Coupling strength versus coupling impact in nonidentical bidirectionally coupled dynamics
Laiou, Petroula; Andrzejak, Ralph G.
2017-01-01
The understanding of interacting dynamics is important for the characterization of real-world networks. In general, real-world networks are heterogeneous in the sense that each node of the network is a dynamics with different properties. For coupled nonidentical dynamics symmetric interactions are not straightforwardly defined from the coupling strength values. Thus, a challenging issue is whether we can define a symmetric interaction in this asymmetric setting. To address this problem we introduce the notion of the coupling impact. The coupling impact considers not only the coupling strength but also the energy of the individual dynamics, which is conveyed via the coupling. To illustrate this concept, we follow a data-driven approach by analyzing signals from pairs of coupled model dynamics using two different connectivity measures. We find that the coupling impact, but not the coupling strength, correctly detects a symmetric interaction between pairs of coupled dynamics regardless of their degree of asymmetry. Therefore, this approach allows us to reveal the real impact that one dynamics has on the other and hence to define symmetric interactions in pairs of nonidentical dynamics.
Berg, J. van den; Wal, R.S.W. van de; Oerlemans, J.
2006-01-01
A vertically integrated two-dimensional ice flow model was coupled to an elastic lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on local bedrock adjustment. We used a synthetic bedrock profile and a synthetic climate to model a characteristic ice sheet
van de Berg, W.J.; van de Wal, R.S.W.; Oerlemans, J.
2006-01-01
A vertically integrated two-dimensional ice flow model was coupled to an elastic lithosphere-Earth model to study the effects of lateral variations in lithospheric strength on local bedrock adjustment. We used a synthetic bedrock profile and a synthetic climate to model a characteristic ice sheet
Directory of Open Access Journals (Sweden)
Zhiqiang Chen
2016-03-01
Full Text Available The hydro-mechanical coupling transport process of sand production is numerically investigated with special attention paid to the bonding effect between sand grains. By coupling the lattice Boltzmann method (LBM and the discrete element method (DEM, we are able to capture particles movements and fluid flows simultaneously. In order to account for the bonding effects on sand production, a contact bond model is introduced into the LBM-DEM framework. Our simulations first examine the experimental observation of “initial sand production is evoked by localized failure” and then show that the bonding or cement plays an important role in sand production. Lower bonding strength will lead to more sand production than higher bonding strength. It is also found that the influence of flow rate on sand production depends on the bonding strength in cemented granular media, and for low bonding strength sample, the higher the flow rate is, the more severe the erosion found in localized failure zone becomes.
Interlimb coupling strength scales with movement amplitude.
Peper, C Lieke E; de Boer, Betteco J; de Poel, Harjo J; Beek, Peter J
2008-05-23
The relation between movement amplitude and the strength of interlimb interactions was examined by comparing bimanual performance at different amplitude ratios (1:2, 1:1, and 2:1). For conditions with unequal amplitudes, the arm moving at the smaller amplitude was predicted to be more strongly affected by the contralateral arm than vice versa. This prediction was based on neurophysiological considerations and the HKB model of coupled oscillators. Participants performed rhythmic bimanual forearm movements at prescribed amplitude relations. After a brief mechanical perturbation of one arm, the relaxation process back to the initial coordination pattern was examined. This analysis focused on phase adaptations in the unperturbed arm, as these reflect the degree to which the movements of this arm were affected by the coupling influences stemming from the contralateral (perturbed) arm. The thus obtained index of coupling (IC) reflected the relative contribution of the unperturbed arm to the relaxation process. As predicted IC was larger when the perturbed arm moved at a larger amplitude than did the unperturbed arm, indicating that coupling strength scaled with movement amplitude. This result was discussed in relation to previous research regarding sources of asymmetry in coupling strength and the effects of amplitude disparity on interlimb coordination.
Directory of Open Access Journals (Sweden)
Sean P Parsons
2016-02-01
Full Text Available Pacemaker activities generated by networks of interstitial cells of Cajal (ICC, in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e. spatial noise with a long-tailed distribution, plateau steps occurred at points of low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Parsons, Sean P.; Huizinga, Jan D.
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency. PMID:26869875
Parsons, Sean P; Huizinga, Jan D
2016-01-01
Pacemaker activities generated by networks of interstitial cells of Cajal (ICC), in conjunction with the enteric nervous system, orchestrate most motor patterns in the gastrointestinal tract. It was our objective to understand the role of network features of ICC associated with the myenteric plexus (ICC-MP) in the shaping of motor patterns of the small intestine. To that end, a model of weakly coupled oscillators (oscillators influence each other's phase but not amplitude) was created with most parameters derived from experimental data. The ICC network is a uniform two dimensional network coupled by gap junctions. All ICC generate pacemaker (slow wave) activity with a frequency gradient in mice from 50/min at the proximal end of the intestine to 40/min at the distal end. Key features of motor patterns, directly related to the underlying pacemaker activity, are frequency steps and dislocations. These were accurately mimicked by reduction of coupling strength at a point in the chain of oscillators. When coupling strength was expressed as a product of gap junction density and conductance, and gap junction density was varied randomly along the chain (i.e., spatial noise) with a long-tailed distribution, plateau steps occurred at pointsof low density. As gap junction conductance was decreased, the number of plateaus increased, mimicking the effect of the gap junction inhibitor carbenoxolone. When spatial noise was added to the natural interval gradient, as gap junction conductance decreased, the number of plateaus increased as before but in addition the phase waves frequently changed direction of apparent propagation, again mimicking the effect of carbenoxolone. In summary, key features of the motor patterns that are governed by pacemaker activity may be a direct consequence of biological noise, specifically spatial noise in gap junction coupling and pacemaker frequency.
Badler, N. I.; Lee, P.; Wong, S.
1985-01-01
Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.
Pulse-coupled BZ oscillators with unequal coupling strengths.
Horvath, Viktor; Kutner, Daniel J; Chavis, John T; Epstein, Irving R
2015-02-14
Coupled chemical oscillators are usually studied with symmetric coupling, either between identical oscillators or between oscillators whose frequencies differ. Asymmetric connectivity is important in neuroscience, where synaptic strength inequality in neural networks commonly occurs. While the properties of the individual oscillators in some coupled chemical systems may be readily changed, enforcing inequality between the connection strengths in a reciprocal coupling is more challenging. We recently demonstrated a novel way of coupling chemical oscillators, which allows for manipulation of individual connection strengths. Here we study two identical, pulse-coupled Belousov-Zhabotinsky (BZ) oscillators with unequal connection strengths. When the pulse perturbations contain KBr (inhibitor), this system exhibits simple out-of-phase and complex oscillations, oscillatory-suppressed states as well as temporally periodic patterns (N : M) in which the two oscillators exhibit different numbers of peaks per cycle. The N : M patterns emerge due to the long-term effect of the inhibitory pulse-perturbations, a feature that has not been considered in earlier works. Time delay was previously shown to have a profound effect on the system's behaviour when pulse coupling was inhibitory and the coupling strengths were equal. When the coupling is asymmetric, however, delay produces no qualitative change in behaviour, though the 1 : 2 temporal pattern becomes more robust. Asymmetry in instantaneous excitatory coupling via AgNO3 injection produces a previously unseen temporal pattern (1 : N patterns starting with a double peak) with time delay and high [AgNO3]. Numerical simulations of the behaviour agree well with theoretical predictions in asymmetrical pulse-coupled systems.
Directory of Open Access Journals (Sweden)
Changgui Gu
Full Text Available The suprachiasmatic nucleus (SCN is the master circadian clock in mammals and is composed of thousands of neuronal oscillators expressing different intrinsic periods. These oscillators form a coupled network with a free-running period around 24 h in constant darkness and entrainable to the external light-dark cycle (T cycle. Coupling plays an important role in setting the period of the network and its range of entrainment. Experiments in rats have shown that two subgroups of oscillators within the SCN, a ventrolateral (VL subgroup that receives photic input and a dorsomedial (DM subgroup that is coupled to VL, can be desynchronized under a short (22-h T cycle, with VL entrained to the cycle and DM free-running. We use a modified Goodwin model to understand how entrainment of the subgroups to short (22-h and long (26-h T cycles is influenced by light intensity, the proportion of neurons that receives photic input, and coupling heterogeneity. We find that the model's critical value for the proportion of photically-sensitive neurons is in accord with actual experimental estimates, while the model's inclusion of dispersed coupling can account for the experimental observation that VL and DM desynchronize more readily under the 22-h than under the 26-h T cycle. Heterogeneous intercellular coupling within the SCN is likely central to the generation of complex behavioral patterns.
Inferring coupling strength from event-related dynamics
Łęski, Szymon; Wójcik, Daniel K.
2008-10-01
We propose an approach for inferring strength of coupling between two systems from their transient dynamics. This is of vital importance in cases where most information is carried by the transients, for instance, in evoked potentials measured commonly in electrophysiology. We show viability of our approach using nonlinear and linear measures of synchronization on a population model of thalamocortical loop and on a system of two coupled Rössler-type oscillators in nonchaotic regime.
Coupling Strength and System Size Induce Firing Activity of Globally Coupled Neural Network
Institute of Scientific and Technical Information of China (English)
WEI Du-Qu; LUO Xiao-Shu; ZOU Yan-Li
2008-01-01
We investigate how firing activity of globally coupled neural network depends on the coupling strength C and system size N.Network elements are described by space-clamped FitzHugh-Nagumo (SCFHN) neurons with the values of parameters at which no firing activity occurs.It is found that for a given appropriate coupling strength,there is an intermediate range of system size where the firing activity of globally coupled SCFHN neural network is induced and enhanced.On the other hand,for a given intermediate system size level,there ex/sts an optimal value of coupling strength such that the intensity of firing activity reaches its maximum.These phenomena imply that the coupling strength and system size play a vital role in firing activity of neural network.
'True' bosonic coupling strength in strongly correlated superconductors.
Iwasawa, Hideaki; Yoshida, Yoshiyuki; Hase, Izumi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Aiura, Yoshihiro
2013-01-01
Clarifying the coupling between electrons and bosonic excitations (phonons or magnetic fluctuations) that mediate the formation of Cooper pairs is pivotal to understand superconductivity. Such coupling effects are contained in the electron self-energy, which is experimentally accessible via angle-resolved photoemission spectroscopy (ARPES). However, in unconventional superconductors, identifying the nature of the electron-boson coupling remains elusive partly because of the significant band renormalization due to electron correlation. Until now, to quantify the electron-boson coupling, the self-energy is most often determined by assuming a phenomenological 'bare' band. Here, we demonstrate that the conventional procedure underestimates the electron-boson coupling depending on the electron-electron coupling, even if the self-energy appears to be self-consistent via the Kramers-Kronig relation. Our refined method explains well the electron-boson and electron-electron coupling strength in ruthenate superconductor Sr2RuO4, calling for a critical revision of the bosonic coupling strength from ARPES self-energy in strongly correlated electron systems.
‘True’ bosonic coupling strength in strongly correlated superconductors
Iwasawa, Hideaki; Yoshida, Yoshiyuki; Hase, Izumi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Aiura, Yoshihiro
2013-01-01
Clarifying the coupling between electrons and bosonic excitations (phonons or magnetic fluctuations) that mediate the formation of Cooper pairs is pivotal to understand superconductivity. Such coupling effects are contained in the electron self-energy, which is experimentally accessible via angle-resolved photoemission spectroscopy (ARPES). However, in unconventional superconductors, identifying the nature of the electron-boson coupling remains elusive partly because of the significant band renormalization due to electron correlation. Until now, to quantify the electron-boson coupling, the self-energy is most often determined by assuming a phenomenological ‘bare’ band. Here, we demonstrate that the conventional procedure underestimates the electron-boson coupling depending on the electron-electron coupling, even if the self-energy appears to be self-consistent via the Kramers-Kronig relation. Our refined method explains well the electron-boson and electron-electron coupling strength in ruthenate superconductor Sr2RuO4, calling for a critical revision of the bosonic coupling strength from ARPES self-energy in strongly correlated electron systems. PMID:23722675
Modeling of Sylgard Adhesive Strength
Energy Technology Data Exchange (ETDEWEB)
Stevens, Ralph Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-03
Sylgard is the name of a silicone elastomeric potting material manufactured by Dow Corning Corporation.1 Although the manufacturer cites its low adhesive strength as a feature of this product, thin layers of Sylgard do in fact have a non-negligible strength, which has been measured in recent tensile and shear debonding tests. The adhesive strength of thin layers of Sylgard potting material can be important in applications in which components having signi cantly di erent thermal expansion properties are potted together, and the potted assembly is subjected to temperature changes. The tensile and shear tractions developed on the potted surfaces of the components can cause signi cant internal stresses, particularly for components made of low-strength materials with a high area-to-volume ratio. This report is organized as follows: recent Sylgard debonding tests are rst brie y summarized, with particular attention to the adhesion between Sylgard and PBX 9501, and also between Sylgard and aluminum. Next, the type of numerical model that will be used to simulate the debonding behavior exhibited in these tests is described. Then the calibration of the debonding model will be illustrated. Finally, the method by which the model parameters are adjusted (scaled) to be applicable to other, non- tested bond thicknesses is summarized, and all parameters of the model (scaled and unscaled) are presented so that other investigators can reproduce all of the simulations described in this report as well as simulations of the application of interest.
Snow-atmosphere coupling strength and its contribution to climate predictability
Xu, L.
2010-12-01
This study investigated the snow-atmosphere coupling strength (the degree to which atmosphere responds to anomalies in the land surface snow cover and their subsequently interaction) and this coupling strength contribution to short range climate predictability, based on the realistic snow information from the MODIS snow retrieval from NASA satellites and GLDAS land “reanalysis” data. A complex land surface model (CLM 3.5) with an advanced snow scheme coupled to the Community Atmospheric Model (CAM) were employed to quantify continental snow-atmosphere coupling strength. A series of ensemble experiment will be designed to investigate the snow albedo effect and hydrological effect separately. A recently derived index Ω was used to quantify the coupling strength and predictability estimated separately by the phase and shape characteristics of a forecast ensemble. In addition, the climate predictability represented by Signal-to-Total Ratio (STR) due to realistic snow information, including Snow Water Equivalent (SWE) and Snow Cover Fraction (SCF), will also be investigated. This study improved our understanding of the interaction between snow cover and atmosphere. Determining the seasonal forecast skill attributed by snow information increased our knowledge of climate predictability. These designed experiments also offer a prototype of testing snow-atmosphere coupling strength that could be implemented in other weather and climate models in the future.
Determination of the quark coupling strength $|V_{ub}|$ using baryonic decays
Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bertolin, Alessandro; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Braun, Svende; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Capriotti, Lorenzo; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carniti, Paolo; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casanova Mohr, Raimon; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cavallero, Giovanni; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Dey, Biplab; Di Canto, Angelo; Di Ruscio, Francesco; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dufour, Laurent; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gastaldi, Ugo; Gauld, Rhorry; Gavardi, Laura; Gazzoni, Giulio; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Humair, Thibaud; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Kenzie, Matthew; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Maciuc, Florin; Maev, Oleg; Maguire, Kevin; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Manning, Peter Michael; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathad, Abhijit; Mathe, Zoltan; Matteuzzi, Clara; Mauri, Andrea; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Osorio Rodrigues, Bruno; Otalora Goicochea, Juan Martin; Otto, Adam; Owen, Patrick; Oyanguren, Maria Arantza; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Poikela, Tuomas; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Quagliani, Renato; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Lopez, Jairo Alexis; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Sterpka, Christopher Francis; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Todd, Jacob; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Trabelsi, Karim; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viana Barbosa, Joao Vitor; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Weiden, Andreas; Whitehead, Mark; Wiedner, Dirk; Wilkinson, Guy; Wilkinson, Michael; Williams, Mark Richard James; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang
2015-01-01
In the Standard Model of particle physics, the strength of the couplings of the $b$ quark to the $u$ and $c$ quarks, $|V_{ub}|$ and $|V_{cb}|$, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron Collider, the probability for the $\\Lambda^0_b$ baryon to decay into the $p \\mu^- \\overline{\
COUPLED CHEMOTAXIS FLUID MODEL
LORZ, ALEXANDER
2010-06-01
We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.
Cascading failures in coupled networks: The critical role of node-coupling strength across networks.
Liu, Run-Ran; Li, Ming; Jia, Chun-Xiao
2016-10-17
The robustness of coupled networks against node failure has been of interest in the past several years, while most of the researches have considered a very strong node-coupling method, i.e., once a node fails, its dependency partner in the other network will fail immediately. However, this scenario cannot cover all the dependency situations in real world, and in most cases, some nodes cannot go so far as to fail due to theirs self-sustaining ability in case of the failures of their dependency partners. In this paper, we use the percolation framework to study the robustness of interdependent networks with weak node-coupling strength across networks analytically and numerically, where the node-coupling strength is controlled by an introduced parameter α. If a node fails, each link of its dependency partner will be removed with a probability 1-α. By tuning the fraction of initial preserved nodes p, we find a rich phase diagram in the plane p-α, with a crossover point at which a first-order percolation transition changes to a second-order percolation transition.
Hou, H.-C.; Kirby, B. J.; Gao, K. Z.; Lai, C.-H.
2013-04-01
We have studied the N-dependent switching behavior of composite magnets, comprised of a hard CoPtCr-SiO2 (CPCS) film and a laminated soft [Pt/CPCS]N multilayer. First order reversal curve magnetometry provides evidence of interfacial domain wall (iDW) assisted reversal for N ≥ 5. The magnetic depth profiles determined from polarized neutron reflectometry (PNR) explicitly demonstrate that the composite magnets are more rigidly coupled for N = 3 than for N = 7, and suggest that for N = 7 reversal occurs via formation of iDW. By fitting the PNR profile into the energy surface calculations, we can further deduce the vertical coupling strength in the laminated soft layer.
Rudenko, A. N.; Katsnelson, M. I.; Roldán, R.
2017-02-01
The electronic properties of single-layer antimony are studied by a combination of first-principles and tight-binding methods. The band structure obtained from relativistic density functional theory is used to derive an analytic tight-binding model that offers an efficient and accurate description of single-particle electronic states in a wide spectral region up to the mid-UV. The strong (λ =0.34 eV) intra-atomic spin-orbit interaction plays a fundamental role in the band structure, leading to splitting of the valence band edge and to a significant reduction of the effective mass of the hole carriers. To obtain an effective many-body model of two-dimensional Sb we calculate the screened Coulomb interaction and provide numerical values for the on-site V¯00 (Hubbard) and intersite V¯i j interactions. We find that the screening effects originate predominantly from the 5 p states, and are thus fully captured within the proposed tight-binding model. The leading kinetic and Coulomb energies are shown to be comparable in magnitude, | t01|/ (V¯00-V¯01) ˜1.6 , which suggests a strongly correlated character of 5 p electrons in Sb. The results presented here provide an essential step toward the understanding and rational description of a variety of electronic properties of this two-dimensional material.
Ferguson, C. R.; Roundy, J. K.; Kim, W.
2016-12-01
The GEWEX North American Regional Hydroclimate Project (RHP): Water for the Food Baskets of the World initiative is aimed at: improving understanding of key processes—both natural and anthropogenic—that determine water availability, improving understanding of the independent and collective sensitivity of these processes to local and global change, and the integration of knowledge gained into the next model development cycle for the benefit of improved water availability forecasts. Considering that the agricultural sector accounts for three quarters of water withdrawals and suffers the brunt of drought-related financial damages, a rational RHP focal point is subseasonal-to-seasonal forecast skill. Forecasts on this timescale over the Great Plains food basket have shown particular sensitivity to land initial conditions (i.e., soil moisture, snow cover, and vegetative stress) and the realism of modeled land-atmosphere (L-A) coupling. L-A coupling strength denotes the degree to which the model's land scheme (i.e., soil column memory and surface flux partitioning) affect the atmospheric forecast scheme's daytime evolution of the convective boundary layer, including cloud development and precipitation. Prior studies have connected L-A coupling strength to the phase and amplitude of the diurnal precipitation cycle, as well as the evolution of heatwaves and drought. In this study, we apply three metrics of L-A coupling strength: soil moisture memory, the two-legged coupling metric, and the convective triggering potential-humidity index, to the 161-year NOAA-Cooperative Institute for Research in Environmental Sciences Twentieth Century Reanalysis (20CRV2c). Over the full period, we also analyze warm-season rainfall characteristics and subsequently perform statistical trend and change point analyses on both sets of results. We test the stationarity of both coupling and rainfall characteristics as well as the hypothesis that any detected shifts in coupling strength and
Hydrological model coupling with ANNs
Kamp, R. G.; Savenije, H. H. G.
2006-12-01
Model coupling in general is necessary but complicated. Scientists develop and improve conceptual models to represent physical processes occurring in nature. The next step is to translate these concepts into a mathematical model and finally into a computer model. Problems may appear if the knowledge, encapsulated in a computer model and software program is needed for another purpose. In integrated water management this is often the case when connections between hydrological, hydraulic or ecological models are required. Coupling is difficult for many reasons, related to data formats, compatibility of scales, ability to modify source codes, etc. Hence, there is a need for an efficient and cost effective approach to model-coupling. One solution for model coupling is the use of Artificial Neural Networks (ANNs). The ANN can be used as a fast and effective model simulator which can connect different models. In this paper ANNs are used to couple four different models: a rainfall runoff model, a river channel routing model, an estuarine salt intrusion model, and an ecological model. The coupling as such has proven to be feasible and efficient. However the salt intrusion model appeared difficult to model accurately in an ANN. The ANN has difficulty to represent both short term (tidal) and long term (hydrological) processes.
Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors
Belanger, G; Ellwanger, U; Gunion, J F; Kraml, S
2013-01-01
The most recent LHC data have provided a considerable improvement in the precision with which various Higgs production and decay channels have been measured. Using all available public results from ATLAS, CMS and the Tevatron, we derive for each final state the combined confidence level contours for the signal strengths in the (gluon fusion + ttH associated production) versus (vector boson fusion + VH associated production) space. These "combined signal strength ellipses" can be used in a simple, generic way to constrain a very wide class of New Physics models in which the couplings of the Higgs boson deviate from the Standard Model prediction. Here, we use them to constrain the reduced couplings of the Higgs boson to up-quarks, down-quarks/leptons and vector boson pairs. We also consider New Physics contributions to the loop-induced gluon-gluon and photon-photon couplings of the Higgs, as well as invisible/unseen decays. Finally, we apply our fits to some simple models with an extended Higgs sector, in parti...
The role of frictional strength on plate coupling at the subduction interface
Tan, Eh
2012-10-01
At a subduction zone the amount of friction between the incoming plate and the forearc is an important factor in controlling the dip angle of subduction and the structure of the forearc. In this paper, we investigate the role of the frictional strength of sediments and of the serpentinized peridotite on the evolution of convergent margins. In numerical models, we vary thickness of a serpentinized layer in the mantle wedge (15 to 25km) and the frictional strength of both the sediments and serpentinized mantle (friction angle 1 to 15, or static friction coefficient 0.017 to 0.27) to control the amount of frictional coupling between the plates. With plastic strain weakening in the lithosphere, our numerical models can attain stable subduction geometry over millions of years. We find that the frictional strength of the sediments and serpentinized peridotite exerts the largest control on the dip angle of the subduction interface at seismogenic depths. In the case of low sediment and serpentinite friction, the subduction interface has a shallow dip, while the subduction zone develops an accretionary prism, a broad forearc high, a deep forearc basin, and a shallow trench. In the high friction case, the subduction interface is steep, the trench is deeper, and the accretionary prism, forearc high and basin are all absent. The resultant free-air gravity and topographic signature of these subduction zone models are consistent with observations. We believe that the low-friction model produces a geometry and forearc structure similar to that of accretionary margins. Conversely, models with high friction angles in sediments and serpentinite develop characteristics of an erosional convergent margin. We find that the strength of the subduction interface is critical in controlling the amount of coupling at the seismogenic zone and perhaps ultimately the size of the largest earthquakes at subduction zones. © 2012. American Geophysical Union. All Rights Reserved.
Razavipour, S. G.; Dupont, E.; Fathololoumi, S.; Chan, C. W. I.; Lindskog, M.; Wasilewski, Z. R.; Aers, G.; Laframboise, S. R.; Wacker, A.; Hu, Q.; Ban, D.; Liu, H. C.
2013-05-01
We designed and demonstrated a terahertz quantum cascade laser based on indirect pump injection to the upper lasing state and phonon scattering extraction from the lower lasing state. By employing a rate equation formalism and a genetic algorithm, an optimized active region design with four-well GaAs/Al0.25Ga0.75As cascade module was obtained and epitaxially grown. A figure of merit which is defined as the ratio of modal gain versus injection current was maximized at 150 K. A fabricated device with a Au metal-metal waveguide and a top n+ GaAs contact layer lased at 2.4 THz up to 128.5 K, while another one without the top n+ GaAs lased up to 152.5 K (1.3ℏω /kB). The experimental results have been analyzed with rate equation and nonequilibrium Green's function models. A high population inversion is achieved at high temperature using a small oscillator strength of 0.28, while its combination with the low injection coupling strength of 0.85 meV results in a low current. The carefully engineered wavefunctions enhance the quantum efficiency of the device and therefore improve the output optical power even with an unusually low injection coupling strength.
Prospects for coupled modelling
Energy Technology Data Exchange (ETDEWEB)
Savage, D.
2012-07-01
Clay-based buffer and tunnel backfill materials are important barriers in the KBS- 3 repository concept for final disposal of spent nuclear fuel in Finland. Significant changes can be expected to occur to the properties and behaviour of buffer and backfill, especially during re-saturation and through the thermal period. Reactions will occur in response to thermal and chemical gradients, induced by the thermal output of the spent fuel and at interfaces between different barrier materials, such as cement/clay, steel/clay etc. Processes of ion exchange, mineral dissolution and precipitation, and swelling can lead to significant re-distribution of mass and evolution of physical properties so that reliable predictive modelling of future behaviour and properties must be made. This report evaluates the current status of modelling of buffer and backfill evolution and tries to assess the potential future capabilities in the short- to medium-term (5-10 years) in a number of technical areas: (1) Non-isothermal (T-H-M-C-B) modelling and the potential for cementation, (2) The consistency of models, (3) Swelling pressure, (4) Cement-bentonite interactions, (5) Iron-bentonite interactions, (6) Mechanical (shear) behavior, and (7) Bentonite erosion.
Precise strength of the $\\pi$NN coupling constant
Ericson, Torleif Eric Oskar; Rahm, J; Blomgren, J; Olsson, N; Thomas, A W
1998-01-01
We report here a preliminary value for the piNN coupling constant deduced from the GMO sumrule for forward piN scattering. As in our previous determination from np backward differential scattering cross sections we give a critical discussion of the analysis with careful attention not only to the statistical, but also to the systematic uncertainties. Our preliminary evaluation gives $g^2_c$(GMO) = 13.99(24).
The Mean Remaining Strength Of Systems In A Stress-Strength Model
Gürler, Selma
2014-01-01
In this paper, we study the mean remaining strength of a component inthe stress-strength setup. We present the models for the mean remaining strength for systems consisting of n independent components underthe k-out-of-n:F , parallel and series configurations. We assume thatthe strengths of the components are nonidentically distributed randomvariables and components are designed under the common stress.
Directory of Open Access Journals (Sweden)
Mengjiao Chen
2016-10-01
Full Text Available Long-term potentiation (LTP of synaptic strength is strongly implicated in learning and memory. On the other hand, depotentiation, the reversal of synaptic strength from potentiated LTP state to the pre-LTP level, is required in extinction of the obsolete memory. A generic tristable system, which couples the phosphatase and kinase switches, exclusively explains how moderate and high elevation of intracellular calcium concentration triggers long-term depression (LTD and LTP, respectively. The present study, introducing calcium influx and calcium release from internal store into the tristable system, further show that significant elevation of cytoplasmic calcium concentration switches activation of both kinase and phosphatase to their basal states, thereby depotentiate the synaptic strength. A phase-plane analysis of the combined model was employed to explain the previously reported depotentiation in experiments and predict a threshold-like effect with calcium concentration. The results not only reveal a mechanism of NMDAR- and mGluR-dependent depotentiation, but also predict further experiments about the role of internal calcium store in induction of depotentiation and extinction of established memories.
Impact of dispersed coupling strength on the free running periods of circadian rhythms
Gu, Changgui; Rohling, Jos H. T.; Liang, Xiaoming; Yang, Huijie
2016-03-01
The dominant endogenous clock, named the suprachiasmatic nucleus (SCN), regulates circadian rhythms of behavioral and physiological activity in mammals. One of the main characteristics of the SCN is that the animal maintains a circadian rhythm with a period close to 24 h in the absence of a daily light-dark cycle (called the free running period). The free running period varies among species due to heterogeneity of the SCN network. Previous studies have shown that the heterogeneity in cellular coupling as well as in intrinsic neuronal periods shortens the free running period. Furthermore, as derived from experiments, one neuron's coupling strength is negatively associated with its period. It is unknown what the effects of this association between coupling strength and period are on the free running period and how the heterogeneity in coupling strength influences this free running period. In the present study we found that in the presence of a negative relationship between one neuron's coupling strength and its period, surprisingly, the dispersion of coupling strengths increases the free running period. Our present finding may shed new light on the understanding of the heterogeneous SCN network and provides an alternative explanation for the diversity of free running periods between species.
Photophoretic Strength on Chondrules 1: Modeling
Loesche, Christoph; Teiser, Jens; Friedrich, Jon M; Bischoff, Addi
2013-01-01
Photophoresis is a physical process that transports particles in optical thin parts of protoplanetary disks, especially at the inner edge and at the optically surface. To model the transport and resulting effects in detail, it is necessary to quantify the strength of photophoresis for different particle classes as a fundamental input. Here, we explore photophoresis for a set of chondrules. The composition and surface morphology of these chondrules was measured by X-ray tomography. Based on the three-dimensional models, heat transfer through illuminated chondrules was calculated. The resulting surface temperature map was then used to calculate the photophoretic strength. We found that irregularities in particle shape and variations in composition induce variations in the photophoretic force. These depend on the orientation of a particle with respect to the light source. The variations of the absolute value of the photophoretic force on average over all chondrules is $4.17\\%$. The deviation between the directio...
The weakening of the ENSO-Indian Ocean Dipole (IOD) coupling strength in recent decades
Ham, Yoo-Geun; Choi, Jun-Young; Kug, Jong-Seong
2016-09-01
This study examines a recent weakening of the coupling between the El Nino-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) mode after the 2000s and 2010s compared to the previous two decades (1980s and 1990s). The correlation between the IOD during the September-November season and the Nino3.4 index during the December-February season is 0.21 for 1999-2014, while for the previous two decades (1979-1998) it is 0.64. It is found that this weakening of the ENSO-IOD coupling during the 2000s and 2010s is associated with different spatial patterns in ENSO evolution during the boreal spring and summer seasons. During the boreal spring season of the El Nino developing phase, positive precipitation anomalies over the northern off-equatorial western Pacific is systematically weakened during the 2000s and 2010s. This also weakens the low-level cross-equatorial southerly flow, which can cause local negative precipitation anomalies over the maritime continent through increased evaporation and cold and dry moist energy advection. The weakened negative precipitation anomalies over the maritime continent reduces the amplitude of the equatorial easterly over the IO, therefore, suppresses a ENSO-related IOD variability. An analysis using climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) supports this observational findings that the amplitude of the cross-equatorial southerly flow and associated suppressed convective activities over the maritime continent during the El Nino developing season are critical for determining the ENSO-IOD coupling strength in climate models.
Wu, Yanan; Gong, Yubing; Xu, Bo
2013-12-01
Recently, multiple coherence resonance induced by time delay has been observed in neuronal networks with constant coupling strength. In this paper, by employing Newman-Watts Hodgkin-Huxley neuron networks with time-periodic coupling strength, we study how the temporal coherence of spiking behavior and coherence resonance by time delay change when the frequency of periodic coupling strength is varied. It is found that delay induced coherence resonance is dependent on periodic coupling strength and increases when the frequency of periodic coupling strength increases. Periodic coupling strength can also induce multiple coherence resonance, and the coherence resonance occurs when the frequency of periodic coupling strength is approximately multiple of the spiking frequency. These results show that for periodic coupling strength time delay can more frequently optimize the temporal coherence of spiking activity, and periodic coupling strength can repetitively optimize the temporal coherence of spiking activity as well. Frequency locking may be the mechanism for multiple coherence resonance induced by periodic coupling strength. These findings imply that periodic coupling strength is more efficient for enhancing the temporal coherence of spiking activity of neuronal networks, and thus it could play a more important role in improving the time precision of information processing and transmission in neural networks.
Yarn Strength Modelling Using Fuzzy Expert System
Directory of Open Access Journals (Sweden)
Abhijit Majumdar, Ph.D.
2008-12-01
Full Text Available Yarn strength modelling and prediction has remained as the cynosure of research for the textile engineers although the investigation in this domain was first reported around one century ago. Several mathematical, statistical and empirical models have been developed in the past only to yield limited success in terms of prediction accuracy and general applicability. In recent years, soft computing tools like artificial neural networks and neural-fuzzy models have been developed, which have shown remarkable prediction accuracy. However, artificial neural network and neural-fuzzy models are trained using enormous amount of noise free input-output data, which are difficult to collect from the spinning industries. In contrast, fuzzy logic based models could be developed by using the experience of the spinner only and it gives good understanding about the roles played by various inputs on the outputs. This paper deals with the modelling of ring spun cotton yarn strength using a simple fuzzy expert system. The prediction accuracy of the model was found to be very encouraging.
Modeling of Coupled Chaotic Oscillators
Energy Technology Data Exchange (ETDEWEB)
Lai, Y. [Departments of Physics and Astronomy and of Mathematics, University of Kansas, Lawrence, Kansas 66045 (United States); Grebogi, C. [Institute for Plasma Research, Department of Mathematics, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)
1999-06-01
Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. {copyright} {ital 1999} {ital The American Physical Society}
Novais, Veridiana Resende; Simamotos Júnior, Paulo Cézar; Rontani, Regina Maria Puppin; Correr-Sobrinho, Lourenço; Soares, Carlos José
2012-01-01
This study evaluated the effect of air drying temperature and different silane coupling agents on the bond strength between glass fiber posts and composite resin core. The post surface was cleaned with alcohol and treated with different silane coupling agents, being three prehydrolyzed silanes [Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE)] and one two-component silane [Silane Coupling Agent (Dentsply)]. Two post-silanization air drying temperatures, 23ºC and 60ºC, were applied. A cylindrical plastic matrix was placed around the silanized post and filled with composite resin. Each bonded post provided 7 slices for push-out testing. Each slice was loaded to failure under compression at a cross-head speed of 0.5 mm/min. Data were analyzed by two-way ANOVA and Scott-Knott tests (α=0.05). Dunnett's test was used to compare the mean of the control group with that of each experimental group. Scanning electron microscopy (SEM) was used to evaluate the interface of the fractured slices. For the 23ºC air drying temperature, the use of RelyX Ceramic Primer resulted in significantly lower bond strength than the other silane coupling agents, while the bond strength with Silane Coupling Agent was the highest of all groups. Only with Silane Coupling Agent, the bond strength for the 23ºC air drying temperature was significantly higher than that for 60ºC air drying. In conclusion, the use of warm air drying after silane application produced no increase in the bond strength between the fiber-reinforced composite post and the composite core. The two-component silane produced higher bond strength than all prehydrolyzed silanes when it was used with air drying at room temperature.
Sobolev, Stephan; Muldashev, Iskander
2017-04-01
The common thinking is that the magnitude of a great subduction earthquake correlates with the strength of mechanical coupling between slab and overriding plate. Based on this idea, Ruff and Kanamori (1980) suggested that maximum earthquake's magnitude is controlled by two parameters: age of subducting plate and plate convergence rate, when the youngest and the fastest slabs generate the largest earthquakes. This view was supported by many researches since then. However, since 1980 a number of great earthquakes, and particularly two largest earthquakes of the last 12 years, i.e. Great Sumatra/Andaman 2004 Earthquake and Tohoku 2011 earthquake, have violated the suggested correlation. We address the relation between strength of mechanical coupling and earthquake magnitude directly by cross-scale geodynamic modeling of seismic cycles of great subduction earthquakes. This modeling technique employs elasticity, non-linear transient viscous rheology, and rate-and-state friction at slab interface. It generates spontaneous earthquake sequences, and, by using an adaptive time-step algorithm, recreates the deformation process as observed naturally over single and multiple seismic cycles. We model seismic cycles for the great subduction earthquakes with different geometries of subducting plates, different static friction coefficients in subduction channels and different subduction velocities. Under the assumption that rupture length scales with the rupture width, our models demonstrate that maximum magnitudes of the earthquakes are exclusively controlled by the factors that increase rupture width. These factors are: low slab's dipping angle (the largest effect), low friction coefficient in subduction channel (smaller effect) and high subduction velocity (the smallest effect). Models suggest that maximum magnitudes of earthquakes do not correlate significantly with the magnitudes of normal and shear stresses at subduction interface. In agreement with observations, our models
The Challenges to Coupling Dynamic Geospatial Models
Energy Technology Data Exchange (ETDEWEB)
Goldstein, N
2006-06-23
Many applications of modeling spatial dynamic systems focus on a single system and a single process, ignoring the geographic and systemic context of the processes being modeled. A solution to this problem is the coupled modeling of spatial dynamic systems. Coupled modeling is challenging for both technical reasons, as well as conceptual reasons. This paper explores the benefits and challenges to coupling or linking spatial dynamic models, from loose coupling, where information transfer between models is done by hand, to tight coupling, where two (or more) models are merged as one. To illustrate the challenges, a coupled model of Urbanization and Wildfire Risk is presented. This model, called Vesta, was applied to the Santa Barbara, California region (using real geospatial data), where Urbanization and Wildfires occur and recur, respectively. The preliminary results of the model coupling illustrate that coupled modeling can lead to insight into the consequences of processes acting on their own.
Institute of Scientific and Technical Information of China (English)
HUANG Liang-Yu; LUO Xiao-Shu
2006-01-01
@@ We analyse the chaotic dynamics of storage-ring free-electron lasers and report a bi-directional coupled scheme with the coupling strength varied periodically to synchronize two chaotic storage-ring free-electron lasers.
Li, Y.; Chen, L.; Chen, F.; Barlage, M. J.
2016-12-01
Uncertainties in representing land-atmosphere interactions can substantially influence regional climate simulations. Among these uncertainties, the surface exchange coefficient, Ch, is a critical parameter controlling the total energy transported from the land surface to the atmosphere and directly impacts the land-atmospheric coupling strength. Yet it has not been properly evaluated for regional climate models. This study assesses the representation of surface coupling strength in 4-km WRF simulations through comparing Ch derived from WRF simulations, from offline Noah-MP simulations, and from data collected at eight FLUXNET sites of the Canadian Carbon Program (CPC), which were then categorized into four ecoclimate regions. The seasonal variations of Ch for different land-cover types in Canada calculated by using 10-year half-hourly FLUXNET data are used to evaluate surface coupling strength in WRF. Also, Ch calculated from offline Noah-MP simulations is used to contract to these from WRF to understand the impacts of uncertainties in coupled WRF simulations and in offline Noah-MP simulations on Ch. Such analysis is used to evaluate 4-km WRF simulated surface heat fluxes.
ZERODUR strength modeling with Weibull statistical distributions
Hartmann, Peter
2016-07-01
The decisive influence on breakage strength of brittle materials such as the low expansion glass ceramic ZERODUR is the surface condition. For polished or etched surfaces it is essential if micro cracks are present and how deep they are. Ground surfaces have many micro cracks caused by the generation process. Here only the depths of the micro cracks are relevant. In any case presence and depths of micro cracks are statistical by nature. The Weibull distribution is the model used traditionally for the representation of such data sets. It is based on the weakest link ansatz. The use of the two or three parameter Weibull distribution for data representation and reliability prediction depends on the underlying crack generation mechanisms. Before choosing the model for a specific evaluation, some checks should be done. Is there only one mechanism present or is it to be expected that an additional mechanism might contribute deviating results? For ground surfaces the main mechanism is the diamond grains' action on the surface. However, grains breaking from their bonding might be moved by the tool across the surface introducing a slightly deeper crack. It is not to be expected that these scratches follow the same statistical distribution as the grinding process. Hence, their description with the same distribution parameters is not adequate. Before including them a dedicated discussion should be performed. If there is additional information available influencing the selection of the model, for example the existence of a maximum crack depth, this should be taken into account also. Micro cracks introduced by small diamond grains on tools working with limited forces cannot be arbitrarily deep. For data obtained with such surfaces the existence of a threshold breakage stress should be part of the hypothesis. This leads to the use of the three parameter Weibull distribution. A differentiation based on the data set alone without preexisting information is possible but requires a
Coupling constant in dispersive model
Indian Academy of Sciences (India)
R Saleh-Moghaddam; M E Zomorrodian
2013-11-01
The average of the moments for event shapes in + - → hadrons within the context of next-to-leading order (NLO) perturbative QCD prediction in dispersive model is studied. Moments used in this article are $\\langle 1 - T \\rangle, \\langle ρ \\rangle, \\langle B_{T} \\rangle$ and $\\langle B_{W} \\rangle$. We extract , the coupling constant in perturbative theory and α0 in the non-perturbative theory using the dispersive model. By fitting the experimental data, the values of $(M_{Z^{°}})$ = 0.1171 ± 0.00229 and 0 ($_{I} = 2{\\text{GeV}}$) = 0.5068 ± 0.0440 are found. Our results are consistent with the above model. Our results are also consistent with those obtained from other experiments at different energies. All these features are explained in this paper.
Strength Modeling of High-Strength Concrete with Hybrid Fibre Reinforcement
Directory of Open Access Journals (Sweden)
A. Ravichandran
2009-01-01
Full Text Available The low tensile strength and limited ductility, the unavoidable deficiency, of concrete can be overcome by the addition of fibres. High strength concrete (HSC of 60 MPa containing hybrid fibres, combination of steel and polyolefin fibres, at different volume fraction of 0.5, 1.0, 1.5 and 2.0% were compared in terms of compressive, splitting tensile strength and flexural properties with HSC containing no fibres. Test results showed that the fibres when used in hybrid form could result in enhanced flexural toughness compared to steel fibre reinforced concrete [HSFRC]. The compressive strength of the fibre-reinforced concrete reached maximum at 1.5% volume fractions and the splitting tensile strength and modulus of rupture improved with increasing volume fraction. Strength models were established to predict the compressive and splitting tensile strength and modulus of rupture of the fibre-reinforced concrete. The models give prediction matching the measurements.
Couple analysis on strength reduction theory and rheological mechanism for slope stability
Institute of Scientific and Technical Information of China (English)
刘子振; 言志信; 段建
2008-01-01
Considering the rheological properties of rock and soil body,and exploiting the merit of strength reduction technique,a theory of couple analysis is brought forward on the basis of strength reduction theory and rheological properties.Then,the concept and the calculation procedure of the safety factor are established at different time.Making use of finite element software ANSYS,the most dangerous sliding surface of the slope can be obtained through the strength reduction technique.According to the dynamic safety factor based on rheological mechanism,a good forecasting could be presented to prevent and cure the landslide.The result shows that the couple analysis reveals the process of the slope failure with the time and the important influence on the long-term stability due to the rheological parameters.
Photophoretic strength on chondrules. 1. Modeling
Energy Technology Data Exchange (ETDEWEB)
Loesche, Christoph; Wurm, Gerhard; Teiser, Jens [Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, D-47057 Duisburg (Germany); Friedrich, Jon M. [Department of Chemistry, Fordham University, Bronx, NY 10458 (United States); Bischoff, Addi, E-mail: christoph.loesche@uni-due.de [Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, D-48149 Münster (Germany)
2013-12-01
Photophoresis is a physical process that transports particles in optically thin parts of protoplanetary disks, especially at the inner edge and at the optical surface. To model the transport and resulting effects in detail, it is necessary to quantify the strength of photophoresis for different particle classes as a fundamental input. Here, we explore photophoresis for a set of chondrules. The composition and surface morphology of these chondrules were measured by X-ray tomography. Based on the three-dimensional models, heat transfer through illuminated chondrules was calculated. The resulting surface temperature map was then used to calculate the photophoretic strength. We found that irregularities in particle shape and variations in composition induce variations in the photophoretic force. These depend on the orientation of a particle with respect to the light source. The variation of the absolute value of the photophoretic force on average over all chondrules is 4.17%. The deviation between the direction of the photophoretic force and illumination is 3.°0 ± 1.°5. The average photophoretic force can be well approximated and calculated analytically assuming a homogeneous sphere with a volume equivalent mean radius and an effective thermal conductivity. We found an analytic expression for the effective thermal conductivity. The expression depends on the two main phases of a chondrule and decreases with the amount of fine-grained devitrified, plagioclase-normative mesostasis up to factor of three. For the chondrule sample studied (Bjurböle chondrite), we found a dependence of the photophoretic force on chondrule size.
models for predicting compressive strength and water absorption of ...
African Journals Online (AJOL)
user
combine laterite and quarry dust in sandcrete blocks or concrete are few. One of ... model for optimization of compressive strength of sand- laterite blocks using ..... compressive strength of Pulverise fuel Ash-Cement concrete''. IOSR Journal of ...
Devereaux, T. P.; Shvaika, A. M.; Wu, K.; Wohlfeld, K.; Jia, C. J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L.
2016-10-01
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one's ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.
Energy Technology Data Exchange (ETDEWEB)
Devereaux, T.P.; Shvaika, A.M.; Wu, K.; Wohlfeld, K.; Jia, C.J.; Wang, Y.; Moritz, B.; Chaix, L.; Lee, W.-S.; Shen, Z.-X.; Ghiringhelli, G.; Braicovich, L.
2016-10-25
The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong, impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.
Interaction Strength and a Generalized Bak-Sneppen Evolution Model
Institute of Scientific and Technical Information of China (English)
李炜; 蔡勖
2002-01-01
The Bak-Sneppen evolution model is generalized in terms of a new concept and quantity: interaction strength.Based on a quantitative definition, the interaction strength describes the strength of the interaction between thenearest-neighbour individuals in the model Self-organized criticality is observed for the generalized model withten different values of interaction strength. The gap equation governing the self-organization is derived. It is alsofound that the self-organized threshold depends on the value of the interaction strength.
Directory of Open Access Journals (Sweden)
G. Colas des Francs
2012-01-01
Full Text Available Using either quasistatic approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor Qn and define the effective volume Vn of the nth mode in such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio Qn/Vn (Purcell factor. The role of Joule losses, far-field scattering, and mode confinement in the coupling mechanism is introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.
Francs, G Colas des; Vincent, R; Bouhelier, A; Dereux, A
2011-01-01
Using either quasi-static approximation or exact Mie expansion, we characterize the localized surface plasmons supported by a metallic spherical nanoparticle. We estimate the quality factor $Q_n$ and define the effective volume $V_n$ of the $n^{th}$ mode in a such a way that coupling strength with a neighbouring dipolar emitter is proportional to the ratio $Q_n/V_n$ (Purcell factor). The role of Joule losses, far-field scattering and mode confinement in the coupling mechanism are introduced and discussed with simple physical understanding, with particular attention paid to energy conservation.
Directory of Open Access Journals (Sweden)
Jian-An Wang
2014-01-01
Full Text Available The sampled-data synchronization problem for complex networks with random coupling strengths, probabilistic time-varying coupling delay, and distributed delay (mixed delays is investigated. The sampling period is assumed to be time varying and bounded. By using the properties of random variables and input delay approach, new synchronization error dynamics are constructed. Based on the delay decomposition method and reciprocally convex approach, a delay-dependent mean square synchronization condition is established in terms of linear matrix inequalities (LMIs. According to the proposed condition, an explicit expression for a set of desired sampled-data controllers can be achieved by solving LMIs. Numerical examples are given to demonstrate the effectiveness of the theoretical results.
Gongora, T. A.; Escalante, V.
1991-04-01
RESUMEN Se presentan tablas de intensidades de oscilador de dipolares del tipo (2SP+1)Lp ni - (2SP+l)Lp ml' para 0 esquema de acoplamiento LS y el otro se describe en el esquema de acoplamiento LK, jK 6 jj. Nuestros resultados son utiles en Ia interpretaci6n e identificaci6n de lfneas espectrales entre estados con ntimeros cuanticos similares. ABSTRACT Tables are presented for the relative strength of dipole transitions of the type (2SP+l)Lp ni - (2SP+l)Lp ml' for 0 < Sp < 2, 0 < Lp < 2, 1 < 1 <4, and for any n and m, in which one of the states is described with the Ls coupling scheme, and the other is described with the LK, jK, or jj coupling scheme. Our results are useful in the interpretation and identification of spectral lines between states with similar quantum numbers. K words: ATOMIC AND MOLECULAR DATA - PROBABILITES
Ribeiro, Andre S.
2007-06-01
Genetic toggle switches (TSs) are one of the best studied small gene regulatory networks (GRNs), due to their simplicity and relevant role. They have been interpreted as decision circuits in cell differentiation, a process long hypothesized to be bistable [1], or as cellular memory units [2]. In these contexts, they must be reliable. Once a “decision” is made, the system must remain stable. One way to gain stability is by duplicating the genes of a TS and coupling the two TSs. Using a recent modeling strategy of GRNs, driven by a delayed stochastic simulation algorithm (delayed SSA) that allows modeling transcription and translation as multidelayed reactions, we analyze the stability of systems of coupled TSs. For this, we introduce the coupling strength (C) , a parameter to characterize the GRN structure, against which we compare the GRN stability (S) . We first show that time delays in transcription, associated to the promoter region release, ensure bistability of a TS, given no cooperative binding or self-activation reactions. Next, we couple two TSs and measure their toggling frequencies as C varies. Three dynamical regimes are observed: (i) for weak coupling, high frequency synchronized oscillations, (ii) for average coupling, low frequency synchronized oscillations, and (iii) for strong coupling the system becomes stable after a transient, in one of two steady states. The system stability, S , goes through a first order phase transition as C increases, in the average coupling regime. After, we study the effects of spatial separation in two compartments on the dynamics of two coupled TSs, where spatial separation is modeled as normally distributed random time delayed reactions. The phase transition of S , as C increases, occurs for lower values of C than when the two TSs are in the same compartment. Finally, we couple weakly and homogeneously several TSs within a single compartment and observe that as the number of coupled TSs increases, the system goes
Chai, Yuan; Chen, Li-Qun
2014-03-01
In this paper, we propose a novel approach for simultaneously identifying unknown parameters and synchronizing time-delayed complex community networks with nonidentical nodes. Based on the LaSalle's invariance principle, a criterion is established by constructing an effective control identification scheme and adjusting automatically the adaptive coupling strength. The proposed control law is applied to a complex community network which is periodically synchronized with different chaotic states. Numerical simulations are conducted to demonstrate the feasibility of the proposed method.
