the weighted effect of nongrayness of the fluid. The time-averaged equations of motion and energy are solved using the modeled form of transport equations for the turbulence kinetic energy and the scalar form of turbulence dissipation with an efficient finite-volume algorithm. The model is applied for available test cases to validate its predictive capabilities for capturing the effects of wall heat transfer. Computational results are compared with experimental data available in the literature. Applications involving the design of projectiles are summarized. Funded in part by U.S. Army, ARDEC.

  17. Low temperature surface conductivity of hydrogenated diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sauerer, C.; Ertl, F.; Nebel, C.E.; Stutzmann, M. [Technische Univ. Muenchen, Garching (Germany). Walter-Schottky-Inst. fuer Physikalische Grundlagen der Halbleiterelektronik; Bergonzo, P. [LIST(CEA-Recherche Technology)/DIMIR/SIAR/Saclay, Gif-sur-Yvette (France); Williams, O.A.; Jackman, R.A. [University Coll., London (United Kingdom). Dept. of Electrical and Electronic Engineering

    2001-07-23

    Conductivity and Hall experiments are performed on hydrogenated poly-CVD, atomically flat homoepitaxially grown Ib and natural type IIa diamond layers in the regime 0.34 to 400 K. For all experiments hole transport is detected with sheet resistivities at room temperature in the range 10{sup 4} to 10{sup 5} {omega}/{radical}. We introduce a transport model where a disorder induced tail of localized states traps holes at very low temperatures (T < 70 K). The characteristic energy of the tail is in the range of 6 meV. Towards higher temperatures (T > 70 K) the hole density is approximately constant and the hole mobility {mu} is increasing two orders of magnitude. In the regime 70 K < T < 200 K, {mu} is exponentially activated with 22 meV, above it follows a {proportional_to}T{sup 3/2} law. The activation energy of the hole density at T < 70 K is governed by the energy gap between holes trapped in the tail and the mobility edge which they can propagate. In the temperature regime T < 25 K an increasing hole mobility is detected which is attributed to transport in delocalized states at the surface. (orig.)

  18. Using dry spell dynamics of land surface temperature to evaluate large-scale model representation of soil moisture control on evapotranspiration

    Science.gov (United States)

    Taylor, Christopher M.; Harris, Philip P.; Gallego-Elvira, Belen; Folwell, Sonja S.

    2017-04-01

    The soil moisture control on the partition of land surface fluxes between sensible and latent heat is a key aspect of land surface models used within numerical weather prediction and climate models. As soils dry out, evapotranspiration (ET) decreases, and the excess energy is used to warm the atmosphere. Poor simulations of this dynamic process can affect predictions of mean, and in particular, extreme air temperatures, and can introduce substantial biases into projections of climate change at regional scales. The lack of reliable observations of fluxes and root zone soil moisture at spatial scales that atmospheric models use (typically from 1 to several hundred kilometres), coupled with spatial variability in vegetation and soil properties, makes it difficult to evaluate the flux partitioning at the model grid box scale. To overcome this problem, we have developed techniques to use Land Surface Temperature (LST) to evaluate models. As soils dry out, LST rises, so it can be used under certain circumstances as a proxy for the partition between sensible and latent heat. Moreover, long time series of reliable LST observations under clear skies are available globally at resolutions of the order of 1km. Models can exhibit large biases in seasonal mean LST for various reasons, including poor description of aerodynamic coupling, uncertainties in vegetation mapping, and errors in down-welling radiation. Rather than compare long-term average LST values with models, we focus on the dynamics of LST during dry spells, when negligible rain falls, and the soil moisture store is drying out. The rate of warming of the land surface, or, more precisely, its warming rate relative to the atmosphere, emphasises the impact of changes in soil moisture control on the surface energy balance. Here we show the application of this approach to model evaluation, with examples at continental and global scales. We can compare the behaviour of both fully-coupled land-atmosphere models, and land

  19. Analysis of SMOS brightness temperature and vegetation optical depth data with coupled land surface and radiative transfer models in Southern Germany

    Directory of Open Access Journals (Sweden)

    F. Schlenz

    2012-10-01

    Full Text Available Soil Moisture and Ocean Salinity (SMOS L1c brightness temperature and L2 optical depth data are analysed with a coupled land surface (PROMET and radiative transfer model (L-MEB. The coupled models are validated with ground and airborne measurements under contrasting soil moisture, vegetation and land surface temperature conditions during the SMOS Validation Campaign in May and June 2010 in the SMOS test site Upper Danube Catchment in southern Germany. The brightness temperature root-mean-squared errors are between 6 K and 9 K. The L-MEB parameterisation is considered appropriate under local conditions even though it might possibly be further optimised. SMOS L1c brightness temperature data are processed and analysed in the Upper Danube Catchment using the coupled models in 2011 and during the SMOS Validation Campaign 2010 together with airborne L-band brightness temperature data. Only low to fair correlations are found for this comparison (R between 0.1–0.41. SMOS L1c brightness temperature data do not show the expected seasonal behaviour and are positively biased. It is concluded that RFI is responsible for a considerable part of the observed problems in the SMOS data products in the Upper Danube Catchment. This is consistent with the observed dry bias in the SMOS L2 soil moisture products which can also be related to RFI. It is confirmed that the brightness temperature data from the lower SMOS look angles and the horizontal polarisation are less reliable. This information could be used to improve the brightness temperature data filtering before the soil moisture retrieval. SMOS L2 optical depth values have been compared to modelled data and are not considered a reliable source of information about vegetation due to missing seasonal behaviour and a very high mean value. A fairly strong correlation between SMOS L2 soil moisture and optical depth was found (R = 0.65 even though the two variables are considered independent in the

  20. Effect of hydrolyzed whey protein on surface morphology, water sorption, and glass transition temperature of a model infant formula.

    Science.gov (United States)

    Kelly, Grace M; O'Mahony, James A; Kelly, Alan L; O'Callaghan, Donal J

    2016-09-01

    Physical properties of spray-dried dairy powders depend on their composition and physical characteristics. This study investigated the effect of hydrolyzed whey protein on the microstructure and physical stability of dried model infant formula. Model infant formulas were produced containing either intact (DH 0) or hydrolyzed (DH 12) whey protein, where DH=degree of hydrolysis (%). Before spray drying, apparent viscosities of liquid feeds (at 55°C) at a shear rate of 500 s(-1) were 3.02 and 3.85 mPa·s for intact and hydrolyzed infant formulas, respectively. On reconstitution, powders with hydrolyzed whey protein had a significantly higher fat globule size and lower emulsion stability than intact whey protein powder. Lactose crystallization in powders occurred at higher relative humidity for hydrolyzed formula. The Guggenheim-Anderson-de Boer equation, fitted to sorption isotherms, showed increased monolayer moisture when intact protein was present. As expected, glass transition decreased significantly with increasing water content. Partial hydrolysis of whey protein in model infant formula resulted in altered powder particle surface morphology, lactose crystallization properties, and storage stability.

  1. Gravity increased by lunar surface temperature

    Science.gov (United States)

    Keene, James

    2013-04-01

    Quantitatively large effects of lunar surface temperature on apparent gravitational force measured by lunar laser ranging (LLR) and lunar perigee may challenge widely accepted theories of gravity. LLR data grouped by days from full moon shows the moon is about 5 percent closer to earth at full moon compared to 8 days before or after full moon. In a second, related result, moon perigees were least distant in days closer to full moon. Moon phase was used as proxy independent variable for lunar surface temperature. The results support the prediction by binary mechanics that gravitational force increases with object surface temperature.

  2. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions

    Science.gov (United States)

    Song, Lisheng; Kustas, William P.; Liu, Shaomin; Colaizzi, Paul D.; Nieto, Hector; Xu, Ziwei; Ma, Yanfei; Li, Mingsong; Xu, Tongren; Agam, Nurit; Tolk, Judy A.; Evett, Steven R.

    2016-09-01

    In this study ground measured soil and vegetation component temperatures and composite temperature from a high spatial resolution thermal camera and a network of thermal-IR sensors collected in an irrigated maize field and in an irrigated cotton field are used to assess and refine the component temperature partitioning approach in the Two-Source Energy Balance (TSEB) model. A refinement to TSEB using a non-iterative approach based on the application of the Priestley-Taylor formulation for surface temperature partitioning and estimating soil evaporation from soil moisture observations under advective conditions (TSEB-A) was developed. This modified TSEB formulation improved the agreement between observed and modeled soil and vegetation temperatures. In addition, the TSEB-A model output of evapotranspiration (ET) and the components evaporation (E), transpiration (T) when compared to ground observations using the stable isotopic method and eddy covariance (EC) technique from the HiWATER experiment and with microlysimeters and a large monolithic weighing lysimeter from the BEAREX08 experiment showed good agreement. Difference between the modeled and measured ET measurements were less than 10% and 20% on a daytime basis for HiWATER and BEAREX08 data sets, respectively. The TSEB-A model was found to accurately reproduce the temporal dynamics of E, T and ET over a full growing season under the advective conditions existing for these irrigated crops located in arid/semi-arid climates. With satellite data this TSEB-A modeling framework could potentially be used as a tool for improving water use efficiency and conservation practices in water limited regions. However, TSEB-A requires soil moisture information which is not currently available routinely from satellite at the field scale.

  3. Solar forcing and secular variability of the surface temperature during the last millennium in the IPSLCM4_v2 climate model

    Science.gov (United States)

    Servonnat, Jerome; Yiou, Pascal; Khodri, Myriam; Swingedouw, Didier; Denvil, Sébastien

    2010-05-01

    Studying the climate of the last millennium gives the possibility to assess a pre-industrial period of several centuries more and more documented through surface temperature reconstructions. The Northern Hemisphere temperature reconstructions show common secular pattern reflecting the so-called Medieval Climate Anomaly and the Little Ice Age and understanding the causes of such events is a key issue in understanding natural climate variability. Many modelling have concluded that the climate during the preindustrial part of the last 1000 years was mainly affected by the variations of Total Solar Irradiance (TSI) and volcanic aerosols of the major eruptions. We present two millennium-long numerical simulations performed with the IPSLCM4_v2 fully coupled climate model, designed to focus on the impact of TSI variability during the last millennium: a 1000 yr control run with constant preindustrial boundary conditions and a simulation forced with three reconstructions of secular forcings, comprising a widely used reconstruction of TSI variability [Crowley, 2000], variations of CO2 concentration and orbital parameters. We discuss the Northern Hemisphere surface temperature variability of the forced simulation through a comparison with four Northern Hemisphere temperature reconstructions [Ammann and Wahl, 2007; Crowley and Lowery, 2000; Mann et al., 2008; Moberg et al., 2005]. This discussion is held by the evaluation of the contribution of solar, CO2 and orbital forcings to the temperature variability in the simulation through a statistical decomposition of the NH temperature signal. We then assess the amplitude of forced versus internal variability as a function of the spatial scale considered. The diagnostic aims at evaluating the spatial scale at which the variance of the forced simulation is significantly different from the internal variability represented by the control simulation, involving the detectability of the forcings. References Ammann, C., and E. Wahl (2007

  4. Reply to comment on "A simple model for the short-time evolution of near-surface current and temperature profiles"

    CERN Document Server

    Jenkins, A D; Jenkins, Alastair D.; Ward, Brian

    2005-01-01

    This is our response to a comment by Walter Eifler on our paper `A simple model for the short-time evolution of near-surface current and temperature profiles' (arXiv:physics/0503186, accepted for publication in Deep-Sea Research II). Although Eifler raises genuine issues regarding our model's validity and applicability, we are nevertheless of the opinion that it is of value for the short-term evolution of the upper-ocean profiles of current and temperature. The fact that the effective eddy viscosity tends to infinity for infinite time under a steady wind stress may not be surprising. It can be interpreted as a vertical shift of the eddy viscosity profile and an increase in the size of the dominant turbulent eddies under the assumed conditions of small stratification and infinite water depth.

  5. Use of satellite land surface temperatures in the EUSTACE global surface air temperature analysis

    Science.gov (United States)

    Ghent, D.; Good, E.; Rayner, N. A.

    2015-12-01

    EUSTACE (EU Surface Temperatures for All Corners of Earth) is a Horizon2020 project that will produce a spatially complete, near-surface air temperature (NSAT) analysis for the globe for every day since 1850. The analysis will be based on both satellite and in situ surface temperature observations over land, sea, ice and lakes, which will be combined using state-of-the-art statistical methods. The use of satellite data will enable the EUSTACE analysis to offer improved estimates of NSAT in regions that are poorly observed in situ, compared with existing in-situ based analyses. This presentation illustrates how satellite land surface temperature (LST) data - sourced from the European Space Agency (ESA) Data User Element (DUE) GlobTemperature project - will be used in EUSTACE. Satellite LSTs represent the temperature of the Earth's skin, which can differ from the corresponding NSAT by several degrees or more, particularly during the hottest part of the day. Therefore the first challenge is to develop an approach to estimate global NSAT from satellite observations. Two methods will be trialled in EUSTACE, both of which are summarised here: an established empirical regression-based approach for predicting NSAT from satellite data, and a new method whereby NSAT is calculated from LST and other parameters using a physics-based model. The second challenge is in estimating the uncertainties for the satellite NSAT estimates, which will determine how these data are used in the final blended satellite-in situ analysis. This is also important as a key component of EUSTACE is in delivering accurate uncertainty information to users. An overview of the methods to estimate the satellite NSATs is also included in this presentation.

  6. Sea Surface Temperature Average_SST_Master

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sea surface temperature collected via satellite imagery from http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.ersst.html and averaged for each region using ArcGIS...

  7. OW NOAA GOES Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Geostationary Orbiting Environmental Satellite. The data is...

  8. evaluation of land surface temperature parameterization ...

    African Journals Online (AJOL)

    user

    1 DEPARTMENT OF PHYSICS, ADEYEMI COLLEGE OF EDUCATION, ONDO, ... Surface temperature (Ts) is vital to the study of land-atmosphere interactions and climate variabilities. .... value = 0.167 m3m-3), and very low for dry days (mean.

  9. Monthly Near-Surface Air Temperature Averages

    Data.gov (United States)

    National Aeronautics and Space Administration — Global surface temperatures in 2010 tied 2005 as the warmest on record. The International Satellite Cloud Climatology Project (ISCCP) was established in 1982 as part...

  10. Sea Surface Temperature (14 KM North America)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Product shows local sea surface temperatures (degrees C). It is a composite gridded-image derived from 8-km resolution SST Observations. It is generated every 48...

  11. Analysed foundation sea surface temperature, global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The through-cloud capabilities of microwave radiometers provide a valuable picture of global sea surface temperature (SST). To utilize this, scientists at Remote...

  12. Using dual temperature difference two source energy balance model and MODIS data to estimate surface energy fluxes at regional scales in northern latitudes

    Science.gov (United States)

    Guzinski, R.; Anderson, M.; Kustas, W.; Nieto, H.; Sandholt, I.

    2012-04-01

    A Two Source Energy Balance (TSEB) thermal-based modeling scheme has previously been used to successfully estimate surface latent and sensible heat fluxes at regional to continental scales with the help of satellite surface radiometric temperature observations. The Dual Temperature Difference (DTD) model introduced a simple methodology to address the sensitivity of the thermal-based energy balance models to the absolute measurement of land surface temperature (LST), which when derived with the help of satellites can have errors of several degrees. The original DTD model formulation required an early morning LST observation (1 hour after local sunrise) when fluxes were minimal followed by another LST observations later in the morning or afternoon and so was limited in use to data provided by geostationary satellites having high temporal resolution. This, however, made it unsuitable for areas at higher latitudes, such as northern Eurasia and northern North America. In this poster we present a number of modifications to the DTD model which allows it to exploit the day and night LST observations by the MODIS sensor aboard the Terra and Aqua polar orbiting satellites. Firstly, we look at whether taking the first LST observation around the time of Aqua's night overpass, when fluxes are small but not insignificant, would greatly affect the accuracy of the model. Secondly, we consider the issues directly related to using the MODIS sensor to measure the LST. This includes different view zenith angles of the day and night LST observations, the two observations possibly coming from the two different satellites and the accuracy of the instrument itself. We also evaluate two approaches for estimating αPT, the Priestley-Taylor parameter used in the TSEB modeling scheme to estimate heat fluxes of the vegetation canopy, to improve the performance of the model in coniferous and deciduous forests. The first approach estimates αPT based on tree height, while the second uses

  13. Influence of Nitrogen-di-Oxide, Temperature and Relative Humidity on Surface Ozone Modeling Process Using Multigene Symbolic Regression Genetic Programming

    Directory of Open Access Journals (Sweden)

    Alaa F. Sheta

    2015-06-01

    Full Text Available Automatic monitoring, data collection, analysis and prediction of environmental changes is essential for all living things. Understanding future climate changes does not only helps in measuring the influence on people life, habits, agricultural and health but also helps in avoiding disasters. Giving the high emission of chemicals on air, scientist discovered the growing depletion in ozone layer. This causes a serious environmental problem. Modeling and observing changes in the Ozone layer have been studied in the past. Understanding the dynamics of the pollutants features that influence Ozone is ex-plored in this article. A short term prediction model for surface Ozone is offered using Multigene Symbolic Regression Genetic Programming (GP. The proposed model customs Nitrogen-di-Oxide, Temperature and Relative Humidity as the main features to predict the Ozone level. Moreover, a comparison between GP and Artificial Neural Network (ANN in modeling Ozone is presented. The developed results show that GP outperform the ANN.

  14. North American regional climate reconstruction from ground surface temperature histories

    Science.gov (United States)

    Jaume-Santero, Fernando; Pickler, Carolyne; Beltrami, Hugo; Mareschal, Jean-Claude

    2016-12-01

    Within the framework of the PAGES NAm2k project, 510 North American borehole temperature-depth profiles were analyzed to infer recent climate changes. To facilitate comparisons and to study the same time period, the profiles were truncated at 300 m. Ground surface temperature histories for the last 500 years were obtained for a model describing temperature changes at the surface for several climate-differentiated regions in North America. The evaluation of the model is done by inversion of temperature perturbations using singular value decomposition and its solutions are assessed using a Monte Carlo approach. The results within 95 % confidence interval suggest a warming between 1.0 and 2.5 K during the last two centuries. A regional analysis, composed of mean temperature changes over the last 500 years and geographical maps of ground surface temperatures, show that all regions experienced warming, but this warming is not spatially uniform and is more marked in northern regions.

  15. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models

    Science.gov (United States)

    Sahai, A. K.; Borah, N.; Chattopadhyay, R.; Joseph, S.; Abhilash, S.

    2016-06-01

    The recent annually averaged warming of the Antarctic Peninsula, and of West Antarctica, stands in stark contrast to very small trends over East Antarctica. This asymmetry arises primarily from a highly significant warming of West Antarctica in austral spring and a cooling of East Antarctica in austral autumn. Here we examine whether this East-West asymmetry is a response to anthropogenic climate forcings or a manifestation of natural climate variability. We compare the observed Antarctic surface air temperature trends over two distinct time periods (1960-2005 and 1979-2005), and with those simulated by 40 models participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). We find that the observed East-West asymmetry differs substantially between the two periods and, furthermore, that it is completely absent from the forced response seen in the CMIP5 multi-model mean, from which all natural variability is eliminated by the averaging. We also examine the relationship between the Southern Annular mode (SAM) and Antarctic temperature trends, in both models and reanalyses, and again conclude that there is little evidence of anthropogenic SAM-induced driving of the recent temperature trends. These results offer new, compelling evidence pointing to natural climate variability as a key contributor to the recent warming of West Antarctica and of the Peninsula.

  16. Projections of Rainfall and Surface Temperature from CMIP5 Models under RCP4.5 and 8.5 over BIMSTEC Countries

    Science.gov (United States)

    Charan Pattnayak, Kanhu; Kar, Sarat Chandra; Kumari Pattnayak, Rashmita

    2015-04-01

    Rainfall and surface temperature are the most important climatic variables in the context of climate change. Thus, these variables simulated from fifth phase of the Climate Model Inter-comparison Project (CMIP5) models have been compared against Climatic Research Unit (CRU) observed data and projected for the twenty first century under the Representative Concentration Pathways (RCPs) 4.5 and 8.5 emission scenarios. Results for the seven countries under Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) such as Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand have been examined. Six CMIP5 models namely GFDL-CM3, GFDL-ESM2M, GFDL-ESM2G, HadGEM2-AO, HadGEM2-CC and HadGEM2-ES have been chosen for this study. The study period has been considered is from 1861 to 2100. From this period, initial 145 years i.e. 1861 to 2005 is reference or historical period and the later 95 years i.e. 2005 to 2100 is projected period. The climate change in the projected period has been examined with respect to the reference period. In order to validate the models, the mean annual rainfall and temperature has been compared with CRU over the reference period 1901 to 2005. Comparison reveals that most of the models are able to capture the spatial distribution of rainfall and temperature over most of the regions of BIMSTEC countries. Therefore these model data can be used to study the future changes in the 21st Century. Four out six models shows that the rainfall over Central and North India, Thailand and eastern part of Myanmar shows decreasing trend and Bangladesh, Bhutan, Nepal and Sri Lanka shows an increasing trend in both RCP 4.5 and 8.5 scenarios. In case of temperature, all of the models show an increasing trend over all the BIMSTEC countries in both scenarios, however, the rate of increase is relatively less over Sri Lanka than the other countries. Annual cycles of rainfall and temperature over Bangladesh, Myanmar and Thailand

  17. Pavement Aging Model by Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Manzano-Ramírez A.

    2011-10-01

    Full Text Available In this work, surface course aging was modeled by Response Surface Methodology (RSM. The Marshall specimens were placed in a conventional oven for time and temperature conditions established on the basis of the environment factors of the region where the surface course is constructed by AC-20 from the Ing. Antonio M. Amor refinery. Volatilized material (VM, load resistance increment (ΔL and flow resistance increment (ΔF models were developed by the RSM. Cylindrical specimens with real aging were extracted from the surface course pilot to evaluate the error of the models. The VM model was adequate, in contrast (ΔL and (ΔF models were almost adequate with an error of 20 %, that was associated with the other environmental factors, which were not considered at the beginning of the research.

  18. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature

    Science.gov (United States)

    Suh, Myoung-Seok; Oh, Seok-Geun; Lee, Young-Suk; Ahn, Joong-Bae; Cha, Dong-Hyun; Lee, Dong-Kyou; Hong, Song-You; Min, Seung-Ki; Park, Seong-Chan; Kang, Hyun-Suk

    2016-05-01

    We projected surface air temperature changes over South Korea during the mid (2026-2050) and late (2076-2100) 21st century against the current climate (1981-2005) using the simulation results from five regional climate models (RCMs) driven by Hadley Centre Global Environmental Model, version 2, coupled with the Atmosphere- Ocean (HadGEM2-AO), and two ensemble methods (equal weighted averaging, weighted averaging based on Taylor's skill score) under four Representative Concentration Pathways (RCP) scenarios. In general, the five RCM ensembles captured the spatial and seasonal variations, and probability distribution of temperature over South Korea reasonably compared to observation. They particularly showed a good performance in simulating annual temperature range compared to HadGEM2-AO. In future simulation, the temperature over South Korea will increase significantly for all scenarios and seasons. Stronger warming trends are projected in the late 21st century than in the mid-21st century, in particular under RCP8.5. The five RCM ensembles projected that temperature changes for the mid/late 21st century relative to the current climate are +1.54°C/+1.92°C for RCP2.6, +1.68°C/+2.91°C for RCP4.5, +1.17°C/+3.11°C for RCP6.0, and +1.75°C/+4.73°C for RCP8.5. Compared to the temperature projection of HadGEM2-AO, the five RCM ensembles projected smaller increases in temperature for all RCP scenarios and seasons. The inter-RCM spread is proportional to the simulation period (i.e., larger in the late-21st than mid-21st century) and significantly greater (about four times) in winter than summer for all RCP scenarios. Therefore, the modeled predictions of temperature increases during the late 21st century, particularly for winter temperatures, should be used with caution.

  19. Low Temperature Surface Carburization of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Thermodynamic modeling to explain the high degree of carbon solubility possible in austenitic grades under the LTCSS process and experimental validation of model results • Corrosion testing to determine the corrosion resistance improvement possible from the LTCSS process • Erosion testing to determine the erosion resistance improvement possible from the LTCSS process • Wear testing to quantify the wear resistance improvement possible from the LTCSS process • Fatigue testing for quantifying the extent of improvement from the LTCSS process • Component treating and testing under simulated and in-line commercial operations XRD verified expanded austenite lattice, with no evidence of carbide precipitation. Carbon concentration profiles via Auger and electron dispersion spectroscopy (EDS) showed carbon levels in excess of 12 at. % in treated, type 316 SS. Scanning electron microscopy (SEM) of pulled-to-failure treated tensile specimens showed slip bands and no de-cohesion of the treated layer, verifying that the layer remains ductile. Compressive stresses in excess of 2 GPa (300 ksi) have been calculated at the surface of the case. Phase diagram (CALPHAD) (ThermoCalc) and Wagner dilute solution thermodynamic models were developed that calculate the solubility of carbon in austenite as a function of alloying content for the process time and temperature. Several commercial alloys have been modeled, and the model has been used to design experimental alloys with enhanced affinity for carbon solubility at treatment temperatures. Four experimental alloys were melted, rolled, and manufactured into test specimens, and the LTCSS treatment indicated successfully enhanced results and validated the predictions based on thermodynamic modeling. Electrochemical polarization curves show a 600 to 800 mV increase in pitting potential in treated (900-1000 mV) versus non-treated (200-300 mV) type 316 in chloride solutions. Treated 316L showed crevice-corrosion behavior similar to that of Ti-6

  20. Development of an improved urban emissivity model based on sky view factor for retrieving effective emissivity and surface temperature over urban areas

    Science.gov (United States)

    Yang, Jinxin; Wong, Man Sing; Menenti, Massimo; Nichol, Janet; Voogt, James; Krayenhoff, E. Scott; Chan, P. W.

    2016-12-01

    This study aims to evaluate the effects of urban geometry on retrieval of emissivity and surface temperature in urban areas. An improved urban emissivity model based on sky view factor (IUEM-SVF) was further enhanced to consider all radiance contributions leaving the urban canopy, including (i) emission by all facets within an instantaneous field of view (IFOV); (ii) reflection by all facets of emission from surrounding facets; and (iii) propagation of emitted and reflected radiation with multiple reflections (scattering) within a complex 3D array of urban objects. The effective emissivity derived from IUEM-SVF was evaluated with a microscale radiative transfer and energy balance model: Temperatures of Urban Facets in 3-D (TUF-3D). IUEM-SVF performs well when urban facets have uniform emissivity and temperature; e.g., root mean square deviations (RMSD) are less than 0.005 when material emissivity is larger than 0.80 (ɛ ⩾ 0.80). However, when material emissivities are variable within the observed target, differences of effective emissivity between IUEM-SVF and TUF-3D become larger, e.g., RMSD of 0.010. When the effect of geometry is not considered and a mixed pixel emissivity is defined, the difference is even much larger (i.e. 0.02) and this difference increases with the decrease of sky view factor. Thus, the geometry effect should be considered in the determination of effective emissivity. Effective emissivity derived from IUEM-SVF was used to retrieve urban surface temperature from a nighttime ASTER thermal infrared image. Promising results were achieved in comparison with standard LST products retrieved with the Temperature and Emissivity Separation (TES) algorithm. IUEM-SVF shows promise as a means to improve the accuracy of urban surface temperature retrieval. The effect of thermal heterogeneity on the effective emissivity was also evaluated by TUF-3D, and results show that the thermal heterogeneity cannot be neglected since the RMSD between the effective

  1. The impacts of a plume-rise scheme on earth system modeling: climatological effects of biomass aerosols on the surface temperature and energy budget of South America

    Science.gov (United States)

    de Menezes Neto, Otacilio L.; Coutinho, Mariane M.; Marengo, José A.; Capistrano, Vinícius B.

    2017-08-01

    Seasonal forest fires in the Amazon are the largest source of pollutants in South America. The impacts of aerosols due to biomass burning on the temperature and energy balance in South America are investigated using climate simulations from 1979 to 2005 using HadGEM2-ES, which includes the hot plume-rise scheme (HPR) developed by Freitas et al. (Estudos Avançados 19:167-185, 2005, Atmos Chem Phys 7:3385-3398, 2007, Atmos Chem Phys 10:585-594, 2010). The HPR scheme is used to estimate the vertical heights of biomass-burning aerosols based on the thermodynamic characteristics of the underlying model. Three experiments are performed. The first experiment includes the HPR scheme, the second experiment turns off the HPR scheme and the effects of biomass aerosols (BIOMASS OFF), and the final experiment assumes that all biomass aerosols are released at the surface (HPR OFF). Relative to the BIOMASS OFF experiment, the temperature decreased in the HPR experiment as the net shortwave radiation at the surface decreased in a region with a large amount of biomass aerosols. When comparing the HPR and HPR OFF experiments, the release of biomass aerosols higher on the atmosphere impacts on temperature and the energy budget because the aerosols were transported by strong winds in the upper atmospheric levels.

  2. Estimation of minimum surface temperature at stage ll (Short Communication

    Directory of Open Access Journals (Sweden)

    A. P. Dimri

    2001-04-01

    Full Text Available Forecasting minimum surface temperature at a station, Stage II, located in mountainous region requires information on the meteorological fields. An attempt has been made to develop a statistical model for forecasting minimum temperature at ground level using previous years' data. Surface data were collected at StageII (longitude 73 oB, latitude 34 oN, and altitude 2650 m. Atmospheric variables are influenced by complex orography and surface features to a great extent. In the present study, statistical relationship between atmosphere parameters and minimum temperature at the site has been established. Multivariate linear regression analysis has been used to establish the relationship to predict the minimum surface temperature for the following day. A comparison between the observed and the calculated forecast minimum temperature has been made. Most of the cases are well predicted (multiple correlation coefficient of 0.94.

  3. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  4. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 2 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  5. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 3 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Land Surface Temperature Databank contains monthly timescale mean, maximum, and minimum temperature for approximately 40,000 stations globally. It was...

  6. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Daily

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  7. International Surface Temperature Initiative (ISTI) Global Land Surface Temperature Databank - Stage 1 Monthly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The global land surface temperature databank contains monthly timescale mean, max, and min temperature for approximately 40,000 stations globally. It was developed...

  8. The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacfic Ocean

    Science.gov (United States)

    Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.

