WorldWideScience

Sample records for model stochastic process

  1. Towards Model Checking Stochastic Process Algebra

    NARCIS (Netherlands)

    Hermanns, H.; Grieskamp, W.; Santen, T.; Katoen, Joost P.; Stoddart, B.; Meyer-Kayser, J.; Siegle, M.

    2000-01-01

    Stochastic process algebras have been proven useful because they allow behaviour-oriented performance and reliability modelling. As opposed to traditional performance modelling techniques, the behaviour- oriented style supports composition and abstraction in a natural way. However, analysis of

  2. Computer Aided Continuous Time Stochastic Process Modelling

    DEFF Research Database (Denmark)

    Kristensen, N.R.; Madsen, Henrik; Jørgensen, Sten Bay

    2001-01-01

    A grey-box approach to process modelling that combines deterministic and stochastic modelling is advocated for identification of models for model-based control of batch and semi-batch processes. A computer-aided tool designed for supporting decision-making within the corresponding modelling cycle...

  3. Stochastic differential equation model to Prendiville processes

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); Bahar, Arifah [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310, Johor Malaysia (Malaysia); UTM Center for Industrial & Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-10-22

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution.

  4. Stochastic differential equation model to Prendiville processes

    International Nuclear Information System (INIS)

    Granita; Bahar, Arifah

    2015-01-01

    The Prendiville process is another variation of the logistic model which assumes linearly decreasing population growth rate. It is a continuous time Markov chain (CTMC) taking integer values in the finite interval. The continuous time Markov chain can be approximated by stochastic differential equation (SDE). This paper discusses the stochastic differential equation of Prendiville process. The work started with the forward Kolmogorov equation in continuous time Markov chain of Prendiville process. Then it was formulated in the form of a central-difference approximation. The approximation was then used in Fokker-Planck equation in relation to the stochastic differential equation of the Prendiville process. The explicit solution of the Prendiville process was obtained from the stochastic differential equation. Therefore, the mean and variance function of the Prendiville process could be easily found from the explicit solution

  5. Modelling and application of stochastic processes

    CERN Document Server

    1986-01-01

    The subject of modelling and application of stochastic processes is too vast to be exhausted in a single volume. In this book, attention is focused on a small subset of this vast subject. The primary emphasis is on realization and approximation of stochastic systems. Recently there has been considerable interest in the stochastic realization problem, and hence, an attempt has been made here to collect in one place some of the more recent approaches and algorithms for solving the stochastic realiza­ tion problem. Various different approaches for realizing linear minimum-phase systems, linear nonminimum-phase systems, and bilinear systems are presented. These approaches range from time-domain methods to spectral-domain methods. An overview of the chapter contents briefly describes these approaches. Also, in most of these chapters special attention is given to the problem of developing numerically ef­ ficient algorithms for obtaining reduced-order (approximate) stochastic realizations. On the application side,...

  6. Stochastic processes

    CERN Document Server

    Parzen, Emanuel

    1962-01-01

    Well-written and accessible, this classic introduction to stochastic processes and related mathematics is appropriate for advanced undergraduate students of mathematics with a knowledge of calculus and continuous probability theory. The treatment offers examples of the wide variety of empirical phenomena for which stochastic processes provide mathematical models, and it develops the methods of probability model-building.Chapter 1 presents precise definitions of the notions of a random variable and a stochastic process and introduces the Wiener and Poisson processes. Subsequent chapters examine

  7. Reversibility in Quantum Models of Stochastic Processes

    Science.gov (United States)

    Gier, David; Crutchfield, James; Mahoney, John; James, Ryan

    Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

  8. Deterministic geologic processes and stochastic modeling

    International Nuclear Information System (INIS)

    Rautman, C.A.; Flint, A.L.

    1992-01-01

    This paper reports that recent outcrop sampling at Yucca Mountain, Nevada, has produced significant new information regarding the distribution of physical properties at the site of a potential high-level nuclear waste repository. consideration of the spatial variability indicates that her are a number of widespread deterministic geologic features at the site that have important implications for numerical modeling of such performance aspects as ground water flow and radionuclide transport. Because the geologic processes responsible for formation of Yucca Mountain are relatively well understood and operate on a more-or-less regional scale, understanding of these processes can be used in modeling the physical properties and performance of the site. Information reflecting these deterministic geologic processes may be incorporated into the modeling program explicitly using geostatistical concepts such as soft information, or implicitly, through the adoption of a particular approach to modeling

  9. Stochastic processes

    CERN Document Server

    Borodin, Andrei N

    2017-01-01

    This book provides a rigorous yet accessible introduction to the theory of stochastic processes. A significant part of the book is devoted to the classic theory of stochastic processes. In turn, it also presents proofs of well-known results, sometimes together with new approaches. Moreover, the book explores topics not previously covered elsewhere, such as distributions of functionals of diffusions stopped at different random times, the Brownian local time, diffusions with jumps, and an invariance principle for random walks and local times. Supported by carefully selected material, the book showcases a wealth of examples that demonstrate how to solve concrete problems by applying theoretical results. It addresses a broad range of applications, focusing on concrete computational techniques rather than on abstract theory. The content presented here is largely self-contained, making it suitable for researchers and graduate students alike.

  10. Stochastic Models in the Identification Process

    Czech Academy of Sciences Publication Activity Database

    Slovák, Dalibor; Zvárová, Jana

    2011-01-01

    Roč. 7, č. 1 (2011), s. 44-50 ISSN 1801-5603 R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : identification process * weight-of evidence formula * coancestry coefficient * beta-binomial sampling formula * DNA mixtures Subject RIV: IN - Informatics, Computer Science http://www.ejbi.eu/images/2011-1/Slovak_en.pdf

  11. Neural network connectivity and response latency modelled by stochastic processes

    DEFF Research Database (Denmark)

    Tamborrino, Massimiliano

    is connected to thousands of other neurons. The rst question is: how to model neural networks through stochastic processes? A multivariate Ornstein-Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the proposed answer. Obviously, dependencies between neurons imply dependencies......Stochastic processes and their rst passage times have been widely used to describe the membrane potential dynamics of single neurons and to reproduce neuronal spikes, respectively.However, cerebral cortex in human brains is estimated to contain 10-20 billions of neurons and each of them...... between their spike times. Therefore, the second question is: how to detect neural network connectivity from simultaneously recorded spike trains? Answering this question corresponds to investigate the joint distribution of sequences of rst passage times. A non-parametric method based on copulas...