Strain-mediated converse magnetoelectric coupling strength manipulation by a thin titanium layer
Yang, Wei-Gang; Morley, Nicola A.; Sharp, Joanne; Tian, Ye; Rainforth, W. Mark
2016-01-01
The manipulation of the strain-mediated magnetoelectric (ME) coupling strength is investigated by inserting a thin Ti layer (0-10 nm) between a 50 nm Co50Fe50 layer and a (011) oriented lead magnesium niobate-lead titanate (PMN-PT) substrate. A record high remanence ratio (Mr/Ms) tunability of 100% has been demonstrated in the 50 nm CoFe/8 nm Ti/PMN-PT heterostructure, when a total in-plane piezoelectric strain of -1821 ppm was applied at an electric field (E-field) of 16 kV/cm. The ME coupling strength is gradually optimized as the Ti layer thickness increases. Magnetic energy calculation showed that with increasing Ti layer thickness the uniaxial magnetic anisotropy energy (Euni) was reduced from 43 ± 1 kJ/m3 to 29.8 ± 1 kJ/m3. The reduction of Euni makes the strain effect dominant in the total magnetic energy, thus gives an obvious enhanced ME coupling strength.
A multilingual programming model for coupled systems.
Energy Technology Data Exchange (ETDEWEB)
Ong, E. T.; Larson, J. W.; Norris, B.; Tobis, M.; Steder, M.; Jacob, R. L.; Mathematics and Computer Science; Univ. of Wisconsin; Univ. of Chicago; The Australian National Univ.
2008-01-01
Multiphysics and multiscale simulation systems share a common software requirement-infrastructure to implement data exchanges between their constituent parts-often called the coupling problem. On distributed-memory parallel platforms, the coupling problem is complicated by the need to describe, transfer, and transform distributed data, known as the parallel coupling problem. Parallel coupling is emerging as a new grand challenge in computational science as scientists attempt to build multiscale and multiphysics systems on parallel platforms. An additional coupling problem in these systems is language interoperability between their constituent codes. We have created a multilingual parallel coupling programming model based on a successful open-source parallel coupling library, the Model Coupling Toolkit (MCT). This programming model's capabilities reach beyond MCT's native Fortran implementation to include bindings for the C++ and Python programming languages. We describe the method used to generate the interlanguage bindings. This approach enables an object-based programming model for implementing parallel couplings in non-Fortran coupled systems and in systems with language heterogeneity. We describe the C++ and Python versions of the MCT programming model and provide short examples. We report preliminary performance results for the MCT interpolation benchmark. We describe a major Python application that uses the MCT Python bindings, a Python implementation of the control and coupling infrastructure for the community climate system model. We conclude with a discussion of the significance of this work to productivity computing in multidisciplinary computational science.
Directory of Open Access Journals (Sweden)
Jinbao Lin
2014-01-01
Full Text Available Carbon-fiber reinforced polymer material impeller is designed for the centrifugal pump to deliver corrosive, toxic, and abrasive media in the chemical and pharmaceutical industries. The pressure-velocity coupling fields in the pump are obtained from the CFD simulation. The stress distribution of the impeller couple caused by the flow water pressure and rotation centrifugal force of the blade is analyzed using one-way fluid-solid coupling method. Results show that the strength of the impeller can meet the requirement of the centrifugal pumps, and the largest stress occurred around the blades root on a pressure side of blade surface. Due to the existence of stress concentration at the blades root, the fatigue limit of the impeller would be reduced greatly. In the further structure optimal design, the blade root should be strengthened.
Spectral classification of coupling regimes in the quantum Rabi model
Rossatto, Daniel Z.; Villas-Bôas, Celso J.; Sanz, Mikel; Solano, Enrique
2017-07-01
The quantum Rabi model is in the scientific spotlight due to the recent theoretical and experimental progress. Nevertheless, a full-fledged classification of its coupling regimes remains as a relevant open question. We propose a spectral classification dividing the coupling regimes into three regions based on the validity of perturbative criteria on the quantum Rabi model, which allows us the use of exactly solvable effective Hamiltonians. These coupling regimes are (i) the perturbative ultrastrong coupling regime which comprises the Jaynes-Cummings model, (ii) a region where nonperturbative ultrastrong and nonperturbative deep strong coupling regimes coexist, and (iii) the perturbative deep strong coupling regime. We show that this spectral classification depends not only on the ratio between the coupling strength and the natural frequencies of the unperturbed parts, but also on the energy to which the system can access. These regimes additionally discriminate the completely different behaviors of several static physical properties, namely the total number of excitations, the photon statistics of the field, and the cavity-qubit entanglement. Finally, we explain the dynamical properties which are traditionally associated with the deep strong coupling regime, such as the collapses and revivals of the state population, in the frame of the proposed spectral classification.
Cervine tibia morphology and mechanical strength: a suitable tibia model?
Throop, Alexander D W; Landauer, Alexander K; Clark, Alexander Martin; Kuxhaus, Laurel
2015-03-01
Animal models for orthopaedic implant testing are well-established but morphologically dissimilar to human tibiae; notably, most are shorter. The purpose of this study was to quantitatively evaluate the morphology and mechanical properties of the cervine tibia, particularly with regard to its suitability for testing orthopaedic implants. Two endosteal and eleven periosteal measurements were made on 15 cervine tibiae. The mechanical strength in axial compression and torsion was measured using 11 tibiae. The cervine tibia is morphologically similar to the human tibia and more closely matches the length of the human tibia than current tibia models (ovine, porcine, and caprine). The distal epiphysis dimensions are notably different, but no more so than the current tibia models. The torsional stiffness of the cervine tibia is within the range of previously reported values for human tibiae. Furthermore, in many regions, cervine tibiae are abundant and locally available at a low cost. Given these mechanical and morphological data, coupled with potential cost savings if regionally available, the cervine tibia may be an appropriate model for orthopaedic implant testing.
Generalized coupling in the Kuramoto model
DEFF Research Database (Denmark)
Filatrella, G.; Pedersen, Niels Falsig; Wiesenfeld, K.
2007-01-01
We propose a modification of the Kuramoto model to account for the effective change in the coupling constant among the oscillators, as suggested by some experiments on Josephson junction, laser arrays, and mechanical systems, where the active elements are turned on one by one. The resulting model...... with the behavior of Josephson junctions coupled via a cavity....
Pre-reheating magnetogenesis in the kinetic coupling model
Fujita, Tomohiro; Namba, Ryo
2016-08-01
Recent blazar observations provide growing evidence for the presence of magnetic fields in the extragalactic regions. While natural speculation is to associate the production with inflationary physics, it is known that magnetogenesis solely from inflation is quite challenging. We therefore study a model in which a noninflaton field χ coupled to the electromagnetic field through its kinetic term, -I2(χ )F2/4 , continues to move after inflation until the completion of reheating. This leads to a postinflationary amplification of the electromagnetic field. We compute all the relevant contributions to the curvature perturbation, including gravitational interactions, and impose the constraints from the CMB scalar fluctuations on the strength of magnetic fields. We, for the first time, explicitly verify both the backreaction and CMB constraints in a simple yet successful magnetogenesis scenario without invoking a dedicated low-scale inflationary model in the weak-coupling regime of the kinetic coupling model.
Convectively coupled Kelvin waves in CMIP5 coupled climate models
Wang, Lu; Li, Tim
2016-04-01
This study provided a quantitative evaluation of convectively coupled Kelvin waves (CCKWs) over the Indian Ocean and the Pacific Ocean simulated by 20 coupled climate models that participated in Coupled Model Intercomparison Project phase 5. The two leading empirical orthogonal function (EOF) modes of filtered daily precipitation anomalies are used to represent the eastward propagating CCKWs in both observations and simulations. The eigenvectors and eigenvalues of the EOF modes represent the spatial patterns and intensity of CCKWs respectively, and the lead-lag relationship between the two EOF principle components describe the phase propagation of CCKWs. A non-dimensional metric was designed in consideration of all the three factors (i.e., pattern, amplitude and phase propagation) for evaluation. The relative rankings of the models based on the skill scores calculated by the metric are conducted for the Indian Ocean and the Pacific Ocean, respectively. Two models (NorESM1-M and MPI-ESM-LR) are ranked among the best 20 % for both the regions. Three models (inmcm4, MRI-CGCM3 and HadGEM2-ES) are ranked among the worst 20 % for both the regions. While the observed CCKW amplitude is greater north of the equator in the Pacific, some models overestimate the CCKW ampliutde in the Southern Hemisphere. This bias is related to the mean state precipitation bias along the south Pacific convergence zone.
Convectively coupled Kelvin waves in CMIP5 coupled climate models
Wang, Lu; Li, Tim
2017-02-01
This study provided a quantitative evaluation of convectively coupled Kelvin waves (CCKWs) over the Indian Ocean and the Pacific Ocean simulated by 20 coupled climate models that participated in Coupled Model Intercomparison Project phase 5. The two leading empirical orthogonal function (EOF) modes of filtered daily precipitation anomalies are used to represent the eastward propagating CCKWs in both observations and simulations. The eigenvectors and eigenvalues of the EOF modes represent the spatial patterns and intensity of CCKWs respectively, and the lead-lag relationship between the two EOF principle components describe the phase propagation of CCKWs. A non-dimensional metric was designed in consideration of all the three factors (i.e., pattern, amplitude and phase propagation) for evaluation. The relative rankings of the models based on the skill scores calculated by the metric are conducted for the Indian Ocean and the Pacific Ocean, respectively. Two models (NorESM1-M and MPI-ESM-LR) are ranked among the best 20 % for both the regions. Three models (inmcm4, MRI-CGCM3 and HadGEM2-ES) are ranked among the worst 20 % for both the regions. While the observed CCKW amplitude is greater north of the equator in the Pacific, some models overestimate the CCKW ampliutde in the Southern Hemisphere. This bias is related to the mean state precipitation bias along the south Pacific convergence zone.
A probability model for the strength of carbon nanotubes
Directory of Open Access Journals (Sweden)
X. Frank Xu
2014-07-01
Full Text Available A longstanding controversy exists on the form of the probability distribution for the strength of carbon nanotubes: is it Weibull, lognormal, or something else? We present a theory for CNT strength through integration of weakest link scaling, flaw statistics, and brittle fracture. The probability distribution that arises exhibits multiple regimes, each of which takes the form of a Weibull distribution. Our model not only gives a possible resolution to the debate but provides a way to attain reliable estimates of CNT strength for materials design from practical-sized (non-asymptotic data sets of CNT strength. Last, the model offers an explanation for the severe underestimation of CNT strength from strength tests of CNT bundles.
Bayesian Model comparison of Higgs couplings
Bergstrom, Johannes
2014-01-01
We investigate the possibility of contributions from physics beyond the Standard Model (SM) to the Higgs couplings, in the light of the LHC data. The work is performed within an interim framework where the magnitude of the Higgs production and decay rates are rescaled though Higgs coupling scale factors. We perform Bayesian parameter inference on these scale factors, concluding that there is good compatibility with the SM. Furthermore, we carry out Bayesian model comparison on all models where any combination of scale factors can differ from their SM values and find that typically models with fewer free couplings are strongly favoured. We consider the evidence that each coupling individually equals the SM value, making the minimal assumptions on the other couplings. Finally, we make a comparison of the SM against a single "not-SM" model, and find that there is moderate to strong evidence for the SM.
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Walton, Owen
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MACGMC composite material analysis code. The resulting code is called FEAMACCARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMACCARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMACCARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Xiang, Jin; Li, Jinxiang; Li, Hui; Zhang, Chengyun; Dai, Qiaofeng; Tie, Shaolong; Lan, Sheng
2016-05-30
A metasurface composed of regularly arranged silicon (Si) nanospheres (NSs) with coupling was investigated both theoretically and numerically based on the Mie theory, the simple Lorentz line shape model and the finite-difference time-domain technique. By deliberately controlling the coupling strength between Si NSs through the design of the lattice constants of a rectangular lattice, polarization beam splitters, converters and analyzers with good performance can be successfully constructed. A square lattice as well as a large incidence angle was employed to build the polarization beam splitters and converters. At an incidence angle of 80°, the polarization beam splitters can completely reflect the s-polarized light and transmit the p-polarized light in a wavelength region of 510-620 nm. For a circularly polarized light incident on the polarization converters, one can get s-polarized light in the reflection direction and p-polarized light in the transmission direction. For the polarization beam analyzers, a rectangular lattice with deliberately chosen lattice constants was employed and the transmissivity of a linearly polarized light can be continuously adjusted from 0 to ~0.90 by simply rotating the metasurface. We revealed that the broadening of either the electric dipole resonance or the magnetic dipole resonance or both of them, which is induced by the asymmetric coupling of Si NSs, is responsible for the modification in the transmissivity spectrum of the metasurface. Our findings provide a guideline for designing photonic devices based on the metasurfaces composed of Si NSs with controllable coupling strength.
Statistical Model of the 3-D Braided Composites Strength
Institute of Scientific and Technical Information of China (English)
XIAO Laiyuan; ZUO Weiwei; CAI Ganwei; LIAO Daoxun
2007-01-01
Based on the statistical model for the tensile statistical strength of unidirectional composite materials and the stress analysis of 3-D braided composites, a new method is proposed to calculate the tensile statistical strength of the 3-D braided composites. With this method, the strength of 3-D braided composites can be calculated with very large accuracy, and the statistical parameters of 3-D braided composites can be determined. The numerical result shows that the tensile statistical strength of 3-D braided composites can be predicted using this method.
Coupling dark energy with Standard Model states
Bento, M C; Bertolami, O
2009-01-01
In this contribution one examines the coupling of dark energy to the gauge fields, to neutrinos, and to the Higgs field. In the first case, one shows how a putative evolution of the fundamental couplings of strong and weak interactions via coupling to dark energy through a generalized Bekenstein-type model may cause deviations on the statistical nuclear decay Rutherford-Soddy law. Existing bounds for the weak interaction exclude any significant deviation. For neutrinos, a perturbative approach is developed which allows for considering viable varying mass neutrino models coupled to any quintessence-type field. The generalized Chaplygin model is considered as an example. For the coupling with the Higgs field one obtains an interesting cosmological solution which includes the unification of dark energy and dark matter.
A Strength Model and Service Envelope for PBX 9501
Energy Technology Data Exchange (ETDEWEB)
Stevens, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-02-05
An analytical method is proposed for making an assessment of the severity of the response of PBX 9501 in structural response simulations. The approach is based on the coherent use of a strength model and a failure criterion. The strength model is based on a creep rupture function and an associated cumulative damage model. The material's residual strength at any time during a simulation of structural response is determined by taking into account both the actual stress history up to that time, and a hypothetical continuation of the applied stresses that are assumed to grow until material failure results. The residual strength is used by the failure criterion to define the region of safe (non-failed) material response. The Mohr-Coulomb failure criterion is chosen for its general applicability to materials with both cohesive and frictional strength. The combined use of the residual strength model and the failure criterion provides a quantitative method of assessing the severity of the response of PBX 9501 material in structural simulations: the proximity of any evolving, general state of stress to the failure surface (which shrinks due to the cumulative damage caused by the past stress history) can be calculated and used as a measure of margin to failure. The strength model has been calibrated to a broad range of uniaxial tension and compression tests, and a small set of creep tests, and is applicable to a broad range of loading conditions.
Yarn Strength Modelling Using Genetic Fuzzy Expert System
Banerjee, Debamalya; Ghosh, Anindya; Das, Subhasis
2013-05-01
This paper deals with the modelling of cotton yarn strength using genetic fuzzy expert system. Primarily a fuzzy expert system has been developed to model the cotton yarn strength from the constituent fibre parameters such as fibre strength, upper half mean length, fibre fineness and short fibre content. A binary coded genetic algorithm has been used to improve the prediction performance of the fuzzy expert system. The experimental validation confirms that the genetic fuzzy expert system has significantly better prediction accuracy and consistency than that of the fuzzy expert system.
Generalized circuit model for coupled plasmonic systems
Benz, Felix; Tserkezis, Christos; Chikkaraddy, Rohit; Sigle, Daniel O; Pukenas, Laurynas; Evans, Stephen D; Aizpurua, Javier; Baumberg, Jeremy J
2015-01-01
We develop an analytic circuit model for coupled plasmonic dimers separated by small gaps that provides a complete account of the optical resonance wavelength. Using a suitable equivalent circuit, it shows how partially conducting links can be treated and provides quantitative agreement with both experiment and full electromagnetic simulations. The model highlights how in the conducting regime, the kinetic inductance of the linkers set the spectral blue-shifts of the coupled plasmon.
Plant water-stress parameterization determines the strength of land-atmosphere coupling
Combe, Marie; Vilà-Guerau de Arellano, Jordi; Ouwersloot, Huug G.; Peters, Wouter
2016-04-01
Land-surface models that are currently used in numerical weather predictions models and earth system models all assume various plant water-stress parameterizations. We investigate the impact of this variety of parametrizations on the performance of atmospheric models. For this, we use a conceptual framework where a convective atmospheric boundary-layer (ABL) model is coupled to a daytime model for the land surface fluxes of carbon, water, and energy. We first validate our coupled model for a set of surface and upper-atmospheric diurnal observations over a grown maize field in the Netherlands. We then perform a sensitivity analysis of this coupled land-atmosphere system by varying the modeled plant water-stress response from a very insensitive to a sensitive response during dry soil conditions. We first propose and verify a feedback diagram that ties plant water-stress response and large-scale atmospheric conditions to the diurnal cycles of ABL CO2, humidity and temperature. Based on our undertanstanding of the diurnal coupled system, we then explore the impact of the assumed water-stress reponse for the development of a dry spell on a synoptic time scale. We find that during a progressive 3-week soil drying caused by evapotranspiration, an insensitive plant will dampen atmospheric heating because the vegetation continues to transpire while soil moisture is available. In contrast, the sensitive plant reduces its transpiration to prevent soil moisture depletion. But when absolute soil moisture comes close to wilting point, the insensitive plant will suddenly close its stomata causing a switch to a land-atmosphere coupling regime dominated by sensible heat exchange. We find that in both cases, our modeled progressive soil moisture depletion contributes to further atmospheric warming up to 6 K, reduced photosynthesis up to 89 %, and CO2 enrichment up to 30 ppm, but the full impact is strongly delayed for the insensitive plant. Finally, we demonstrate that the assumed
Echo structures and Target Strength modelling for a synthetic submarine
Schippers, P.; Beerens, S.P.
2007-01-01
Since the early nineties, performance modelling of active sonars has been developed at TNO in the ALMOST model, including propagation and sonar processing, based on point targets of given Target Strength. Recently, the modelling was extended with a computation module for target echo structure, resul
Modeling Pancake Formation with a Coupled Wave-Ice Model
Veeramony, J.; Orzech, M.; Shi, F.; Bateman, S. P.; Calantoni, J.
2016-12-01
Recent results from the ONR-sponsored Arctic Sea State DRI cruise (Thomson et al., 2016, EOS, in press) suggest that small-scale pancake ice formation is an important process in the initial recovery and refreezing of the Arctic pack ice each autumn. Ocean surface waves and ambient temperature play significant roles in shaping and/or limiting the pancake growth patterns, which may either facilitate or delay the recovery of the ice pack. Here we apply a phase-resolving, coupled wave-ice system, consisting of a CFD wave model (NHWAVE) and a discrete-element ice model (LIGGGHTS), to investigate the formation processes of pancake ice under different conditions. A series of simulations is run, each beginning with a layer of disconnected ice particles floating on the ocean surface. Wave conditions and ice bonding properties are varied to examine the effects of mild versus stormy conditions, wind waves versus swell, and warmer versus colder temperatures. Model runs are limited to domains of O(1 sq km). Initial tests have shown some success in replicating qualitative results from the Sea State cruise, including the formation of irregularly shaped pancakes from the "frazil" ice layer, changes in formation processes caused by varying ambient temperature (represented through variations in ice bonding strength), occasional rafting of one pancake on top of another, and increased wave attenuation as pancakes grow larger.
Lai, Pik-Yin
2017-02-01
Reconstructing network connection topology and interaction strengths solely from measurement of the dynamics of the nodes is a challenging inverse problem of broad applicability in various areas of science and engineering. For a discrete-time step network under noises whose noise-free dynamics is stationary, we derive general analytic results relating the weighted connection matrix of the network to the correlation functions obtained from time-series measurements of the nodes for networks with one-dimensional intrinsic node dynamics. Information about the intrinsic node dynamics and the noise strengths acting on the nodes can also be obtained. Based on these results, we develop a scheme that can reconstruct the above information of the network using only the time-series measurements of node dynamics as input. Reconstruction formulas for higher-dimensional node dynamics are also derived and illustrated with a two-dimensional node dynamics network system. Furthermore, we extend our results and obtain a reconstruction scheme even for the cases when the noise-free dynamics is periodic. We demonstrate that our method can give accurate reconstruction results for weighted directed networks with linear or nonlinear node dynamics of various connection topologies, and with linear or nonlinear couplings.
Raytracing simulations of coupled dark energy models
Pace, Francesco; Moscardini, Lauro; Bacon, David; Crittenden, Robert
2014-01-01
Dark matter and dark energy are usually assumed to be independent, coupling only gravitationally. An extension to this simple picture is to model dark energy as a scalar field which is directly coupled to the cold dark matter fluid. Such a non-trivial coupling in the dark sector leads to a fifth force and a time-dependent dark matter particle mass. In this work we examine the impact that dark energy-dark matter couplings have on weak lensing statistics by constructing realistic simulated weak-lensing maps using raytracing techniques through a suite of N-body cosmological simulations. We construct maps for an array of different lensing quantities, covering a range of scales from a few arcminutes to several degrees. The concordance $\\Lambda$CDM model is compared to different coupled dark energy models, described either by an exponential scalar field potential (standard coupled dark energy scenario) or by a SUGRA potential (bouncing model). We analyse several statistical quantities, in particular the power spect...
Standard-model coupling constants from compositeness
Besprosvany, J
2003-01-01
A coupling-constant definition is given based on the compositeness property of some particle states with respect to the elementary states of other particles. It is applied in the context of the vector-spin-1/2-particle interaction vertices of a field theory, and the standard model. The definition reproduces Weinberg's angle in a grand-unified theory. One obtains coupling values close to the experimental ones for appropriate configurations of the standard-model vector particles, at the unification scale within grand-unified models, and at the electroweak breaking scale.
Bifurcation and synchronization of synaptically coupled FHN models with time delay
Energy Technology Data Exchange (ETDEWEB)
Wang Qingyun [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Inner College of Mongolia Finance and Economics, Huhhot 010051 (China); Lu Qishao [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Guanrong [Department of Electronic Engineering, City University of Hong Kong, Hong Kong (China); Feng Zhaosheng [Department of Mathematics, University of Texas - Pan American, Edinburg, TX 78441 (United States)], E-mail: zsfeng@utpa.edu; Duan Lixia [School of Science, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)
2009-01-30
This paper presents an investigation of dynamics of the coupled nonidentical FHN models with synaptic connection, which can exhibit rich bifurcation behavior with variation of the coupling strength. With the time delay being introduced, the coupled neurons may display a transition from the original chaotic motions to periodic ones, which is accompanied by complex bifurcation scenario. At the same time, synchronization of the coupled neurons is studied in terms of their mean frequencies. We also find that the small time delay can induce new period windows with the coupling strength increasing. Moreover, it is found that synchronization of the coupled neurons can be achieved in some parameter ranges and related to their bifurcation transition. Bifurcation diagrams are obtained numerically or analytically from the mathematical model and the parameter regions of different behavior are clarified.
Dual coupling effective band model for polarons
Marchand, Dominic J. J.; Stamp, Philip C. E.; Berciu, Mona
2017-01-01
Nondiagonal couplings to a bosonic bath completely change polaronic dynamics, from the usual diagonally coupled paradigm of smoothly varying properties. We study, using analytic and numerical methods, a model having both diagonal Holstein and nondiagonal Su-Schrieffer-Heeger (SSH) couplings. The critical coupling found previously in the pure SSH model, at which the k =0 effective mass diverges, now becomes a transition line in the coupling constant plane—the form of the line depends on the adiabaticity parameter. Detailed results are given for the quasiparticle and ground-state properties, over a wide range of couplings and adiabaticity ratios. The new paradigm involves a destabilization, at the transition line, of the simple Holstein polaron to one with a finite ground-state momentum, but with everywhere a continuously evolving band shape. No "self-trapping transition" exists in any of these models. The physics may be understood entirely in terms of competition between different hopping terms in a simple renormalized effective band theory. The possibility of further transitions is suggested by the results.
Modelling Nephron Autoregulation and Synchronization in Coupled Nephron Systems
DEFF Research Database (Denmark)
Laugesen, Jakob Lund
A successful mathematical description of the renal processes requires an understanding of the mechanisms through which these pressures take place. Part of the present thesis addresses the hypothesis that increased coupling between neighboring nephrons and increased strength of the tubuloglomerular...... feedback process can explain the experimentally observed irregular oscillations in the nephron pressures and flows. The hypothesis is put to test by calculating Lyapunov exponents of a high level mechanism-based model of a nephron and a similar model of two vascular coupled nephrons. Synchronization...... along the edge of the resonance tongue and appear also to be related to the formation of multilayered tori and torus-doubling bifurcations. A cyclic behavior of sub- and supercriticality of the period doublings in the neighborhood of the contact between period doubling and saddle-node bifurcations cause...
An Appraisal of Coupled Climate Model Simulations
Energy Technology Data Exchange (ETDEWEB)
Sperber, K; Gleckler, P; Covey, C; Taylor, K; Bader, D; Phillips, T; Fiorino, M; Achutarao, K
2004-02-24
In 2002, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) proposed the concept for a state-of-the-science appraisal of climate models to be performed approximately every two years. Motivation for this idea arose from the perceived needs of the international modeling groups and the broader climate research community to document progress more frequently than provided by the Intergovernmental Panel on Climate Change (IPCC) Assessment Reports. A committee of external reviewers, which included senior researchers from four leading international modeling centers, supported the concept by stating in its review: ''The panel enthusiastically endorses the suggestion that PCMDI develop an independent appraisal of coupled model performance every 2-3 years. This would provide a useful 'mid-course' evaluation of modeling progress in the context of larger IPCC and national assessment activities, and should include both coupled and single-component model evaluations.''
Micromechanical modelling of mechanical behaviour and strength of wood
DEFF Research Database (Denmark)
Mishnaevsky, Leon; Qing, Hai
2008-01-01
An overview of the micromechanical theoretical and numerical models of wood is presented. Different methods of analysis of the effects of wood microstructures at different scale levels on the mechanical behaviour, deformation and strength of wood are discussed and compared. Micromechanical models...
Zhu, Ming-yi; Zhang, Xiu-yin
2015-06-01
To evaluate the effect of amount of silane coupling agent on flexural strength of dental composite resins reinforced with aluminium borate whisker (ABW). ABW was surface-treated with 0%, 1%, 2%, 3% and 4% silan coupling agent (γ-MPS), and mixed with resin matrix to synthesize 5 groups of composite resins. After heat-cured at 120 degrees centigrade for 1 h, specimens were tested in three-point flexure to measure strength according to ISO-4049. One specimen was selected randomly from each group and observed under scanning electron microscope (SEM). The data was analyzed with SAS 9.2 software package. The flexural strength (117.93±11.9 Mpa) of the group treated with 2% silane coupling agent was the highest, and significantly different from that of the other 4 groups (α=0.01). The amount of silane coupling agent has impact on the flexural strength of dental composite resins reinforced with whiskers; The flexual strength will be reduced whenever the amount is higher or lower than the threshold. Supported by Research Fund of Science and Technology Committee of Shanghai Municipality (08DZ2271100).
Fractional dynamical model for neurovascular coupling
Belkhatir, Zehor
2014-08-01
The neurovascular coupling is a key mechanism linking the neural activity to the hemodynamic behavior. Modeling of this coupling is very important to understand the brain function but it is at the same time very complex due to the complexity of the involved phenomena. Many studies have reported a time delay between the neural activity and the cerebral blood flow, which has been described by adding a delay parameter in some of the existing models. An alternative approach is proposed in this paper, where a fractional system is used to model the neurovascular coupling. Thanks to its nonlocal property, a fractional derivative is suitable for modeling the phenomena with delay. The proposed model is coupled with the first version of the well-known balloon model, which relates the cerebral blood flow to the Blood Oxygen Level Dependent (BOLD) signal measured using functional Magnetic Resonance Imaging (fMRI). Through some numerical simulations, the properties of the fractional model are explained and some preliminary comparisons to a real BOLD data set are provided. © 2014 IEEE.
Modelling the effect of shear strength on isentropic compression experiments
Thomson, Stuart; Howell, Peter; Ockendon, John; Ockendon, Hilary
2017-01-01
Isentropic compression experiments (ICE) are a way of obtaining equation of state information for metals undergoing violent plastic deformation. In a typical experiment, millimetre thick metal samples are subjected to pressures on the order of 10 - 102 GPa, while the yield strength of the material can be as low as 10-2 GPa. The analysis of such experiments has so far neglected the effect of shear strength, instead treating the highly plasticised metal as an inviscid compressible fluid. However making this approximation belies the basic elastic nature of a solid object. A more accurate method should strive to incorporate the small but measurable effects of shear strength. Here we present a one-dimensional mathematical model for elastoplasticity at high stress which allows for both compressibility and the shear strength of the material. In the limit of zero yield stress this model reproduces the hydrodynamic models currently used to analyse ICEs. Numerical solutions of the governing equations will then be presented for problems relevant to ICEs in order to investigate the effects of shear strength compared with a model based purely on hydrodynamics.
A Report on the Validation of Beryllium Strength Models
Energy Technology Data Exchange (ETDEWEB)
Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-02-05
This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack of high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to
Forecast Jointed Rock Mass Compressive Strength Using a Numerical Model
Directory of Open Access Journals (Sweden)
Protosenya Anatoliy
2016-01-01
Full Text Available The method of forecasting the strength of the jointed rock mass by numerical modeling of finite element method in ABAQUS was described. The paper presents advantages of this method to solve the problem of determining the mechanical characteristics of jointed rock mass and the basic steps of creating a numerical geomechanical model of jointed rock mass and numerical experiment. Numerical simulation was carried out with jointed rock mass in order to obtain the ratio of strain and stress while loading the numerical model, determining parameters of quantitative assessment of the impact of the discontinuities orientation on the value of the compressive strength, compressive strength anisotropy. The results of the numerical experiment are compared with the data of experimental studies investigations. Innovative materials and structures are analyzed in this paper. The results that were obtained by calculation show qualitative agreement with the results of laboratory experiments of jointed rock mass.
Modeling and experimental analysis of magnetostriction in high strength steels
Directory of Open Access Journals (Sweden)
Della Torre E.
2013-01-01
Full Text Available Previous studies on the magnetostriction in high strength steels have ignored the internal anisotropies due to previous material handling. Cold-rolling an iron alloy will stretch and distort the magnetic domains in the direction of rolling. These altered domain shapes impact the magnetic characteristics of the alloy; adding an additional preferred direction of magnetization to the easy or hard axes within the crystalline structure. This paper presents data taken on rods of a high strength steel that have been machined parallel to the rolling direction; as well as simulated results using a Preisach-type magnetostriction model. The model, whose formulation is based on the DOK magnetization-based model, aims specifically to simulate the Villari reversal phenomenon observed in the magnetostriction measurements of high strength steels and some Terfenol-D alloys.
Modeling of Coupled Nano-Cavity Lasers
DEFF Research Database (Denmark)
Skovgård, Troels Suhr
Modeling of nanocavity light emitting semiconductor devices is done using the semiconductor laser rate equations with spontaneous and stimulated emission terms modified for Purcell enhanced recombination. The modified terms include details about the optical and electronic density......, coupled photonic crystal nanocavity structures are simulated. The resonance frequencies of in-phase and out-of-phase coupled quadrupole modes in rectangular photonic crystal H1 cavities are extracted and are found to vary non-trivially with the intercavity separation. A qualitative explanation is given...... in terms of the in-plane mode profiles. Fareld emission patterns for the structures are calculated based on the finite-dierence time-domain simulations. It is found that only systems with an even number of holes separating the cavities show clear signs of being coupled. This non-trivial coupling behavior...
A multifluid mix model with material strength effects
Energy Technology Data Exchange (ETDEWEB)
Chang, C. H. [Los Alamos National Laboratory; Scannapieco, A. J. [Los Alamos National Laboratory
2012-04-23
We present a new multifluid mix model. Its features include material strength effects and pressure and temperature nonequilibrium between mixing materials. It is applicable to both interpenetration and demixing of immiscible fluids and diffusion of miscible fluids. The presented model exhibits the appropriate smooth transition in mathematical form as the mixture evolves from multiphase to molecular mixing, extending its applicability to the intermediate stages in which both types of mixing are present. Virtual mass force and momentum exchange have been generalized for heterogeneous multimaterial mixtures. The compression work has been extended so that the resulting species energy equations are consistent with the pressure force and material strength.
Playing with fermion couplings in Higgsless models
Casalbuoni, R; Dolce, D; Dominici, Daniele
2005-01-01
We discuss the fermion couplings in a four dimensional SU(2) linear moose model by allowing for direct couplings between the left-handed fermions on the boundary and the gauge fields in the internal sites. This is realized by means of a product of non linear $\\sigma$-model scalar fields which, in the continuum limit, is equivalent to a Wilson line. The effect of these new non local couplings is a contribution to the $\\epsilon_3$ parameter which can be of opposite sign with respect to the one coming from the gauge fields along the string. Therefore, with some fine tuning, it is possible to satisfy the constraints from the electroweak data.
A Variable Flow Modelling Approach To Military End Strength Planning
2016-12-01
System Dynamics (SD) model is ideal for strategic analysis as it encompasses all the behaviours of a system and how the behaviours are influenced by...Markov Chain Models Wang describes Markov chain theory as a mathematical tool used to investigate dynamic behaviours of a system in a discrete-time... MODELLING APPROACH TO MILITARY END STRENGTH PLANNING by Benjamin K. Grossi December 2016 Thesis Advisor: Kenneth Doerr Second Reader
Transition Strength Sums and Quantum Chaos in Shell Model States
Kota, V K B; Kar, K; Gómez, J M G; Retamosa, J
2000-01-01
For the embedded Gaussian orthogonal ensemble (EGOE) of random matrices, the strength sums generated by a transition operator acting on an eigenstate vary with the excitation energy as the ratio of two Gaussians. This general result is compared to exact shell model calculations, with realistic interactions, of spherical orbit occupancies and Gamow-Teller strength sums in some $(ds)$ and $(fp)$ shell examples. In order to confirm that EGOE operates in the chaotic domain of the shell model spectrum, calculations are carried out using two different interpolating hamiltonians generating order-chaos transitions. Good agreement is obtained in the chaotic domain of the spectrum, and strong deviations are observed as nuclear motion approaches a regular regime (transition strength sums appear to follow the Dyson's $\\Delta_3$ statistic). More importantly, they shed new light on the newly emerging understanding that in the chaotic domain of isolated finite interacting many particle systems smoothed densities (they inclu...
Reheating in nonminimal derivative coupling model
Sadjadi, H Mohseni
2012-01-01
We consider a model with nonminimal derivative coupling of inflaton to gravity. The reheating process during rapid oscillation of the inflaton is studied and the reheating temperature is obtained. Behaviors of the inflaton and produced radiation in this era are discussed.
DEFF Research Database (Denmark)
Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark;
2014-01-01
. This was seen as evidence for covalent bonds between lignin phenolics and the coupling agents. No spectral changes were observed when the coupling agents were mixed with the wood constituents cellulose and hemicellulose. For verification of the results, a modified EN 311 wet adhesion pull strength test...... was performed with softwood panels painted with a solvent-borne alkyd/acrylic coating. The results revealed an improved adhesion for all tested coupling agents compared to the untreated reference. The spectroscopic and pull test results underline that the presence of the lignin moiety in wood is of central...
Rojas, Eduardo; Bashir, Adnan; Raya, Alfredo
2008-01-01
We study the dynamical generation of masses for fundamental fermions in quenched quantum electrodynamics, in the presence of magnetic fields of arbitrary strength, by solving the Schwinger-Dyson equation (SDE) for the fermion self-energy in the rainbow approximation. We employ the Ritus eigenfunction formalism which provides a neat solution to the technical problem of summing over all Landau levels. It is well known that magnetic fields catalyze the generation of fermion mass m for arbitrarily small values of electromagnetic coupling \\alpha. For intense fields it is also well known that m \\propto \\sqrt eB. Our approach allows us to span all regimes of parameters \\alpha and eB. We find that m \\propto \\sqrt eB provided \\alpha is small. However, when \\alpha increases beyond the critical value \\alpha_c which marks the onslaught of dynamical fermion masses in vacuum, we find m \\propto \\Lambda, the cut-off required to regularize the ultraviolet divergences. Our method permits us to verify the results available in l...
Wouthuysen-Field coupling strength and application to high-redshift 21 cm radiation
Hirata, C M
2006-01-01
The first UV sources in the universe are expected to have coupled the HI spin temperature to the gas kinetic temperature via scattering in the Lyman-alpha resonance [the Wouthuysen-Field (WF) effect]. By establishing an HI spin temperature different from the temperature of the CMB, the WF effect should allow observations of HI during the reionization epoch in the redshifted 21 cm line. This paper investigates four mechanisms that can affect the strength of the WF effect that were not previously considered: (1) Photons redshifting into the HI Lyman resonances may excite an H atom and result in a radiative cascade terminating in two-photon 2s->1s emission, rather than always degrading to Lyman-alpha as usually assumed. (2) The fine structure of the Lyman-alpha resonance alters the photon frequency distribution and leads to a suppression of the scattering rate. (3) The spin-flip scatterings change the frequency of the photon and cause the photon spectrum to relax not to the kinetic temperature of the gas but to ...
Parallelization of the Coupled Earthquake Model
Block, Gary; Li, P. Peggy; Song, Yuhe T.
2007-01-01
This Web-based tsunami simulation system allows users to remotely run a model on JPL s supercomputers for a given undersea earthquake. At the time of this reporting, predicting tsunamis on the Internet has never happened before. This new code directly couples the earthquake model and the ocean model on parallel computers and improves simulation speed. Seismometers can only detect information from earthquakes; they cannot detect whether or not a tsunami may occur as a result of the earthquake. When earthquake-tsunami models are coupled with the improved computational speed of modern, high-performance computers and constrained by remotely sensed data, they are able to provide early warnings for those coastal regions at risk. The software is capable of testing NASA s satellite observations of tsunamis. It has been successfully tested for several historical tsunamis, has passed all alpha and beta testing, and is well documented for users.
Directory of Open Access Journals (Sweden)
Wang Xujing
2008-08-01
Full Text Available Abstract Background Insulin, the principal regulating hormone of blood glucose, is released through the bursting of the pancreatic islets. Increasing evidence indicates the importance of islet morphostructure in its function, and the need of a quantitative investigation. Recently we have studied this problem from the perspective of islet bursting of insulin, utilizing a new 3D hexagonal closest packing (HCP model of islet structure that we have developed. Quantitative non-linear dependence of islet function on its structure was found. In this study, we further investigate two key structural measures: the number of neighboring cells that each β-cell is coupled to, nc, and the coupling strength, gc. Results β-cell clusters of different sizes with number of β-cells nβ ranging from 1–343, nc from 0–12, and gc from 0–1000 pS, were simulated. Three functional measures of islet bursting characteristics – fraction of bursting β-cells fb, synchronization index λ, and bursting period Tb, were quantified. The results revealed a hyperbolic dependence on the combined effect of nc and gc. From this we propose to define a dimensionless cluster coupling index or CCI, as a composite measure for islet morphostructural integrity. We show that the robustness of islet oscillatory bursting depends on CCI, with all three functional measures fb, λ and Tb increasing monotonically with CCI when it is small, and plateau around CCI = 1. Conclusion CCI is a good islet function predictor. It has the potential of linking islet structure and function, and providing insight to identify therapeutic targets for the preservation and restoration of islet β-cell mass and function.
Global Coupled Ocean-Atmosphere General Circulation Models in LASG/IAP
Institute of Scientific and Technical Information of China (English)
俞永强; 张学洪; 郭裕福
2004-01-01
Coupled ocean-atmospheric general circulation models are the only tools to quantitatively simulate the climate system. Since the end of the 1980s, a group of scientists in the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), have been working to develop a global OGCM and a global coupled ocean-atmosphere general circulation model (CGCM). From the original flux anomalycoupling model developed in the beginning of the 1990s to the latest directly-coupling model, LASG scientists have developed four global coupled GCMs. This study summarizes the development history of these models and describes the third and fourth coupled GCMs and selected applications. Strengths and weaknesses of these models are highlighted.
Coupling GIS with Nitrogen Leaching Models
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Geographical information systems (GIS) are increasingly being applied to surface and subsurface flow and transport modeling issues. In this paper, more attentions are focused on the methodology and strategies of coupling GIS with non-point pollution models. Suggestions are made on how to best integrate current available or selected nitrogen leaching models, especially in the aspect of programming development so as to effectively and flexibly address the specific tasks. The new possibilities for dealing with non-point pollution problems at a regional scale are provided in the resulting integrated approach, including embedding grid-based GIS components in models.
Coupled Seepage and Heat Transfer Intake Model
Institute of Scientific and Technical Information of China (English)
WU Junhua; YOU Shijun; ZHANG Huan; LI Haishan
2009-01-01
In the beach well intake system, heat is transferred from soil to fluid when seawater is filtered through the aquifer, providing higher temperature source water to the seawater source heat pump (SWHP) system in winter. A 3-D coupled seepage and heat transfer model for studying beach well intake system is established by adopting the computer code FLUENT. Numerical results of this model are compared with the experimental results under the same conditions. Based on the experiment-verified coupled model, numerical simulation of the supply water temperature is studied over a heating season. Results show that the minimum temperature of supply water is 275.2 K when this intake system continuously provides seawater with flow rate of 35 m3/h to SWHP. Results also indicate that the supply water temperature is higher than seawater, and that the minimum temperature of supply water lags behind seawater, ensuring effective and reliable operation of SWHP.
Coupled elasto-plasticity damage constitutive models for concrete
Institute of Scientific and Technical Information of China (English)
Qiang XU; Jian-yun CHEN; Jing LI; Gang XU
2013-01-01
The paper is to design and construct a coupled elasto-plasticity damage constitutive model for concrete.Based on the energy dissipation principle,the Hsieh-Ting-Chen four-parameter yield function is used.The model can reflect different strength characteristics of concrete in tension and compression,and reduce the limitation and lacuna of the traditional damage constitutive models for concrete.Furthermore,numerical test for concrete stress-strain relation under uniaxial tension and compression is given.Moreover,the damage process of concrete gravity dam is calculated and analyzed in seismic load.Compared with other damage constitutive models,the proposed model contains only one unknown parameter and the other parameters can be found in the Hsieh-Ting-Chen four-parameter yield function.The same damage evolution law,which is used for tension and compression,is good for determining stress-strain constitutive and damage characteristics in complex stress state.This coupled damage constitutive models can be applied in analyzing damage of concrete gravity dam and arch dam.
Runge, Jakob; Marwan, Norbert; Kurths, Jürgen
2012-01-01
While it is an important problem to identify the existence of causal associations between two components of a multivariate time series, a topic addressed in Runge et al. (2012), it is even more important to assess the strength of their association in a meaningful way. In the present article we focus on the problem of defining a meaningful coupling strength using information theoretic measures and demonstrate the short-comings of the well-known mutual information and transfer entropy. Instead, we propose a certain time-delayed conditional mutual information, the momentary information transfer (MIT), as a measure of association that is general, causal and lag-specific, reflects a well interpretable notion of coupling strength and is practically computable. MIT is based on the fundamental concept of source entropy, which we utilize to yield a notion of coupling strength that is, compared to mutual information and transfer entropy, well interpretable, in that for many cases it solely depends on the interaction of...
Directory of Open Access Journals (Sweden)
S. Chowdhury
2015-11-01
Full Text Available In this study, Wood Ash (WA prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45 and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20% including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM, strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.
Chowdhury, S; Maniar, A; Suganya, O M
2015-11-01
In this study, Wood Ash (WA) prepared from the uncontrolled burning of the saw dust is evaluated for its suitability as partial cement replacement in conventional concrete. The saw dust has been acquired from a wood polishing unit. The physical, chemical and mineralogical characteristics of WA is presented and analyzed. The strength parameters (compressive strength, split tensile strength and flexural strength) of concrete with blended WA cement are evaluated and studied. Two different water-to-binder ratio (0.4 and 0.45) and five different replacement percentages of WA (5%, 10%, 15%, 18% and 20%) including control specimens for both water-to-cement ratio is considered. Results of compressive strength, split tensile strength and flexural strength showed that the strength properties of concrete mixture decreased marginally with increase in wood ash contents, but strength increased with later age. The XRD test results and chemical analysis of WA showed that it contains amorphous silica and thus can be used as cement replacing material. Through the analysis of results obtained in this study, it was concluded that WA could be blended with cement without adversely affecting the strength properties of concrete. Also using a new statistical theory of the Support Vector Machine (SVM), strength parameters were predicted by developing a suitable model and as a result, the application of soft computing in structural engineering has been successfully presented in this research paper.
Coupled intertwiner dynamics - a toy model for coupling matter to spin foam models
Steinhaus, Sebastian
2015-01-01
The universal coupling of matter and gravity is one of the most important features of general relativity. In quantum gravity, in particular spin foams, matter couplings have been defined in the past, yet the mutual dynamics, in particular if matter and gravity are strongly coupled, are hardly explored, which is related to the definition of both matter and gravitational degrees of freedom on the discretisation. However extracting this mutual dynamics is crucial in testing the viability of the spin foam approach and also establishing connections to other discrete approaches such as lattice gauge theories. Therefore, we introduce a simple 2D toy model for Yang--Mills coupled to spin foams, namely an Ising model coupled to so--called intertwiner models defined for $\\text{SU}(2)_k$. The two systems are coupled by choosing the Ising coupling constant to depend on spin labels of the background, as these are interpreted as the edge lengths of the discretisation. We coarse grain this toy model via tensor network renor...
Coupled atmosphere-wildland fire modelling
Directory of Open Access Journals (Sweden)
Jacques Henri Balbi
2009-10-01
Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.
Towards Better Coupling of Hydrological Simulation Models
Penton, D.; Stenson, M.; Leighton, B.; Bridgart, R.
2012-12-01
Standards for model interoperability and scientific workflow software provide techniques and tools for coupling hydrological simulation models. However, model builders are yet to realize the benefits of these and continue to write ad hoc implementations and scripts. Three case studies demonstrate different approaches to coupling models, the first using tight interfaces (OpenMI), the second using a scientific workflow system (Trident) and the third using a tailored execution engine (Delft Flood Early Warning System - Delft-FEWS). No approach was objectively better than any other approach. The foremost standard for coupling hydrological models is the Open Modeling Interface (OpenMI), which defines interfaces for models to interact. An implementation of the OpenMI standard involves defining interchange terms and writing a .NET/Java wrapper around the model. An execution wrapper such as OatC.GUI or Pipistrelle executes the models. The team built two OpenMI implementations for eWater Source river system models. Once built, it was easy to swap river system models. The team encountered technical challenges with versions of the .Net framework (3.5 calling 4.0) and with the performance of the execution wrappers when running daily simulations. By design, the OpenMI interfaces are general, leaving significant decisions around the semantics of the interfaces to the implementer. Increasingly, scientific workflow tools such as Kepler, Taverna and Trident are able to replace custom scripts. These tools aim to improve the provenance and reproducibility of processing tasks. In particular, Taverna and the myExperiment website have had success making many bioinformatics workflows reusable and sharable. The team constructed Trident activities for hydrological software including IQQM, REALM and eWater Source. They built an activity generator for model builders to build activities for particular river systems. The models were linked at a simulation level, without any daily time
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.
2014-01-01
A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.
RECEIVED SIGNAL STRENGTH INDICATION MODELING IN INDOOR WIRELESS SENSOR NETWORKS
Directory of Open Access Journals (Sweden)
Edson Taira Procopio
2013-01-01
Full Text Available This study aims to identify mathematical models that represent the relation between Received Signal Strength Indication (RSSI and objects in an indoor Wireless Sensor Network (WSN. Using the Least Squares Method, four linear models have been identified: The first one relates uplink RSSI and objects; the second one relates downlink RSSI and objects; the third one relates uplink RSSI and obstacles and the fourth one relates downlink RSSI and obstacles. The obtained results, characterized by small residual values, attest the validation of all four models.
A Unified Mutual Coupling Model for Multiple Antenna Systems
Institute of Scientific and Technical Information of China (English)
WU Yu-jiang; NIE Zai-ping
2006-01-01
A unified mutual coupling model for multiple antenna communication systems based on moment methods is proposed. This model combines antenna coupling and RF front-end circuit coupling, thus providing a more accurate and complete analysis of the mutual coupling effect on multiple antenna systems.
Coupled electrothermal modeling of microheaters using SPICE
Swart, Nicholas R.; Nathan, Arokia
1994-06-01
A novel simulation approach that computes both the transient and steady state electrothermal behavior in integrated circuit (IC) compatible thermally isolated microheaters is reported. The resulting distribution of heat, current density and temperature, as well as the electrical terminal behavior have been obtained for realistic device structures. The results are based on a two-dimensional solution of the coupled system of partial differential equations that govern both electrical and heat transport in the device. Unlike standard numerical approaches for coupled systems, our technique is based on the behavioural models, available in most commercial circuit simulators (e.g., HSPICE), that allow synthesis of complex, nonlinear, and coupled circuit elements. The simulation results are in excellent agreement with measurement data of steady state and transient terminal characteristics, obtained under conditions of vacuum. We note that this modeling approach allows concurrent simulation (and subsequent optimization) of the performance of both the control electronics as well as the thermal element(s), within the same IC design environment.
The standard model with gravity couplings
Chang, L N; Lay Nam Chang; Chopin Soo
1996-01-01
ABSTRACT-The Standard Model with Gravity Couplings-Lay Nam Chang(Virginia Tech) & Chopin Soo(Penn State)--- It has been shown by Ashtekar, and many others after him, that classical gravity in four dimensions can be described equally well by (anti)self-dual variables instead of the conventional variables. In this paper, we examine the coupling of matter fields to gravity from this perspective, and show that the known quark and lepton multiplets in the Standard Model of particle physics can be introduced into the theory in a manner which ensures the cancellation of perturbative chiral gauge anomalies, despite the fact that the the Ashtekar-Sen connection allows for couplings only to left-handed Weyl fermions. We also explore a global anomaly associated with the theory, and argue that its removal requires that the number of fundamental fermions in the theory must be multiples of 16. In addition, we investigate the behavior of the theory under discrete transformations P, C and T, and discuss possible violatio...
Survival model construction guided by fit and predictive strength.