    1994-01-01

    The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat

  9. Transient, three-dimensional heat transfer model for the laser assisted machining of silicon nitride: 1. Comparison of predictions with measured surface temperature histories

    Energy Technology Data Exchange (ETDEWEB)

    Rozzi, J.C.; Pfefferkorn, F.E.; Shin, Y.C. [Purdue University, (United States). Laser Assisted Materials Processing Laboratory, School of Mechanical Engineering; Incropera, F.P. [University of Notre Dame, (United States). Aerospace and Mechanical Engineering Department

    2000-04-01

    Laser assisted machining (LAM), in which the material is locally heated by an intense laser source prior to material removal, provides an alternative machining process with the potential to yield higher material removal rates, as well as improved control of workpiece properties and geometry, for difficult-to-machine materials such as structural ceramics. To assess the feasibility of the LAM process and to obtain an improved understanding of governing physical phenomena, experiments have been performed to determine the thermal response of a rotating silicon nitride workpiece undergoing heating by a translating CO{sub 2} laser and material removal by a cutting tool. Using a focused laser pyrometer, surface temperature histories were measured to determine the effect of the rotational and translational speeds, the depth of cut, the laser-tool lead distance, and the laser beam diameter and power on thermal conditions. The measurements are in excellent agreement with predictions based on a transient, three-dimensional numerical solution of the heating and material removal processes. The temperature distribution within the unmachined workpiece is most strongly influenced by the laser power and laser-tool lead distance, as well as by the laser/tool translational velocity. A minimum allowable operating temperature in the material removal region corresponds to the YSiAlON glass transition temperature, below which tool fracture may occur. In a companion paper, the numerical model is used to further elucidate thermal conditions associated with laser assisted machining. (author)

  10. Calibration of surface temperature on rocky exoplanets

    Science.gov (United States)

    Kashyap Jagadeesh, Madhu

    2016-07-01

    Study of exoplanets and the search for life elsewhere has been a very fascinating area in recent years. Presently, lots of efforts have been channelled in this direction in the form of space exploration and the ultimate search for the habitable planet. One of the parametric methods to analyse the data available from the missions such as Kepler, CoRoT, etc, is the Earth Similarity Index (ESI), defined as a number between zero (no similarity) and one (identical to Earth), introduced to assess the Earth likeness of exoplanets. A multi-parameter ESI scale depends on the radius, density, escape velocity and surface temperature of exoplanets. Our objective is to establish how exactly the individual parameters, entering the interior ESI and surface ESI, are contributing to the global ESI, using the graphical analysis. Presently, the surface temperature estimates are following a correction factor of 30 K, based on the Earth's green-house effect. The main objective of this work in calculations of the global ESI using the HabCat data is to introduce a new method to better estimate the surface temperature of exoplanets, from theoretical formula with fixed albedo factor and emissivity (Earth values). From the graphical analysis of the known data for the Solar System objects, we established the calibration relation between surface and equilibrium temperatures for the Solar System objects. Using extrapolation we found that the power function is the closest description of the trend to attain surface temperature. From this we conclude that the correction term becomes very effective way to calculate the accurate value of the surface temperature, for further analysis with our graphical methodology.

  11. The stationary wave response to a midlatitude SST anomaly in an idealized GCM. [SST (sea surface temperature); GCM (general circulation model)

    Energy Technology Data Exchange (ETDEWEB)

    Ting, M. (Univ. of Colorado, Boulder, CO (United States))

    1991-05-15

    The atmospheric stationary wave response to a midlatitude sea surface temperature (SST) anomaly is examined with an idealized general circulation model (GCM) as well as steady linear model, in a similar way as Ting and Held, for a tropical SST anomaly. The control climate of the GCM is zonally symmetric; this symmetric climate is then perturbed by a monopole SST anomaly centered at 40[degrees]N. Two experiments, with SST anomalies of opposite sign, have been conducted. The stationary response is roughly linear in the sign of the SST anomaly, despite the fact that precipitation shows strong nonlinearity. The linear model, which is in exact linearization of the GCM equations in use, when forced by anomalous heating and transients, reproduces the GCM's stationary response excellently. The low-level transient eddy heat fluxes act to damp the lower level temperature signal. When this damping effect is mimicked by a horizontal thermal diffusion in the linear model, the response to the diabatic heating alone gives a reasonably good simulation of the GCm's anomaly; the effect of the anomalous transient momentum fluxes is relatively small. A crude latent heat parameterization scheme, using an evaporation anomaly that is proportional to the mean air-sea surface moisture difference and including the effects of mean moisture advection, is developed. When the perturbation mixing ratio is approximated by assuming fixed relative humidity and by linearizing the Clausius-Clapeyron equation, the linear model's response, utilizing this latent heat parameterization scheme, gives a useful fit to the GCM's anomalous flow. 22 refs., 94 figs.

  12. Integrative inversion of land surface component temperature

    Institute of Scientific and Technical Information of China (English)

    FAN Wenjie; XU Xiru

    2005-01-01

    In this paper, the row winter wheat was selected as the example to study the component temperature inversion method of land surface target in detail. The result showed that the structural pattern of row crop can affect the inversion precision of component temperature evidently. Choosing appropriate structural pattern of row crop can improve the inversion precision significantly. The iterative method combining inverse matrix was a stable method that was fit for inversing component temperature of land surface target. The result of simulation and field experiment showed that the integrative method could remarkably improve the inversion accuracy of the lighted soil surface temperature and the top layer canopy temperature, and enhance inversion stability of components temperature. Just two parameters were sufficient for accurate atmospheric correction of multi-angle and multi-spectral thermal infrared data: atmospheric transmittance and the atmospheric upwelling radiance. If the atmospheric parameters and component temperature can be inversed synchronously, the really and truly accurate atmospheric correction can be achieved. The validation using ATSRII data showed that the method was useful.

  13. Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling

    Directory of Open Access Journals (Sweden)

    Lidia Vlassova

    2014-05-01

    Full Text Available Land Surface Temperature (LST is one of the key inputs for Soil-Vegetation-Atmosphere transfer modeling in terrestrial ecosystems. In the frame of BIOSPEC (Linking spectral information at different spatial scales with biophysical parameters of Mediterranean vegetation in the context of global change and FLUXPEC (Monitoring changes in water and carbon fluxes from remote and proximal sensing in Mediterranean “dehesa” ecosystem projects LST retrieved from Landsat data is required to integrate ground-based observations of energy, water, and carbon fluxes with multi-scale remotely-sensed data and assess water and carbon balance in ecologically fragile heterogeneous ecosystem of Mediterranean wooded grassland (dehesa. Thus, three methods based on the Radiative Transfer Equation were used to extract LST from a series of 2009–2011 Landsat-5 TM images to assess the applicability for temperature input generation to a Landsat-MODIS LST integration. When compared to surface temperatures simulated using MODerate resolution atmospheric TRANsmission 5 (MODTRAN 5 with atmospheric profiles inputs (LSTref, values from Single-Channel (SC algorithm are the closest (root-mean-square deviation (RMSD = 0.50 °C; procedure based on the online Radiative Transfer Equation Atmospheric Correction Parameters Calculator (RTE-ACPC shows RMSD = 0.85 °C; Mono-Window algorithm (MW presents the highest RMSD (2.34 °C with systematical LST underestimation (bias = 1.81 °C. Differences between Landsat-retrieved LST and MODIS LST are in the range of 2 to 4 °C and can be explained mainly by differences in observation geometry, emissivity, and time mismatch between Landsat and MODIS overpasses. There is a seasonal bias in Landsat-MODIS LST differences due to greater variations in surface emissivity and thermal contrasts between landcover components.

  14. A new interpolation method for Antarctic surface temperature

    Institute of Scientific and Technical Information of China (English)

    Yetang Wang; Shugui Hou

    2009-01-01

    We propose a new methodology for the spatial interpolation of annual mean temperature into a regular grid with a geographic resolution of 0.01° for Antarctica by applying a recent compilation of the Antarctic temperature data.A multiple linear regression model of the dependence of temperature on some geographic parameters (i.e.,latitude,longitude,and elevation) is proposed empirically,and the kriging method is used to determine the spatial distribution of regional and local deviations from the temperature calculated from the multiple linear regression model.The modeled value and residual grids are combined to derive a high-resolution map of surface air temperature.The performance of our new methodology is superior to a variety of benchmark methods (e.g.,inverse distance weighting,kriging,and spline methods) via cross-validation techniques.Our simulation resembles well with those distinct spatial features of surface temperature,such as the decrease in annual mean surface temperature with increasing latitude and the distance away from the coast line;and it also reveals the complex topographic effects on the spatial distribution of surface temperature.

  15. Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances

    Directory of Open Access Journals (Sweden)

    T. Conradt

    2013-01-01

    Full Text Available A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in Central Europe (148 268 km2 with the semi-distributed eco-hydrological model SWIM. While global parameter optimisation led to Nash–Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different stategies for deriving sub-basin evapotranspiration: (1 modelled by SWIM without any spatial calibration, (2 derived from remotely sensed surface temperatures, and (3 calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. Further probable causes for epistemic uncertainties could be pinpointed. The results encourage careful utilisation of different data sources for calibration and validation procedures in distributed hydrological modelling.

  16. Temperature Distribution Measurement of The Wing Surface under Icing Conditions

    Science.gov (United States)

    Isokawa, Hiroshi; Miyazaki, Takeshi; Kimura, Shigeo; Sakaue, Hirotaka; Morita, Katsuaki; Japan Aerospace Exploration Agency Collaboration; Univ of Notre Dame Collaboration; Kanagawa Institute of Technology Collaboration; Univ of Electro-(UEC) Team, Comm

    2016-11-01

    De- or anti-icing system of an aircraft is necessary for a safe flight operation. Icing is a phenomenon which is caused by a collision of supercooled water frozen to an object. For the in-flight icing, it may cause a change in the wing cross section that causes stall, and in the worst case, the aircraft would fall. Therefore it is important to know the surface temperature of the wing for de- or anti-icing system. In aerospace field, temperature-sensitive paint (TSP) has been widely used for obtaining the surface temperature distribution on a testing article. The luminescent image from the TSP can be related to the temperature distribution. (TSP measurement system) In icing wind tunnel, we measured the surface temperature distribution of the wing model using the TSP measurement system. The effect of icing conditions on the TSP measurement system is discussed.

  17. Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model

    Science.gov (United States)

    Piazza, Marie; Terray, Laurent; Boé, Julien; Maisonnave, Eric; Sanchez-Gomez, Emilia

    2016-03-01

    A high-resolution global atmospheric model is used to investigate the influence of the representation of small-scale North Atlantic sea surface temperature (SST) patterns on the atmosphere during boreal winter. Two ensembles of forced simulations are performed and compared. In the first ensemble (HRES), the full spatial resolution of the SST is maintained while small-scale features are smoothed out in the Gulf Stream region for the second ensemble (SMTH). The model shows a reasonable climatology in term of large-scale circulation and air-sea interaction coefficient when compared to reanalyses and satellite observations, respectively. The impact of small-scale SST patterns as depicted by differences between HRES and SMTH shows a strong meso-scale local mean response in terms of surface heat fluxes, convective precipitation, and to a lesser extent cloudiness. The main mechanism behind these statistical differences is that of a simple hydrostatic pressure adjustment related to increased SST and marine atmospheric boundary layer temperature gradient along the North Atlantic SST front. The model response to small-scale SST patterns also includes remote large-scale effects: upper tropospheric winds show a decrease downstream of the eddy-driven jet maxima over the central North Atlantic, while the subtropical jet exhibits a significant northward shift in particular over the eastern Mediterranean region. Significant changes are simulated in regard to the North Atlantic storm track, such as a southward shift of the storm density off the coast of North America towards the maximum SST gradient. A storm density decrease is also depicted over Greenland and the Nordic seas while a significant increase is seen over the northern part of the Mediterranean basin. Changes in Rossby wave breaking frequencies and weather regimes spatial patterns are shown to be associated to the jets and storm track changes.

  18. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four

  19. Temperature limit values for gripping cold surfaces

    NARCIS (Netherlands)

    Malchaire, J.; Geng, Q.; Den Hartog, E.; Havenith, G.; Holmer, I.; Piette, A.; Powell, S.L.; Rintamäki, H.; Rissanen, S.

    2002-01-01

    Objectives. At the request of the European Commission and in the framework of the European Machinery Directive, research was conducted jointly in five different laboratories to develop specifications for surface temperature limit values for the gripping and handling of cold items. Methods. Four hund

  20. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  1. Surface temperature excess in heterogeneous catalysis

    NARCIS (Netherlands)

    Zhu, L.

    2005-01-01

    In this dissertation we study the surface temperature excess in heterogeneous catalysis. For heterogeneous reactions, such as gas-solid catalytic reactions, the reactions take place at the interfaces between the two phases: the gas and the solid catalyst. Large amount of reaction heats are released

  2. Trend patterns in global sea surface temperature

    DEFF Research Database (Denmark)

    Barbosa, S.M.; Andersen, Ole Baltazar

    2009-01-01

    Isolating long-term trend in sea surface temperature (SST) from El Nino southern oscillation (ENSO) variability is fundamental for climate studies. In the present study, trend-empirical orthogonal function (EOF) analysis, a robust space-time method for extracting trend patterns, is applied...

  3. Modeling and research of temperature distribution in surface layer of titanium alloy workpiece during AEDG and conventional grinding

    Science.gov (United States)

    Gołąbczak, M.; Gołąbczak, A.; Konstantynowicz, A.; Święcik, R.

    2016-11-01

    Titanium and its alloys are widely recognized as the hardly machinable materials, especially due to their relatively high hardness, low thermal conductivity and possible subcritical superplasticity. Then, a thorough control of the machining process parameters shall be maintained. In this paper, we have concentrated on the grinding of the Ti6Al4V titanium alloy using cBN (boron nitride) grinding wheel combined with the AEDG (abrasive electrodischarge grinding) process. The mathematical model we have dealt with has been based mainly on Jaeger model of the heat taking over between sliding bodies with substantial upgrades related to:estimation of the frictional heat generating based on friction forces distribution,

  4. Reconstruction of gap-free time series satellite observations of land surface temperature to model spectral soil thermal admittance

    NARCIS (Netherlands)

    Ghafarian Malamiri, H.R.

    2015-01-01

    The soil thermal properties (soil thermal conductivity, soil heat capacity and soil diffusivity) are the main parameters in the applications that need quantitative information on soil heat transfer. Conventionally, these properties are either measured in situ or estimated by semi-empirical models us

  5. Climate Change Signal Analysis for Northeast Asian Surface Temperature

    Institute of Scientific and Technical Information of China (English)

    Jeong-Hyeong LEE; Byungsoo KIM; Keon-Tae SOHN; Won-Tae KOWN; Seung-Ki MIN

    2005-01-01

    Climate change detection, attribution, and prediction were studied for the surface temperature in the Northeast Asian region using NCEP/NCAR reanalysis data and three coupled-model simulations from ECHAM4/OPYC3, HadCM3, and CCCma GCMs (Canadian Centre for Climate Modeling and Analysis general circulation model). The Bayesian fingerprint approach was used to perform the detection and attribution test for the anthropogenic climate change signal associated with changes in anthropogenic carbon dioxide (CO2) and sulfate aerosol (SO42-) concentrations for the Northeast Asian temperature. It was shown that there was a weak anthropogenic climate change signal in the Northeast Asian temperature change. The relative contribution of CO2 and SOl- effects to total temperature change in Northeast Asia was quantified from ECHAM4/OPYC3 and CCCma GCM simulations using analysis of variance. For the observed temperature change for the period of 1959-1998, the CO2 effect contributed 10%-21% of the total variance and the direct cooling effect of SO42- played a less important role (0% 7%) than the CO2effect. The prediction of surface temperature change was estimated from the second CO2+SO24- scenario run of ECHAM4/OPYC3 which has the least error in the simulation of the present-day temperature field near the Korean Peninsula. The result shows that the area-mean surface temperature near the Korean Peninsula will increase by about 1.1° by the 2040s relative to the 1990s.

  6. Surface temperature distribution in broiler houses

    Directory of Open Access Journals (Sweden)

    MS Baracho

    2011-09-01

    Full Text Available In the Brazilian meat production scenario broiler production is the most dynamic segment. Despite of the knowledge generated in the poultry production chain, there are still important gaps on Brazilian rearing conditions as housing is different from other countries. This research study aimed at analyzing the variation in bird skin surface as function of heat distribution inside broiler houses. A broiler house was virtually divided into nine sectors and measurements were made during the first four weeks of the grow-out in a commercial broiler farm in the region of Rio Claro, São Paulo, Brazil. Rearing ambient temperature and relative humidity, as well as light intensity and air velocity, were recorded in the geometric center of each virtual sector to evaluate the homogeneity of these parameters. Broiler surface temperatures were recorded using infrared thermography. Differences both in surface temperature (Ts and dry bulb temperature (DBT were significant (p<0.05 as a function of week of rearing. Ts was different between the first and fourth weeks (p<0.05 in both flocks. Results showed important variations in rearing environment parameters (temperature and relative humidity and in skin surface temperature as a function of week and house sector. Air velocity data were outside the limits in the first and third weeks in several sectors. Average light intensity values presented low variation relative to week and house sector. The obtained values were outside the recommended ranges, indicating that broilers suffered thermal distress. This study points out the need to record rearing environment data in order to provide better environmental control during broiler grow-out.

  7. High temperature photoelectron emission and surface photovoltage in semiconducting diamond

    Science.gov (United States)

    Williams, G. T.; Cooil, S. P.; Roberts, O. R.; Evans, S.; Langstaff, D. P.; Evans, D. A.

    2014-08-01

    A non-equilibrium photovoltage is generated in semiconducting diamond at above-ambient temperatures during x-ray and UV illumination that is sensitive to surface conductivity. The H-termination of a moderately doped p-type diamond (111) surface sustains a surface photovoltage up to 700 K, while the clean (2 × 1) reconstructed surface is not as severely affected. The flat-band C 1s binding energy is determined from 300 K measurement to be 283.87 eV. The true value for the H-terminated surface, determined from high temperature measurement, is (285.2 ± 0.1) eV, corresponding to a valence band maximum lying 1.6 eV below the Fermi level. This is similar to that of the reconstructed (2 × 1) surface, although this surface shows a wider spread of binding energy between 285.2 and 285.4 eV. Photovoltage quantification and correction are enabled by real-time photoelectron spectroscopy applied during annealing cycles between 300 K and 1200 K. A model is presented that accounts for the measured surface photovoltage in terms of a temperature-dependent resistance. A large, high-temperature photovoltage that is sensitive to surface conductivity and photon flux suggests a new way to use moderately B-doped diamond in voltage-based sensing devices.

  8. Use of Land Surface Temperature Observations in a Two-Source Energy Balance Model Towards Improved Monitoring of Evapotranspiration and Drought

    Science.gov (United States)

    Hain, C.; Anderson, M. C.; Otkin, J.; Semmens, K. A.; Zhan, X.; Fang, L.; Li, Z.

    2014-12-01

    As the world's water resources come under increasing tension due to the dual stressors of climate change and population growth, accurate knowledge of water consumption through evapotranspiration (ET) over a range in spatial scales will be critical in developing adaptation strategies. However, direct validation of ET models is challenging due to lack of available observations that are sufficiently representative at the model grid scale (10-100 km). Prognostic land-surface models require accurate information about observed precipitation, soil moisture storage, groundwater, and artificial controls on water supply (e.g., irrigation, dams, etc.) to reliably link rainfall to evaporative fluxes. In contrast, diagnostic estimates of ET can be generated, with no prior knowledge of the surface moisture state, by energy balance models using thermal-infrared remote sensing of land-surface temperature (LST) as a boundary condition. One such method, the Atmosphere Land Exchange Inverse (ALEXI) model provides estimates of surface energy fluxes through the use of mid-morning change in LST and radiation inputs. The LST inputs carry valuable proxy information regarding soil moisture and its effect on soil evaporation and canopy transpiration. Additionally, the Evaporative Stress Index (ESI) representing anomalies in the ratio of actual-to-potential ET has shown to be a reliable indicator of drought. ESI maps over the continental US show good correspondence with standard drought metrics and with patterns of precipitation, but can be generated at significantly higher spatial resolution due to a limited reliance on ground observations. Furthermore, ESI is a measure of actual stress rather than potential for stress, and has physical relevance to projected crop development. Because precipitation is not used in construction of the ESI, it provides an independent assessment of drought conditions and has particular utility for real-time monitoring in regions with sparse rainfall data or

  9. SURFACE TEMPERATURES ON TITAN DURING NORTHERN WINTER AND SPRING

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, D. E.; Cottini, V.; Nixon, C. A.; Achterberg, R. K.; Flasar, F. M.; Kunde, V. G.; Romani, P. N.; Samuelson, R. E. [Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Mamoutkine, A. [ADNET Systems, Inc., Bethesda, MD 20817 (United States); Gorius, N. J. P. [The Catholic University of America, Washington, DC 20064 (United States); Coustenis, A. [Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique (LESIA), Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, 5, place Jules Janssen, F-92195 Meudon Cedex (France); Tokano, T., E-mail: donald.e.jennings@nasa.gov [Universität zu Köln, Albertus-Magnus-Platz, D-50923 Köln (Germany)

    2016-01-01

    Meridional brightness temperatures were measured on the surface of Titan during the 2004–2014 portion of the Cassini mission by the Composite Infrared Spectrometer. Temperatures mapped from pole to pole during five two-year periods show a marked seasonal dependence. The surface temperature near the south pole over this time decreased by 2 K from 91.7 ± 0.3 to 89.7 ± 0.5 K while at the north pole the temperature increased by 1 K from 90.7 ± 0.5 to 91.5 ± 0.2 K. The latitude of maximum temperature moved from 19 S to 16 N, tracking the sub-solar latitude. As the latitude changed, the maximum temperature remained constant at 93.65 ± 0.15 K. In 2010 our temperatures repeated the north–south symmetry seen by Voyager one Titan year earlier in 1980. Early in the mission, temperatures at all latitudes had agreed with GCM predictions, but by 2014 temperatures in the north were lower than modeled by 1 K. The temperature rise in the north may be delayed by cooling of sea surfaces and moist ground brought on by seasonal methane precipitation and evaporation.

  10. Geomagnetic effects on the average surface temperature

    Science.gov (United States)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  11. Cloud-resolving modeling of aerosol indirect effects in idealized radiative-convective equilibrium with interactive and fixed sea surface temperature

    Directory of Open Access Journals (Sweden)

    M. F. Khairoutdinov

    2012-11-01

    Full Text Available The study attempts to evaluate the aerosol indirect effects over tropical oceans in regions of deep convection applying a three-dimensional cloud-resolving model run over a doubly-periodic domain. The Tropics are modeled using a radiative-convective equilibrium idealization when the radiation, turbulence, cloud microphysics, and surface fluxes are explicitly represented while the effects of large-scale circulation are ignored. The aerosol effects are modeled by varying the number concentration of cloud condensation nuclei (CCN at 1% supersaturation, which serves as a proxy for the aerosol amount in the environment, over a wide range, starting from pristine maritime (50 cm−3 to polluted (1000 cm−3 conditions. No direct effects of aerosol on radiation are included. Two sets of simulations have been run to equilibrium: fixed (non-interactive sea surface temperature (SST and interactive SST as predicted by a simple slab-ocean model responding to the surface radiative fluxes and surface enthalpy flux. Both sets of experiments agree on the tendency to make the shortwave cloud forcing more negative and reduce the longwave cloud forcing in response to increasing CCN concentration. These, in turn, tend to cool the SST in interactive-SST case. It is interesting that the absolute change of the SST and most other bulk quantities depends only on relative change of CCN concentration; that is, same SST change can be the result of doubling CCN concentration regardless of clean or polluted conditions. It is found that the 10-fold increase of CCN concentration can cool the SST by as much as 1.5 K. This is quite comparable to 2 K warming obtained in a simulation for clean maritime conditions, but doubled CO2 concentration. Qualitative differences between the interactive and fixed SST cases have been found in sensitivity of the hydrological cycle to the increase in CCN concentration; namely, the precipitation rate shows some

  12. Correlation Models for Temperature Fields

    KAUST Repository

    North, Gerald R.

    2011-05-16

    This paper presents derivations of some analytical forms for spatial correlations of evolving random fields governed by a white-noise-driven damped diffusion equation that is the analog of autoregressive order 1 in time and autoregressive order 2 in space. The study considers the two-dimensional plane and the surface of a sphere, both of which have been studied before, but here time is introduced to the problem. Such models have a finite characteristic length (roughly the separation at which the autocorrelation falls to 1/e) and a relaxation time scale. In particular, the characteristic length of a particular temporal Fourier component of the field increases to a finite value as the frequency of the particular component decreases. Some near-analytical formulas are provided for the results. A potential application is to the correlation structure of surface temperature fields and to the estimation of large area averages, depending on how the original datastream is filtered into a distribution of Fourier frequencies (e.g., moving average, low pass, or narrow band). The form of the governing equation is just that of the simple energy balance climate models, which have a long history in climate studies. The physical motivation provided by the derivation from a climate model provides some heuristic appeal to the approach and suggests extensions of the work to nonuniform cases.

  13. Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures

    Science.gov (United States)

    Operational application of a remote sensing-based two source energy balance model (TSEB) to estimate evaportranspiration (ET) and the components evaporation (E), transpiration (T) at a range of space and time scales is very useful for managing water resources in arid and semiarid watersheds. The TSE...

  14. INVESTIGATION OF SURFACE TEMPERATURE IN HIGH-EFFICIENCY DEEP GRINDING

    Institute of Scientific and Technical Information of China (English)

    Zhao Henghua; Cai Guangqi; Jin Tan

    2005-01-01

    A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.

  15. Hydrological land surface modelling

    DEFF Research Database (Denmark)

    Ridler, Marc-Etienne Francois

    Recent advances in integrated hydrological and soil-vegetation-atmosphere transfer (SVAT) modelling have led to improved water resource management practices, greater crop production, and better flood forecasting systems. However, uncertainty is inherent in all numerical models ultimately leading...... and disaster management. The objective of this study is to develop and investigate methods to reduce hydrological model uncertainty by using supplementary data sources. The data is used either for model calibration or for model updating using data assimilation. Satellite estimates of soil moisture and surface...... hydrological and tested by assimilating synthetic hydraulic head observations in a catchment in Denmark. Assimilation led to a substantial reduction of model prediction error, and better model forecasts. Also, a new assimilation scheme is developed to downscale and bias-correct coarse satellite derived soil...

  16. Laser surface processing and model studies

    CERN Document Server

    Yilbas, Bekir Sami

    2013-01-01

    This book introduces model studies associated with laser surface processing such as conduction limited heating, surface re-melting, Marangoni flow and its effects on the temperature field, re-melting of multi-layered surfaces, laser shock processing, and practical applications. The book provides insight into the physical processes involved with laser surface heating and phase change in laser irradiated region. It is written for engineers and researchers working on laser surface engineering.

  17. ESTIMATION OF PV MODULE SURFACE TEMPERATURE USING ARTIFICIAL NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Can Coskun

    2016-12-01

    Full Text Available This study aimed to use the artificial neural network (ANN method to estimate the surface temperature of a photovoltaic (PV panel. Using the experimentally obtained PV data, the accuracy of the ANN model was evaluated. To train the artificial neural network (ANN, outer temperature solar radiation and wind speed values were inputs and surface temperature was an output. The ANN was used to estimate PV panel surface temperature. Using the Levenberg-Marquardt (LM algorithm the feed forward artificial neural network was trained. Two back propagation type ANN algorithms were used and their performance was compared with the estimate from the LM algorithm. To train the artificial neural network, experimental data were used for two thirds with the remaining third used for testing. Additionally scaled conjugate gradient (SCG back propagation and resilient back propagation (RB type ANN algorithms were used for comparison with the LM algorithm. The performances of these three types of artificial neural network were compared and mean error rates of between 0.005962 and 0.012177% were obtained. The best estimate was produced by the LM algorithm. Estimation of PV surface temperature with artificial neural networks provides better results than conventional correlation methods. This study showed that artificial neural networks may be effectively used to estimate PV surface temperature.

  18. Impact of tropical Atlantic sea-surface temperature biases on the simulated atmospheric circulation and precipitation over the Atlantic region: An ECHAM6 model study

    Science.gov (United States)

    Eichhorn, Astrid; Bader, Jürgen

    2017-09-01

    As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.

  19. A comparison of all-weather land surface temperature products

    Science.gov (United States)

    Martins, Joao; Trigo, Isabel F.; Ghilain, Nicolas; Goettche, Frank-M.; Ermida, Sofia; Olesen, Folke-S.; Gellens-Meulenberghs, Françoise; Arboleda, Alirio

    2017-04-01

    The Satellite Application Facility on Land Surface Analysis (LSA-SAF, http://landsaf.ipma.pt) has been providing land surface temperature (LST) estimates using SEVIRI/MSG on an operational basis since 2006. The LSA-SAF service has since been extended to provide a wide range of satellite-based quantities over land surfaces, such as emissivity, albedo, radiative fluxes, vegetation state, evapotranspiration, and fire-related variables. Being based on infra-red measurements, the SEVIRI/MSG LST product is limited to clear-sky pixels only. Several all-weather LST products have been proposed by the scientific community either based on microwave observations or using Soil-Vegetation-Atmosphere Transfer models to fill the gaps caused by clouds. The goal of this work is to provide a nearly gap-free operational all-weather LST product and compare these approaches. In order to estimate evapotranspiration and turbulent energy fluxes, the LSA-SAF solves the surface energy budget for each SEVIRI pixel, taking into account the physical and physiological processes occurring in vegetation canopies. This task is accomplished with an adapted SVAT model, which adopts some formulations and parameters of the Tiled ECMWF Scheme for Surface Exchanges over Land (TESSEL) model operated at the European Center for Medium-range Weather Forecasts (ECMWF), and using: 1) radiative inputs also derived by LSA-SAF, which includes surface albedo, down-welling fluxes and fire radiative power; 2) a land-surface characterization obtained by combining the ECOCLIMAP database with both LSA-SAF vegetation products and the H(ydrology)-SAF snow mask; 3) meteorological fields from ECMWF forecasts interpolated to SEVIRI pixels, and 4) soil moisture derived by the H-SAF and LST from LSA-SAF. A byproduct of the SVAT model is surface skin temperature, which is needed to close the surface energy balance. The model skin temperature corresponds to the radiative temperature of the interface between soil and atmosphere

  20. Field observations and results of a 1-D boundary layer model for developing near-surface temperature maxima in the Western Arctic

    Directory of Open Access Journals (Sweden)

    Shawn G. Gallaher

    2017-03-01

    Full Text Available Summer sea ice extent in the Western Arctic has decreased significantly in recent years resulting in increased solar input into the upper ocean. Here, a comprehensive set of 'in situ' shipboard, on-ice, and autonomous ice-ocean measurements were made of the early stages of formation of the near-surface temperature maximum (NSTM in the Canada Basin. These observations along with the results from a 1-D turbulent boundary layer model indicate that heat storage associated with NSTM formation is largely due to the absorption of penetrating solar radiation just below a protective summer halocline. The depth of the summer halocline was found to be the most important factor for determining the amount of solar radiation absorbed in the NSTM layer, while halocline strength controlled the amount of heat removed from the NSTM by turbulent transport. Observations using the Naval Postgraduate School Turbulence Frame show that the NSTM was able to persist despite periods of intermittent turbulence because transport rates were too small to remove significant amounts of heat from the NSTM layer. The development of the early and late summer halocline and NSTM were found to be linked to summer season buoyancy and wind events. For the early summer NSTM, 1-D boundary layer model results show that melt pond drainage provides sufficient buoyancy to the summer halocline to prevent subsequent wind events from mixing out the NSTM. For the late summer NSTM, limited freshwater inputs reduce the strength of the summer halocline making the balance between interfacial stresses and buoyancy more tenuous. As a result, the late summer NSTM is an ephemeral feature dependent on local wind conditions, while the early summer NSTM is more persistent and able to store heat in the near-surface ocean beyond the summer season.