  12. Quantitative Sociodynamics Stochastic Methods and Models of Social Interaction Processes

    CERN Document Server

    Helbing, Dirk

    2010-01-01

    This new edition of Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioral changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics and mathematics, but they have very often proven their explanatory power in chemistry, biology, economics and the social sciences as well. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces important concepts from nonlinear dynamics (e.g. synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches, a fundamental dynamic model is obtained, which opens new perspectives in the social sciences. It includes many established models a...

  13. Quantitative sociodynamics stochastic methods and models of social interaction processes

    CERN Document Server

    Helbing, Dirk

    1995-01-01

    Quantitative Sociodynamics presents a general strategy for interdisciplinary model building and its application to a quantitative description of behavioural changes based on social interaction processes. Originally, the crucial methods for the modeling of complex systems (stochastic methods and nonlinear dynamics) were developed in physics but they have very often proved their explanatory power in chemistry, biology, economics and the social sciences. Quantitative Sociodynamics provides a unified and comprehensive overview of the different stochastic methods, their interrelations and properties. In addition, it introduces the most important concepts from nonlinear dynamics (synergetics, chaos theory). The applicability of these fascinating concepts to social phenomena is carefully discussed. By incorporating decision-theoretical approaches a very fundamental dynamic model is obtained which seems to open new perspectives in the social sciences. It includes many established models as special cases, e.g. the log...

  14. An extension of clarke's model with stochastic amplitude flip processes

    KAUST Repository

    Hoel, Hakon

    2014-07-01

    Stochastic modeling is an essential tool for studying statistical properties of wireless channels. In multipath fading channel (MFC) models, the signal reception is modeled by a sum of wave path contributions, and Clarke\\'s model is an important example of such which has been widely accepted in many wireless applications. However, since Clarke\\'s model is temporally deterministic, Feng and Field noted that it does not model real wireless channels with time-varying randomness well. Here, we extend Clarke\\'s model to a novel time-varying stochastic MFC model with scatterers randomly flipping on and off. Statistical properties of the MFC model are analyzed and shown to fit well with real signal measurements, and a limit Gaussian process is derived from the model when the number of active wave paths tends to infinity. A second focus of this work is a comparison study of the error and computational cost of generating signal realizations from the MFC model and from its limit Gaussian process. By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model\\'s algorithm. Numerical examples that strengthen these observations are also presented. © 2014 IEEE.

  15. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Energy Technology Data Exchange (ETDEWEB)

    Dobay, M. P. D., E-mail: maria.pamela.david@physik.uni-muenchen.de; Alberola, A. Piera; Mendoza, E. R.; Raedler, J. O., E-mail: joachim.raedler@physik.uni-muenchen.de [Ludwig-Maximilians University, Faculty of Physics, Center for NanoScience (Germany)

    2012-03-15

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  16. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    International Nuclear Information System (INIS)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-01-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  17. Modeling nanoparticle uptake and intracellular distribution using stochastic process algebras

    Science.gov (United States)

    Dobay, M. P. D.; Alberola, A. Piera; Mendoza, E. R.; Rädler, J. O.

    2012-03-01

    Computational modeling is increasingly important to help understand the interaction and movement of nanoparticles (NPs) within living cells, and to come to terms with the wealth of data that microscopy imaging yields. A quantitative description of the spatio-temporal distribution of NPs inside cells; however, it is challenging due to the complexity of multiple compartments such as endosomes and nuclei, which themselves are dynamic and can undergo fusion and fission and exchange their content. Here, we show that stochastic pi calculus, a widely-used process algebra, is well suited for mapping surface and intracellular NP interactions and distributions. In stochastic pi calculus, each NP is represented as a process, which can adopt various states such as bound or aggregated, as well as be passed between processes representing location, as a function of predefined stochastic channels. We created a pi calculus model of gold NP uptake and intracellular movement and compared the evolution of surface-bound, cytosolic, endosomal, and nuclear NP densities with electron microscopy data. We demonstrate that the computational approach can be extended to include specific molecular binding and potential interaction with signaling cascades as characteristic for NP-cell interactions in a wide range of applications such as nanotoxicity, viral infection, and drug delivery.

  18. Stochastic growth logistic model with aftereffect for batch fermentation process

    Science.gov (United States)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-06-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  19. Stochastic growth logistic model with aftereffect for batch fermentation process

    International Nuclear Information System (INIS)

    Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md

    2014-01-01

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits

  20. Stochastic growth logistic model with aftereffect for batch fermentation process

    Energy Technology Data Exchange (ETDEWEB)

    Rosli, Norhayati; Ayoubi, Tawfiqullah [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah; Rahman, Haliza Abdul [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia); Salleh, Madihah Md [Department of Biotechnology Industry, Faculty of Biosciences and Bioengineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2014-06-19

    In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.

  1. Stochastic process corrosion growth models for pipeline reliability

    International Nuclear Information System (INIS)

    Bazán, Felipe Alexander Vargas; Beck, André Teófilo

    2013-01-01

    Highlights: •Novel non-linear stochastic process corrosion growth model is proposed. •Corrosion rate modeled as random Poisson pulses. •Time to corrosion initiation and inherent time-variability properly represented. •Continuous corrosion growth histories obtained. •Model is shown to precisely fit actual corrosion data at two time points. -- Abstract: Linear random variable corrosion models are extensively employed in reliability analysis of pipelines. However, linear models grossly neglect well-known characteristics of the corrosion process. Herein, a non-linear model is proposed, where corrosion rate is represented as a Poisson square wave process. The resulting model represents inherent time-variability of corrosion growth, produces continuous growth and leads to mean growth at less-than-one power of time. Different corrosion models are adjusted to the same set of actual corrosion data for two inspections. The proposed non-linear random process corrosion growth model leads to the best fit to the data, while better representing problem physics

  2. Stochastic Modelling of Shiroro River Stream flow Process

    OpenAIRE

    Musa, J. J

    2013-01-01

    Economists, social scientists and engineers provide insights into the drivers of anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average model (ARMA). The development and use of a stochastic stream flow m...