Chauvel, Cécile; O'Quigley, John
2016-10-05
Survival model construction can be guided by goodness-of-fit techniques as well as measures of predictive strength. Here, we aim to bring together these distinct techniques within the context of a single framework. The goal is how to best characterize and code the effects of the variables, in particular time dependencies, when taken either singly or in combination with other related covariates. Simple graphical techniques can provide an immediate visual indication as to the goodness-of-fit but, in cases of departure from model assumptions, will point in the direction of a more involved and richer alternative model. These techniques appear to be intuitive. This intuition is backed up by formal theorems that underlie the process of building richer models from simpler ones. Measures of predictive strength are used in conjunction with these goodness-of-fit techniques and, again, formal theorems show that these measures can be used to help identify models closest to the unknown non-proportional hazards mechanism that we can suppose generates the observations. Illustrations from studies in breast cancer show how these tools can be of help in guiding the practical problem of efficient model construction for survival data.
Directory of Open Access Journals (Sweden)
Saman GHAHRI
2014-03-01
Full Text Available In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP composites was investigated. The PP (virgin and recycled polypropylene and wood flour (WF were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA and ethylene/propylene/diene terpolymer (EPDM, to produce wood flour-PP composites specimen. The results showed that the composites containing recycled PP exhibited significantly lower impact strength values than those of containing virgin PP. The addition of MAPP, EVA and EPDM in the specimens increased their impact strength. In the presence of MAPP, higher increase in impact strength of the recycled PP/WF composites was observed due to impact modifiers. Both impact modifiers increased the impact strength of the PP/WF composites but the addition of EVA gave the greatest improvements in impact strength. Although the addition of impact modifiers and MAPP increased the impact strength of composites containing recycled PP, such values were still significantly lower than those of containing virgin PP (not modified with MAPP or impact modifier. The use of impact modifiers decreased the flexural properties of the recycled PP/WF composites
Modeling of elastic-strength properties of elastomers
Directory of Open Access Journals (Sweden)
O. V. Karmanova
2016-01-01
Full Text Available Model "structure-property", which takes into account the structural heterogeneity of polymer compositions has been developed. Experimental compositions based on styrene-butadiene rubber SCS 30ARK and crosslinked, high viscosity polymer (high-molecular filler - VMN in different proportions, as well as softeners (industrial oil I-12A, oil PN-6, low-molecular polybutadiene PBN were investigated. Samples that differ significantly in viscosity were obtained. The rubber blends and vulcanizates, based on the experimental of polymer compositions, were prepared. Physico-mechanical properties - tensile strength, elongation at break, Shore A. A hardness were determined. For describe the physical and mechanical properties of polymers logarithmic additivity rule was used. The properties of the polymer composition (PС were determined by a single dominant component (resin composition consisting of a high rubber and a filler and further components (softeners. Identification algorithm consists of four steps. The implementation of this algorithm is carried out using experimental design techniques. Estimation of the unknown parameters in the equation was carried out using the method of least squares. Quality evaluation of the model was conducted with the criteria Fisher, turning points, the Durbin-Watson, R / S-criterion. It is found that the model adequately describes the change of physicomechanical properties depending on the composition of polymer compositions. 3d graphics of the physical-mechanical properties of the polymer compositions were built. This allowed us to estimate the contribution of the dominant component and optional components (including combinations thereof to change the parameters. It has been established that the introduction of rubber in total more than 50% of the components (BMH and softeners reduced conventional tensile strength and dramatically increases the relative error of model calculations. (BMH and softeners
Coupling a Terrestrial Biogeochemical Model to the Common Land Model
Institute of Scientific and Technical Information of China (English)
SHI Xiaoying; MAd Jiafu; WANG Yingping; DAI Yongjiu; TANG Xuli
2011-01-01
A terrestrial biogeochemical model (CASACNP) was coupled to a land surtace model (the Common Ｌand Model,CoLM) to simulate the dynamics of carbon substrate in soil and its limitation on soil respiration.The combined model,CoLM_CASACNP,was able to predict long-term carbon sources and sinks that CoLM alone could not.The coupled model was tested using measurenents of belowground respiration and surface fluxes from two forest ecosystems.The combined model simulated reasonably well the diurnal and seasonal variations of net ecosystem carbon exchange,as well as seasonal variation in the soil respiration rate of both the forest sites chosen for this study.However,the agreement between model simulations and actual measurements was poorer under dry conditions.The model should be tested against more measurements before being applied globally to investigate the feedbacks between the carbon cycle and climate change.
Allometric functional response model: body masses constrain interaction strengths.
Vucic-Pestic, Olivera; Rall, Björn C; Kalinkat, Gregor; Brose, Ulrich
2010-01-01
1. Functional responses quantify the per capita consumption rates of predators depending on prey density. The parameters of these nonlinear interaction strength models were recently used as successful proxies for predicting population dynamics, food-web topology and stability. 2. This study addressed systematic effects of predator and prey body masses on the functional response parameters handling time, instantaneous search coefficient (attack coefficient) and a scaling exponent converting type II into type III functional responses. To fully explore the possible combinations of predator and prey body masses, we studied the functional responses of 13 predator species (ground beetles and wolf spiders) on one small and one large prey resulting in 26 functional responses. 3. We found (i) a power-law decrease of handling time with predator mass with an exponent of -0.94; (ii) an increase of handling time with prey mass (power-law with an exponent of 0.83, but only three prey sizes were included); (iii) a hump-shaped relationship between instantaneous search coefficients and predator-prey body-mass ratios; and (iv) low scaling exponents for low predator-prey body mass ratios in contrast to high scaling exponents for high predator-prey body-mass ratios. 4. These scaling relationships suggest that nonlinear interaction strengths can be predicted by knowledge of predator and prey body masses. Our results imply that predators of intermediate size impose stronger per capita top-down interaction strengths on a prey than smaller or larger predators. Moreover, the stability of population and food-web dynamics should increase with increasing body-mass ratios in consequence of increases in the scaling exponents. 5. Integrating these scaling relationships into population models will allow predicting energy fluxes, food-web structures and the distribution of interaction strengths across food web links based on knowledge of the species' body masses.
Modeling and characterization of multiple coupled lines
Tripathi, Alok
1999-10-01
A configuration-oriented circuit model for multiple coupled lines in an inhomogeneous medium is developed and presented in this thesis. This circuit model consists of a network of uncoupled transmission lines and is readily modeled with simulation tools like LIBRA© and SPICE ©. It provides an equivalent circuit representation which is simple and topologically meaningful as compared to the model based on modal decomposition. The configuration-oriented model is derived by decomposing the immittance matrices associated with an n coupled line 2n-port system. Time- and frequency- domain simulations of typical coupled line multiports are included to exemplify the utility of the model. The model is useful for the simulation and design of general single and multilayer coupled line components, such as filters and couplers, and for the investigation of signal integrity issues including crosstalk in interconnects associated with high speed digital and mixed signal electronic modules and packages. It is shown that multiconductor lossless structures in an inhomogeneous medium can be characterized by multiport time-domain reflection (MR) measurements. A synthesis technique of an equivalent lossless (non-dispersive) uniform multiconductor n coupled lines (UMCL) 2n-port system from the measured discrete time-domain reflection response is presented. This procedure is based on the decomposition of the characteristic immittance matrices of the UMCL in terms of partial mode immittance matrices. The decomposition scheme leads to the discrete transition matrix function of a UMCL 2n-port system. This in turn establishes a relationship between the normal-mode parameters of the UMCL and the measured impulse reflection and transmission response. Equivalence between the synthesis procedure presented in this thesis and the solution of a special form of an algebraic Riccati matrix equation whose solution can lead to the normal-mode parameters and a real termination network is illustrated. In
Quantum Ising model coupled with conducting electrons
Energy Technology Data Exchange (ETDEWEB)
Yamashita, Yasufumi; Yonemitsu, Kenji [Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan); Graduate University for Advanced studies, 38 Nishigo-Naka, Myodaiji, Okazaki 444-8585 (Japan)
2005-01-01
The effect of photo-doping on the quantum paraelectric SrTiO{sub 3} is studied by using the one-dimensional quantum Ising model, where the Ising spin describes the effective lattice polarization of an optical phonon. Two types of electron-phonon couplings are introduced through the modulation of transfer integral via lattice deformations. After the exact diagonalization and the perturbation studies, we find that photo-induced low-density carriers can drastically alter quantum fluctuations when the system locates near the quantum critical point between the quantum para- and ferro-electric phases.
Quantum Ising model coupled with conducting electrons
Yamashita, Yasufumi; Yonemitsu, Kenji
2005-01-01
The effect of photo-doping on the quantum paraelectric SrTiO3 is studied by using the one-dimensional quantum Ising model, where the Ising spin describes the effective lattice polarization of an optical phonon. Two types of electron-phonon couplings are introduced through the modulation of transfer integral via lattice deformations. After the exact diagonalization and the perturbation studies, we find that photo-induced low-density carriers can drastically alter quantum fluctuations when the system locates near the quantum critical point between the quantum para- and ferro-electric phases.
Tantalum strength model incorporating temperature, strain rate and pressure
Lim, Hojun; Battaile, Corbett; Brown, Justin; Lane, Matt
Tantalum is a body-centered-cubic (BCC) refractory metal that is widely used in many applications in high temperature, strain rate and pressure environments. In this work, we propose a physically-based strength model for tantalum that incorporates effects of temperature, strain rate and pressure. A constitutive model for single crystal tantalum is developed based on dislocation kink-pair theory, and calibrated to measurements on single crystal specimens. The model is then used to predict deformations of single- and polycrystalline tantalum. In addition, the proposed strength model is implemented into Sandia's ALEGRA solid dynamics code to predict plastic deformations of tantalum in engineering-scale applications at extreme conditions, e.g. Taylor impact tests and Z machine's high pressure ramp compression tests, and the results are compared with available experimental data. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Dynamics in the Kuramoto model with a bi-harmonic coupling function
Yuan, Di; Cui, Haitao; Tian, Junlong; Xiao, Yi; Zhang, Yingxin
2016-09-01
We study a variant of the Kuramoto model with a bi-harmonic coupling function, in which oscillators with positive first harmonic coupling strength are conformists and oscillators with negative first harmonic coupling strength are contrarians. We show that the model displays different synchronous dynamics and different dynamics may be characterized by the phase distributions of oscillators. There exist stationary synchronous states, travelling wave states, π state and, most interestingly, another type of nonstationary state: an oscillating π state. The phase distribution oscillates in a confined region and the phase difference between conformists and contrarians oscillates around π with a constant amplitude and a constant period in oscillating π state. Finally, the bifurcation diagram of the model in the parameter space is presented.
Tow collapse model for compression strength of textile composites
Energy Technology Data Exchange (ETDEWEB)
Emehel, T.C.; Shivakumar, K.N. [North Carolina A and T State Univ., Greensboro, NC (United States)
1995-12-31
The unidirectional composite compression strength model based on microbuckling of fibers embedded in a rigid-plastic matrix was extended to multiaxial laminates and textile composites. The resulting expression is a function of matrix yield strength under the fiber constraint, fiber misalignment angle, fiber volume fraction, and the area fractions of various sets of inclined tows. The analysis was verified by experimentation. Compression tests were conducted on laminated, three-dimensional triaxially braided and orthogonally woven composites using the IITRI test specimen. The laminate specimens were made up of AS4/3501-6 graphite/epoxy composite with (0){sub 24}, (0/30/0/{minus}30){sub 3S}, and ((0/90)6/0){sub S} stacking sequence. Textile composites were made of BASF G30-500 graphite fiber tows (tow size is 6K) and Dow Chemicals Tactix 123 matrix. Fiber preform architecture of braided and woven composites before resin consolidation was 0/{+-}17 and 0/90, respectively and after consolidation it was about (7/{+-}20) and (5/90/90), respectively. The analysis agreed reasonably well with the test data for all cases considered. The axial fiber/tow misalignment angle for laminated, braided, and woven composites were about 4, 7, and 5 degrees, respectively. The compression strength was found to be strongly dependent on the percentage of axial tows and its misalignment angle. A small variation in the off-axis fiber/tow orientation had marginal effect on the compression strength. Hence, the off axis tow misalignment angle can be assumed to be same as the initial laminate or the two orientation angle.
A new coupled model for alloy solidification
Institute of Scientific and Technical Information of China (English)
LI Daming; LI Ruo; ZHANG Pingwen
2004-01-01
A new coupled model in the binary alloy solidification has been developed. The model is based on the cellular automaton (CA)technique to calculate the evolution of the interface governed by temperature, solute diffusion and Gibbs-Thomson effect. The diffusion equation of temperature with the release of latent heat on the solid/liquid (S/L) interface is valid in the entire domain.The temperature diffusion without the release of latent heat and solute diffusion are solved in the entire domain. In the interface cells, the energy and solute conservation, thermodynamic and chemical potential equilibrium are adopted to calculate the temperature, solid concentration, liquid concentration and the increment of solid fraction. Compared with other models where the release of latent heat is solved in implicit or explicit form according to the solid/liquid (S/L) interface velocity, the energy diffusion and the release of latent heat in this model are solved at differentscales, I.e. The macro-scale and micro-scale. The variation ofsolid fraction in this model is solved using several algebraicrelations coming from the chemical potential equilibrium andthermodynamic equilibrium which can be cheaply solved insteadof the calculation of S/L interface velocity. With the assumptionof the solute conservation and energy conservation, the solidfraction can be directly obtained according to the thermodynamicdata. This model is natural to be applied to multiple (>2)spatial dimension case and multiple (>2) component alloy. Themorphologies of equiaxed dendrite are obtained in numericalexperiments.
Holographic superconductor models with the Maxwell field strength corrections
Pan, Qiyuan; Wang, Bin
2011-01-01
We study the effect of the quadratic field strength correction to the usual Maxwell field on the holographic dual models in the backgrounds of AdS black hole and AdS soliton. We find that in the black hole background, the higher correction to the Maxwell field makes the condensation harder to form and changes the expected relation in the gap frequency. This effect is similar to that caused by the curvature correction. However, in the soliton background we find that different from the curvature effect, the correction to the Maxwell field does not influence the holographic superconductor and insulator phase transition.
Stochastic Models for Strength of Wind Turbine Blades using Tests
DEFF Research Database (Denmark)
Toft, Henrik Stensgaard; Sørensen, John Dalsgaard
2008-01-01
The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....
Simple supersymmetric strongly coupled preon model
Fajfer, S.; Tadić, D.
1988-08-01
This supersymmetric-SU(5) composite model is a natural generalization of the usual strong-coupling models. Preon superfields are in representations 5* and 10. The product representations 5*×10, 5×10, 5×5, and 5*×5 contain only those strongly hypercolor bound states which are needed in the standard electroweak theory. There are no superfluous quarklike states. The neutrino is massless. Only one strongly hypercolor bound singlet (10×10*) can exist as a free particle. At higher energies one should expect to see a plethora of new particles. Grand unification happens at the scale M~1014 GeV. Cabibbo mixing can be incorporated by using a transposed Kobayashi-Maskawa mixing matrix.
The Standard Model Coupled to Quantum Gravitodynamics
Aldabe, Fermin
2016-01-01
We show that the renormalizable SO(4) X U (1) X SU (2) X SU (3) Yang Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable 4-dimensional theory descr...
The standard model coupled to quantum gravitodynamics
Aldabe, Fermin
2017-01-01
We show that the renormalizable SO(4)× U(1)× SU(2)× SU(3) Yang-Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post-Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable four-dimensional theory describing gravitational interactions.
The standard model coupled to quantum gravitodynamics
Energy Technology Data Exchange (ETDEWEB)
Aldabe, Fermin
2017-01-15
We show that the renormalizable SO(4) x U(1) x SU(2) x SU(3) Yang-Mills coupled to matter and the Higgs field fits all the experimentally observed differential cross sections known in nature. This extended Standard Model reproduces the experimental gravitational differential cross sections without resorting to the graviton field and instead by exchanging SO(4) gauge fields. By construction, each SO(4) generator in quantum gravitodynamics does not commute with the Dirac gamma matrices. This produces additional interactions absent to non-Abelian gauge fields in the Standard Model. The contributions from these new terms yield differential cross sections consistent with the Newtonian and post-Newtonian interactions derived from General Relativity. Dimensional analysis of the Lagrangian shows that all its terms have total dimensionality four or less and therefore that all physical quantities in the theory renormalize by finite amounts. These properties make QGD the only renormalizable four-dimensional theory describing gravitational interactions. (orig.)
Modeling of price and profit in coupled-ring networks
Tangmongkollert, Kittiwat; Suwanna, Sujin
2016-06-01
We study the behaviors of magnetization, price, and profit profiles in ring networks in the presence of the external magnetic field. The Ising model is used to determine the state of each node, which is mapped to the buy-or-sell state in a financial market, where +1 is identified as the buying state, and -1 as the selling state. Price and profit mechanisms are modeled based on the assumption that price should increase if demand is larger than supply, and it should decrease otherwise. We find that the magnetization can be induced between two rings via coupling links, where the induced magnetization strength depends on the number of the coupling links. Consequently, the price behaves linearly with time, where its rate of change depends on the magnetization. The profit grows like a quadratic polynomial with coefficients dependent on the magnetization. If two rings have opposite direction of net spins, the price flows in the direction of the majority spins, and the network with the minority spins gets a loss in profit.
Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect
Energy Technology Data Exchange (ETDEWEB)
Jiang, Xin, E-mail: jiangxinyj@gmail.com; Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen, E-mail: Qunwen.Leng@wdc.com [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)
2015-09-15
Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.
Matinlinna, JP; Vallittu, PK; Lassila, LVA
2010-01-01
The hydrolytic stability of various silane combinations and their effects on biomechanical properties and water sorption of an experimental dental composite made of bis-GMA and TEGDMA and silane-treated fillers were evaluated. Four silane coupling agents and their blends with a cross-linker silane were used as coupling agents for the 0.7-μm BaSiO 3 fillers. The silanization was carried out in toluene containing 1% (v/v) of one of the four following organofunctional silane coupling agents: 3- ...
Energy Technology Data Exchange (ETDEWEB)
Henry de Frahan, M. T., E-mail: marchdf@umich.edu; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Belof, J. L.; Cavallo, R. M.; Ancheta, D. S.; El-dasher, B. S.; Florando, J. N.; Gallegos, G. F.; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808 (United States); Raevsky, V. A.; Ignatova, O. N.; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188 (Russian Federation)
2015-06-14
We present a set of high explosive driven Rayleigh-Taylor strength experiments for beryllium to produce data to distinguish predictions by various strength models. Design simulations using existing strength model parameterizations from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, suggests growth consistent with little material strength. We focus mostly on efforts to simulate the data using published strength models as well as the more recent RING relaxation model developed at VNIIEF. The results of the strength experiments indicate weak influence of strength in mitigating the growth with the RING model coming closest to predicting the material behavior. Finally, we present shock and ramp-loading recovery experiments.
Cooperative Effects of Noise and Coupling on Stochastic Dynamics of a Membrane-Bulk Coupling Model
Institute of Scientific and Technical Information of China (English)
TANG Jun; JIA Ya; YI Ming
2009-01-01
Based on a membrane-bulk coupling cell model proposed by Gomez-Marin et al. [ Phys. Rev. Lett. 98 (2007) 168303], the cooperative effects of noise and coupling on the stochastic dynamical behavior are investigated, For parameters in a certain region, the oscillation can be induced by the cooperative effect of noise and coupling. Whether considering the coupling or not, corresponding coherence resonance phenomena are observed. Furthermore, the effects of two coupling parameters, cell size L and coupling intensity k, on the noise-induced oscillation of membranes are studied. Contrary effects of noise are found in and out of the deterministic oscillatory regions.
Thawing model and symmetry breaking in a coupled quintessence model
Honardoost, M; Sepangi, H R
2015-01-01
We consider the thawing model in the framework of coupled quintessence scenario. The effective potential has $Z_2$ symmetry which is broken spontaneously when dark matter density becomes less than a critical value leading the quintessence equation of state parameter to deviate from -1. Conditions required for this procedure are obtained and analytical solution for the equation of state parameter is derived.
Modelling of tension stiffening for normal and high strength concrete
DEFF Research Database (Denmark)
Christiansen, Morten Bo; Nielsen, Mogens Peter
1998-01-01
Accurate calculations of the stiffness of concrete members are rare. Only in the uncracked state and the fully cracked state, where the reinforcement is near yielding, the stiffness calculations are relatively easy. The difficulties are due to the fact that concrete between cracks may give...... a substantial contribution to the stiffness, a phenomenon which is generally referred to as tension stiffening. The present paper describes a new theory of tension stiffening. It is based on a simple physical model for pure tension, which works with three different stages of crack generation. In a simplified...... form the model is extended to apply to biaxial stress fields as well. To determine the biaxial stress field, the theorem of minimum complementary elastic energy is used. The theory has been compared with tests on rods, disks, and beams of both normal and high strength concrete, and very good results...
An Economic Model of Coupled Exponential Maps
López-Ruiz, R; Cosenza, M G; Sánchez, J R
2007-01-01
In this work, an ensemble of economic interacting agents is considered. The agents are arranged in a linear array where only local couplings are allowed. The deterministic dynamics of each agent is given by a map. This map is expressed by two factors. The first one is a linear term that models the expansion of the agent's economy and that is controlled by the {\\it growth capacity parameter}. The second one is an inhibition exponential term that is regulated by the {\\it local environmental pressure}. Depending on the parameter setting, the system can display Pareto or Boltzmann-Gibbs behavior in the asymptotic dynamical regime. The regions of parameter space where the system exhibits one of these two statistical behaviors are delimited. Other properties of the system, such as the mean wealth, the standard deviation and the Gini coefficient, are also calculated.
Directory of Open Access Journals (Sweden)
Yi Qi
2014-01-01
Full Text Available We proposed a higher-order coupling neural network model including the inhibitory neurons and examined the dynamical evolution of average number density and phase-neural coding under the spontaneous activity and external stimulating condition. The results indicated that increase of inhibitory coupling strength will cause decrease of average number density, whereas increase of excitatory coupling strength will cause increase of stable amplitude of average number density. Whether the neural oscillator population is able to enter the new synchronous oscillation or not is determined by excitatory and inhibitory coupling strength. In the presence of external stimulation, the evolution of the average number density is dependent upon the external stimulation and the coupling term in which the dominator will determine the final evolution.
Teaching Couples Counseling: An Integrative Model
Long, Lynn L.; Burnett, Judith A.
2005-01-01
Traditionally, training in couples counseling has not received equal status as other counseling modalities. Recently, there is renewed interest in specific training for couples counseling as more emphasis is placed on the stability of couple relationships as an important factor for helping families and children function in a society of frequent…
The ATLAS collaboration
2014-01-01
A study is presented on the ATLAS experimental prospects for measuring Higgs boson signal strengths, and determining couplings to individual fermions and bosons, using 14 TeV proton-proton collisions at the LHC with 300 fb$^{-1}$ and at the HL-LHC with 3000 fb$^{-1}$. This document is released coincident with the 2014 ECFA HL-LHC workshop and contains updates since the 2013 workshop for the $H\\to Z\\gamma$ and $VH/ttH\\to\\gamma\\gamma$ channels. In addition, the prospects for the $VH\\to b\\bar{b}$ channel have now been included in the combination of channels.
Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect
Directory of Open Access Journals (Sweden)
Xin Jiang
2015-09-01
Full Text Available Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.
Vector interaction strength in Polyakov-Nambu-Jona-Lasinio models from hadron-quark phase diagrams
Lourenço, O; Frederico, T; Delfino, A; Malheiro, M
2012-01-01
We estimate the vector interaction strength of the Polyakov-Nambu-Jona-Lasinio (PNJL) parametrizations, assuming that its transition curves should be as close as possible of the recently studied RMF-PNJL hadron-quark phase diagrams. Such diagrams are obtained matching relativistic mean-field hadronic models, and the PNJL quark ones. By using this method we found for the magnitude of the vector interaction, often treated as a free parameter, a range of 7.66 GeV$^{-2}\\lesssim G_V \\lesssim 16.13$ GeV$^{-2}$, or equivalently, $1.52 \\lesssim G_V/G_s \\lesssim 3.2$, with $G_s$ being the scalar coupling constant of the model. These values are compatible but restricts the range of 4 GeV$^{-2}\\lesssim G_V \\lesssim 19$ GeV$^{-2}$, recently obtained from lattice QCD data through a different mean-field model approach.
Mechanical model for yield strength of nanocrystalline materials under high strain rate loading
Institute of Scientific and Technical Information of China (English)
朱荣涛; 周剑秋; 马璐; 张振忠
2008-01-01
To understand the high strain rate deformation mechanism and determine the grain size,strain rate and porosity dependent yield strength of nanocrystalline materials,a new mechanical model based on the deformation mechanism of nanocrystalline materials under high strain rate loading was developed.As a first step of the research,the yield behavior of the nanocrystalline materials under high strain rate loading was mainly concerned in the model and uniform deformation was assumed for simplification.Nanocrystalline materials were treated as composites consisting of grain interior phase and grain boundary phase,and grain interior and grain boundary deformation mechanisms under high strain rate loading were analyzed,then Voigt model was applied to coupling grain boundary constitutive relation with mechanical model for grain interior phase to describe the overall yield mechanical behavior of nanocrystalline materials.The predictions by the developed model on the yield strength of nanocrysatlline materials at high strain rates show good agreements with various experimental data.Further discussion was presented for calculation results and relative experimental observations.
Saman GHAHRI; Saeed KAZEMI NAJAFI; Mohebby, Behbood
2014-01-01
In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP) composites was investigated. The PP (virgin and recycled polypropylene) and wood flour (WF) were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA) and ethylene/propylene/diene terpolymer (EPDM)), to produce wood flour-PP composites specimen. The results showed t...
Di, Zengru
2013-01-01
For any system, whether physical or non-physical, knowledge of the form and strength of inter-individual interactions is a key-information. In an approach based on statistical physics one needs to know the interaction Hamiltonian. For non-physical systems, based on qualitative arguments similar to those used in physical chemistry, interaction strength gives useful clues about the macroscopic properties of the system. Even though our ultimate objective is the understanding of social phenomena, we found that systems composed of insects (or other living organisms) are of great convenience for investigating group effects. In this paper we show how to design experiments that enable us to estimate the strength of interaction in groups of insects. By repeating the same experiments with increasing numbers of insects, ranging from less than 10 to several hundreds, one is able to explore key-properties of the interaction. The data turn out to be consistent with a global correlation that is independent of distance (at l...
The double-temperature ratchet model and current reversal of coupled Brownian motors
Li, Chen-pu; Zheng, Zhi-gang
2016-01-01
Based on the transport features and experimental phenomena observed in studies of molecular motors, we proposed the double-temperature ratchet model of coupled motors to reveal the dynamical mechanism of cooperative transport of motors with two heads, where the interactions and the asynchronous between two motor heads are taken into account. We investigated the collective unidirectional transport of coupled system, and find that the direction of motion can be inversed under certain conditions. Inverse motion can be achieved by modulating the coupling strength, the coupling free length and the asymmetric efficient of the periodic potential, which is understood in terms of the effective-potential theory. The dependence of directed current on various parameters is studied systematically. Directed transport of coupled Brownian motors can be manipulated and optimized by adjusting pulsating period or the phase shift of the pulsating temperature.
Thermo-magnetic properties of the strong coupling in the local Nambu--Jona-Lasinio model
Ayala, Alejandro; Hernandez, L A; Loewe, M; Raya, Alfredo; Rojas, J C; Villavicencio, C
2016-01-01
We study the thermo-magnetic behavior of the strong coupling constant and quark mass entering the Nambu-Jona-Lasinio model. The behavior of the quark condensate as function of magnetic field strength and temperature is also obtained and confronted with lattice QCD results. We find that for temperatures above the chiral/deconfinement phase transitions, where the condensate decreases monotonically with increasing field, the coupling also decreases monotonically. For temperatures below the transition temperature we find that the coupling initially grows and then decreases with increasing field strength. We consider this turnover behavior as a key element in the behavior of the quark condensate above the transition temperature. Hence, it allows for an understanding of the inverse magnetic catalysis phenomenon.
Coupling approaches used in atmospheric entry models
Gritsevich, M. I.
2012-09-01
While a planet orbits the Sun, it is subject to impact by smaller objects, ranging from tiny dust particles and space debris to much larger asteroids and comets. Such collisions have taken place frequently over geological time and played an important role in the evolution of planets and the development of life on the Earth. Though the search for near-Earth objects addresses one of the main points of the Asteroid and Comet Hazard, one should not underestimate the useful information to be gleaned from smaller atmospheric encounters, known as meteors or fireballs. Not only do these events help determine the linkages between meteorites and their parent bodies; due to their relative regularity they provide a good statistical basis for analysis. For successful cases with found meteorites, the detailed atmospheric path record is an excellent tool to test and improve existing entry models assuring the robustness of their implementation. There are many more important scientific questions meteoroids help us to answer, among them: Where do these objects come from, what are their origins, physical properties and chemical composition? What are the shapes and bulk densities of the space objects which fully ablate in an atmosphere and do not reach the planetary surface? Which values are directly measured and which are initially assumed as input to various models? How to couple both fragmentation and ablation effects in the model, taking real size distribution of fragments into account? How to specify and speed up the recovery of a recently fallen meteorites, not letting weathering to affect samples too much? How big is the pre-atmospheric projectile to terminal body ratio in terms of their mass/volume? Which exact parameters beside initial mass define this ratio? More generally, how entering object affects Earth's atmosphere and (if applicable) Earth's surface? How to predict these impact consequences based on atmospheric trajectory data? How to describe atmospheric entry
Ferromagnetic coupling strength and electron-doping effects in double perovskites
Energy Technology Data Exchange (ETDEWEB)
Fontcuberta, J. [Instiut de Ciencia de Materials de Barcelona, CSIC, Universitat Autonoma de Barcelona, Campus Univ. Autonoma de Barcelona, Belaterra 08193, Catalunya (Spain)]. E-mail: fontcuberta@icmab.es; Rubi, D. [Instiut de Ciencia de Materials de Barcelona, CSIC, Universitat Autonoma de Barcelona, Campus Univ. Autonoma de Barcelona, Belaterra 08193, Catalunya (Spain); Frontera, C. [Instiut de Ciencia de Materials de Barcelona, CSIC, Universitat Autonoma de Barcelona, Campus Univ. Autonoma de Barcelona, Belaterra 08193, Catalunya (Spain); Garcia-Munoz, J.L. [Instiut de Ciencia de Materials de Barcelona, CSIC, Universitat Autonoma de Barcelona, Campus Univ. Autonoma de Barcelona, Belaterra 08193, Catalunya (Spain); Wojcik, M. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02 668 Warsaw (Poland); Jedryka, E. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02 668 Warsaw (Poland); Nadolski, S. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02 668 Warsaw (Poland); Izquierdo, M. [LURE, Centre Universitaire Paris Sud, Bat 209D, 91405 Orsay, France and Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049 Madrid (Spain); Avila, J. [LURE, Centre Universitaire Paris Sud, Bat 209D, 91405 Orsay, France and Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049 Madrid (Spain); Asensio, M.C. [LURE, Centre Universitaire Paris Sud, Bat 209D, 91405 Orsay, France and Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049 Madrid (Spain)
2005-04-15
We review experiments and results on ferromagnetic and metallic A{sub 2}FeMoO{sub 6} double perovskites that made it possible to obtain a detailed understanding of the nature of the ferromagnetic coupling and paved the way for further enhancement of the Curie temperature. We show that appropriate chemical substitutions, combined with detailed structural, magnetotransport and spectroscopic data allow us to map quite a complete picture of the properties of these oxides.
Investigating Lithosphere Strength With Thin-Shell Tectonic Modeling
Moder, C.; Carena, S.
2007-12-01
The behavior of many major faults on Earth can only be explained if they are assumed to be much weaker than expected from Byerlee's Law alone. However, there is no agreement over what is a realistic range of friction parameters for faults, or its possible dependency on fault network geometry. Both can be studied with numerical forward modeling, but this requires knowledge of the detailed 3-D geometry of the faults. The latter is now available for most of California, thanks to the SCEC Community Fault Model (southern California) and to the USGS program "3-D Geologic Maps and Visualization" (San Francisco Bay and surrounding region). We model the behavior of the California fault network with the finite-element code SHELLS. We use as input a coarse global grid, with local high-resolution representation of actual faults based on the existing 3-D fault maps. By comparing the simulation results with data on fault-slip rates, we can determine how the faults in this network interact, the role of small faults, and we can quantify the typical fault strength in a continental transform plate boundary setting.
Djouadi, Abdelhak
2013-01-01
Using the full set of the LHC Higgs data from the runs at 7 and 8 TeV center of mass energies that have been released by the ATLAS and CMS collaborations, we determine the couplings of the Higgs particle to fermions and gauge bosons as well as its parity or CP composition. We consider ratios of production cross sections times decay branching fractions in which the theoretical (and some experimental) uncertainties as well as as some ambiguities from new physics cancel out. A fit of both the signal strengths in the various search channels that have been conducted, H -> Z Z, W W, gamma gamma, tau tau and b b, and their ratios shows that the observed ~126 GeV particle has couplings to fermions and gauge bosons that are Standard Model-like already at the 68% confidence level (CL). From the signal strengths in which the theoretical uncertainty is taken to be a bias, the particle is shown to be at most 68% CP-odd at the 99%CL and the possibility that it is a pure pseudoscalar state is excluded at the 4 sigma level w...
Barreiro, Andrea K.; Ly, Cheng
2017-08-01
Rapid experimental advances now enable simultaneous electrophysiological recording of neural activity at single-cell resolution across large regions of the nervous system. Models of this neural network activity will necessarily increase in size and complexity, thus increasing the computational cost of simulating them and the challenge of analyzing them. Here we present a method to approximate the activity and firing statistics of a general firing rate network model (of the Wilson-Cowan type) subject to noisy correlated background inputs. The method requires solving a system of transcendental equations and is fast compared to Monte Carlo simulations of coupled stochastic differential equations. We implement the method with several examples of coupled neural networks and show that the results are quantitatively accurate even with moderate coupling strengths and an appreciable amount of heterogeneity in many parameters. This work should be useful for investigating how various neural attributes qualitatively affect the spiking statistics of coupled neural networks.
Jamilpanah, L.; Hajiali, M. R.; Morteza Mohseni, S.; Erfanifam, S.; Majid Mohseni, S.; Houshiar, M.; Ehsan Roozmeh, S.
2017-04-01
A systematic study of the effect of the deposition of cobalt (Co) and nickel (Ni) layers of various thicknesses on the magnetoimpedance (MI) response of a soft ferromagnetic amorphous ribbon (Co68.15Fe4.35Si12.5B15) is performed. The Co and Ni layers with thicknesses of 5, 10, 20 and 40 nm were grown on both sides of the amorphous ribbons by the electrodeposition technique. Microstrutures determined by x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) showed higher crystallinity of Ni-deposited layers and the amorphous ferromagnetic nature of Co-deposited. The vibrating sample magnetometry (VSM) does not represent significant changes between samples because of the small contribution of such a thin layer deposited on thick ribbons, but the MI response dictates that the magnetic coupling effect occurred at the interface of such bilayers, which is sensitive to the skin effect. The MI response of Co-deposited ribbons showed MI hysteretic behavior depending on the deposited layer thicknesses with an optimum response for the thickness of 20 nm whereas no hysteretic behavior was measured for Ni-deposited ribbons. This behavior is explained according to the exchange coupling between magnetization of electrodeposited layers and magnetic ribbons with respect to different magnetic properties of Co and Ni at different thicknesses. Also the MI response of Ni- and Co-deposited ribbons enhanced significantly at low thicknesses relative to bare ribbon. By increasing the thickness of deposited layers, MI response decreases considerably. Differences in MI ratios of Co- and Ni-deposited ribbons are explained according to exchange length, crystallinity and roughness of deposited layers. Our results could address a simple way to achieve a higher MI response, and explains physical aspects of exchange coupling in MI response all towards a better performance of magnetic field sensors.
Operating conditions effect over the coupling strength for urban aerial ropeways
Directory of Open Access Journals (Sweden)
Ronald M. MARTINOD
2014-09-01
Full Text Available The present work is aimed to assess the operating conditions effect for urban aerial ropeways with a commercial usage, based on measurements obtained from an arrangement of sensors that record the coupling assembly behavior between the detachable gondola pod and the track rope. The work pays particular attention to the effect caused by external conditions due to the wind loads joined up with other parasite external effects, through the measurement of the engage strains. The cableway gondola continuous cycle has mono-cable of simple ring type.
Lehnertz, Klaus
2016-01-01
Inferring strength and direction of interactions from electroencephalographic (EEG) recordings is of crucial importance to improve our understanding of dynamical interdependencies underlying various physiologic and pathophysiologic conditions in the human epileptic brain. We here use approaches from symbolic analysis to investigate---in a time-resolved manner---weighted and directed, short- to long-ranged interactions between various brain regions constituting the epileptic network. Our observations point to complex spatial-temporal interdependencies underlying the epileptic process and their role in the generation of epileptic seizures, despite the massive reduction of the complex information content of multi-day, multi-channel EEG recordings through symbolisation. We discuss limitations and potential future improvements of this approach.
Benjamin, Stan; Sun, Shan; Grell, Georg; Green, Benjamin; Bleck, Rainer; Li, Haiqin
2017-04-01
Extreme events for subseasonal duration have been linked to multi-week processes related to onset, duration, and cessation of blocking events or, more generally, quasi-stationary waves. Results will be shown from different sets of 32-day prediction experiments (3200 runs each) over a 16-year period for earth system processes key for subseasonal prediction for different resolution, numerics, and physics using the FIM-HYCOM coupled model. The coupled atmosphere (FIM) and ocean (HYCOM) modeling system is a relatively new coupled atmosphere-ocean model developed for subseasonal to seasonal prediction (Green et al. 2017 Mon.Wea.Rev. accepted, Bleck et al 2015 Mon. Wea. Rev.). Both component models operate on a common icosahedral horizontal grid and use an adaptive hybrid vertical coordinate (sigma-isentropic in FIM and sigma-isopycnic in HYCOM). FIM-HYCOM has been used to conduct 16 years of subseasonal retrospective forecasts following the NOAA Subseasonal (SubX) NMME protocol (32-day forward integrations), run with 4 ensemble members per week. Results from this multi-year FIM-HYCOM hindcast include successful forecasts out to 14-20 days for stratospheric warming events (from archived 10 hPa fields), improved MJO predictability (Green et al. 2017) using the Grell-Freitas (2014, ACP) scale-aware cumulus scheme instead of the Simplified Arakawa-Schubert scheme, and little sensitivity to resolution for blocking frequency. Forecast skill of metrics from FIM-HYCOM including 500 hPa heights and MJO index is at least comparable to that of the operational Climate Forecast System (CFSv2) used by the National Centers for Environmental Prediction. Subseasonal skill is improved with a limited multi-model (FIM-HYCOM and CFSv2), consistent with previous seasonal multi-model ensemble results. Ongoing work will also be reported on for adding inline aerosol/chemistry treatment to the coupled FIM-HYCOM model and for advanced approaches to subgrid-scale clouds to address regional biases
Ciuchini, Marco; Mishima, Satoshi; Pierini, Maurizio; Reina, Laura; Silvestrini, Luca
2014-01-01
We present updated global fits of the Standard Model and beyond to electroweak precision data, taking into account recent progress in theoretical calculations and experimental measurements. From the fits, we derive model-independent constraints on new physics by introducing oblique and epsilon parameters, and modified $Zb\\bar{b}$ and $HVV$ couplings. Furthermore, we also perform fits of the scale factors of the Higgs-boson couplings to observed signal strengths of the Higgs boson.
Fluid Model of Waveguide Transverse Coupling
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
In this paper, optical fluid is firstly defined. By using the movement law of hydrodynamics, the transverse coupling of waveguides is discussed. The result fully coincides with the electromagnetic solution.
A dependent stress-strength interference model based on mixed copula function
Energy Technology Data Exchange (ETDEWEB)
Gao, Jian Xiong; An, Zong Wen; Liu, Bo [School of Mechatronics Engineering, Lanzhou University of Technology, Lanzhou (China)
2016-10-15
In the traditional Stress-strength interference (SSI) model, stress and strength must satisfy the basic assumption of mutual independence. However, a complex dependence between stress and strength exists in practical engineering. To evaluate structural reliability under the case that stress and strength are dependent, a mixed copula function is introduced to a new dependent SSI model. This model can fully characterize the dependence between stress and strength. The residual square sum method and genetic algorithm are also used to estimate the unknown parameters of the model. Finally, the validity of the proposed model is demonstrated via a practical case. Results show that traditional SSI model ignoring the dependence between stress and strength more easily overestimates product reliability than the new dependent SSI model.
DIFFUSION COUPLE BETWEEN HIGH STRENGTH WEAR-RESISTING ALUMINUM BRONZE AND MACHINING TOOLS MATERIALS
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
Diffusion couples of tool materials (prepared from commercially available high speed steel and YW1 carbide tools) and the wear-resisting aluminum bronze (KK) were prepared by casting to study the diffusion pattern and phase formation sequence in order to clarify the diffusion wear of the tools during the turning of the wear-resisting aluminum bronze. Optical micrographs show that good contact was obtained at the tool material-KK interface. After annealed at 900 ℃ for 6 h, strong inter-diffusion across the interface was observed. Microprobe analysis was used to study the elemental distribution across the interface and X-ray diffractometry was used to study the phases formed at the interface.
Directory of Open Access Journals (Sweden)
Endanus Harijanto
2005-09-01
Full Text Available Tooth crown restoration was made in a complex system consisting of several elements, namely tensile strength and shear strength bond between copper alloy and acrylic resin after tin plating. The aim of this exemination was to find a model representing connection between tensile strength and shear strength in between copper alloy with acrylic resin in statistic method. In conclusion, this exemination utilizing a strength model = 0.645 + 1.237 × tensile strength resulted shear strength exemination. On the other hand, the utilization of a strength = –0.506 + 0.808 × shear strength resulted tensile strength exemination.
Weak Coupling Phase Structureof the Abelian Higgs Model at Finite Temperature
Jakovác, A
1993-01-01
Using the 1-loop reduced 3D action of the Abelian Higgs-model we discuss the order of its finite temperature phase transition. A two-variable saddle point approximation is proposed for the evaluation of the effective potential. The strength of the first order case scales like \\sim e^{3-6}. Analytic asymptotic weak coupling and numerical small coupling solutions are compared with special emphasis on the cancellation of divergences. (Figures are not included, can be sent upon request from jako@hercules.elte.hu .)
Phase-noise-induced resonance in arrays of coupled excitable neural models.
Xiaoming Liang; Liang Zhao
2013-08-01
Recently, it is observed that, in a single neural model, phase noise (time-varying signal phase) arising from an external stimulating signal can induce regular spiking activities even if the signal is subthreshold. In addition, it is also uncovered that there exists an optimal phase noise intensity at which the spiking rhythm coincides with the frequency of the subthreshold signal, resulting in a phase-noise-induced resonance phenomenon. However, neurons usually do not work alone, but are connected in the form of arrays or blocks. Therefore, we study the spiking activity induced by phase noise in arrays of globally and locally coupled excitable neural models. We find that there also exists an optimal phase noise intensity for generating large neural response and such an optimal value is significantly decreased compared to an isolated single neuron case, which means the detectability in response to the subthreshold signal of neurons is sharply improved because of the coupling. In addition, we reveal two new resonance behaviors in the neuron ensemble with the presence of phase noise: there exist optimal values of both coupling strength and system size, where the coupled neurons generate regular spikes under subthreshold stimulations, which are called as coupling strength and system size resonance, respectively. Finally, the dependence of phase-noise-induced resonance on signal frequency is also examined.
Failure Probability Model considering the Effect of Intermediate Principal Stress on Rock Strength
Directory of Open Access Journals (Sweden)
Yonglai Zheng
2015-01-01
Full Text Available A failure probability model is developed to describe the effect of the intermediate principal stress on rock strength. Each shear plane in rock samples is considered as a micro-unit. The strengths of these micro-units are assumed to match Weibull distribution. The macro strength of rock sample is a synthetic consideration of all directions’ probabilities. New model reproduces the typical phenomenon of intermediate principal stress effect that occurs in some true triaxial experiments. Based on the new model, a strength criterion is proposed and it can be regarded as a modified Mohr-Coulomb criterion with a uniformity coefficient. New strength criterion can quantitatively reflect the intermediate principal stress effect on rock strength and matches previously published experimental results better than common strength criteria.
Nucleon scattering on actinides using a dispersive optical model with extended couplings
SoukhovitskiÄ©, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.; Martyanov, D. S.
2016-12-01
The Tamura coupling model [Rev. Mod. Phys. 37, 679 (1965), 10.1103/RevModPhys.37.679] has been extended to consider the coupling of additional low-lying rotational bands to the ground-state band. Rotational bands are built on vibrational bandheads (even-even targets) or single-particle bandheads (odd-A targets) including both axial and nonaxial deformations. These additional excitations are introduced as a perturbation to the underlying axially symmetric rigid-rotor structure of the ground-state rotational band. Coupling matrix elements of the generalized optical model are derived for extended multiband transitions in even-even and odd-A nuclei. Isospin symmetric formulation of the optical model is employed. A coupled-channels optical-model potential (OMP) containing a dispersive contribution is used to fit simultaneously all available optical experimental databases including neutron strength functions for nucleon scattering on 232Th,233,235,238U, and 239Pu nuclei. Quasielastic (p ,n ) scattering data on 232Th and 238U to the isobaric analog states of the target nucleus are also used to constrain the isovector part of the optical potential. Lane consistent OMP is derived for all actinides if corresponding multiband coupling schemes are defined. For even-even (odd-A ) actinides almost all low-lying collective levels below 1 MeV (0.5 MeV) of excitation energy are coupled. OMP parameters show a smooth energy dependence and energy-independent geometry. A phenomenological optical-model potential that couples multiple bands in odd-A actinides is published for a first time. Calculations using the derived OMP potential reproduce measured total cross-section differences between several actinide pairs within experimental uncertainty for incident neutron energies from 50 keV up to 150 MeV. The importance of extended coupling is studied. Multiband coupling is stronger in even-even targets owing to the collective nature of the coupling; the impact of extended coupling on
Analytical model of internally coupled ears
DEFF Research Database (Denmark)
Vossen, Christine; Christensen-Dalsgaard, Jakob; Leo van Hemmen, J
2010-01-01
, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical...... simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry....
Tinamit: Making coupled system dynamics models accessible to stakeholders
Malard, Julien; Inam Baig, Azhar; Rojas Díaz, Marcela; Hassanzadeh, Elmira; Adamowski, Jan; Tuy, Héctor; Melgar-Quiñonez, Hugo
2017-04-01
Model coupling is increasingly used as a method of combining the best of two models when representing socio-environmental systems, though barriers to successful model adoption by stakeholders are particularly present with the use of coupled models, due to their high complexity and typically low implementation flexibility. Coupled system dynamics - physically-based modelling is a promising method to improve stakeholder participation in environmental modelling while retaining a high level of complexity for physical process representation, as the system dynamics components are readily understandable and can be built by stakeholders themselves. However, this method is not without limitations in practice, including 1) inflexible and complicated coupling methods, 2) difficult model maintenance after the end of the project, and 3) a wide variety of end-user cultures and languages. We have developed the open-source Python-language software tool Tinamit to overcome some of these limitations to the adoption of stakeholder-based coupled system dynamics - physically-based modelling. The software is unique in 1) its inclusion of both a graphical user interface (GUI) and a library of available commands (API) that allow users with little or no coding abilities to rapidly, effectively, and flexibly couple models, 2) its multilingual support for the GUI, allowing users to couple models in their preferred language (and to add new languages as necessary for their community work), and 3) its modular structure allowing for very easy model coupling and modification without the direct use of code, and to which programming-savvy users can easily add support for new types of physically-based models. We discuss how the use of Tinamit for model coupling can greatly increase the accessibility of coupled models to stakeholders, using an example of a stakeholder-built system dynamics model of soil salinity issues in Pakistan coupled with the physically-based soil salinity and water flow model
The Friedrichs-Model with fermion-boson couplings II
Civitarese, O; Pronko, G P
2007-01-01
In this work we present a formal solution of the extended version of the Friedrichs Model. The Hamiltonian consists of discrete and continuum bosonic states, which are coupled to fermions. The simultaneous treatment of the couplings of the fermions with the discrete and continuous sectors of the bosonic degrees of freedom leads to a system of coupled equations, whose solutions are found by applying standard methods of representation of bound and resonant states.
Coupling of the Models of Human Physiology and Thermal Comfort
Pokorny, J.; Jicha, M.
2013-04-01
A coupled model of human physiology and thermal comfort was developed in Dymola/Modelica. A coupling combines a modified Tanabe model of human physiology and thermal comfort model developed by Zhang. The Coupled model allows predicting the thermal sensation and comfort of both local and overall from local boundary conditions representing ambient and personal factors. The aim of this study was to compare prediction of the Coupled model with the Fiala model prediction and experimental data. Validation data were taken from the literature, mainly from the validation manual of software Theseus-FE [1]. In the paper validation of the model for very light physical activities (1 met) indoor environment with temperatures from 12 °C up to 48 °C is presented. The Coupled model predicts mean skin temperature for cold, neutral and warm environment well. However prediction of core temperature in cold environment is inaccurate and very affected by ambient temperature. Evaluation of thermal comfort in warm environment is supplemented by skin wettedness prediction. The Coupled model is designed for non-uniform and transient environmental conditions; it is also suitable simulation of thermal comfort in vehicles cabins. The usage of the model is limited for very light physical activities up to 1.2 met only.
Strength evolution law of cracked rock based on localized progressive damage model
Institute of Scientific and Technical Information of China (English)
ZHANG Ping; LI Xi-bing; LI Ning
2008-01-01
In the light of the localized progressive damage model, the evolution law of cohesive and frictional strength with irreversible strains was determined. Then, the location and the extent of the excavation disturbed zone in one deep rock engineering were predicted by using the strength evolution law. The theoretical result is close to the result of in-situ test. The strength evolution law excels the elastic-perfectly plastic model and elasto-brittte plastic model in which the cohesive and frictional strength are mobilized simultaneously. The results obtained indicate that the essential failure mechanism of the cracked rock can be described by the cohesion weakening and friction strengthening evolution law.
Energy Technology Data Exchange (ETDEWEB)
Aad, G.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin,
2016-01-07
Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H → γγ,ZZ*,WW*,Zγ, $b\\bar{b}$,ττ and μμ decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb-^{1} at s√ = 7 TeV and 20.3 fb^{-1} at s√ = 8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18^{+0.15}_{-0.14}. The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered.
Energy Technology Data Exchange (ETDEWEB)
Aad, G. [CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille (France); Abbott, B. [Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK (United States); Abdallah, J. [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Abdinov, O. [Institute of Physics, Azerbaijan Academy of Sciences, Baku (Azerbaijan); Aben, R. [Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam (Netherlands); and others
2016-01-05
Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H→γγ, ZZ{sup ∗}, WW{sup ∗}, Zγ, bb{sup -bar}, ττ and μμ decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb{sup -1} at √s=7 TeV and 20.3 fb{sup -1} at √s=8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18{sub -0.14}{sup +0.15}. The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered.