  1. Modeling near-surface firn temperature in a cold accumulation zone (Col du Dôme, French Alps): from a physical to a semi-parameterized approach

    OpenAIRE

    2014-01-01

    Analysis of the thermal regime of glaciers is crucial for glacier hazard assessment, especially in the context of a changing climate. In particular, the transient thermal regime of cold accumulation zones needs to be modeled. A modeling approach has therefore been developed to determine this thermal regime using only near-surface boundary conditions coming from meteorological observations. In the first step, a surface energy balance (SEB) model accounting for water percolation and radiation p...

  2. Predictive Surface Complexation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sverjensky, Dimitri A. [Johns Hopkins Univ., Baltimore, MD (United States). Dept. of Earth and Planetary Sciences

    2016-11-29

    Surface complexation plays an important role in the equilibria and kinetics of processes controlling the compositions of soilwaters and groundwaters, the fate of contaminants in groundwaters, and the subsurface storage of CO2 and nuclear waste. Over the last several decades, many dozens of individual experimental studies have addressed aspects of surface complexation that have contributed to an increased understanding of its role in natural systems. However, there has been no previous attempt to develop a model of surface complexation that can be used to link all the experimental studies in order to place them on a predictive basis. Overall, my research has successfully integrated the results of the work of many experimentalists published over several decades. For the first time in studies of the geochemistry of the mineral-water interface, a practical predictive capability for modeling has become available. The predictive correlations developed in my research now enable extrapolations of experimental studies to provide estimates of surface chemistry for systems not yet studied experimentally and for natural and anthropogenically perturbed systems.

  3. The international surface temperature initiative's global land surface databank

    Science.gov (United States)

    Lawrimore, J. H.; Rennie, J.; Gambi de Almeida, W.; Christy, J.; Flannery, M.; Gleason, B.; Klein-Tank, A.; Mhanda, A.; Ishihara, K.; Lister, D.; Menne, M. J.; Razuvaev, V.; Renom, M.; Rusticucci, M.; Tandy, J.; Thorne, P. W.; Worley, S.

    2013-09-01

    The International Surface Temperature Initiative (ISTI) consists of an end-to-end process for land surface air temperature analyses. The foundation is the establishment of a global land surface Databank. This builds upon the groundbreaking efforts of scientists in the 1980s and 1990s. While using many of their principles, a primary aim is to improve aspects including data provenance, version control, openness and transparency, temporal and spatial coverage, and improved methods for merging disparate sources. The initial focus is on daily and monthly timescales. A Databank Working Group is focused on establishing Stage-0 (original observation forms) through Stage-3 data (merged dataset without quality control). More than 35 sources of data have already been added and efforts have now turned to development of the initial version of the merged dataset. Methods have been established for ensuring to the extent possible the provenance of all data from the point of observation through all intermediate steps to final archive and access. Databank submission procedures were designed to make the process of contributing data as easy as possible. All data are provided openly and without charge. We encourage the use of these data and feedback from interested users.

  4. Reconstruction of MODIS daily land surface temperature under clouds

    Science.gov (United States)

    Sun, L.; Gao, F.; Chen, Z.; Song, L.; Xie, D.

    2015-12-01

    Land surface temperature (LST), generally defined as the skin temperature of the Earth's surface, controls the process of evapotranspiration, surface energy balance, soil moisture change and climate change. Moderate Resolution Imaging Spectrometer (MODIS) is equipped with 1km resolution thermal sensor andcapable of observing the earth surface at least once per day.Thermal infrared bands cannot penetrate cloud, which means we cannot get consistency drought monitoring condition at one area. However, the cloudy-sky conditions represent more than half of the actual day-to-day weather around the global. In this study, we developed an LST filled model based on the assumption that under good weather condition, LST difference between two nearby pixels are similar among the closest 8 days. We used all the valid pixels covered by a 9*9 window to reconstruct the gap LST. Each valid pixel is assigned a weight which is determined by the spatial distance and the spectral similarity. This model is applied in the Middle-East of China including Gansu, Ningxia, Shaanxi province. The terrain is complicated in this area including plain and hill. The MODIS daily LST product (MOD11A3) from 2000 to 2004 is tested. Almost all the gap pixels are filled, and the terrain information is reconstructed well and smoothly. We masked two areas in order to validate the model, one located in the plain, another located in the hill. The correlation coefficient is greater than 0.8, even up to 0.92 in a few days. We also used ground measured day maximum and mean surface temperature to valid our model. Although both the temporal and spatial scale are different between ground measured temperature and MODIS LST, they agreed well in all the stations. This LST filled model is operational because it only needs LST and reflectance, and does not need other auxiliary information such as climate factors. We will apply this model to more regions in the future.

  5. A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-Eastern Tropical Upwelling System.

    Directory of Open Access Journals (Sweden)

    Saliou eFaye

    2015-09-01

    Full Text Available The climatological seasonal cycle of the sea surface temperature (SST in the north-eastern tropical Atlantic (7-25°N, 26-12°W is studied using a mixed layer heat budget in a regional ocean general circulation model. The region, which experiences one of the larger SST cycle in the tropics, forms the main part of the Guinea Gyre. It is characterized by a seasonally varying open ocean and coastal upwelling system, driven by the movements of the intertropical convergence zone (ITCZ. The model annual mean heat budget has two regimes schematically. South of roughly 12°N, advection of equatorial waters, mostly warm, and warming by vertical mixing, is balanced by net air-sea flux. In the rest of the domain, a cooling by vertical mixing, reinforced by advection at the coast, is balanced by the air-sea fluxes. Regarding the seasonal cycle, within a narrow continental band, in zonal mean, the SST early decrease (from September, depending on latitude, until December is driven by upwelling dynamics off Senegal and Mauritania (15°-20°N, and instead by air-sea fluxes north and south of these latitudes. Paradoxically, the later peaks of upwelling intensity (from March to July, with increasing latitude essentially damp the warming phase, driven by air-sea fluxes. The open ocean cycle to the west, is entirely driven by the seasonal net air-sea fluxes. The oceanic processes significantly oppose it, but for winter north of ~18°N. Vertical mixing in summer-autumn tends to cool (warm the surface north (south of the ITCZ, and advective cooling or warming by the geostrophic Guinea Gyre currents and the Ekman drift. This analysis supports previous findings on the importance of air-sea fluxes offshore. It mainly offers quantitative elements on the modulation of the SST seasonal cycle by the ocean circulation, and particularly by the upwelling dynamics.Keywords: SST, upwelling, circulation, heat budget, observations, modeling

  6. MRO/CRISM Retrieval of Surface Lambert Albedos for Multispectral Mapping of Mars with DISORT-based Rad. Transfer Modeling: Phase 1 - Using Historical Climatology for Temperatures, Aerosol Opacities, & Atmo. Pressures

    CERN Document Server

    McGuire, P C; Smith, M D; Arvidson, R E; Murchie, S L; Clancy, R T; Roush, T L; Cull, S C; Lichtenberg, K A; Wiseman, S M; Green, R O; Martin, T Z; Milliken, R E; Cavender, P J; Humm, D C; Seelos, F P; Seelos, K D; Taylor, H W; Ehlmann, B L; Mustard, J F; Pelkey, S M; Titus, T N; Hash, C D; Malaret, E R

    2009-01-01

    We discuss the DISORT-based radiative transfer pipeline ('CRISM_LambertAlb') for atmospheric and thermal correction of MRO/CRISM data acquired in multispectral mapping mode (~200 m/pixel, 72 spectral channels). Currently, in this phase-one version of the system, we use aerosol optical depths, surface temperatures, and lower-atmospheric temperatures, all from climatology derived from Mars Global Surveyor Thermal Emission Spectrometer (MGS-TES) data, and surface altimetry derived from MGS Mars Orbiter Laser Altimeter (MOLA). The DISORT-based model takes as input the dust and ice aerosol optical depths (scaled to the CRISM wavelength range), the surface pressures (computed from MOLA altimetry, MGS-TES lower-atmospheric thermometry, and Viking-based pressure climatology), the surface temperatures, the reconstructed instrumental photometric angles, and the measured I/F spectrum, and then outputs a Lambertian albedo spectrum. The Lambertian albedo spectrum is valuable geologically since it allows the mineralogical ...

  7. A numerical model for ground temperature determination

    Science.gov (United States)

    Jaszczur, M.; Polepszyc, I.; Biernacka, B.; Sapińska-Śliwa, A.

    2016-09-01

    The ground surface temperature and the temperature with respect to depth are one of the most important issues for geotechnical and environmental applications as well as for plants and other living organisms. In geothermal systems, temperature is directly related to the energy resources in the ground and it influences the efficiency of the ground source system. The ground temperature depends on a very large number of parameters, but it often needs to be evaluated with good accuracy. In the present work, models for the prediction of the ground temperature with a focus on the surface temperature at which all or selected important ground and environmental phenomena are taken into account have been analysed. It has been found that the simplest models and the most complex model may result in a similar temperature variation, yet at a very low depth and for specific cases only. A detailed analysis shows that taking into account different types of pavement or a greater depth requires more complex and advanced models.

  8. A study of the coupling relationship between concrete surface temperature and concrete surface emissivity in natural conditions.

    Science.gov (United States)

    Tang, Lin-Ling; Chen, Xiao-Ling; Wang, Jia-Ning; Zhao, Hong-Mei; Huang, Qi-Ting

    2014-07-01

    Land surface emissivity (LSE) has already been recognized as a crucial parameter for the determination of land surface temperature (LST). There is an ill-posed problem for the retrieval of LST and LSE. And laboratory-based emissivity is measured in natural constant conditions, which is limited in the application in thermal remote sensing. To solve the above problems, the coupling of LST and LSE is explored to eliminate temperature effects and improve the accuracy of LES. And then, the estimation accuracy of LST from passive remote sensing images will be improved. For different land surface materials, the coupling of land surface emissivity and land surface temperature is various. This paper focuses on studying concrete surface that is one of the typical man-made materials in urban. First the experiments of measuring concrete surface emissivity and concrete surface temperature in natural conditions are arranged reasonably and the suitable data are selected under ideal atmosphere conductions. Then to improve the determination accuracy of concrete surface emissivity, the algorithm worked on the computer of Fourier Transform Infrared Spectroradiometer (FTIR) has been improved by the most adapted temperature and emissivity separation algorithm. Finally the coupling of concrete surface temperature and concrete surface emissivity is analyzed and the coupling model of concrete surface temperature and concrete surface emissivity is established. The results show that there is a highest correlation coefficient between the second derivative of emissivity spectra and concrete surface temperature, and the correlation coefficient is -0.925 1. The best coupling model is the stepwise regression model, whose determination coefficient (R2) is 0.886. The determination coefficient (R2) is 0.905 and the root mean squares error (RMSE) is 0.292 1 in the validation of the model. The coupling model of concrete surface temperature and concrete surface emissivity under natural conditions

  9. Extended Reconstructed Sea Surface Temperature (ERSST), Version 4

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Extended Reconstructed Sea Surface Temperature (ERSST) dataset is a global monthly sea surface temperature analysis on a 2x2 degree grid derived from the...

  10. NOAA Global Surface Temperature Dataset, Version 4.0

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Global Surface Temperature Dataset (NOAAGlobalTemp) is derived from two independent analyses: the Extended Reconstructed Sea Surface Temperature (ERSST)...

  11. HTPro: Low-temperature Surface Hardening of Stainless Steel

    DEFF Research Database (Denmark)

    Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2013-01-01

    Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance.......Low-temperature surface hardening of stainless steel provides the required performance properties without affecting corrosion resistance....

  12. Merged Land and Ocean Surface Temperature, Version 3.5

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The historical Merged Land-Ocean Surface Temperature Analysis (MLOST) is derived from two independent analyses, an Extended Reconstructed Sea Surface Temperature...

  13. New Measurements from Old Boreholes: A Look at Interaction Between Surface Air Temperature and Ground Surface Temperature

    Science.gov (United States)

    Heinle, S. M.; Gosnold, W. D.

    2007-12-01

    We recently logged new field measurements of several boreholes throughout the Midwest, including North Dakota, South Dakota, and Nebraska. We then compared these new measurements against measurements previously obtained. Our comparisons included inverse modeling of past and recent measurements as well as climate modeling based on past surface air temperatures obtained from the weather stations. The data show a good correlation between climate warming in the last century and ground surface warming. Of particular importance is that cooling of air temperatures beginning in the mid 1990s reflects in the ground surface temperatures. The boreholes included in the study consist of three boreholes located in north central North Dakota, including two deeper than 200 meters. Two boreholes in the southwestern part of South Dakota, and two from southeastern South Dakota, all approximately 180 meters deep. Also included, were two boreholes (135 meters and over 200 meters deep) located in southwestern Nebraska, and two boreholes in the panhandle of Nebraska, each over 100 meters deep. We obtained historical surface air temperature from climate stations located near the boreholes, both from the United States Historical Climatology Network and from the Western Regional Climate Center.

  14. Middle Pliocene sea surface temperature variability

    Science.gov (United States)

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, G.S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  15. The dependence of surface temperature on IGBTs load and ambient temperature

    Science.gov (United States)

    Alexander, Čaja; Marek, Patsch

    2015-05-01

    Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT) elements by loop heat pipe (LHP). IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  16. The dependence of surface temperature on IGBTs load and ambient temperature

    Directory of Open Access Journals (Sweden)

    Alexander Čaja

    2015-01-01

    Full Text Available Currently, older power electronics and electrotechnics are improvement and at the same time developing new and more efficient devices. These devices produce in their activities a significant part of the heat which, if not effectively drained, causing damage to these elements. In this case, it is important to develop new and more efficient cooling system. The most widespread of modern methods of cooling is the cooling by heat pipe. This contribution is aimed at cooling the insulated-gate bipolar transistor (IGBT elements by loop heat pipe (LHP. IGBTs are very prone to damage due to high temperatures, and therefore is the important that the surface temperature was below 100°C. It was therefore created a model that examined what impact of surface temperature on the IGBT element and heat removal at different load and constant ambient temperature.

  17. Effects of sea surface temperature, cloud radiative and microphysical processes, and diurnal variations on rainfall in equilibrium cloud-resolving model simulations

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhe; Li Xiao-Fan; Zhou Yu-Shu; Gao Shou-Ting

    2012-01-01

    The effects of sea surface temperature(SST),cloud radiative and microphysical processes,and diurnal variations on rainfall statistics are documented with grid data from the two-dimensional equilibrium cloud-resolving model simulations.For a rain rate of higher than 3 mm.h-1,water vapor convergence prevails.The rainfall amount decreases with the decrease of SST from 29℃ to 27 ℃,the inclusion of diurnal variation of SST,or the exclusion of microphysical effects of ice clouds and radiative effects of water clouds,which are primarily associated with the decreases in water vapor convergence.However,the amount of rainfall increases with the increase of SST from 29 ℃ to 31 ℃,the exclusion of diurnal variation of solar zenith angle,and the exclusion of the radiative effects of ice clouds,which are primarily related to increases in water vapor convergence.For a rain rate of less than 3 mm·h-1,water vapor divergence prevails.Unlike rainfall statistics for rain rates of higher than 3 mm.h-1,the decrease of SST from 29 ℃ to 27 ℃ and the exclusion of radiative effects of water clouds in the presence of radiative effects of ice clouds increase the rainfall amount,which corresponds to the suppression in water vapor divergence.The exclusion of microphysical effects of ice clouds decreases the amount of rainfall,which corresponds to the enhancement in water vapor divergence.The amount of rainfall is less sensitive to the increase of SST from 29℃ to 31℃ and to the radiative effects of water clouds in the absence of the radiative effects of ice clouds.

  18. Variability in the Subtropical-Tropical Cells and its Effect on Near-Surface Temperature of the Equatorial Pacific: a Model Study

    Directory of Open Access Journals (Sweden)

    J. F. Lübbecke

    2007-07-01

    Full Text Available A set of experiments utilising different implementations of the global ORCA-LIM model with horizontal resolutions of 2°, 0.5° and 0.25° is used to investigate tropical and extra-tropical influences on equatorial Pacific SST variability at interannual to decadal time scales. The model experiments use a bulk forcing methodology building on the global forcing data set for 1958 to 2000 developed by Large and Yeager (2004 that is based on a blend of atmospheric reanalysis data and satellite products. Whereas representation of the mean structure and transports of the (sub-tropical Pacific current fields is much improved with the enhanced horizontal resolution, there is only little difference in the simulation of the interannual variability in the equatorial regime between the 0.5° and 0.25° model versions, with both solutions capturing the observed SST variability in the Nino3 region. The question of remotely forced oceanic contributions to the equatorial variability, in particular, the role of low-frequency changes in the transports of the Subtropical Cells (STCs, is addressed by a sequence of perturbation experiments using different combinations of fluxes. The solutions show the near-surface temperature variability to be governed by wind-driven changes in the Equatorial Undercurrent. The relative contributions of equatorial and off-equatorial atmospheric forcing differ between interannual and longer, (multi-decadal timescales: for the latter there is a significant impact of changes in the equatorward transport of subtropical thermocline water associated with the lower branches of the STCs, related to variations in the off-equatorial trade winds. A conspicuous feature of the STC variability is that the equatorward transports in the interior and along the western boundary partially compensate each other at both decadal and interannual time scales, with the strongest transport extrema occurring during El Ni~no episodes. The behavior is

  19. A Study of Spatial Soil Moisture Estimation Using a Multiple Linear Regression Model and MODIS Land Surface Temperature Data Corrected by Conditional Merging

    Directory of Open Access Journals (Sweden)

    Chunggil Jung

    2017-08-01

    Full Text Available This study attempts to estimate spatial soil moisture in South Korea (99,000 km2 from January 2013 to December 2015 using a multiple linear regression (MLR model and the Terra moderate-resolution imaging spectroradiometer (MODIS land surface temperature (LST and normalized distribution vegetation index (NDVI data. The MODIS NDVI was used to reflect vegetation variations. Observed precipitation was measured using the automatic weather stations (AWSs of the Korea Meteorological Administration (KMA, and soil moisture data were recorded at 58 stations operated by various institutions. Prior to MLR analysis, satellite LST data were corrected by applying the conditional merging (CM technique and observed LST data from 71 KMA stations. The coefficient of determination (R2 of the original LST and observed LST was 0.71, and the R2 of corrected LST and observed LST was 0.95 for 3 selected LST stations. The R2 values of all corrected LSTs were greater than 0.83 for total 71 LST stations. The regression coefficients of the MLR model were estimated seasonally considering the five-day antecedent precipitation. The p-values of all the regression coefficients were less than 0.05, and the R2 values were between 0.28 and 0.67. The reason for R2 values less than 0.5 is that the soil classification at each observation site was not completely accurate. Additionally, the observations at most of the soil moisture monitoring stations used in this study started in December 2014, and the soil moisture measurements did not stabilize. Notably, R2 and root mean square error (RMSE in winter were poor, as reflected by the many missing values, and uncertainty existed in observations due to freezing and mechanical errors in the soil. Thus, the prediction accuracy is low in winter due to the difficulty of establishing an appropriate regression model. Specifically, the estimated map of the soil moisture index (SMI can be used to better understand the severity of droughts with the

  20. Historical Evolution of Global and Regional Surface Air Temperature Simulated by FGOALS-s2 and FGOALS-g2:How Reliable Are the Model Results?

    Institute of Scientific and Technical Information of China (English)

    ZHOU Tianjun; SONG Fengfei; CHEN Xiaolong

    2013-01-01

    In order to assess the performance of two versions of the IAP/LASG Flexible Global Ocean-Atmosphere-Land System (FGOALS) model,simulated changes in surface air temperature (SAT),from natural and anthropogenic forcings,were compared to observations for the period 1850-2005 at global,hemispheric,continental and regional scales.The global and hemispheric averages of SAT and their land and ocean components during 1850 2005 were well reproduced by FGOALS-g2,as evidenced by significant correlation coefficients and small RMSEs.The significant positive correlations were firstly determined by the warming trends,and secondly by interdecadal fluctuations.The abilities of the models to reproduce interdecadal SAT variations were demonstrated by both wavelet analysis and significant positive correlations for detrended data.The observed land-sea thermal contrast change was poorly simulated.The major weakness of FGOALS-s2 was an exaggerated warming response to anthropogenic forcing,with the simulation showing results that were far removed from observations prior to the 1950s.The observations featured warming trends (1906-2005)of 0.71,0.68 and 0.79℃ (100 yr) 1 for global,Northern and Southern Hemispheric averages,which were overestimated by FGOALS-s2 [1.42,1.52 and 1.13℃ (100 yr)-1] but underestimated by FGOALS-g2 [0.69,0.68 and 0.73℃ (100 yr)-1].The polar amplification of the warming trend was exaggerated in FGOALS-s2 but weakly reproduced in FGOALS-g2.The stronger response of FGOALS-s2 to anthropogenic forcing was caused by strong sea-ice albedo feedback and water vapor feedback.Examination of model results in 15 selected subcontinental-scale regions showed reasonable performance for FGOALS-g2 over most regions.However,the observed warming trends were overestimated by FGOALS-s2 in most regions.Over East Asia,the meridional gradient of the warming trend simulated by FGOALS-s2 (FGOALS-g2) was stronger (weaker)than observed.

  1. Contact and directional radiative temperature measurements of sunlit and shaded land surface components during the SEN2FLEX 2005 campaign

    NARCIS (Netherlands)

    Timmermans, J.; Tol, van der C.; Verhoef, W.; Su, Z.

    2008-01-01

    Evapotranspiration models require thermodynamic temperatures as a state variable characterizing the surface energy balance. The thermodynamic temperature is calculated using the brightness temperature and the emissivity because no effective method exists to measure thermodynamic temperatures in spac

  2. Contact and directional radiative temperature measurements of sunlit and shaded land surface components during the SEN2FLEX 2005 campaign

    NARCIS (Netherlands)

    Timmermans, J.; Tol, van der C.; Verhoef, W.; Su, Z.

    2008-01-01

    Evapotranspiration models require thermodynamic temperatures as a state variable characterizing the surface energy balance. The thermodynamic temperature is calculated using the brightness temperature and the emissivity because no effective method exists to measure thermodynamic temperatures in

  3. Near–surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Directory of Open Access Journals (Sweden)

    C. L. Pérez Díaz

    2015-08-01

    Full Text Available Land Surface Temperature (LST is a key variable (commonly studied to understand the hydrological cycle that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air and snow skin temperature (T-skin helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  4. Near-surface air temperature and snow skin temperature comparison from CREST-SAFE station data with MODIS land surface temperature data

    Science.gov (United States)

    Pérez Díaz, C. L.; Lakhankar, T.; Romanov, P.; Muñoz, J.; Khanbilvardi, R.; Yu, Y.

    2015-08-01

    Land Surface Temperature (LST) is a key variable (commonly studied to understand the hydrological cycle) that helps drive the energy balance and water exchange between the Earth's surface and its atmosphere. One observable constituent of much importance in the land surface water balance model is snow. Snow cover plays a critical role in the regional to global scale hydrological cycle because rain-on-snow with warm air temperatures accelerates rapid snow-melt, which is responsible for the majority of the spring floods. Accurate information on near-surface air temperature (T-air) and snow skin temperature (T-skin) helps us comprehend the energy and water balances in the Earth's hydrological cycle. T-skin is critical in estimating latent and sensible heat fluxes over snow covered areas because incoming and outgoing radiation fluxes from the snow mass and the air temperature above make it different from the average snowpack temperature. This study investigates the correlation between MODerate resolution Imaging Spectroradiometer (MODIS) LST data and observed T-air and T-skin data from NOAA-CREST-Snow Analysis and Field Experiment (CREST-SAFE) for the winters of 2013 and 2014. LST satellite validation is imperative because high-latitude regions are significantly affected by climate warming and there is a need to aid existing meteorological station networks with the spatially continuous measurements provided by satellites. Results indicate that near-surface air temperature correlates better than snow skin temperature with MODIS LST data. Additional findings show that there is a negative trend demonstrating that the air minus snow skin temperature difference is inversely proportional to cloud cover. To a lesser extent, it will be examined whether the surface properties at the site are representative for the LST properties within the instrument field of view.

  5. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Morice, C. P.; Rayner, N. A.; Auchmann, R.; Bessembinder, J.; Bronnimann, S.; Brugnara, Y.; Conway, E. A.; Ghent, D.; Good, E.; Herring, K.; Kennedy, J.; Lindgren, F.; Madsen, K. S.; Merchant, C. J.; van der Schrier, G.; Stephens, A.; Tonboe, R. T.; Waterfall, A. M.; Mitchelson, J.; Woolway, I.

    2015-12-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, we must develop an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. These relationships can be derived either empirically or with the help of a physical model.Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals would be used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods.We will present plans and progress along this road in the EUSTACE project (2015-June 2018), i.e.: • providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; • identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; • estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; • using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras.Information will also be given on how interested users can become

  6. Monitoring temperature and pressure over surfaces using sensitive paints

    Science.gov (United States)

    Guerrero-Viramontes, J. Ascención; Moreno Hernández, David; Mendoza Santoyo, Fernando; Morán Loza, José Miguel; García Arreola, Alicia

    2007-03-01

    Two techniques for monitoring temperature and pressure variations over surfaces using sensitive paints are presented. The analysis is done by the acquisition of a set of images of the surface under analysis. The surface is painted by a paint called Pressure Sensitive Paint (PSP) for pressure measurements and Temperature Sensitive Paints (TSP) for temperature measurements. These kinds of paints are deposited over the surface under analysis. The recent experimental advances in calibration process are presented in this paper.

  7. Multistatistics Metric Evaluation of Ocean General Circulation Model Sea Surface Temperature: Application of 0.08 deg Pacific Hybrid Coordinate Ocean Model Simulations

    Science.gov (United States)

    2008-01-01

    Joseph Metzger, Harley E. Hurlburt, Alan J. Wallcraft, 5e. TASK NUMBER 5f. WORK UNIT NUMBER 73-5732-18-5 7. PERFORMING ORGANIZATION NAME(S) AND...l029/ 2O07JCO04250. Large, W. G., J. C. McWilliams , and S. C. Doncy (1994), Oceanic vertical mixing: A review and a model with a nonlocal boundary

  8. Gaia FGK Benchmark Stars: Effective temperatures and surface gravities

    CERN Document Server

    Heiter, U; Gustafsson, B; Korn, A J; Soubiran, C; Thévenin, F

    2015-01-01

    Large Galactic stellar surveys and new generations of stellar atmosphere models and spectral line formation computations need to be subjected to careful calibration and validation and to benchmark tests. We focus on cool stars and aim at establishing a sample of 34 Gaia FGK Benchmark Stars with a range of different metallicities. The goal was to determine the effective temperature and the surface gravity independently from spectroscopy and atmospheric models as far as possible. Fundamental determinations of Teff and logg were obtained in a systematic way from a compilation of angular diameter measurements and bolometric fluxes, and from a homogeneous mass determination based on stellar evolution models. The derived parameters were compared to recent spectroscopic and photometric determinations and to gravity estimates based on seismic data. Most of the adopted diameter measurements have formal uncertainties around 1%, which translate into uncertainties in effective temperature of 0.5%. The measurements of bol...

  9. Estimation of sea surface temperature (SST) using marine seismic data

    Digital Repository Service at National Institute of Oceanography (India)

    Sinha, S.K.; Dewangan, P.; Sain, K.

    .g. Wu et al. [1999]). However, due to the skin effect, sea surface temperatures as measured by satellites can be very different from temperatures a few centimeters below the sea surface (i.e. in-situ temperatures) [Emery et al., 1994]. Therefore...

  10. Estimating Temperature Fields from MODIS Land Surface Temperature and Air Temperature Observations in a Sub-Arctic Alpine Environment

    Directory of Open Access Journals (Sweden)

    Scott N. Williamson

    2014-01-01

    Full Text Available Spatially continuous satellite infrared temperature measurements are essential for understanding the consequences and drivers of change, at local and regional scales, especially in northern and alpine environments dominated by a complex cryosphere where in situ observations are scarce. We describe two methods for producing daily temperature fields using MODIS “clear-sky” day-time Land Surface Temperatures (LST. The Interpolated Curve Mean Daily Surface Temperature (ICM method, interpolates single daytime Terra LST values to daily means using the coincident diurnal air temperature curves. The second method calculates daily mean LST from daily maximum and minimum LST (MMM values from MODIS Aqua and Terra. These ICM and MMM models were compared to daily mean air temperatures recorded between April and October at seven locations in southwest Yukon, Canada, covering characteristic alpine land cover types (tundra, barren, glacier at elevations between 1,408 m and 2,319 m. Both methods for producing mean daily surface temperatures have advantages and disadvantages. ICM signals are strongly correlated with air temperature (R2 = 0.72 to 0.86, but have relatively large variability (RMSE = 4.09 to 4.90 K, while MMM values had a stronger correlation to air temperature (R2 = 0.90 and smaller variability (RMSE = 2.67 K. Finally, when comparing 8-day LST averages, aggregated from the MMM method, to air temperature, we found a high correlation (R2 = 0.84 with less variability (RMSE = 1.54 K. Where the trend was less steep and the y-intercept increased by 1.6 °C compared to the daily correlations. This effect is likely a consequence of LST temperature averages being differentially affected by cloud cover over warm and cold surfaces. We conclude that satellite infrared skin temperature (e.g., MODIS LST, which is often aggregated into multi-day composites to mitigate data reductions caused by cloud cover, changes in its relationship to air temperature

  11. Noncontact Monitoring of Surface Temperature Distribution by Laser Ultrasound Scanning

    Science.gov (United States)

    Yamada, Hiroyuki; Kosugi, Akira; Ihara, Ikuo

    2011-07-01

    A laser ultrasound scanning method for measuring a surface temperature distribution of a heated material is presented. An experiment using an aluminum plate heated up to 120 °C is carried out to verify the feasibility of the proposed method. A series of one-dimensional surface acoustic wave (SAW) measurements within an area of a square on the aluminum surface are performed by scanning a pulsed laser for generating SAW using a galvanometer system, where the SAWs are detected at a fixed location on the surface. An inverse analysis is then applied to SAW data to determine the surface temperature distribution in a certain direction. The two-dimensional distribution of the surface temperature in the square is constructed by combining the one-dimensional surface temperature distributions obtained within the square. The surface temperature distributions obtained by the proposed method almost agrees with those obtained using an infrared radiation camera.

  12. The EUSTACE project: delivering global, daily information on surface air temperature

    Science.gov (United States)

    Rayner, Nick

    2017-04-01

    Day-to-day variations in surface air temperature affect society in many ways; however, daily surface air temperature measurements are not available everywhere. A global daily analysis cannot be achieved with measurements made in situ alone, so incorporation of satellite retrievals is needed. To achieve this, in the EUSTACE project (2015-June 2018, https://www.eustaceproject.eu) we are developing an understanding of the relationships between traditional (land and marine) surface air temperature measurements and retrievals of surface skin temperature from satellite measurements, i.e. Land Surface Temperature, Ice Surface Temperature, Sea Surface Temperature and Lake Surface Water Temperature. Here we discuss the science needed to produce a fully-global daily analysis (or ensemble of analyses) of surface air temperature on the centennial scale, integrating different ground-based and satellite-borne data types. Information contained in the satellite retrievals is used to create globally-complete fields in the past, using statistical models of how surface air temperature varies in a connected way from place to place. As the data volumes involved are considerable, such work needs to include development of new "Big Data" analysis methods. We will present recent progress along this road in the EUSTACE project: 1. providing new, consistent, multi-component estimates of uncertainty in surface skin temperature retrievals from satellites; 2. identifying inhomogeneities in daily surface air temperature measurement series from weather stations and correcting for these over Europe; 3. estimating surface air temperature over all surfaces of Earth from surface skin temperature retrievals; 4. using new statistical techniques to provide information on higher spatial and temporal scales than currently available, making optimum use of information in data-rich eras. Information will also be given on how interested users can become involved.