  3. Analyzing Properties of Stochastic Business Processes By Model Checking

    DEFF Research Database (Denmark)

    Herbert, Luke Thomas; Sharp, Robin

    2013-01-01

    This chapter presents an approach to precise formal analysis of business processes with stochastic properties. The method presented here allows for both qualitative and quantitative properties to be individually analyzed at design time without requiring a full specification. This provides...... an effective means to explore possible designs for a business process and to debug any flaws....

  4. Stochastic processes analysis in nuclear reactor using ARMA models

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

  5. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    of stochastic origin can be observed in experiments. The models include a new approach to the platinum phase transition, which allows for a unification of existing models for Pt(100) and Pt(110). The rich nonlinear dynamical behavior of the macroscopic reaction kinetics is investigated and shows good agreement...

  6. Stochastic model of template-directed elongation processes in biology.

    Science.gov (United States)

    Schilstra, Maria J; Nehaniv, Chrystopher L

    2010-10-01

    We present a novel modular, stochastic model for biological template-based linear chain elongation processes. In this model, elongation complexes (ECs; DNA polymerase, RNA polymerase, or ribosomes associated with nascent chains) that span a finite number of template units step along the template, one after another, with semaphore constructs preventing overtaking. The central elongation module is readily extended with modules that represent initiation and termination processes. The model was used to explore the effect of EC span on motor velocity and dispersion, and the effect of initiation activator and repressor binding kinetics on the overall elongation dynamics. The results demonstrate that (1) motors that move smoothly are able to travel at a greater velocity and closer together than motors that move more erratically, and (2) the rate at which completed chains are released is proportional to the occupancy or vacancy of activator or repressor binding sites only when initiation or activator/repressor dissociation is slow in comparison with elongation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Stochastic Modeling and Deterministic Limit of Catalytic Surface Processes

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2007-01-01

    Three levels of modeling, microscopic, mesoscopic and macroscopic are discussed for the CO oxidation on low-index platinum single crystal surfaces. The introduced models on the microscopic and mesoscopic level are stochastic while the model on the macroscopic level is deterministic. It can......, such that in contrast to the microscopic model the spatial resolution is reduced. The derivation of deterministic limit equations is in correspondence with the successful description of experiments under low-pressure conditions by deterministic reaction-diffusion equations while for intermediate pressures phenomena...

  8. Stochastic Modelling, Analysis, and Simulations of the Solar Cycle Dynamic Process

    Science.gov (United States)

    Turner, Douglas C.; Ladde, Gangaram S.

    2018-03-01

    Analytical solutions, discretization schemes and simulation results are presented for the time delay deterministic differential equation model of the solar dynamo presented by Wilmot-Smith et al. In addition, this model is extended under stochastic Gaussian white noise parametric fluctuations. The introduction of stochastic fluctuations incorporates variables affecting the dynamo process in the solar interior, estimation error of parameters, and uncertainty of the α-effect mechanism. Simulation results are presented and analyzed to exhibit the effects of stochastic parametric volatility-dependent perturbations. The results generalize and extend the work of Hazra et al. In fact, some of these results exhibit the oscillatory dynamic behavior generated by the stochastic parametric additative perturbations in the absence of time delay. In addition, the simulation results of the modified stochastic models influence the change in behavior of the very recently developed stochastic model of Hazra et al.

  9. ARMA modelling of neutron stochastic processes with large measurement noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.; Kostic, Lj.; Pesic, M.

    1994-01-01

    An autoregressive moving average (ARMA) model of the neutron fluctuations with large measurement noise is derived from langevin stochastic equations and validated using time series data obtained during prompt neutron decay constant measurements at the zero power reactor RB in Vinca. Model parameters are estimated using the maximum likelihood (ML) off-line algorithm and an adaptive pole estimation algorithm based on the recursive prediction error method (RPE). The results show that subcriticality can be determined from real data with high measurement noise using much shorter statistical sample than in standard methods. (author)

  10. Stochastic conditional intensity processes

    DEFF Research Database (Denmark)

    Bauwens, Luc; Hautsch, Nikolaus

    2006-01-01

    model allows for a wide range of (cross-)autocorrelation structures in multivariate point processes. The model is estimated by simulated maximum likelihood (SML) using the efficient importance sampling (EIS) technique. By modeling price intensities based on NYSE trading, we provide significant evidence......In this article, we introduce the so-called stochastic conditional intensity (SCI) model by extending Russell’s (1999) autoregressive conditional intensity (ACI) model by a latent common dynamic factor that jointly drives the individual intensity components. We show by simulations that the proposed...... for a joint latent factor and show that its inclusion allows for an improved and more parsimonious specification of the multivariate intensity process...

  11. Stochastic modeling

    CERN Document Server

    Lanchier, Nicolas

    2017-01-01

    Three coherent parts form the material covered in this text, portions of which have not been widely covered in traditional textbooks. In this coverage the reader is quickly introduced to several different topics enriched with 175 exercises which focus on real-world problems. Exercises range from the classics of probability theory to more exotic research-oriented problems based on numerical simulations. Intended for graduate students in mathematics and applied sciences, the text provides the tools and training needed to write and use programs for research purposes. The first part of the text begins with a brief review of measure theory and revisits the main concepts of probability theory, from random variables to the standard limit theorems. The second part covers traditional material on stochastic processes, including martingales, discrete-time Markov chains, Poisson processes, and continuous-time Markov chains. The theory developed is illustrated by a variety of examples surrounding applications such as the ...

  12. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    International Nuclear Information System (INIS)

    Granita; Bahar, A.