Central Charge of the Parallelogram Lattice Strong Coupling Schwinger Model
Yee, K
1993-01-01
We put forth a Fierzed hopping expansion for strong coupling Wilson fermions. As an application, we show that the strong coupling Schwinger model on parallelogram lattices with nonbacktracking Wilson fermions span, as a function of the lattice skewness angle, the $\\Delta = -1$ critical line of $6$-vertex models. This Fierzed formulation also applies to backtracking Wilson fermions, which as we describe apparently correspond to richer systems. However, we have not been able to identify them with exactly solved models.
Functional and Muscular Adaptations in an Experimental Model for Isometric Strength Training in Mice
Karsten Krüger; Gessner, Denise K; Michael Seimetz; Jasmin Banisch; Robert Ringseis; Klaus Eder; Norbert Weissmann; Mooren, Frank C.
2013-01-01
Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST) for 10 weeks 5 days/week. Additionall...
Winters-Stone, Kerri M; Lyons, Karen S; Nail, Lillian M; Beer, Tomasz M
2012-03-01
Prostate cancer can threaten quality of life for the patient and his spouse and the quality of his marital relationship. The purpose of our study is to evaluate the effects of "Exercising Together" - a partnered strength training program for married couples coping with prostate cancer - on the physical and emotional health of prostate cancer survivors (PCS) and their spouses and on marital quality. We are conducting a 6-month randomized controlled trial with two groups: 1) Exercising Together - a progressive, supervised strength training program and 2) a usual care control condition. The primary aims of this exploratory study are to: 1) Determine the effect of partnered strength training on physical and emotional health (muscle strength, physical function, body composition and self-report physical and mental health) in PCS, 2) Determine the effect of partnered strength training on physical and emotional health in spouses and 3) Explore the effect of partnered strength training on marital quality (incongruence, communication, relationship quality, intimacy) of the PCS and spouse. Target accrual has been met in this study with 64 couples enrolled and randomized to exercise (n=32) or usual care (n=32) groups. This study is the first to examine the feasibility of this exercise format in both the chronically ill patient and spouse and explore benefits at the individual and couple level.
Sub-Ohmic spin-boson model with off-diagonal coupling: ground state properties.
Lü, Zhiguo; Duan, Liwei; Li, Xin; Shenai, Prathamesh M; Zhao, Yang
2013-10-28
We have carried out analytical and numerical studies of the spin-boson model in the sub-ohmic regime with the influence of both the diagonal and the off-diagonal coupling accounted for, via the Davydov D1 variational ansatz. While a second-order phase transition is known to be exhibited by this model in the presence of diagonal coupling only, we demonstrate the emergence of a discontinuous first order phase transition upon incorporation of the off-diagonal coupling. A plot of the ground state energy versus magnetization highlights the discontinuous nature of the transition between the isotropic (zero magnetization) state and nematic (finite magnetization) phases. We have also calculated the entanglement entropy and a discontinuity found at a critical coupling strength further supports the discontinuous crossover in the spin-boson model in the presence of off-diagonal coupling. It is further revealed via a canonical transformation approach that for the special case of identical exponents for the spectral densities of the diagonal and the off-diagonal coupling, there exists a continuous crossover from a single localized phase to doubly degenerate localized phase with differing magnetizations.
The coupling of Poisson sigma models to topological backgrounds
Rosa, Dario
2016-01-01
We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical intrepretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.
The coupling of Poisson sigma models to topological backgrounds
Energy Technology Data Exchange (ETDEWEB)
Rosa, Dario [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of)
2016-12-13
We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.
Coupling entropy of co-processing model on social networks
Zhang, Zhanli
2015-08-01
Coupling entropy of co-processing model on social networks is investigated in this paper. As one crucial factor to determine the processing ability of nodes, the information flow with potential time lag is modeled by co-processing diffusion which couples the continuous time processing and the discrete diffusing dynamics. Exact results on master equation and stationary state are achieved to disclose the formation. In order to understand the evolution of the co-processing and design the optimal routing strategy according to the maximal entropic diffusion on networks, we propose the coupling entropy comprehending the structural characteristics and information propagation on social network. Based on the analysis of the co-processing model, we analyze the coupling impact of the structural factor and information propagating factor on the coupling entropy, where the analytical results fit well with the numerical ones on scale-free social networks.
The coupling of Poisson sigma models to topological backgrounds
Rosa, Dario
2016-12-01
We extend the coupling to the topological backgrounds, recently worked out for the 2-dimensional BF-model, to the most general Poisson sigma models. The coupling involves the choice of a Casimir function on the target manifold and modifies the BRST transformations. This in turn induces a change in the BRST cohomology of the resulting theory. The observables of the coupled theory are analyzed and their geometrical interpretation is given. We finally couple the theory to 2-dimensional topological gravity: this is the first step to study a topological string theory in propagation on a Poisson manifold. As an application, we show that the gauge-fixed vectorial supersymmetry of the Poisson sigma models has a natural explanation in terms of the theory coupled to topological gravity.
Affine group formulation of the Standard Model coupled to gravity
Chou, Ching-Yi; Soo, Chopin
2013-01-01
Using the affine group formalism, we perform a nonperturbative quantization leading to the construction of elements of a physical Hilbert space for full, Lorentzian quantum gravity coupled to the Standard Model in four spacetime dimensions. This paper constitutes a first step toward understanding the phenomenology of quantum gravitational effects stemming from a consistent treatment of minimal couplings to matter.
Gravity couplings in the standard model: CPT nonconservation
Energy Technology Data Exchange (ETDEWEB)
Chang, Lay Nam [Physics Department, Virginia Tech, Blacksburg, Virginia 24061-0435 (United States)] Soo, Chopin [Center for Theoretical Science, National Tsinghua University, Hsinchu, Republic of (China)
1998-10-01
Chiral asymmetric couplings are a basic feature of the standard model. We show that gravity couplings which manifestly preserve this feature are necessarily complex, and that as a result parity nonconservation can take place in the gravity sector. Implications for breakdown of CPT symmetry are also discussed. {copyright} {ital 1998 American Institute of Physics.}
Unification of gauge couplings in radiative neutrino mass models
DEFF Research Database (Denmark)
Hagedorn, Claudia; Ohlsson, Tommy; Riad, Stella
2016-01-01
We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively...
Finite difference methods for coupled flow interaction transport models
Directory of Open Access Journals (Sweden)
Shelly McGee
2009-04-01
Full Text Available Understanding chemical transport in blood flow involves coupling the chemical transport process with flow equations describing the blood and plasma in the membrane wall. In this work, we consider a coupled two-dimensional model with transient Navier-Stokes equation to model the blood flow in the vessel and Darcy's flow to model the plasma flow through the vessel wall. The advection-diffusion equation is coupled with the velocities from the flows in the vessel and wall, respectively to model the transport of the chemical. The coupled chemical transport equations are discretized by the finite difference method and the resulting system is solved using the additive Schwarz method. Development of the model and related analytical and numerical results are presented in this work.
Development and Validation of a Rule-Based Strength Scaling Method for Musculoskeletal Modelling
DEFF Research Database (Denmark)
Oomen, Pieter; Annegarn, Janneke; Rasmussen, John
2015-01-01
Rule based strength scaling is an easy, cheap and relatively accurate technique to personalize musculoskeletal (MS) models. This paper presents a new strength scaling approach for MS models and validates it by maximal voluntary contractions (MVC). A heterogeneous group of 63 healthy subjects...
A constitutive model for the anelastic behavior of Advanced High Strength Steels
Torkabadi, A.; Liempt, van P.; Meinders, V.T.; Boogaard, van den A.H.
2015-01-01
In this work a physically based model describing the anelastic behaviour and nonlinear unloading in Advanced High Strength Steels (AHSS) is proposed. The model is fitted to the experimental data obtained from uni-axial tests on a dual-phase high strength steel grade (HCT780). The results show a good
Coupling a Basin Modeling and a Seismic Code using MOAB
Yan, Mi
2012-06-02
We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.
Perturbative unification of gauge couplings in supersymmetric E6 models
Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho
2016-07-01
We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.
Overview of the Coupled Model Intercomparison Project (CMIP)
Energy Technology Data Exchange (ETDEWEB)
Meehl, G A; Covey, C; McAvaney, B; Latif, M; Stouffer, R J
2004-08-05
The Coupled Model Intercomparison Project (CMIP) is designed to allow study and intercomparison of multi-model simulations of present-day and future climate. The latter are represented by idealized forcing of compounded 1% per year CO2 increase to the time of CO2 doubling near year 70 in simulations with global coupled models that contain, typically, components representing atmosphere, ocean, sea ice and land surface. Results from CMIP diagnostic subprojects were presented at the Second CMIP Workshop held at the Max Planck Institute for Meteorology in Hamburg, Germany, in September, 2003. Significant progress in diagnosing and understanding results from global coupled models has been made since the First CMIP Workshop in Melbourne, Australia in 1998. For example, the issue of flux adjustment is slowly fading as more and more models obtain stable multi-century surface climates without them. El Nino variability, usually about half the observed amplitude in the previous generation of coupled models, is now more accurately simulated in the present generation of global coupled models, though there are still biases in simulating the patterns of maximum variability. Typical resolutions of atmospheric component models contained in coupled models is now usually around 2.5 degrees latitude-longitude, with the ocean components often having about twice the atmospheric model resolution, with even higher resolution in the equatorial tropics. Some new-generation coupled models have atmospheric model resolutions of around 1.5 degrees latitude-longitude. Modeling groups now routinely run the CMIP control and 1% CO2 simulations in addition to 20th and 21st century climate simulations with a variety of forcings (e.g. volcanoes, solar variability, anthropogenic sulfate aerosols, ozone, and greenhouse gases (GHGs), with the anthropogenic forcings for future climate as well). However, persistent systematic errors noted in previous generations of global coupled models still are present
Non-linear critical taper model and determination of accretionary wedge strength
Yang, Che-Ming; Dong, Jia-Jyun; Hsieh, Yuan-Lung; Liu, Hsueh-Hua; Liu, Cheng-Lung
2016-12-01
The critical taper model has been widely used to evaluate the strength contrast between the wedge and the basal detachment of fold-and-thrust belts and accretionary wedges. However, determination of the strength parameters using the traditional critical taper model, which adopts the Mohr-Coulomb failure criterion, is difficult, if not impossible. In this study, we propose a modified critical taper model that incorporates the non-linear Hoek-Brown failure criterion. The parameters in the proposed critical Hoek-Brown wedge CHBW model can be directly evaluated via field investigations and laboratory tests. Meanwhile, the wedge strength is a function of the wedge thickness, which is oriented from stress non-linearity. The fold-and-thrust belt in western central Taiwan was used as an example to validate the proposed model. The determined wedge strength was 0.86 using a representative wedge thickness of 5.3 km; this was close to the inferred value of 0.6 from the critical taper. Interestingly, a concave topographic relief is predicted as a result of the wedge thickness dependency of the wedge strength, even if the wedge is composed of homogeneous materials and if the strength of the detachment is uniform. This study demonstrates that the influence of wedge strength on the critical taper angle can be quantified by the spatial distribution of strength variables and by the consideration of the wedge thickness dependency of wedge strength.
Escaping in couples facilitates evacuation: Experimental study and modeling
Guo, Ning; Hu, Mao-Bin; Ding, Jian-Xun; Ding, Zhong-Jun
2015-01-01
In this paper, the impact of escaping in couples on the evacuation dynamics has been investigated via experiments and modeling. Two sets of experiments have been implemented, in which pedestrians are asked to escape either in individual or in couples. The experiments show that escaping in couples can decrease the average evacuation time. Moreover, it is found that the average evacuation time gap is essentially constant, which means that the evacuation speed essentially does not depend on the number of pedestrians that have not yet escaped. To model the evacuation dynamics, an improved social force model has been proposed, in which it is assumed that the driving force of a pedestrian cannot be fulfilled when the composition of physical forces exceeds a threshold because the pedestrian cannot keep his/her body balance under this circumstance. To model the effect of escaping in couples, attraction force has been introduced between the partners. Simulation results are in good agreement with the experimental ones.
Coupled thermomechanical modeling using dissimilar geometries in arpeggio.
Energy Technology Data Exchange (ETDEWEB)
Kostka, Timothy D.; Templeton, Jeremy Alan
2010-11-01
Performing coupled thermomechanical simulations is becoming an increasingly important aspect of nuclear weapon (NW) safety assessments in abnormal thermal environments. While such capabilities exist in SIERRA, they have thus far been used only in a limited sense to investigate NW safety themes. An important limiting factor is the difficulty associated with developing geometries and meshes appropriate for both thermal and mechanical finite element models, which has limited thermomechanical analysis to simplified configurations. This work addresses the issue of how to perform coupled analyses on models where the underlying geometries and associated meshes are different and tailored to their relevant physics. Such an approach will reduce the model building effort and enable previously developed single-physics models to be leveraged in future coupled simulations. A combined-environment approach is presented in this report using SIERRA tools, with quantitative comparisons made between different options in SIERRA. This report summarizes efforts on running a coupled thermomechanical analysis using the SIERRA Arpeggio code.
Montazeri, Allahyar; Taylor, C. James
2017-10-01
This article addresses the coupling of acoustic secondary sources in a confined space in a sound field reduction framework. By considering the coupling of sources in a rectangular enclosure, the set of coupled equations governing its acoustical behavior are solved. The model obtained in this way is used to analyze the behavior of multi-input multi-output (MIMO) active sound field control (ASC) systems, where the coupling of sources cannot be neglected. In particular, the article develops the analytical results to analyze the effect of coupling of an array of secondary sources on the sound pressure levels inside an enclosure, when an array of microphones is used to capture the acoustic characteristics of the enclosure. The results are supported by extensive numerical simulations showing how coupling of loudspeakers through acoustic modes of the enclosure will change the strength and hence the driving voltage signal applied to the secondary loudspeakers. The practical significance of this model is to provide a better insight on the performance of the sound reproduction/reduction systems in confined spaces when an array of loudspeakers and microphones are placed in a fraction of wavelength of the excitation signal to reduce/reproduce the sound field. This is of particular importance because the interaction of different sources affects their radiation impedance depending on the electromechanical properties of the loudspeakers.
National Research Council Canada - National Science Library
Zhou, Annan; Sheng, Daichao
2009-01-01
The model recently presented by Sheng, Fredlund, and Gens, known as the SFG model, provides a consistent explanation of yield stress, shear strength, and volume change behaviour of unsaturated soils...
Directory of Open Access Journals (Sweden)
Asif Ali
2016-10-01
Full Text Available Reinforced Concrete is composed of concrete and steel, where compressive strength of concrete and tensile strength of steel are utilized to achieve the required member strength. The high tensile property of steel is thus used to confine and increase compressive strength and ductility of RC columns. Confined concrete is defined as concrete that is restrained laterally by any internal or external means i.e. reinforcement consisting of steel stirrups or spirals, Fiber Reinforced Polymer (FRP, Circular Concrete Filled Steel Tube, RC shell jacketing etc. An appropriate amount of confinement increases the strength, ductility and energy dissipation capacity of RC members. This paper focuses on finding out strength and ductility enhancement of low strength RC columns by reinforcement using existing confinement models. Confinement models are stress-strain curves developed for concrete compression member under uniaxial or dynamic loading, confined with transverse reinforcement. Different models along with their experimental validations are discussed in this paper to get state of the art knowledge of confinement studies possible for low strength concrete. The models recommended from this study are used to evaluate existing structures made with low strength concrete
Coupled Oscillator Model for Nonlinear Gravitational Perturbations
Yang, Huan; Green, Stephen R; Lehner, Luis
2015-01-01
Motivated by the gravity/fluid correspondence, we introduce a new method for characterizing nonlinear gravitational interactions. Namely we map the nonlinear perturbative form of the Einstein equation to the equations of motion of a collection of nonlinearly-coupled harmonic oscillators. These oscillators correspond to the quasinormal or normal modes of the background spacetime. We demonstrate the mechanics and the utility of this formalism within the context of perturbed asymptotically anti-de Sitter black brane spacetimes. We confirm in this case that the boundary fluid dynamics are equivalent to those of the hydrodynamic quasinormal modes of the bulk spacetime. We expect this formalism to remain valid in more general spacetimes, including those without a fluid dual. In other words, although borne out of the gravity/fluid correspondence, the formalism is fully independent and it has a much wider range of applicability. In particular, as this formalism inspires an especially transparent physical intuition, w...
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Energy Technology Data Exchange (ETDEWEB)
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Light weakly coupled axial forces: models, constraints, and projections
Kahn, Yonatan; Krnjaic, Gordan; Mishra-Sharma, Siddharth; Tait, Tim M. P.
2017-05-01
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in π0 and 8Be∗ decay.
Light Weakly Coupled Axial Forces: Models, Constraints, and Projections
Kahn, Yonatan; Mishra-Sharma, Siddharth; Tait, Tim M P
2016-01-01
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevan...
Light Weakly Coupled Axial Forces: Models, Constraints, and Projections
Energy Technology Data Exchange (ETDEWEB)
Kahn, Yonatan [Princeton U.; Krnjaic, Gordan [Fermilab; Mishra-Sharma, Siddharth [Princeton U.; Tait, Tim P. [UC, Irvine
2016-09-28
We investigate the landscape of constraints on MeV-GeV scale, hidden U(1) forces with nonzero axial-vector couplings to Standard Model fermions. While the purely vector-coupled dark photon, which may arise from kinetic mixing, is a well-motivated scenario, several MeV-scale anomalies motivate a theory with axial couplings which can be UV-completed consistent with Standard Model gauge invariance. Moreover, existing constraints on dark photons depend on products of various combinations of axial and vector couplings, making it difficult to isolate the effects of axial couplings for particular flavors of SM fermions. We present a representative renormalizable, UV-complete model of a dark photon with adjustable axial and vector couplings, discuss its general features, and show how some UV constraints may be relaxed in a model with nonrenormalizable Yukawa couplings at the expense of fine-tuning. We survey the existing parameter space and the projected reach of planned experiments, briefly commenting on the relevance of the allowed parameter space to low-energy anomalies in pi^0 and 8-Be* decay.
Using a strengths model to build an on-line nursing education program.
Wieck, K Lynn; Alfred, Danita; Haas, Barbara K; Yarbrough, Susan
2014-01-01
The on-line environment is the new frontier for academia struggling to define its place in the evolving economy. A concern is how to engage students who maximize their on-line experience and graduate in a timely manner. A strengths model was used as the basis for development of an on-line doctoral nursing program. Upon entering the program, students were given a strengths assessment that focused both students and faculty on the positive attributes students were bringing to their doctoral studies. A positive feedback methodology using on-line discussions in each course was used to support the identified strengths. The optimal picture of a successful entering doctoral student appears to be a person whose top five strengths are learner, achiever, input, connectedness and responsibility. A strengths model promotes a positive learning environment and supports a teacher-learner dynamic where faculty members are encouraged to focus on the students' strengths rather than their challenges.
Institute of Scientific and Technical Information of China (English)
Yaghobi Nakisa; Ghoreishy Mir Hamid Reza
2009-01-01
The oxidative coupling of methane (OCM) over titanate perovskite catalyst has been developed by three-dimensional numerical simulations of flow field coupled with heat transfer as well as heterogeneous kinetic model.The reaction was assumed to take place both in the gas phase and on the catalytic surface.Kinetic rate constants were experimentally obtained using a ten step kinetic model.The simulation results agree quite well with the data of OCM experiments,which were used to investigate the effect of temperature on the selectivity and conversion obtained in the methane oxidative coupling process.The conversion of methane linearly increased with temperature and the selectivity of C2 was practically constant in the temperature range of 973-1073 K.The study shows that CFD tools make it possible to implement the heterogeneous kinetic model even for high exothermic reaction such as OCM.
Medicanes in an ocean–atmosphere coupled regional climate model
Directory of Open Access Journals (Sweden)
N. Akhtar
2014-03-01
Full Text Available So-called medicanes (Mediterranean hurricanes are meso-scale, marine, and warm-core Mediterranean cyclones that exhibit some similarities to tropical cyclones. The strong cyclonic winds associated with medicanes threaten the highly populated coastal areas around the Mediterranean basin. To reduce the risk of casualties and overall negative impacts, it is important to improve the understanding of medicanes with the use of numerical models. In this study, we employ an atmospheric limited-area model (COSMO-CLM coupled with a one-dimensional ocean model (1-D NEMO-MED12 to simulate medicanes. The aim of this study is to assess the robustness of the coupled model in simulating these extreme events. For this purpose, 11 historical medicane events are simulated using the atmosphere-only model, COSMO-CLM, and coupled model, with different setups (horizontal atmospheric grid-spacings of 0.44°, 0.22°, and 0.08°; with/without spectral nudging, and an ocean grid-spacing of 1/12°. The results show that at high-resolution, the coupled model is able to not only simulate most of medicane events but also improve the track length, core temperature, and wind speed of simulated medicanes compared to the atmosphere-only simulations. The results suggest that the coupled model is more proficient for systemic and detailed studies of historical medicane events, and that this model can be an effective tool for future projections.
Radiative corrections to the Higgs couplings in the triplet model
Kikuchi, Mariko
2013-01-01
The feature of extended Higgs models can appear in the pattern of deviations from the Standard Model (SM) predictions in coupling constants of the SM-like Higgs boson ($h$). We can thus discriminate extended Higgs models by precisely measuring the pattern of deviations in the coupling constants of $h$, even when extra bosons are not found directly. In order to compare the theoretical predictions to the future precision data at the ILC, we must evaluate the theoretical predictions with radiative corrections in various extended Higgs models. In this talk, we give our comprehensive study for radiative corrections to various Higgs boson couplings of $h$ in the minimal Higgs triplet model (HTM). First, we define renormalization conditions in the model, and we calculate the Higgs coupling; $g\\gamma\\gamma, hWW, hZZ$ and $hhh$ at the one loop level. We then evaluate deviations in coupling constants of the SM-like Higgs boson from the predictions in the SM. We find that one-loop contributions to these couplings are su...
Yilmaz, Ergin; Baysal, Veli; Ozer, Mahmut
2015-08-01
We investigate the effects of time-periodic coupling strength on the temporal coherence or firing regularity of a scale-free network consisting of stochastic Hodgkin-Huxley (H-H) neurons. The temporal coherence exhibits a resonance-like behavior depending on the cell size or the channel noise intensity. The best temporal coherence requires an optimal channel noise intensity, and this coherence can be significantly increased by time-periodic coupling strength when its frequency matches the integer multiples of the intrinsic subthreshold oscillation frequency of H-H neuron. Particularly, we find the multiple-coherence resonance depending on frequency of time-periodic coupling strength at the optimal noise intensity. We also obtain a resonance-like dependence of temporal coherence on the amplitude of time-periodic coupling strength. Additionally, we investigate the effects of average degree on the temporal coherence and find that the temporal coherence exhibits a resonance-like behavior with respect to the network average degree, indicating that the best regularity requires an optimal average degree.
Doh, Hyeonjin; Salk, Sung-Ho Suck
1996-01-01
Using the Hubbard model Hamiltonian in a mean field level, we examine the variation of antiferromagnetic strength with applied magnetic field. It is demonstrated that minima in the antiferromagnetic strength exist at the the even integer denominator values of rational number for magnetic flux per plaquette. The undulatory behavior of antiferromagnetic strength with the external magnetic field is found. It is seen to be related to the undulatory net statistical phase owing to the influence of ...
Continuum model for dipolar coupled planar lattices
Energy Technology Data Exchange (ETDEWEB)
Costa, Miguel D.; Pogorelov, Yuri G. E-mail: ypogorel@fc.up.pt
2003-03-01
In an effective continuum approach alike the phenomenological Landau theory, we study low energy excitations in a square lattice of dipolar coupled magnetic moments {mu}, over continuously degenerate microvortex (MV) ground states defined by an arbitrary angle 0<{theta}<{pi}/2. We consider two vector order parameters: the MV vector v={mu} (cos {theta}, sin {theta}) and the ferromagnetic (FM) vector f=((1)/(2)) ({partial_derivative}{sub y}v{sub x}, -{partial_derivative}{sub x}v{sub y}). The excitation energy density {approx}f{sup 2} leads to a non-linear Euler equation. It allows, besides common linear waves of small amplitude, also non-linear excitations with unlimited (but slow) variation of {theta}(r). For plane wave excitations {theta}(r)={theta}(n{center_dot}r) propagating along n=(cos phi (cursive,open) Greek, sin phi (cursive,open) Greek), exact integrals of Euler equation are found. The density of excitation states turns anisotropic in {theta}, conforming to the enhanced occurrence of MV-like states with {theta} close to 0 or {pi}/2 in our Monte Carlo simulations of this system at low excitation energies.
Multilongitudinal-mode model for cleaved coupled-cavity lasers
van de Capelle, J. P.; Baets, R.; Lagasse, P. E.
1987-02-01
The multilongitudinal-mode model for the analysis of cleaved coupled-cavity lasers proposed by Van de Capelle et al. (1984) is described in full detail. The model includes the optical interactions between the two cavities as well as the noise (spontaneous emission) in each of the resonators. It takes several longitudinal modes into account simultaneously and solves the nonlinear field equations self-consistently, together with a nonlinear resonance condition for each longitudinal mode. These conditions are coupled with each other through the nonlinearity of the laser medium. The results of this model are compared with those from an analytic model based on an effective mirror concept.
The XY model coupled to two-dimensional quantum gravity
Baillie, C. F.; Johnston, D. A.
1992-09-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, c, carries over to the XY model, which has c=1.
The XY Model Coupled to Two-Dimensional Quantum Gravity
Baillie, C F; 10.1016/0370-2693(92)91037-A
2009-01-01
We perform Monte Carlo simulations using the Wolff cluster algorithm of the XY model on both fixed and dynamical phi-cubed graphs (i.e. without and with coupling to two-dimensional quantum gravity). We compare the numerical results with the theoretical expectation that the phase transition remains of KT type when the XY model is coupled to gravity. We also examine whether the universality we discovered in our earlier work on various Potts models with the same value of the central charge, $c$, carries over to the XY model, which has $c=1$.
The Coupled Chemical and Physical Dynamics Model of MALDI
Knochenmuss, Richard
2016-06-01
The coupled physical and chemical dynamics model of ultraviolet matrix-assisted laser desorption/ionization (MALDI) has reproduced and explained a wide variety of MALDI phenomena. The rationale behind and elements of the model are reviewed, including the photophysics, kinetics, and thermodynamics of primary and secondary reaction steps. Experimental results are compared with model predictions to illustrate the foundations of the model, coupling of ablation and ionization, differences between and commonalities of matrices, secondary charge transfer reactions, ionization in both polarities, fluence and concentration dependencies, and suppression and enhancement effects.
Unification of Gauge Couplings in Radiative Neutrino Mass Models
Hagedorn, Claudia; Riad, Stella; Schmidt, Michael A
2016-01-01
We investigate the possibility of gauge coupling unification in various radiative neutrino mass models, which generate neutrino masses at one- and/or two-loop level. Renormalization group running of gauge couplings is performed analytically and numerically at one- and two-loop order, respectively. We study three different classes of neutrino mass models: (I) minimal ultraviolet completions of the dimension-7 $\\Delta L=2$ operators which generate neutrino masses at one- and/or two-loop level without and with dark matter candidates, (II) models with dark matter which lead to neutrino masses at one-loop level and (III) models with particles in the adjoint representation of $\\mathrm{SU}(3)$. In class (I), gauge couplings unify in a few models and adding dark matter amplifies the chances for unification. In class (II), about a quarter of the models admit gauge coupling unification. In class (III), none of the models leads to gauge coupling unification. Regarding the scale of unification, we find values between $10...
Energy Technology Data Exchange (ETDEWEB)
Henry de Frahan, M. T. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; Belof, J. L. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Cavallo, R. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Raevsky, V. A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ignatova, O. N. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Lebedev, A. [Russian Federal Nuclear Center-VNIIEF, Sarov 607188, Russia; Ancheta, D. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; El-dasher, B. S. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Florando, J. N. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Gallegos, G. F. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA; Johnsen, E. [Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA; LeBlanc, M. M. [Lawrence Livermore National Laboratory Livermore, California 94551-0808, USA
2015-06-14
A recent collaboration between LLNL and VNIIEF has produced a set of high explosive driven Rayleigh-Taylor strength data for beryllium. Design simulations using legacy strength models from Steinberg-Lund and Preston-Tonks-Wallace (PTW) suggested an optimal design that would delineate between not just different strength models, but different parameters sets of the PTW model. Application of the models to the post-shot results, however, shows close to classical growth. We characterize the material properties of the beryllium tested in the experiments. We also discuss recent efforts to simulate the data using the legacy strength models as well as the more recent RING relaxation model developed at VNIIEF. Finally, we present shock and ramp-loading recovery experiments conducted as part of the collaboration.
Modeling the dispersion in electromechanically coupled myocardium
Eriksson, Thomas S. E.; Prassl, Anton J.; Plank, Gernot; Holzapfel, Gerhard A.
2014-01-01
SUMMARY We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure–volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases. PMID:23868817
Modeling the dispersion in electromechanically coupled myocardium.
Eriksson, Thomas S E; Prassl, Anton J; Plank, Gernot; Holzapfel, Gerhard A
2013-11-01
We present an approach to model the dispersion of fiber and sheet orientations in the myocardium. By utilizing structure parameters, an existing orthotropic and invariant-based constitutive model developed to describe the passive behavior of the myocardium is augmented. Two dispersion parameters are fitted to experimentally observed angular dispersion data of the myocardial tissue. Computations are performed on a unit myocardium tissue cube and on a slice of the left ventricle indicating that the dispersion parameter has an effect on the myocardial deformation and stress development. The use of fiber dispersions relating to a pathological myocardium had a rather big effect. The final example represents an ellipsoidal model of the left ventricle indicating the influence of fiber and sheet dispersions upon contraction over a cardiac cycle. Although only a minor shift in the pressure-volume (PV) loops between the cases with no dispersions and with fiber and sheet dispersions for a healthy myocardium was observed, a remarkably different behavior is obtained with a fiber dispersion relating to a diseased myocardium. In future simulations, this dispersion model for myocardial tissue may advantageously be used together with models of, for example, growth and remodeling of various cardiac diseases.
Use of glazed ceramic waste as additive in mortar and the mathematical modelling of its strength.
Altin, Zehra Gulten; Erturan, Seyfettin; Tepecik, Abdulkadir
2008-04-01
This study investigated the reusability of waste material from the tile manufacturing industry as an alternative material to natural pozzolan trass. Yield strength values of mortar made from Portland cement (CEM 142.5), were measured by adding glazed ceramic waste and trass at various weight ratios (5 to 40%). The test results proved that the strength values at 2, 7, and 28 days gave good results for concentrations of waste materials less than 5-10% in the cement. A decrease in strength was observed at higher concentrations. Mathematical modelling results showed a logarithmic correlation between the mortar strength and weight fraction of cement.
Theoretical Strength of Face-Centred-Cubic Single Crystal Copper Based on a Continuum Model
Institute of Scientific and Technical Information of China (English)
LIU Xiao-Ming; LIU Zhan-Li; YOU Xiao-Chuan; NIE Jun-Feng; ZHUANG Zhuo
2009-01-01
The constitutive relation of single crystal copper based on atomistic potential is implemented to capture the nonlinear inter-atomic interactions. Uniaxial loading tests of single crystal copper with inter-atomic potential finite-element model are carried out to determine the corresponding ideal strength using the modified Born stability criteria. Dependence of the ideal strength on the crystallographic orientation is studied, and tension-compression asymmetry in ideal strength is also investigated. The results suggest that asymmetry for yielding strength of nano-materials may result from anisotropic character of crystal instability. Moreover, the results also reveal that the critical resolved shear stress in the direction of slip is not an accurate criterion for the ideal strength since it could not capture the dependence on the loading conditions and hydrostatic stress components for the ideal strength.
Institute of Scientific and Technical Information of China (English)
A.Suresh Babu; V.Jayabalan
2009-01-01
In recent times, conventional materials are replaced by metal matrix composites (MMCs) due to their high specific strength and modulus.Strength reliability, one of the key factors restricting wider use of composite materials in various applications, is commonly characterized by Weibull strength distribution function.In the present work, statistical analysis of the strength data of 15% volume alumina particle (mean size 15 μm)reinforced in aluminum alloy (1101 grade alloy) fabricated by stir casting method was carried out using Weibull probability model.Twelve tension tests were performed according to ASTM B577 standards and the test data, the corresponding Weibull distribution was obtained.Finally the reliability of the composite behavior in terms of its fracture strength was presented to ensure the reliability of composites for suitable applications.An important implication of the present study is that the Weibull distribution describes the experimentally measured strength data more appropriately.
Testing coupled dark energy models with their cosmological background evolution
van de Bruck, Carsten; Morrice, Jack
2016-01-01
We consider a cosmology in which dark matter and a quintessence scalar field responsible for the acceleration of the Universe are allowed to interact. Allowing for both conformal and disformal couplings, we perform a global analysis of the constraints on our model using Hubble parameter measurements, baryon acoustic oscillation distance measurements, and a Supernovae Type Ia data set. We find that the additional disformal coupling relaxes the conformal coupling constraints. Moreover we show that, at the background level, a disformal interaction within the dark sector is preferred to both $\\Lambda$CDM and uncoupled quintessence, hence favouring interacting dark energy.
Strong Local-Nonlocal Coupling for Integrated Fracture Modeling
Energy Technology Data Exchange (ETDEWEB)
Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Silling, Stewart A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, John A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Seleson, Pablo D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parks, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Turner, Daniel Z. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnett, Damon J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ostien, Jakob [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-09-01
Peridynamics, a nonlocal extension of continuum mechanics, is unique in its ability to capture pervasive material failure. Its use in the majority of system-level analyses carried out at Sandia, however, is severely limited, due in large part to computational expense and the challenge posed by the imposition of nonlocal boundary conditions. Combined analyses in which peridynamics is em- ployed only in regions susceptible to material failure are therefore highly desirable, yet available coupling strategies have remained severely limited. This report is a summary of the Laboratory Directed Research and Development (LDRD) project "Strong Local-Nonlocal Coupling for Inte- grated Fracture Modeling," completed within the Computing and Information Sciences (CIS) In- vestment Area at Sandia National Laboratories. A number of challenges inherent to coupling local and nonlocal models are addressed. A primary result is the extension of peridynamics to facilitate a variable nonlocal length scale. This approach, termed the peridynamic partial stress, can greatly reduce the mathematical incompatibility between local and nonlocal equations through reduction of the peridynamic horizon in the vicinity of a model interface. A second result is the formulation of a blending-based coupling approach that may be applied either as the primary coupling strategy, or in combination with the peridynamic partial stress. This blending-based approach is distinct from general blending methods, such as the Arlequin approach, in that it is specific to the coupling of peridynamics and classical continuum mechanics. Facilitating the coupling of peridynamics and classical continuum mechanics has also required innovations aimed directly at peridynamic models. Specifically, the properties of peridynamic constitutive models near domain boundaries and shortcomings in available discretization strategies have been addressed. The results are a class of position-aware peridynamic constitutive laws for
J. E. Winandy; P. K. Lebow
2001-01-01
In this study, we develop models for predicting loss in bending strength of clear, straight-grained pine from changes in chemical composition. Although significant work needs to be done before truly universal predictive models are developed, a quantitative fundamental relationship between changes in chemical composition and strength loss for pine was demonstrated. In...
The Kac Model Coupled to a Thermostat
Bonetto, Federico; Loss, Michael; Vaidyanathan, Ranjini
2014-08-01
In this paper we study a model of randomly colliding particles interacting with a thermal bath. Collisions between particles are modeled via the Kac master equation while the thermostat is seen as an infinite gas at thermal equilibrium at inverse temperature . The system admits the canonical distribution at inverse temperature as the unique equilibrium state. We prove that any initial distribution approaches the equilibrium distribution exponentially fast both by computing the gap of the generator of the evolution, in a proper function space, as well as by proving exponential decay in relative entropy. We also show that the evolution propagates chaos and that the one particle marginal, in the large system limit, satisfies an effective Boltzmann-type equation.
Coupled Oscillator Model of the Business Cycle withFluctuating Goods Markets
Ikeda, Y.; Aoyama, H.; Fujiwara, Y.; Iyetomi, H.; Ogimoto, K.; Souma, W.; Yoshikawa, H.
The sectoral synchronization observed for the Japanese business cycle in the Indices of Industrial Production data is an example of synchronization. The stability of this synchronization under a shock, e.g., fluctuation of supply or demand, is a matter of interest in physics and economics. We consider an economic system made up of industry sectors and goods markets in order to analyze the sectoral synchronization observed for the Japanese business cycle. A coupled oscillator model that exhibits synchronization is developed based on the Kuramoto model with inertia by adding goods markets, and analytic solutions of the stationary state and the coupling strength are obtained. We simulate the effects on synchronization of a sectoral shock for systems with different price elasticities and the coupling strengths. Synchronization is reproduced as an equilibrium solution in a nearest neighbor graph. Analysis of the order parameters shows that the synchronization is stable for a finite elasticity, whereas the synchronization is broken and the oscillators behave like a giant oscillator with a certain frequency additional to the common frequency for zero elasticity.
Advances in the Coupled Soil Water and Groundwater Models
Institute of Scientific and Technical Information of China (English)
杨玉峥; 王志敏
2014-01-01
Models simulating the reciprocal transformation between the soil water and groundwater are of great practical importance to the development and utilization of water resources and prevention and remedy of water pollution. In this paper, popular coupled models of soil water and groundwater will be analyzed. Besides, advantages and disadvantages of different models will be summarized as a reference for the numerical model of soil water and groundwater.
Norman, Sumner L; Lobo-Prat, Joan; Reinkensmeyer, David J
2017-07-01
Robotic devices can train strength, coordination, or a combination of both. If a robotic device focuses on coordination, what happens to strength recovery, and vice versa? Understanding this interaction could help optimize robotic training. We developed a computational neurorehabilitation model to gain insight into the interaction between strength and coordination recovery after stroke. In the model, the motor system recovers by optimizing the activity of residual corticospinal cells (focally connected, excitatory and inhibitory) and reticulospinal cells (diffusely connected and excitatory) to achieve a motor task. To do this, the model employs a reinforcement learning algorithm that uses stochastic search based on a reward signal produced by task execution. We simulated two tasks that require strength and coordination: a finger movement task and a bilateral wheelchair propulsion task. We varied the reward signal to value strength versus coordination, determined by a weighting factor. The model predicted a nonlinear relationship between strength and coordination recovery consistent with clinical data obtained for each task. The model also predicted that stroke can cause a competition between strength and coordination recovery, due to a scarcity of focal and inhibitory cells. These results provide a rationale for implementing robotic movement therapy that can adaptively alter the combination of force and coordination training to target desired components of motor recovery.
Cosmological Models with Time Dependent G and A Coupling Scalars
Institute of Scientific and Technical Information of China (English)
N.Ibotombi Singh; S.Kiranmla Chanu; S.Surendra Singh
2009-01-01
A cosmological model in which the universe has its critical density and gravitational constants generalized as coupling scalars in Einstein's theory is considered.A general method of solving the field equations is given.An exact solution for matter distribution in cosmological models satisfying G = Go(R/Ro)n is presented.Corresponding physical interpretations of the cosmological solutions are also discussed.
Energy demand analytics using coupled technological and economic models
Impacts of a range of policy scenarios on end-use energy demand are examined using a coupling of MARKAL, an energy system model with extensive supply and end-use technological detail, with Inforum LIFT, a large-scale model of the us. economy with inter-industry, government, and c...
Improving data transfer for model coupling
Zhang, C.; Liu, L.; Yang, G.; Li, R.; Wang, B.
2015-10-01
Data transfer, which means transferring data fields between two component models or rearranging data fields among processes of the same component model, is a fundamental operation of a coupler. Most of state-of-the-art coupler versions currently use an implementation based on the point-to-point (P2P) communication of the Message Passing Interface (MPI) (call such an implementation "P2P implementation" for short). In this paper, we reveal the drawbacks of the P2P implementation, including low communication bandwidth due to small message size, variable and big number of MPI messages, and jams during communication. To overcome these drawbacks, we propose a butterfly implementation for data transfer. Although the butterfly implementation can outperform the P2P implementation in many cases, it degrades the performance in some cases because the total message size transferred by the butterfly implementation is larger than that by the P2P implementation. To make the data transfer completely improved, we design and implement an adaptive data transfer library that combines the advantages of both butterfly implementation and P2P implementation. Performance evaluation shows that the adaptive data transfer library significantly improves the performance of data transfer in most cases and does not decrease the performance in any cases. Now the adaptive data transfer library is open to the public and has been imported into a coupler version C-Coupler1 for performance improvement of data transfer. We believe that it can also improve other coupler versions.
Concepts and models of coupled systems
Ertsen, Maurits
2017-04-01
In this paper, I will especially focus on the question of the position of human agency, social networks and complex co-evolutionary interactions in socio-hydrological models. The long term perspective of complex systems' modeling typically focuses on regional or global spatial scales and century/millennium time scales. It is still a challenge to relate correlations in outcomes defined at those longer and larger scales to the causalities at the shorter and smaller scales. How do we move today to the next 1000 years in the same way that our ancestors did move from their today to our present, in the small steps that produce reality? Please note, I am not arguing long term work is not interesting or the like. I just pose the question how to deal with the problem that we employ relations with hindsight that matter to us, but not necessarily to the agents that produced the relations we think we have observed. I would like to push the socio-hydrological community a little into rethinking how to deal with complexity, with the aim to bring together the timescales of humans and complexity. I will provide one or two examples of how larger-scale and longer-term observations on water flows and environmental loads can be broken down into smaller-scale and shorter-term production processes of these same loads.
Contribution of the LHT Model to Zc-c Coupling
Institute of Scientific and Technical Information of China (English)
WANG Ya-Bin; LI Xiang-Dong; HAN Jin-Zhong; YANG Bing-Fang
2011-01-01
In the littlest Higgs model with T-parity (LHT), some new particles, such as the T-odd mirror quarks and goldstone bosons, can contribute to various observables. We calculate their contribution to Ze(c) coupling. Some observables are related to Zc(c) coupling, for example, the effective vector and axial-vector Ze(c) coupling constants (9Vc,9Ac) and c-quark forward-backward asymmetry (AFBc). We give our predictions about 9Vc,9Ac in the LHT model and show the allowed regions of the mirror quark masses based on the experimental data of 9Vc-9Ac. Then, we present an explanation of AFBc.%In the littlest Higgs model with T-parity (LHT),some new particles,such as the T-odd mirror quarks and goldstone bosons,can contribute to various observables.We calculate their contribution to Zc-c coupling.Some observables are related to Zc-c coupling,for example,the effective vector and axial-vector Zc-c coupling constants (gVc,gAc) and c-quark forward-backward asymmetry (AcFB).We give our predictions about gVc,gAc in the LHT model and show the allowed regions of the mirror quark masses based on the experimental data of gVc - gAc.Then,we present an explanation of AcFB.The littlest Higgs (LH) model[1] is an economical implementation of the little Higgs model[2,3] which was proposed as a possible approach to solve the little hierarchy problem.[4] It was soon realized that such a model suffers severe constraints due to the precision electroweak measurements.[5-8] The most serious constraints resulted from the tree-level contributions to the precision electroweak observables by the exchange of additional heavy gauge bosons in the theory.
Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation
Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred
2015-01-01
To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.
Fluid coupling in a discrete model of cochlear mechanics.
Elliott, Stephen J; Lineton, Ben; Ni, Guangjian
2011-09-01
A discrete model of cochlear mechanics is introduced that includes a full, three-dimensional, description of fluid coupling. This formulation allows the fluid coupling and basilar membrane dynamics to be analyzed separately and then coupled together with a simple piece of linear algebra. The fluid coupling is initially analyzed using a wavenumber formulation and is separated into one component due to one-dimensional fluid coupling and one comprising all the other contributions. Using the theory of acoustic waves in a duct, however, these two components of the pressure can also be associated with a far field, due to the plane wave, and a near field, due to the evanescent, higher order, modes. The near field components are then seen as one of a number of sources of additional longitudinal coupling in the cochlea. The effects of non-uniformity and asymmetry in the fluid chamber areas can also be taken into account, to predict both the pressure difference between the chambers and the mean pressure. This allows the calculation, for example, of the effect of a short cochlear implant on the coupled response of the cochlea.
Ichoku, C.; Chin, M.; Diehl, T.; Wooster, M.; Roberts, G.; Giglio, L.
2007-05-01
Chemical transport models currently derive their smoke emission sources from counts of fire hot spots detected from satellites, usually with single daily overpasses. However, fires vary in size and strength, with a significant diurnal trend, making the use of pixel counts measured at the same time of day very unreliable for estimating smoke sources. Fortunately, the Moderate-resolution Imaging Spectro-radiometer (MODIS) twin sensors onboard the Terra and Aqua satellites, not only detect fires everywhere at four strategic times of day, but also measure their strength in the form of fire radiative power (FRP) or rate of release of fire radiative energy (FRE). FRP is now also being derived from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the geostationary Meteosat-8 platform, which observes Africa and Europe virtually every 15 mins. The SEVIRI measurements show that MODIS 4-times-a-day measurements capture the essence of the fire diurnal cycle. Therefore, MODIS is currently the only satellite data source ideal for estimating daily smoke emissions globally. In a number of recent studies, FRP has been found to be directly proportional to both the rate of biomass consumption and the rate of smoke aerosol emission. Indeed, (1) a combustion factor (Fc), which relates FRE to burned biomass was established, and (2) a FRE-based emission coefficient (Ce), which is a simple coefficient to convert FRP (or FRE) to smoke aerosol emissions was derived for different parts of the world. The results obtained from satellite have been reproduced in the laboratory, and the ingestion of FRP in models is now being tested using the Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model. Although MODIS has been in operation since the last 6 years, regrettably, this rare but formidable data resource it provides (FRP) has been left largely unutilized. In this presentation, we will show the preliminary results of using FRP to improve the
The strength model of self-control in sport and exercise psychology
Directory of Open Access Journals (Sweden)
Chris eEnglert
2016-03-01
Full Text Available The strength model of self-control assumes that all acts of self-control (e.g., emotion regulation, persistence are empowered by a single global metaphorical strength that has limited capacity. This strength can become temporarily depleted after a primary self-control act, which, in turn, can impair performance in subsequent acts of self-control. Recently, the assumptions of the strength model of self-control also have been adopted and tested in the field of sport and exercise psychology. The present review paper aims to give an overview of recent developments in self-control research based on the strength model of self-control. Furthermore, recent research on interventions on how to improve and revitalize self-control strength will be presented. Finally, the strength model of self-control has been criticized lately, as well as expanded in scope, so the present paper will also discuss alternative explanations of why previous acts of self-control can lead to impaired performance in sport and exercise.
Integrative systems models of cardiac excitation-contraction coupling.
Greenstein, Joseph L; Winslow, Raimond L
2011-01-07
Excitation-contraction coupling in the cardiac myocyte is mediated by a number of highly integrated mechanisms of intracellular Ca²(+) transport. The complexity and integrative nature of heart cell electrophysiology and Ca²(+) cycling has led to an evolution of computational models that have played a crucial role in shaping our understanding of heart function. An important emerging theme in systems biology is that the detailed nature of local signaling events, such as those that occur in the cardiac dyad, have important consequences at higher biological scales. Multiscale modeling techniques have revealed many mechanistic links between microscale events, such as Ca²(+) binding to a channel protein, and macroscale phenomena, such as excitation-contraction coupling gain. Here, we review experimentally based multiscale computational models of excitation-contraction coupling and the insights that have been gained through their application.
Cosmological model with non-minimally coupled fermionic field
Ribas, M O; Kremer, G M
2007-01-01
A model for the Universe is proposed whose constituents are: (a) a dark energy field modeled by a fermionic field non-minimally coupled with the gravitational field, (b) a matter field which consists of pressureless baryonic and dark matter fields and (c) a field which represents the radiation and the neutrinos. The coupled system of Dirac's equations and Einstein field equations is solved numerically by considering a spatially flat homogeneous and isotropic Universe. It is shown that the proposed model can reproduce the expected red-shift behaviors of the deceleration parameter, of the density parameters of each constituent and of the luminosity distance. Furthermore, for small values of the red-shift the constant which couples the fermionic and gravitational fields has a remarkable influence on the density and deceleration parameters.
Coupling atmospheric and ocean wave models for storm simulation
DEFF Research Database (Denmark)
Du, Jianting
This thesis studies the wind-wave interactions through the coupling between the atmospheric model and ocean surface wave models. Special attention is put on storm simulations in the North Sea for wind energy applications in the coastal zones. The two aspects, namely storm conditions and coastal...... areas, are challenging for the wind-wave coupling system because: in storm cases, the wave field is constantly modified by the fast varying wind field; in coastal zones, the wave field is strongly influenced by the bathymetry and currents. Both conditions have complex, unsteady sea state varying...... with time and space that challenge the current coupled modeling system. The conventional approach of estimating the momentum exchange is through parameterizing the aerodynamic roughness length (z0) with wave parameters such as wave age, steepness, significant wave height, etc. However, it is found in storm...
Target echo strength modelling at FOI, including results from the BeTSSi II workshop
Östberg, Martin
2016-01-01
An overview of the target echo strength (TS) modelling capacity at the Swedish Defense Research Agency (FOI) is presented. The modelling methods described range from approximate ones, such as raytracing and Kirchhoff approximation codes, to high accuracy full field codes including boundary integral equation methods and finite elements methods. Illustrations of the applicability of the codes are given for a few simple cases tackled during the BeTTSi II (Benchmark Target Echo Strength Simulation) workshop held in Kiel 2014.
Micromechanical modeling of strength and damage of fiber reinforced composites
Energy Technology Data Exchange (ETDEWEB)
Mishnaevsky, L. Jr.; Broendsted, P.
2007-03-15
The report for the first year of the EU UpWind project includes three parts: overview of concepts and methods of modelling of mechanical behavior, deformation and damage of unidirectional fiber reinforced composites, development of computational tools for the automatic generation of 3D micromechanical models of fiber reinforced composites, and micromechanical modelling of damage in FRC, and phenomenological analysis of the effect of frequency of cyclic loading on the lifetime and damage evolution in materials. (au)
Inertial effect on frequency synchronization for the second-order Kuramoto model with local coupling
Wang, Rui; Qin, Wen-Xin
2017-04-01
In this paper, we study the influence of the inertial effect on frequency synchronization in an ensemble of Kuramoto oscillators with finite inertia and symmetric and connected interactions. We present sufficient conditions in terms of coupling strength, algebraic connectivity, natural frequencies, and the inertial term to guarantee the occurrence of frequency synchronization. We also make a comparison with the existing conditions proposed for the first-order Kuramoto model and conclude that the inertial effect, if appropriately small, has little influence on frequency synchronization as long as the initial phase configurations are distributed in a half circle.