  13. Modelling room temperature ionic liquids.

    Science.gov (United States)

    Bhargava, B L; Balasubramanian, Sundaram; Klein, Michael L

    2008-08-07

    Room temperature ionic liquids (IL) composed of organic cations and inorganic anions are already being utilized for wide-ranging applications in chemistry. Complementary to experiments, computational modelling has provided reliable details into the nature of their interactions. The intra- and intermolecular structures, dynamic and transport behaviour and morphologies of these novel liquids have also been explored using simulations. The current status of molecular modelling studies is presented along with the prognosis for future work in this area.

  14. The impact of heterogeneous surface temperatures on the 2-m air temperature over the Arctic Ocean in spring

    Directory of Open Access Journals (Sweden)

    A. Tetzlaff

    2012-07-01

    Full Text Available The influence of spatial surface temperature changes over the Arctic Ocean on the 2-m air temperature variability is estimated using backward trajectories based on ERA-Interim and the JRA25 wind fields. They are initiated at Alert, Barrow and at the Tara drifting station. Three different methods are used. The first one compares mean ice surface temperatures along the trajectories to the observed 2-m air temperatures at the stations. The second one correlates the observed temperatures to air temperatures obtained using a simple Lagrangian box model which only includes the effect of sensible heat fluxes. For the third method, mean sensible heat fluxes from the model are correlated with the difference of the air temperatures at the model starting point and the observed temperatures at the stations. The calculations are based on MODIS ice surface temperatures and four different sets of ice concentration derived from SSM/I and AMSR-E data. Under nearly cloud free conditions, up to 90% of the 2-m air temperature variance can be explained for Alert, and 60% for Barrow using these methods. The differences are attributed to the different ice conditions, which are characterized by high ice concentration around Alert and lower ice concentration near Barrow. These results are robust for the different sets of reanalyses and ice concentration data. Near-surface winds of both reanalyses show a large inconsistency in the Central Arctic, which leads to a large difference in the correlations between modeled and observed 2-m air temperatures at Tara. Explained variances amount to 70% using JRA and only 45% using ERA. The results also suggest that near-surface temperatures at a given site are influenced by the variability of surface temperatures in a domain of about 150 to 350 km radius around the site.

  15. Cascade recursion models of computing the temperatures of underground layers

    Institute of Scientific and Technical Information of China (English)

    HAN; Liqun; BI; Siwen; SONG; Shixin

    2006-01-01

    An RBF neural network was used to construct computational models of the underground temperatures of different layers, using ground-surface parameters and the temperatures of various underground layers. Because series recursion models also enable researchers to use above-ground surface parameters to compute the temperatures of different underground layers, this method provides a new way of using thermal infrared remote sensing to monitor the suture zones of large areas of blocks and to research thermal anomalies in geologic structures.

  16. Technique for the estimation of surface temperatures from embedded temperature sensing for rapid, high energy surface deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, Tyson R.; Schunk, Peter Randall; Roberts, Scott Alan

    2014-07-01

    Temperature histories on the surface of a body that has been subjected to a rapid, highenergy surface deposition process can be di cult to determine, especially if it is impossible to directly observe the surface or attach a temperature sensor to it. In this report, we explore two methods for estimating the temperature history of the surface through the use of a sensor embedded within the body very near to the surface. First, the maximum sensor temperature is directly correlated with the peak surface temperature. However, it is observed that the sensor data is both delayed in time and greatly attenuated in magnitude, making this approach unfeasible. Secondly, we propose an algorithm that involves tting the solution to a one-dimensional instantaneous energy solution problem to both the sensor data and to the results of a one-dimensional CVFEM code. This algorithm is shown to be able to estimate the surface temperature 20 C.

  17. Determination of Land Surface Temperature (LST) and Potential ...

    African Journals Online (AJOL)

    Determination of Land Surface Temperature (LST) and Potential Urban Heat Island Effect in Parts of Lagos State using Satellite ... Changes in temperature appear to be closely related to concentrations of atmospheric carbon dioxide.

  18. Temperature-dependent rate models of vascular cambium cell mortality

    Science.gov (United States)

    Matthew B. Dickinson; Edward A. Johnson

    2004-01-01

    We use two rate-process models to describe cell mortality at elevated temperatures as a means of understanding vascular cambium cell death during surface fires. In the models, cell death is caused by irreversible damage to cellular molecules that occurs at rates that increase exponentially with temperature. The models differ in whether cells show cumulative effects of...

  19. Interpolation of climate variables and temperature modeling

    Science.gov (United States)

    Samanta, Sailesh; Pal, Dilip Kumar; Lohar, Debasish; Pal, Babita

    2012-01-01

    Geographic Information Systems (GIS) and modeling are becoming powerful tools in agricultural research and natural resource management. This study proposes an empirical methodology for modeling and mapping of the monthly and annual air temperature using remote sensing and GIS techniques. The study area is Gangetic West Bengal and its neighborhood in the eastern India, where a number of weather systems occur throughout the year. Gangetic West Bengal is a region of strong heterogeneous surface with several weather disturbances. This paper also examines statistical approaches for interpolating climatic data over large regions, providing different interpolation techniques for climate variables' use in agricultural research. Three interpolation approaches, like inverse distance weighted averaging, thin-plate smoothing splines, and co-kriging are evaluated for 4° × 4° area, covering the eastern part of India. The land use/land cover, soil texture, and digital elevation model are used as the independent variables for temperature modeling. Multiple regression analysis with standard method is used to add dependent variables into regression equation. Prediction of mean temperature for monsoon season is better than winter season. Finally standard deviation errors are evaluated after comparing the predicted temperature and observed temperature of the area. For better improvement, distance from the coastline and seasonal wind pattern are stressed to be included as independent variables.

  20. Temperature dependent droplet impact dynamics on flat and textured surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Azar Alizadeh; Vaibhav Bahadur; Sheng Zhong; Wen Shang; Ri Li; James Ruud; Masako Yamada; Liehi Ge; Ali Dhinojwala; Manohar S Sohal (047160)

    2012-03-01

    Droplet impact dynamics determines the performance of surfaces used in many applications such as anti-icing, condensation, boiling and heat transfer. We study impact dynamics of water droplets on surfaces with chemistry/texture ranging from hydrophilic to superhydrophobic and across a temperature range spanning below freezing to near boiling conditions. Droplet retraction shows very strong temperature dependence especially for hydrophilic surfaces; it is seen that lower substrate temperatures lead to lesser retraction. Physics-based analyses show that the increased viscosity associated with lower temperatures can explain the decreased retraction. The present findings serve to guide further studies of dynamic fluid-structure interaction at various temperatures.

  1. Detection and attribution of near surface temperature changes over homogenous temperature zones in India

    Science.gov (United States)

    Achutarao, K. M.; R, D.

    2015-12-01

    The IPCC Fifth Assessment Report concluded, "More than half of the observed increase in global mean surface temperature (GMST) from 1951 to 2010 is very likely due to the observed anthropogenic increase in greenhouse gas (GHG) concentrations." Detecting and attributing the changes over regional scales can provide more relevant information to policymakers at the national level but the low signal-to-noise ratios at smaller spatial scales make this a harder problem. In this study, we analyze changes in temperature (annual and seasonal means of mean, minimum, and maximum temperatures) over 7 homogeneous temperature zones of India from 1901 -2005 using models from the CMIP5 database and multiple observational datasets (CRU-3.22, and IITM). We perform Detection and Attribution (D&A) analysis using fingerprint methods by defining a signal that concisely express both spatial and temporal changes found in the model runs with the CMIP5 individual forcing runs; greenhouse (historicalGHG), natural (historicalNat), anthropogenic (historicalAnthro), and anthropogenic aerosols (historicalAA). We are able to detect changes in annual mean temperature over many of the homogenous temperature zones as well as seasonal means in some of the homogenous zones. We quantify the contributions resulting from individual forcings in these cases. Preliminary results indicate large contributions from anthropogenic, forcings with a negligible contribution from natural forcings.

  2. Seasonal Spatial Patterns of Surface Water Temperature, Surface Heat Fluxes and Meteorological Forcing Over Lake Geneva

    Science.gov (United States)

    Irani Rahaghi, A.; Lemmin, U.; Bouffard, D.; Riffler, M.; Wunderle, S.; Barry, D. A.

    2015-12-01

    In many lakes, surface heat flux (SHF) is the most important component controlling the lake's energy content. Accurate methods for the determination of SHF are valuable for water management, and for use in hydrological and meteorological models. Large lakes, not surprisingly, are subject to spatially and temporally varying meteorological conditions, and hence SHF. Here, we report on an investigation for estimating the SHF of a large European lake, Lake Geneva. We evaluated several bulk formulas to estimate Lake Geneva's SHF based on different data sources. A total of 64 different surface heat flux models were realized using existing representations for different heat flux components. Data sources to run the models included meteorological data (from an operational numerical weather prediction model, COSMO-2) and lake surface water temperature (LSWT, from satellite imagery). Models were calibrated at two points in the lake for which regular depth profiles of temperature are available, and which enabled computation of the total heat content variation. The latter, computed for 03.2008-12.2012, was the metric used to rank the different models. The best calibrated model was then selected to calculate the spatial distribution of SHF. Analysis of the model results shows that evaporative and convective heat fluxes are the dominant terms controlling the spatial pattern of SHF. The former is significant in all seasons while the latter plays a role only in fall and winter. Meteorological observations illustrate that wind-sheltering, and to some extent relative humidity variability, are the main reasons for the observed large-scale spatial variability. In addition, both modeling and satellite observations indicate that, on average, the eastern part of the lake is warmer than the western part, with a greater temperature contrast in spring and summer than in fall and winter whereas the SHF spatial splitting is stronger in fall and winter. This is mainly due to negative heat flux

  3. A Preliminary Study of Surface Temperature Cold Bias in COAMPS

    Energy Technology Data Exchange (ETDEWEB)

    Chin, H-N S; Leach, M J; Sugiyama, G A; Aluzzi, F J

    2001-04-27

    It is well recognized that the model predictability is more or less hampered by the imperfect representations of atmospheric state and model physics. Therefore, it is a common problem for any numerical models to exhibit some sorts of biases in the prediction. In this study, the emphasis is focused on the cold bias of surface temperature forecast in Naval Research Laboratory's three-dimensional mesoscale model, COAMPS (Coupled Ocean/Atmosphere Mesoscale Prediction System). Based on the comparison with the ground station data, there were two types of ground temperature cold biases identified in LLNL (Lawrence Livermore National Laboratory) operational forecasts of COAMPS over the California and Nevada regions during the 1999 winter and the 2000 spring. The first type of cold bias appears at high elevation regions covered by snow, and its magnitude can be as large as 30 F - 40 F lower than observed. The second type of cold bias mainly exists in the snow-free clear-sky regions, where the surface temperature is above the freezing point, and its magnitude can be up to 5 F - 10 F lower than observed. These cold biases can affect the low-level stratification, and even the diurnal variation of winds in the mountain regions, and therefore impact the atmospheric dispersion forecast. The main objective of this study is to explore the causes of such cold bias, and to further the improvement of the forecast performance in COAMPS. A series of experiments are performed to gauge the sensitivity of the model forecast due to the physics changes and large-scale data with various horizontal and vertical resolutions.

  4. Surface Barrier Models of ZnO

    Institute of Scientific and Technical Information of China (English)

    MA Yong; WANG Wan-lu; LIAO Ke-jun; KONG Chun-yang

    2004-01-01

    For a low surface barrier, the energy band, barrier height and width of the space charge region at the surface of relatively large grains of ZnO are presented analytically on condition that the electron distribution obeys the Boltzmann statistics. It is shown that the temperature in the space charge distribution factor has an important effect on the energy band, barrier height and width of the space charge region. The depletion approximation is a model in which the temperature in the space charge distribution factor is zero. Our results are better than the depletion approximation.

  5. The mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of Western Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the atmospheric circulation data provided by ECMWF and the sea surface temperature data by NOAA, we studied the mechanism for the impact of sea surface temperature anomaly on the ridgeline surface of western Pacific using an improved high truncated spectral model. Our results show that the wave-wave interaction and the wave-mean flow interactions are weaker in the inner dynamic process of atmospheric circulation, when atmospheric circulation is forced by the sea surface temperature of El Ni-o pattern. With the external thermal forcing changed from winter to summer pattern, the range of ridgeline surface of western Pacific moving northward is smaller, which causes the ridgeline surface of western Pacific on south of normal. On the contrary, the wave-wave interaction and the wave-mean flow interaction are stronger, when atmospheric circulation is forced by the sea surface temperature of La Ni-a pattern. With the external thermal forcing turning from winter to summer pattern, the ridgeline surface of western Pacific shifts northward about 19 latitude degrees, which conduces the ridgeline surface of western Pacific on north of normal. After moving to certain latitude, the ridgeline surface of western Pacific oscillates with the most obvious 30-60 d period and the 4°-7° amplitude. It is one of the important reasons for the interannual variation of ridgeline surface of Western Pacific that the at- mospheric inner dynamical process forced out by different sea surface temperature anomaly pattern is different.

  6. Estimation of Surface Heat Flux and Surface Temperature during Inverse Heat Conduction under Varying Spray Parameters and Sample Initial Temperature

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir

    2014-01-01

    Full Text Available An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck’s sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m2 was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  7. Estimation of surface heat flux and surface temperature during inverse heat conduction under varying spray parameters and sample initial temperature.

    Science.gov (United States)

    Aamir, Muhammad; Liao, Qiang; Zhu, Xun; Aqeel-ur-Rehman; Wang, Hong; Zubair, Muhammad

    2014-01-01

    An experimental study was carried out to investigate the effects of inlet pressure, sample thickness, initial sample temperature, and temperature sensor location on the surface heat flux, surface temperature, and surface ultrafast cooling rate using stainless steel samples of diameter 27 mm and thickness (mm) 8.5, 13, 17.5, and 22, respectively. Inlet pressure was varied from 0.2 MPa to 1.8 MPa, while sample initial temperature varied from 600°C to 900°C. Beck's sequential function specification method was utilized to estimate surface heat flux and surface temperature. Inlet pressure has a positive effect on surface heat flux (SHF) within a critical value of pressure. Thickness of the sample affects the maximum achieved SHF negatively. Surface heat flux as high as 0.4024 MW/m(2) was estimated for a thickness of 8.5 mm. Insulation effects of vapor film become apparent in the sample initial temperature range of 900°C causing reduction in surface heat flux and cooling rate of the sample. A sensor location near to quenched surface is found to be a better choice to visualize the effects of spray parameters on surface heat flux and surface temperature. Cooling rate showed a profound increase for an inlet pressure of 0.8 MPa.

  8. Predicting monsoon rainfall and pressure indices from sea surface temperature

    Digital Repository Service at National Institute of Oceanography (India)

    Sadhuram, Y.

    The relationship between the sea surface temperature (SST) in the Indian Ocean and monsoon rainfall has been examined by using 21 years data set (1967-87) of MOHSST.6 (Met. Office Historical Sea Surface Temperature data set, obtained from U.K. Met...

  9. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  10. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change si

  11. Recent trends in sea surface temperature off Mexico

    NARCIS (Netherlands)

    Lluch-Cota, S.E.; Tripp-Valdéz, M.; Lluch-Cota, D.B.; Lluch-Belda, D.; Verbesselt, J.; Herrera-Cervantes, H.; Bautista-Romero, J.

    2013-01-01

    Changes in global mean sea surface temperature may have potential negative implications for natural and socioeconomic systems; however, measurements to predict trends in different regions have been limited and sometimes contradictory. In this study, an assessment of sea surface temperature change

  12. Reintroducing radiometric surface temperature into the Penman-Monteith formulation

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Bøgh, Eva; Trebs, Ivonne;

    2015-01-01

    Here we demonstrate a novel method to physically integrate radiometric surface temperature (TR) into the Penman-Monteith (PM) formulation for estimating the terrestrial sensible and latent heat fluxes (H and λE) in the framework of a modified Surface Temperature Initiated Closure (STIC). It combi...

  13. Interferometric measurements of sea surface temperature and emissivity

    Science.gov (United States)

    Fiedler, Lars; Bakan, Stephan

    1997-09-01

    A new multispectral method to derive sea surface emissivity and temperature by using interferometer measurements of the near surface upwelling radiation in the infrared window region is presented. As reflected sky radiation adds substantial spectral variability to the otherwise spectrally smooth surface radiation, an appropriate estimate of surface emissivity allows the measured upwelling radiation to be corrected for the reflected sky component. The remaining radiation, together with the estimated surface emissivity, yields an estimate of the sea surface temperature. Measurements from an ocean pier in the Baltic Sea in October 1995 indicate an accuracy of about 0.1 K for the sea surface temperature thus derived. A strong sea surface skin effect of about 0.6 K is found in that particular case.

  14. Atmosphere-only GCM (ACCESS1.0) simulations with prescribed land surface temperatures

    Science.gov (United States)

    Ackerley, Duncan; Dommenget, Dietmar

    2016-06-01

    General circulation models (GCMs) are valuable tools for understanding how the global ocean-atmosphere-land surface system interacts and are routinely evaluated relative to observational data sets. Conversely, observational data sets can also be used to constrain GCMs in order to identify systematic errors in their simulated climates. One such example is to prescribe sea surface temperatures (SSTs) such that 70 % of the Earth's surface temperature field is observationally constrained (known as an Atmospheric Model Intercomparison Project, AMIP, simulation). Nevertheless, in such simulations, land surface temperatures are typically allowed to vary freely, and therefore any errors that develop over the land may affect the global circulation. In this study therefore, a method for prescribing the land surface temperatures within a GCM (the Australian Community Climate and Earth System Simulator, ACCESS) is presented. Simulations with this prescribed land surface temperature model produce a mean climate state that is comparable to a simulation with freely varying land temperatures; for example, the diurnal cycle of tropical convection is maintained. The model is then developed further to incorporate a selection of "proof of concept" sensitivity experiments where the land surface temperatures are changed globally and regionally. The resulting changes to the global circulation in these sensitivity experiments are found to be consistent with other idealized model experiments described in the wider scientific literature. Finally, a list of other potential applications is described at the end of the study to highlight the usefulness of such a model to the scientific community.

  15. 夯土建筑遗址表面温度变化特征及预报模型%Characteristics and prediction model of surface temperature for rammed earthen architecture ruins

    Institute of Scientific and Technical Information of China (English)

    孙博; 周仲华; 张虎元; 张永霞; 郑龙

    2011-01-01

    Infrared imaging system is used for earthen architecture protection in Ruins of Jiaohe for the first time, solving the problem of earthen architecture temperature measurement.The law of surface temperature changing with time and space for the wall of rammed earth architecture is obtained by field monitoring.It's come to a conclusion that solar radiation orientation of wall and the degree of wall surface weathering are significant factors which have an influence on surface temperature of earthen architecture.The maximum daily temperature difference of the wall reaches 35℃ during the monitoring.It can be supposed that the temperature difference will higher at extremes of heat and cold.The acute change of surface temperature weakens soil strength and exacerbates soil mass deterioration.The prediction model of the surface temperature for rammed earthen architecture, by which the daily temperature difference can be calculated, is established on the basis of above analysis, which provides data support to the researches on migration of hydrothermal and salt.%在国内首次把红外热像仪应用于交河故城土遗址保护中,解决了土遗址表面温度测量的难题.通过对夯土建筑遗址墙体表面温度的监测,得出墙体表面温度随时间、空间的分布及变化规律.监测结果显示,太阳辐射、墙体朝向、风化程度等是影响土遗址墙体表面温度的重要因素.监测期间墙体的最高日温差达35℃,若在极端条件下则会更高,剧烈的温度变化减弱了土体强度,加剧了土遗址的劣化.在上述分析的基础上,利用回归拟合的方法,建立了夯土建筑遗址表面温度预报模型,通过气温即可计算出土遗址墙体表面的日温差,为土遗址的水热研究、盐分运移研究及其他相关研究提供数据支持.

  16. Using a Support Vector Machine and a Land Surface Model to Estimate Large-Scale Passive Microwave Temperatures over Snow-Covered Land in North America

    Science.gov (United States)

    Forman, Barton A.; Reichle, Rolf Helmut

    2014-01-01

    A support vector machine (SVM), a machine learning technique developed from statistical learning theory, is employed for the purpose of estimating passive microwave (PMW) brightness temperatures over snow-covered land in North America as observed by the Advanced Microwave Scanning Radiometer (AMSR-E) satellite sensor. The capability of the trained SVM is compared relative to the artificial neural network (ANN) estimates originally presented in [14]. The results suggest the SVM outperforms the ANN at 10.65 GHz, 18.7 GHz, and 36.5 GHz for both vertically and horizontally-polarized PMW radiation. When compared against daily AMSR-E measurements not used during the training procedure and subsequently averaged across the North American domain over the 9-year study period, the root mean squared error in the SVM output is 8 K or less while the anomaly correlation coefficient is 0.7 or greater. When compared relative to the results from the ANN at any of the six frequency and polarization combinations tested, the root mean squared error was reduced by more than 18 percent while the anomaly correlation coefficient was increased by more than 52 percent. Further, the temporal and spatial variability in the modeled brightness temperatures via the SVM more closely agrees with that found in the original AMSR-E measurements. These findings suggest the SVM is a superior alternative to the ANN for eventual use as a measurement operator within a data assimilation framework.

  17. Polarization switching in vertical-cavity surface emitting lasers observed at constant active region temperature

    Science.gov (United States)

    Martín-Regalado, J.; Chilla, J. L. A.; Rocca, J. J.; Brusenbach, P.

    1997-06-01

    Polarization switching in gain-guided, vertical-cavity, surface-emitting lasers was studied as a function of the active region temperature. We show that polarization switching occurs even when the active region temperature is kept constant during fast pulse low duty cycle operation. This temperature independent polarization switching phenomenon is explained in terms of a recently developed model.

  18. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies

    Science.gov (United States)

    Banzon, Viva; Smith, Thomas M.; Chin, Toshio Mike; Liu, Chunying; Hankins, William

    2016-04-01

    This paper describes a blended sea-surface temperature (SST) data set that is part of the National Oceanic and Atmospheric Administration (NOAA) Climate Data Record (CDR) program product suite. Using optimum interpolation (OI), in situ and satellite observations are combined on a daily and 0.25° spatial grid to form an SST analysis, i.e., a spatially complete field. A large-scale bias adjustment of the input infrared SSTs is made using buoy and ship observations as a reference. This is particularly important for the time periods when volcanic aerosols from the El Chichón and Mt. Pinatubo eruptions are widespread globally. The main source of SSTs is the Advanced Very High Resolution Radiometer (AVHRR), available from late 1981 to the present, which is also the temporal span of this CDR. The input and processing choices made to ensure a consistent data set that meets the CDR requirements are summarized. A brief history and an explanation of the forward production schedule for the preliminary and science-quality final product are also provided. The data set is produced and archived at the newly formed National Centers for Environmental Information (NCEI) in Network Common Data Form (netCDF) at doi:10.7289/V5SQ8XB5.

  19. 3D subsurface temperature model of Europe for geothermal exploration

    NARCIS (Netherlands)

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  20. 3D subsurface temperature model of Europe for geothermal exploration

    NARCIS (Netherlands)

    Limberger, J.; Wees, J.D. van

    2014-01-01

    For the assessment of geothermal resources in Europe we constructed a digital 3D temperature model of the European crust and sedimentary basins, incorporating publicly available temperature data. Using European crustal thickness models and indirect parameters such as surface heat flow measurements,

  1. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  2. Long-Term High-Latitude Sea and Ice Surface Temperature Record from AVHRR GAC Data

    Science.gov (United States)

    Luis, C. S.; Dybkjær, G.; Eastwood, S.; Tonboe, R. T.; Høyer, J. L.

    2014-12-01

    Surface temperature is among the most important variables in the surface energy balance equation and it significantly affects the atmospheric boundary layer structure, the turbulent heat exchange and, over ice, the ice growth rate. Here we measure the surface temperature using thermal infrared sensors from 10-12 μm wavelength, a method whose primary limitation over sea ice is the detection of clouds. However, in the Arctic and around Antarctica there are very few conventional observations of surface temperature from buoys, and it is sometimes difficult to determine if the temperature is measured at the surface or within the snowpack, the latter of which often results in a warm bias. To reduce this bias, much interest is being paid to alternative remote sensing methods for monitoring high latitude surface temperature. We used Advanced Very High Resolution Radiometer (AVHRR) global area coverage (GAC) data to produce a high latitude sea surface temperature (SST), ice surface temperature (IST) and ice cap skin temperature dataset spanning 27 years (1982-2009). This long-term climate record is the first of its kind for IST. In this project we used brightness temperatures from the infrared channels of AVHRR sensors aboard NOAA and Metop polar-orbiting satellites. Surface temperatures were calculated using separate split window algorithms for day SST, night SST, and IST. The snow surface emissivity across all angles of the swath were simulated specifically for all sensors using an emission model. Additionally, all algorithms were tuned to the Arctic using simulated brightness temperatures from a radiative transfer model with atmospheric profiles and skin temperatures from European Centre for Medium-Range Forecasts (ECMWF) re-analysis data (ERA-Interim). Here we present the results of product quality as compared to in situ measurements from buoys and infrared radiometers, as well as a preliminary analysis of climate trends revealed by the record.

  3. Evaluation of MODIS Land Surface Temperature with In Situ Snow Surface Temperature from CREST-SAFE

    Science.gov (United States)

    Perez Diaz, C. L.; Lakhankar, T.; Romanov, P.; Munoz, J.; Khanbilvardi, R.; Yu, Y.

    2016-12-01

    This paper presents the procedure and results of a temperature-based validation approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) product provided by the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth Observing System satellites using in situ LST observations recorded at the Cooperative Remote Sensing Science and Technology Center - Snow Analysis and Field Experiment (CREST-SAFE) during the years of 2013 (January-April) and 2014 (February-April). A total of 314 day and night clear-sky thermal images, acquired by the Terra and Aqua satellites, were processed and compared to ground-truth data from CREST-SAFE with a frequency of one measurement every 3 min. Additionally, this investigation incorporated supplementary analyses using meteorological CREST-SAFE in situ variables (i.e. wind speed, cloud cover, incoming solar radiation) to study their effects on in situ snow surface temperature (T-skin) and T-air. Furthermore, a single pixel (1km2) and several spatially averaged pixels were used for satellite LST validation by increasing the MODIS window size to 5x5, 9x9, and 25x25 windows for comparison. Several trends in the MODIS LST data were observed, including the underestimation of daytime values and nighttime values. Results indicate that, although all the data sets (Terra and Aqua, diurnal and nocturnal) showed high correlation with ground measurements, day values yielded slightly higher accuracy ( 1°C), both suggesting that MODIS LST retrievals are reliable for similar land cover classes and atmospheric conditions. Results from the CREST-SAFE in situ variables' analyses indicate that T-air is commonly higher than T-skin, and that a lack of cloud cover results in: lower T-skin and higher T-air minus T-skin difference (T-diff). Additionally, the study revealed that T-diff is inversely proportional to cloud cover, wind speed, and incoming solar radiation. Increasing the MODIS window size

  4. Remotely sensed soil temperatures beneath snow-free skin-surface using thermal observations from tandem polar-orbiting satellites: An analytical three-time-scale model

    DEFF Research Database (Denmark)

    Zhan, Wenfeng; Zhou, Ji; Ju, Weimin

    2014-01-01

    ), which represents the instantaneous temperature; and the weather-change temperature cycle (WTC), which is divided into two parts to represent both the daily-averaged (WTCavg) and the instantaneous temperature (WTCinst). The DTC and WTCinst were further parameterized into four undetermined variables...

  5. Change point detection of the Persian Gulf sea surface temperature

    Science.gov (United States)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  6. In situ monitoring of internal surface temperature of the historic building envelope

    Science.gov (United States)

    Labovská, Veronika; Katunský, Dušan

    2016-06-01

    Historical building envelope is characterized by a large accumulation that impact is mainly by changing the inner surface temperature over time. The minimum value of the inner surface temperature is set Code requirements. In the case of thermal technology assessment of building envelope contemplates a steady state external temperature and internal environment, thereby neglecting the heat accumulation capacity of building envelopes. Monitoring surface temperature in real terms in situ shows the real behavior of the building envelope close to reality. The recorded data can be used to create a numerical model for the simulation.

  7. Ground-based measurement of surface temperature and thermal emissivity

    Science.gov (United States)

    Owe, M.; Van De Griend, A. A.

    1994-01-01

    Motorized cable systems for transporting infrared thermometers have been used successfully during several international field campaigns. Systems may be configured with as many as four thermal sensors up to 9 m above the surface, and traverse a 30 m transect. Ground and canopy temperatures are important for solving the surface energy balance. The spatial variability of surface temperature is often great, so that averaged point measurements result in highly inaccurate areal estimates. The cable systems are ideal for quantifying both temporal and spatial variabilities. Thermal emissivity is also necessary for deriving the absolute physical temperature, and measurements may be made with a portable measuring box.

  8. Temperature dependence of the slip length in polymer melts at attractive surfaces.

    Science.gov (United States)

    Servantie, J; Müller, M

    2008-07-11

    Using Couette and Poiseuille flows, we extract the temperature dependence of the slip length, delta, from molecular dynamics simulations of a coarse-grained polymer model in contact with an attractive surface. delta is dictated by the ratio of bulk viscosity and surface mobility. At weakly attractive surfaces, lubrication layers form; delta is large and increases upon cooling. Close to the glass transition temperature Tg, very large slip lengths are observed. At a more attractive surface, a sticky surface layer is built up, giving rise to small slip lengths. Upon cooling, delta decreases at high temperatures, passes through a minimum, and grows for T-->Tg. At strongly attractive surfaces, the Navier-slip condition fails to describe Couette and Poiseuille flows simultaneously. The simulations are corroborated by a schematic, two-layer model suggesting that the observations do not depend on details of the computational model.

  9. Effect of milling temperatures on surface area, surface energy and cohesion of pharmaceutical powders.

    Science.gov (United States)

    Shah, Umang V; Wang, Zihua; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2015-11-10

    Particle bulk and surface properties are influenced by the powder processing routes. This study demonstrates the effect of milling temperatures on the particle surface properties, particularly surface energy and surface area, and ultimately on powder cohesion. An active pharmaceutical ingredient (API) of industrial relevance (brivanib alaninate, BA) was used to demonstrate the effect of two different, but most commonly used milling temperatures (cryogenic vs. ambient). The surface energy of powders milled at both cryogenic and room temperatures increased with increasing milling cycles. The increase in surface energy could be related to the generation of surface amorphous regions. Cohesion for both cryogenic and room temperature milled powders was measured and found to increase with increasing milling cycles. For cryogenic milling, BA had a surface area ∼ 5× higher than the one obtained at room temperature. This was due to the brittle nature of this compound at cryogenic temperature. By decoupling average contributions of surface area and surface energy on cohesion by salinization post-milling, the average contribution of surface energy on cohesion for powders milled at room temperature was 83% and 55% at cryogenic temperature.