    2015-01-01

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found

  13. Stochastic differential equation model for linear growth birth and death processes with immigration and emigration

    Energy Technology Data Exchange (ETDEWEB)

    Granita, E-mail: granitafc@gmail.com [Dept. Mathematical Education, State Islamic University of Sultan Syarif Kasim Riau, 28293 Indonesia and Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor (Malaysia); Bahar, A. [Dept. of Mathematical Science, Universiti Teknologi Malaysia, 81310,Johor Malaysia and UTM Center for Industrial and Applied Mathematics (UTM-CIAM) (Malaysia)

    2015-03-09

    This paper discusses on linear birth and death with immigration and emigration (BIDE) process to stochastic differential equation (SDE) model. Forward Kolmogorov equation in continuous time Markov chain (CTMC) with a central-difference approximation was used to find Fokker-Planckequation corresponding to a diffusion process having the stochastic differential equation of BIDE process. The exact solution, mean and variance function of BIDE process was found.

  14. ARMA modeling of stochastic processes in nuclear reactor with significant detection noise

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1992-01-01

    The theoretical basis of ARMA modelling of stochastic processes in nuclear reactor was presented in a previous paper, neglecting observational noise. The identification of real reactor data indicated that in some experiments the detection noise is significant. Thus a more rigorous theoretical modelling of stochastic processes in nuclear reactor is performed. Starting from the fundamental stochastic differential equations of the Langevin type for the interaction of the detector with neutron field, a new theoretical ARMA model is developed. preliminary identification results confirm the theoretical expectations. (author)

  15. Doubly stochastic Poisson process models for precipitation at fine time-scales

    Science.gov (United States)

    Ramesh, Nadarajah I.; Onof, Christian; Xie, Dichao

    2012-09-01

    This paper considers a class of stochastic point process models, based on doubly stochastic Poisson processes, in the modelling of rainfall. We examine the application of this class of models, a neglected alternative to the widely-known Poisson cluster models, in the analysis of fine time-scale rainfall intensity. These models are mainly used to analyse tipping-bucket raingauge data from a single site but an extension to multiple sites is illustrated which reveals the potential of this class of models to study the temporal and spatial variability of precipitation at fine time-scales.

  16. An extension of clarke's model with stochastic amplitude flip processes

    KAUST Repository

    Hoel, Hakon; Nyberg, Henrik

    2014-01-01

    . By rigorous analysis and numerical studies, we show that in many settings, signal realizations are generated more efficiently by Gaussian process algorithms than by the MFC model's algorithm. Numerical examples that strengthen these observations are also

  17. Stochastic processes, multiscale modeling, and numerical methods for computational cellular biology

    CERN Document Server

    2017-01-01

    This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of s...

  18. Stochastic model of milk homogenization process using Markov's chain

    Directory of Open Access Journals (Sweden)

    A. A. Khvostov

    2016-01-01

    Full Text Available The process of development of a mathematical model of the process of homogenization of dairy products is considered in the work. The theory of Markov's chains was used in the development of the mathematical model, Markov's chain with discrete states and continuous parameter for which the homogenisation pressure is taken, being the basis for the model structure. Machine realization of the model is implemented in the medium of structural modeling MathWorks Simulink™. Identification of the model parameters was carried out by minimizing the standard deviation calculated from the experimental data for each fraction of dairy products fat phase. As the set of experimental data processing results of the micrographic images of fat globules of whole milk samples distribution which were subjected to homogenization at different pressures were used. Pattern Search method was used as optimization method with the Latin Hypercube search algorithm from Global Optimization Тoolbox library. The accuracy of calculations averaged over all fractions of 0.88% (the relative share of units, the maximum relative error was 3.7% with the homogenization pressure of 30 MPa, which may be due to the very abrupt change in properties from the original milk in the particle size distribution at the beginning of the homogenization process and the lack of experimental data at homogenization pressures of below the specified value. The mathematical model proposed allows to calculate the profile of volume and mass distribution of the fat phase (fat globules in the product, depending on the homogenization pressure and can be used in the laboratory and research of dairy products composition, as well as in the calculation, design and modeling of the process equipment of the dairy industry enterprises.

  19. Modeling laser velocimeter signals as triply stochastic Poisson processes

    Science.gov (United States)

    Mayo, W. T., Jr.

    1976-01-01

    Previous models of laser Doppler velocimeter (LDV) systems have not adequately described dual-scatter signals in a manner useful for analysis and simulation of low-level photon-limited signals. At low photon rates, an LDV signal at the output of a photomultiplier tube is a compound nonhomogeneous filtered Poisson process, whose intensity function is another (slower) Poisson process with the nonstationary rate and frequency parameters controlled by a random flow (slowest) process. In the present paper, generalized Poisson shot noise models are developed for low-level LDV signals. Theoretical results useful in detection error analysis and simulation are presented, along with measurements of burst amplitude statistics. Computer generated simulations illustrate the difference between Gaussian and Poisson models of low-level signals.

  20. An introduction to continuous-time stochastic processes theory, models, and applications to finance, biology, and medicine

    CERN Document Server

    Capasso, Vincenzo

    2015-01-01

    This textbook, now in its third edition, offers a rigorous and self-contained introduction to the theory of continuous-time stochastic processes, stochastic integrals, and stochastic differential equations. Expertly balancing theory and applications, the work features concrete examples of modeling real-world problems from biology, medicine, industrial applications, finance, and insurance using stochastic methods. No previous knowledge of stochastic processes is required. Key topics include: * Markov processes * Stochastic differential equations * Arbitrage-free markets and financial derivatives * Insurance risk * Population dynamics, and epidemics * Agent-based models New to the Third Edition: * Infinitely divisible distributions * Random measures * Levy processes * Fractional Brownian motion * Ergodic theory * Karhunen-Loeve expansion * Additional applications * Additional  exercises * Smoluchowski  approximation of  Langevin systems An Introduction to Continuous-Time Stochastic Processes, Third Editio...