Novel Predictive Model of the Debonding Strength for Masonry Members Retrofitted with FRP
Directory of Open Access Journals (Sweden)
Iman Mansouri
2016-11-01
Full Text Available Strengthening of masonry members using externally bonded (EB fiber-reinforced polymer (FRP composites has become a famous structural strengthening method over the past decade due to the popular advantages of FRP composites, including their high strength-to-weight ratio and excellent corrosion resistance. In this study, gene expression programming (GEP, as a novel tool, has been used to predict the debonding strength of retrofitted masonry members. The predictions of the new debonding resistance model, as well as several other models, are evaluated by comparing their estimates with experimental results of a large test database. The results indicate that the new model has the best efficiency among the models examined and represents an improvement to other models. The root mean square errors (RMSE of the best empirical Kashyap model in training and test data were, respectively, reduced by 51.7% and 41.3% using the GEP model in estimating debonding strength.
Time Delay in the Kuramoto Model of Coupled Oscillators
Yeung, M K S; Strogatz, Steven H.
1999-01-01
We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.
String coupling and interactions in type IIB matrix model
Kitazawa, Yoshihisa
2008-01-01
We investigate the interactions of closed strings in IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in IIB matrix model via two dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g_s in IIB matrix model. We confirm that our identification is consistent with matrix string theory.
Mathematical model for coupling a quasi-unidimensional perfect flow
Msallam, Régis
2010-01-01
Nonlinear acoustics of wind instruments conducts to study unidimensional fluid flows. From physically relevant approximations that are modelized with the thin layer Navier Stokes equations, we propose a coupled model where perfect fluid flow is described by the Euler equations of gas dynamics and viscous and thermal boundary layer is modelized by a linear equation. We describe numerical discretization, validate the associated software by comparison with analytical solutions and consider musical application of strongly nonlinear waves in the trombone.
The prediction of brick wall strengths with artificial neural networks model
Demir, Ali; Kumanlioglu, Ahmet Ali
2017-01-01
The aim of this study is to predict with Artificial Neural Networks (ANN) shear strength of brick masonry walls. Shear strength of the walls is determined with diagonal shear tests. It is very difficult to determine strengths of brick masonry walls with experimental procedures. Therefore, an Artificial Neural Networks model is developed with data obtained by investigating many papers from literature and experiments carried out by the authors. Finally, a good degree of coherency is obtained between the experimental and predicted data. The model that is developed makes it possible to easily predict shear strength of the masonry walls. Additionally, this model can be continuously trained with new data and its applicability range can easily be expanded.
Integrating attentional control theory and the strength model of self-control.
Englert, Chris; Bertrams, Alex
2015-01-01
In the present article, we argue that it may be fruitful to incorporate the ideas of the strength model of self-control into the core assumptions of the well-established attentional control theory (ACT). In ACT, it is assumed that anxiety automatically leads to attention disruption and increased distractibility, which may impair subsequent cognitive or perceptual-motor performance, but only if individuals do not have the ability to counteract this attention disruption. However, ACT does not clarify which process determines whether one can volitionally regulate attention despite experiencing high levels of anxiety. In terms of the strength model of self-control, attention regulation can be viewed as a self-control act depending on the momentary availability of self-control strength. We review literature that has revealed that self-control strength moderates the anxiety-performance relationship, discuss how to integrate these two theoretical models, and offer practical recommendations of how to counteract negative anxiety effects.
Directory of Open Access Journals (Sweden)
Weiguo Li
2012-01-01
Full Text Available A thermodamage strength theoretical model taking into account the effect of residual stress was established and applied to each temperature phase based on the study of effects of various physical mechanisms on the fracture strength of ultrahigh-temperature ceramics. The effects of SiC particle size, crack size, and SiC particle volume fraction on strength corresponding to different temperatures were studied in detail. This study showed that when flaw size is not large, the bigger SiC particle size results in the greater effect of tensile residual stress in the matrix grains on strength reduction, and this prediction coincides with experimental results; and the residual stress and the combined effort of particle size and crack size play important roles in controlling material strength.
BEAM 1.7: development for modelling fuel element and bundle buckling strength
Energy Technology Data Exchange (ETDEWEB)
Cheng, G.; Xu, S.; Xu, Z.; Paul, U.K. [Atomic Energy of Canada, Mississauga, Ontario (Canada)
2010-07-01
This paper describes BEAM, an AECL developed computer program, used to assess mechanical integrity of CANDU fuel bundles. The BEAM code has been developed to satisfy the need for buckling strength analysis of fuel bundles. Buckling refers to the phenomenon where a compressive axial load is large enough that a small lateral load can cause large lateral deflections. The buckling strength refers to the critical compressive axial load at which lateral instability is reached. The buckling strength analysis has practical significance for the design of fuel bundles, where the buckling strength of a fuel element/bundle is assessed so that the conditions leading to bundle jamming in the pressure tube are excluded. This paper presents the development and qualification of the BEAM code, with emphasis on the theoretical background and code implementation of the newly developed fuel element/bundle buckling strength model. (author)
Forced versus coupled dynamics in Earth system modelling and prediction
Directory of Open Access Journals (Sweden)
B. Knopf
2005-01-01
Full Text Available We compare coupled nonlinear climate models and their simplified forced counterparts with respect to predictability and phase space topology. Various types of uncertainty plague climate change simulation, which is, in turn, a crucial element of Earth System modelling. Since the currently preferred strategy for simulating the climate system, or the Earth System at large, is the coupling of sub-system modules (representing, e.g. atmosphere, oceans, global vegetation, this paper explicitly addresses the errors and indeterminacies generated by the coupling procedure. The focus is on a comparison of forced dynamics as opposed to fully, i.e. intrinsically, coupled dynamics. The former represents a particular type of simulation, where the time behaviour of one complex systems component is prescribed by data or some other external information source. Such a simplifying technique is often employed in Earth System models in order to save computing resources, in particular when massive model inter-comparisons need to be carried out. Our contribution to the debate is based on the investigation of two representative model examples, namely (i a low-dimensional coupled atmosphere-ocean simulator, and (ii a replica-like simulator embracing corresponding components.Whereas in general the forced version (ii is able to mimic its fully coupled counterpart (i, we show in this paper that for a considerable fraction of parameter- and state-space, the two approaches qualitatively differ. Here we take up a phenomenon concerning the predictability of coupled versus forced models that was reported earlier in this journal: the observation that the time series of the forced version display artificial predictive skill. We present an explanation in terms of nonlinear dynamical theory. In particular we observe an intermittent version of artificial predictive skill, which we call on-off synchronization, and trace it back to the appearance of unstable periodic orbits. We also
Coupling meteorological and hydrological models for flood forecasting
Directory of Open Access Journals (Sweden)
Bartholmes
2005-01-01
Full Text Available This paper deals with the problem of analysing the coupling of meteorological meso-scale quantitative precipitation forecasts with distributed rainfall-runoff models to extend the forecasting horizon. Traditionally, semi-distributed rainfall-runoff models have been used for real time flood forecasting. More recently, increased computer capabilities allow the utilisation of distributed hydrological models with mesh sizes from tenths of metres to a few kilometres. On the other hand, meteorological models, providing the quantitative precipitation forecast, tend to produce average values on meshes ranging from slightly less than 10 to 200 kilometres. Therefore, to improve the quality of flood forecasts, the effects of coupling the meteorological and the hydrological models at different scales were analysed. A distributed hydrological model (TOPKAPI was developed and calibrated using a 1x1 km mesh for the case of the river Po closed at Ponte Spessa (catchment area c. 37000 km2. The model was then coupled with several other European meteorological models ranging from the Limited Area Models (provided by DMI and DWD with resolutions from 0.0625° * 0.0625°, to the ECMWF ensemble predictions with a resolution of 1.85° * 1.85°. Interesting results, describing the coupled model behaviour, are available for a meteorological extreme event in Northern Italy (Nov. 1994. The results demonstrate the poor reliability of the quantitative precipitation forecasts produced by meteorological models presently available; this is not resolved using the Ensemble Forecasting technique, when compared with results obtainable with measured rainfall.
Ultrastrong-coupling phenomena beyond the Dicke model
Jaako, Tuomas; Xiang, Ze-Liang; Garcia-Ripoll, Juan José; Rabl, Peter
2016-09-01
We study effective light-matter interactions in a circuit QED system consisting of a single L C resonator, which is coupled symmetrically to multiple superconducting qubits. Starting from a minimal circuit model, we demonstrate that, in addition to the usual collective qubit-photon coupling, the resulting Hamiltonian contains direct qubit-qubit interactions, which have a drastic effect on the ground- and excited-state properties of such circuits in the ultrastrong-coupling regime. In contrast to the superradiant phase transition expected from the standard Dicke model, we find an opposite mechanism, which at very strong interactions completely decouples the photon mode and projects the qubits into a highly entangled ground state. These findings resolve previous controversies over the existence of superradiant phases in circuit QED, but they more generally show that the physics of two- or multiatom cavity QED settings can differ significantly from what is commonly assumed.
Massless Boundary Sine-Gordon Model Coupled to External Fields
Kogetsu, H
2005-01-01
We investigate a generalization of the massless boundary sine-Gordon model with conformal invariance, which has been used to describe an array of D-branes (or rolling tachyon). We consider a similar action whose couplings are replaced with external fields depending on the boundary coordinate. Even in the presence of the external fields, this model is still solvable, though it does not maintain the whole conformal symmetry. We obtain, to all orders in perturbation theory in terms of the external fields, a simpler expression of the boundary state and the disc partition function. As a by-product, we fix the relation between the bare couplings and the renormalized couplings which has been appeared in papers on tachyon lump and rolling tachyon.
Model for magnetostrictive performance in soft/hard coupled bilayers
Energy Technology Data Exchange (ETDEWEB)
Jianjun, Li, E-mail: ljj8081@gmail.com [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China); Laboratoire de Magnétisme de Bretagne, Université de Bretagne Occidentale, 29238 Brest Cedex 3 (France); Beibei, Duan; Minglun, Li [National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080 (China)
2015-11-01
A model is set up to investigate the magnetostrictive performance and spin response in soft/hard magnetostrictive coupled bilayers. Direct coupling between soft ferromagnet and hard TbFe{sub 2} at the interface is assumed. The magnetostriction results from the rotation of ferromagnetic vector and TbFe{sub 2} vectors from the easy axis driven by applied magnetic field. Dependence of magnetostriction on TbFe{sub 2} layer thickness and interfacial exchange interaction is studied. The simulated results reveal the compromise between interfacial exchange interaction and anisotropy of TbFe{sub 2} hard layer. - Highlights: • A model for magnetostrictive performance in soft/hard coupled bilayers. • Simulated magnetostriction loop and corresponding spin response. • Competition and compromise between interfacial interaction and TbFe{sub 2} anisotropy. • Dependence of saturated magnetostriction on different parameters.
A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas
2016-02-29
effects are described based on a hybrid State-to-State (StS) approach. A multi-temperature formulation is used to account for thermal non-equilibrium...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...usually obtained through quantum chemistry calculations51–56 or through phenomenological models providing a simplified descrip- tion of the kinetic
An efficient numerical target strength prediction model: Validation against analysis solutions
Fillinger, L.; Nijhof, M.J.J.; Jong, C.A.F. de
2014-01-01
A decade ago, TNO developed RASP (Rapid Acoustic Signature Prediction), a numerical model for the prediction of the target strength of immersed underwater objects. The model is based on Kirchhoff diffraction theory. It is currently being improved to model refraction, angle dependent reflection and t
Youngs-Type Material Strength Model in the Besnard-Harlow-Rauenzahn Turbulence Equations
Energy Technology Data Exchange (ETDEWEB)
Denissen, Nicholas Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Plohr, Bradley J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-08-17
Youngs [AWE Report Number 96/96, 1992] has augmented a two-phase turbulence model to account for material strength. Here we adapt the model of Youngs to the turbulence model for the mixture developed by Besnard, Harlow, and Rauenzahn [LANL Report LA-10911, 1987].
Strength Analysis Modelling of Flexible Umbilical Members for Marine Structures
Directory of Open Access Journals (Sweden)
S. Sævik
2012-01-01
Full Text Available This paper presents a 3-dimensional finite element formulation for predicting the behaviour of complex umbilical cross-sections exposed to loading from tension, torque, internal and external pressure including bending. Helically wound armours and tubes are treated as thin and slender beams formulated within the framework of small strains but large displacements, applying the principle of virtual displacements to obtain finite element equations. Interaction between structural elements is handled by 2- and 3-noded contact elements based on a penalty parameter formulation. The model takes into account a number of features, such as material nonlinearity, gap and friction between individual bodies, and contact with external structures and with a full 3-dimensional description. Numerical studies are presented to validate the model against another model as well as test data.
Micromechanical modeling of unidirectional composites with uneven interfacial strengths
DEFF Research Database (Denmark)
Ashouri Vajari, Danial; Legarth, Brian Nyvang; Niordson, Christian Frithiof
2013-01-01
Composite materials under loads normal to the fiber orientation often fail due to debonding between fibers and matrix. In this paper a micromechanical model is developed to study the interfacial and geometrical effects in fiber-reinforced composites using generalized plane strain by means......, a trapezoidal cohesive zone model is used. A parametric study is carried out to evaluate the influence of the interfacial properties, fiber position and fiber volume fraction on the overall stressestrain response as well as the end-crack opening displacement and the opening crack angle. All the results...
A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas
Energy Technology Data Exchange (ETDEWEB)
Munafò, A., E-mail: munafo@illinois.edu; Alfuhaid, S. A., E-mail: alfuhai2@illinois.edu; Panesi, M., E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Talbot Laboratory, 104 S. Wright St., Urbana, Illinois 61801 (United States); Cambier, J.-L., E-mail: jean-luc.cambier@us.af.mil [Edwards Air Force Base Research Laboratory, 10 E. Saturn Blvd., Edwards AFB, California 93524 (United States)
2015-10-07
The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients.
Fermionic extensions of the Standard Model in light of the Higgs couplings
Bizot, Nicolas
2015-01-01
As the Higgs boson properties settle, the constraints on the Standard Model extensions tighten. We consider all possible new fermions that can couple to the Higgs, inspecting sets of up to four chiral multiplets. We confront them with direct collider searches, electroweak precision tests, and current knowledge of the Higgs couplings. The focus is on scenarios that may depart from the decoupling limit of very large masses and vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral families that may receive a mass from the Higgs only, still in agreement with the $h\\gamma\\gamma$ signal strength. A mixing $\\theta$ between the Standard Model and non-chiral fermions induces order $\\theta^2$ deviations in the Higgs couplings. The mixing can be as large as $\\theta\\sim 0.5$ in case of custodial protection of the $Z$ couplings or accidental cancellation in the oblique parameters. We also notice some intriguing effects for much smaller values of $\\theta$, especially in the lepton sect...
A Model for Determining Strength for Embedded Elliptical Crack in Ultra-high-temperature Ceramics
Directory of Open Access Journals (Sweden)
Ruzhuan Wang
2015-08-01
Full Text Available A fracture strength model applied at room temperature for embedded elliptical crack in brittle solid was obtained. With further research on the effects of various physical mechanisms on material strength, a thermo-damage strength model for ultra-high-temperature ceramics was applied to each temperature phase. Fracture strength of TiC and the changing trends with elliptical crack shape variations under different temperatures were studied. The study showed that under low temperature, the strength is sensitive to the crack shape variation; as the temperature increases, the sensitivities become smaller. The size of ellipse’s minor axes has great effect on the material strength when the ratio of ellipse’s minor and major axes is lower than 0.5, even under relatively high temperatures. The effect of the minor axes of added particle on material properties thus should be considered under this condition. As the crack area is set, the fracture strength decreases firstly and then increases with the increase of ratio of ellipse’s minor and major axes, and the turning point is 0.5. It suggests that for the added particles the ratio of ellipse’s minor and major axes should not be 0.5. All conclusions significantly coincided with the results obtained by using the finite element software ABAQUS.
Simple model with damping of the mode-coupling instability
Energy Technology Data Exchange (ETDEWEB)
Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki
1996-08-01
In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)
Super-acceleration in non-minimal derivative coupling model
Sadjadi, H Mohseni
2010-01-01
A scalar field model with non-minimal derivative coupling to gravity is considered. It is shown that although in the absence of matter and potential the phantom divide line crossing is forbidden, but for the power law potential and in the presence of matter this crossing is, in principle, possible.
Temperature in warm inflation in non minimal kinetic coupling model
Goodarzi, Parviz
2014-01-01
Warm inflation in the non minimal derivative coupling model with a general dissipation coefficient is considered. We investigate conditions for the existence of the slow roll approximation and study cosmological perturbations. The spectral index, and the power spectrum are calculated and the temperature of the universe at the end of the slow roll warm inflation is obtained.
Institute of Scientific and Technical Information of China (English)
郭华; 胡翔
2001-01-01
The ω-and p-meson tensor couplings to nucleons in a derivative scalar coupling model for finite nuclei are investigated. The influences of the tensor couplings on the binding energies per nucleon, the root-mean-square charge radii, spin-orbit splittings and single particle energies are discussed. The obtained results show that the spin-orbit splittings for finite nuclei are more sensitive to the ω-meson tensor coupling.
Directory of Open Access Journals (Sweden)
Saman GHAHRI
2014-03-01
Full Text Available In this research, the improvement of impact strength of wood flour/recycled polypropylene (PP composites was investigated. The PP (virgin and recycled polypropylene and wood flour (WF were compounded at 50% by weight wood flour loading in a counter-rotating twin-screw extruder in the presence MAPP and two types of impact modifiers (ethylene vinyl acetate (EVA and ethylene/propylene/diene terpolymer (EPDM, to produce wood flour-PP composites specimen. The results showed that the composites containing recycled PP exhibited significantly lower impact strength values than those of containing virgin PP. The addition of MAPP, EVA and EPDM in the specimens increased their impact strength. In the presence of MAPP, higher increase in impact strength of the recycled PP/WF composites was observed due to impact modifiers. Both impact modifiers increased the impact strength of the PP/WF composites but the addition of EVA gave the greatest improvements in impact strength. Although the addition of impact modifiers and MAPP increased the impact strength of composites containing recycled PP, such values were still significantly lower than those of containing virgin PP (not modified with MAPP or impact modifier. The use of impact modifiers decreased the flexural properties of the recycled PP/WF composites.
EFFECT OF NANOPOWDER ADDITION ON THE FLEXURAL STRENGTH OF ALUMINA CERAMIC - A WEIBULL MODEL ANALYSIS
Directory of Open Access Journals (Sweden)
Daidong Guo
2016-05-01
Full Text Available Alumina ceramics were prepared either with micrometer-sized alumina powder (MAP or with the addition of nanometer-sized alumina powder (NAP. The density, crystalline phase, flexural strength and the fracture surface of the two ceramics were measured and compared. Emphasis has been put on the influence of nanopowder addition on the flexural strength of Al₂O₃ ceramic. The analysis based on the Weibull distribution model suggests the distribution of the flexural strength of the NAP ceramic is more concentrated than that of the MAP ceramic. Therefore, the NAP ceramics will be more stable and reliable in real applications.
Fully Coupled Electromechanical Elastodynamic Model for Guided Wave Propagation Analysis
Borkowski, Luke; Chattopadhyay, Aditi
2013-01-01
Physics-based computational models play a key role in the study of wave propagation for structural health monitoring (SHM) and the development of improved damage detection methodologies. Due to the complex nature of guided waves, accurate and efficient computation tools are necessary to investigate the mechanisms responsible for dispersion, coupling, and interaction with damage. In this paper, a fully coupled electromechanical elastodynamic model for wave propagation in a heterogeneous, anisotropic material system is developed. The final framework provides the full three dimensional displacement and electrical potential fields for arbitrary plate and transducer geometries and excitation waveform and frequency. The model is validated theoretically and proven computationally efficient. Studies are performed with surface bonded piezoelectric sensors to gain insight into the physics of experimental techniques used for SHM. Collocated actuation of the fundamental Lamb wave modes is modeled over a range of frequenc...
The strong coupling Kondo lattice model as a Fermi gas
Östlund, S
2007-01-01
The strong coupling half-filled Kondo lattice model is an important example of a strongly interacting dense Fermi system for which conventional Fermi gas analysis has thus far failed. We remedy this by deriving an exact transformation that maps the model to a dilute gas of weakly interacting electron and hole quasiparticles that can then be analyzed by conventional dilute Fermi gas methods. The quasiparticle vacuum is a singlet Mott insulator for which the quasiparticle dynamics are simple. Since the transformation is exact, the electron spectral weight sum rules are obeyed exactly. Subtleties in understanding the behavior of electrons in the singlet Mott insulator can be reduced to a fairly complicated but precise relation between quasiparticles and bare electrons. The theory of free quasiparticles can be interpreted as an exactly solvable model for a singlet Mott insulator, providing an exact model in which to explore the strong coupling regime of a singlet Kondo insulator.
Framework of Distributed Coupled Atmosphere-Ocean-Wave Modeling System
Institute of Scientific and Technical Information of China (English)
WEN Yuanqiao; HUANG Liwen; DENG Jian; ZHANG Jinfeng; WANG Sisi; WANG Lijun
2006-01-01
In order to research the interactions between the atmosphere and ocean as well as their important role in the intensive weather systems of coastal areas, and to improve the forecasting ability of the hazardous weather processes of coastal areas, a coupled atmosphere-ocean-wave modeling system has been developed.The agent-based environment framework for linking models allows flexible and dynamic information exchange between models. For the purpose of flexibility, portability and scalability, the framework of the whole system takes a multi-layer architecture that includes a user interface layer, computational layer and service-enabling layer. The numerical experiment presented in this paper demonstrates the performance of the distributed coupled modeling system.
Predicting Coupled Ocean-Atmosphere Modes with a Climate Modeling Hierarchy -- Final Report
Energy Technology Data Exchange (ETDEWEB)
Michael Ghil, UCLA; Andrew W. Robertson, IRI, Columbia Univ.; Sergey Kravtsov, U. of Wisconsin, Milwaukee; Padhraic Smyth, UC Irvine
2006-08-04
The goal of the project was to determine midlatitude climate predictability associated with tropical-extratropical interactions on interannual-to-interdecadal time scales. Our strategy was to develop and test a hierarchy of climate models, bringing together large GCM-based climate models with simple fluid-dynamical coupled ocean-ice-atmosphere models, through the use of advanced probabilistic network (PN) models. PN models were used to develop a new diagnostic methodology for analyzing coupled ocean-atmosphere interactions in large climate simulations made with the NCAR Parallel Climate Model (PCM), and to make these tools user-friendly and available to other researchers. We focused on interactions between the tropics and extratropics through atmospheric teleconnections (the Hadley cell, Rossby waves and nonlinear circulation regimes) over both the North Atlantic and North Pacific, and the ocean’s thermohaline circulation (THC) in the Atlantic. We tested the hypothesis that variations in the strength of the THC alter sea surface temperatures in the tropical Atlantic, and that the latter influence the atmosphere in high latitudes through an atmospheric teleconnection, feeding back onto the THC. The PN model framework was used to mediate between the understanding gained with simplified primitive equations models and multi-century simulations made with the PCM. The project team is interdisciplinary and built on an existing synergy between atmospheric and ocean scientists at UCLA, computer scientists at UCI, and climate researchers at the IRI.
Strength Reliability Analysis of Turbine Blade Using Surrogate Models
Directory of Open Access Journals (Sweden)
Wei Duan
2014-05-01
Full Text Available There are many stochastic parameters that have an effect on the reliability of steam turbine blades performance in practical operation. In order to improve the reliability of blade design, it is necessary to take these stochastic parameters into account. In this study, a variable cross-section twisted blade is investigated and geometrical parameters, material parameters and load parameters are considered as random variables. A reliability analysis method as a combination of a Finite Element Method (FEM, a surrogate model and Monte Carlo Simulation (MCS, is applied to solve the blade reliability analysis. Based on the blade finite element parametrical model and the experimental design, two kinds of surrogate models, Polynomial Response Surface (PRS and Artificial Neural Network (ANN, are applied to construct the approximation analytical expressions between the blade responses (including maximum stress and deflection and random input variables, which act as a surrogate of finite element solver to drastically reduce the number of simulations required. Then the surrogate is used for most of the samples needed in the Monte Carlo method and the statistical parameters and cumulative distribution functions of the maximum stress and deflection are obtained by Monte Carlo simulation. Finally, the probabilistic sensitivities analysis, which combines the magnitude of the gradient and the width of the scatter range of the random input variables, is applied to evaluate how much the maximum stress and deflection of the blade are influenced by the random nature of input parameters.
Levine, Paul A.; Randerson, James T.; Swenson, Sean C.; Lawrence, David M.
2016-12-01
The relationship between terrestrial water storage (TWS) and atmospheric processes has important implications for predictability of climatic extremes and projection of future climate change. In places where moisture availability limits evapotranspiration (ET), variability in TWS has the potential to influence surface energy fluxes and atmospheric conditions. Where atmospheric conditions, in turn, influence moisture availability, a full feedback loop exists. Here we developed a novel approach for measuring the strength of both components of this feedback loop, i.e., the forcing of the atmosphere by variability in TWS and the response of TWS to atmospheric variability, using satellite observations of TWS, precipitation, solar radiation, and vapor pressure deficit during 2002-2014. Our approach defines metrics to quantify the relationship between TWS anomalies and climate globally on a seasonal to interannual timescale. Metrics derived from the satellite data were used to evaluate the strength of the feedback loop in 38 members of the Community Earth System Model (CESM) Large Ensemble (LENS) and in six models that contributed simulations to phase 5 of the Coupled Model Intercomparison Project (CMIP5). We found that both forcing and response limbs of the feedback loop in LENS were stronger than in the satellite observations in tropical and temperate regions. Feedbacks in the selected CMIP5 models were not as strong as those found in LENS, but were still generally stronger than those estimated from the satellite measurements. Consistent with previous studies conducted across different spatial and temporal scales, our analysis suggests that models may overestimate the strength of the feedbacks between the land surface and the atmosphere. We describe several possible mechanisms that may contribute to this bias, and discuss pathways through which models may overestimate ET or overestimate the sensitivity of ET to TWS.
A fully coupled thermo-mechanical model for unsaturated soil
2007-01-01
This paper addresses a new, unified thermomechanical constitutive model for unsaturated soils through a coupled study. In the context of elastoplasticity and the critical state theory, the model uses the concepts of multi-mechanism and bounding surface theory. This advanced constitutive approach involves thermo-plasticity of saturated and unsaturated soils. Bishop’s effective stress framework is adopted to represent the stress state in the soil. This stress is linked to the water retention...
Electromagnetic couplings in a collective model of the nucleon
Bijker, R
1995-01-01
We study the electromagnetic properties of the nucleon and its excitations in a collective model. In the ensuing algebraic treatment all results for helicity amplitudes and form factors can be derived in closed form in the limit of a large model space. We discuss nucleon form factors and transverse electromagnetic couplings in photo- and electroproduction, including transition form factors that can be measured at new electron facilities.
Anatomy, modelling and prediction of aeroservoelastic rotorcraft-pilot-coupling.
Gennaretti, M.; Collela, M.M.; Serafini, J.; Dang Vu, B.; Masarati, P.; Quaranta, G; Muscarello, V.; Jump, M.; M. Jones; Lu, L.(Bergische Universität Wuppertal, Wuppertal, Germany); Ionita, A.; Fuiorea, I.; Mihaila-Andres, M.; Stefan, R
2013-01-01
Research activity and results obtained within the European project ARISTOTEL (2010-2013) are presented. It deals with anatomy, modelling and prediction of Rotorcraft Pilot Coupling (RPC) phenomena, which are a really broad and wide category of events, ranging from discomfort to catastrophic crash. The main topics concerning piloted helicopter simulation that are of interest for designers are examined. These include comprehensive rotorcraft modelling suited for Pilot Assisted Oscillations (PAO...
Coupling Hydrologic and Hydrodynamic Models to Estimate PMF
Felder, G.; Weingartner, R.
2015-12-01
Most sophisticated probable maximum flood (PMF) estimations derive the PMF from the probable maximum precipitation (PMP) by applying deterministic hydrologic models calibrated with observed data. This method is based on the assumption that the hydrological system is stationary, meaning that the system behaviour during the calibration period or the calibration event is presumed to be the same as it is during the PMF. However, as soon as a catchment-specific threshold is reached, the system is no longer stationary. At or beyond this threshold, retention areas, new flow paths, and changing runoff processes can strongly affect downstream peak discharge. These effects can be accounted for by coupling hydrologic and hydrodynamic models, a technique that is particularly promising when the expected peak discharge may considerably exceed the observed maximum discharge. In such cases, the coupling of hydrologic and hydraulic models has the potential to significantly increase the physical plausibility of PMF estimations. This procedure ensures both that the estimated extreme peak discharge does not exceed the physical limit based on riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered. Our study discusses the prospect of considering retention effects on PMF estimations by coupling hydrologic and hydrodynamic models. This method is tested by forcing PREVAH, a semi-distributed deterministic hydrological model, with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to externally force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). Finally, the PMF estimation results obtained using the coupled modelling approach are compared to the results obtained using ordinary hydrologic modelling.
Indian Academy of Sciences (India)
J BU; Z TIAN
2016-03-01
Properties of concrete are strongly dependent on its pore structure features, porosity being an important one among them. This study deals with developing an understanding of the pore structure-compressive strength relationship in concrete. Several concrete mixtures with different pore structures are proportioned and subjected to static compressive tests. The pore structure features such as porosity, pore size distribution are extracted using mercury intrusion porosimetry technique. A statistical model is developed to relate thecompressive strength to relevant pore structure features.
Brittleness Generation Mechanism and Failure Model of High Strength Lightweight Aggregate Concrete
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The brittleness generation mechanism of high strength lightweight aggregate concrete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot,initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.
DEFF Research Database (Denmark)
Rasmussen, Jonas Stensgaard; Barsberg, Søren Talbro; Venås, Thomas Mark
2014-01-01
In the focus was the question whether metal alkoxide coupling agents – titanium, silane, and zirconium – form covalent bonds to wood and how they improve coating adhesion. In a previous work, a downshift of the lignin infrared (IR) band ∼1600 cm-1 was shown to be consistent with the formation...... of ether linkages between lignin and titanium coupling agent. In the present work, changes were found in the attenuated total reflectance-Fourier transform IR (ATR-FTIR) spectra of lignin and wood mixed with silane, and titanium coupling agents, and to a lesser extent for a zirconium coupling agent...
Drift-Scale Coupled Processes (DST and THC Seepage) Models
Energy Technology Data Exchange (ETDEWEB)
P. Dixon
2004-04-05
The purpose of this Model Report (REV02) is to document the unsaturated zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrological-chemical (THC) processes on UZ flow and transport. This Model Report has been developed in accordance with the ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (Bechtel SAIC Company, LLC (BSC) 2002 [160819]). The technical work plan (TWP) describes planning information pertaining to the technical scope, content, and management of this Model Report in Section 1.12, Work Package AUZM08, ''Coupled Effects on Flow and Seepage''. The plan for validation of the models documented in this Model Report is given in Attachment I, Model Validation Plans, Section I-3-4, of the TWP. Except for variations in acceptance criteria (Section 4.2), there were no deviations from this TWP. This report was developed in accordance with AP-SIII.10Q, ''Models''. This Model Report documents the THC Seepage Model and the Drift Scale Test (DST) THC Model. The THC Seepage Model is a drift-scale process model for predicting the composition of gas and water that could enter waste emplacement drifts and the effects of mineral alteration on flow in rocks surrounding drifts. The DST THC model is a drift-scale process model relying on the same conceptual model and much of the same input data (i.e., physical, hydrological, thermodynamic, and kinetic) as the THC Seepage Model. The DST THC Model is the primary method for validating the THC Seepage Model. The DST THC Model compares predicted water and gas compositions, as well as mineral alteration patterns, with observed data from the DST. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal-loading conditions, and predict the evolution of mineral alteration and fluid chemistry around potential waste emplacement drifts. The
Ising Model Coupled to Three-Dimensional Quantum Gravity
Baillie, C F
1992-01-01
We have performed Monte Carlo simulations of the Ising model coupled to three-dimensional quantum gravity based on a summation over dynamical triangulations. These were done both in the microcanonical ensemble, with the number of points in the triangulation and the number of Ising spins fixed, and in the grand canoncal ensemble. We have investigated the two possible cases of the spins living on the vertices of the triangulation (``diect'' case) and the spins living in the middle of the tetrahedra (``dual'' case). We observed phase transitions which are probably second order, and found that the dual implementation more effectively couples the spins to the quantum gravity.
Mathematical Modeling of Neuro-Vascular Coupling in Rat Cerebellum
DEFF Research Database (Denmark)
Rasmussen, Tina
Activity in the neurons called climbing fibers causes blood flow changes. But the physiological mechanisms which mediate the coupling are not well understood. This PhD thesis investigates the mechanisms of neuro-vascular coupling by means of mathematical methods. In experiments, the extracellularly...... measured field potential is used as an indicator of neuronal activity, and the cortical blood flow is measured by means of laser-Doppler flowmetry. Using system identification methods, these measurements have been used to construct and validate parametric mathematical models of the neuro-vascular system...
G., Leonardo Quintanar
2015-01-01
We study the cosmological implications of the Nambu-Jona-Lasinio (NJL model) when the coupling constant is field dependent. The NJL model has a four-fermion interaction describing two different phases due to quantum interaction effects and determined by the strength of the coupling constant g. It describes massless fermions for weak coupling and a massive fermions and strong coupling, where a fermion condensate is formed. In the original NJL model the coupling constant g is indeed constant, and in this work we consider a modified version of the NJL model by introducing a dynamical field dependent coupling motivated by string theory. The effective potential as a function of the varying coupling (aimed to implement a natural phase transition) is seen to develop a negative divergence, i.e. becomes a "bottomless well" in certain limit region. Although we explain how an lower unbounded potential is not necessarily unacceptable in a cosmological context, the divergence can be removed if we consider a mass term for ...
Mechanical Response of Polycarbonate with Strength Model Fits
2012-02-01
is used as free -parameter to improve the quality of the fit. ̇ is the strain rate and ?̇? is the reference strain rate for which 1/s was used...experimental data. Table 3. ZA model parameters. Bo= 0.006715948 1/K B1= 0.00009503 1/K Bpa = 550 MPa Bopa= 48 MPa ωa= -8 ▬ ωb= -0.01 ▬ β= 0.5...Hybrid Hard/Ductile All-Plastic-and Glass-Plastic-Based Composites ; ARL-TR-3155; U.S. Army Research Laboratory: Aberdeen Proving Ground, MD, February
Development of a Coupled WEPP-WQ model
WANG, L.; Flanagan, D. C.; Cherkauer, K. A.
2013-12-01
Non-point source (NPS) pollutants, especially from agriculture, continue to be a primary source of water quality degradation problems. Farmers need to take effective land managements at field scales for minimizing nutrient losses that could pollute streams. But existing NPS models cannot directly estimate the impacts of different land managements or testify the effectiveness of combined BMPs in a distributed way at farm scale with the application of USLE or its improved version in a lumped way. Here we developed the coupled WEPP-WQ model and evaluated simulations of hydrology, soil erosion and water quality from this coupled model. WEPP is a well-established process-based model that simulations runoff and erosion processes from a hill slope. The water quality components are based on the SPELL OUT (EPIC) model and the water quality algorithms within SPELL OUT (SWAT). Our test case uses a single Overland Flow Element (OFE) to represent land use on a hill slope, but in the next phase of development we will evaluate WEPP-WQ's ability to modify the transport of nutrients and sediment as runoff from the hill slope encounters multiple OFEs representing different land uses. WEPP-WQ was tested by comparing simulated values from the coupled model and observed nutrients and sediment concentrations in surface runoff following storm events at an experimental site near Waterloo, IN, U.S..
Coupling model for waves propagating over a porous seabed
Directory of Open Access Journals (Sweden)
C.C. Liao
2015-03-01
Full Text Available The wave–seabed interaction issue is of great importance for the design of foundation around marine infrastructures. Most previous investigations for such a problem have been limited to uncoupled or one-way coupled methods connecting two separated wave and seabed sub models with the continuity of pressures at the seabed surface. In this study, a strongly coupled model was proposed to realize both wave and seabed processes in a same program and to calculate the wave fields and seabed response simultaneously. The information between wave fields and seabed fields were strongly shared and thus results in a more profound investigation of the mechanism of the wave–seabed interaction. In this letter, the wave and seabed models were validated with previous experimental tests. Then, a set of application of present model were discussed in prediction of the wave-induced seabed response. Numerical results show the wave-induced liquefaction area of coupled model is smaller than that of uncoupled model.
Modeling Endovascular MRI Coil Coupling with Transmit RF Excitation
Venkateswaran, Madhav; Unal, Orhan; Hurley, Samuel; Samsonov, Alexey; Wang, Peng; Fain, Sean; Kurpad, Krishna
2016-01-01
Objective To model inductive coupling of endovascular coils with transmit RF excitation for selecting coils for MRI-guided interventions. Methods Independent and computationally efficient FEM models are developed for the endovascular coil, cable, transmit excitation and imaging domain. Electromagnetic and circuit solvers are coupled to simulate net B1+ fields and induced currents and voltages. Our models are validated using the Bloch Siegert B1+ mapping sequence for a series-tuned multimode coil, capable of tracking, wireless visualization and high resolution endovascular imaging. Results Validation shows good agreement at 24, 28 and 34 μT background RF excitation within experimental limitations. Quantitative coil performance metrics agree with simulation. A parametric study demonstrates trade off in coil performance metrics when varying number of coil turns. Tracking, imaging and wireless marker multimode coil features and their integration is demonstrated in a pig study. Conclusion Developed models for the multimode coil were successfully validated. Modeling for geometric optimization and coil selection serves as a precursor to time-consuming and expensive experiments. Specific applications demonstrated include parametric optimization, coil selection for a cardiac intervention and an animal imaging experiment. Significance Our modular, adaptable and computationally efficient modeling approach enables rapid comparison, selection and optimization of inductively-coupled coils for MRI-guided interventions. PMID:26960218
Genetic regulation of bone strength: a review of animal model studies.
Adams, Douglas J; Ackert-Bicknell, Cheryl L
2015-01-01
Population- and family-based studies have established that fragility fracture risk is heritable; yet, the genome-wide association studies published to date have only accounted for a small fraction of the known variation for fracture risk of either the femur or the lumbar spine. Much work has been carried out using animal models toward finding genetic loci that are associated with bone strength. Studies using animal models overcome some of the issues associated with using patient data, but caution is needed when interpreting the results. In this review, we examine the types of tests that have been used for forward genetics mapping in animal models to identify loci and/or genes that regulate bone strength and discuss the limitations of these test methods. In addition, we present a summary of the quantitative trait loci that have been mapped for bone strength in mice, rats and chickens. The majority of these loci co-map with loci for bone size and/or geometry and thus likely dictate strength via modulating bone size. Differences in bone matrix composition have been demonstrated when comparing inbred strains of mice, and these matrix differences may be associated with differences in bone strength. However, additional work is needed to identify loci that act on bone strength at the materials level.
Unit-Sphere Multiaxial Stochastic-Strength Model Applied to Anisotropic and Composite Materials
Nemeth, Noel, N.
2013-01-01
Models that predict the failure probability of brittle materials under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This methodology has been extended to predict the multiaxial strength response of transversely isotropic brittle materials, including polymer matrix composites (PMCs), by considering (1) flaw-orientation anisotropy, whereby a preexisting microcrack has a higher likelihood of being oriented in one direction over another direction, and (2) critical strength, or K (sub Ic) orientation anisotropy, whereby the level of critical strength or fracture toughness for mode I crack propagation, K (sub Ic), changes with regard to the orientation of the microstructure. In this report, results from finite element analysis of a fiber-reinforced-matrix unit cell were used with the unit-sphere model to predict the biaxial strength response of a unidirectional PMC previously reported from the World-Wide Failure Exercise. Results for nuclear-grade graphite materials under biaxial loading are also shown for comparison. This effort was successful in predicting the multiaxial strength response for the chosen problems. Findings regarding stress-state interactions and failure modes also are provided.
Model reduction for optimization of structural-acoustic coupling problems
DEFF Research Database (Denmark)
Creixell Mediante, Ester; Jensen, Jakob Søndergaard; Brunskog, Jonas;
2016-01-01
, which becomes highly time consuming since many iterations may be required. The use of model reduction techniques to speed up the computations is studied in this work. The Component Mode Synthesis (CMS) method and the Multi-Model Reduction (MMR) method are adapted for problems with structure......Fully coupled structural-acoustic models of complex systems, such as those used in the hearing aid field, may have several hundreds of thousands of nodes. When there is a strong structure-acoustic interaction, performing optimization on one part requires the complete model to be taken into account...
Model coupling friction and adhesion for steel-concrete interfaces
Raous, Michel
2010-01-01
The interface behaviour between steel and concrete, during pull-out tests, is numerically investigated using an interface model coupling adhesion and Coulomb friction. This model, first developed by Raous, Cang\\'emi, Cocou and Monerie (RCCM), is based on the adhesion intensity variable, introduced by Fr\\'emond, which is a surface damage variable. The RCCM model is here completed by taking a variable friction coefficient to simulate the slip weakening of the interface when sliding occurs. Identification of the parameters and validation of the model are carried on pull out experiments conducted at the INSA of Toulouse on steel-concrete interface of reinforced concrete.
Coupled-channel optical model potential for rare earth nuclei
Herman, M; Palumbo, A; Dietrich, F S; Brown, D; Hoblit, S
2013-01-01
Inspired by the recent work by Dietrich et al., substantiating validity of the adiabatic assumption in coupled-channel calculations, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on statically deformed nuclei. The generalization consists in adding the coupling of the ground state rotational band, deforming the potential by introducing appropriate quadrupole and hexadecupole deformation and correcting the OMP radius to preserve volume integral of the spherical OMP. We choose isotopes of three rare-earth elements (W, Ho, Gd), which are known to be nearly perfect rotors, to perform a consistent test of our conjecture on integrated cross sections as well as on angular distributions for elastic and inelastic neutron scattering. When doing this we employ the well-established Koning-Delaroche global spherical potential and experimentally determined deformations without any adjustments. We observe a dramatically improved a...
Modeling Chemical Mechanical Polishing with Couple Stress Fluids
Institute of Scientific and Technical Information of China (English)
张朝辉; 雒建斌; 温诗铸
2004-01-01
Chemical mechanical polishing (CMP) is a manufacturing process used to achieve high levels of global and local planarity.Currently, the slurries used in CMP usually contain nanoscale particles to accelerate the removal ratio and to optimize the planarity, whose rheological properties can no longer be accurately modeled with Newtonian fluids.The Reynolds equation, including the couple stress effects, was derived in this paper.The equation describes the mechanism to solve the CMP lubrication equation with the couple stress effects.The effects on load and moments resulting from the various parameters, such as pivot height, roll angle, and pitch angle, were subsequently simulated.The results show that the couple stress can provide higher load and angular moments.This study sheds some lights into the mechanism of the CMP process.
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.
Kuprat, A P; Kabilan, S; Carson, J P; Corley, R A; Einstein, D R
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFD) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the Modified Newton's Method with nonlinear Krylov accelerator developed by Carlson and Miller [1, 2, 3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural pressure applied to the multiple sets
A bidirectional coupling procedure applied to multiscale respiratory modeling
Kuprat, A. P.; Kabilan, S.; Carson, J. P.; Corley, R. A.; Einstein, D. R.
2013-07-01
In this study, we present a novel multiscale computational framework for efficiently linking multiple lower-dimensional models describing the distal lung mechanics to imaging-based 3D computational fluid dynamics (CFDs) models of the upper pulmonary airways in order to incorporate physiologically appropriate outlet boundary conditions. The framework is an extension of the modified Newton's method with nonlinear Krylov accelerator developed by Carlson and Miller [1], Miller [2] and Scott and Fenves [3]. Our extensions include the retention of subspace information over multiple timesteps, and a special correction at the end of a timestep that allows for corrections to be accepted with verified low residual with as little as a single residual evaluation per timestep on average. In the case of a single residual evaluation per timestep, the method has zero additional computational cost compared to uncoupled or unidirectionally coupled simulations. We expect these enhancements to be generally applicable to other multiscale coupling applications where timestepping occurs. In addition we have developed a "pressure-drop" residual which allows for stable coupling of flows between a 3D incompressible CFD application and another (lower-dimensional) fluid system. We expect this residual to also be useful for coupling non-respiratory incompressible fluid applications, such as multiscale simulations involving blood flow. The lower-dimensional models that are considered in this study are sets of simple ordinary differential equations (ODEs) representing the compliant mechanics of symmetric human pulmonary airway trees. To validate the method, we compare the predictions of hybrid CFD-ODE models against an ODE-only model of pulmonary airflow in an idealized geometry. Subsequently, we couple multiple sets of ODEs describing the distal lung to an imaging-based human lung geometry. Boundary conditions in these models consist of atmospheric pressure at the mouth and intrapleural
Models of bending strength for Gilsocarbon graphites irradiated in inert and oxidising environments
Energy Technology Data Exchange (ETDEWEB)
Eason, Ernest D., E-mail: eeason@ix.netcom.com [Modeling and Computing Services, PO Box 18583, Boulder, CO 80308 (United States); Hall, Graham N., E-mail: graham.n.hall@manchester.ac.uk [Nuclear Graphite Research Group, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Marsden, Barry J., E-mail: barry.j.marsden@manchester.ac.uk [Nuclear Graphite Research Group, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL (United Kingdom); Heys, Graham B., E-mail: Graham.Heys@hse.gsi.gov.uk [Office for Nuclear Regulation, An Agency of the Health and Safety Executive, Building 3, Redgrave Court, Merton Road, Bootle, Merseyside L20 7HS (United Kingdom)
2013-05-15
This paper presents the development and validation of an empirical model of fast neutron damage and radiolytic oxidation effects on bending strength for the moulded Gilsocarbon graphites used in Advanced Gas-cooled Reactors (AGRs). The inert environment model is based on evidence of essentially constant strength as fast neutron dose increases in inert environment. The model of combined irradiation and oxidation calibrates that constant along with an exponential function representing the degree of radiolytic oxidation as measured by weight loss. The change in strength with exposure was found to vary from one AGR station to another. The model was calibrated to data on material trepanned from AGR moderator bricks after varying operating times.
Néel to spin-Peierls transition in a quasi-one-dimensional Heisenberg model coupled to bond phonons
Pillay, Jason Cornelius; Wierschem, Keola; Sengupta, Pinaki
2013-08-01
The zero and finite temperature spin-Peierls transitions in a quasi-one-dimensional spin-(1)/(2) Heisenberg model coupled to adiabatic bond phonons is investigated using the stochastic series expansion (SSE) quantum Monte Carlo (QMC) method. The quantum phase transition from a gapless Néel state to a spin-gapped Peierls state is studied in the parameter space spanned by spatial anisotropy, interchain coupling strength, and spin-lattice coupling strength. It is found that for any finite interchain coupling, the transition to a dimerized Peierls ground state only occurs when the spin-lattice coupling exceeds a finite, nonzero critical value. This is in contrast to the pure 1D model (zero interchain coupling), where adiabatic/classical phonons lead to a dimerized ground state for any nonzero spin-phonon interaction. The phase diagram in the parameter space shows that for a strong interchain coupling, the relation between the interchain coupling and the critical value of the spin-phonon interaction is linear whereas for weak interchain coupling, this behavior is found to have a natural logarithmlike relation. No region was found to have a long range magnetic order and dimerization occurring simultaneously. Instead, the Néel state order vanishes simultaneously with the setting in of the spin-Peierls state. For the thermal phase transition, a continuous heat capacity with a peak at the critical temperature Tc shows a second order phase transition. The variation of the equilibrium bond length distortion δeq with temperature showed a power law relation which decayed to zero as the temperature was increased to Tc, indicating a continuous transition from the dimerized phase to a paramagnetic phase with uniform bond length and zero antiferromagnetic susceptibility.
Distributed models coupling soakaways, urban drainage and groundwater
DEFF Research Database (Denmark)
Roldin, Maria Kerstin
, and how these can be modeled in an integrated environment with distributed urban drainage and groundwater flow models. The thesis: 1. Identifies appropriate models of soakaways for use in an integrated and distributed urban water and groundwater modeling system 2. Develops a modeling concept that is able...... of the literature and on modeling studies, a new modeling concept is proposed which fulfills the need for integrated models coupling distributed urban drainage with groundwater. The suggested solution consists of a base equation for soakaway infiltration and additional components for clogging, upscaling......Alternative methods for stormwater management in urban areas, also called Water Sensitive Urban Design (WSUD) methods, have become increasingly important for the mitigation of urban stormwater management problems such as high runoff volumes, combined sewage overflows, poor water quality...
Investigation of stress–strain models for conﬁned high strength concrete
Indian Academy of Sciences (India)
Metin Husem; Selim Pul
2007-06-01
The effects of conﬁnement reinforcement on the behaviour of high strength concrete columns are investigated for which prismatic experimental specimens were prepared. In the experiment specimens, four longitude reinforcement and conﬁnement reinforcement were used. For each experiment, stress–strain relationship of concrete was obtained and compared with models proposed earlier. The results show that conﬁnement reinforcement improved the ductility of high strength concrete. The ascending branch of stress–strain curves depended on the ratio of conﬁnement reinforcement was similar to the modiﬁed Kent–Park model and the descending branch similar to the Nagashima model.
A Microstructure Based Strength Model for Slag Blended Concrete with Various Curing Temperatures
Directory of Open Access Journals (Sweden)
Li-Na Zhang
2016-01-01
Full Text Available Ground granulated blast furnace slag, which is a byproduct obtained during steel manufacture, has been widely used for concrete structures in order to reduce carbon dioxide emissions and improve durability. This paper presents a numerical model to evaluate compressive strength development of slag blended concrete at isothermal curing temperatures and time varying curing temperatures. First, the numerical model starts with a cement-slag blended hydration model which simulates both cement hydration and slag reaction. The accelerations of cement hydration and slag reaction at elevated temperatures are modeled by Arrhenius law. Second, the gel-space ratios of hardening concrete are calculated using reaction degrees of cement and slag. Using a modified Powers’ gel-space ratio strength theory, the strength of slag blended concrete is evaluated considering both strengthening factors and weakening factors involved in strength development process. The proposed model is verified using experimental results of strength development of slag blended concrete with different slag contents and different curing temperatures.
Institute of Scientific and Technical Information of China (English)
Wu Fuqiang; Yao Weixing
2008-01-01
The reasons of the static strength dispersion and the fatigue life dispersion of composite laminates are analyzed in this article.It is concluded that the inner original defects,which derived from the manufacturing process of composite laminates,are the common and major reason of causing the random distributions of the static strength and the fatigue life.And there is a correlative relation between the two distributions.With the study of statistical relationship between the fatigue loading and the fatigue life in the uniform confidence level and the same survival rate S-N curves of material,the relationship between the static strength distribution and the fatigue life distribution through a material S-N curve model has been obtained.And then the model which is used to describe the distributions of fatigue life of composites,based on their distributions of static strength,is set up.This model reasonably reflects the effects of the inner original defects on the static strength dispersion and on the fatigue life dispersion of composite laminates.The experimental data of three kinds of composite laminates are employed to verify this model,and the results show that this model can predict the random distributions of fatigue life for composites under any fatigue loads fairly well.