  10. Simulations on the influence of lunar surface temperature profiles on CE-1 lunar microwave sounder brightness temperature

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Surface temperature profile is an important parameter in lunar microwave remote sensing. Based on the analysis of physical properties of the lunar samples brought back by the Apollo and Luna missions, we modeled temporal and spatial variation of lunar surface temperature with the heat conduction equation, and produced temperature distribution in top 6.0 m of lunar regolith of the whole Moon surface. Our simulation results show that the profile of lunar surface temperature varies mainly within the top 20 cm, except at the lunar polar regions where the changes can reach to about 1.0 m depth. The temperature is stable beyond that depth. The variations of lunar surface temperature lead to main changes in brightness temperature (TB) at different channels of the lunar microwave sounder (CELMS) on Chang’E-1 (CE-1). The results of this paper show that the temperature profile influenced CELMS TB, which provides strong validation on the CELMS data, and lays a solid basis for future interpretation and utilization of the CELMS data.

  11. Theoretical study of cathode surfaces and high-temperature superconductors

    Science.gov (United States)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  12. A New Global Climatology of Annual Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Benjamin Bechtel

    2015-03-01

    Full Text Available Land surface temperature (LST is an important parameter in various fields including hydrology, climatology, and geophysics. Its derivation by thermal infrared remote sensing has long tradition but despite substantial progress there remain limited data availability and challenges like emissivity estimation, atmospheric correction, and cloud contamination. The annual temperature cycle (ATC is a promising approach to ease some of them. The basic idea to fit a model to the ATC and derive annual cycle parameters (ACP has been proposed before but so far not been tested on larger scale. In this study, a new global climatology of annual LST based on daily 1 km MODIS/Terra observations was processed and evaluated. The derived global parameters were robust and free of missing data due to clouds. They allow estimating LST patterns under largely cloud-free conditions at different scales for every day of year and further deliver a measure for its accuracy respectively variability. The parameters generally showed low redundancy and mostly reflected real surface conditions. Important influencing factors included climate, land cover, vegetation phenology, anthropogenic effects, and geology which enable numerous potential applications. The datasets will be available at the CliSAP Integrated Climate Data Center pending additional processing.

  13. MEaSUREs Land Surface Temperature from GOES Satellites

    Science.gov (United States)

    Pinker, Rachel T.; Chen, Wen; Ma, Yingtao; Islam, Tanvir; Borbas, Eva; Hain, Chris; Hulley, Glynn; Hook, Simon

    2017-04-01

    Information on Land Surface Temperature (LST) can be generated from observations made from satellites in low Earth orbit (LEO) such as MODIS and ASTER and by sensors in geostationary Earth orbit (GEO) such as GOES. Under a project titled: "A Unified and Coherent Land Surface Temperature and Emissivity Earth System Data Record for Earth Science" led by Jet Propulsion Laboratory, an effort is underway to develop long term consistent information from both such systems. In this presentation we will describe an effort to derive LST information from GOES satellites. Results will be presented from two approaches: 1) based on regression developed from a wide range of simulations using MODTRAN, SeeBor Version 5.0 global atmospheric profiles and the CAMEL (Combined ASTER and MODIS Emissivity for Land) product based on the standard University of Wisconsin 5 km emissivity values (UWIREMIS) and the ASTER Global Emissivity Database (GED) product; 2) RTTOV radiative transfer model driven with MERRA-2 reanalysis fields. We will present results of evaluation of these two methods against various products, such as MOD11, and ground observations for the five year period of (2004-2008).

  14. Decadal modulation of global surface temperature by internal climate variability

    Science.gov (United States)

    Dai, Aiguo; Fyfe, John C.; Xie, Shang-Ping; Dai, Xingang

    2015-06-01

    Despite a steady increase in atmospheric greenhouse gases (GHGs), global-mean surface temperature (T) has shown no discernible warming since about 2000, in sharp contrast to model simulations, which on average project strong warming. The recent slowdown in observed surface warming has been attributed to decadal cooling in the tropical Pacific, intensifying trade winds, changes in El Niño activity, increasing volcanic activity and decreasing solar irradiance. Earlier periods of arrested warming have been observed but received much less attention than the recent period, and their causes are poorly understood. Here we analyse observed and model-simulated global T fields to quantify the contributions of internal climate variability (ICV) to decadal changes in global-mean T since 1920. We show that the Interdecadal Pacific Oscillation (IPO) has been associated with large T anomalies over both ocean and land. Combined with another leading mode of ICV, the IPO explains most of the difference between observed and model-simulated rates of decadal change in global-mean T since 1920, and particularly over the so-called `hiatus' period since about 2000. We conclude that ICV, mainly through the IPO, was largely responsible for the recent slowdown, as well as for earlier slowdowns and accelerations in global-mean T since 1920, with preferred spatial patterns different from those associated with GHG-induced warming or aerosol-induced cooling. Recent history suggests that the IPO could reverse course and lead to accelerated global warming in the coming decades.

  15. Influence of Participating Media on the Radiation Thermometry for Surface Temperature Measurement

    Institute of Scientific and Technical Information of China (English)

    Yuying LIU; Xinxin ZHANG

    2005-01-01

    A temperature measurement model of radiation thermometry for the surface covered by participating media was developed. The model was based on the radiation heat transfer of participating media and principles of radiation pyrometers, and solved by integral formulation of discrete ordinate method on spectral waveband. The influence of water mist on the indicated temperature of Raytek MR1SB one/two color pyrometer was discussed. Mie theory was used to calculate the radiative properties of water mist. In order to verify the model, a laboratory temperature measurement experiment was executed. The result shows that temperature of radiation thermometry is sensitive to the spectral response wavelength of pyrometer, and the simulated temperature of pyrometer agrees well with the experimental measurements on a suitable wavelength. The simulated temperature was lower than the real temperature of surface for one-color pyrometer, and it could be higher or lower than the real one for two-color pyrometer with the influence of participating media.

  16. TEMPERATURE CONTROL CIRCUIT FOR SURFACE ACOUSTIC WAVE (SAW RESONATORS

    Directory of Open Access Journals (Sweden)

    Zainab Mohamad Ashari

    2011-10-01

    Full Text Available Surface Acoustic Wave (SAW resonators are key components in oscillators, frequency synthesizers and transceivers. One of the drawbacks of SAW resonators are that its piezoelectric substrates are highly sensitive to ambient temperature resulting in performance degradation. This work propose a simple circuit design which stabalizes the temperature of the SAW resonator, making it independet of temperature change. This circuit is based on the oven control method which elevates the temperature of the resonator to a high temperature, making it tolerant to minor changes in ambient temperature.This circuit consist of a temperature sensor, heaters and a comparator which turn the heater on or off depending on the ambient temperature. Several SAW resonator were tested using this circuit. Experimental results indicate the temperature coefficient of frequency (TCF decreases from maximum of 130.44/°C to a minimum of -1.11/°C. 

  17. Measuring surface temperature of isolated neutron stars and related problems

    Science.gov (United States)

    Teter, Marcus Alton

    New and exciting results for measuring neutron star surface temperatures began with the successful launch of the Chandra X-ray observatory. Among these results are new detections of neutron star surface temperatures which have made it possible to seriously test neutron star thermal evolution theories. The important new temperature determination of the Vela pulsar (Pavlov, et al., 2001a) requires a non-standard cooling scenario to explain it. Apart from this result, we have measured PSR B1055-52's surface temperature in this thesis, determining that it can be explained by standard cooling with heating. Our spectral fit of the combined data from ROSAT and Chandra have shown that a three component model, two thermal blackbodies and an non-thermal power-law, is required to explain the data. Furthermore, our phase resolved spectroscopy has begun to shed light on the geometry of the hot spot on PSR B1055-52's surface as well as the structure of the magnetospheric radiation. Also, there is strong evidence for a thermal distribution over its surface. Most importantly, the fact that PSR B1055-52 does not have a hydrogen atmosphere has been firmly established. To reconcile these two key observations, on the Vela pulsar and PSR B1055-52, we tested neutron star cooling with neutrino processes including the Cooper pair neutrino emission process. Overall, it has been found that a phase change associated with pions being present in the cores of more massive neutron stars explains all current of the data. A transition from neutron matter to pion condensates in the central stellar core explains the difference between standard and non-standard cooling scenarios, because the superfluid suppression of pion cooling will reduce the emissivity of the pion direct URCA process substantially. A neutron star with a mass of [Special characters omitted.] with a medium stiffness equation of state and a T72 type neutron superfluid models the standard cooling case well. A neutron star of [Special

  18. Mapping the body surface temperature of cattle by infrared thermography.

    Science.gov (United States)

    Salles, Marcia Saladini Vieira; da Silva, Suelen Corrêa; Salles, Fernando André; Roma, Luiz Carlos; El Faro, Lenira; Bustos Mac Lean, Priscilla Ayleen; Lins de Oliveira, Celso Eduardo; Martello, Luciane Silva

    2016-12-01

    Infrared thermography (IRT) is an alternative non-invasive method that has been studied as a tool for identifying many physiological and pathological processes related to changes in body temperature. The objective of the present study was to evaluate the body surface temperature of Jersey dairy cattle in a thermoneutral environment in order to contribute to the determination of a body surface temperature pattern for animals of this breed in a situation of thermal comfort. Twenty-four Jersey heifers were used over a period of 35 days at APTA Brazil. Measurements were performed on all animals, starting with the physiological parameters. Body surface temperature was measured by IRT collecting images in different body regions: left and right eye area, right and left eye, caudal left foreleg, cranial left foreleg, right and left flank, and forehead. High correlations were observed between temperature and humidity index (THI) and right flank, left flank and forehead temperatures (0.85, 0.81, and 0.81, respectively). The IRT variables that exhibited the five highest correlation coefficients in principal component 1 were, in decreasing order: forehead (0.90), right flank (0.87), left flank (0.84), marker 1 caudal left foreleg (0.83), marker 2 caudal left foreleg (0.74). The THI showed a high correlation coefficient (0.88) and moderate to low correlations were observed for the physiological variables rectal temperature (0.43), and respiratory frequency (0.42). The thermal profile obtained indicates a surface temperature pattern for each region studied in a situation of thermal comfort and may contribute to studies investigating body surface temperature. Among the body regions studied, IRT forehead temperature showed the highest association with rectal temperature, and forehead and right and left flank temperatures are strongly associated with THI and may be adopted in future studies on thermoregulation and body heat production.

  19. 皮肤表面热烧伤温度场的数值模拟%Numerical modeling of a temperature field on the surface of skin tissues exposed to high temperature

    Institute of Scientific and Technical Information of China (English)

    朱晓明; 胡志刚; 刘竞达

    2015-01-01

    背景:研究认为当生物组织的温度高于44℃时会发生热损伤,准确地预测烧伤范围,可以为烧伤的诊断和治疗提供很大帮助。目的:建立皮肤组织热烧伤的数学模型,分析烧伤过程中的温度变化规律,预测其烧伤范围。方法:建立皮肤有限元模型,对皮肤组织在烧伤过程中的温度场进行数值模拟,得出了皮肤组织的瞬态温度分布,同时用新鲜带皮猪肉进行了烧伤后温度测量实验,将数值计算结果与实验结果进行对比。结果与结论:利用有限元法分析得出皮肤组织的温度分布情况,发现理论数值和实验数值温度变化趋势基本一致,但并未完全重合。提示该有限元模型可以用来预测皮肤组织的烧伤范围。%BACKGROUND:Researchers suggest that thermal damage happens when the temperature of biological tissues is over 44℃. Accurate analysis of burn range wil facilitate diagnosis and therapy of skin burns. OBJECTIVE: To establish the mathematical model of the skin tissues subjected to high temperature and to analyze heat transfer process, and then to predict the burn range of the skin. METHODS:A finite element method was used to simulate the temperature field when the skin tissue was burned. And the relevant animal experiment was conducted to identify the mathematical model. RESULTS AND CONCLUSION:The temperature field was obtained by using the finite element method and the variation tendency between the theoretical data and the experimental data were agreed, but they did not fuly coincide. The scope of skin burn can be predicted by the present finite element method, and help to research the process of heat transfer.

  20. eMODIS Global Land Surface Temperature Version 6

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The EROS Moderate Resolution Imaging Spectroradiometer (eMODIS) Aqua Land Surface Temperature (LST) product is similar to the Land Processes Distributed Active...

  1. 2002 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  2. 2003 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  3. Sea surface temperature anomalies in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    . Further analysis has shown that the sea surface anomalies are well correlated to the anomalies of air temperature and latent heat flux values; whereas they are least correlated to the anomalies of wind stress and net radiation values, except over...

  4. An Estimation of Land Surface Temperatures from Landsat ETM+ ...

    African Journals Online (AJOL)

    Dr-Adeline

    2 National Authority for Remote Sensing and Space Sciences, Cairo, Egypt. 3University of ... Keywords: Urban growth, urban heat Island, land surface temperatures, satellite remote sensing .... observed target includes green vegetation or not.

  5. Global 1-km Sea Surface Temperature (G1SST)

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL OurOcean Portal: A daily, global Sea Surface Temperature (SST) data set is produced at 1-km (also known as ultra-high resolution) by the JPL ROMS (Regional Ocean...

  6. COBE-SST2 Sea Surface Temperature and Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A new sea surface temperature (SST) analysis on a centennial time scale is presented. The dataset starts in 1850 with monthly 1x1 means and is periodically updated....

  7. Surface layer temperature inversion in the Arabian Sea during winter

    Digital Repository Service at National Institute of Oceanography (India)

    Pankajakshan, T.; Ghosh, A.K.

    Surface layer temperature inversion in the south eastern Arabian Sea, during winter has been studied using Bathythermograph data collected from 1132 stations. It is found that the inversion in this area is a stable seasonal feature...

  8. Seasonal Sea Surface Temperature Averages, 1985-2001 - Direct Download

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This data set consists of four images showing seasonal sea surface temperature (SST) averages for the entire earth. Data for the years 1985-2001 are averaged to...

  9. 1996 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  10. 2000 Average Monthly Sea Surface Temperature for California

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA/ NASA AVHRR Oceans Pathfinder sea surface temperature data are derived from the 5-channel Advanced Very High Resolution Radiometers (AVHRR) on board the...

  11. OW NOAA Pathfinder/GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  12. OW NOAA AVHRR-GAC Sea-Surface Temperature

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset contains satellite-derived sea-surface temperature measurements collected by means of the Advanced Very High Resolution Radiometer - Global Area Coverage...

  13. NOAA High-Resolution Sea Surface Temperature (SST) Analysis Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archive covers two high resolution sea surface temperature (SST) analysis products developed using an optimum interpolation (OI) technique. The analyses have a...

  14. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  15. Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions

    Science.gov (United States)

    In this study ground measured soil and vegetation component temperatures and composite temperature from a high spatial resolution thermal camera and a network of thermal-IR sensors collected in an irrigated maize field and in an irrigated cotton field are used to assess and refine the component temp...

  16. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective

    DEFF Research Database (Denmark)

    Morillas, L.; Garcia Garcia, Monica; Nieto Solana, Hector;

    2013-01-01

    A two-source model (TSM) for surface energy balance, considering explicitly soil and vegetation components, was tested under water stress conditions. The TSM evaluated estimates the sensible heat flux (H) using the surface-air thermal gradient and the latent heat flux (LE) as a residual from...... and parallel; as well as the iterative algorithm included in the TSM to disaggregate the soil-surface composite temperature into its separate components. Continuous field measurements of composite soil-vegetation surface temperature (T) and bare soil temperature (T) from thermal infrared sensors were used...... T and the simplified version that uses separate inputs of T and T' were minor. This demonstrates the robustness of the iterative procedure to disaggregate a composite soil-vegetation temperature into separate soil and vegetation components in semiarid environments with good prospects for image...

  17. Temperature Compensation of Surface Acoustic Waves on Berlinite

    Science.gov (United States)

    Searle, David Michael Marshall

    The surface acoustic wave properties of Berlinite (a-AlPO4) have been investigated theoretically and experimentally, for a variety of crystallographic orientations, to evaluate its possible use as a substrate material for temperature compensated surface acoustic wave devices. A computer program has been developed to calculate the surface wave properties of a material from its elastic, piezoelectric, dielectric and lattice constants and their temperature derivatives. The program calculates the temperature coefficient of delay, the velocity of the surface wave, the direction of power flow and a measure of the electro-mechanical coupling. These calculations have been performed for a large number of orientations using a modified form of the data given by Chang and Barsch for Berlinite and predict several new temperature compensated directions. Experimental measurements have been made of the frequency-temperature response of a surface acoustic wave oscillator on an 80° X axis boule cut which show it to be temperature compensated in qualitative agreement with the theoretical predictions. This orientation shows a cubic frequency-temperature dependence instead of the expected parabolic response. Measurements of the electro-mechanical coupling coefficient k gave a value lower than predicted. Similar measurements on a Y cut plate gave a value which is approximately twice that of ST cut quartz, but again lower than predicted. The surface wave velocity on both these cuts was measured to be slightly higher than predicted by the computer program. Experimental measurements of the lattice parameters a and c are also presented for a range of temperatures from 25°C to just above the alpha-beta transition at 584°C. These results are compared with the values obtained by Chang and Barsch. The results of this work indicate that Berlinite should become a useful substrate material for the construction of temperature compensated surface acoustic wave devices.

  18. Temperature dependence of surface enhanced Raman scattering on C70

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; Zhang Zhenlong; DU Yinxiao; DONG Hua; MO Yujun

    2005-01-01

    The temperature dependence of surface enhanced Raman scattering of the C70 molecule is reported.The Raman scattering of C70 molecules adsorbed on the surface of a silver mirror was measured at different temperatures. The experimental results indicate that the relative intensities of the Raman features vary with the temperature of the sample. When the temperature decreases from room temperature to 0℃, the relative intensities of certain Raman bands decrease abruptly. If we take the strongest band 1565cm-1 as a standard value 100, the greatest decrease approaches to 43%. However, with the further decrease in the temperature these relative intensities increase and resume the value at room temperature. And such a temperature dependence is reversible. Our results show that the adsorption state of the C70 molecules on the silver surface around 0℃changes greatly with the temperature, resulting in a decrease in relative intensities for some main Raman features of C70molecule. When the temperature is lower than 0℃, the adsorption state changes continually and more slowly. Synchronously, eight new Raman featu res, which have not ever been reported in literature, are observed in our experiment and this enriches the basic information of the vibrational modes for C70 molecule.

  19. Sea Surface Temperature from EUMETSAT Including Sentinel-3 SLSTR

    Science.gov (United States)

    O'Carroll, Anne; Bonekamp, Hans; Montagner, Francois; Santacesaria, Vincenzo; Tomazic, Igor

    2015-12-01

    The paper gives an overview of sea surface temperature (SST) activities at EUMETSAT including information on SST planned from the Sea and Land Surface Temperature Radiometer (SLSTR). Operational oceanography activities within the Marine Applications group at EUMETSAT continue with a focus on SST, sea surface winds, sea-ice products, radiative fluxes, significant wave height and sea surface topography. These are achieved through the mandatory, optional and third-party programmes, and for some products with the EUMETSAT Ocean and Sea-Ice Satellite Application Facility (OSI SAF). Progress towards products from sea-ice surface temperature, ocean colour products, turbidity and aerosol optical depth over water continue. Information on oceanography products from EUMETSAT can be found through the product navigator (http://navigator.eumetsat.int). EUMETSAT have been collaborating with ESA for a number of years on the development of SST for SLSTR.

  20. Uncertainties in Surface Layer Modeling

    Science.gov (United States)

    Pendergrass, W.

    2015-12-01

    A central problem for micrometeorologists has been the relationship of air-surface exchange rates of momentum and heat to quantities that can be predicted with confidence. The flux-gradient profile developed through Monin-Obukhov Similarity Theory (MOST) provides an integration of the dimensionless wind shear expression where is an empirically derived expression for stable and unstable atmospheric conditions. Empirically derived expressions are far from universally accepted (Garratt, 1992, Table A5). Regardless of what form of these relationships might be used, their significance over any short period of time is questionable since all of these relationships between fluxes and gradients apply to averages that might rarely occur. It is well accepted that the assumption of stationarity and homogeneity do not reflect the true chaotic nature of the processes that control the variables considered in these relationships, with the net consequence that the levels of predictability theoretically attainable might never be realized in practice. This matter is of direct relevance to modern prognostic models which construct forecasts by assuming the universal applicability of relationships among averages for the lower atmosphere, which rarely maintains an average state. Under a Cooperative research and Development Agreement between NOAA and Duke Energy Generation, NOAA/ATDD conducted atmospheric boundary layer (ABL) research using Duke renewable energy sites as research testbeds. One aspect of this research has been the evaluation of legacy flux-gradient formulations (the ϕ functions, see Monin and Obukhov, 1954) for the exchange of heat and momentum. At the Duke Energy Ocotillo site, NOAA/ATDD installed sonic anemometers reporting wind and temperature fluctuations at 10Hz at eight elevations. From these observations, ϕM and ϕH were derived from a two-year database of mean and turbulent wind and temperature observations. From this extensive measurement database, using a

  1. Determination of temperature of moving surface by sensitivity analysis

    CERN Document Server

    Farhanieh, B

    2002-01-01

    In this paper sensitivity analysis in inverse problem solutions is employed to estimate the temperature of a moving surface. Moving finite element method is used for spatial discretization. Time derivatives are approximated using Crank-Nicklson method. The accuracy of the solution is assessed by simulation method. The convergence domain is investigated for the determination of the temperature of a solid fuel.

  2. Effects of drying temperature and surface characteristics of vegetable on the survival of salmonella.

    Science.gov (United States)

    Hawaree, N; Chiewchan, N; Devahastin, S

    2009-01-01

    The heat resistance of Salmonella Anatum inoculated on the surface of a model vegetable as affected by hot-air drying temperature (50 to 70 degrees C) and surface characteristics was determined in this study. Cabbage was selected as a model vegetable to demonstrate the effect of topographical feature of vegetable surface on the Salmonella attachment ability. An image analysis technique was developed to monitor the change of cabbage surface during drying and the specific surface characteristics were described in terms of the roughness factor (R). It was found that the water activity of the vegetable decreased while R-value increased with longer drying time and higher drying temperature. However, the changes of both parameters during drying did not show a significant effect on the susceptibility of Salmonella attached on the cabbage surface. Drying temperature was found to be a major factor influencing the heat resistance of Salmonella during drying.

  3. Analysis of Anomaly in Land Surface Temperature Using MODIS Products

    Science.gov (United States)

    Yorozu, K.; Kodama, T.; Kim, S.; Tachikawa, Y.; Shiiba, M.

    2011-12-01

    Atmosphere-land surface interaction plays a dominant role on the hydrologic cycle. Atmospheric phenomena cause variation of land surface state and land surface state can affect on atmosphereic conditions. Widely-known article related in atmospheric-land interaction was published by Koster et al. in 2004. The context of this article is that seasonal anomaly in soil moisture or soil surface temperature can affect summer precipitation generation and other atmospheric processes especially in middle North America, Sahel and south Asia. From not only above example but other previous research works, it is assumed that anomaly of surface state has a key factor. To investigate atmospheric-land surface interaction, it is necessary to analyze anomaly field in land surface state. In this study, soil surface temperature should be focused because it can be globally and continuously observed by satellite launched sensor. To land surface temperature product, MOD11C1 and MYD11C1 products which are kinds of MODIS products are applied. Both of them have 0.05 degree spatial resolution and daily temporal resolution. The difference of them is launched satellite, MOD11C1 is Terra and MYD11C1 is Aqua. MOD11C1 covers the latter of 2000 to present and MYD11C1 covers the early 2002 to present. There are unrealistic values on provided products even if daily product was already calibrated or corrected. For pre-analyzing, daily data is aggregated into 8-days data to remove irregular values for stable analysis. It was found that there are spatial and temporal distribution of 10-years average and standard deviation for each 8-days term. In order to point out extreme anomaly in land surface temperature, standard score for each 8-days term is applied. From the analysis of standard score, it is found there are large anomaly in land surface temperature around north China plain in early April 2005 and around Bangladesh in early May 2009.

  4. Air Temperature estimation from Land Surface temperature and solar Radiation parameters

    Science.gov (United States)

    Lazzarini, Michele; Eissa, Yehia; Marpu, Prashanth; Ghedira, Hosni

    2013-04-01

    Air Temperature (AirT) is a fundamental parameter in a wide range of applications such as climate change studies, weather forecast, energy balance modeling, efficiency of Photovoltaic (PV) solar cells, etc. Air temperature data are generally obtained through regular measurements from meteorological stations. The distribution of these stations is normally sparse, so the spatial pattern of this parameter cannot be accurately estimated by interpolation methods. This work investigated the relationship between Air Temperature measured at meteorological stations and spatially contiguous measurements derived from Remote Sensing techniques, such as Land Surface Temperature (LST) maps, emissivity maps and shortwave radiation maps with the aim of creating a continuous map of AirT. For LST and emissivity, MSG-SEVIRI LST product from Land Surface Analysis Satellite Applications Facility (LSA-SAF) has been used. For shortwave radiation maps, an Artificial Neural Networks ensemble model has been developed and previously tested to create continuous maps from Global Horizontal Irradiance (GHI) point measurements, utilizing six thermal channels of MSG-SEVIRI. The testing sites corresponded to three meteorological stations located in the United Arab Emirates (UAE), where in situ measurements of Air Temperature were available. From the starting parameters, energy fluxes and net radiation have been calculated, in order to have information on the incoming and outgoing long-wave radiation and the incoming short-wave radiation. The preliminary analysis (day and Night measurements, cloud free) showed a strong negative correlation (0.92) between Outgoing long-wave radiation - GHI and LST- AirT, with a RMSE of 1.84 K in the AirT estimation from the initial parameters. Regression coefficients have been determined and tested on all the ground stations. The analysis also demonstrated the predominant impact of the incoming short-wave radiation in the AirT hourly variation, while the incoming

  5. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    Science.gov (United States)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  6. estimation of land surface temperature of kaduna metropolis, nigeria

    African Journals Online (AJOL)

    Zaharaddeen et. al

    Understanding the spatial variation of Land Surface Temperature. (LST), will be ... positive correlation between mean of surface emissivity with date and ... deviation of 1.92 of LST and coefficient determinant R2 (0.46) show a ... (LST), as the prime and basic physical parameter of the earth's ..... thorough review of the paper.

  7. Investigation of Sea Surface Temperature (SST) anomalies over Cyprus area

    Science.gov (United States)

    Georgiou, Andreas; Akçit, Nuhcan

    2016-08-01

    The temperature of the sea surface has been identified as an important parameter of the natural environment, governing processes that occur in the upper ocean. This paper focuses on the analysis of the Sea Surface Temperature (SST) anomalies at the greater area of Cyprus. For that, SST data derived from MODerate-resolution Imaging Spectroradiometer (MODIS) instrument on board both Aqua and Terra sun synchronous satellites were used. A four year period was chosen as a first approach to address and describe this phenomenon. Geographical Information Systems (GIS) has been used as an integrated platform of analysis and presentation in addition of the support of MATLAB®. The methodology consists of five steps: (i) Collection of MODIS SST imagery, (ii) Development of the digital geo-database; (iii) Model and run the methodology in GIS as a script; (iv) Calculation of SST anomalies; and (v) Visualization of the results. The SST anomaly values have presented a symmetric distribution over the study area with an increase trend through the years of analysis. The calculated monthly and annual average SST anomalies (ASST) make more obvious this trend, with negative and positive SST changes to be distributed over the study area. In terms of seasons, the same increase trend presented during spring, summer, autumn and winter with 2013 to be the year with maximum ASST observed values. Innovative aspects comprise of straightforward integration and modeling of available tools, providing a versatile platform of analysis and semi-automation of the operation. In addition, the fine resolution maps that extracted from the analysis with a wide spatial coverage, allows the detail representation of SST and ASST respectively in the region.

  8. Subsurface temperatures in Denmark – measurements and modelling

    DEFF Research Database (Denmark)

    Balling, N.; Poulsen, Søren Erbs; Bording, Thue Sylvester;

    2014-01-01

    lithologies of different conductivity. Mean geothermal gradients from surface to depths of 1000 to 3000 m are generally between 20 and 30 °C/km. As an example, modelled temperatures for the Gassum geothermal reservoir are shown with temperatures largely between 35 and 90 °C for depths of interest....

  9. 新型PB-PSOI器件表面电场和温度分布模型研究%Analytical models for the surface electrical field and temperature distributions of novel PB-PSOI devices

    Institute of Scientific and Technical Information of China (English)

    孙伟锋; 高珊; 陆生礼; 陈军宁

    2009-01-01

    根据泊松方程和热扩散方程提出了新型PB-PSOI器件漂移区的二维表面电场分布模型和温度分布模型,模型计算结果与Medici模拟结果相一致.根据所提出的模型,重点研究了埋氧化层厚度及长度对漂移区表面电场分布和温度分布的影响,最后给出了PB-PSOI器件的埋氧化层厚度和长度的优化设计方法.%In this paper, the 2-D analytical models for the surface electrical field and temperature distributions of PB-PSOI devices in terms of Poisson's solution and thermal diffusion solution have been suggested. The analytical results of the presented models show a good agreement with the numerical simulation results obtained by Medici. The dependences of the surface electrical field and temperature on the thickness and the length of the buried oxide have also been discussed in detail. Finally, the methods to optimize the thickness and the length of the buried oxide have been proposed to achieve the high performance of PB-PSOI devices.

  10. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    Science.gov (United States)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  11. Flat meridional temperature gradient in the early Eocene in the subsurface rather than surface ocean

    Science.gov (United States)

    Ho, Sze Ling; Laepple, Thomas

    2016-08-01

    The early Eocene (49-55 million years ago) is a time interval characterized by elevated surface temperatures and atmospheric CO2 (refs ,), and a flatter-than-present latitudinal surface temperature gradient. The multi-proxy-derived flat temperature gradient has been a challenge to reproduce in model simulations, especially the subtropical warmth at the high-latitude surface oceans, inferred from the archaeal lipid-based palaeothermometry, . Here we revisit the interpretation by analysing a global collection of multi-proxy temperature estimates from sediment cores spanning millennia to millions of years. Comparing the variability between proxy types, we demonstrate that the present interpretation overestimates the magnitude of past climate changes on all timescales. We attribute this to an inappropriate calibration, which reflects subsurface ocean but is calibrated to the sea surface, where the latitudinal temperature gradient is steeper. Recalibrating the proxy to the temperatures of subsurface ocean, where the signal is probably formed, yields colder -temperatures and latitudinal gradient consistent with standard climate model simulations of the Eocene climate, invalidating the apparent, extremely warm polar sea surface temperatures. We conclude that there is a need to reinterpret -inferred marine temperature records in the literature, especially for reconstructions of past warm climates that rely heavily on this proxy as reflecting subsurface ocean.