  1. Stochastic processes inference theory

    CERN Document Server

    Rao, Malempati M

    2014-01-01

    This is the revised and enlarged 2nd edition of the authors’ original text, which was intended to be a modest complement to Grenander's fundamental memoir on stochastic processes and related inference theory. The present volume gives a substantial account of regression analysis, both for stochastic processes and measures, and includes recent material on Ridge regression with some unexpected applications, for example in econometrics. The first three chapters can be used for a quarter or semester graduate course on inference on stochastic processes. The remaining chapters provide more advanced material on stochastic analysis suitable for graduate seminars and discussions, leading to dissertation or research work. In general, the book will be of interest to researchers in probability theory, mathematical statistics and electrical and information theory.

  2. Levy-Student processes for a stochastic model of beam halos

    Energy Technology Data Exchange (ETDEWEB)

    Petroni, N. Cufaro [Department of Mathematics, University of Bari, and INFN Sezione di Bari, via E. Orabona 4, 70125 Bari (Italy)]. E-mail: cufaro@ba.infn.it; De Martino, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); De Siena, S. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy); Illuminati, F. [Department of Physics, University of Salerno, and INFN Sezione di Napoli (gruppo di Salerno), Via S. Allende, I-84081 Baronissi (SA) (Italy)

    2006-06-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams.

  3. Levy-Student processes for a stochastic model of beam halos

    International Nuclear Information System (INIS)

    Petroni, N. Cufaro; De Martino, S.; De Siena, S.; Illuminati, F.

    2006-01-01

    We describe the transverse beam distribution in particle accelerators within the controlled, stochastic dynamical scheme of the stochastic mechanics which produces time reversal invariant diffusion processes. In this paper we analyze the consequences of introducing the generalized Student laws, namely non-Gaussian, Levy infinitely divisible (but not stable) distributions. We will analyze this idea from two different standpoints: (a) first by supposing that the stationary distribution of our (Wiener powered) stochastic model is a Student distribution; (b) by supposing that our model is based on a (non-Gaussian) Levy process whose increments are Student distributed. In the case (a) the longer tails of the power decay of the Student laws, and in the case (b) the discontinuities of the Levy-Student process can well account for the rare escape of particles from the beam core, and hence for the formation of a halo in intense beams

  4. A decision dependent stochastic process model for repairable systems with applications

    Directory of Open Access Journals (Sweden)

    Paul F. Zantek

    2015-12-01

    This paper mathematically formalizes the notion of how management actions impact the functioning of a repairable system over time by developing a new stochastic process model for such systems. The proposed model is illustrated using both simulated and real data. The proposed model compares favorably to other models for well-known data on Boeing airplanes. The model is further illustrated and compared to other models on failure time and maintenance data stemming from the South Texas Project nuclear power plant.

  5. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race.

    Science.gov (United States)

    Warnke, Tom; Reinhardt, Oliver; Klabunde, Anna; Willekens, Frans; Uhrmacher, Adelinde M

    2017-10-01

    Individuals' decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for Linked Lives (ML3) to describe the diverse decision processes of linked lives succinctly in continuous time. The context of individuals is modelled by networks the individual is part of, such as family ties and other social networks. Central concepts, such as behaviour conditional on agent attributes, age-dependent behaviour, and stochastic waiting times, are tightly integrated in the language. Thereby, alternative decisions are modelled by concurrent processes that compete by stochastic race. Using a migration model, we demonstrate how this allows for compact description of complex decisions, here based on the Theory of Planned Behaviour. We describe the challenges for the simulation algorithm posed by stochastic race between multiple concurrent complex decisions.

  6. Tempered stable distributions stochastic models for multiscale processes

    CERN Document Server

    Grabchak, Michael

    2015-01-01

    This brief is concerned with tempered stable distributions and their associated Levy processes. It is a good text for researchers interested in learning about tempered stable distributions.  A tempered stable distribution is one which takes a stable distribution and modifies its tails to make them lighter. The motivation for this class comes from the fact that infinite variance stable distributions appear to provide a good fit to data in a variety of situations, but the extremely heavy tails of these models are not realistic for most real world applications. The idea of using distributions that modify the tails of stable models to make them lighter seems to have originated in the influential paper of Mantegna and Stanley (1994). Since then, these distributions have been extended and generalized in a variety of ways. They have been applied to a wide variety of areas including mathematical finance, biostatistics,computer science, and physics.

  7. An effective streamflow process model for optimal reservoir operation using stochastic dual dynamic programming

    OpenAIRE

    Raso , L.; Malaterre , P.O.; Bader , J.C.

    2017-01-01

    International audience; This article presents an innovative streamflow process model for use in reservoir operational rule design in stochastic dual dynamic programming (SDDP). Model features, which can be applied independently, are (1) a multiplicative process model for the forward phase and its linearized version for the backward phase; and (2) a nonuniform time-step length that is inversely proportional to seasonal variability. The advantages are (1) guaranteeing positive streamflow values...

  8. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    Science.gov (United States)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  9. Stochastic Analysis of a Queue Length Model Using a Graphics Processing Unit

    Czech Academy of Sciences Publication Activity Database

    Přikryl, Jan; Kocijan, J.

    2012-01-01

    Roč. 5, č. 2 (2012), s. 55-62 ISSN 1802-971X R&D Projects: GA MŠk(CZ) MEB091015 Institutional support: RVO:67985556 Keywords : graphics processing unit * GPU * Monte Carlo simulation * computer simulation * modeling Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-stochastic analysis of a queue length model using a graphics processing unit.pdf

  10. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    Science.gov (United States)

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  11. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  12. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  13. Composite stochastic processes

    NARCIS (Netherlands)

    Kampen, N.G. van

    Certain problems in physics and chemistry lead to the definition of a class of stochastic processes. Although they are not Markovian they can be treated explicitly to some extent. In particular, the probability distribution for large times can be found. It is shown to obey a master equation. This

  14. Research in Stochastic Processes.

    Science.gov (United States)

    1982-10-31

    Office of Scientific Research Grant AFOSR F49620 82 C 0009 Period: 1 Noveber 1981 through 31 October 1982 Title: Research in Stochastic Processes Co...STA4ATIS CAMBANIS The work briefly described here was developed in connection with problems arising from and related to the statistical comunication

  15. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    OpenAIRE

    Li, Shilong; Yin, Chuancun; Zhao, Xia; Dai, Hongshuai

    2017-01-01

    Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigat...