Coupled continuum and molecular model of flow through fibrous filter
Zhao, Shunliu; Povitsky, Alex
2013-11-01
A coupled approach combining the continuum boundary singularity method (BSM) and the molecular direct simulation Monte Carlo (DSMC) is developed and validated using Taylor-Couette flow and the flow about a single fiber confined between two parallel walls. In the proposed approach, the DSMC is applied to an annular region enclosing the fiber and the BSM is employed in the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size, and the size of the coupling zone are determined by inspecting the accuracy of pressure drop obtained for the range of Knudsen numbers between zero and unity. The developed approach is used to study flowfield of fibrous filtration flows. It is observed that in the partial-slip flow regime, Kn ⩽ 0.25, the results obtained by the proposed coupled BSM-DSMC method match the solution by BSM combined with the heuristic partial-slip boundary conditions. For transition molecular-to-continuum Knudsen numbers, 0.25 pressure drop and velocity between these two approaches is significant. This difference increases with the Knudsen number that confirms the usefulness of coupled continuum and molecular methods in numerical modeling of transition low Reynolds number flows in fibrous filters.
Coupling modeling and analysis of a wind energy converter
Directory of Open Access Journals (Sweden)
Jie-jie Li
2016-06-01
Full Text Available In this article, the numerical simulation of a 2.0-MW wind energy converter coupling is achieved by three-dimensional computer-aided design modeling technique and finite element method. The static performances and the buckling characteristics of the diaphragm coupling are investigated. The diaphragm coupling is divided into three substructures, namely, torque input end, the middle section, and the torque output end. Considering the assembly and contact conditions, the simulation analysis for stress responses of the diaphragm coupling is carried out. The buckling factor and buckling mode of the diaphragms are obtained, and the geometric parameters of the diaphragms are optimized according to their buckling characteristics. The relationship between the pretightening force of the bolts, which tighten the friction flange and the friction plate, and the sliding torque is given by an empirical formula. The reasonable ranges of the pretightening force and tighten torque of the bolts are recommended. The fatigue analysis of the diaphragms is completed, and the results show that the diaphragms are competent to the designed life of the diaphragm coupling.
The running coupling of the minimal sextet composite Higgs model
Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him
2015-01-01
We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the beta-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop beta-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop beta-functions in ...
A 3D multilevel model of damage and strength of wood: Analysis of microstructural effects
DEFF Research Database (Denmark)
Qing, Hai; Mishnaevsky, Leon
2011-01-01
A 3D hierarchical computational model of damage and strength of wood is developed. The model takes into account the four scale microstructures of wood, including the microfibril reinforced structure at nanoscale, multilayered cell walls at microscale, hexagon-shape-tube cellular structure at meso...
The Strength-Based Counseling Model: A Paradigm Shift in Psychology
Smith, Elsie J.
2006-01-01
Sometimes, it is difficult for a profession to move forward because its members interpret emerging conceptual models from the perspective of old frameworks. Each of the five reactants in this issue of "The Counseling Psychologist" interpreted the strength-based counseling model within their own self-adopted framework--Adlerian psychology, role…
Stryker, J.; Wemple, B.; Bomblies, A.
2017-03-01
In addition to surface erosion, stream bank erosion and failure contributes significant sediment and sediment-bound nutrients to receiving waters during high flow events. However, distributed and mechanistic simulation of stream bank sediment contribution to sediment loads in a watershed has not been achieved. Here we present a full coupling of existing distributed watershed and bank stability models and apply the resulting model to the Mad River in central Vermont. We fully coupled the Bank Stability and Toe Erosion Model (BSTEM) with the Distributed Hydrology Soil Vegetation Model (DHSVM) to allow the simulation of stream bank erosion and potential failure in a spatially explicit environment. We demonstrate the model's ability to simulate the impacts of unstable streams on sediment mobilization and transport within a watershed and discuss the model's capability to simulate watershed sediment loading under climate change. The calibrated model simulates total suspended sediment loads and reproduces variability in suspended sediment concentrations at watershed and subbasin outlets. In addition, characteristics such as land use and road-to-stream ratio of subbasins are shown to impact the relative proportions of sediment mobilized by overland erosion, erosion of roads, and stream bank erosion and failure in the subbasins and watershed. This coupled model will advance mechanistic simulation of suspended sediment mobilization and transport from watersheds, which will be particularly valuable for investigating the potential impacts of climate and land use changes, as well as extreme events.
Gérard, Claude; Goldbeter, Albert
2012-05-01
The cell division cycle and the circadian clock represent two major cellular rhythms. These two periodic processes are coupled in multiple ways, given that several molecular components of the cell cycle network are controlled in a circadian manner. For example, in the network of cyclin-dependent kinases (Cdks) that governs progression along the successive phases of the cell cycle, the synthesis of the kinase Wee1, which inhibits the G2/M transition, is enhanced by the complex CLOCK-BMAL1 that plays a central role in the circadian clock network. Another component of the latter network, REV-ERBα, inhibits the synthesis of the Cdk inhibitor p21. Moreover, the synthesis of the oncogene c-Myc, which promotes G1 cyclin synthesis, is repressed by CLOCK-BMAL1. Using detailed computational models for the two networks we investigate the conditions in which the mammalian cell cycle can be entrained by the circadian clock. We show that the cell cycle can be brought to oscillate at a period of 24 h or 48 h when its autonomous period prior to coupling is in an appropriate range. The model indicates that the combination of multiple modes of coupling does not necessarily facilitate entrainment of the cell cycle by the circadian clock. Entrainment can also occur as a result of circadian variations in the level of a growth factor controlling entry into G1. Outside the range of entrainment, the coupling to the circadian clock may lead to disconnected oscillations in the cell cycle and the circadian system, or to complex oscillatory dynamics of the cell cycle in the form of endoreplication, complex periodic oscillations or chaos. The model predicts that the transition from entrainment to 24 h or 48 h might occur when the strength of coupling to the circadian clock or the level of growth factor decrease below critical values.
Implementation of strength and burn models for plastic-bonded explosives and propellants
Energy Technology Data Exchange (ETDEWEB)
Reaugh, J E
2009-05-07
We have implemented the burn model in LS-DYNA. At present, the damage (porosity and specific surface area) is specified as initial conditions. However, history variables that are used by the strength model are reserved as placeholders for the next major revision, which will be a completely interactive model. We have implemented an improved strength model for explosives based on a model for concrete. The model exhibits peak strength and subsequent strain softening in uniaxial compression. The peak strength increases with increasing strain rate and/or reduced ambient temperature. Under triaxial compression compression, the strength continues to increase (or at least not decrease) with increasing strain. This behaviour is common to both concrete and polymer-bonded explosives (PBX) because the microstructure of these composites is similar. Both have aggregate material with a broad particle size distribution, although the length scale for concrete aggregate is two orders of magnitude larger than for PBX. The (cement or polymer) binder adheres to the aggregate, and is both pressure and rate sensitive. There is a larger bind binder content in concrete, compared to the explosive, and the aggregates have different hardness. As a result we expect the parameter values to differ, but the functional forms to be applicable to both. The models have been fit to data from tests on an AWE explosive that is HMX based. The decision to implement the models in LS-DYNA was based on three factors: LS-DYNA is used routinely by the AWE engineering analysis group and has a broad base of experienced users; models implemented in LS-DYNA can be transferred easily to LLNL's ALE 3D using a material model wrapper developed by Rich Becker; and LS-DYNA could accommodate the model requirements for a significant number of additional history variables without the significant time delay associated with code modification.
Pathological gambling and couple: towards an integrative systemic model.
Cunha, Diana; Relvas, Ana Paula
2014-06-01
This article is a critical literature review of pathological gambling focused in the family factors, particularly in the couple dynamics. Its main goal is to develop an explicative integrative systemic model of pathological gambling, based in these couple dynamics. To achieve that aim, a bibliography search was made, using on-line data bases (e.g., EBSCO Host) and recognized books in pathological gambling subject, as well as in the systemic approach in general. This process privileged the recent works (about 70 % of the reviewed literature was published in the last decade), however, also considered some classic works (the oldest one dates back to 1970). The guiding focus of this literature search evolves according to the following steps: (1) search of general comprehension of pathological gambling (19 references), (2) search specification to the subject "pathological gambling and family" (24 references), (3) search specification to the subject "pathological gambling and couple"(11 references), (4) search of systemic information which integrates the evidence resulted in the previous steps (4 references). The developed model is constituted by different levels of systemic complexity (social context, family of origin, couple and individual) and explains the problem as a signal of perturbation in the marital subsystem vital functions (e.g., power and control) though the regularities of marital dynamics of pathological gamblers. Furthermore, it gives theoretical evidence of the systemic familiar intervention in the pathological gambling.
Coupled-Channel Models of Direct-Semidirect Capture via Giant-Dipole Resonances
Energy Technology Data Exchange (ETDEWEB)
Thompson, I J [Lawrence Livermore National Laboratory (LLNL); Escher, Jutta E [ORNL; Arbanas, Goran [ORNL
2013-01-01
Semidirect capture, a two-step process that excites a giant-dipole resonance followed by its radiative de-excitation, is a dominant process near giant-dipole resonances, that is, for incoming neutron energies within 5 20 MeV. At lower energies such processes may affect neutron capture rates that are relevant to astrophysical nucleosynthesis models. We implement a semidirect capture model in the coupled-channel reaction code Fresco and validate it by comparing the cross section for direct-semidirect capture 208Pb(n,g)209Pb to experimental data. We also investigate the effect of low-energy electric dipole strength in the pygmy resonance. We use a conventional single-particle direct-semidirect capture code Cupido for comparison. Furthermore, we present and discuss our results for direct-semidirect capture reaction 130Sn(n,g)131Sn, the cross section of which is known to have a significant effect on nucleosynthesis models.
Modeling Image Structure with Factorized Phase-Coupled Boltzmann Machines
Cadieu, Charles F
2010-01-01
We describe a model for capturing the statistical structure of local amplitude and local spatial phase in natural images. The model is based on a recently developed, factorized third-order Boltzmann machine that was shown to be effective at capturing higher-order structure in images by modeling dependencies among squared filter outputs (Ranzato and Hinton, 2010). Here, we extend this model to $L_p$-spherically symmetric subspaces. In order to model local amplitude and phase structure in images, we focus on the case of two dimensional subspaces, and the $L_2$-norm. When trained on natural images the model learns subspaces resembling quadrature-pair Gabor filters. We then introduce an additional set of hidden units that model the dependencies among subspace phases. These hidden units form a combinatorial mixture of phase coupling distributions, concentrated in the sum and difference of phase pairs. When adapted to natural images, these distributions capture local spatial phase structure in natural images.
The strength of the tropical inversion and its response to climate change in 18 CMIP5 models
Qu, Xin; Hall, Alex; Klein, Stephen A.; Caldwell, Peter M.
2015-07-01
We examine the tropical inversion strength, measured by the estimated inversion strength (EIS), and its response to climate change in 18 models associated with phase 5 of the coupled model intercomparison project (CMIP5). While CMIP5 models generally capture the geographic distribution of observed EIS, they systematically underestimate it off the west coasts of continents, due to a warm bias in sea surface temperature. The negative EIS bias may contribute to the low bias in tropical low-cloud cover in the same models. Idealized perturbation experiments reveal that anthropogenic forcing leads directly to EIS increases, independent of "temperature-mediated" EIS increases associated with long-term oceanic warming. This fast EIS response to anthropogenic forcing is strongly impacted by nearly instantaneous continental warming. The temperature-mediated EIS change has contributions from both uniform and non-uniform oceanic warming. The substantial EIS increases in uniform oceanic warming simulations are due to warming with height exceeding the moist adiabatic lapse rate in tropical warm pools. EIS also increases in fully-coupled ocean-atmosphere simulations where concentration is instantaneously quadrupled, due to both fast and temperature-mediated changes. The temperature-mediated EIS change varies with tropical warming in a nonlinear fashion: The EIS change per degree tropical warming is much larger in the early stage of the simulations than in the late stage, due to delayed warming in the eastern parts of the subtropical oceans. Given the importance of EIS in regulating tropical low-cloud cover, this suggests that the tropical low-cloud feedback may also be nonlinear.
Bansal, Manik; Singh, I. V.; Mishra, B. K.; Sharma, Kamal; Khan, I. A.
2017-04-01
A stochastic XFEM model based on microstructural observations has been developed to evaluate the tensile strength of NBG-18 nuclear graphite. The nuclear graphite consists of pitch matrix, filler particles, pores and micro-cracks. The numerical simulations are performed at two length scales due to large difference in average size of filler particles and pores. Both deterministic and stochastic approaches have been implemented. The study intends to illustrate the variation in tensile strength due to heterogeneities modeled stochastically. The properties of pitch matrix and filler particles are assumed to be known at the constituent level. The material models for both pitch and fillers are assumed to be linear elastic. The stochastic size and spatial distribution of the pores and filler particles has been modeled during the micro and macro analysis respectively. The strength of equivalent porous pitch matrix evaluated at micro level has been distributed stochastically in the elemental domain along with filler particles for macro analysis. The effect of micro-cracks has been incorporated indirectly by considering fracture plane in each filler particle. Tensile strength of nuclear graphite is obtained by performing the simulations at macro-level. Statistical parameters evaluated using numerical tensile strength data agree well with experimentally obtained statistical parameters available in the literature.
Coupled wake boundary layer model of wind-farms
Stevens, Richard J A M; Meneveau, Charles
2014-01-01
We present and test a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a wind-farm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall wind-farm boundary layer structure. The wake expansion/superposition model captures the effect of turbine positioning, while the top-down portion adds the interaction between the wind-turbine wakes and the atmospheric boundary layer. Each portion of the model requires specification of a parameter that is not known a-priori. For the wake model the wake expansion coefficient is required, while the top-down model requires an effective span-wise turbine spacing within which the model's momentum balance is relevant. The wake expansion coefficient is obtained by matching the predicted mean velocity at the turbine from both approaches, while the effective span-wise turbine spacing depends on turbine positioning and thus can be determined from the wake expansion...
A Liquid-Solid Coupling Hemodynamic Model with Microcirculation Load
Directory of Open Access Journals (Sweden)
Bai Li
2016-01-01
Full Text Available From the aspect of human circulation system structure, a complete hemodynamic model requires consideration of the influence of microcirculation load effect. This paper selected the seepage in porous media as the simulant of microcirculation load. On the basis of a bi-directional liquid-solid coupling tube model, we built a liquid-solid-porous media seepage coupling model. The simulation parameters accorded with the physiological reality. Inlet condition was set as transient single-pulse velocity, and outlet as free outlet. The pressure in the tube was kept at the state of dynamic stability in the range of 80–120 mmHg. The model was able to simulate the entire propagating process of pulse wave. The pulse wave velocity simulated was 6.25 m/s, which accorded with the physiological reality. The complex pressure wave shape produced by reflections of pressure wave was also observed. After the model changed the cardiac cycle length, the pressure change according with actual human physiology was simulated successfully. The model in this paper is well-developed and reliable. It demonstrates the importance of microcirculation load in hemodynamic model. Moreover the properties of the model provide a possibility for the simulation of dynamic adjustment process of human circulation system, which indicates a promising prospect in clinical application.
Development of a coupled wave-flow-vegetation interaction model
Beudin, Alexis; Kalra, Tarandeep; Ganju, Neil Kamal; Warner, John C.
2017-01-01
Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
Development of a coupled wave-flow-vegetation interaction model
Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.
2017-03-01
Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.
Coupled vibro-acoustic model updating using frequency response functions
Nehete, D. V.; Modak, S. V.; Gupta, K.
2016-03-01
Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.
Modeling Reactive Transport in Coupled Groundwater-Conduit Systems
Spiessl, S. M.; Sauter, M.; Zheng, C.; Viswanathan, H. S.
2002-05-01
Modeling reactive transport in coupled groundwater-conduit systems requires consideration of two transport time scales in the flow and transport models. Consider for example a subsurface mine consisting of a network of highly conductive shafts, drifts or ventilation raises (i.e., conduits) within the considerably less permeable ore material (i.e., matrix). In the conduits, potential contaminants can travel much more rapidly than in the background aquifer (matrix). Since conduits cannot necessarily be regarded as a continuum, double continuum models are only of limited use for simulation of contaminant transport in such coupled groundwater-conduit systems. This study utilizes a "hybrid" flow and transport model in which contaminants can in essence be transported at a slower time scale in the matrix and at a faster time scale in the conduits. The hybrid flow model uses an approach developed by Clemens et al. (1996), which is based on the modelling of flow in a discrete pipe network, coupled to a continuum representing the low-permeability inter-conduit matrix blocks. Laminar or turbulent flow can be simulated in the different pipes depending on the flow conditions in the model domain. The three-dimensional finite-difference groundwater flow model MODFLOW (Harbaugh and McDonald, 1996) is used to simulate flow in the continuum. Contaminant transport within the matrix is simulated with a continuum approach using the three-dimensional multi-species solute transport model MT3DMS (Zheng and Wang, 1999), while that in the conduit system is simulated with a one-dimensional advective transport model. As a first step for reactive transport modeling in such systems, only equilibrium reactions among multiple species are considered by coupling the hybrid transport model to a geochemical speciation package. An idealized mine network developed by Viswanathan and Sauter (2001) is used as a test problem in this study. The numerical experiment is based on reference date collected from
Coupling lattice Boltzmann and molecular dynamics models for dense fluids
Dupuis, A.; Kotsalis, E. M.; Koumoutsakos, P.
2007-04-01
We propose a hybrid model, coupling lattice Boltzmann (LB) and molecular dynamics (MD) models, for the simulation of dense fluids. Time and length scales are decoupled by using an iterative Schwarz domain decomposition algorithm. The MD and LB formulations communicate via the exchange of velocities and velocity gradients at the interface. We validate the present LB-MD model in simulations of two- and three-dimensional flows of liquid argon past and through a carbon nanotube. Comparisons with existing hybrid algorithms and with reference MD solutions demonstrate the validity of the present approach.
MOUNTAIN-SCALE COUPLED PROCESSES (TH/THC/THM)MODELS
Energy Technology Data Exchange (ETDEWEB)
Y.S. Wu
2005-08-24
This report documents the development and validation of the mountain-scale thermal-hydrologic (TH), thermal-hydrologic-chemical (THC), and thermal-hydrologic-mechanical (THM) models. These models provide technical support for screening of features, events, and processes (FEPs) related to the effects of coupled TH/THC/THM processes on mountain-scale unsaturated zone (UZ) and saturated zone (SZ) flow at Yucca Mountain, Nevada (BSC 2005 [DIRS 174842], Section 2.1.1.1). The purpose and validation criteria for these models are specified in ''Technical Work Plan for: Near-Field Environment and Transport: Coupled Processes (Mountain-Scale TH/THC/THM, Drift-Scale THC Seepage, and Drift-Scale Abstraction) Model Report Integration'' (BSC 2005 [DIRS 174842]). Model results are used to support exclusion of certain FEPs from the total system performance assessment for the license application (TSPA-LA) model on the basis of low consequence, consistent with the requirements of 10 CFR 63.342 [DIRS 173273]. Outputs from this report are not direct feeds to the TSPA-LA. All the FEPs related to the effects of coupled TH/THC/THM processes on mountain-scale UZ and SZ flow are discussed in Sections 6 and 7 of this report. The mountain-scale coupled TH/THC/THM processes models numerically simulate the impact of nuclear waste heat release on the natural hydrogeological system, including a representation of heat-driven processes occurring in the far field. The mountain-scale TH simulations provide predictions for thermally affected liquid saturation, gas- and liquid-phase fluxes, and water and rock temperature (together called the flow fields). The main focus of the TH model is to predict the changes in water flux driven by evaporation/condensation processes, and drainage between drifts. The TH model captures mountain-scale three-dimensional flow effects, including lateral diversion and mountain-scale flow patterns. The mountain-scale THC model evaluates TH effects on
Coupled Inverted Pendula Model of Competition and Cooperation
Yoshida, Katsutoshi; Ohta, Hiroki
A coupled inverted pendula model of competition and cooperation is proposed to develop a purely mechanical implementation comparable to the Lotka-Volterra competition model. It is shown numerically that the proposed model can produce the four stable equilibriums analogous to ecological coexistence, two states of dominance, and scramble. The authors also propose two types of open-loop strategies to switch the equilibriums. The proposed strategies can be associated with an attack and a counter attack of agents through a metaphor of martial arts.
A COUPLED MORPHODYNAMIC MODEL FOR APPLICATIONS INVOLVING WETTING AND DRYING*
Institute of Scientific and Technical Information of China (English)
LIANG Qiuhua
2011-01-01
This work presents a new finite volume Godunov-type model for predicting morphological changes under the rapidly varying flood conditions with wetting and drying. The model solves the coupled shallow water and Exner equations, with the interface fluxes evaluated by an Harten-Lax-van Leer-Contact (HLLC) approximate Riemann solver. Well-balanced solution is achieved using the surface gradient method and wetting and drying are handled by a non-negative reconstruction approach. The new model is validated against several theoretical benchmark tests and promising results are obtained.
Smith, Timothy; Lu, Xiaoyi; Ranjan, Reetesh; Pantano, Carlos
2016-11-01
We describe a two-way coupled turbulent dispersed flow computational model using a high-order kernel density function (KDF) method. The carrier-phase solution is obtained using a high-order spatial and temporal incompressible Navier-Stokes solver while the KDF dispersed-phase solver uses the high-order Legendre WENO method. The computational approach is used to model carrier-phase turbulence modulation by the dispersed phase, and particle dispersion by turbulence as a function of momentum coupling strength (particle loading) and number of KDF basis functions. The use of several KDF's allows the model to capture statistical effects of particle trajectory crossing to high degree. Details of the numerical implementation and the coupling between the incompressible flow and dispersed-phase solvers will be discussed, and results at a range of Reynolds numbers will be presented. This work was supported by the National Science Foundation under Grant DMS-1318161.
A coupled model for intragranular deformation and chemical diffusion
Zhong, Xin; Vrijmoed, Johannes; Moulas, Evangelos; Tajčmanová, Lucie
2017-09-01
A coupled model for chemical diffusion and mechanical deformation is developed in analogy to the studies of poroelasticity and thermoelasticity. Nondimensionalization of the governing equations yields a controlling dimensionless parameter, the Deborah number, given by the ratio of the characteristic time for pressure relaxation and concentration homogenization. Using the Deborah number two types of plausible chemical zonation are distinguished, i.e. diffusion controlled, and mechanically controlled. The transition between these two types of chemical zonation is determined at the conditions where the Deborah number equals one. We apply our model to a chemically zoned plagioclase rim in a spherical coordinate frame assuming homogeneous initial pressure. Using thermodynamic data, an experimentally derived diffusion coefficient and a viscous flow law for plagioclase, our numerical simulations show that up to ∼0.6 GPa grain-scale pressure variation is generated during the diffusion-deformation process. Due to the mechanical-chemical coupling, the pressure variations maintain the chemical zonation longer than predicted by the classical diffusion model. The fully coupled mechanical-chemical model provides an alternative explanation for the preservation of chemically zoned minerals, and may contribute to a better understanding of metamorphic processes in the deep Earth interior.
Coupling of nonlocal and local continuum models by the Arlequinapproach
Han, Fei
2011-08-09
The objective of this work is to develop and apply the Arlequin framework to couple nonlocal and local continuum mechanical models. A mechanically-based model of nonlocal elasticity, which involves both contact and long-range forces, is used for the \\'fine scale\\' description in which nonlocal interactions are considered to have non-negligible effects. Classical continuum mechanics only involving local contact forces is introduced for the rest of the structure where these nonlocal effects can be neglected. Both models overlap in a coupling subdomain called the \\'gluing area\\' in which the total energy is separated into nonlocal and local contributions by complementary weight functions. A weak compatibility is ensured between kinematics of both models using Lagrange multipliers over the gluing area. The discrete formulation of this specific Arlequin coupling framework is derived and fully described. The validity and limits of the technique are demonstrated through two-dimensional numerical applications and results are compared against those of the fully nonlocal elasticity method. © 2011 John Wiley & Sons, Ltd.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Sharples' 1-D physical model employing tide-wind driven turbulence closure and surface heating-cooling physics, was coupled with an ecological model with 9-biochemical components: phytoplankton, zooplankton, shellfish, autotrophic and heterotrophic bacterioplankton, dissolved organic carbon (DOC), suspended detritus and sinking particles to simulate the annual evolution of ecosystem in the central part of Jiaozhou Bay. The coupled modeling results showed that the phytoplankton shading effect could reduce seawater temperature by 2℃, so that photosynthesis efficiency should be less than 8%; that the loss of phytoplankton by zooplankton grazing in winter tended to be compensated by phytoplankton advection and diffusion from the outside of the Bay; that the incident irradiance intensity could be the most important factor for phytoplankton growth rate; and that it was the bacterial secondary production that maintained the maximum zooplankton biomass in winter usually observed in the 1990s, indicating that the microbial food loop was extremely important for ecosystem study of Jiaozhou Bay.
Wang, Qi; Gong, Yubing; Wu, Yanan
2015-11-01
Introducing adaptive coupling in delayed neuronal networks and regulating the dissipative parameter (DP) of adaptive coupling by noise, we study the effect of fluctuations of the changing rate of adaptive coupling on the synchronization of the neuronal networks. It is found that time delay can induce synchronization transitions for intermediate DP values, and the synchronization transitions become strongest when DP is optimal. As the intensity of DP noise is varied, the neurons can also exhibit synchronization transitions, and the phenomenon is delay-dependent and is enhanced for certain time delays. Moreover, the synchronization transitions change with the change of DP and become strongest when DP is optimal. These results show that randomly changing adaptive coupling can considerably change the synchronization of the neuronal networks, and hence could play a crucial role in the information processing and transmission in neural systems.
Conformal Loop quantization of gravity coupled to the standard model
Pullin, Jorge; Gambini, Rodolfo
2016-03-01
We consider a local conformal invariant coupling of the standard model to gravity free of any dimensional parameter. The theory is formulated in order to have a quantized version that admits a spin network description at the kinematical level like that of loop quantum gravity. The Gauss constraint, the diffeomorphism constraint and the conformal constraint are automatically satisfied and the standard inner product of the spin-network basis still holds. The resulting theory has resemblances with the Bars-Steinhardt-Turok local conformal theory, except it admits a canonical quantization in terms of loops. By considering a gauge fixed version of the theory we show that the Standard model coupled to gravity is recovered and the Higgs boson acquires mass. This in turn induces via the standard mechanism masses for massive bosons, baryons and leptons.
Conformal loop quantum gravity coupled to the standard model
Campiglia, Miguel; Gambini, Rodolfo; Pullin, Jorge
2017-01-01
We argue that a conformally invariant extension of general relativity coupled to the standard model is the fundamental theory that needs to be quantized. We show that it can be treated by loop quantum gravity techniques. Through a gauge fixing and a modified Higgs mechanism particles acquire mass and one recovers general relativity coupled to the standard model. The theory suggests new views with respect to the definition of the Hamiltonian constraint in loop quantum gravity, the semi-classical limit and the issue of finite renormalization in quantum field theory in quantum space-time. It also gives hints about the elimination of ambiguities that arise in quantum field theory in quantum space-time in the calculation of back-reaction.
Evaluation of Coupled Model Forecasts of Ethiopian Highlands Summer Climate
Directory of Open Access Journals (Sweden)
Mark R. Jury
2014-01-01
Full Text Available This study evaluates seasonal forecasts of rainfall and maximum temperature across the Ethiopian highlands from coupled ensemble models in the period 1981–2006, by comparison with gridded observational products (NMA + GPCC/CRU3. Early season forecasts from the coupled forecast system (CFS are steadier than European community medium range forecast (ECMWF. CFS and ECMWF April forecasts of June–August (JJA rainfall achieve significant fit (r2=0.27, 0.25, resp., but ECMWF forecasts tend to have a narrow range with drought underpredicted. Early season forecasts of JJA maximum temperature are weak in both models; hence ability to predict water resource gains may be better than losses. One aim of seasonal climate forecasting is to ensure that crop yields keep pace with Ethiopia’s growing population. Farmers using prediction technology are better informed to avoid risk in dry years and generate surplus in wet years.
Coupled spin models for magnetic variation of planets and stars
Nakamichi, A; Schmitt, D; Ferriz-Mas, A; Wicht, J; Morikawa, M
2011-01-01
Geomagnetism is characterized by intermittent polarity reversals and rapid fluctuations. We have recently proposed a coupled macro-spin model to describe these dynamics based on the idea that the whole dynamo mechanism is described by the coherent interactions of many small dynamo elements. In this paper, we further develop this idea and construct a minimal model for magnetic variations. This simple model naturally yields many of the observed features of geomagnetism: its time evolution, the power spectrum, the frequency distribution of stable polarity periods, etc. This model has coexistent two phases; i.e. the cluster phase which determines the global dipole magnetic moment and the expanded phase which gives random perpetual perturbations that yield intermittent polarity flip of the dipole moment. This model can also describe the synchronization of the spin oscillation. This corresponds to the case of sun and the model well describes the quasi-regular cycles of the solar magnetism. Furthermore, by analyzing...
Krüger, Karsten; Gessner, Denise K; Seimetz, Michael; Banisch, Jasmin; Ringseis, Robert; Eder, Klaus; Weissmann, Norbert; Mooren, Frank C
2013-01-01
Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST) for 10 weeks 5 days/week. Additionally, either a sedentary control group (CT) or a regular endurance training group (ET) groups were used as controls. Performance capacity was determined by maximum holding time (MHT) and treadmill spirometry, respectively. Furthermore, muscle fiber types and diameter, muscular concentration of phosphofructokinase 1 (PFK), succinate dehydrogenase (SDHa), and glucose transporter type 4 (GLUT4) were determined. In a further approach, the effect of ST on glucose intolerance was tested in diabetic mice. In mice of the ST group we observed an increase of MHT in isometric strength tests, a type II fiber hypertrophy, and an increased GLUT4 protein content in the membrane fraction. In contrast, in mice of the ET group an increase of VO(2max), a shift to oxidative muscle fiber type and an increase of oxidative enzyme content was measured. Furthermore strength training was effective in reducing glucose intolerance in mice fed a high fat diet. An effective murine strength training model was developed and evaluated, which revealed marked differences in adaptations known from endurance training. This approach seems also suitable to test for therapeutical effects of strength training.
Directory of Open Access Journals (Sweden)
Karsten Krüger
Full Text Available Exercise training induces muscular adaptations that are highly specific to the type of exercise. For a systematic study of the differentiated exercise adaptations on a molecular level mouse models have been used successfully. The aim of the current study was to develop a suitable mouse model of isometric strength exercise training characterized by specific adaptations known from strength training. C57BL/6 mice performed an isometric strength training (ST for 10 weeks 5 days/week. Additionally, either a sedentary control group (CT or a regular endurance training group (ET groups were used as controls. Performance capacity was determined by maximum holding time (MHT and treadmill spirometry, respectively. Furthermore, muscle fiber types and diameter, muscular concentration of phosphofructokinase 1 (PFK, succinate dehydrogenase (SDHa, and glucose transporter type 4 (GLUT4 were determined. In a further approach, the effect of ST on glucose intolerance was tested in diabetic mice. In mice of the ST group we observed an increase of MHT in isometric strength tests, a type II fiber hypertrophy, and an increased GLUT4 protein content in the membrane fraction. In contrast, in mice of the ET group an increase of VO(2max, a shift to oxidative muscle fiber type and an increase of oxidative enzyme content was measured. Furthermore strength training was effective in reducing glucose intolerance in mice fed a high fat diet. An effective murine strength training model was developed and evaluated, which revealed marked differences in adaptations known from endurance training. This approach seems also suitable to test for therapeutical effects of strength training.
Some remarks about non-minimally coupled scalar field models
Fadragas, Carlos R
2014-01-01
Are extended several results related to flat FRW models in the conformal (Einstein) frame of scalar-tensor gravity theories. Are considered scalar fields with arbitrary (positive) potentials and arbitrary coupling functions. Are straightforwardly introduced mild assumptions under such functions (differentiable class, number of singular points, asymptotes, etc.) in order to characterize the asymptotic structure on a phase-space. We pay special attention to the possible scaling solutions. Are presented several numerical evidences that confirm some of these results.
Embankment deformation analyzed by elastoplastic damage model coupling consolidation theory
Institute of Scientific and Technical Information of China (English)
Hong SUN; Xihong ZHAO
2006-01-01
The deformation of embankment has serious influences on neighboring structure and infrastructure. A trial embankment is reanalyzed by elastoplastic damage model coupling Biot's consolidation theory. With the increase in time of loading, the damage accumulation becomes larger. Under the centre and toe of embankment, damage becomes serious. Under the centre of embankment, vertical damage values are bigger than horizontal ones. Under the toe of embankment, horizontal damage values are bigger than vertical ones.
Eikonal solutions to optical model coupled-channel equations
Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.
1988-01-01
Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.
Reheating temperature in non-minimal derivative coupling model
Sadjadi, H Mohseni
2013-01-01
We consider the inflaton as a scalar field described by a non-minimal derivative coupling model with a power law potential. We study the slow roll inflation, the rapid oscillation phase, the radiation dominated and the recombination eras respectively, and estimate e-folds numbers during these epochs. Using these results we determine the reheating temperature in terms of the spectral index and the amplitude of the power spectrum of scalar perturbations.
Coupled modified baker's transformations for the Ising model.
Sakaguchi, H
1999-12-01
An invertible coupled map lattice is proposed for the Ising model. Each elemental map is a modified baker's transformation, which is a two-dimensional map of X and Y. The time evolution of the spin variable is memorized in the binary representation of the Y variable. The temporal entropy and time correlation of the spin variable are calculated from the snapshot configuration of the Y variables.
Fritsch, Andreas; Dormieux, Luc; Hellmich, Christian; Sanahuja, Julien
2009-01-01
Hydroxyapatite (HA) biomaterials production has been a major field in biomaterials science and biomechanical engineering. As concerns prediction of their stiffness and strength, we propose to go beyond statistical correlations with porosity or empirical structure-property relationships, as to resolve the material-immanent microstructures governing the overall mechanical behavior. The macroscopic mechanical properties are estimated from the microstructures of the materials and their composition, in a homogenization process based on continuum micromechanics. Thereby, biomaterials are envisioned as porous polycrystals consisting of HA needles and spherical pores. Validation of respective micromechanical models relies on two independent experimental sets: biomaterial-specific macroscopic (homogenized) stiffness and uniaxial (tensile and compressive) strength predicted from biomaterial-specific porosities, on the basis of biomaterial-independent ("universal") elastic and strength properties of HA, are compared with corresponding biomaterial-specific experimentally determined (acoustic and mechanical) stiffness and strength values. The good agreement between model predictions and the corresponding experiments underlines the potential of micromechanical modeling in improving biomaterial design, through optimization of key parameters such as porosities or geometries of microstructures, in order to reach the desired values for biomaterial stiffness or strength.
Strongly Coupled Models with a Higgs-like Boson*
Directory of Open Access Journals (Sweden)
Pich Antonio
2013-11-01
Full Text Available Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale, the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule.
Strongly Coupled Models with a Higgs-like Boson
Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan
2013-11-01
Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].
Fillenwarth, Brian Albert
As large countries such as China begin to industrialize and concerns about global warming continue to grow, there is an increasing need for more environmentally friendly building materials. One promising material known as a geopolymer can be used as a portland cement replacement and in this capacity emits around 67% less carbon dioxide. In addition to potentially reducing carbon emissions, geopolymers can be synthesized with many industrial waste products such as fly ash. Although the benefits of geopolymers are substantial, there are a few difficulties with designing geopolymer mixes which have hindered widespread commercialization of the material. One such difficulty is the high variability of the materials used for their synthesis. In addition to this, interrelationships between mix design variables and how these interrelationships impact the set behavior and compressive strength are not well understood. A third complicating factor with designing geopolymer mixes is that the role of calcium in these systems is not well understood. In order to overcome these barriers, this study developed predictive optimization models through the use of genetic programming with experimentally collected set times and compressive strengths of several geopolymer paste mixes. The developed set behavior models were shown to predict the correct set behavior from the mix design over 85% of the time. The strength optimization model was shown to be capable of predicting compressive strengths of geopolymer pastes from their mix design to within about 1 ksi of their actual strength. In addition to this the optimization models give valuable insight into the key factors influencing strength development as well as the key factors responsible for flash set and long set behaviors in geopolymer pastes. A method for designing geopolymer paste mixes was developed from the generated optimization models. This design method provides an invaluable tool for use in future geopolymer research as well as
Drift-Scale Coupled Processes (DST and THC Seepage) Models
Energy Technology Data Exchange (ETDEWEB)
E. Sonnenthale
2001-04-16
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M&O) 2000 [1534471]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M&O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: Performance Assessment (PA); Near-Field Environment (NFE) PMR; Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); and UZ Flow and Transport Process Model Report (PMR). The work scope for this activity is presented in the TWPs cited above, and summarized as follows: Continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data, sensitivity and validation
Drift-Scale Coupled Processes (DST and THC Seepage) Models
Energy Technology Data Exchange (ETDEWEB)
E. Gonnenthal; N. Spyoher
2001-02-05
The purpose of this Analysis/Model Report (AMR) is to document the Near-Field Environment (NFE) and Unsaturated Zone (UZ) models used to evaluate the potential effects of coupled thermal-hydrologic-chemical (THC) processes on unsaturated zone flow and transport. This is in accordance with the ''Technical Work Plan (TWP) for Unsaturated Zone Flow and Transport Process Model Report'', Addendum D, Attachment D-4 (Civilian Radioactive Waste Management System (CRWMS) Management and Operating Contractor (M and O) 2000 [153447]) and ''Technical Work Plan for Nearfield Environment Thermal Analyses and Testing'' (CRWMS M and O 2000 [153309]). These models include the Drift Scale Test (DST) THC Model and several THC seepage models. These models provide the framework to evaluate THC coupled processes at the drift scale, predict flow and transport behavior for specified thermal loading conditions, and predict the chemistry of waters and gases entering potential waste-emplacement drifts. The intended use of this AMR is to provide input for the following: (1) Performance Assessment (PA); (2) Abstraction of Drift-Scale Coupled Processes AMR (ANL-NBS-HS-000029); (3) UZ Flow and Transport Process Model Report (PMR); and (4) Near-Field Environment (NFE) PMR. The work scope for this activity is presented in the TWPs cited above, and summarized as follows: continue development of the repository drift-scale THC seepage model used in support of the TSPA in-drift geochemical model; incorporate heterogeneous fracture property realizations; study sensitivity of results to changes in input data and mineral assemblage; validate the DST model by comparison with field data; perform simulations to predict mineral dissolution and precipitation and their effects on fracture properties and chemistry of water (but not flow rates) that may seep into drifts; submit modeling results to the TDMS and document the models. The model development, input data
Effects of ionic strength and ion pairing on (plant-wide) modelling of anaerobic digestion
DEFF Research Database (Denmark)
Solon, Kimberly; Flores Alsina, Xavier; Mbamba, Christian Kazadi
2015-01-01
) and ion pairing on modelling of anaerobic digestion processes in such plant-wide models of wastewater treatment. Using the BSM2 as a case study with a number of model variants and cationic load scenarios, this paper presents the effects of an improved physico-chemical description on model predictions....... The paper describes: 1) how the anaerobic digester performance is affected by physico-chemical corrections; 2) the effect on pH and the anaerobic digestion products (CO2, CH4 and H2); and, 3) how these variations are propagated from the sludge treatment to the water line. Results at high ionic strength......Plant-wide models of wastewater treatment (such as the Benchmark Simulation Model No. 2 or BSM2) are gaining popularity for use in holistic virtual studies of treatment plant control and operations. The objective of this study is to show the influence of ionic strength (as activity corrections...
Modeling the Residual Strength of a Fibrous Composite Using the Residual Daniels Function
Paramonov, Yu.; Cimanis, V.; Varickis, S.; Kleinhofs, M.
2016-09-01
The concept of a residual Daniels function (RDF) is introduced. Together with the concept of Daniels sequence, the RDF is used for estimating the residual (after some preliminary fatigue loading) static strength of a unidirectional fibrous composite (UFC) and its S-N curve on the bases of test data. Usually, the residual strength is analyzed on the basis of a known S-N curve. In our work, an inverse approach is used: the S-N curve is derived from an analysis of the residual strength. This approach gives a good qualitive description of the process of decreasing residual strength and explanes the existence of the fatigue limit. The estimates of parameters of the corresponding regression model can be interpreted as estimates of parameters of the local strength of components of the UFC. In order to approach the quantitative experimental estimates of the fatigue life, some ideas based on the mathematics of the semiMarkovian process are employed. Satisfactory results in processing experimental data on the fatigue life and residual strength of glass/epoxy laminates are obtained.
Thermal conductivity of local moment models with strong spin-orbit coupling
Stamokostas, Georgios L.; Lapas, Panteleimon E.; Fiete, Gregory A.
2017-02-01
We study the magnetic and lattice contributions to the thermal conductivity of electrically insulating strongly spin-orbit coupled magnetically ordered phases on a two-dimensional honeycomb lattice using the Kitaev-Heisenberg model. Depending on model parameters, such as the relative strength of the spin-orbit induced anisotropic coupling, a number of magnetically ordered phases are possible. In this work, we study two distinct regimes of thermal transport depending on whether the characteristic energy of the phonons or the magnons dominates, and focus on two different relaxation mechanisms, boundary scattering and magnon-phonon scattering. For spatially anisotropic magnetic phases, the thermal conductivity tensor can be highly anisotropic when the magnetic energy scale dominates, since the magnetic degrees of freedom dominate the thermal transport for temperatures well below the magnetic transition temperature. In the opposite limit in which the phonon energy scale dominates, the thermal conductivity will be nearly isotropic, reflecting the isotropic (at low temperatures) phonon dispersion assumed for the honeycomb lattice. We further discuss the extent to which thermal transport properties are influenced by strong spin-orbit induced anisotropic coupling in the local moment regime of insulating magnetic phases. The developed methodology can be applied to any 2D magnon-phonon system, and more importantly to systems where an analytical Bogoliubov transformation cannot be found and magnon bands are not necessarily isotropic.
Examination of a Theoretical Model of Streaming Potential Coupling Coefficient
Directory of Open Access Journals (Sweden)
D. T. Luong
2014-01-01
Full Text Available Seismoelectric effects and streaming potentials play an important role in geophysical applications. The key parameter for those phenomena is the streaming potential coupling coefficient, which is, for example, dependent on the zeta potential of the interface of the porous rocks. Comparison of an existing theoretical model to experimental data sets from available published data for streaming potentials has been performed. However, the existing experimental data sets are based on samples with dissimilar fluid conductivity, pH of pore fluid, temperature, and sample compositions. All those dissimilarities may cause the observed deviations. To critically assess the models, we have carried out streaming potential measurement as a function of electrolyte concentration and temperature for a set of well-defined consolidated samples. The results show that the existing theoretical model is not in good agreement with the experimental observations when varying the electrolyte concentration, especially at low electrolyte concentration. However, if we use a modified model in which the zeta potential is considered to be constant over the electrolyte concentration, the model fits the experimental data well in a whole range of concentration. Also, for temperature dependence, the comparison shows that the theoretical model is not fully adequate to describe the experimental data but does describe correctly the increasing trend of the coupling coefficient as function of temperature.
Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator
Moses, Matthew S.; Murphy, Ryan J.; Kutzer, Michael D. M.; Armand, Mehran
2015-01-01
This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. Howev...
Wang, Xiao-Yong
2017-01-26
Limestone is widely used in the construction industry to produce Portland limestone cement (PLC) concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel-space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.
Directory of Open Access Journals (Sweden)
Xiao-Yong Wang
2017-01-01
Full Text Available Limestone is widely used in the construction industry to produce Portland limestone cement (PLC concrete. Systematic evaluations of hydration kinetics, compressive strength development, and carbonation resistance are crucial for the rational use of limestone. This study presents a hydration-based model for evaluating the influences of limestone on the strength and carbonation of concrete. First, the hydration model analyzes the dilution effect and the nucleation effect of limestone during the hydration of cement. The degree of cement hydration is calculated by considering concrete mixing proportions, binder properties, and curing conditions. Second, by using the gel–space ratio, the compressive strength of PLC concrete is evaluated. The interactions among water-to-binder ratio, limestone replacement ratio, and strength development are highlighted. Third, the carbonate material contents and porosity are calculated from the hydration model and are used as input parameters for the carbonation model. By considering concrete microstructures and environmental conditions, the carbon dioxide diffusivity and carbonation depth of PLC concrete are evaluated. The proposed model has been determined to be valid for concrete with various water-to-binder ratios, limestone contents, and curing periods.
A Fully Coupled Computational Model of the Silylation Process
Energy Technology Data Exchange (ETDEWEB)
G. H. Evans; R. S. Larson; V. C. Prantil; W. S. Winters
1999-02-01
This report documents the development of a new finite element model of the positive tone silylation process. Model development makes use of pre-existing Sandia technology used to describe coupled thermal-mechanical behavior in deforming metals. Material properties and constitutive models were obtained from the literature. The model is two-dimensional and transient and focuses on the part of the lithography process in which crosslinked and uncrosslinked resist is exposed to a gaseous silylation agent. The model accounts for the combined effects of mass transport (diffusion of silylation agent and reaction product), chemical reaction resulting in the uptake of silicon and material swelling, the generation of stresses, and the resulting material motion. The influence of stress on diffusion and reaction rates is also included.
Gauge coupling unification in a classically scale invariant model
Haba, Naoyuki; Ishida, Hiroyuki; Takahashi, Ryo; Yamaguchi, Yuya
2016-02-01
There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under SU(3) C with masses lower than 1 TeV, and the SM singlet Majorana dark matter with mass lower than 2.6 TeV.
Gauge coupling unification in a classically scale invariant model
Haba, Naoyuki; Takahashi, Ryo; Yamaguchi, Yuya
2015-01-01
There are a lot of works within a class of classically scale invariant model, which is motivated by solving the gauge hierarchy problem. In this context, the Higgs mass vanishes at the UV scale due to the classically scale invariance, and is generated via the Coleman-Weinberg mechanism. Since the mass generation should occur not so far from the electroweak scale, we extend the standard model only around the TeV scale. We construct a model which can achieve the gauge coupling unification at the UV scale. In the same way, the model can realize the vacuum stability, smallness of active neutrino masses, baryon asymmetry of the universe, and dark matter relic abundance. The model predicts the existence vector-like fermions charged under $SU(3)_C$ with masses lower than $1\\,{\\rm TeV}$, and the SM singlet Majorana dark matter with mass lower than $2.6\\,{\\rm TeV}$.
Warm stellar matter within the quark-meson-coupling model
Panda, P. K.; Providência, C.; Menezes, D. P.
2010-10-01
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Shaken, but not stirred - Potts model coupled to quantum gravity
Ambjørn, Jan; Loll, R; Pushkina, I
2008-01-01
We investigate the critical behaviour of both matter and geometry of the three-state Potts model coupled to two-dimensional Lorentzian quantum gravity in the framework of causal dynamical triangulations. Contrary to what general arguments of the effects of disorder suggest, we find strong numerical evidence that the critical exponents of the matter are not changed under the influence of quantum fluctuations in the geometry, compared to their values on fixed, regular lattices. This lends further support to previous findings that quantum gravity models based on causal dynamical triangulations are in many ways better behaved than their Euclidean counterparts.
Standard model-like D-brane models and gauge couplings
Energy Technology Data Exchange (ETDEWEB)
Hamada, Yuta [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan); Kobayashi, Tatsuo [Department of Physics, Hokkaido University, Sapporo 060-0810 (Japan); Uemura, Shohei, E-mail: uemura@gauge.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2015-08-15
We systematically search intersecting D-brane models, which just realize the Standard Model chiral matter contents and gauge symmetry. We construct new classes of non-supersymmetric Standard Model-like models. We also study the gauge coupling constants of these models. The tree level gauge coupling is a function of the compactification moduli, the string scale, the string coupling and the winding numbers of D-branes. By tuning them, we examine whether the models can explain the experimental values of gauge couplings. As a result, we find that the string scale should be greater than 10{sup 14–15} GeV if the compactification scale and the string scale are of the same order.
Fatigue reliability based on residual strength model with hybrid uncertain parameters
Institute of Scientific and Technical Information of China (English)
Jun Wang; Zhi-Ping Qiu
2012-01-01
The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model.By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness,the fatigue reliability with hybrid parameters can be obtained.The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters.A comparison among the presented hybrid model,non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples.The results show that the presented hybrid model,which can ensure structural security,is effective and practical.
Directory of Open Access Journals (Sweden)
S. L. Weber
2007-01-01
Full Text Available This study analyses the response of the Atlantic meridional overturning circulation (AMOC to LGM forcings and boundary conditions in nine PMIP coupled model simulations, including both GCMs and Earth system Models of Intermediate Complexity. Model results differ widely. The AMOC slows down considerably (by 20–40% during the LGM as compared to the modern climate in four models, there is a slight reduction in one model and four models show a substantial increase in AMOC strength (by 10–40%. It is found that a major controlling factor for the AMOC response is the density contrast between Antarctic Bottom Water (AABW and North Atlantic Deep Water (NADW at their source regions. Changes in the density contrast are determined by the opposing effects of changes in temperature and salinity, with more saline AABW as compared to NADW consistently found in all models and less cooling of AABW in all models but one. In only two models is the AMOC response during the LGM directly related to the response in net evaporation over the Atlantic basin. Most models show large changes in the ocean freshwater transports into the basin, but this does not seem to affect the AMOC response. Finally, there is some dependence on the accuracy of the control state.
Lee, Shiu-Hang; Nagataki, Shigehiro
2012-01-01
To better model the efficient production of cosmic rays (CRs) in supernova remnants (SNRs) with the associated coupling between CR production and SNR dynamics, we have generalized an existing cr-hydro-NEI code (i.e., Ellison et al. 2012) to include the following processes: (1) an explicit calculation of the upstream precursor structure including the position dependent flow speed, density, temperature, and magnetic field strength; (2) a momentum and space dependent CR diffusion coefficient; (3) an explicit calculation of magnetic field amplification (MFA); (4) calculation of the maximum CR momentum using the amplified magnetic field; (5) a finite Alfven speed for the particle scattering centers; and (6) the ability to accelerate a superthermal seed population of CRs as well as the ambient thermal plasma. While a great deal of work has been done modeling SNRs, most work has concentrated on either the continuum emission from relativistic electrons or ions, or the thermal emission from the shock heated plasma. Ou...
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-01-01
Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the $H\\to\\gamma\\gamma,\\, ZZ^*,\\, WW^*,\\, Z\\gamma,\\, b\\bar{b},\\, \\tau\\tau$ and $\\mu\\mu$ decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton--proton collision datasets, with integrated luminosities of up to 4.7 fb$^{-1}$ at $\\sqrt{s}=7$ TeV and 20.3 fb$^{-1}$ at $\\sqrt{s}=8$ TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is $1.18^{+0.15}_{-0.14}$. The data provide unequivocal confirmation of the gluon fusion production of the Higgs boson, strong evidence of vector-boson fusion production and support Standard Model assumptions of production in association...