  12. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China

    Institute of Scientific and Technical Information of China (English)

    XIAO Rong-bo; OUYANG Zhi-yun; ZHENG Hua; LI Wei-feng; SCHIENKE Erich W; WANG Xiao-ke

    2007-01-01

    Land surface temperature (LST), which is heavily influenced by urban surface structures, is a significant parameter in urban environmental analysis. This study examined the effect impervious surfaces (IS) spatial patterns have on LST in Beijing, China. A classification and regression tree model (CART) was adopted to estimate IS as a continuous variable using Landsat images from two seasons combined with QuickBird. LST was retrieved from the Landsat Thematic Mapper (TM) image to examine the relationships between IS and LST. The results revealed that CART was capable of consistently predicting LST with acceptable accuracy (correlation coefficient of 0.94 and the average error of 8.59%). Spatial patterns of IS exhibited changing gradients across the various urban-rural transects, with LST values showing a concentric shape that increased as you moved from the outskirts towards the downtown areas.Transect analysis also indicated that the changes in both IS and LST patterns were similar at various resolution levels, which suggests a distinct linear relationship between them. Results of correlation analysis further showed that IS tended to be positively correlated with LST, and that the correlation coefficients increased from 0.807 to 0.925 with increases in IS pixel size. The findings identified in this study provide a theoretical basis for improving urban planning efforts to lessen urban temperatures and thus dampen urban heat island effects.

  13. Influence of Annealing Temperature on CZTS Thin Film Surface Properties

    Science.gov (United States)

    Feng, Wenmei; Han, Junfeng; Ge, Jun; Peng, Xianglin; Liu, Yunong; Jian, Yu; Yuan, Lin; Xiong, Xiaolu; Cha, Limei; Liao, Cheng

    2017-01-01

    In this work, copper zinc tin sulfide (CZTS) films were deposited by direct current sputtering and the samples were annealed in different oven-set temperatures and atmosphere (Ar and H2S). The surface evolution was investigated carefully by using scanning electron microscopy (SEM), Raman spectroscopy and x-ray photoelectron spectroscopy. The surface of the as-sputtered precursor contained little Cu and large amounts of Zn and Sn. The metallic precursor was continuous and compact without pinholes or cracks. With the increase of the temperature from room temperature to 250°C, Cu atoms diffused to the film surface to form Cu1- x S and covered other compounds. Some small platelets were smaller than 500 nm spreading randomly in the holes of the film surfaces. When the temperature reached 350°C, Zn and Sn atoms began to diffuse to the surface and react with S or Cu1- x S. At 400°C, SEM showed the melting of large particles and small particles with a size from 100 nm to 200 nm in the background of the film surface. Excess Zn segregated towards the surface regions and formed ZnS phase on the surface. In addition, the signal of sodium in the CZTS surface was observed above 400°C. At 600°C, a large amount of regular structures with clear edges and corners were observed in the film surface in SEM images. A clear recrystallized process on the surface was assumed from those observations.

  14. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-01-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k- ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  15. FLOW VELOCITY AND SURFACE TEMPERATURE EFFECTS ON CONVECTIVE HEAT TRANSFER COEFFICIENT FROM URBAN CANOPY SURFACES BY NUMERICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    Sivaraja Subramania Pillai

    2013-06-01

    Full Text Available This study investigates the effect of flow velocity and building surface temperature effects on Convective Heat Transfer Coefficient (CHTC from urban building surfaces by numerical simulation. The thermal effects produced by geometrical and physical properties of urban areas generate a relatively differential heating and uncomfortable environment compared to rural regions called as Urban Heat Island (UHI phenomena. The urban thermal comfort is directly related to the CHTC from the urban canopy surfaces. This CHTC from urban canopy surfaces expected to depend upon the wind velocity flowing over the urban canopy surfaces, urban canopy configurations, building surface temperature etc. But the most influential parameter on CHTC has not been clarified yet. Urban canopy type experiments in thermally stratified wind tunnel have normally been used to study the heat transfer issues. But, it is not an easy task in wind tunnel experiments to evaluate local CHTC, which vary on individual canyon surfaces such as building roof, walls and ground. Numerical simulation validated by wind tunnel experiments can be an alternative for the prediction of CHTC from building surfaces in an urban area. In our study, wind tunnel experiments were conducted to validate the low-Reynolds-number k-ε model which was used for the evaluation of CHTC from surfaces. The calculated CFD results showed good agreement with experimental results. After this validation, the effects of flow velocity and building surface temperature effects on CHTC from urban building surfaces were investigated. It has been found that the change in velocity remarkably affects the CHTC from urban canopy surfaces and change in surface temperature has almost no effect over the CHTC from urban canopy surfaces.

  16. On-Line Life Monitoring Technique for Tube Bundles of Boiler High-Temperature Heating Surface

    Institute of Scientific and Technical Information of China (English)

    Yang Dong; Wang Zhongyuan

    2005-01-01

    High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.

  17. Urban surface temperature behaviour and heat island effect in a tropical planned city

    Science.gov (United States)

    Ahmed, Adeb Qaid; Ossen, Dilshan Remaz; Jamei, Elmira; Manaf, Norhashima Abd; Said, Ismail; Ahmad, Mohd Hamdan

    2015-02-01

    Putrajaya is a model city planned with concepts of a "city in the garden" and an "intelligent city" in the tropics. This study presents the behaviour of the surface temperature and the heat island effect of Putrajaya. Findings show that heat island intensity is 2 °C on average at nighttime and negligible at daytime. But high surface temperature values were recorded at the main boulevard due to direct solar radiation incident, street orientation in the direction of northeast and southwest and low building height-to-street width ratio. Buildings facing each other had cooling effect on surfaces during the morning and evening hours; conversely, they had a warming effect at noon. Clustered trees along the street are effective in reducing the surface temperature compared to scattered and isolated trees. Surface temperature of built up areas was highest at noon, while walls and sidewalks facing northwest were hottest later in the day. Walls and sidewalks that face northwest were warmer than those that face southeast. The surface temperatures of the horizontal street surfaces and of vertical façades are at acceptable levels relative to the surface temperature of similar surfaces in mature cities in subtropical, temperate and Mediterranean climates.

  18. Modeled water velocity, sea surface height, WATER TEMPERATURE, salinity, and others in the Caribbean Sea from 2007-01-01 to 2009-12-31 (NCEI Accession 0143929)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data was produced with the Regional Oceanic Modeling System (ROMS). The model resolved tides, and was forced by the North American Regional Reanalysis (NARR)...

  19. Comparison of MODIS Land Surface Temperature and Air Temperature over the Continental USA Meteorological Stations

    Science.gov (United States)

    Zhang, Ping; Bounoua, Lahouari; Imhoff, Marc L.; Wolfe, Robert E.; Thome, Kurtis

    2014-01-01

    The National Land Cover Database (NLCD) Impervious Surface Area (ISA) and MODIS Land Surface Temperature (LST) are used in a spatial analysis to assess the surface-temperature-based urban heat island's (UHIS) signature on LST amplitude over the continental USA and to make comparisons to local air temperatures. Air-temperature-based UHIs (UHIA), calculated using the Global Historical Climatology Network (GHCN) daily air temperatures, are compared with UHIS for urban areas in different biomes during different seasons. NLCD ISA is used to define urban and rural temperatures and to stratify the sampling for LST and air temperatures. We find that the MODIS LST agrees well with observed air temperature during the nighttime, but tends to overestimate it during the daytime, especially during summer and in nonforested areas. The minimum air temperature analyses show that UHIs in forests have an average UHIA of 1 C during the summer. The UHIS, calculated from nighttime LST, has similar magnitude of 1-2 C. By contrast, the LSTs show a midday summer UHIS of 3-4 C for cities in forests, whereas the average summer UHIA calculated from maximum air temperature is close to 0 C. In addition, the LSTs and air temperatures difference between 2006 and 2011 are in agreement, albeit with different magnitude.

  20. Fiber-Optic Surface Temperature Sensor Based on Modal Interference

    Directory of Open Access Journals (Sweden)

    Frédéric Musin

    2016-07-01

    Full Text Available Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  1. Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries

    NARCIS (Netherlands)

    Chen, F.; Yang, S.; Su, Zhongbo; Wang, K.

    2016-01-01

    Land surface emissivity (LSE) is a prerequisite for retrieving land surface temperature (LST) through single channel methods. According to error model, a 0.01 (1%) uncertainty of LSE may result in a 0.5 K error in LST under a moderate condition, while an obvious error (approximately 1 K) is possible

  2. Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau

    Science.gov (United States)

    Chen, X.; Liu, Y.; Wu, G. X.

    2016-12-01

    Recent studies have demonstrated that the majority of the Phase-5 Coupled Model Inter-comparison Project (CMIP5) models underestimate annual and seasonal mean surface air temperatures (Ta) over the Tibetan Plateau (TP). In addition, half of the models underestimate annual and seasonal mean surface temperatures (Ts) over the TP. These cold biases are larger over the western TP. By decomposing the Ts bias using the surface energy budget equation, this study investigates the contributions to the cold surface temperature bias on the Tibetan Plateau from various factors, including the surface albedo-induced bias (SAF), surface cloud radiative forcing (CRF), clear-sky shortwave (SW) radiation, downward clear-sky longwave radiation (DLR), surface sensible heat flux and latent heat flux, and heat storage. The results suggest that SAF and DLR are the main factors causing the cold surface temperature bias. Because SAF and DLR are respectively affected by the snow coverage fraction and water vapor distribution produced by the models, these results then imply that the snow coverage fraction parameterization and water vapor distribution over the TP require further improvements.

  3. Assessment of broiler surface temperature variation when exposed to different air temperatures

    Directory of Open Access Journals (Sweden)

    GR Nascimento

    2011-12-01

    Full Text Available This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST of 7- to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb® broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 ºC to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05 from the values obtained by the equations. MST values significantly increased (p < 0.05 when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.

  4. Analytical modelling of temperature effects on synapses

    CERN Document Server

    Kufel, Dominik S

    2016-01-01

    It was previously reported, that temperature may significantly influence neural dynamics on different levels of brain modelling. Due to this fact, while creating the model in computational neuroscience we would like to make it scalable for wide-range of various brain temperatures. However currently, because of a lack of experimental data and an absence of analytical model describing temperature influence on synapses, it is not possible to include temperature effects on multi-neuron modelling level. In this paper, we propose first step to deal with this problem: new analytical model of AMPA-type synaptic conductance, which is able to include temperature effects in low-frequency stimulations. It was constructed on basis of Markov model description of AMPA receptor kinetics and few simplifications motivated both experimentally and from Monte Carlo simulation of synaptic transmission. The model may be used for efficient and accurate implementation of temperature effects on AMPA receptor conductance in large scale...

  5. Near-surface Observations of Temperature and Salinity from Profiling Floats: The Diurnal Cycle, Precipitation, and Mixing

    Science.gov (United States)

    Anderson, J. E.; Riser, S.

    2012-12-01

    Observations of near-surface temperature and salinity obtained from Argo-type profiling floats enhanced with an auxiliary Surface Temperature and Salinity (STS) CTD are presented. Using the STS unit, high vertical resolution (Price-Weller-Pinkel (PWP) one-dimensional mixed layer model. Additionally, the near-surface heat budget is examined.

  6. Impact of sea surface temperature on satellite retrieval of sea surface salinity

    Science.gov (United States)

    Jin, Xuchen; Zhu, Qiankun; He, Xianqiang; Chen, Peng; Wang, Difeng; Hao, Zengzhou; Huang, Haiqing

    2016-10-01

    Currently, global sea surface salinity (SSS) can be retrieved by the satellite microwave radiometer onboard the satellite, such as the Soil Moisture and Ocean Salinity(SMOS) and the Aqurius. SMOS is an Earth Explorer Opportunity Mission from the European Space Agency(ESA). It was launched at a sun-synchronous orbit in 2009 and one of the payloads is called MIRAS(Microwave Imaging Radiometer using Aperture Synthesis), which is the first interferometric microwave radiometer designed for observing SSS at L-band(1.41 GHz).The foundation of the salinity retrieval by microwave radiometer is that the sea surface radiance at L-band has the most suitable sensitivity with the variation of the salinity. It is well known that the sensitivity of brightness temperatures(TB) to SSS depends on the sea surface temperature (SST), but the quantitative impact of the SST on the satellite retrieval of the SSS is still poorly known. In this study, we investigate the impact of the SST on the accuracy of salinity retrieval from the SMOS. First of all, The dielectric constant model proposed by Klein and Swift has been used to estimate the vertically and horizontally polarized brightness temperatures(TV and TH) of a smooth sea water surface at L-band and derive the derivatives of TV and TH as a function of SSS to show the relative sensitivity at 45° incident angle. Then, we use the GAM(generalized additive model) method to evaluate the association between the satellite-measured brightness temperature and in-situ SSS at different SST. Moreover, the satellite-derived SSS from the SMOS is validated using the ARGO data to assess the RMSE(root mean squared error). We compare the SMOS SSS and ARGO SSS over two regions of Pacific ocean far from land and ice under different SST. The RMSE of retrieved SSS at different SST have been estimated. Our results showed that SST is one of the most significant factors affecting the accuracy of SSS retrieval. The satellite-measured brightness temperature has a

  7. Modeling Land Surface Phenology Using Earthlight

    Science.gov (United States)

    Henebry, G. M.

    2005-12-01

    Microwave radiometers have long been used in earth observation, but the coarse spatial resolution of the data has discouraged its use in investigations of the vegetated land surface. The Advanced Microwave Scanning Radiometer (AMSR-E) on the Aqua satellite acquires multifrequency observations twice daily (1:30 and 13:30). From these brightness temperatures come two data products relevant to land surface phenology: soil moisture and vegetation water content. Although the nominal spatial resolution of these products is coarse (25 km), the fine temporal sampling allows characterization of the diel variation in surface moisture as contained in the uppermost soil layer and bound in the vegetation canopy. The ephermal dynamics of surficial soil moisture are difficult to validate due to the scale discrepancy between the 625 sq km coverage of a single pixel and the sparse network of weather stations. In contrast, canopy dynamics are more readily validated using finer spatial resolution data products and/or ecoregionalizations. For sites in the North American Great Plains and Northern Eurasia dominated by herbaceous vegetation, I will present land surface phenologies modeled using emitted earthlight and compare them with land surface phenologies modeled using reflected sunlight. I will also explore whether some key climate modes have a significant effect on the microwave-retrieved land surface phenologies.

  8. Surface temperature sensitivities from cloud cover variations in the Hummel-Kuhn radiative—convective model with three different cloud approximations

    OpenAIRE

    HUMMEL, JOHN R.

    2011-01-01

    In modeling the thermal structure of the atmosphere, the role of clouds is critically important. Clouds modify the solar flux distribution throughout the atmosphere, radiate significantly in the infrared, and provide large thermal reservoirs because of the large latent heat of water. In the best current radiative convective one-dimensional models the global atmosphere is modeled as the sum of clear and cloudy sky parts weighted by a fractional cloud cover. In considering the cloudy sky part,...

  9. Uncertainties and shortcomings of ground surface temperature histories derived from inversion of temperature logs

    OpenAIRE

    Hartmann, Andreas; Rath, Volker

    2008-01-01

    Analysing borehole temperature data in terms of ground surface history can add useful information to reconstructions of past climates. Therefore, a rigorous assessment of uncertainties and error sources is a necessary prerequisite for the meaningful interpretation of such ground surface temperature histories. This study analyses the most prominent sources of uncertainty. The diffusive nature of the process makes the inversion relatively robust against incomplete knowledge of the thermal diffu...

  10. Global surface temperature change analysis based on MODIS data in recent twelve years

    Science.gov (United States)

    Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.

    2017-01-01

    Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.

  11. Empirical analysis of the solar contribution to global mean air surface temperature change

    CERN Document Server

    Scafetta, Nicola

    2009-01-01

    The solar contribution to global mean air surface temperature change is analyzed by using an empirical bi-scale climate model characterized by both fast and slow characteristic time responses to solar forcing: $\\tau_1 =0.4 \\pm 0.1$ yr, and $\\tau_2= 8 \\pm 2$ yr or $\\tau_2=12 \\pm 3$ yr. Since 1980 the solar contribution to climate change is uncertain because of the severe uncertainty of the total solar irradiance satellite composites. The sun may have caused from a slight cooling, if PMOD TSI composite is used, to a significant warming (up to 65% of the total observed warming) if ACRIM, or other TSI composites are used. The model is calibrated only on the empirical 11-year solar cycle signature on the instrumental global surface temperature since 1980. The model reconstructs the major temperature patterns covering 400 years of solar induced temperature changes, as shown in recent paleoclimate global temperature records.

  12. MODELING THE EFFECT OF WATER VAPOR ON THE INTERFACIAL BEHAVIOR OF HIGH-TEMPERATURE AIR IN CONTACT WITH Fe20Cr SURFACES

    Energy Technology Data Exchange (ETDEWEB)

    Chialvo, Ariel A [ORNL; Brady, Michael P [ORNL; Keiser, James R [ORNL; Cole, David R [ORNL

    2011-01-01

    The purpose of this communication is to provide an atomistic view, via molecular dynamic simulation, of the contrasting interfacial behavior between high temperature dry- and (10-40 vol%) wet-air in contact with stainless steels as represented by Fe20Cr. It was found that H2O preferentially adsorbs and displaces oxygen at the metal/fluid interface. Comparison of these findings with experimental studies reported in the literature is discussed. Keywords: Fe-Cr alloys, metal-fluid interfacial behavior, wet-air, molecular simulation

  13. High-Temperature Surface-Acoustic-Wave Transducer

    Science.gov (United States)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  14. Statistical Seasonal Sea Surface based Prediction Model

    Science.gov (United States)

    Suarez, Roberto; Rodriguez-Fonseca, Belen; Diouf, Ibrahima

    2014-05-01

    The interannual variability of the sea surface temperature (SST) plays a key role in the strongly seasonal rainfall regime on the West African region. The predictability of the seasonal cycle of rainfall is a field widely discussed by the scientific community, with results that fail to be satisfactory due to the difficulty of dynamical models to reproduce the behavior of the Inter Tropical Convergence Zone (ITCZ). To tackle this problem, a statistical model based on oceanic predictors has been developed at the Universidad Complutense of Madrid (UCM) with the aim to complement and enhance the predictability of the West African Monsoon (WAM) as an alternative to the coupled models. The model, called S4CAST (SST-based Statistical Seasonal Forecast) is based on discriminant analysis techniques, specifically the Maximum Covariance Analysis (MCA) and Canonical Correlation Analysis (CCA). Beyond the application of the model to the prediciton of rainfall in West Africa, its use extends to a range of different oceanic, atmospheric and helth related parameters influenced by the temperature of the sea surface as a defining factor of variability.

  15. Investigation of surface properties of high temperature nitrided titanium alloys

    Directory of Open Access Journals (Sweden)

    E. Koyuncu

    2009-12-01

    Full Text Available Purpose: The purpose of paper is to investigate surface properties of high temperature nitrided titanium alloys.Design/methodology/approach: In this study, surface modification of Ti6Al4V titanium alloy was made at various temperatures by plasma nitriding process. Plasma nitriding treatment was performed in 80% N2-20% H2 gas mixture, for treatment times of 2-15 h at the temperatures of 700-1000°C. Surface properties of plasma nitrided Ti6Al4V alloy were examined by metallographic inspection, X-Ray diffraction and Vickers hardness.Findings: Two layers were determined by optic inspection on the samples that were called the compound and diffusion layers. Compound layer contain TiN and Ti2N nitrides, XRD results support in this formations. Maximum hardness was obtained at 10h treatment time and 1000°C treatment temperature. Micro hardness tests showed that hardness properties of the nitrided samples depend on treatment time and temperature.Practical implications: Titanium and its alloys have very attractive properties for many industries. But using of titanium and its alloys is of very low in mechanical engineering applications because of poor tribological properties.Originality/value: The nitriding of titanium alloy surfaces using plasma processes has already reached the industrial application stage in the biomedical field.

  16. Surface Intermediates on Metal Electrodes at High Temperature

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse

    1997-01-01

    The mechanisms widely suggested for the O2-reduc-tion or H2-oxidation SOFC reactions involve inter-mediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In airat moderate temperatures (500øC) Pt in contact with YSZ ...... is covered with adsorbed oxygen which vanishes at high temperature (1000øC). On Ni (YSZ) a specific layer of NiO is observed abovethe equilibrium potential while no surface species can identified at SOFC anode conditions....

  17. Determination of sea surface temperatures from microwave and IR data

    Science.gov (United States)

    Rangaswamy, S.; Grover, J.

    1982-01-01

    Microwave measurements from the Nimbus 7 SMMR were used to derive the atmospheric precipitable water, which was then used to obtain the atmospheric correction for use with AVHRR thermal IR measurements to obtain sea surface temperature (SST). The resulting SST's were compared with the NOAA operational sea surface temperature measurements, and the two sets of measurements were found to be in reasonable agreement. The average residuals between the two sets of measurements was 0.15 K with the NOAA operational SST's being slightly greater.

  18. Surface intermediates on metal electrodes at high temperatures

    DEFF Research Database (Denmark)

    Zachau-Christiansen, Birgit; Jacobsen, Torben; Bay, Lasse;

    1998-01-01

    in contact with YSZ is covered with adsorbed oxygen which vanishes at high temperature (1000 degrees C). On Ni (YSZ) a specific layer of NiO is observed above the equilibrium potential while no surface species involving hydrogen can be identified at SOFC anode conditions. (C) 1998 Published by Elsevier......The mechanisms widely conceived for the O(2)-reduction or H(2)-oxidation reactions in SOFC's involve intermediate O/H species adsorbed on the electrode surface. The presence of these intermediates is investigated by linear sweep voltammetry. In air at moderate temperatures (500 degrees C) Pt...

  19. Single and Double ITCZ in Aqua-Planet Models with Globally and Temporally Uniform Sea Surface Temperature and Solar Insolation: An Interpretation

    Science.gov (United States)

    Chao, Winston C.; Chen, Baode; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Previous studies (Chao 2000, Chao and Chen 2001, Kirtman and Schneider 2000, Sumi 1992) have shown that, by means of one of several model design changes, the structure of the ITCZ in an aqua-planet model with globally uniform SST and solar angle (U-SST-SA) can change between a single ITCZ at the equator and a double ITCZ straddling the equator. These model design changes include switching to a different cumulus parameterization scheme (e.g., from relaxed Arakawa Schubert scheme (RAS) to moist convective adjustment scheme (MCA)), changes within the cumulus parameterization scheme, and changes in other aspects of the model, such as horizontal resolution. Sometimes only one component of the double ITCZ shows up; but still this is an ITCZ away from the equator, quite distinct from a single ITCZ over the equator. Since these model results were obtained by different investigators using different models which have yielded reasonable general circulation, they are considered as reliable. Chao and Chen (2001; hereafter CC01) have made an initial attempt to interpret these findings based on the concept of rotational ITCZ attractors that they introduced. The purpose of this paper is to offer a more complete interpretation.

  20. The impact of temperature changing on surface roughness of FFF process

    Science.gov (United States)

    Chaidas, D.; Kitsakis, K.; Kechagias, J.; Maropoulos, S.

    2016-11-01

    The current study investigates the surface roughness of models produced by a 3D printer. All models were produced by addition of solid material, a process called fused filament fabrication (FFF): initial extrusion into plastic filament, second extrusion and trace-binding during the 3D printing process. A low cost 3D printer Ultimaker was used to print these items. Polylactic acid (PLA) was used as main polymer material for printing. The temperature was parameter under direct variations in order to examine if there was an influence on roughness of 3d printed models. The surface roughness parameters were: the average mean surface roughness (Ra, μm), the surface roughness depth (Rz, μm), the total height of the roughness profile (Rt, μm) and the arithmetic mean width of profile elements (Rsm, μm). The examination showed conditionality: as temperature was increased the surface roughness parameters were further decreased.

  1. Observing the Agulhas Current with sea surface temperature and altimetry data: challenges and perspectives

    CSIR Research Space (South Africa)

    Krug, Marjolaine, J

    2014-06-01

    Full Text Available -Red Sea Surface Temperature datasets still suffer from inadequate cloud masking algorithms, particularly in regions of strong temperature gradient. Despite both Sea Surface Height and Sea Surface Temperature observations being severely compromised...

  2. The Land Surface Temperature Impact to Land Cover Types

    Science.gov (United States)

    Ibrahim, I.; Abu Samah, A.; Fauzi, R.; Noor, N. M.

    2016-06-01

    Land cover type is an important signature that is usually used to understand the interaction between the ground surfaces with the local temperature. Various land cover types such as high density built up areas, vegetation, bare land and water bodies are areas where heat signature are measured using remote sensing image. The aim of this study is to analyse the impact of land surface temperature on land cover types. The objectives are 1) to analyse the mean temperature for each land cover types and 2) to analyse the relationship of temperature variation within land cover types: built up area, green area, forest, water bodies and bare land. The method used in this research was supervised classification for land cover map and mono window algorithm for land surface temperature (LST) extraction. The statistical analysis of post hoc Tukey test was used on an image captured on five available images. A pixel-based change detection was applied to the temperature and land cover images. The result of post hoc Tukey test for the images showed that these land cover types: built up-green, built up-forest, built up-water bodies have caused significant difference in the temperature variation. However, built up-bare land did not show significant impact at p<0.05. These findings show that green areas appears to have a lower temperature difference, which is between 2° to 3° Celsius compared to urban areas. The findings also show that the average temperature and the built up percentage has a moderate correlation with R2 = 0.53. The environmental implications of these interactions can provide some insights for future land use planning in the region.

  3. Modeling surface growth of Escherichia coli on agar plates.

    Science.gov (United States)

    Fujikawa, Hiroshi; Morozumi, Satoshi

    2005-12-01

    Surface growth of Escherichia coli cells on a membrane filter placed on a nutrient agar plate under various conditions was studied with a mathematical model. The surface growth of bacterial cells showed a sigmoidal curve with time on a semilogarithmic plot. To describe it, a new logistic model that we presented earlier (H. Fujikawa et al., Food Microbiol. 21:501-509, 2004) was modified. Growth curves at various constant temperatures (10 to 34 degrees C) were successfully described with the modified model (model III). Model III gave better predictions of the rate constant of growth and the lag period than a modified Gompertz model and the Baranyi model. Using the parameter values of model III at the constant temperatures, surface growth at various temperatures was successfully predicted. Surface growth curves at various initial cell numbers were also sigmoidal and converged to the same maximum cell numbers at the stationary phase. Surface growth curves at various nutrient levels were also sigmoidal. The maximum cell number and the rate of growth were lower as the nutrient level decreased. The surface growth curve was the same as that in a liquid, except for the large curvature at the deceleration period. These curves were also well described with model III. The pattern of increase in the ATP content of cells grown on a surface was sigmoidal, similar to that for cell growth. We discovered several characteristics of the surface growth of bacterial cells under various growth conditions and examined the applicability of our model to describe these growth curves.

  4. Observational evidence of temperature trends at two levels in the surface layer

    Directory of Open Access Journals (Sweden)

    X. Lin

    2015-09-01

    Full Text Available Long-term surface air temperatures at 1.5 m screen level over land are used in calculating a global average surface temperature trend. This global trend is used by the IPCC and others to monitor, assess, and describe global warming or warming hiatus. Current knowledge of near-surface temperature trends with respect to height, however, is limited and inadequately understood because surface temperature observations at different heights in the surface layer in the world are rare especially from a high-quality and long-term climate monitoring network. Here we use high-quality two-height Oklahoma Mesonet observations, synchronized in time, fixed in height, and situated in relatively flat terrain, to assess temperature trends and differentiating temperature trends with respect to heights (i.e., near-surface lapse rate trend over the period 1997 to 2013. We show that the near-surface lapse rate has significantly decreased with a trend of −0.18 ± 0.03 °C (10 m−1 decade−1 indicating that the 9 m height temperatures increased faster than temperatures at the 1.5 m screen level and conditions at the 1.5 m height cooled faster than at the 9 m height. However, neither of the two individual height temperature trends by themselves were statistically significant. The magnitude of lapse rate trend is greatest under lighter winds at night. Nighttime lapse rate trends were significantly more negative than daytime lapse rate trends and the average lapse rate trend was three times more negative under calm conditions than under windy conditions. Our results provide the first observational evidence of near-surface temperature changes with respect to height that could enhance the assessment of climate model predictions.

  5. Daytime sensible heat flux estimation over heterogeneous surfaces using multitemporal land-surface temperature observations

    Science.gov (United States)

    Castellví, F.; Cammalleri, C.; Ciraolo, G.; Maltese, A.; Rossi, F.

    2016-05-01

    Equations based on surface renewal (SR) analysis to estimate the sensible heat flux (H) require as input the mean ramp amplitude and period observed in the ramp-like pattern of the air temperature measured at high frequency. A SR-based method to estimate sensible heat flux (HSR-LST) requiring only low-frequency measurements of the air temperature, horizontal mean wind speed, and land-surface temperature as input was derived and tested under unstable conditions over a heterogeneous canopy (olive grove). HSR-LST assumes that the mean ramp amplitude can be inferred from the difference between land-surface temperature and mean air temperature through a linear relationship and that the ramp frequency is related to a wind shear scale characteristic of the canopy flow. The land-surface temperature was retrieved by integrating in situ sensing measures of thermal infrared energy emitted by the surface. The performance of HSR-LST was analyzed against flux tower measurements collected at two heights (close to and well above the canopy top). Crucial parameters involved in HSR-LST, which define the above mentioned linear relationship, were explained using the canopy height and the land surface temperature observed at sunrise and sunset. Although the olive grove can behave as either an isothermal or anisothermal surface, HSR-LST performed close to H measured using the eddy covariance and the Bowen ratio energy balance methods. Root mean square differences between HSR-LST and measured H were of about 55 W m-2. Thus, by using multitemporal thermal acquisitions, HSR-LST appears to bypass inconsistency between land surface temperature and the mean aerodynamic temperature. The one-source bulk transfer formulation for estimating H performed reliable after calibration against the eddy covariance method. After calibration, the latter performed similar to the proposed SR-LST method.

  6. New indexing and surface temperature analysis of exoplanets

    CERN Document Server

    Kashyap, J M; Safonova, M

    2016-01-01

    Study of exoplanets is the holy grail of present research in planetary sciences and astrobiology. Analysis of huge planetary data from space missions such as CoRoT and Kepler is directed ultimately at finding a planet similar to Earth\\-the Earth's twin, and answering the question of potential exo-habitability. The Earth Similarity Index (ESI) is a first step in this quest, ranging from 1 (Earth) to 0 (totally dissimilar to Earth). It was defined for the four physical parameters of a planet: radius, density, escape velocity and surface temperature. The ESI is further sub-divided into interior ESI (geometrical mean of radius and density) and surface ESI (geometrical mean of escape velocity and surface temperature). The challenge here is to determine which exoplanet parameter(s) is important in finding this similarity; how exactly the individual parameters entering the interior ESI and surface ESI are contributing to the global ESI. Since the surface temperature entering surface ESI is a non-observable quantity,...

  7. Operational and theoretical temperature considerations in a Penning surface plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Faircloth, D. C., E-mail: dan.faircloth@stfc.ac.uk; Lawrie, S. R. [ISIS Neutron and Muon Facility, STFC Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX (United Kingdom); Pereira Da Costa, H. [CERN, Geneva (Switzerland); Dudnikov, V. [Muons Inc. United States of America (United States)

    2015-04-08

    A fully detailed 3D thermal model of the ISIS Penning surface plasma source is developed in ANSYS. The proportion of discharge power applied to the anode and cathode is varied until the simulation matches the operational temperature observations. The range of possible thermal contact resistances are modelled, which gives an estimation that between 67% and 85% of the discharge power goes to the cathode. Transient models show the electrode surface temperature rise during the discharge pulse for a range of duty cycles. The implications of these measurements are discussed and a mechanism for governing cesium coverage proposed. The requirements for the design of a high current long pulse source are stated.