  16. Stochastic models for the in silico simulation of synaptic processes

    OpenAIRE

    Bracciali, Andrea; Brunelli, Marcello; Cataldo, Enrico; Degano, Pierpaolo

    2008-01-01

    Background Research in life sciences is benefiting from a large availability of formal description techniques and analysis methodologies. These allow both the phenomena investigated to be precisely modeled and virtual experiments to be performed in silico. Such experiments may result in easier, faster, and satisfying approximations of their in vitro/vivo counterparts. A promising approach is represented by the study of biological phenomena as a collection of interactive entities through proce...

  17. Essentials of stochastic processes

    CERN Document Server

    Durrett, Richard

    2016-01-01

    Building upon the previous editions, this textbook is a first course in stochastic processes taken by undergraduate and graduate students (MS and PhD students from math, statistics, economics, computer science, engineering, and finance departments) who have had a course in probability theory. It covers Markov chains in discrete and continuous time, Poisson processes, renewal processes, martingales, and option pricing. One can only learn a subject by seeing it in action, so there are a large number of examples and more than 300 carefully chosen exercises to deepen the reader’s understanding. Drawing from teaching experience and student feedback, there are many new examples and problems with solutions that use TI-83 to eliminate the tedious details of solving linear equations by hand, and the collection of exercises is much improved, with many more biological examples. Originally included in previous editions, material too advanced for this first course in stochastic processes has been eliminated while treatm...

  18. Low Variance Couplings for Stochastic Models of Intracellular Processes with Time-Dependent Rate Functions.

    Science.gov (United States)

    Anderson, David F; Yuan, Chaojie

    2018-04-18

    A number of coupling strategies are presented for stochastically modeled biochemical processes with time-dependent parameters. In particular, the stacked coupling is introduced and is shown via a number of examples to provide an exceptionally low variance between the generated paths. This coupling will be useful in the numerical computation of parametric sensitivities and the fast estimation of expectations via multilevel Monte Carlo methods. We provide the requisite estimators in both cases.

  19. Model-free stochastic processes studied with q-wavelet-based informational tools

    International Nuclear Information System (INIS)

    Perez, D.G.; Zunino, L.; Martin, M.T.; Garavaglia, M.; Plastino, A.; Rosso, O.A.

    2007-01-01

    We undertake a model-free investigation of stochastic processes employing q-wavelet based quantifiers, that constitute a generalization of their Shannon counterparts. It is shown that (i) interesting physical information becomes accessible in such a way (ii) for special q values the quantifiers are more sensitive than the Shannon ones and (iii) there exist an implicit relationship between the Hurst parameter H and q within this wavelet framework

  20. Effects of stochastic interest rates in decision making under risk: A Markov decision process model for forest management

    Science.gov (United States)

    Mo Zhou; Joseph Buongiorno

    2011-01-01

    Most economic studies of forest decision making under risk assume a fixed interest rate. This paper investigated some implications of this stochastic nature of interest rates. Markov decision process (MDP) models, used previously to integrate stochastic stand growth and prices, can be extended to include variable interest rates as well. This method was applied to...

  1. The ‘hit’ phenomenon: a mathematical model of human dynamics interactions as a stochastic process

    Science.gov (United States)

    Ishii, Akira; Arakaki, Hisashi; Matsuda, Naoya; Umemura, Sanae; Urushidani, Tamiko; Yamagata, Naoya; Yoshida, Narihiko

    2012-06-01

    A mathematical model for the ‘hit’ phenomenon in entertainment within a society is presented as a stochastic process of human dynamics interactions. The model uses only the advertisement budget time distribution as an input, and word-of-mouth (WOM), represented by posts on social network systems, is used as data to make a comparison with the calculated results. The unit of time is days. The WOM distribution in time is found to be very close to the revenue distribution in time. Calculations for the Japanese motion picture market based on the mathematical model agree well with the actual revenue distribution in time.

  2. Fourier analysis and stochastic processes

    CERN Document Server

    Brémaud, Pierre

    2014-01-01

    This work is unique as it provides a uniform treatment of the Fourier theories of functions (Fourier transforms and series, z-transforms), finite measures (characteristic functions, convergence in distribution), and stochastic processes (including arma series and point processes). It emphasises the links between these three themes. The chapter on the Fourier theory of point processes and signals structured by point processes is a novel addition to the literature on Fourier analysis of stochastic processes. It also connects the theory with recent lines of research such as biological spike signals and ultrawide-band communications. Although the treatment is mathematically rigorous, the convivial style makes the book accessible to a large audience. In particular, it will be interesting to anyone working in electrical engineering and communications, biology (point process signals) and econometrics (arma models). A careful review of the prerequisites (integration and probability theory in the appendix, Hilbert spa...

  3. Ambit processes and stochastic partial differential equations

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Benth, Fred Espen; Veraart, Almut

    Ambit processes are general stochastic processes based on stochastic integrals with respect to Lévy bases. Due to their flexible structure, they have great potential for providing realistic models for various applications such as in turbulence and finance. This papers studies the connection betwe...... ambit processes and solutions to stochastic partial differential equations. We investigate this relationship from two angles: from the Walsh theory of martingale measures and from the viewpoint of the Lévy noise analysis....

  4. A Fractionally Integrated Wishart Stochastic Volatility Model

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2013-01-01

    textabstractThere has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous time fractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of

  5. Transport properties of stochastic Lorentz models

    NARCIS (Netherlands)

    Beijeren, H. van

    Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle makes instantaneous jumps between scatterers after a stochastically distributed

  6. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  7. Modelling and predicting electricity consumption in Spain using the stochastic Gamma diffusion process with exogenous factors

    International Nuclear Information System (INIS)

    Nafidi, A.; Gutiérrez, R.; Gutiérrez-Sánchez, R.; Ramos-Ábalos, E.; El Hachimi, S.