Strength Modeling of Reinforced Concrete Beam with Externally Bonded FRP Reinforcement
Directory of Open Access Journals (Sweden)
N. Pannirselvam
2008-01-01
Full Text Available This research study presents the evaluation of the structural behaviour of reinforced concrete beams with externally bonded Fibre Reinforced Polymer (FRP reinforcements. Three different steel ratios with two different Glass Fibre Reinforced Polymer (GFRP types and two different thicknesses in each type of GFRP were used. Totally fifteen rectangular beams of 3 m length were cast. Three rectangular beams were used as reference beam (Control Beams and the remaining were fixed with GFRP laminates on the soffit of the rectangular beam. The variables considered for the study includes longitudinal steel ratio, type of GFRP laminates, thickness of GFRP laminates and composite ratios. Flexural test, using simple beam with third-point loading was adopted to study the performance of FRP plated beams interms flexural strength, deflection, ductility and was compared with the unplated beams. The test results show that the beams strengthened with GFRP laminates exhibit better performance. The flexural strength and ductility increase with increase in thickness of GFRP plate. The increase in first crack loads was up to 88.89% for 3 mm thick WRGFRP plates and 100.00% for 5 mm WRGFRP plated beams and increase in ductility interms of energy and deflection was found to be 56.01 and 64.69% respectively with 5 mm thick GFRP plated beam. Strength models were developed for predicting the flexural strength (ultimate load, service load and ductility of FRP beams. The strength model developed give prediction matching the measurements.
Safer Batteries through Coupled Multiscale Modeling (ICCS 2015)
Energy Technology Data Exchange (ETDEWEB)
Turner, John A [ORNL; Allu, Srikanth [ORNL; Berrill, Mark A [ORNL; Elwasif, Wael R [ORNL; Kalnaus, Sergiy [ORNL; Kumar, Abhishek [ORNL; Lebrun-Grandie, Damien T [ORNL; Pannala, Dr. Sreekanth [Saudi Basic Industries Coropration (SABIC); Simunovic, Srdjan [ORNL
2015-01-01
Batteries are highly complex electrochemical systems, with performance and safety governed by coupled nonlinear electrochemical-electrical-thermal-mechanical processes over a range of spatiotemporal scales. We describe a new, open source computational environment for battery simulation known as VIBE - the Virtual Integrated Battery Environment. VIBE includes homogenized and pseudo-2D electrochemistry models such as those by Newman-Tiedemann-Gu (NTG) and Doyle- Fuller-Newman (DFN, a.k.a. DualFoil) as well as a new advanced capability known as AMPERES (Advanced MultiPhysics for Electrochemical and Renewable Energy Storage). AMPERES provides a 3D model for electrochemistry and full coupling with 3D electrical and thermal models on the same grid. VIBE/AMPERES has been used to create three-dimensional battery cell and pack models that explicitly simulate all the battery components (current collectors, electrodes, and separator). The models are used to predict battery performance under normal operations and to study thermal and mechanical response under adverse conditions.
The dynamics of a coupled soilscape-landscape evolution model
Welivitiya, Dimuth; Willgoose, Garry; Hancock, Greg
2016-04-01
In this study we present results obtained from a landform evolution model coupled with SSSPAM5D soilscape evolution model. This presentation will show a number of computer animations with this coupled model using a range of widely accepted soil profile weathering models, and erosion/armouring models. The animations clearly show that subtle changes in process can result in dramatic changes in long-term equilibrium hillslope and soilscape form. We will discuss the reasons for these differences, arguing from the various mathematical and physical assumptions modelled, and infer how observed hillslope form may provide identifiable (and perhaps quantifiable) landform and soilscape signatures of landscape and soilscape process, and in particular the coupling between the landscape and the soilscape. Specifically we have simulated soilscapes using 3 depth dependent weathering functions: 1) Exponential, 2) Humped and 3) Reversed exponential. The Exponential weathering function simulates physical weathering due to thermal effects, and the weathering rate exponentially decreases with depth. The Humped function simulates chemical and/or physical weathering with moisture feedbacks, where the highest weathering rate is at a finite depth below the surface and exponentially declines with depth. The Reversed exponential function simulates chemical weathering, and the highest weathering rate is at the soil-saprolite interface and exponentially decreases both above and below the interface. Both the Humped and Reversed exponential functions can be used as approximations to chemical weathering as they can be derived analytically by solving widely accepted geochemical weathering equations. The Humped function can arise where the weathering fluid is introduced at the top of the soil profile (e.g. rainfall equilibrated with carbon dioxide in the atmosphere), while the Reversed exponential can be derived when carbon dioxide is generated within the profile (e.g. by biodegradation of soil
The unified minimal supersymmetric model with large Yukawa couplings
Rattazzi, Riccardo
1996-01-01
The consequences of assuming the third-generation Yukawa couplings are all large and comparable are studied in the context of the minimal supersymmetric extension of the standard model. General aspects of the RG evolution of the parameters, theoretical constraints needed to ensure proper electroweak symmetry breaking, and experimental and cosmological bounds on low-energy parameters are presented. We also present complete and exact semi-analytic solutions to the 1-loop RG equations. Focusing on SU(5) or SO(10) unification, we analyze the relationship between the top and bottom masses and the superspectrum, and the phenomenological implications of the GUT conditions on scalar masses. Future experimental measurements of the superspectrum and of the strong coupling will distinguish between various GUT-scale scenarios. And if present experimental knowledge is to be accounted for most naturally, a particular set of predictions is singled out.
Nuclear symmetry energy in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2015-01-01
We study nuclear symmetry energy and the thermodynamic instabilities of asymmetric nuclear matter in a self-consistent manner by using a modified quark-meson coupling model where the confining interaction for quarks inside a nucleon is represented by a phenomenologically averaged potential in an equally mixed scalar-vector harmonic form. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. We find an analytic expression for the symmetry energy ${\\cal E}_{sym}$ as a function of its slope $L$. Our result establishes a linear correlation between $L$ and ${\\cal E}_{sym}$. We also analyze the constraint on neutron star radii in $(pn)$ matter with $\\beta$ equilibrium.
Starck Ta PTW strength model recommendation for use with SESAME 93524 EoS
Energy Technology Data Exchange (ETDEWEB)
Sjue, Sky K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Prime, Michael Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-02-27
The purpose of this document is to provide a calibration of the Preston-Tonks- Wallace (PTW) strength model for use with the new SESAME equation of state (EoS) 93524. The calibration data included in this t spans temperatures from 198 K to 673 K and strain rates from 0.001/s to 3200/s.
Ego Depletion and the Strength Model of Self-Control: A Meta-Analysis
Hagger, Martin S.; Wood, Chantelle; Stiff, Chris; Chatzisarantis, Nikos L. D.
2010-01-01
According to the strength model, self-control is a finite resource that determines capacity for effortful control over dominant responses and, once expended, leads to impaired self-control task performance, known as "ego depletion". A meta-analysis of 83 studies tested the effect of ego depletion on task performance and related outcomes,…
Ego Depletion and the Strength Model of Self-Control: A Meta-Analysis
Hagger, Martin S.; Wood, Chantelle; Stiff, Chris; Chatzisarantis, Nikos L. D.
2010-01-01
According to the strength model, self-control is a finite resource that determines capacity for effortful control over dominant responses and, once expended, leads to impaired self-control task performance, known as "ego depletion". A meta-analysis of 83 studies tested the effect of ego depletion on task performance and related outcomes,…
Translation of Land Surface Model Accuracy and Uncertainty into Coupled Land-Atmosphere Prediction
Santanello, Joseph A.; Kumar, Sujay; Peters-Lidard, Christa D.; Harrison, Kenneth W.; Zhou, Shuija
2012-01-01
Land-atmosphere (L-A) Interactions playa critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface heat and moisture budgets, as well as controlling feedbacks with clouds and precipitation that lead to the persistence of dry and wet regimes. Recent efforts to quantify the strength of L-A coupling in prediction models have produced diagnostics that integrate across both the land and PBL components of the system. In this study, we examine the impact of improved specification of land surface states, anomalies, and fluxes on coupled WRF forecasts during the summers of extreme dry (2006) and wet (2007) land surface conditions in the U.S. Southern Great Plains. The improved land initialization and surface flux parameterizations are obtained through the use of a new optimization and uncertainty estimation module in NASA's Land Information System (US-OPT/UE), whereby parameter sets are calibrated in the Noah land surface model and classified according to a land cover and soil type mapping of the observation sites to the full model domain. The impact of calibrated parameters on the a) spinup of the land surface used as initial conditions, and b) heat and moisture states and fluxes of the coupled WRF Simulations are then assessed in terms of ambient weather and land-atmosphere coupling along with measures of uncertainty propagation into the forecasts. In addition, the sensitivity of this approach to the period of calibration (dry, wet, average) is investigated. Finally, tradeoffs of computational tractability and scientific validity, and the potential for combining this approach with satellite remote sensing data are also discussed.
Directory of Open Access Journals (Sweden)
Miao Yu
2017-01-01
Full Text Available It is of significance to comprehend the effects of rock microstructure on the tensile strength under different loading rates caused by mining disturbance. So, in this paper, three kinds of sandstones drilled from surrounding rocks in Xiao Jihan Coal to simulate the in situ stress state, whose average grain size is 30 μm (fine grain, FG, 105 μm (medium grain, MG, and 231 μm (Coarse grain, CG, are selected with the calculation of optical microscopic technique and moreover processed to Brazilian disc (BD to study the mechanical response of samples. The dynamic Brazilian tests of samples with three kinds of grain sizes are conducted with the Split Hopkinson Pressure Bar (SHPB driven by pendulum hammer, which can produce four different velocities (V=2.0 m/s, 2.5 m/s, 3.3 m/s, and 4.2 m/s when the incident bar is impacted by pendulum hammer. The incident wave produced by pendulum hammer is a slowly rising stress wave, which allows gradual stress accumulation in the specimen and maintains the load at both ends of the specimen in an equilibrium state. The results show that the dynamic strength of three kinds of BD samples represented loading rates dependence, and FG sandstones are more sensitive for loading rates than MG and CG samples. Moreover, the peak strength is observed to increase linearly with an increasing stress rates, and the relationship between the dynamic BD strength and stress rates can be built through a linear equation. Finally, the failure modes of different grain sizes are discussed and explained by microfailure mechanism.
ENSO teleconnections with Australian rainfall in coupled model simulations of the last millennium
Brown, Josephine R.; Hope, Pandora; Gergis, Joelle; Henley, Benjamin J.
2016-07-01
El Niño-Southern Oscillation is the major source of interannual rainfall variability in the Australian region, with the strongest influence over eastern Australia. The strength of this regional ENSO-rainfall teleconnection varies in the observational record. Climate model simulations of the "last millennium" (850-1850 C.E.) can be used to quantify the natural variability of the relationship between ENSO and Australian rainfall on decadal and longer time scales, providing a baseline for evaluating future projections. In this study, historical and last millennium (LM) simulations from six models were obtained from the Coupled Model Intercomparison Project Phase 5 and Palaeoclimate Modelling Intercomparison Project Phase 3. All models reproduce the observed negative correlation between September to February (SONDJF) eastern Australian rainfall and the NINO3.4 index, with varying skill. In the LM simulations, all models produce decadal-scale cooling over eastern Australia in response to volcanic forcing, as well as a long-term cooling trend. Rainfall variability over the same region is not strongly driven by external forcing, with each model simulating rainfall anomalies of different phase and magnitude. SONDJF eastern Australian rainfall is strongly correlated with ENSO in the LM simulations for all models, although some models simulate periods when the teleconnection weakens substantially for several decades. Changes in ENSO variance play a role in modulating the teleconnection strength, but are not the only factor. The long-term average spatial pattern of the ENSO-Australian rainfall teleconnection is similar in the LM and historical simulations, although the spatial pattern varies over time in the LM simulations.
Orbifolds and Exact Solutions of Strongly-Coupled Matrix Models
Cordova, Clay; Popolitov, Alexandr; Shakirov, Shamil
2016-01-01
We find an exact solution to strongly-coupled matrix models with a single-trace monomial potential. Our solution yields closed form expressions for the partition function as well as averages of Schur functions. The results are fully factorized into a product of terms linear in the rank of the matrix and the parameters of the model. We extend our formulas to include both logarthmic and finite-difference deformations, thereby generalizing the celebrated Selberg and Kadell integrals. We conjecture a formula for correlators of two Schur functions in these models, and explain how our results follow from a general orbifold-like procedure that can be applied to any one-matrix model with a single-trace potential.
A coupled elasto-plastic-damage mechanical model for marble
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
A profound understanding of the mechanical behaviors of marble is very important for the design and construction of deep diversion tunnels in Jinping II hydropower station.In this paper,a coupled elasto-plastic-damage mechanical model is presented for Jinping marble.Firstly,the experimental investigations on Jinping marble are summarized.Then,based on the framework of continuum damage and plastic theories,a general mechanical model is proposed to predict the mechanical responses of Jinping marble.The proposed model is used to simulate the triaxial compressive tests,and there is a general good agreement between experimental data and numerical predictions in a qualitative manner.The proposed model is able to capture the main features of Jinping marble observed in experiments,such as progressive yielding process,damage induced by plastic distortion,dilation,elastic degradation and stress sensitivity.
Thermodynamics of the BMN matrix model at strong coupling
Costa, Miguel S.; Greenspan, Lauren; Penedones, João; Santos, Jorge E.
2015-03-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical S 8 horizon. This geometry preserves the SO(9) symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the SO(9) to the SO(6) × SO(3) symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.
Thermodynamics of the BMN matrix model at strong coupling
Costa, Miguel S; Penedones, Joao; Santos, Jorge
2014-01-01
We construct the black hole geometry dual to the deconfined phase of the BMN matrix model at strong 't Hooft coupling. We approach this solution from the limit of large temperature where it is approximately that of the non-extremal D0-brane geometry with a spherical $S^8$ horizon. This geometry preserves the $SO(9)$ symmetry of the matrix model trivial vacuum. As the temperature decreases the horizon becomes deformed and breaks the $SO(9)$ to the $SO(6)\\times SO(3)$ symmetry of the matrix model. When the black hole free energy crosses zero the system undergoes a phase transition to the confined phase described by a Lin-Maldacena geometry. We determine this critical temperature, whose computation is also within reach of Monte Carlo simulations of the matrix model.
Sensitivity of land-atmosphere exchanges to overshooting PBL thermals in an idealized coupled model
Directory of Open Access Journals (Sweden)
Ian T. Baker
2009-11-01
Full Text Available The response of atmospheric carbon dioxide to a given amount of surface flux is inversely proportional to the depth of the planetary boundary layer (PBL. Overshooting thermals that entrain free tropospheric air down into the boundary layer modify the characteristics and depth of the mixed layer through the insertion of energy and mass. In addition, entrainment "dilutes" the effects of surface fluxes on scalar quantities (temperature, water vapor, carbon dioxide, etc. in the PBL. Therefore, incorrect simulation of PBL depth can lead to linear errors in estimates of carbon dioxide fluxes in inverse models. Dilution by entrainment directly alters the surface-air gradients in scalar properties, which serve as the "driving force" for surface fluxes. In addition, changes in near-surface temperature and water vapor affect surface fluxes through physiological processes in plant canopies (e.g. stomatal conductance. Although overshooting thermals are important in the physical world, their effects are unresolved in most regional models. We explore the sensitivity of surface fluxes and PBL scalars to the intensity of PBL top entrainment by manipulating its strength in an idealized version of the coupled SiB-RAMS model. An entrainment parameterization based on the virtual potential temperature flux at the surface is implemented into SiB-RAMS to produce a warmer and drier mixed layer, to alter the surface fluxes, and to increase the depth of the PBL. These variations produce modified CO_{2} concentrations and vary with the strength of the parameterized entrainment.
The Madden-Julian Oscillation in NCEP Coupled Model Simulation
Directory of Open Access Journals (Sweden)
Wanqiu Wang Kyong-Hwan Seo
2009-01-01
Full Text Available This study documents a detailed analysis on the Madden-Julian Oscillation (MJO simulated by the National Centers for Environmental Prediction (NCEP using the Global Forecast System (GFS model version 2003 coupled with the Climate Forecast System model (CFS consisting of the 2003 version of GFS and the Geophysical Fluid Dynamics Laboratory (GFDL Modular Ocean Model V.3 (MOM3. The analyses are based upon a 21-year simulation of AMIP-type with GFS and CMIP-type with CFS. It is found that air-sea coupling in CFS is shown to improve the coherence between convection and large-scale circulation associated with the MJO. The too fast propagation of convection from the Indian Ocean to the maritime continents and the western Pacific in GFS is improved (slowed down in CFS. Both GFS and CFS produce too strong intraseasonal convective heating and circulation anomalies in the central-eastern Pacific; further, the air-sea coupling in CFS enhances this unrealistic feature. The simulated mean slow phase speed of east ward propagating low-wavenumber components shown in the wavenumber-frequency spectra is due to the slow propagation in the central-eastern Pacific in both GFS and CFS. Errors in model climatology may have some effect upon the simulated MJO and two possible influences are: (i CFS fails to simulate the westerlies over maritime continents and western Pacific areas, resulting in an unrealistic representation of surface latent heat flux associated with the MJO; and (ii vertical easterly wind shear from the Indian Ocean to the western Pacific in CFS is much weaker than that in the observation and in GFS, which may adversely affect the eastward propagation of the simulated MJO.
WRF-Fire: coupled weather-wildland fire modeling with the weather research and forecasting model
Janice L. Coen; Marques Cameron; John Michalakes; Edward G. Patton; Philip J. Riggan; Kara M. Yedinak
2012-01-01
A wildland fire behavior module (WRF-Fire) was integrated into the Weather Research and Forecasting (WRF) public domain numerical weather prediction model. The fire module is a surface fire behavior model that is two-way coupled with the atmospheric model. Near-surface winds from the atmospheric model are interpolated to a finer fire grid and used, with fuel properties...
Modelization of coupled heat transfer inside a cylindrical glass block
Energy Technology Data Exchange (ETDEWEB)
Tanguier, J.L.; Kheiri, A.; Kleinclauss, J. [Faculte des Sciences, 54 - Vandoeuvre-les-Nancy (France)
1995-01-01
Modelization of coupled heat transfer inside a cylindrical glass block. In crystal industry, the furnaces used to warm up glass before forming are supplied with 4 bar pressure gas. They are noisy, polluting and high consumers of energy. To limit these effects and improve the energetic performances, an electrical infrared furnace is studied. To perfect it, it is necessary to identify the mechanisms of heat transfer which govern the evolution of the temperature into a cylindrical semitransparent media. After a long and thorough bibliography relative to the thermo-optical properties of crystal, the measurement of the field of temperature into the cylindrical block during the phases of working is led into the factory. To do this, it was necessary to adapt a reliable technical measurement device adjusted to industrial surrounding. A fundamental analysis of the results allows us to propose a model of the coupled heat transfer (radiation, conduction and convection) inside glass and between glass and its surroundings. The model is built on brightness and it is based on a triple discretization: temporal, spectral and zonal. This model provides the spectral distribution of the infrared radiation and the electrical power necessary to obtain a good heating of the crystal according to the manufactory charges. The first tests made with the experimental furnace, built by us, show that it is possible to warm up glass with infrared radiation and that this proceeding reduces the energy consumption and the nuisances. (authors). 19 refs., 7 figs.
Multimedia-Based Therapy Model for Non-Pharmacological Stroke with Decrease Impaired Muscle Strength
Hajar Puji Sejati, Rr; Muhimmah, Izzati; Mahtarami, Affan
2016-01-01
Stroke patients who experience a decrease in muscle strength need to do exercises so that they can increase their muscle strength. In order to enable the patient does exercise independently the multimedia-based stroke therapy model is needed. These exercises can be done independently, with supervision of the family member at home. So, we develop prototype of the multimedia-based therapy for the family member so that they can assist patients performing exercises without attending therapy session in hospital. This model was built according to the advices from physiotherapist and a medical rehabilitation doctor. This model has been evaluated through focused group discussion by physiotherapists. And they gave positive responses to this proposed model.
Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes
DEFF Research Database (Denmark)
Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly;
2014-01-01
The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents...... the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects...... processes. Results at high ionic strength demonstrate that corrections to account for non-ideal conditions lead to significant differences in predicted process performance. In addition, the paper describes: 1) how the anaerobic digester performance is affected; 2) the effect on pH and the anaerobic...
Theoretical Calculation Model of Single Rip Tearing Strength for the Nonwoven Composites
Institute of Scientific and Technical Information of China (English)
QIAN Cheng
2005-01-01
The nonwoven composites have sandwich structure, with the first and third layers being nonwovens and the middle layer of woven fabric. On the basis of tests of the single rip tearing strength and drawing out resistances of both the nonwoven composites and the woven fabric, the single rip tearing failure mechanism of the composites were analyzed.Then theoretical calculation model for the single rip tearing strength was established, which indicates that the breaking strength of warp and weft yarns in the nonwoven composites, the density of warp and weft yarns and drawing out resistances are the main influencing factors. In the end,experimental verification was made, which shows that theoretical values conform to the measured values well.
Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli.
Feist, Adam M; Zielinski, Daniel C; Orth, Jeffrey D; Schellenberger, Jan; Herrgard, Markus J; Palsson, Bernhard Ø
2010-05-01
Integrated approaches utilizing in silico analyses will be necessary to successfully advance the field of metabolic engineering. Here, we present an integrated approach through a systematic model-driven evaluation of the production potential for the bacterial production organism Escherichia coli to produce multiple native products from different representative feedstocks through coupling metabolite production to growth rate. Designs were examined for 11 unique central metabolism and amino acid targets from three different substrates under aerobic and anaerobic conditions. Optimal strain designs were reported for designs which possess maximum yield, substrate-specific productivity, and strength of growth-coupling for up to 10 reaction eliminations (knockouts). In total, growth-coupled designs could be identified for 36 out of the total 54 conditions tested, corresponding to eight out of the 11 targets. There were 17 different substrate/target pairs for which over 80% of the theoretical maximum potential could be achieved. The developed method introduces a new concept of objective function tilting for strain design. This study provides specific metabolic interventions (strain designs) for production strains that can be experimentally implemented, characterizes the potential for E. coli to produce native compounds, and outlines a strain design pipeline that can be utilized to design production strains for additional organisms.
Linear Sigma Models With Strongly Coupled Phases -- One Parameter Models
Hori, Kentaro
2013-01-01
We systematically construct a class of two-dimensional $(2,2)$ supersymmetric gauged linear sigma models with phases in which a continuous subgroup of the gauge group is totally unbroken. We study some of their properties by employing a recently developed technique. The focus of the present work is on models with one K\\"ahler parameter. The models include those corresponding to Calabi-Yau threefolds, extending three examples found earlier by a few more, as well as Calabi-Yau manifolds of other dimensions and non-Calabi-Yau manifolds. The construction leads to predictions of equivalences of D-brane categories, systematically extending earlier examples. There is another type of surprise. Two distinct superconformal field theories corresponding to Calabi-Yau threefolds with different Hodge numbers, $h^{2,1}=23$ versus $h^{2,1}=59$, have exactly the same quantum K\\"ahler moduli space. The strong-weak duality plays a crucial r\\^ole in confirming this, and also is useful in the actual computation of the metric on t...
Status of the seamless coupled modelling system ICON-ART
Vogel, Bernhard; Rieger, Daniel; Schroeter, Jenniffer; Bischoff-Gauss, Inge; Deetz, Konrad; Eckstein, Johannes; Foerstner, Jochen; Gasch, Philipp; Ruhnke, Roland; Vogel, Heike; Walter, Carolin; Weimer, Michael
2016-04-01
The integrated modelling framework ICON-ART [1] (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases) extends the numerical weather prediction modelling system ICON by modules for gas phase chemistry, aerosol dynamics and related feedback processes. The nonhydrostatic global modelling system ICON [2] is a joint development of German Weather Service (DWD) and Max Planck Institute for Meteorology (MPI-M) with local grid refinement down to grid sizes of a few kilometers. It will be used for numerical weather prediction, climate projections and for research purposes. Since January 2016 ICON runs operationally at DWD for weather forecast on the global scale with a grid size of 13 km. Analogous to its predecessor COSMO-ART [3], ICON-ART is designed to account for feedback processes between meteorological variables and atmospheric trace substances. Up to now, ICON-ART contains the dispersion of volcanic ash, radioactive tracers, sea salt aerosol, as well as ozone-depleting stratospheric trace substances [1]. Recently, we have extended ICON-ART by a mineral dust emission scheme with global applicability and nucleation parameterizations which allow the cloud microphysics to explicitly account for prognostic aerosol distributions. Also very recently an emission scheme for volatile organic compounds was included. We present first results of the impact of natural aerosol (i.e. sea salt aerosol and mineral dust) on cloud properties and precipitation as well as the interaction of primary emitted particles with radiation. Ongoing developments are the coupling with a radiation scheme to calculate the photolysis frequencies, a coupling with the RADMKA (1) chemistry and first steps to include isotopologues of water. Examples showing the capabilities of the model system will be presented. This includes a simulation of the transport of ozone depleting short-lived trace gases from the surface into the stratosphere as well as of long-lived tracers. [1] Rieger, D., et al
Hyperon stars in a modified quark meson coupling model
Mishra, R. N.; Sahoo, H. S.; Panda, P. K.; Barik, N.; Frederico, T.
2016-09-01
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a modified quark meson coupling model where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to σ ,ω , and ρ mesons through mean-field approximations. The effect of a nonlinear ω -ρ term on the EOS is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of 2 M⊙ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear ω -ρ term in the context of obtaining the star mass constraint in the present set of parametrizations.
Hyperon star in a modified quark meson coupling model
Mishra, R N; Panda, P K; Barik, N; Frederico, T
2016-01-01
We determine the equation of state (EOS) of nuclear matter with the inclusion of hyperons in a self-consistent manner by using a Modified Quark Meson Coupling Model (MQMC) where the confining interaction for quarks inside a baryon is represented by a phenomenological average potential in an equally mixed scalar-vector harmonic form. The hadron-hadron interaction in nuclear matter is then realized by introducing additional quark couplings to $\\sigma$, $\\omega$, and $\\rho$ mesons through mean-field approximations. The effect of a nonlinear $\\omega$-$\\rho$ term on the equation of state is studied. The hyperon couplings are fixed from the optical potential values and the mass-radius curve is determined satisfying the maximum mass constraint of $2$~M$_{\\odot}$ for neutron stars, as determined in recent measurements of the pulsar PSR J0348+0432. We also observe that there is no significant advantage of introducing the nonlinear $\\omega$-$\\rho$ term in the context of obtaining the star mass constraint in the present...
ENSO Amplitude Change in Observation and Coupled Models
Institute of Scientific and Technical Information of China (English)
ZHANG Qiong; GUAN Yue; YANG Haijun
2008-01-01
Observations show that the tropical El Nino-Southern Oscillation (ENSO) variability, after removing both the long term trend and decadal change of the background climate, has been enhanced by as much as 60% during the past 50 years. This shift in ENSO amplitude can be related to mean state changes in global climate. Past global warming has caused a weakening of the Walker circulation over the equatorial Indo-Pacific oceans, as well as a weakening of the trade winds and a reduction in the equatorial upwelling. These changes in tropical climatology play as stabilizing factors of the tropical coupling system. However, the shallower and strengthening thermocline in the equatorial Pacific increases the SST sensitivity to thermocline and wind stress variabilities and tend to destabilize the tropical coupling system. Observations suggest that the destabilizing factors, such as the strengthening thermocline, may have overwhelmed the stabilizing effects of the atmosphere, and played a deterministic role in the enhanced ENSO variability, at least during the past half century. This is different from the recent assessment of IPCC-AR4 coupled models.
Duncan, Bryan
2012-01-01
There is now a wealth of satellite data products available with which to evaluate a model fs simulation of tropospheric composition and other model processes. All of these data products have their strengths and limitations that need to be considered for this purpose. For example, uncertainties are introduced into a data product when 1) converting a slant column to a vertical column and 2) estimating the amount of a total column of a trace gas (e.g., ozone, nitrogen dioxide) that resides in the troposphere. Oftentimes, these uncertainties are not well quantified and the satellite data products are not well evaluated against in situ observations. However, these limitations do not preclude us from using these data products to evaluate our model processes if we understand these strengths and limitations when developing diagnostics. I will show several examples of how satellite data products are being used to evaluate particular model processes with a focus on the strengths and limitations of these data products. In addition, I will introduce the goals of a newly formed team to address issues on the topic of "satellite data for improved model evaluation and process studies" that is established in support of the IGAC/SPARC Global Chemistry ]Climate Modeling and Evaluation Workshop.
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling
Directory of Open Access Journals (Sweden)
Miguel Aguilera
2016-09-01
Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling
Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling
Aguilera, Miguel; Bedia, Manuel G.; Barandiaran, Xabier E.
2016-01-01
The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of “internalist neuroscience.” A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We
Pahar, Gourabananda; Dhar, Anirban
2017-04-01
A coupled solenoidal Incompressible Smoothed Particle Hydrodynamics (ISPH) model is presented for simulation of sediment displacement in erodible bed. The coupled framework consists of two separate incompressible modules: (a) granular module, (b) fluid module. The granular module considers a friction based rheology model to calculate deviatoric stress components from pressure. The module is validated for Bagnold flow profile and two standardized test cases of sediment avalanching. The fluid module resolves fluid flow inside and outside porous domain. An interaction force pair containing fluid pressure, viscous term and drag force acts as a bridge between two different flow modules. The coupled model is validated against three dambreak flow cases with different initial conditions of movable bed. The simulated results are in good agreement with experimental data. A demonstrative case considering effect of granular column failure under full/partial submergence highlights the capability of the coupled model for application in generalized scenario.
Chung, Yi-Shih
2015-09-01
An increasing amount of evidence suggests that aberrant driving behaviors are not entirely rational. On the basis of the dual-process theory, this study postulates that drivers may learn to perform irrational aberrant driving behaviors, and these behaviors could be derived either from a deliberate or an intuitive decision-making approach. Accordingly, a seemingly irrational driving behavior model is proposed; in this model, the theory of planned behavior (TPB) was adopted to represent the deliberate decision-making mechanism, and habit strength was incorporated to reflect the intuitive decision process. A multiple trivariate mediation structure was designed to reflect the process through which driving behaviors are learned. Anticipated affective reactions (AARs) were further included to examine the effect of affect on aberrant driving behaviors. Considering the example of speeding behaviors, this study developed scales and conducted a two-wave survey of students in two departments at a university in Northern Taiwan. The analysis results show that habit strength consists of multiple aspects, and frequency of past behavior cannot be a complete repository for accumulating habit strength. Habit strength appeared to be a crucial mediator between intention antecedents (e.g., attitude) and the intention itself. Including habit strength in the TPB model enhanced the explained variance of speeding intention by 26.7%. In addition, AARs were different from attitudes; particularly, young drivers tended to perform speeding behaviors to reduce negative feelings such as regret. The proposed model provides an effective alternative approach for investigating aberrant driving behaviors; corresponding countermeasures are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Nonminimal Coupling Model and its Short-Range Solar System Impact
Castel-Branco, Nuno
2014-01-01
The objective of this work is to present the effects of a nonminimally coupled model of gravity on a Solar System short range regime. For this reason, this study is only valid when the cosmological contribution is considered irrelevant. The action functional of the model involves two functions $f^1(R)$ and $f^2(R)$ of the Ricci scalar curvature $R$, where the last one multiplies the matter Lagrangian. Using a Taylor expansion around $R=0$ for both functions $f^1(R)$ and $f^2(R)$, it was found that the metric around a spherical object is a perturbation of the weak-field Schwarzschild metric. The $tt$ component of the metric, a Newtonian plus a Yukawa perturbation term, is constrained using the available observational results. First it is shown that this effect is null when the characteristic mass scales of each function $f^1(R)$ and $f^2(R)$ are identical. Besides, the conclusion is that the nonminimal coupling only affects the Yukawa contribution strength and not its range and that the Starobinsky model for i...
Hazra, Anupam; Chaudhari, Hemantkumar S.; Saha, Subodh K.; Pokhrel, Samir
2017-04-01
The quest for one of the most dominant processes controlling the large-scale circulations in the tropics is unraveled. The impact of cloud microphysical processes is known to have effects on rainfall and local atmospheric thermodynamics; however, its effect on the prevailing mean circulations is not yet studied. Two sets of coupled global climate model experiments (ICE and NO ICE microphysics) reveal that ice microphysics improves the strength of the Hadley circulation with respect to observation. Results pinpoint that ICE simulation enhances high cloud fraction (global tropics: 59%, India: 51%) and stratiform rain (global tropics: 5%, India: 15%) contribution. ICE and NO ICE cloud microphysics impacts differently on the outgoing longwave radiation (OLR), tropospheric temperature, and surface shortwave and longwave radiation. The effect of ice microphysics reduces OLR, which signifies deeper convection in the ICE run. The global annual average of the net radiation flux (shortwave and longwave) at the surface in ICE run (108.1 W/m2) is close to the observation (106 W/m2), which is overestimated in NO ICE run (112 W/m2). The result of apparent heat source term over the land and ocean surface eventually modifies regional Hadley circulation. Thus, the effect of ice microphysics in the global coupled model is important not only because of microphysics but also due to the radiation feedbacks. Therefore, better ice-phase microphysics is required in the new generation of climate forecast model, which may lead to improvements in the simulation of monsoon.
Coupling capacitor voltage transformer: A model for electromagnetic transient studies
Energy Technology Data Exchange (ETDEWEB)
Fernandes, D.; Neves, W.L.A. [Department of Electrical Engineering, Federal University of Campina Grande, Av. Aprigio Veloso, 882 Bodocongo, 58.109-970 Campina Grande, PB (Brazil); Vasconcelos, J.C.A. [Companhia Hidro Eletrica do Sao Francisco, Rua Delmiro Gouveia, 333 Bongi, 50.761-901 Recife, PE (Brazil)
2007-02-15
In this work, an accurate coupling capacitor voltage transformer (CCVT) model for electromagnetic transient studies is presented. The model takes into account linear and nonlinear elements. A support routine was developed to compute the linear 230kV CCVT parameters (resistances, inductances and capacitances) from frequency response data. The magnetic core and surge arrester nonlinear characteristics were estimated from laboratory measurements as well. The model is used in connection with the electromagnetic transients program (EMTP) to predict the CCVT performance when it is submitted to transient overvoltages, as are the cases of voltages due to the ferroresonance phenomenon and circuit breaker switching. The difference between simulated and measured results is fairly small. Simulations had shown that transient overvoltages produced inside the CCVT, when a short circuit is cleared at the CCVT secondary side, are effectively damped out by the ferroresonance suppression circuit and the protection circuit. (author)
Observational constraints on non-minimally coupled Galileon model
Jamil, Mubasher; Myrzakulov, Ratbay; 10.1140/epjc/s10052-013-2300-6
2013-01-01
As an extension of Dvali-Gabadadze-Porrati (DGP) model, the Galileon theory has been proposed to explain the "self-accelerating problem" and "ghost instability problem". In this Paper, we extend the Galileon theory by considering a non-minimally coupled Galileon scalar with gravity. We find that crossing of phantom divide line is possible for such model. Moreover we perform the statefinder analysis and $Om(z)$ diagnostic and constraint the model parameters from the latest Union 2 type Ia Supernova (SNe Ia) set and the baryonic acoustic oscillation (BAO). Using these data sets, we obtain the constraints $\\Omega_\\text{m0}=0.263_{-0.031}^{+0.031}$, $n=1.53_{-0.37}^{+0.21}$ (at the 95% confidence level) with $\\chi^2_{\\text{min}}=473.376$. Further we study the evolution of the equation of state parameter for the effective dark energy and observe that SNe Ia + BAO prefers a phantom-like dark energy.
Computational model for amoeboid motion: Coupling membrane and cytosol dynamics.
Moure, Adrian; Gomez, Hector
2016-10-01
A distinguishing feature of amoeboid motion is that the migrating cell undergoes large deformations, caused by the emergence and retraction of actin-rich protrusions, called pseudopods. Here, we propose a cell motility model that represents pseudopod dynamics, as well as its interaction with membrane signaling molecules. The model accounts for internal and external forces, such as protrusion, contraction, adhesion, surface tension, or those arising from cell-obstacle contacts. By coupling the membrane and cytosol interactions we are able to reproduce a realistic picture of amoeboid motion. The model results are in quantitative agreement with experiments and show how cells may take advantage of the geometry of their microenvironment to migrate more efficiently.
Coupled mode parametric resonance in a vibrating screen model
Slepyan, Leonid I
2013-01-01
We consider a simple dynamic model of the vibrating screen operating in the parametric resonance (PR) mode. This model was used in the course of designing and setting of such a screen in LPMC. The PR-based screen compares favorably with conventional types of such machines, where the transverse oscillations are excited directly. It is characterized by larger values of the amplitude and by insensitivity to damping in a rather wide range. The model represents an initially strained system of two equal masses connected by a linearly elastic string. Self-equilibrated, longitudinal, harmonic forces act on the masses. Under certain conditions this results in transverse, finite-amplitude oscillations of the string. The problem is reduced to a system of two ordinary differential equations coupled by the geometric nonlinearity. Damping in both the transverse and longitudinal oscillations is taken into account. Free and forced oscillations of this mass-string system are examined analytically and numerically. The energy e...
S(3) flavoured Higgs model trilinear self-couplings
Barradas-Guevara, E; Jáuregui, E Rodríguez
2014-01-01
In this work a detailed analysis of the Higgs sector of the minimal $S(3)$-invariant extension of the Standard Model is performed. Considering three Higgs fields, which are SU(2) doublets, and CP invariant, we compute the exact and analytical physical Higgs boson masses in terms of the Higgs potential parameters and the scalar Higgs matrix rotation angle $\\theta_S$ and $w_3$ ($\\tan\\theta_P=\\tan\\theta_C=\\tan^{-1}\\omega_3$), related to the pseudoscalar and charged Higgs matrix rotation angles $\\theta_P$ and $\\theta_C$ respectively. Furthermore, within this model we can also write down in an explicit form the trilinear self-couplings $\\lambda_{ijk}$ in terms of the Higgs masses and two free parameters,$\\theta_S$ and $w_3$. Moreover, we show that the Higgs masses and trilinear Higgs bosons self-couplings are closely linked to the Higgs potential structure given by the discrete symmetry $S(3)$, which can be helpful to distinguish this model from other extensions. In our analysis the lightest Higgs boson mass is ta...
Modelling small-patterned neuronal networks coupled to microelectrode arrays
Massobrio, Paolo; Martinoia, Sergio
2008-09-01
Cultured neurons coupled to planar substrates which exhibit 'well-defined' two-dimensional network architectures can provide valuable insights into cell-to-cell communication, network dynamics versus topology, and basic mechanisms of synaptic plasticity and learning. In the literature several approaches were presented to drive neuronal growth, such as surface modification by silane chemistry, photolithographic techniques, microcontact printing, microfluidic channel flow patterning, microdrop patterning, etc. This work presents a computational model fit for reproducing and explaining the dynamics exhibited by small-patterned neuronal networks coupled to microelectrode arrays (MEAs). The model is based on the concept of meta-neuron, i.e., a small spatially confined number of actual neurons which perform single macroscopic functions. Each meta-neuron is characterized by a detailed morphology, and the membrane channels are modelled by simple Hodgkin-Huxley and passive kinetics. The two main findings that emerge from the simulations can be summarized as follows: (i) the increasing complexity of meta-neuron morphology reflects the variations of the network dynamics as a function of network development; (ii) the dynamics displayed by the patterned neuronal networks considered can be explained by hypothesizing the presence of several short- and a few long-term distance interactions among small assemblies of neurons (i.e., meta-neurons).
The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture
Reeder, James R.
2014-01-01
Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.
Noise controlled synchronization in potassium coupled neural models
DEFF Research Database (Denmark)
Postnov, Dmitry E; Ryazanova, Ludmila S; Zhirin, Roman A;
2007-01-01
The paper applies biologically plausible models to investigate how noise input to small ensembles of neurons, coupled via the extracellular potassium concentration, can influence their firing patterns. Using the noise intensity and the volume of the extracellular space as control parameters, we...... show that potassium induced depolarization underlies the formation of noise-induced patterns such as delayed firing and synchronization. These phenomena are associated with the appearance of new time scales in the distribution of interspike intervals that may be significant for the spatio...
A coupled chemotaxis-fluid model: Global existence
Liu, Jian-Guo
2011-09-01
We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.
One-loop Yukawa couplings in local models
Energy Technology Data Exchange (ETDEWEB)
Conlon, Joseph P. [Rudolf Peierls Center for Theoretical Physics, Oxford (United Kingdom); Balliol College, Oxford (United Kingdom); Goodsell, Mark [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Palti, Eran [Centre de Physique Theorique, Ecole Polytechnique, CNRS, Palaiseau (France)
2010-07-15
We calculate the one-loop Yukawa couplings and threshold corrections for supersymmetric local models of branes at singularities in type IIB string theory. We compute the corrections coming both from wavefunction and vertex renormalisation. The former comes in the IR from conventional field theory running and in the UV from threshold corrections that cause it to run from the winding scale associated to the full Calabi-Yau volume. The vertex correction is naively absent as it appears to correspond to superpotential renormalisation. However, we find that while the Wilsonian superpotential is not renormalised there is a physical vertex correction in the 1PI action associated to light particle loops. (orig.)
A modeling strategy for G-protein coupled receptors
Directory of Open Access Journals (Sweden)
Anna Kahler
2016-03-01
Full Text Available Cell responses can be triggered via G-protein coupled receptors (GPCRs that interact with small molecules, peptides or proteins and transmit the signal over the membrane via structural changes to activate intracellular pathways. GPCRs are characterized by a rather low sequence similarity and exhibit structural differences even for functionally closely related GPCRs. An accurate structure prediction for GPCRs is therefore not straightforward. We propose a computational approach that relies on the generation of several independent models based on different template structures, which are subsequently refined by molecular dynamics simulations. A comparison of their conformational stability and the agreement with GPCR-typical structural features is then used to select a favorable model. This strategy was applied to predict the structure of the herpesviral chemokine receptor US28 by generating three independent models based on the known structures of the chemokine receptors CXCR1, CXCR4, and CCR5. Model refinement and evaluation suggested that the model based on CCR5 exhibits the most favorable structural properties. In particular, the GPCR-typical structural features, such as a conserved water cluster or conserved non-covalent contacts, are present to a larger extent in the model based on CCR5 compared to the other models. A final model validation based on the recently published US28 crystal structure confirms that the CCR5-based model is the most accurate and exhibits 80.8% correctly modeled residues within the transmembrane helices. The structural agreement between the selected model and the crystal structure suggests that our modeling strategy may also be more generally applicable to other GPCRs of unknown structure.
Drift dynamics in a coupled model initialized for decadal forecasts
Sanchez-Gomez, Emilia; Cassou, Christophe; Ruprich-Robert, Yohan; Fernandez, Elodie; Terray, Laurent
2016-03-01
Drifts are always present in models when initialized from observed conditions because of intrinsic model errors; those potentially affect any type of climate predictions based on numerical experiments. Model drifts are usually removed through more or less sophisticated techniques for skill assessment, but they are rarely analysed. In this study, we provide a detailed physical and dynamical description of the drifts in the CNRM-CM5 coupled model using a set of decadal retrospective forecasts produced within CMIP5. The scope of the paper is to give some physical insights and lines of approach to, on one hand, implement more appropriate techniques of initialisation that minimize the drift in forecast mode, and on the other hand, eventually reduce the systematic biases of the models. We first document a novel protocol for ocean initialization adopted by the CNRM-CERFACS group for forecasting purpose in CMIP5. Initial states for starting dates of the predictions are obtained from a preliminary integration of the coupled model where full-field ocean surface temperature and salinity are restored everywhere to observations through flux derivative terms and full-field subsurface fields (below the prognostic ocean mixed layer) are nudged towards NEMOVAR reanalyses. Nudging is applied only outside the 15°S-15°N band allowing for dynamical balance between the depth and tilt of the tropical thermocline and the model intrinsic biased wind. A sensitivity experiment to the latitudinal extension of no-nudging zone (1°S-1°N instead of 15°, hereafter referred to as NOEQ) has been carried out. In this paper, we concentrate our analyses on two specific regions: the tropical Pacific and the North Atlantic basins. In the Pacific, we show that the first year of the forecasts is characterized by a quasi-systematic excitation of El Niño-Southern Oscillation (ENSO) warm events whatever the starting dates. This, through ocean-to-atmosphere heat transfer materialized by diabatic heating
An evaporation duct prediction model coupled with the MM5
Institute of Scientific and Technical Information of China (English)
JIAO Lin; ZHANG Yonggang
2015-01-01
Evaporation duct is an abnormal refractive phenomenon in the marine atmosphere boundary layer. It has been generally accepted that the evaporation duct prominently affects the performance of the electronic equipment over the sea because of its wide distribution and frequent occurrence. It has become a research focus of the navies all over the world. At present, the diagnostic models of the evaporation duct are all based on the Monin-Obukhov similarity theory, with only differences in the flux and character scale calculations in the surface layer. These models are applicable to the stationary and uniform open sea areas without considering the alongshore effect. This paper introduces the nonlinear factorav and the gust wind itemwg into the Babin model, and thus extends the evaporation duct diagnostic model to the offshore area under extremely low wind speed. In addition, an evaporation duct prediction model is designed and coupled with the fifth generation mesoscale model (MM5). The tower observational data and radar data at the Pingtan island of Fujian Province on May 25–26, 2002 were used to validate the forecast results. The outputs of the prediction model agree with the observations from 0 to 48 h. The relative error of the predicted evaporation duct height is 19.3% and the prediction results are consistent with the radar detection.
Duarte, Jorge; Januário, Cristina; Martins, Nuno
2009-06-01
Bursting activity is an interesting feature of the temporal organization in many cell firing patterns. This complex behavior is characterized by clusters of spikes (action potentials) interspersed with phases of quiescence. As shown in experimental recordings, concerning the electrical activity of real neurons, the analysis of bursting models reveals not only patterned periodic activity but also irregular behavior 1,2]. The interpretation of experimental results, particularly the study of the influence of coupling on chaotic bursting oscillations, is of great interest from physiological and physical perspectives. The inability to predict the behavior of dynamical systems in presence of chaos suggests the application of chaos control methods, when we are more interested in obtaining regular behavior. In the present article, we focus our attention on a specific class of biophysically motivated maps, proposed in the literature to describe the chaotic activity of spiking-bursting cells [Cazelles B, Courbage M, Rabinovich M. Anti-phase regularization of coupled chaotic maps modelling bursting neurons. Europhys Lett 2001;56:504-9]. More precisely, we study a map that reproduces the behavior of a single cell and a map used to examine the role of reciprocal inhibitory coupling, specially on two symmetrically coupled bursting neurons. Firstly, using results of symbolic dynamics, we characterize the topological entropy associated to the maps, which allows us to quantify and to distinguish different chaotic regimes. In particular, we exhibit numerical results about the effect of the coupling strength on the variation of the topological entropy. Finally, we show that complicated behavior arising from the chaotic coupled maps can be controlled, without changing of its original properties, and turned into a desired attracting time periodic motion (a regular cycle). The control is illustrated by an application of a feedback control technique developed by Romeiras et al. [Romeiras
Made-to-measure galaxy modelling utilising absorption line strength data
Long, Richard
2016-01-01
We enhance the Syer & Tremaine made-to-measure (M2M) particle method of stellar dynamical modelling to model simultaneously both kinematic data and absorption line strength data thus creating a `chemo-M2M' modelling scheme. We apply the enhanced method to four galaxies (NGC 1248, NGC 3838, NGC 4452, NGC 4551) observed using the SAURON integral-field spectrograph as part of the ATLAS3D programme. We are able to reproduce successfully the 2D line strength data achieving mean chi^2 per bin values of ~1 with >95\\% of particles having converged weights. Because M2M uses a 3D particle system, we are also able to examine the underlying 3D line strength distributions. The extent to which these distributions are plausible representations of real galaxies requires further consideration. Overall we consider the modelling exercise to be a promising first step in developing a `chemo-M2M' modelling system and in understanding some of the issues to be addressed. Whilst the made-to-measure techniques developed have been ...
Directory of Open Access Journals (Sweden)
R. Barthel
2006-01-01
Full Text Available Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models – in particular on the regional scale – it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge" in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.
Barthel, R.
2006-09-01
Model coupling requires a thorough conceptualisation of the coupling strategy, including an exact definition of the individual model domains, the "transboundary" processes and the exchange parameters. It is shown here that in the case of coupling groundwater flow and hydrological models - in particular on the regional scale - it is very important to find a common definition and scale-appropriate process description of groundwater recharge and baseflow (or "groundwater runoff/discharge") in order to achieve a meaningful representation of the processes that link the unsaturated and saturated zones and the river network. As such, integration by means of coupling established disciplinary models is problematic given that in such models, processes are defined from a purpose-oriented, disciplinary perspective and are therefore not necessarily consistent with definitions of the same process in the model concepts of other disciplines. This article contains a general introduction to the requirements and challenges of model coupling in Integrated Water Resources Management including a definition of the most relevant technical terms, a short description of the commonly used approach of model coupling and finally a detailed consideration of the role of groundwater recharge and baseflow in coupling groundwater models with hydrological models. The conclusions summarize the most relevant problems rather than giving practical solutions. This paper aims to point out that working on a large scale in an integrated context requires rethinking traditional disciplinary workflows and encouraging communication between the different disciplines involved. It is worth noting that the aspects discussed here are mainly viewed from a groundwater perspective, which reflects the author's background.
Three Dimensional Computation Model of Field Strength and Coverage of DVB-T Network
Institute of Scientific and Technical Information of China (English)
JIANGHao; CHENXIAOGUANG
2005-01-01
As one of the three digital television standards globally, DVB has more than 300 members till now. Among the three main standards, satellite (DVB-S), cable (DVB-C) and terrestrial (DVB-T), DVB-T, as the most complex transmission standard in DVB system, enjoys more advantages than ISDB-T and ATSC. DVB-T is a multl-carrier system adopting COFDM modulation mode. The calculation of network planning and optimization is needed in practice, which is the problem to be solved urgently in broadcasting and communication engineering. Traditional equation for field strength calculation cannot be generalized in some specific area. Hence, a new versatile equation should be advanced as the basis of DVB-T network planning. Based on the 3D direction of transmitter antenna and concerning ground reflection and different topographic loss, this paper advances a new mathematical model for the calculation of 3D field strength distribution of DVB-T network with the fundamental wave transmission equation. Then according to the characteristics of chosen DVB-T system and parameters of receiver, field strength threshold value for different coverage is given and network coverage is obtained. For the need of practical engineering, a program is designed here using Matlab based on the new model of DVB-T network field strength planning and optimization. Simple and succinct, this program has perspicuous interface and extensive application.