  8. Comparison of Four Models of Radiative Heat Transfer Between Flat Surface to Evaluate the Temperature Field Based on Example of the Continuous Casting Mould

    Directory of Open Access Journals (Sweden)

    Rywotycki M.

    2015-04-01

    Full Text Available The paper presents the results of research concerning the influence of radiative heat transfer on the strand and mould interface. The four models for determining the heat transfer boundary conditions within the primary cooling zone for the continuous casting process of steel have been presented. A cast slab - with dimensions of 1280×220 mm - has been analysed. Models describing the heat transfer by radiation have been specified and applied in the numerical calculations. The problem has been solved by applying the finite element method and the self-developed software. The simulation results, along with their analysis, have been presented. The developed models have been verified based on the data obtained from the measurements at the industrial facility.

  9. The Remote Sensing of Surface Radiative Temperature over Barbados.

    Science.gov (United States)

    remote sensing of surface radiative temperature over Barbados was undertaken using a PRT-5 attached to a light aircraft. Traverses across the centre of the island, over the rugged east coast area, and the urban area of Bridgetown were undertaken at different times of day and night in the last week of June and the first week of December, 1969. These traverses show that surface variations in long-wave radiation emission lie within plus or minus 5% of the observations over grass at a representative site. The quick response of the surface to sunset and sunrise was

  10. Temperature dependence of the bulk and surface properties of liquid Zn-Cd alloys

    Energy Technology Data Exchange (ETDEWEB)

    Awe, O.E. [University of Ibadan, Department of Physics, Ibadan (Nigeria); Azeez, A.A. [African University of Science and Technology, Abuja (Nigeria)

    2017-05-15

    The effects of temperature on the bulk and surface properties of liquid Zn-Cd alloys have been theoretically investigated, using a combination of self association model, Darken's thermodynamic equation for diffusion, empirical model for viscosity and a statistical mechanics model. The results from this study show that change in temperature resulted in cross-over effects in bulk and surface properties. We also found that with an increase in temperature, a pronounced asymmetry of viscosity isotherm is significantly reduced, and viscosity isotherm exhibited anomalous behaviour. Our results reveal that the homocoordination tendency in Zn-Cd liquid alloys is not strong and reduces with increasing temperature. The study further suggests a pronounced segregation of Cd-atoms at the surface of Zn-Cd liquid alloys and the extent of segregation reduces with temperature. We as well found that, in addition to the reported understanding that size-factor determines the compositional location of asymmetry of the viscosity isotherm, temperature is an operating parameter that has effect, not only on the composition of asymmetry, but also on the magnitude of asymmetry. In all the properties investigated, the most pronounced effect of temperature (52.9 %) is on the viscosity while the least effect (7.1 %) is on the surface tension. (orig.)

  11. Water temperature modeling in the Garonne River (France

    Directory of Open Access Journals (Sweden)

    Larnier K.

    2010-10-01

    Full Text Available Stream water temperature is one of the most important parameters for water quality and ecosystem studies. Temperature can influence many chemical and biological processes and therefore impacts on the living conditions and distribution of aquatic ecosystems. Simplified models such as statistical models can be very useful for practitioners and water resource management. The present study assessed two statistical models – an equilibrium-based model and stochastic autoregressive model with exogenous inputs – in modeling daily mean water temperatures in the Garonne River from 1988 to 2005. The equilibrium temperature-based model is an approach where net heat flux at the water surface is expressed as a simpler form than in traditional deterministic models. The stochastic autoregressive model with exogenous inputs consists of decomposing the water temperature time series into a seasonal component and a short-term component (residual component. The seasonal component was modeled by Fourier series and residuals by a second-order autoregressive process (Markov chain with use of short-term air temperatures as exogenous input. The models were calibrated using data of the first half of the period 1988–2005 and validated on the second half. Calibration of the models was done using temperatures above 20 °C only to ensure better prediction of high temperatures that are currently at stake for the aquatic conditions of the Garonne River, and particularly for freshwater migrating fishes such as Atlantic Salmon (Salmo salar L.. The results obtained for both approaches indicated that both models performed well with an average root mean square error for observed temperatures above 20 °C that varied on an annual basis from 0.55 °C to 1.72 °C on validation, and good predictions of temporal occurrences and durations of three temperature threshold crossings linked to the conditions of migration and survival of Atlantic Salmon.

  12. Enzyme surface rigidity tunes the temperature dependence of catalytic rates.

    Science.gov (United States)

    Isaksen, Geir Villy; Åqvist, Johan; Brandsdal, Bjørn Olav

    2016-07-12

    The structural origin of enzyme adaptation to low temperature, allowing efficient catalysis of chemical reactions even near the freezing point of water, remains a fundamental puzzle in biocatalysis. A remarkable universal fingerprint shared by all cold-active enzymes is a reduction of the activation enthalpy accompanied by a more negative entropy, which alleviates the exponential decrease in chemical reaction rates caused by lowering of the temperature. Herein, we explore the role of protein surface mobility in determining this enthalpy-entropy balance. The effects of modifying surface rigidity in cold- and warm-active trypsins are demonstrated here by calculation of high-precision Arrhenius plots and thermodynamic activation parameters for the peptide hydrolysis reaction, using extensive computer simulations. The protein surface flexibility is systematically varied by applying positional restraints, causing the remarkable effect of turning the cold-active trypsin into a variant with mesophilic characteristics without changing the amino acid sequence. Furthermore, we show that just restraining a key surface loop causes the same effect as a point mutation in that loop between the cold- and warm-active trypsin. Importantly, changes in the activation enthalpy-entropy balance of up to 10 kcal/mol are almost perfectly balanced at room temperature, whereas they yield significantly higher rates at low temperatures for the cold-adapted enzyme.

  13. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold

  14. Temperature limit values for touching cold surfaces with the fingertip

    NARCIS (Netherlands)

    Geng, Q.; Holme, I.; Hartog, E.A. den; Havenith, G.; Jay, O.; Malchaires, J.; Piette, A.; Rintama, H.; Rissanen, S.

    2006-01-01

    Objectives: At the request of the European Commission and in the framework of the European Machinery Directive, research was performed in five different laboratories to develop specifications for surface temperature limit values for the short-term accidental touching of the fingertip with cold surfa

  15. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  16. Quantifying and specifying the solar influence on terrestrial surface temperature

    NARCIS (Netherlands)

    de Jager, C.; Duhau, S.; van Geel, B.

    2010-01-01

    This investigation is a follow-up of a paper in which we showed that both major magnetic components of the solar dynamo, viz. the toroidal and the poloidal ones, are correlated with average terrestrial surface temperatures. Here, we quantify, improve and specify that result and search for their caus

  17. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  18. Processes of India's offshore summer intraseasonal sea surface temperature variability

    Digital Repository Service at National Institute of Oceanography (India)

    Kurian, N.; Lengaigne, M.; Gopalakrishna, V.V.; Vialard, J.; Pous, S.; Peter, A-C.; Durand; Naik, Shweta

    ., vol.63; 2013; 329-346 Processes of India’s offshore summer intraseasonal sea surface temperature variability K. Nisha1, M. Lengaigne1,2, V.V. Gopalakrishna,1 J. Vialard2, S. Pous2, A.-C. Peter2, F. Durand3, S.Naik1 1. NIO, CSIR, Goa, India 2...

  19. Surface temperature maps for II Peg during 1999-2002

    CERN Document Server

    Lindborg, M; Tuominen, I; Hackman, T; Ilyin, I; Piskunov, N

    2009-01-01

    The active RS CVn star II Peg has been spectroscopically monitored for almost 18 years with the SOFIN spectrograph at NOT, La Palma, Spain. In this paper we present five new surface temperature maps of the object for the years 1999 (two maps), 2001 (one map) and 2002 (two maps).

  20. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  1. Emissivity as a Function of Surface Roughness: A Computer Model.

    Science.gov (United States)

    1986-08-29

    dependance on surface roughness sheds some light on ship wake measurements (8] , and corrects some of the analysis of spatial sea surface temperature...variation recently reported in (6) . The wind wave spectral dependance of surface emissivity also indicates that shorter wavelengths, such as...definition, a power spectrum contains no phase dependance . Therefore, in order to create a reasonable model of the surface elevation, we assume that the

  2. Climate Variability in Coastal Ecosystems - Use of MODIS Land Surface and Sea Surface Temperature Observations

    Science.gov (United States)

    Chintalapati, S.; Lakshmi, V.

    2007-12-01

    The intertidal zone, with its complex blend of marine and terrestrial environments, is one of the intensively studied ecosystems, in understanding the effects of climate change on species abundance and distribution. As climatic conditions change, the geographic limits of the intertidal species will likely move towards more tolerable coastal conditions. Traditionally, understanding climate change effects through species physiologic response have involved use of in situ measurements and thermal engineering models. But these approaches are constrained by their data intensive requirements and may not be suitable for predicting change patterns relevant to large scale species distributions. Satellite remote sensing provides an alternate approach, given the regular global coverage at moderate spatial resolutions. The present study uses six years of land surface temperature (LST) and sea surface temperature (SST) data from MODIS/Terra instrument along various coastlines around the globe - East and West Coast US, Southern Africa, Northern Japan and New Zealand. Apart from the dominant annual cycle in LST and SST, the other seasonal cycles vary from dominant semi-annual cycles in lower latitudes to 1.5 and 2 year cycles at higher latitudes. The monthly anomalies show strong spatial structure at lower latitudes when compared to higher latitudes, with the exception of US east coast, where the spatial structure extended almost along the whole coastline, indicating strong regulation from the Gulf Stream. The patterns along different coast lines are consistent with the atmospheric and ocean circulation patterns existing at those regions. These results suggest that the climatology at the coastal regions can be adequately represented using satellite-based temperature data, thus enabling further research in understanding the effects of climate change on species abundance and distribution at larger scales.

  3. Surface Tension, Surface Stiffness, and Surface Width of the 3-dimensional Ising Model on a Cubic Lattice

    CERN Document Server

    Hasenbusch, M.; Hasenbusch, Martin; Pinn, Klaus

    1992-01-01

    We compute properties of the interface of the 3-dimensional Ising model for a wide range of temperatures and for interface extensions up to 64 by 64. The interface tension sigma is obtained by integrating the surface energy density over the inverse temperature beta. The surface stiffness coefficient kappa is determined. We also study universal quantities like xi^2 sigma and xi^2 kappa. The behavior of the interfacial width on lattices up to 512 times 512 times 27 is also investigated.

  4. Temperature maps measurements on 3D surfaces with infrared thermography

    Energy Technology Data Exchange (ETDEWEB)

    Cardone, Gennaro; Ianiro, Andrea [University of Naples Federico II, Department of Aerospace Engineering (DIAS), Naples (Italy); Ioio, Gennaro dello [University of Cambridge, BP Institute for Multiphase Flow, Cambridge, England (United Kingdom); Passaro, Andrea [Alta SpA, Ospedaletto, PI (Italy)

    2012-02-15

    The use of the infrared camera as a temperature transducer in wind tunnel applications is convenient and widespread. Nevertheless, the infrared data are available in the form of 2D images while the observed surfaces are often not planar and the reconstruction of temperature maps over them is a critical task. In this work, after recalling the principles of IR thermography, a methodology to rebuild temperature maps on the surfaces of 3D object is proposed. In particular, an optical calibration is applied to the IR camera by means of a novel target plate with control points. The proposed procedure takes also into account the directional emissivity by estimating the viewing angle. All the needed steps are described and analyzed. The advantages given by the proposed method are shown with an experiment in a hypersonic wind tunnel. (orig.)

  5. Altitude dependence of atmospheric temperature trends: Climate models versus observation

    CERN Document Server

    Douglass, D H; Singer, F

    2004-01-01

    As a consequence of greenhouse forcing, all state of the art general circulation models predict a positive temperature trend that is greater for the troposphere than the surface. This predicted positive trend increases in value with altitude until it reaches a maximum ratio with respect to the surface of as much as 1.5 to 2.0 at about 200 to 400 hPa. However, the temperature trends from several independent observational data sets show decreasing as well as mostly negative values. This disparity indicates that the three models examined here fail to account for the effects of greenhouse forcings.

  6. Temperature dependent extension of a hysteresis model

    OpenAIRE

    Sixdenier, Fabien; MESSAL, Oualid; Hilal, Alaa; Martin, Christian; Raulet, Marie-Ange

    2015-01-01

    International audience; Some soft magnetic materials (like ferrites but not only) are strongly dependent of the temperature. In order to predict their behaviour in electrical devices, engineers need hysteresis models able to take into account the temperature. This paper is an attempt to take into account the temperature in an existing model of hysteresis through its parameters. Variations of some parameters are issued from Weiss’s works and others have to be fitted numerically. Simulation res...

  7. A Surface Temperature Initiated Closure (STIC) for surface energy balance fluxes

    DEFF Research Database (Denmark)

    Mallick, Kaniska; Jarvis, Andrew J.; Boegh, Eva;

    2014-01-01

    of four state equations. Taking advantage of the psychrometric relationship between temperature and vapor pressure, the present method also estimates the near surface moisture availability (M) from TS, air temperature (TA) and relative humidity (RH), thereby being capable of decomposing λ...

  8. Semi-empirical Model for Retrieving Land Surface Temperature Based on AMSR-E Data%一种基于AMSR-E的地表温度半经验反演模型

    Institute of Scientific and Technical Information of China (English)

    陈修治; 李勇; 韩留生; 苏泳娴; 陈水森

    2013-01-01

    This paper develops a semi-empirical model for retrieving land surface temperature ( sT ) using AMSR-E data based on the passive microwave radiative transfer equation, in combination with the relation between vegetation depth and MPDI, and that between precipitable water content and land surface temperature. With this model, sT can be easily simulated from the brightness temperatures of AMSR-E 6.9GHz band and 10.7GHz band without any ancillary data. The sT mapping and validation results of China in 2009 prove that the average sT retrieval accuracy reaches about 2.51 (R℃ 2=0.79). It can be considered that the model is a simple and also effective algorithm to retrieve sT with passive microwave remote sensing data.%  基于被动微波辐射传输方程,结合De Jeu建立的透过率与微波极化差异指数的通用关系式,以及Smiths建立的地表温度与大气总可降水量的经验关系,构建了一套基于AMSR-E影像的地表温度半经验反演模型,该模型无需借助其他辅助数据,便可从AMSR-E 6.9GHz和10.7GHz两个波段的亮度温度模拟得到地表温度变量。对2009年我国地表温度进行实例模拟和验证,结果显示,该地表温度模型的平均反演精度达到2.54℃(R2=0.79),是一种简单有效的被动微波遥感地表温度模拟方法。

  9. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    Science.gov (United States)

    Al-Hamdan, M. Z.; Crosson, W. L.; Estes, M. G., Jr.; Estes, S. M.; Quattrochi, D. A.; Johnson, D.

    2013-12-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heat-related mortality data. The current HWWS do not take into account intra-urban spatial variations in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with land surface temperature (LST) estimates derived from thermal remote sensing data. In order to further improve the assessment of intra-urban variations in risk from extreme heat, we developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. We will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  10. Spatial Statistical Estimation for Massive Sea Surface Temperature Data

    Science.gov (United States)

    Marchetti, Y.; Vazquez, J.; Nguyen, H.; Braverman, A. J.

    2015-12-01

    We combine several large remotely sensed sea surface temperature (SST) datasets to create a single high-resolution SST dataset that has no missing data and provides an uncertainty associated with each value. This high resolution dataset will optimize estimates of SST in critical parts of the world's oceans, such as coastal upwelling regions. We use Spatial Statistical Data Fusion (SSDF), a statistical methodology for predicting global spatial fields by exploiting spatial correlations in the data. The main advantages of SSDF over spatial smoothing methodologies include the provision of probabilistic uncertainties, the ability to incorporate multiple datasets with varying footprints, measurement errors and biases, and estimation at any desired resolution. In order to accommodate massive input and output datasets, we introduce two modifications of the existing SSDF algorithm. First, we compute statistical model parameters based on coarse resolution aggregated data. Second, we use an adaptive spatial grid that allows us to perform estimation in a specified region of interest, but incorporate spatial dependence between locations in that region and all locations globally. Finally, we demonstrate with a case study involving estimations on the full globe at coarse resolution grid (30 km) and a high resolution (1 km) inset for the Gulf Stream region.

  11. Quality control methods for KOOS operational sea surface temperature products

    Institute of Scientific and Technical Information of China (English)

    YANG Chansu; KIM Sunhwa

    2016-01-01

    Sea surface temperature SST obtained from the initial version of the Korea Operational Oceanographic System (KOOS) SST satellite have low accuracy during summer and daytime. This is attributed to the diurnal warming effect. Error estimation of SST data must be carried out to use the real-time forecasting numerical model of the KOOS. This study suggests two quality control methods for the KOOS SST system. To minimize the diurnal warming effect, SSTs of areas where wind speed is higher than 5 m/s were used. Depending on the wind threshold value, KOOS SST data for August 2014 were reduced by 0.15°C. Errors in SST data are considered to be a combination of random, sampling, and bias errors. To estimate bias error, the standard deviation of bias between KOOS SSTs and climatology SSTs were used. KOOS SST data yielded an analysis error standard deviation value similar to OSTIA and NOAA NCDC (OISST) data. The KOOS SST shows lower random and sampling errors with increasing number of observations using six satellite datasets. In further studies, the proposed quality control methods for the KOOS SST system will be applied through more long-term case studies and comparisons with other SST systems.

  12. Downscaling MODIS Land Surface Temperature for Urban Public Health Applications

    Science.gov (United States)

    Al-Hamdan, Mohammad; Crosson, William; Estes, Maurice, Jr.; Estes, Sue; Quattrochi, Dale; Johnson, Daniel

    2013-01-01

    This study is part of a project funded by the NASA Applied Sciences Public Health Program, which focuses on Earth science applications of remote sensing data for enhancing public health decision-making. Heat related death is currently the number one weather-related killer in the United States. Mortality from these events is expected to increase as a function of climate change. This activity sought to augment current Heat Watch/Warning Systems (HWWS) with NASA remotely sensed data, and models used in conjunction with socioeconomic and heatrelated mortality data. The current HWWS do not take into account intra-urban spatial variation in risk assessment. The purpose of this effort is to evaluate a potential method to improve spatial delineation of risk from extreme heat events in urban environments by integrating sociodemographic risk factors with estimates of land surface temperature (LST) derived from thermal remote sensing data. In order to further improve the consideration of intra-urban variations in risk from extreme heat, we also developed and evaluated a number of spatial statistical techniques for downscaling the 1-km daily MODerate-resolution Imaging Spectroradiometer (MODIS) LST data to 60 m using Landsat-derived LST data, which have finer spatial but coarser temporal resolution than MODIS. In this paper, we will present these techniques, which have been demonstrated and validated for Phoenix, AZ using data from the summers of 2000-2006.

  13. Reconnoitering the effect of shallow groundwater on land surface temperature and surface energy balance using MODIS and SEBS

    Directory of Open Access Journals (Sweden)

    F. Alkhaier

    2012-07-01

    Full Text Available The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012. The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.

  14. Vegetation Placement for Summer Built Surface Temperature Moderation in an Urban Microclimate

    Science.gov (United States)

    Millward, Andrew A.; Torchia, Melissa; Laursen, Andrew E.; Rothman, Lorne D.

    2014-06-01

    Urban vegetation can mitigate increases in summer air temperature by reducing the solar gain received by buildings. To quantify the temperature-moderating influence of city trees and vine-covered buildings, a total of 13 pairs of temperature loggers were installed on the surfaces of eight buildings in downtown Toronto, Canada, for 6 months during the summer of 2008. One logger in each pair was shaded by vegetation while the other measured built surface temperature in full sunlight. We investigated the temperature-moderating benefits of solitary mature trees, clusters of trees, and perennial vines using a linear-mixed model and a multiple regression analysis of degree hour difference. We then assessed the temperature-moderating effect of leaf area, plant size and proximity to building, and plant location relative to solar path. During a period of high solar intensity, we measured an average temperature differential of 11.7 °C, with as many as 10-12 h of sustained cooler built surface temperatures. Vegetation on the west-facing aspect of built structures provided the greatest temperature moderation, with maximum benefit (peak temperature difference) occurring late in the afternoon. Large mature trees growing within 5 m of buildings showed the greatest ability to moderate built surface temperature, with those growing in clusters delivering limited additional benefit compared with isolated trees. Perennial vines proved as effective as trees at moderating rise in built surface temperature to the south and west sides of buildings, providing an attractive alternative to shade trees where soil volume and space are limited.

  15. Mesoscale climatic simulation of surface air temperature cooling by highly reflective greenhouses in SE Spain.

    Science.gov (United States)

    Campra, Pablo; Millstein, Dev

    2013-01-01

    A long-term local cooling trend in surface air temperature has been monitored at the largest concentration of reflective greenhouses in the world, at the Province of Almeria, SE Spain, associated with a dramatic increase in surface albedo in the area. The availability of reliable long-term climatic field data at this site offers a unique opportunity to test the skill of mesoscale meteorological models describing and predicting the impacts of land use change on local climate. Using the Weather Research and Forecast (WRF) mesoscale model, we have run a sensitivity experiment to simulate the impact of the observed surface albedo change on monthly and annual surface air temperatures. The model output showed a mean annual cooling of 0.25 °C associated with a 0.09 albedo increase, and a reduction of 22.8 W m(-2) of net incoming solar radiation at surface. Mean reduction of summer daily maximum temperatures was 0.49 °C, with the largest single-day decrease equal to 1.3 °C. WRF output was evaluated and compared with observations. A mean annual warm bias (MBE) of 0.42 °C was estimated. High correlation coefficients (R(2) > 0.9) were found between modeled and observed values. This study has particular interest in the assessment of the potential for urban temperature cooling by cool roofs deployment projects, as well as in the evaluation of mesoscale climatic models performance.

  16. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    Science.gov (United States)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  17. Designing high-temperature steels via surface science and thermodynamics

    Science.gov (United States)

    Gross, Cameron T.; Jiang, Zilin; Mathai, Allan; Chung, Yip-Wah

    2016-06-01

    Electricity in many countries such as the US and China is produced by burning fossil fuels in steam-turbine-driven power plants. The efficiency of these power plants can be improved by increasing the operating temperature of the steam generator. In this work, we adopted a combined surface science and computational thermodynamics approach to the design of high-temperature, corrosion-resistant steels for this application. The result is a low-carbon ferritic steel with nanosized transition metal monocarbide precipitates that are thermally stable, as verified by atom probe tomography. High-temperature Vickers hardness measurements demonstrated that these steels maintain their strength for extended periods at 700 °C. We hypothesize that the improved strength of these steels is derived from the semi-coherent interfaces of these thermally stable, nanosized precipitates exerting drag forces on impinging dislocations, thus maintaining strength at elevated temperatures.

  18. The Sensitivity of African Easterly Waves to Eastern Tropical Atlantic Sea-Surface Temperatures

    Science.gov (United States)

    Druyan, Leonard M.; Fulakeza, Matthew

    2011-01-01

    The results of two regional atmospheric model simulations are compared to assess the influence of the eastern tropical Atlantic sea-surface temperature maximum on local precipitation, transient easterly waves and the West African summer monsoon. Both model simulations were initialized with reanalysis 2 data (US National Center for Environmental Prediction and Department of Energy) on 15 May 2006 and extended through 6 October 2006, forced by synchronous reanalysis 2 lateral boundary conditions introduced four times daily. One simulation uses 2006 reanalysis 2 sea-surface temperatures, also updated four times daily, while the second simulation considers ocean forcing absent the sea-surface temperature maximum, achieved here by subtracting 3 K at every ocean grid point between 0 and 15 N during the entire simulation. The simulation with 2006 sea-surface temperature forcing produces a realistic distribution of June-September mean precipitation and realistic westward propagating swaths of maximum rainfall, based on validation against Tropical Rainfall Measuring Mission (TRMM) estimates. The simulation without the sea-surface temperature maximum produces only 57% of the control June-September total precipitation over the eastern tropical Atlantic and about 83% of the Sahel precipitation. The simulation with warmer ocean temperatures generates generally stronger circulation, which in turn enhances precipitation by increasing moisture convergence. Some local precipitation enhancement is also attributed to lower vertical thermal stability above the warm water. The study shows that the eastern tropical Atlantic sea-surface temperature maximum enhances the strength of transient easterly waves and broadens the spatial extent of associated precipitation. However, large-scale circulation and its interaction with the African continent, and not sea-surface temperatures, control the timing and trajectories of the waves.

  19. Axelrod's Model with Surface Tension

    CERN Document Server

    Pace, Bruno

    2012-01-01

    In this work we propose a subtle change in Axelrod's model for the dissemination of culture. The mechanism consists of excluding non-interacting neighbours from the set of neighbours out of which an agent is drawn for potential cultural interactions. Although the alteration proposed does not alter topologically the configuration space, it yields significant qualitative changes, specifically the emergence of surface tension, driving the system in some cases to metastable states. The transient behaviour is considerably richer, and cultural regions have become stable leading to the formation of different spatio-temporal structures. A new metastable "glassy" phase emerges between the globalised phase and the polarised, multicultural phase.

  20. Surface layer temperature inversion in the Bay of Bengal

    Science.gov (United States)

    Thadathil, Pankajakshan; Gopalakrishna, V. V.; Muraleedharan, P. M.; Reddy, G. V.; Araligidad, Nilesh; Shenoy, Shrikant

    2002-10-01

    Surface layer temperature inversion occurring in the Bay of Bengal has been addressed. Hydrographic data archived in the Indian Oceanographic Data Center are used to understand various aspects of the temperature inversion of surface layer in the Bay of Bengal, such as occurrence time, characteristics, stability, inter-annual variability and generating mechanisms. Spatially organized temperature inversion occurs in the coastal waters of the western and northeastern Bay during winter (November-February). Although the inversion in the northeastern Bay is sustained until February (with remnants seen even in March), in the western Bay it becomes less organized in January and almost disappears by February. Inversion is confined to the fresh water induced seasonal halocline of the surface layer. Inversions of large temperature difference (of the order of 1.6-2.4°C) and thin layer thickness (10-20 m) are located adjacent to major fresh water inputs from the Ganges, Brahmaputra, Irrawaddy, Krishna and Godavari rivers. The inversion is stable with a mean stability of 3600×10 -8 m -1. Inter-annual variability of the inversion is significantly high and it is caused by the inter-annual variability of fresh water flux and surface cooling in the northern Bay. Fresh water flux leads the occurrence process in association with surface heat flux and advection. The leading role of fresh water flux is understood from the observation that the two occurrence regions of inversion (the western and northeastern Bay) have proximity to the two low salinity (with values about 28-29‰) zones. In the western Bay, the East India Coastal Current brings less saline and cold water from the head of the Bay to the south-west Bay, where it advects over warm, saline water, promoting temperature inversion in this region in association with the surface heat loss. For inversion occurring in the northeastern Bay (where the surface water gains heat from atmosphere), surface advection of the less saline

  1. Effect of Flux Adjustments on Temperature Variability in Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Duffy, P.; Bell, J.; Covey, C.; Sloan, L.

    1999-12-27

    It has been suggested that ''flux adjustments'' in climate models suppress simulated temperature variability. If true, this might invalidate the conclusion that at least some of observed temperature increases since 1860 are anthropogenic, since this conclusion is based in part on estimates of natural temperature variability derived from flux-adjusted models. We assess variability of surface air temperatures in 17 simulations of internal temperature variability submitted to the Coupled Model Intercomparison Project. By comparing variability in flux-adjusted vs. non-flux adjusted simulations, we find no evidence that flux adjustments suppress temperature variability in climate models; other, largely unknown, factors are much more important in determining simulated temperature variability. Therefore the conclusion that at least some of observed temperature increases are anthropogenic cannot be questioned on the grounds that it is based in part on results of flux-adjusted models. Also, reducing or eliminating flux adjustments would probably do little to improve simulations of temperature variability.

  2. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-11-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions prevail during spring in the Arctic, while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveals that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measurements complicate the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic, the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  3. Arctic surface temperatures from Metop AVHRR compared to in situ ocean and land data

    Directory of Open Access Journals (Sweden)

    G. Dybkjær

    2012-03-01

    Full Text Available The ice surface temperature (IST is an important boundary condition for both atmospheric and ocean and sea ice models and for coupled systems. An operational ice surface temperature product using satellite Metop AVHRR infra-red data was developed for MyOcean. The IST can be mapped in clear sky regions using a split window algorithm specially tuned for sea ice. Clear sky conditions are prevailing during spring in the Arctic while persistent cloud cover limits data coverage during summer. The cloud covered regions are detected using the EUMETSAT cloud mask. The Metop IST compares to 2 m temperature at the Greenland ice cap Summit within STD error of 3.14 °C and to Arctic drifting buoy temperature data within STD error of 3.69 °C. A case study reveal that the in situ radiometer data versus satellite IST STD error can be much lower (0.73 °C and that the different in situ measures complicates the validation. Differences and variability between Metop IST and in situ data are analysed and discussed. An inter-comparison of Metop IST, numerical weather prediction temperatures and in situ observation indicates large biases between the different quantities. Because of the scarcity of conventional surface temperature or surface air temperature data in the Arctic the satellite IST data with its relatively good coverage can potentially add valuable information to model analysis for the Arctic atmosphere.

  4. Surface emissivity and temperature retrieval for a hyperspectral sensor

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.

    1998-12-01

    With the growing use of hyper-spectral imagers, e.g., AVIRIS in the visible and short-wave infrared there is hope of using such instruments in the mid-wave and thermal IR (TIR) some day. The author believes that this will enable him to get around using the present temperature-emissivity separation algorithms using methods which take advantage of the many channels available in hyper-spectral imagers. A simple fact used in coming up with a novel algorithm is that a typical surface emissivity spectrum are rather smooth compared to spectral features introduced by the atmosphere. Thus, a iterative solution technique can be devised which retrieves emissivity spectra based on spectral smoothness. To make the emissivities realistic, atmospheric parameters are varied using approximations, look-up tables derived from a radiative transfer code and spectral libraries. One such iterative algorithm solves the radiative transfer equation for the radiance at the sensor for the unknown emissivity and uses the blackbody temperature computed in an atmospheric window to get a guess for the unknown surface temperature. By varying the surface temperature over a small range a series of emissivity spectra are calculated. The one with the smoothest characteristic is chosen. The algorithm was tested on synthetic data using MODTRAN and the Salisbury emissivity database.

  5. Sea-surface temperature and salinity mapping from remote microwave radiometric measurements of brightness temperature

    Science.gov (United States)

    Hans-Juergen, C. B.; Kendall, B. M.; Fedors, J. C.

    1977-01-01

    A technique to measure remotely sea surface temperature and salinity was demonstrated with a dual frequency microwave radiometer system. Accuracies in temperature of 1 C and in salinity of part thousand for salinity greater than 5 parts per thousand were attained after correcting for the influence of extraterrestrial background radiation, atmospheric radiation and attenuation, sea-surface roughness, and antenna beamwidth. The radiometers, operating at 1.43 and 2.65 GHz, comprise a third-generation system using null balancing and feedback noise injection. Flight measurements from an aircraft at an altitude of 1.4 km over the lower Chesapeake Bay and coastal areas of the Atlantic Ocean resulted in contour maps of sea-surface temperature and salinity with a spatial resolution of 0.5 km.