    2016-01-01

    The aim of this study is to model electric power consumption during a period of economic crisis, characterised by declining gross domestic product. A novel aspect of this study is its use of a Gamma-type diffusion process for short and medium-term forecasting – other techniques that have been used to describe such consumption patterns are not valid in this situation. In this study, we consider a new extension of the stochastic Gamma diffusion process by introducing time functions (exogenous factors) that affect its trend. This extension is defined in terms of Kolmogorov backward and forward equations. After obtaining the transition probability density function and the moments (specifically, the trend function), the inference on the process parameters is obtained by discrete sampling of the sample paths. Finally, this stochastic process is applied to model total net electricity consumption in Spain, when affected by the following set of exogenous factors: Gross Domestic Product (GDP), Gross Fixed Capital Formation (GFCF) and Final Domestic Consumption (FDC). - Highlights: • The aim is modelling and predicting electricity consumption in Spain. • We propose a Gamma-type diffusion process for short and medium-term forecasting. • We compared the fit using diffusion processes with different exogenous factors.

  8. Rapid core field variations during the satellite era: Investigations using stochastic process based field models

    DEFF Research Database (Denmark)

    Finlay, Chris; Olsen, Nils; Gillet, Nicolas

    We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to tradition...... physical hypotheses can be tested by asking questions of the entire ensemble of core field models, rather than by interpreting any single model.......We present a new ensemble of time-dependent magnetic field models constructed from satellite and observatory data spanning 1997-2013 that are compatible with prior information concerning the temporal spectrum of core field variations. These models allow sharper field changes compared to traditional...... regularization methods based on minimizing the square of second or third time derivative. We invert satellite and observatory data directly by adopting the external field and crustal field modelling framework of the CHAOS model, but apply the stochastic process method of Gillet et al. (2013) to the core field...

  9. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  10. Stochastic light-cone CTMRG: a new DMRG approach to stochastic models 02.50.Ey Stochastic processes; 64.60.Ht Dynamic critical phenomena; 02.70.-c Computational techniques; 05.10.Cc Renormalization group methods;

    CERN Document Server

    Kemper, A; Nishino, T; Schadschneider, A; Zittartz, J

    2003-01-01

    We develop a new variant of the recently introduced stochastic transfer matrix DMRG which we call stochastic light-cone corner-transfer-matrix DMRG (LCTMRG). It is a numerical method to compute dynamic properties of one-dimensional stochastic processes. As suggested by its name, the LCTMRG is a modification of the corner-transfer-matrix DMRG, adjusted by an additional causality argument. As an example, two reaction-diffusion models, the diffusion-annihilation process and the branch-fusion process are studied and compared with exact data and Monte Carlo simulations to estimate the capability and accuracy of the new method. The number of possible Trotter steps of more than 10 sup 5 shows a considerable improvement on the old stochastic TMRG algorithm.

  11. Stochastic processes and filtering theory

    CERN Document Server

    Jazwinski, Andrew H

    1970-01-01

    This unified treatment of linear and nonlinear filtering theory presents material previously available only in journals, and in terms accessible to engineering students. Its sole prerequisites are advanced calculus, the theory of ordinary differential equations, and matrix analysis. Although theory is emphasized, the text discusses numerous practical applications as well.Taking the state-space approach to filtering, this text models dynamical systems by finite-dimensional Markov processes, outputs of stochastic difference, and differential equations. Starting with background material on probab

  12. Stochastic and Deterministic Models for the Metastatic Emission Process: Formalisms and Crosslinks.

    Science.gov (United States)

    Gomez, Christophe; Hartung, Niklas

    2018-01-01

    Although the detection of metastases radically changes prognosis of and treatment decisions for a cancer patient, clinically undetectable micrometastases hamper a consistent classification into localized or metastatic disease. This chapter discusses mathematical modeling efforts that could help to estimate the metastatic risk in such a situation. We focus on two approaches: (1) a stochastic framework describing metastatic emission events at random times, formalized via Poisson processes, and (2) a deterministic framework describing the micrometastatic state through a size-structured density function in a partial differential equation model. Three aspects are addressed in this chapter. First, a motivation for the Poisson process framework is presented and modeling hypotheses and mechanisms are introduced. Second, we extend the Poisson model to account for secondary metastatic emission. Third, we highlight an inherent crosslink between the stochastic and deterministic frameworks and discuss its implications. For increased accessibility the chapter is split into an informal presentation of the results using a minimum of mathematical formalism and a rigorous mathematical treatment for more theoretically interested readers.

  13. Modeling delay in genetic networks: from delay birth-death processes to delay stochastic differential equations.

    Science.gov (United States)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Bennett, Matthew R; Josić, Krešimir; Ott, William

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  14. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Bennett, Matthew R. [Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77204, USA and Institute of Biosciences and Bioengineering, Rice University, Houston, Texas 77005 (United States); Josić, Krešimir [Department of Mathematics, University of Houston, Houston, Texas 77004 (United States); Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204 (United States)

    2014-05-28

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.

  15. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    International Nuclear Information System (INIS)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert; Ott, William; Bennett, Matthew R.; Josić, Krešimir

    2014-01-01

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemical Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay

  16. Stochastic Interest Model Based on Compound Poisson Process and Applications in Actuarial Science

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2017-01-01

    Full Text Available Considering stochastic behavior of interest rates in financial market, we construct a new class of interest models based on compound Poisson process. Different from the references, this paper describes the randomness of interest rates by modeling the force of interest with Poisson random jumps directly. To solve the problem in calculation of accumulated interest force function, one important integral technique is employed. And a conception called the critical value is introduced to investigate the validity condition of this new model. We also discuss actuarial present values of several life annuities under this new interest model. Simulations are done to illustrate the theoretical results and the effect of parameters in interest model on actuarial present values is also analyzed.

  17. Monitoring and pollution control: A stochastic process approach to model oil spills

    International Nuclear Information System (INIS)

    Viladrich-Grau, M.