Directory of Open Access Journals (Sweden)
Yingwu Zhou
2015-01-01
Full Text Available Sulfate corrosion is one of the most important factors responsible for the performance degradation of concrete materials. In this paper, an accelerated corrosion by a sulfate solution in a dry-wet cycle was introduced to simulate the external sulfate corrosion environment. The deterioration trend of concrete strength and development law of sulfate-induced concrete corrosion depth under sulfate attacks were experimentally studied. The damaged concrete section is simply but reasonably divided into uncorroded and corroded layers and the two layers can be demarcated by the sulfate corrosion depth of concrete. The accelerated corrosion test results indicated that the strength degradation of concrete by sulfate attack had a significant relation with the corrosion depth. Consequently, this paper aims to reveal such relation and thus model the strength degradation law. A large amount of experimental data has finally verified the validity and applicability of the models, and a theoretical basis is thus provided for the strength degradation prediction and the residual life assessment of in-service concrete structures under sulfate attacks.
Quesada, José Manuel; Capote, Roberto; Soukhovitski, Efrem S.; Chiba, Satoshi
2016-03-01
An extension for odd-A actinides of a previously derived dispersive coupledchannel optical model potential (OMP) for 238U and 232Th nuclei is presented. It is used to fit simultaneously all the available experimental databases including neutron strength functions for nucleon scattering on 232Th, 233,235,238U and 239Pu nuclei. Quasi-elastic (p,n) scattering data on 232Th and 238U to the isobaric analogue states of the target nucleus are also used to constrain the isovector part of the optical potential. For even-even (odd) actinides almost all low-lying collective levels below 1 MeV (0.5 MeV) of excitation energy are coupled. OMP parameters show a smooth energy dependence and energy independent geometry.
Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal
Energy Technology Data Exchange (ETDEWEB)
Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens
2010-08-31
example, the excavation-damaged zone (EDZ) near repository tunnels can modify local permeability (resulting from induced fractures), potentially leading to less confinement capability (Tsang et al., 2005). Because of clay's swelling and shrinkage behavior (depending on whether the clay is in imbibition or drainage processes), fracture properties in the EDZ are quite dynamic and evolve over time as hydromechanical conditions change. To understand and model the coupled processes and their impact on repository performance is critical for the defensible performance assessment of a clay repository. Within the Natural Barrier System (NBS) group of the Used Fuel Disposition (UFD) Campaign at DOE's Office of Nuclear Energy, LBNL's research activities have focused on understanding and modeling such coupled processes. LBNL provided a report in this April on literature survey of studies on coupled processes in clay repositories and identification of technical issues and knowledge gaps (Tsang et al., 2010). This report will document other LBNL research activities within the natural system work package, including the development of constitutive relationships for elastic deformation of clay rock (Section 2), a THM modeling study (Section 3) and a THC modeling study (Section 4). The purpose of the THM and THC modeling studies is to demonstrate the current modeling capabilities in dealing with coupled processes in a potential clay repository. In Section 5, we discuss potential future R&D work based on the identified knowledge gaps. The linkage between these activities and related FEPs is presented in Section 6.
DeSmitt, Holly J; Domire, Zachary J
2016-12-01
Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.
Smirnov, D A; Velazquez, J L P; Wennberg, R A; Bezruchko, B P
2005-01-01
We demonstrate in numerical experiments that estimators of strength and directionality of coupling between oscillators based on modeling of their phase dynamics [D.A. Smirnov and B.P. Bezruchko, Phys. Rev. E 68, 046209 (2003)] are widely applicable. Namely, although the expressions for the estimators and their confidence bands are derived for linear uncoupled oscillators under the influence of independent sources of Gaussian white noise, they turn out to allow reliable characterization of coupling from relatively short time series for different properties of noise, significant phase nonlinearity of the oscillators, and non-vanishing coupling between them. We apply the estimators to analyze a two-channel human intracranial epileptic electroencephalogram (EEG) recording with the purpose of epileptic focus localization.
Models WD_{n} in the presence of disorder and the coupled models
Dotsenko, V S; Santachiara, R; Dotsenko, Vladimir S.; Nguyen, Xuan Son; Santachiara, Raoul
2001-01-01
We have studied the conformal models WD_{n}^{(p)}, n=3,4,5,..., in the presence of disorder which couples to the energy operator of the model. In the limit of p<<1 where p is the corresponding minimal model index, the problem could be analyzed by means of the perturbative renormalization group, with $epsilon$-expansion in $\\epsilon$=1/p. We have found that the disorder makes to flow the model WD_{n}^{(p)} to the model WD_{n}^{(p-1)} without disorder. In the related problem of N coupled regular WD_{n}^{(p)} models (no disorder), coupled by their energy operators, we find a flow to the fixed point of N decoupled WD_{n}^{(p-1)}. But in addition we find in this case two new fixed points which could be reached by a fine tuning of the initial values of the couplings. The corresponding critical theories realize the permutational symmetry in a non-trivial way, like this is known to be the case for coupled Potts models, and they could not be identified with the presently known conformal models.
Atmosphere-Cryosphere Coupled Model for Regional Climate Applications
Directory of Open Access Journals (Sweden)
Ki-Hong Min
2015-01-01
Full Text Available There have been significant advances in our understanding of the climate system, but two major problems still exist in modeling atmospheric response during cold seasons: (a lack of detailed physical description of snow and frozen soil in the land-surface schemes and (b insufficient understanding of regional climate response from the cryosphere. A multilayer snow land-surface model based on the conservations of heat and water substance inside the soil and snow is coupled to an atmospheric RCM, to investigate the effect of snow, snowmelt, and soil frost on the atmosphere during cold seasons. The coupled RCM shows much improvement in moisture and temperature simulation for March-April of 1997 compared to simple parameterizations used in GCMs. The importance of such processes in RCM simulation is more pronounced in mid-to-high latitudes during the transition period (winter–spring affected by changes in surface energy and the hydrological cycle. The effect of including cryosphere physics through snow-albedo feedback mechanism changes the meridional temperature gradients and in turn changes the location of weather systems passing over the region. The implications from our study suggest that, to reduce the uncertainties and better assess the impacts of climate change, RCM simulations should include the detailed snow and frozen soil processes.
Diagnosis and Model Based Identification of a Coupling Misalignment
Directory of Open Access Journals (Sweden)
P. Pennacchi
2005-01-01
Full Text Available This paper is focused on the application of two different diagnostic techniques aimed to identify the most important faults in rotating machinery as well as on the simulation and prediction of the frequency response of rotating machines. The application of the two diagnostics techniques, the orbit shape analysis and the model based identification in the frequency domain, is described by means of an experimental case study that concerns a gas turbine-generator unit of a small power plant whose rotor-train was affected by an angular misalignment in a flexible coupling, caused by a wrong machine assembling. The fault type is identified by means of the orbit shape analysis, then the equivalent bending moments, which enable the shaft experimental vibrations to be simulated, have been identified using a model based identification method. These excitations have been used to predict the machine vibrations in a large rotating speed range inside which no monitoring data were available. To the best of the authors' knowledge, this is the first case of identification of coupling misalignment and prediction of the consequent machine behaviour in an actual size rotating machinery. The successful results obtained emphasise the usefulness of integrating common condition monitoring techniques with diagnostic strategies.
Drivers of coupled model ENSO error dynamics and the spring predictability barrier
Larson, Sarah M.; Kirtman, Ben P.
2017-06-01
Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations (τx^' } ) near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic τx^' } to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic τx^' } is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2-3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.
Drivers of coupled model ENSO error dynamics and the spring predictability barrier
Larson, Sarah M.; Kirtman, Ben P.
2016-07-01
Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations (τx^' } ) near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic τx^' } to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic τx^' } is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2-3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.
A coupled energy transport and hydrological model for urban canopies
Wang, Z.; Bou-Zeid, E.; Smith, J. A.
2011-12-01
Urban land-atmosphere interaction has been attracting more research efforts in order to understand the complex physics of flow and mass and heat transport in urban surfaces and the lower urban atmosphere. In this work, we developed and implemented a new physically-based single-layer urban canopy model, coupling the surface exchange of energy and the subsurface transport of water/soil moisture. The new model incorporates sub-facet heterogeneity for each urban surface (roof, wall or ground). This better simulates the energy transport in urban canopy layers, especially over low-intensity built (suburban type) terrains that include a significant fraction of vegetated surfaces. We implemented detailed urban hydrological models for both natural terrains (bare soil and vegetation) and porous engineered materials with water-holding capacity (concrete, gravel, etc). The skill of the new scheme was tested against experimental data collected through a wireless sensor network deployed over the campus of Princeton University. The model performance was found to be robust and insensitive to changes in weather conditions or seasonal variability. Predictions of the volumetric soil water content were also in good agreement with field measurements, highlighting the model capability of capturing subsurface water transport for urban lawns. The new model was also applied to a case study assessing different strategies, i.e. white versus green roofs, in the mitigation of urban heat island effect.
Wealth distribution of simple exchange models coupled with extremal dynamics
Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.
2015-01-01
Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.
A global hybrid coupled model based on Atmosphere-SST feedbacks
Cimatoribus, Andrea A; Dijkstra, Henk A
2011-01-01
A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than ten times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulati...
Anisotropic damage coupled modeling of saturated porous rock
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
It is widely acknowledged that the natural rock mass is anisotropic and its failing type is also non-isotropic. An orthotropic elastic damaged model has been proposed in which the elastic deformation,the damaged deformation and irreversible deformation can be identified respectively. A second rank damage tensor is employed to characterize the induced damage and damage evolution related to the propagation conditions of microcracks. A specific form of the Gibbs free energy function is used to obtain the effective elastic stiffness and the limited scopes of damage parameters are suggested. The model’s parameter determination is proposed by virtue of conventional tri-axial test. Then,the proposed model is developed to simulate the coupled hydraulic mechanical responses and traction behaviors in different loading paths of porous media.
Modelling the Shear-Tension Coupling of Woven Engineering Fabrics
Directory of Open Access Journals (Sweden)
F. Abdiwi
2013-01-01
Full Text Available An approach to incorporate the coupling between the shear compliance and in-plane tension of woven engineering fabrics, in finite-element-based numerical simulations, is described. The method involves the use of multiple input curves that are selectively fed into a hypoelastic constitutive model that has been developed previously for engineering fabrics. The selection process is controlled by the current value of the in-plane strain along the two fibre directions using a simple algorithm. Model parameters are determined from actual experimental data, measured using the Biaxial Bias Extension test. An iterative process involving finite element simulations of the experimental test is used to normalise the test data for use in the code. Finally, the effectiveness of the method is evaluated and shown to provide qualitatively good predictions.
Coupled Macro and Micro-Scale Modeling of Polyurethane Foaming Processes
Directory of Open Access Journals (Sweden)
Stephanie Geier
2014-09-01
Full Text Available Polyurethane foam is used for manufacturing different kinds of products, such as refrigerators, car dashboards or steering wheels. First, we developed a macro-scale simulation tool that is able to predict foam flow in such complex molds. Depending on the location within a product, final properties of polyurethane foams may vary significantly. These properties (e.g. thermal conductivity or impact strength are strongly dependent on local foam structure. Modeling complex geometries like refrigerators completely on bubble scale is neither possible nor would it be efficient. The computational effort would be enormous. Therefore, we developed a micro-scale model describing bubble growth and the evolution of the foam microstructure in polyurethane foams considering a limited number of bubbles in a representative volume. Finally, we coupled our macro and micro-scale simulation approaches. For that purpose, we introduced tracer particles into our mold filling simulations. We are able to record information about density and temperature changes or varying flow conditions along particle trajectories. This information is then used to set up corresponding simulations on bubble scale. Through this coupling, a basis for studying the evolution of the local foam microstructure in complex geometries is provided.
Coupled Macro and Micro-Scale Modeling of Polyurethane Foaming Processes
Directory of Open Access Journals (Sweden)
Stephanie Geier
2014-12-01
Full Text Available Polyurethane foam is used for manufacturing different kinds of products, such as refrigerators, car dashboards or steering wheels. First, we developed a macro-scale simulation tool that is able to predict foam flow in such complex molds. Depending on the location within a product, final properties of polyurethane foams may vary significantly. These properties (e.g. thermal conductivity or impact strength are strongly dependent on local foam structure. Modeling complex geometries like refrigerators completely on bubble scale is neither possible nor would it be efficient. The computational effort would be enormous. Therefore, we developed a micro-scale model describing bubble growth and the evolution of the foam microstructure in polyurethane foams considering a limited number of bubbles in a representative volume. Finally, we coupled our macro and micro-scale simulation approaches. For that purpose, we introduced tracer particles into our mold filling simulations. We are able to record information about density and temperature changes or varying flow conditions along particle trajectories. This information is then used to set up corresponding simulations on bubble scale. Through this coupling, a basis for studying the evolution of the local foam microstructure in complex geometries is provided.
Global Models of Ridge-Push Force, Geoid, and Lithospheric Strength of Oceanic plates
Mahatsente, Rezene
2017-08-01
An understanding of the transmission of ridge-push related stresses in the interior of oceanic plates is important because ridge-push force is one of the principal forces driving plate motion. Here, I assess the transmission of ridge-push related stresses in oceanic plates by comparing the magnitude of the ridge-push force to the integrated strength of oceanic plates. The strength is determined based on plate cooling and rheological models. The strength analysis includes low-temperature plasticity (LTP) in the upper mantle and assumes a range of possible tectonic conditions and rheology in the plates. The ridge-push force has been derived from the thermal state of oceanic lithosphere, seafloor depth and crustal age data. The results of modeling show that the transmission of ridge-push related stresses in oceanic plates mainly depends on rheology and predominant tectonic conditions. If a lithosphere has dry rheology, the estimated strength is higher than the ridge-push force at all ages for compressional tectonics and at old ages (>75 Ma) for extension. Therefore, under such conditions, oceanic plates may not respond to ridge-push force by intraplate deformation. Instead, the plates may transmit the ridge-push related stress in their interior. For a wet rheology, however, the strength of young lithosphere (tectonics. In this case, the ridge-push related stress may dissipate in the interior of oceanic plates and diffuses by intraplate deformation. The state of stress within a plate depends on the balance of far-field and intraplate forces.
Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations
Ding, Yanni
2014-09-01
We examine the oceanic impact of large tropical volcanic eruptions as they appear in ensembles of historical simulations from eight Coupled Model Intercomparison Project Phase 5 models. These models show a response that includes lowering of global average sea surface temperature by 0.1–0.3 K, comparable to the observations. They show enhancement of Arctic ice cover in the years following major volcanic eruptions, with long-lived temperature anomalies extending to the middepth and deep ocean on decadal to centennial timescales. Regional ocean responses vary, although there is some consistent hemispheric asymmetry associated with the hemisphere in which the eruption occurs. Temperature decreases and salinity increases contribute to an increase in the density of surface water and an enhancement in the overturning circulation of the North Atlantic Ocean following these eruptions. The strength of this overturning increase varies considerably from model to model and is correlated with the background variability of overturning in each model. Any cause/effect relationship between eruptions and the phase of El Niño is weak.
Directory of Open Access Journals (Sweden)
Wun Wong
2003-01-01
Full Text Available The assessment of medical outcomes is important in the effort to contain costs, streamline patient management, and codify medical practices. As such, it is necessary to develop predictive models that will make accurate predictions of these outcomes. The neural network methodology has often been shown to perform as well, if not better, than the logistic regression methodology in terms of sample predictive performance. However, the logistic regression method is capable of providing an explanation regarding the relationship(s between variables. This explanation is often crucial to understanding the clinical underpinnings of the disease process. Given the respective strengths of the methodologies in question, the combined use of a statistical (i.e., logistic regression and machine learning (i.e., neural network technology in the classification of medical outcomes is warranted under appropriate conditions. The study discusses these conditions and describes an approach for combining the strengths of the models.
Coupled thermo-hydro-chemical models of swelling bentonites
Samper, Javier; Mon, Alba; Zheng, Liange; Montenegro, Luis; Naves, Acacia; Pisani, Bruno
2014-05-01
The disposal of radioactive waste in deep geological repositories is based on the multibarrier concept of retention of the waste by a combination of engineered and geological barriers. The engineered barrier system (EBS) includes the solid conditioned waste-form, the waste container, the buffer made of materials such as clay, grout or crushed rock that separate the waste package from the host rock and the tunnel linings and supports. The geological barrier supports the engineered system and provides stability over the long term during which time radioactive decay reduces the levels of radioactivity. The strong interplays among thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes during the hydration, thermal and solute transport stages of the engineered barrier system (EBS) of a radioactive waste repository call for coupled THMC models for the metallic overpack, the unsaturated compacted bentonite and the concrete liner. Conceptual and numerical coupled THMC models of the EBS have been developed, which have been implemented in INVERSE-FADES-CORE. Chemical reactions are coupled to the hydrodynamic processes through chemical osmosis (C-H coupling) while bentonite swelling affects solute transport via changes in bentonite porosity changes (M-H coupling). Here we present THMC models of heating and hydration laboratory experiments performed by CIEMAT (Madrid, Spain) on compacted FEBEX bentonite and numerical models for the long-term evolution of the EBS for 1 Ma. The changes in porosity caused by swelling are more important than those produced by the chemical reactions during the early evolution of the EBS (t < 100 years). For longer times, however, the changes in porosity induced by the dissolution/precipitation reactions are more relevant due to: 1) The effect of iron mineral phases (corrosion products) released by the corrosion of the carbon steel canister; and 2) The hyper alkaline plume produced by the concrete liner. Numerical results show that
Model-based risk analysis of coupled process steps.
Westerberg, Karin; Broberg-Hansen, Ernst; Sejergaard, Lars; Nilsson, Bernt
2013-09-01
A section of a biopharmaceutical manufacturing process involving the enzymatic coupling of a polymer to a therapeutic protein was characterized with regards to the process parameter sensitivity and design space. To minimize the formation of unwanted by-products in the enzymatic reaction, the substrate was added in small amounts and unreacted protein was separated using size-exclusion chromatography (SEC) and recycled to the reactor. The quality of the final recovered product was thus a result of the conditions in both the reactor and the SEC, and a design space had to be established for both processes together. This was achieved by developing mechanistic models of the reaction and SEC steps, establishing the causal links between process conditions and product quality. Model analysis was used to complement the qualitative risk assessment, and design space and critical process parameters were identified. The simulation results gave an experimental plan focusing on the "worst-case regions" in terms of product quality and yield. In this way, the experiments could be used to verify both the suggested process and the model results. This work demonstrates the necessary steps of model-assisted process analysis, from model development through experimental verification.
A predictive model of the tensile strength of twisted carbon nanotube yarns
Jeon, Seung-Yeol; Jang, Jinhyeok; Koo, Bon-Woong; Kim, Young-Woon; Yu, Woong-Ryeol
2017-01-01
Due to the outstanding mechanical properties of individual carbon nanotubes (CNTs) at the nanoscale, CNT yarns are expected to demonstrate high strength at the macroscale. In this study, a predictable model was developed to predict the tensile strength of twisted CNT yarns. First, the failure mechanism of twisted CNT yarns was investigated using in situ tensile tests and ex situ observations. It was revealed that CNT bundles, which are groups of CNTs that are tightly bound together, formed during tensile loading, leaving some voids around the bundles. Failure of the CNT yarns occurred as the CNT bundles were pulled out of the yarns. Two stresses that determined the tensile strength of the CNT yarns were identified: interfacial shear and frictional stresses originating from van der Waals interactions, and the lateral pressure generated by the twisted yarn structure. Molecular dynamics and yarn mechanics were used to calculate these two stresses. Finally, the tensile strength of CNT yarns was predicted and compared with experimental data, showing reasonable agreement.
Indian Ocean sea surface salinity variations in a coupled model
Energy Technology Data Exchange (ETDEWEB)
Vinayachandran, P.N.; Nanjundiah, Ravi S. [Indian Institute of Science, Centre for Atmospheric and Oceanic Sciences, Bangalore (India)
2009-08-15
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years. (orig.)
Indian Ocean sea surface salinity variations in a coupled model
Vinayachandran, P. N.; Nanjundiah, Ravi S.
2009-08-01
The variability of the sea surface salinity (SSS) in the Indian Ocean is studied using a 100-year control simulation of the Community Climate System Model (CCSM 2.0). The monsoon-driven seasonal SSS pattern in the Indian Ocean, marked by low salinity in the east and high salinity in the west, is captured by the model. The model overestimates runoff into the Bay of Bengal due to higher rainfall over the Himalayan-Tibetan regions which drain into the Bay of Bengal through Ganga-Brahmaputra rivers. The outflow of low-salinity water from the Bay of Bengal is too strong in the model. Consequently, the model Indian Ocean SSS is about 1 less than that seen in the climatology. The seasonal Indian Ocean salt balance obtained from the model is consistent with the analysis from climatological data sets. During summer, the large freshwater input into the Bay of Bengal and its redistribution decide the spatial pattern of salinity tendency. During winter, horizontal advection is the dominant contributor to the tendency term. The interannual variability of the SSS in the Indian Ocean is about five times larger than that in coupled model simulations of the North Atlantic Ocean. Regions of large interannual standard deviations are located near river mouths in the Bay of Bengal and in the eastern equatorial Indian Ocean. Both freshwater input into the ocean and advection of this anomalous flux are responsible for the generation of these anomalies. The model simulates 20 significant Indian Ocean Dipole (IOD) events and during IOD years large salinity anomalies appear in the equatorial Indian Ocean. The anomalies exist as two zonal bands: negative salinity anomalies to the north of the equator and positive to the south. The SSS anomalies for the years in which IOD is not present and for ENSO years are much weaker than during IOD years. Significant interannual SSS anomalies appear in the Indian Ocean only during IOD years.
Energy Technology Data Exchange (ETDEWEB)
Veselská, Veronika, E-mail: veselskav@fzp.czu.cz [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Fajgar, Radek [Department of Analytical and Material Chemistry, Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135/1, CZ-16502, Prague (Czech Republic); Číhalová, Sylva [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic); Bolanz, Ralph M. [Institute of Geosciences, Friedrich-Schiller-University Jena, Carl-Zeiss-Promenade 10, DE-07745, Jena (Germany); Göttlicher, Jörg; Steininger, Ralph [ANKA Synchrotron Radiation Facility, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, DE-76344, Eggenstein-Leopoldshafen (Germany); Siddique, Jamal A.; Komárek, Michael [Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, CZ-16521, Prague (Czech Republic)
2016-11-15
Highlights: • Study of Cr(VI) adsorption on soil minerals over a large range of conditions. • Combined surface complexation modeling and spectroscopic techniques. • Diffuse-layer and triple-layer models used to obtain fits to experimental data. • Speciation of Cr(VI) and Cr(III) was assessed. - Abstract: This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3–10), ionic strengths (0.001–0.1 M KNO{sub 3}), sorbate concentrations (10{sup −4}, 10{sup −5}, and 10{sup −6} M Cr(VI)), and sorbate/sorbent ratios (50–500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.
Directory of Open Access Journals (Sweden)
2016-11-01
Full Text Available The paper presents the report of an investigation into the model development and optimization of the compressive strength of 55/45 to 70/30 cement/Rice Husk Ash (RHA in hollow sandcrete block. The low cost and local availability potential of RHA, a pozzolanic material gasps for exploitation. The study applies the Scheffe\\'s optimization approach to obtain a mathematical model of the form f(xi1 ,xi2 ,xi3 xi4 , where x are proportions of the concrete components, viz: cement, RHA, sand and water. Scheffe\\'s i experimental design techniques are followed to mould various hollow block samples measuring 450mm x 225mm x 150mm and tested for 28 days strength. The task involved experimentation and design, applying the second order polynomial characterization process of the simplex lattice method. The model adequacy is checked using the control factors. Finally, a software is prepared to handle the design computation process to take the desired property of the mix, and generate the optimal mix ratios. Reversibly, any mix ratios can be desired and the attainable strength obtained.
Experimental analysis and constitutive modelling of steel of A-IIIN strength class
Kruszka, Leopold; Janiszewski, Jacek
2015-09-01
Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.
Affine group formulation of the Standard Model coupled to gravity
Energy Technology Data Exchange (ETDEWEB)
Chou, Ching-Yi, E-mail: l2897107@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China); Ita, Eyo, E-mail: ita@usna.edu [Department of Physics, US Naval Academy, Annapolis, MD (United States); Soo, Chopin, E-mail: cpsoo@mail.ncku.edu.tw [Department of Physics, National Cheng Kung University, Taiwan (China)
2014-04-15
In this work we apply the affine group formalism for four dimensional gravity of Lorentzian signature, which is based on Klauder’s affine algebraic program, to the formulation of the Hamiltonian constraint of the interaction of matter and all forces, including gravity with non-vanishing cosmological constant Λ, as an affine Lie algebra. We use the hermitian action of fermions coupled to gravitation and Yang–Mills theory to find the density weight one fermionic super-Hamiltonian constraint. This term, combined with the Yang–Mills and Higgs energy densities, are composed with York’s integrated time functional. The result, when combined with the imaginary part of the Chern–Simons functional Q, forms the affine commutation relation with the volume element V(x). Affine algebraic quantization of gravitation and matter on equal footing implies a fundamental uncertainty relation which is predicated upon a non-vanishing cosmological constant. -- Highlights: •Wheeler–DeWitt equation (WDW) quantized as affine algebra, realizing Klauder’s program. •WDW formulated for interaction of matter and all forces, including gravity, as affine algebra. •WDW features Hermitian generators in spite of fermionic content: Standard Model addressed. •Constructed a family of physical states for the full, coupled theory via affine coherent states. •Fundamental uncertainty relation, predicated on non-vanishing cosmological constant.
Model spin-orbit coupling Hamiltonians for graphene systems
Kochan, Denis; Irmer, Susanne; Fabian, Jaroslav
2017-04-01
We present a detailed theoretical study of effective spin-orbit coupling (SOC) Hamiltonians for graphene-based systems, covering global effects such as proximity to substrates and local SOC effects resulting, for example, from dilute adsorbate functionalization. Our approach combines group theory and tight-binding descriptions. We consider structures with global point group symmetries D6 h, D3 d, D3 h, C6 v, and C3 v that represent, for example, pristine graphene, graphene miniripple, planar boron nitride, graphene on a substrate, and free standing graphone, respectively. The presence of certain spin-orbit coupling parameters is correlated with the absence of the specific point group symmetries. Especially in the case of C6 v—graphene on a substrate, or transverse electric field—we point out the presence of a third SOC parameter, besides the conventional intrinsic and Rashba contributions, thus far neglected in literature. For all global structures we provide effective SOC Hamiltonians both in the local atomic and Bloch forms. Dilute adsorbate coverage results in the local point group symmetries C6 v, C3 v, and C2 v, which represent the stable adsorption at hollow, top and bridge positions, respectively. For each configuration we provide effective SOC Hamiltonians in the atomic orbital basis that respect local symmetries. In addition to giving specific analytic expressions for model SOC Hamiltonians, we also present general (no-go) arguments about the absence of certain SOC terms.
THE AVALANCHE DYNAMICS IN RANDOM NEAREST NEIGHBOR MODELS OF EVOLUTION WITH INTERACTION STRENGTH
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A generalized Bak-Sneppen model (BS model) of biological evolution with interaction strength θ is introduced in d-dimensional space, where the "nearest neighbors"are chosen among the 2d neighbors of the extremal site, with the probabilities related to the sizes of the fitnesses. Simulations of one- and two-dimensional models are given.For given θ＞ 0, the model can self-organize to a critical state, and the critical threshold fc(θ) decreases as θ increases. The exact gap equation depending on θ is presented, which reduces to the gap equation of BS model as θ tends to infinity. An exact equation for the critical exponent γ(θ) is also obtained. Scaling relations are established among the six critical exponents of the avalanches of the model.
Parent Ratings of the Strengths and Difficulties Questionnaire: What Is the Optimum Factor Model?
Gomez, Rapson; Stavropoulos, Vasilis
2017-07-01
To date, at least 12 different models have been suggested for the Strengths and Difficulties Questionnaire (SDQ). The current study used confirmatory factor analysis to examine the relative support for these models. In all, 1,407 Malaysian parents completed SDQ ratings of their children (age range = 5-13 years). Although the findings showed some degree of support for all 12 models, there was most support for an oblique six-factor model that included the five SDQ domains (emotional problems, conduct problems, hyperactivity, peer problems, and low prosocial behavior) and a positive construal factor comprising all the 10 SDQ positive worded items. The original proposed five-factor oblique model also showed good fit. The implications of the findings for understanding the results of past studies of the structural models of the parent version of the SDQ, and for clinical and research practice involving the SDQ are discussed.
Minimally coupled scalar field cosmology in anisotropic cosmological model
Singh, C. P.; Srivastava, Milan
2017-02-01
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic form of scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.
Minimally coupled scalar field cosmology in anisotropic cosmological model
Indian Academy of Sciences (India)
C P SINGH; MILAN SRIVASTAVA
2017-02-01
We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar fields with a zero rest mass and an exponential potential are studied, respectively. We find that both assumptions of potential along with the average scale factor as an exponential function of scalar field lead to the logarithmic formof scalar field in each case which further gives power-law form of the average scale factor. Using these forms of the average scale factor, exact solutions of the field equations are obtained to the metric functions which represent a power-law and a hybrid expansion, respectively. We find that the zero-rest-mass model expands with decelerated rate and behaves like a stiff matter. In the case of exponential potential function, the model decelerates, accelerates or shows the transition depending on the parameters. The isotropization is observed at late-time evolution of the Universe in the exponential potential model.
Coupled model of physical and biological processes affecting maize pollination
Arritt, R.; Westgate, M.; Riese, J.; Falk, M.; Takle, E.
2003-04-01
Controversy over the use of genetically modified (GM) crops has led to increased interest in evaluating and controlling the potential for inadvertent outcrossing in open-pollinated crops such as maize. In response to this problem we have developed a Lagrangian model of pollen dispersion as a component of a coupled end-to-end (anther to ear) physical-biological model of maize pollination. The Lagrangian method is adopted because of its generality and flexibility: first, the method readily accommodates flow fields of arbitrary complexity; second, each element of the material being transported can be identified by its source, time of release, or other properties of interest. The latter allows pollen viability to be estimated as a function of such factors as travel time, temperature, and relative humidity, so that the physical effects of airflow and turbulence on pollen dispersion can be considered together with the biological aspects of pollen release and viability. Predicted dispersion of pollen compares well both to observations and to results from a simpler Gaussian plume model. Ability of the Lagrangian model to handle complex air flows is demonstrated by application to pollen dispersion in the vicinity of an agricultural shelter belt. We also show results indicating that pollen viability can be quantified by an "aging function" that accounts for temperature, humidity, and time of exposure.
Can a coupled meteorology–chemistry model reproduce the ...
The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere has been evaluated through a comparison of 21-year simulated results with observation-derived records from 1990 to 2010. Six satellite-retrieved AOD products including AVHRR, TOMS, SeaWiFS, MISR, MODIS-Terra and MODIS-Aqua as well as long-term historical records from 11 AERONET sites were used for the comparison of AOD trends. Clear-sky SWR products derived by CERES at both the top of atmosphere (TOA) and surface as well as surface SWR data derived from seven SURFRAD sites were used for the comparison of trends in SWR. The model successfully captured increasing AOD trends along with the corresponding increased TOA SWR (upwelling) and decreased surface SWR (downwelling) in both eastern China and the northern Pacific. The model also captured declining AOD trends along with the corresponding decreased TOA SWR (upwelling) and increased surface SWR (downwelling) in the eastern US, Europe and the northern Atlantic for the period of 2000–2010. However, the model underestimated the AOD over regions with substantial natural dust aerosol contributions, such as the Sahara Desert, Arabian Desert, central Atlantic and northern Indian Ocean. Estimates of the aerosol direct radiative effect (DRE) at TOA a
Improved modelling of atmospheric ammonia over Denmark using the coupled modelling system DAMOS
DEFF Research Database (Denmark)
Geels, Camilla; Andersen, Helle Vibeke; Skjøth, Carsten Ambelas
2012-01-01
at a given location originates from non-local emission sources. The local-scale model covers a domain of 16 km x 16 km, and of the locally released ammonia (NH3) within this domain, our simulations at five sites show that 14-27% of the locally (within 16 km x 16 km) emitted NH3 also deposits locally......A local-scale Gaussian dispersion-deposition model (OML-DEP) has been coupled to a regional chemistry-transport model (DEHM with a resolution of approximately 6 km x 6 km over Denmark) in the Danish Ammonia Modelling System, DAMOS. Thereby, it has been possible to model the distribution of ammonia...... the period 2005-2009. A standard time series analysis (using statistic parameters like correlation and bias) shows that the coupled model system captures the measured time series better than the regional- scale model alone. However, our study also shows that about 50% of the modelled concentration level...
A coupled oscillator model of shelf and ocean tides
Arbic, Brian K.; Garrett, Chris
2010-04-01
The resonances of tides in the coupled open ocean and shelf are modeled by a mechanical analogue consisting of a damped driven larger mass and spring (the open-ocean) connected to a damped smaller mass and spring (the shelf). When both masses are near resonance, the addition of even a very small mass can significantly affect the oscillations of the larger mass. The influence of the shelf is largest if the shelf is resonant with weak friction. In particular, an increase of friction on a near-resonant shelf can, perhaps surprisingly, lead to an increase in ocean tides. On the other hand, a shelf with large friction has little effect on ocean tides. Comparison of the model predictions with results from numerical models of tides during the ice ages, when lower sea levels led to a much reduced areal extent of shelves, suggests that the predicted larger tidal dissipation then is related to the ocean basins being close to resonance. New numerical simulations with a forward global tide model are used to test expectations from the mechanical analogue. Setting friction to unrealistically large values in Hudson Strait yields larger North Atlantic M2 amplitudes, very similar to those seen in a simulation with the Hudson Strait blocked off. Thus, as anticipated, a shelf with very large friction is nearly equivalent in its effect on the open ocean to the removal of the shelf altogether. Setting friction in shallow waters throughout the globe to unrealistically large values yields even larger open ocean tidal amplitudes, similar to those found in simulations of ice-age tides. It thus appears that larger modeled tides during the ice ages can be a consequence of enhanced friction in shallower water on the shelf in glacial times as well as a reduced shelf area then. Single oscillator and coupled oscillator models for global tides show that the maximum extractable power for human use is a fraction of the present dissipation rate, which is itself a fraction of global human power
Energy Technology Data Exchange (ETDEWEB)
Ams, David A [Los Alamos National Laboratory
2012-06-11
Rationale for experimental design: Np(V) -- important as analog for Pu(V) and for HLW scenarios; High ionic strength -- relevant to salt-based repositories such as the WIPP; Halophilic microorganisms -- representative of high ionic strength environments. For the first time showed: Significant adsorbant to halophilic microorganisms over entire pH range under high ionic strength conditions; Strong influence of ionic strength with increasing adsorption with increasing ionic strength (in contrast to trends of previous low ionic strength studies); Effect of aqueous Np(V) and bacterial surface site speciation on adsorption; and Developed thermodynamic models that can be incorporated into geochemical speciation models to aid in the prediction of the fate and transport of Np(V) in more complex systems.
Directory of Open Access Journals (Sweden)
Neela Deshpande
2014-12-01
Full Text Available In the recent past Artificial Neural Networks (ANN have emerged out as a promising technique for predicting compressive strength of concrete. In the present study back propagation was used to predict the 28 day compressive strength of recycled aggregate concrete (RAC along with two other data driven techniques namely Model Tree (MT and Non-linear Regression (NLR. Recycled aggregate is the current need of the hour owing to its environmental friendly aspect of re-use of the construction waste. The study observed that, prediction of 28 day compressive strength of RAC was done better by ANN than NLR and MT. The input parameters were cubic meter proportions of Cement, Natural fine aggregate, Natural coarse Aggregates, recycled aggregates, Admixture and Water (also called as raw data. The study also concluded that ANN performs better when non-dimensional parameters like Sand–Aggregate ratio, Water–total materials ratio, Aggregate–Cement ratio, Water–Cement ratio and Replacement ratio of natural aggregates by recycled aggregates, were used as additional input parameters. Study of each network developed using raw data and each non dimensional parameter facilitated in studying the impact of each parameter on the performance of the models developed using ANN, MT and NLR as well as performance of the ANN models developed with limited number of inputs. The results indicate that ANN learn from the examples and grasp the fundamental domain rules governing strength of concrete.
Energy Technology Data Exchange (ETDEWEB)
Small, R.J. [Naval Research Laboratory, Jacobs Technology, Stennis Space Center, MS (United States); University of Hawaii, International Pacific Research Center, POST 401, Honolulu, HI (United States); Xie, Shang-Ping [University of Hawaii, International Pacific Research Center, POST 401, Honolulu, HI (United States); University of Hawaii, Department of Meteorology, School of Ocean and Earth Science and Technology, Honolulu, HI (United States); Maloney, Eric D. [Colorado State University, Department of Atmospheric Science, Fort Collins, CO (United States); Szoeke, Simon P. de [Oregon State University, College of Oceanic and Atmospheric Sciences, Corvallis, OR (United States); Miyama, Toru [Frontier Research for Global Change, Yokohama (Japan)
2011-03-15
Intraseasonal variability in the eastern Pacific warm pool in summer is studied, using a regional ocean-atmosphere model, a linear baroclinic model (LBM), and satellite observations. The atmospheric component of the model is forced by lateral boundary conditions from reanalysis data. The aim is to quantify the importance to atmospheric deep convection of local air-sea coupling. In particular, the effect of sea surface temperature (SST) anomalies on surface heat fluxes is examined. Intraseasonal (20-90 day) east Pacific warm-pool zonal wind and outgoing longwave radiation (OLR) variability in the regional coupled model are correlated at 0.8 and 0.6 with observations, respectively, significant at the 99% confidence level. The strength of the intraseasonal variability in the coupled model, as measured by the variance of outgoing longwave radiation, is close in magnitude to that observed, but with a maximum located about 10 further west. East Pacific warm pool intraseasonal convection and winds agree in phase with those from observations, suggesting that remote forcing at the boundaries associated with the Madden-Julian oscillation determines the phase of intraseasonal convection in the east Pacific warm pool. When the ocean model component is replaced by weekly reanalysis SST in an atmosphere-only experiment, there is a slight improvement in the location of the highest OLR variance. Further sensitivity experiments with the regional atmosphere-only model in which intraseasonal SST variability is removed indicate that convective variability has only a weak dependence on the SST variability, but a stronger dependence on the climatological mean SST distribution. A scaling analysis confirms that wind speed anomalies give a much larger contribution to the intraseasonal evaporation signal than SST anomalies, in both model and observations. A LBM is used to show that local feedbacks would serve to amplify intraseasonal convection and the large-scale circulation. Further
A four-dimensional validation of a coupled physical-biological model of the Arabian Sea
Hood, Raleigh R.; Kohler, Kevin E.; McCreary, Julian P.; Smith, Sharon L.
2003-11-01
In this paper, we use a coupled biological/physical model to synthesize and understand observations taken during the US JGOFS Arabian Sea Process Study (ASPS). Its physical component is a variable-density, 4 1/2-layer model; its biological component consists of a set of advective-diffusive equations in each layer that determine nitrogen concentrations in four compartments, namely, nutrients, phytoplankton, zooplankton, and detritus. Solutions are compared to time series and cruise sections from the ASPS data set, including observations of mixed-layer thickness, chlorophyll concentrations, inorganic nitrogen concentrations, particulate nitrogen export flux, zooplankton biomass, and primary production. Through these comparisons, we adjust model parameters to obtain a "best-fit" main-run solution, identify key biological and physical processes, and assess model strengths and weaknesses. Substantial improvements in the model/data comparison are obtained by: (1) adjusting the turbulence-production coefficients in the mixed-layer model to thin the mixed layer; (2) increasing the detrital sinking and remineralization rates to improve the timing and amplitude of the model's export flux; and (3) introducing a parameterization of particle aggregation to lower phytoplankton concentrations in coastal upwelling regions. With these adjustments, the model captures many key aspects of the observed physical and biogeochemical variability in offshore waters, including the near-surface DIN and phytoplankton P concentrations, mesozooplankton biomass, and primary production. Nevertheless, there are still significant model/data discrepancies of P for most of the cruises. Most of them can be attributed to forcing or process errors in the physical model: inaccurate mixed-layer thicknesses, lack of mesoscale eddies and filaments, and differences in the timing and spatial extent of coastal upwelling. Relatively few are clearly related to the simplicity of the biological model, the model
Development and Application of a Three-dimensional Seismo-acoustic Coupled-mode Model
2014-09-30
model with stepwise coupled-modes [Ballard (2014)] was applied to calculate propagation in set of submarine canyons . The model is formulated in a...calculate acoustic propagation in a set of canyon environments, (2) evaluation of the effects of environmental uncertainty on source range estimates...3D coupled-mode model to the canyon environment The 3D coupled-mode model was applied to model propagation in two canyon environments. First, a
Test and Sensitivity Analysis of Hydrological Modeling in the Coupled WRF-Urban Modeling System
Wang, Z.; yang, J.
2013-12-01
Rapid urbanization has emerged as the source of many adverse effects that challenge the environmental sustainability of cities under changing climatic patterns. One essential key to address these challenges is to physically resolve the dynamics of urban-land-atmospheric interactions. To investigate the impact of urbanization on regional climate, physically-based single layer urban canopy model (SLUCM) has been developed and implemented into the Weather Research and Forecasting (WRF) platform. However, due to the lack of realistic representation of urban hydrological processes, simulation of urban climatology by current coupled WRF-SLUCM is inevitably inadequate. Aiming at improving the accuracy of simulations, recently we implemented urban hydrological processes into the model, including (1) anthropogenic latent heat, (2) urban irrigation, (3) evaporation over impervious surface, and (4) urban oasis effect. In addition, we couple the green roof system into the model to verify its capacity in alleviating urban heat island effect at regional scale. Driven by different meteorological forcings, offline tests show that the enhanced model is more accurate in predicting turbulent fluxes arising from built terrains. Though the coupled WRF-SLUCM has been extensively tested against various field measurement datasets, accurate input parameter space needs to be specified for good model performance. As realistic measurements of all input parameters to the modeling framework are rarely possible, understanding the model sensitivity to individual parameters is essential to determine the relative importance of parameter uncertainty to model performance. Thus we further use an advanced Monte Carlo approach to quantify relative sensitivity of input parameters of the hydrological model. In particular, performance of two widely used soil hydraulic models, namely the van Genuchten model (based on generic soil physics) and an empirical model (viz. the CHC model currently adopted in WRF
Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models
DEFF Research Database (Denmark)
Butts, M.; Rasmussen, S.H.; Ridler, M.
2013-01-01
model, HIRHAM. The physics of the coupling is formulated using an energy-based SVAT (land surface) model while the numerical coupling exploits the OpenMI modelling interface. First, some investigations of the applicability of the SVAT model are presented, including our ability to characterise...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...
Properties of Coupled Oscillator Model for Bidirectional Associative Memory
Kawaguchi, Satoshi
2016-08-01
In this study, we consider the stationary state and dynamical properties of a coupled oscillator model for bidirectional associative memory. For the stationary state, we apply the replica method to obtain self-consistent order parameter equations. The theoretical results for the storage capacity and overlap agree well with the numerical simulation. For the retrieval process, we apply statistical neurodynamics to include temporal noise correlations. For the successful retrieval process, the theoretical result obtained with the fourth-order approximation qualitatively agrees with the numerical simulation. However, for the unsuccessful retrieval process, higher-order noise correlations suppress severely; therefore, the maximum value of the overlap and the relaxation time are smaller than those of the numerical simulation. The reasons for the discrepancies between the theoretical result and numerical simulation, and the validity of our analysis are discussed.
Multi-Scale Coupling in Ocean and Climate Modeling
Energy Technology Data Exchange (ETDEWEB)
Zhengyu Liu, Leslie Smith
2009-08-14
We have made significant progress on several projects aimed at understanding multi-scale dynamics in geophysical flows. Large-scale flows in the atmosphere and ocean are influenced by stable density stratification and rotation. The presence of stratification and rotation has important consequences through (i) the conservation of potential vorticity q = {omega} {center_dot} {del} {rho}, where {omega} is the total vorticity and {rho} is the density, and (ii) the existence of waves that affect the redistribution of energy from a given disturbance to the flow. Our research is centered on quantifying the effects of potential vorticity conservation and of wave interactions for the coupling of disparate time and space scales in the oceans and the atmosphere. Ultimately we expect the work to help improve predictive capabilities of atmosphere, ocean and climate modelers. The main findings of our research projects are described.
The omega rho pi coupling in the VMD model revisited
Gudino, D Garcia
2011-01-01
We determine the value of the omega -rho- pi mesons coupling (g_{omega rho pi}), in the context of the vector meson dominance model, from radiative decays, the omega -> 3 pi decay width and the e^+e^- -> 3 pi cross section. For the last two observables we consider the presence of a contact term as the manifestation of a heavier resonance and find its magnitude to be close to other approaches. Our global average is g_{omega rho pi} =13.73 \\pm 1.51 (g_{omega rho pi} =13.38 \\pm 1.52) without (with) contact term. The value obtained is sensible to the inclusion of the contact term but the current precision does not allow to draw a definite conclusion.
Finite Hypernuclei in the Latest Quark-Meson Coupling Model
Energy Technology Data Exchange (ETDEWEB)
Pierre A. M. Guichon; Anthony W. Thomas; Kazuo Tsushima
2007-12-12
The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of finite hypernuclei. The calculations for $\\Lambda$ and $\\Xi$ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for $\\Sigma$ hypernuclei. Whereas in the earlier work they were bound by an amount similar to $\\Lambda$ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the $\\Sigma$ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of $\\Sigma$-atoms.
Dynamical coupled-channels model study of pion photoproduction
Huang, F; Haberzettl, H; Haidenbauer, J; Hanhart, C; Krewald, S; ner, U -G Meiß; Nakayama, K
2011-01-01
The photoproduction of pion off nucleon is investigated within a dynamical coupled-channels approach based on the Juelich pi-N model, which has been quite successful in the description of pi-N to pi-N scattering for center-of-mass energies up to 1.9 GeV. The full pion photoproduction amplitude is constructed to satisfy the generalized Ward-Takahashi identity and hence, it is fully gauge invariant. The calculated differential cross sections and photon spin asymmetries up to 1.65 GeV center-of-mass energy for the reactions gamma p to pi^+ n, gamma p to pi^0 p and gamma n to pi^- p are in good agreement with the experimental data.
Franco, A. F.; Landeros, P.
2016-09-01
We present a general model for the coupled magnetic resonances of an exchange interacting multilayer system, which can be implemented without complex analytical calculations or numerical simulations. The model allows one to study the spin wave modes of a multilayer structure with any number of layers, accounting for individual uniaxial and cubic anisotropies, and (static and dynamic) demagnetizing and external fields as well, assuming that only the interlayer exchange coupling mechanism is relevant between such magnetic layers. This scheme is applied to recent measurements of a NiFe/CoFe bilayer, and to studying the influence of the strength of ferromagnetic and antiferromagnetic exchange interactions and the applied field orientation on the spin wave modes and intensities of the ferromagnetic resonance response. We find that the acoustic oscillation mode tends to stabilize in frequency if the magnetizations of the layers are parallel to each other, while the optical mode stabilizes when the magnetizations are antiparallel. Furthermore, we find that each oscillation mode is governed by either the NiFe or the CoFe. The modes swap the governing layer as the perpendicular field increases, inducing a gap between their frequencies, which appears to be proportional to the exchange coupling. Finally, we find that the field linewidth of the bilayer due to Gilbert damping has a dependence on the frequency very similar to the linear dependence of the linewidth in single layers. The theoretical scheme presented here can be further used to explore magnetization dynamics in different multilayer architectures—such as exchange springs, structures with perpendicular magnetic anisotropy, and complex compositions of layer stacks—and can be useful as a basis to study multilayers with chiral and dipolar interactions.
A Coupled Multiscale Model of Texture Evolution and Plastic Anisotropy
Gawad, J.; Van Bael, A.; Yerra, S. K.; Samaey, G.; Van Houtte, P.; Roose, D.
2010-06-01
In this paper we present a multiscale model of a plastic deformation process in which the anisotropy of plastic properties is related to the evolution of the crystallographic texture. The model spans several length scales from the macroscopic deformation of the workpiece to the microscale interactions between individual grains in a polycrystalline material. The macroscopic behaviour of the material is described by means of a Finite Element (FE) model. Plastic anisotropy is taken into account in a constitutive law, based on the concept of a plastic potential in strain rate space. The coefficients of a sixth-order Facet equation are determined using the Taylor theory, provided that the current crystallographic texture at a given FE integration point is known. Texture evolution in the FE integration points is predicted by an ALAMEL micromechanical model. Mutual interactions between coarse and fine scale are inherent in the physics of the deformation process. These dependencies are taken into account by full bidirectional coupling in the model. Therefore, the plastic deformation influences the crystallographic texture and the evolution of the texture induces anisotropy of the macroscopic deformation. The presented approach enables an adaptive texture and yield surface update scheme with respect to the local plastic deformation in the FE integration points. Additionally, the computational cost related to the updates of the constitutive law is reduced by application of parallel computing techniques. Suitability of on-demand computing for this computational problem is discussed. The parallelisation strategy addresses both distributed memory and shared memory architectures. The cup drawing process has been simulated using the multiscale model outlined above. The discussion of results includes the analysis of the planar anisotropy in the cup and the influence of complex deformation path on texture development. Evolution of texture at selected material points is assessed as
Ductile failure analysis of high strength steel in hot forming based on micromechanical damage model
Directory of Open Access Journals (Sweden)
YingLiang
2016-01-01
Full Text Available The damage evolution of high strength steel at elevated temperature is investigated by using the Gurson-Tvergaard-Needleman (GTN model. A hybrid method integrated thermal tensile test and numerical technique is employed to identify the damage parameters. The analysis results show that the damage parameters are different at different temperature as the variation of tested material microstructure. Furthermore, the calibrated damage parameters are implemented to simulate a bugling forming at elevated temperature. The experimental results show the availability of GTN damage model in analyzing sheet formability in hot forming.
Directory of Open Access Journals (Sweden)
F. A. Mirza
2015-08-01
Full Text Available Lightweighting in the transportation industry is today recognized as one of the most important strategies to improve fuel efficiency and reduce anthropogenic climate-changing, environment-damaging, and human death-causing emissions. However, the structural applications of lightweight alloys are often limited by some inherent deficiencies such as low stiffness, high wear rate and inferior strength. These properties could be effectively enhanced by the addition of stronger and stiffer reinforcements, especially nano-sized particles, into metal matrix to form composites. In most cases three common strengthening mechanisms (load-bearing effect, mismatch of coefficients of thermal expansion, and Orowan strengthening have been considered to predict the yield strength of metal matrix nanocomposites (MMNCs. This study was aimed at developing a unified model by taking into account the matrix grain size and porosity (which is unavoidable in the materials processing such as casting and powder metallurgy in the prediction of the yield strength of MMNCs. The Zener pinning effect of grain boundaries by the nano-sized particles has also been integrated. The model was validated using the experimental data of magnesium- and titanium-based nanocomposites containing different types of nano-sized particles (namely, Al2O3, Y2O3, and carbon nanotubes. The predicted results were observed to be in good agreement with the experimental data reported in the literature.