  6. Modeling heterogeneous chemical processes on aerosol surface

    Institute of Scientific and Technical Information of China (English)

    Junjun Deng; Tijian Wang; Li Liu; Fei Jiang

    2010-01-01

    To explore the possible impact of heterogeneous chemical processes on atmospheric trace components,a coupled box model including gas-phase chemical processes,aerosol thermodynamic equilibrium processes,and heterogeneous chemical processes on the surface of dust,black carbon(BC)and sea salt is set up to simulate the effects of heterogeneous chemistry on the aerosol surface,and analyze the primary factors affecting the heterogeneous processes.Results indicate that heterogeneous chemical processes on the aerosol surface in the atmosphere will affect the concentrations of trace gases such as H2O2,HO2,O3,NO2,NO3,HNO3 and SO2,and aerosols such as SO42-,NO3-and NH4+.Sensitivity tests suggest that the magnitude of the impact of heterogeneous processes strongly depends on aerosol concentration and the surface uptake coefficients used in the box model.However,the impact of temperature on heterogeneous chemical processes is considerably less.The"renoxification"of HNO3 will affect the components of the troposphere such as nitrogen oxide and ozone.

  7. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Levy, Yoann, E-mail: levy@fzu.cz [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Derrien, Thibault J.-Y. [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); Bulgakova, Nadezhda M. [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic); S.S. Kutateladze Institute of Thermophysics SB RAS, 1 Lavrentyev ave., 630090 Novosibirsk (Russian Federation); Gurevich, Evgeny L. [Chair of Applied Laser Technologies, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum (Germany); Mocek, Tomáš [HiLASE Centre, Institute of Physics CAS, Za Radnicí 828, 25241 Dolní Břežany (Czech Republic)

    2016-06-30

    Highlights: • The surface temperature dynamics in Ti and Si is studied upon fs laser irradiation. • To model conditions of LIPSS formation, the laser energy coupling is modulated. • Temperature modulation survives more than 10 ps in Ti and more than 50 ps in Si. • Under certain conditions, periodic nano-melting develops along the surface. - Abstract: Formation of laser-induced periodic surface structures (LIPSS) is a complicated phenomenon which involves periodic spatial modulation of laser energy absorption on the irradiated surface, transient changes in optical response, surface layer melting and/or ablation. The listed processes strongly depend on laser fluence and pulse duration as well as on material properties. This paper is aimed at studying the spatiotemporal evolution of a periodic modulation of the deposited laser energy, once formed upon irradiation of metal (Ti) and semiconductor (Si) surfaces. Assuming that the incoming laser pulse interferes with a surface electromagnetic wave, the resulting sinusoidal modulation of the absorbed laser energy is introduced into a two-dimensional two-temperature model developed for titanium and silicon. Simulations reveal that the lattice temperature modulation on the surfaces of both materials following from the modulated absorption remains significant for longer than 50 ps after the laser pulse. In the cases considered here, the partially molten phase exists 10 ps in Ti and more than 50 ps in Si, suggesting that molten matter can be subjected to temperature-driven relocation toward LIPSS formation, due to the modulated temperature profile on the material surfaces. Molten phase at nanometric distances (nano-melting) is also revealed.

  8. Ultraviolet surface plasmon-mediated low temperature hydrazine decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Siying; Sheldon, Matthew T.; Atwater, Harry A. [Thomas J. Watson Laboratories of Applied Physics, California Institute of Technology, Pasadena, California 91125 (United States); Liu, Wei-Guang; Jaramillo-Botero, Andres; Goddard, William Andrew [Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125 (United States)

    2015-01-12

    Conventional methods require elevated temperatures in order to dissociate high-energy nitrogen bonds in precursor molecules such as ammonia or hydrazine used for nitride film growth. We report enhanced photodissociation of surface-absorbed hydrazine (N{sub 2}H{sub 4}) molecules at low temperature by using ultraviolet surface plasmons to concentrate the exciting radiation. Plasmonic nanostructured aluminum substrates were designed to provide resonant near field concentration at λ = 248 nm (5 eV), corresponding to the maximum optical cross section for hydrogen abstraction from N{sub 2}H{sub 4}. We employed nanoimprint lithography to fabricate 1 mm × 1 mm arrays of the resonant plasmonic structures, and ultraviolet reflectance spectroscopy confirmed resonant extinction at 248 nm. Hydrazine was cryogenically adsorbed to the plasmonic substrate in a low-pressure ambient, and 5 eV surface plasmons were resonantly excited using a pulsed KrF laser. Mass spectrometry was used to characterize the photodissociation products and indicated a 6.2× overall enhancement in photodissociation yield for hydrazine adsorbed on plasmonic substrates compared with control substrates. The ultraviolet surface plasmon enhanced photodissociation demonstrated here may provide a valuable method to generate reactive precursors for deposition of nitride thin film materials at low temperatures.

  9. Prediction of daily sea surface temperature using efficient neural networks

    Science.gov (United States)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-04-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  10. Prediction of daily sea surface temperature using efficient neural networks

    Science.gov (United States)

    Patil, Kalpesh; Deo, Makaranad Chintamani

    2017-02-01

    Short-term prediction of sea surface temperature (SST) is commonly achieved through numerical models. Numerical approaches are more suitable for use over a large spatial domain than in a specific site because of the difficulties involved in resolving various physical sub-processes at local levels. Therefore, for a given location, a data-driven approach such as neural networks may provide a better alternative. The application of neural networks, however, needs a large experimentation in their architecture, training methods, and formation of appropriate input-output pairs. A network trained in this manner can provide more attractive results if the advances in network architecture are additionally considered. With this in mind, we propose the use of wavelet neural networks (WNNs) for prediction of daily SST values. The prediction of daily SST values was carried out using WNN over 5 days into the future at six different locations in the Indian Ocean. First, the accuracy of site-specific SST values predicted by a numerical model, ROMS, was assessed against the in situ records. The result pointed out the necessity for alternative approaches. First, traditional networks were tried and after noticing their poor performance, WNN was used. This approach produced attractive forecasts when judged through various error statistics. When all locations were viewed together, the mean absolute error was within 0.18 to 0.32 °C for a 5-day-ahead forecast. The WNN approach was thus found to add value to the numerical method of SST prediction when location-specific information is desired.

  11. Evaluation and Monitoring of Jpss Land Surface Temperature Data

    Science.gov (United States)

    Yu, Y.; Yu, P.; Liu, Y.; Csiszar, I. A.

    2016-12-01

    Land Surface Temperature (LST) is one of environmental data records (EDRs) produced operationally through the U.S. Joint Polar Satellite System (JPSS) mission. LST is an important parameter for understanding climate change, modeling the hydrological and biogeochemical cycles, and is a prime candidate for Numerical Weather Prediction (NWP) assimilation models. Recently, the international LST and Emissivity Working Ggroup (ILSTE-WG) is promoting to the inclusion of the LST as essential climate variable (ECV) in the Global Climate Observation System (GCOS) of the Word Meteorological Organization (WMO). At the Center for Satellite Applications and Research (STAR) of National Atmospheric and Oceanic Administration (NOAA), we, are as a science team, are responsible to for the science of JPSS LST production. In this work, we present our activities and accomplishments on the JPSS LST evaluation and monitoring since the launch of the first JPSS satellite, i.e. S-NPP, satellite. Beta version, provisional version, and validated stage 1 version of the S-NPP LST products which were announced in May 2013, July 2014, and March 2015, respectively. Evaluation of the LST products have been performed versus ground measurements and other polar-orbiting satellite LST data (e,g. MODIS LSTs); some results will be illustrated. A daily monitoring system of the JPSS LST production has been developed, which presents daily, weekly and monthly global LST maps and inter-comparison results on the STAR JPSS program website. Further, evaluation of the enterprise LST algorithm for JPSS mission which is in development at STAR currently are presented in this work. Finally, evaluation and monitoring plan of the LST production for the JPSS-1 satellite are also presented.

  12. Numerical modeling of temperature distributions within the neonatal head.

    Science.gov (United States)

    Van Leeuwen, G M; Hand, J W; Lagendijk, J J; Azzopardi, D V; Edwards, A D

    2000-09-01

    Introduction of hypothermia therapy as a neuroprotection therapy after hypoxia-ischemia in newborn infants requires appraisal of cooling methods. In this numerical study thermal simulations were performed to test the hypothesis that cooling of the surface of the cranium by the application of a cooling bonnet significantly reduces deep brain temperature and produces a temperature differential between the deep brain and the body core. A realistic three-dimensional (3-D) computer model of infant head anatomy was used, derived from magnetic resonance data from a newborn infant. Temperature distributions were calculated using the Pennes heatsink model. The cooling bonnet was at a constant temperature of 10 degrees C. When modeling head cooling only, a constant body core temperature of 37 degrees C was imposed. The computed result showed no significant cooling of the deep brain regions, only the very superficial regions of the brain are cooled to temperatures of 33-34 degrees C. Poor efficacy of head cooling was still found after a considerable increase in the modeled thermal conductivities of the skin and skull, or after a decrease in perfusion. The results for the heatsink thermal model of the infant head were confirmed by comparison of results computed for a scaled down adult head, using both the heatsink description and a discrete vessel thermal model with both anatomy and vasculature obtained from MR data. The results indicate that significant reduction in brain temperature will only be achieved if the infant's core temperature is lowered.

  13. Piglets’ Surface Temperature Change at Different Weights at Birth

    Science.gov (United States)

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  14. Piglets' surface temperature change at different weights at birth.

    Science.gov (United States)

    Caldara, Fabiana Ribeiro; Dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva Dos Santos, Rita

    2014-03-01

    The study was carried out in order to verify the effects of piglets' weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets' surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (-0.824 and -0.815) with STB and after 15 min from birth. The piglet's surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  15. Piglets’ Surface Temperature Change at Different Weights at Birth

    Directory of Open Access Journals (Sweden)

    Fabiana Ribeiro Caldara

    2014-03-01

    Full Text Available The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW: T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS. Images of piglets’ surface by thermal imaging camera were recorded at birth (STB and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815 with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight.

  16. Sensitivity of surface air temperature change to land use/cover types in China

    Institute of Scientific and Technical Information of China (English)

    YANG XuChao; ZHANG YiLi; LIU LinShan; ZHANG Wei; DING MingJun; WANG ZhaoFeng

    2009-01-01

    Using CRU high resolution grid observational temperature and ERA40 reanalysie surface air temperature data during 1960--1999, we investigated the sensitivity of surface air temperature change to land use/cover types in China by subtracting the reanalysis from the observed surface air temperature (observation minus reanalysis, OMR). The results show that there is a stable and systemic impact of land use/cover types on surface air temperature. The surface warming of each land use/cover type reacted differently to global warming. The OMR trends of unused land (≥0.17℃/decade), mainly comprised by sandy land, Gobi and bare rock gravel land, are obviously larger than those of the other land use/cover types. The OMR over grassland, farmland and construction land shows a moderate decadal a significant warming trend (0.06"C/decade). The overall assessment indicates that the surface warming is larger for areas that are barren and anthropogenically developed. The better the vegetation cover, the smaller the OMR warming trend. Responses of surface air temperature to land use/cover types with similar physical and chemical properties and biological processes have no significant difference. The surface air temperature would not react significantly until the intensity of land cover changes reach a certain degree. Within the same land use/cover type, areas in eastern China with intensive human activities exhibit larger warming trend. The results provide observational evidence for modeling research on the impact of land use/cover change on regional climate. Thus, projecting further surface climate of China in regional scale should not only take greenhouse gas increase into account, but also consider the impact of land use/cover types and land cover change.

  17. Sensitivity of surface air temperature change to land use/cover types in China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using CRU high resolution grid observational temperature and ERA40 reanalysis surface air temperature data during 1960-1999, we investigated the sensitivity of surface air temperature change to land use/cover types in China by subtracting the reanalysis from the observed surface air temperature (observation minus reanalysis, OMR). The results show that there is a stable and systemic impact of land use/cover types on surface air temperature. The surface warming of each land use/cover type reacted differently to global warming. The OMR trends of unused land (≥0.17℃/decade), mainly comprised by sandy land, Gobi and bare rock gravel land, are obviously larger than those of the other land use/cover types. The OMR over grassland, farmland and construction land shows a moderate decadal warming about 0.12℃ /decade, 0.10℃/decade, 0.12 ℃ /decade, respectively. Woodland areas do not show a significant warming trend (0.06 ℃ /decade). The overall assessment indicates that the surface warming is larger for areas that are barren and anthropogenically developed. The better the vegetation cover, the smaller the OMR warming trend. Responses of surface air temperature to land use/cover types with similar physical and chemical properties and biological processes have no significant difference. The surface air temperature would not react significantly until the intensity of land cover changes reach a certain degree. Within the same land use/cover type, areas in eastern China with intensive human activities exhibit larger warming trend. The results provide observational evidence for modeling research on the impact of land use/cover change on regional climate. Thus, projecting further surface climate of China in regional scale should not only take greenhouse gas increase into account, but also consider the impact of land use/cover types and land cover change.

  18. 高速公路路面温度极值预报模型研究%Study on the numerical prediction model of extreme temperature on speedway-surface

    Institute of Scientific and Technical Information of China (English)

    朱承瑛; 谢志清; 严明良; 景元书

    2009-01-01

    By using road energy balance method, considering the balance among solar short-wave radiation, atmospheric and ground long-wave radiations, latent heat fluxes and sensible heat fluxes, a forecasting model for speedway-surface temperature is established. The per-minute observation data of Meicun station and Xianrenshan station on Hu-Ning speedway from July 8,2006 to December 31, 2006 have been used in the validation of the model, results show that the mean absolute error of the model is 1.32 ℃, the frequency of the forecasting error between -3 ℃ and 3 ℃ is 85.23%, and the forecasting error is between -1 ℃ and 0 ℃ when the speedway-surface temperature is below 0 ℃ in winter, which proves that the model is useful in the prediction of slippery speedway in winter.%应用地表热量平衡方程,在太阳短波辐射、大气和地面长波辐射、感热和潜热等参数化方案的基础上,提出一种用于预报高速公路路面温度极值的数值模型.并利用沪宁高速公路梅村站和仙人山站2006年7月8日-12月31日的逐分钟的各要素实测数据对模型的有效性进行验证,结果表明:模型的平均绝对误差为1.32 ℃,预报误差在±3 ℃以内的频率高达85.23%,且对冬季路面温度低于0 ℃时的预报误差基本在-1~0 ℃,可以运用于冬季高速公路路面溜滑的实际预报中.

  19. Spatial-temporal analysis of building surface temperatures in Hung Hom

    Science.gov (United States)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  20. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Introduction Waterborne pathogens that cause diarrhoea, such as Cryptosporidium, pose a health risk all over the world. In many regions quantitative information on pathogens in surface water is unavailable. Our main objective is to model Cryptosporidium concentrations in surface waters worldwide. We present the GloWPa-Crypto model and use the model in a scenario analysis. A first exploration of global Cryptosporidium emissions to surface waters has been published by Hofstra et al. (2013). Further work has focused on modelling emissions of Cryptosporidium and Rotavirus to surface waters from human sources (Vermeulen et al 2015, Kiulia et al 2015). A global waterborne pathogen model can provide valuable insights by (1) providing quantitative information on pathogen levels in data-sparse regions, (2) identifying pathogen hotspots, (3) enabling future projections under global change scenarios and (4) supporting decision making. Material and Methods GloWPa-Crypto runs on a monthly time step and represents conditions for approximately the year 2010. The spatial resolution is a 0.5 x 0.5 degree latitude x longitude grid for the world. We use livestock maps (http://livestock.geo-wiki.org/) combined with literature estimates to calculate spatially explicit livestock Cryptosporidium emissions. For human Cryptosporidium emissions, we use UN population estimates, the WHO/UNICEF JMP sanitation country data and literature estimates of wastewater treatment. We combine our emissions model with a river routing model and data from the VIC hydrological model (http://vic.readthedocs.org/en/master/) to calculate concentrations in surface water. Cryptosporidium survival during transport depends on UV radiation and water temperature. We explore pathogen emissions and concentrations in 2050 with the new Shared Socio-economic Pathways (SSPs) 1 and 3. These scenarios describe plausible future trends in demographics, economic development and the degree of global integration. Results and

  1. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    Science.gov (United States)

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  2. Biological control of surface temperature in the Arabian Sea

    Science.gov (United States)

    Sathyendranath, Shubha; Gouveia, Albert D.; Shetye, Satish R.; Ravindran, P.; Platt, Trevor

    1991-01-01

    In the Arabian Sea, the southwest monsoon promotes seasonal upwelling of deep water, which supplies nutrients to the surface layer and leads to a marked increase in phytoplankton growth. Remotely sensed data on ocean color are used here to show that the resulting distribution of phytoplankton exerts a controlling influence on the seasonal evolution of sea surface temperature. This results in a corresponding modification of ocean-atmosphere heat exchange on regional and seasonal scales. It is shown that this biological mechanism may provide an important regulating influence on ocean-atmosphere interactions.

  3. Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates

    CERN Document Server

    Merlis, Timothy M

    2010-01-01

    Variations in zonal surface temperature gradients and zonally asymmetric tropical overturning circulations (Walker circulations) are examined over a wide range of climates simulated with an idealized atmospheric general circulation model (GCM). The asymmetry in the tropical climate is generated by an imposed ocean energy flux, which does not vary with climate. The range of climates is simulated by modifying the optical thickness of an idealized longwave absorber (representing greenhouse gases). The zonal surface temperature gradient in low latitudes generally decreases as the climate warms in the idealized GCM simulations. A scaling relationship based on a two-term balance in the surface energy budget accounts for the changes in the zonally asymmetric component of the GCM-simulated surface temperature gradients. As in comprehensive simulations of climate change, the Walker circulation weakens as the climate warms in the idealized simulations. The wide range of climates allows a systematic test of energetic ar...

  4. Mechanisms of femtosecond LIPSS formation induced by periodic surface temperature modulation

    Science.gov (United States)

    Gurevich, Evgeny L.

    2016-06-01

    Here we analyze the formation of laser-induced periodic surface structures (LIPSS) on metal surfaces upon single femtosecond laser pulses. Most of the existing models of the femtosecond LIPSS formation discuss only the appearance of a periodic modulation of the electron and ion temperatures. However the mechanism how the inhomogeneous surface temperature distribution induces the periodically-modulated surface profile under the conditions corresponding to ultrashort-pulse laser ablation is still not clear. Estimations made on the basis of different hydrodynamic instabilities allow to sort out mechanisms, which can bridge the gap between the temperature modulation and the LIPSS. The proposed theory shows that the periodic structures can be generated by single ultrashort laser pulses due to ablative instabilities. The Marangoni and Rayleigh-Bénard convection on the contrary cannot cause the LIPSS formation.

  5. Temperature measurements on solid surfaces in rack-storage fires using IR thermography

    Science.gov (United States)

    de Vries, J.; Ren, N.; Chaos, M.

    2015-05-01

    The development of fire modeling tools capable of predicting large-scale fire phenomena is of great value to the fire science community. To this end, FM Global has developed an open-source CFD fire simulation code, FireFOAM. The accuracy of this code relies fundamentally on high-quality experimental validation data. However, at larger scales, detailed measurements of local quantities (e.g., surface temperatures) needed for model validation are difficult to obtain. Often, the information obtained from large-scale fire tests is limited to the global heat release rates (HRR) or point temperature or heat flux measurements from embedded thermocouples or heat flux gauges, respectively. The present study addresses this limitation by introducing IR thermographic measurements in a three- and a five-tier-high rack storage scenario. IR temperatures are compared against modeled results. The tested and modeled cases represent realistic industrial warehouse fire scenarios. The rack-stored commodity consisted of corrugated paperboard boxes wrapped around a steel cubic liners, placed on top of a hardwood pallet. The global heat release rate was measured using a 20- MW fire products collector located inside FM Global's Fire Technology Laboratory. An in-house calibrated microbolometer IR camera was used to obtain two-dimensional temperature measurements on the fuel surfaces and on the surfaces inside the flue spaces. Maximum temperatures up to 1200 K were observed on the external surfaces of the test array. Inside the flue spaces between pallet loads, temperatures up to 1400 K were measured. The modeled fire spread results match well fire spread shown in the IR thermographic images. The peak modeled surface temperatures obtained inside some of the horizontal flue spaces were ~1400K, which agreed well with the peak temperatures seen by the IR camera. The effect of the flames present between the surfaces of interest and the IR camera only contribute to about 50 K increase in measured

  6. A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature

    Directory of Open Access Journals (Sweden)

    Yongmin Yang

    2017-01-01

    Full Text Available The partitioning of available energy between sensible heat and latent heat is important for precise water resources planning and management in the context of global climate change. Land surface temperature (LST is a key variable in energy balance process and remotely sensed LST is widely used for estimating surface heat fluxes at regional scale. However, the inequality between LST and aerodynamic surface temperature (Taero poses a great challenge for regional heat fluxes estimation in one-source energy balance models. To address this issue, we proposed a One-Source Model for Land (OSML to estimate regional surface heat fluxes without requirements for empirical extra resistance, roughness parameterization and wind velocity. The proposed OSML employs both conceptual VFC/LST trapezoid model and the electrical analog formula of sensible heat flux (H to analytically estimate the radiometric-convective resistance (rae via a quartic equation. To evaluate the performance of OSML, the model was applied to the Soil Moisture-Atmosphere Coupling Experiment (SMACEX in United States and the Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE in China, using remotely sensed retrievals as auxiliary data sets at regional scale. Validated against tower-based surface fluxes observations, the root mean square deviation (RMSD of H and latent heat flux (LE from OSML are 34.5 W/m2 and 46.5 W/m2 at SMACEX site and 50.1 W/m2 and 67.0 W/m2 at MUSOEXE site. The performance of OSML is very comparable to other published studies. In addition, the proposed OSML model demonstrates similar skills of predicting surface heat fluxes in comparison to SEBS (Surface Energy Balance System. Since OSML does not require specification of aerodynamic surface characteristics, roughness parameterization and meteorological conditions with high spatial variation such as wind speed, this proposed method shows high potential for routinely acquisition of latent heat flux estimation

  7. BMA Probabilistic Forecasting for the 24-h TIGGE Multi-model Ensemble Forecasts of Surface Air Temperature%基于TIGGE多模式集合的24小时气温BMA概率预报

    Institute of Scientific and Technical Information of China (English)

    刘建国; 谢正辉; 赵琳娜; 贾炳浩

    2013-01-01

    利用TIGGE (THORPEX Interactive Grand Global Ensemble)单中心集合预报系统(ECMWF、United Kingdom Meteorological Office、China Meteorological Administration和NCEP)以及由此所构成的多中心模式超级集合预报系统24小时地面日均气温预报,结合淮河流域地面观测率定贝叶斯模型平均(Bayesian model averaging,BMA)参数,从而建立地面日均气温BMA概率预报模型.由此针对淮河流域进行地面日均气温BMA概率预报及其检验与评估,结果表明BMA模型比原始集合预报效果好;单中心的BMA概率预报都有较好的预报效果,其中ECMWF最好.多中心模式超级集合比单中心BMA概率预报效果更好,采用可替换原则比普通的多中心模式超级集合BMA模型计算量小,且在上述BMA集合预报系统中效果最好.它与原始集合预报相比其平均绝对误差减少近7%,其连续等级概率评分提高近10%.基于采用可替换原则的多中心模式超级集合BMA概率预报,针对研究区域提出了极端高温预警方案,这对防范高温天气有着重要意义.%Bayesian model averaging (BMA) probability forecast models were established through calibration of their parameters using 24-h ensemble forecasts of average daily surface air temperature provided by single-center ensemble prediction systems (EPSs) from the following agencies: the European Centre for Medium-Range Weather Forecasts (ECMWF), the United Kingdom Meteorological Office (UKMO), the China Meteorological Administration (CMA), and the United States National Center for Environmental Prediction (NCEP) and its multi-center model grand-ensemble (GE) EPSs in the THORPEX Interactive Grand Global Ensemble (TIGGE), and observations in the Huaihe basin. The BMA probability forecasts of average daily surface air temperature for different EPSs were assessed by comparison with observations in the Huaihe basin. The results suggest that performance was better in the BMA predictive models than

  8. Surface morphology evolution of Si(110) by ion sputtering as a function of sample temperature

    Institute of Scientific and Technical Information of China (English)

    Qi Le-Jun; Ling Li; Li Wei-Qing; Yang Xin-Ju; Gu Chang-Xin; Lu Ming

    2005-01-01

    Si(110) surface morphology evolution under normal-incident Ar+ ion sputtering has been studied as a function of Si temperature with the ion energy of 1.5keV and the ion flux 20μA/cm2. During temperature rising from room temperature to 800℃, Si(110) surface morphology changes from a dim dot/hole pattern to a distinct dot one, meanwhile the surface roughness increases steadily. The usually-accepted Bradley-Harper model fails to explain these data. By taking into account the Ehrlich-Schwoebel effect in the nanostructuring process, a simulation work was conducted based on a continuum dynamic model, which reproduces the experimental results.

  9. Calibration plan for the sea and land surface temperature radiometer

    Science.gov (United States)

    Smith, David L.; Nightingale, Tim J.; Mortimer, Hugh; Middleton, Kevin; Edeson, Ruben; Cox, Caroline V.; Mutlow, Chris T.; Maddison, Brian J.

    2013-10-01

    The Sea and Land Surface Temperature Radiometer (SLSTR) to be flown on ESA's Sentinel-3 mission is a multichannel scanning radiometer that will continue the 21-year datasets of the Along Track Scanning Radiometer (ATSR) series. As its name implies, measurements from SLSTR will be used to retrieve global sea surface temperatures to an uncertainty of SLSTR instrument, infrared calibration sources and alignment equipment. The calibration rig has been commissioned and results of these tests will be presented. Finally the authors will present the planning for the on-orbit monitoring and calibration activities to ensure that calibration is maintained. These activities include vicarious calibration techniques that have been developed through previous missions, and the deployment of ship-borne radiometers.

  10. Analysis of multi-band pyrometry for emissivity and temperature measurements of gray surfaces at ambient temperature

    Science.gov (United States)

    Araújo, António

    2016-05-01

    A multi-band pyrometry model is developed to evaluate the potential of measuring temperature and emissivity of assumably gray target surfaces at 300 K. Twelve wavelength bands between 2 and 60 μm are selected to define the spectral characteristics of the pyrometers. The pyrometers are surrounded by an enclosure with known background temperature. Multi-band pyrometry modeling results in an overdetermined system of equations, in which the solution for temperature and emissivity is obtained through an optimization procedure that minimizes the sum of the squared residuals of each system equation. The Monte Carlo technique is applied to estimate the uncertainties of temperature and emissivity, resulting from the propagation of the uncertainties of the pyrometers. Maximum reduction in temperature uncertainty is obtained from dual-band to tri-band systems, a small reduction is obtained from tri-band to quad-band, with a negligible reduction above quad-band systems (a reduction between 6.5% and 12.9% is obtained from dual-band to quad-band systems). However, increasing the number of bands does not always reduce uncertainty, and uncertainty reduction depends on the specific band arrangement, indicating the importance of choosing the most appropriate multi-band spectral arrangement if uncertainty is to be reduced. A reduction in emissivity uncertainty is achieved when the number of spectral bands is increased (a reduction between 6.3% and 12.1% is obtained from dual-band to penta-band systems). Besides, emissivity uncertainty increases for pyrometers with high wavelength spectral arrangements. Temperature and emissivity uncertainties are strongly dependent on the difference between target and background temperatures: uncertainties are low when the background temperature is far from the target temperature, tending to very high values as the background temperature approaches the target temperature.

  11. A surface acoustic wave ICP sensor with good temperature stability.

    Science.gov (United States)

    Zhang, Bing; Hu, Hong; Ye, Aipeng; Zhang, Peng

    2017-07-20

    Intracranial pressure (ICP) monitoring is very important for assessing and monitoring hydrocephalus, head trauma and hypertension patients, which could lead to elevated ICP or even devastating neurological damage. The mortality rate due to these diseases could be reduced through ICP monitoring, because precautions can be taken against the brain damage. This paper presents a surface acoustic wave (SAW) pressure sensor to realize ICP monitoring, which is capable of wireless and passive transmission with antenna attached. In order to improve the temperature stability of the sensor, two methods were adopted. First, the ST cut quartz was chosen as the sensor substrate due to its good temperature stability. Then, a differential temperature compensation method was proposed to reduce the effects of temperature. Two resonators were designed based on coupling of mode (COM) theory and the prototype was fabricated and verified using a system established for testing pressure and temperature. The experiment result shows that the sensor has a linearity of 2.63% and hysteresis of 1.77%. The temperature stability of the sensor has been greatly improved by using the differential compensation method, which validates the effectiveness of the proposed method.

  12. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    Science.gov (United States)

    Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.

    2016-01-01

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature Tv, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that Tv has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  13. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Mráz, S.; Schneider, J. M. [Materials Chemistry, RWTH Aachen University, Kopernikusstr. 10, D-52074 Aachen (Germany); Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-01-25

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature T{sub v}, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that T{sub v} has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  14. A New Estimate of the Earth's Land Surface Temperature History

    Science.gov (United States)

    Muller, R. A.; Curry, J. A.; Groom, D.; Jacobsen, B.; Perlmutter, S.; Rohde, R. A.; Rosenfeld, A.; Wickham, C.; Wurtele, J.

    2011-12-01

    The Berkeley Earth Surface Temperature team has re-evaluated the world's atmospheric land surface temperature record using a linear least-squares method that allow the use of all the digitized records back to 1800, including short records that had been excluded by prior groups. We use the Kriging method to estimate an optimal weighting of stations to give a world average based on uniform weighting of the land surface. We have assembled a record of the available data by merging 1.6 billion temperature reports from 16 pre-existing data archives; this data base will be made available for public use. The former Global Historic Climatology Network (GHCN) monthly data base shows a sudden drop in the number of stations reporting monthly records from 1980 to the present; we avoid this drop by calculating monthly averages from the daily records. By using all the data, we reduce the effects of potential data selection bias. We make an independent estimate of the urban heat island effect by calculating the world land temperature trends based on stations chosen to be far from urban sites. We calculate the effect of poor station quality, as documented in the US by the team led by Anthony Watts by estimating the temperature trends based solely on the stations ranked good (1,2 or 1,2,3 in the NOAA ranking scheme). We avoid issues of homogenization bias by using raw data; at times when the records are discontinuous (e.g. due to station moves) we break the record into smaller segments and analyze those, rather than attempt to correct the discontinuity. We estimate the uncertainties in the final results using the jackknife procedure developed by J. Tukey. We calculate spatial uncertainties by measuring the effects of geographical exclusion on recent data that have good world coverage. The results we obtain are compared to those published by the groups at NOAA, NASA-GISS, and Hadley-CRU in the UK.

  15. Effect of floor surface temperature on blood flow and skin temperature in the foot.

    Science.gov (United States)

    Song, G-S

    2008-12-01

    A total of 16 healthy college students participated as subjects to elucidate the hypothesis that blood flow and skin temperature in foot are affected by the floor surface temperature. The floor surface temperature was controlled by varying the temperature of water (tw) flowing underneath the floor, and it ranged from tw 15 to 40 degrees C at 5 degrees C intervals. The blood flow rate was measured in the dorsal right toe, and skin temperatures were measured for 60 min at 8 points: the neck, right sca