    1991-01-01

    The first chapter analyzes the behavior of a firm in an environment with pollution externalities and technological progress. It is assumed that firms may not purposely violate the pollution control regulations but nonetheless, generate some pollution due to negligence. The model allows firms two possible actions: either increase the level of treated waste or pay an expected penalty if illegal pollution is detected. The results of the first chapter show that in a world with pollution externalities, technological progress does not guarantee increases in the welfare level. The second chapter models the occurrence of an oil spill as a stochastic event. The stochastic model developed allows one to see how each step of the spilling process is affected by each policy measure and to compare the relative efficiency of different measures in reducing spills. The third chapter estimates the parameters that govern oil spill frequency and size distribution. The author models how these parameters depend on two pollution prevention measures: monitoring of transfer operations and assessment of penalties. He shows that these measures reduce the frequency of oil spills

  18. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    International Nuclear Information System (INIS)

    Lee, Kwang Ho; Roh, Myung Sub

    2013-01-01

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors

  19. The development of stochastic process modeling through risk analysis derived from scheduling of NPP project

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Ho; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2013-10-15

    There are so many different factors to consider when constructing a nuclear power plant successfully from planning to decommissioning. According to PMBOK, all projects have nine domains from a holistic project management perspective. They are equally important to all projects, however, this study focuses mostly on the processes required to manage timely completion of the project and conduct risk management. The overall objective of this study is to let you know what the risk analysis derived from scheduling of NPP project is, and understand how to implement the stochastic process modeling through risk management. Building the Nuclear Power Plant is required a great deal of time and fundamental knowledge related to all engineering. That means that integrated project scheduling management with so many activities is necessary and very important. Simulation techniques for scheduling of NPP project using Open Plan program, Crystal Ball program, and Minitab program can be useful tools for designing optimal schedule planning. Thus far, Open Plan and Monte Carlo programs have been used to calculate the critical path for scheduling network analysis. And also, Minitab program has been applied to monitor the scheduling risk. This approach to stochastic modeling through risk analysis of project activities is very useful for optimizing the schedules of activities using Critical Path Method and managing the scheduling control of NPP project. This study has shown new approach to optimal scheduling of NPP project, however, this does not consider the characteristic of activities according to the NPP site conditions. Hence, this study needs more research considering those factors.

  20. Modeling Stochastic Complexity in Complex Adaptive Systems: Non-Kolmogorov Probability and the Process Algebra Approach.

    Science.gov (United States)

    Sulis, William H

    2017-10-01

    Walter Freeman III pioneered the application of nonlinear dynamical systems theories and methodologies in his work on mesoscopic brain dynamics.Sadly, mainstream psychology and psychiatry still cling to linear correlation based data analysis techniques, which threaten to subvert the process of experimentation and theory building. In order to progress, it is necessary to develop tools capable of managing the stochastic complexity of complex biopsychosocial systems, which includes multilevel feedback relationships, nonlinear interactions, chaotic dynamics and adaptability. In addition, however, these systems exhibit intrinsic randomness, non-Gaussian probability distributions, non-stationarity, contextuality, and non-Kolmogorov probabilities, as well as the absence of mean and/or variance and conditional probabilities. These properties and their implications for statistical analysis are discussed. An alternative approach, the Process Algebra approach, is described. It is a generative model, capable of generating non-Kolmogorov probabilities. It has proven useful in addressing fundamental problems in quantum mechanics and in the modeling of developing psychosocial systems.

  1. Stochastic dynamical model of a growing citation network based on a self-exciting point process.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2012-08-31

    We put under experimental scrutiny the preferential attachment model that is commonly accepted as a generating mechanism of the scale-free complex networks. To this end we chose a citation network of physics papers and traced the citation history of 40,195 papers published in one year. Contrary to common belief, we find that the citation dynamics of the individual papers follows the superlinear preferential attachment, with the exponent α=1.25-1.3. Moreover, we show that the citation process cannot be described as a memoryless Markov chain since there is a substantial correlation between the present and recent citation rates of a paper. Based on our findings we construct a stochastic growth model of the citation network, perform numerical simulations based on this model and achieve an excellent agreement with the measured citation distributions.

  2. Stochastic modeling of stock price process induced from the conjugate heat equation

    Science.gov (United States)

    Paeng, Seong-Hun

    2015-02-01

    Currency can be considered as a ruler for values of commodities. Then the price is the measured value by the ruler. We can suppose that inflation and variation of exchange rate are caused by variation of the scale of the ruler. In geometry, variation of the scale means that the metric is time-dependent. The conjugate heat equation is the modified heat equation which satisfies the heat conservation law for the time-dependent metric space. We propose a new model of stock prices by using the stochastic process whose transition probability is determined by the kernel of the conjugate heat equation. Our model of stock prices shows how the volatility term is affected by inflation and exchange rate. This model modifies the Black-Scholes equation in light of inflation and exchange rate.

  3. Stochastic processes and quantum theory

    International Nuclear Information System (INIS)

    Klauder, J.R.

    1975-01-01

    The author analyses a variety of stochastic processes, namely real time diffusion phenomena, which are analogues of imaginary time quantum theory and convariant imaginary time quantum field theory. He elaborates some standard properties involving probability measures and stochastic variables and considers a simple class of examples. Finally he develops the fact that certain stochastic theories actually exhibit divergences that simulate those of covariant quantum field theory and presents examples of both renormaizable and unrenormalizable behavior. (V.J.C.)

  4. Stochastic modeling and analysis of telecoms networks

    CERN Document Server

    Decreusefond, Laurent

    2012-01-01

    This book addresses the stochastic modeling of telecommunication networks, introducing the main mathematical tools for that purpose, such as Markov processes, real and spatial point processes and stochastic recursions, and presenting a wide list of results on stability, performances and comparison of systems.The authors propose a comprehensive mathematical construction of the foundations of stochastic network theory: Markov chains, continuous time Markov chains are extensively studied using an original martingale-based approach. A complete presentation of stochastic recursions from an

  5. Stochastic Greybox Modeling for Control of an Alternating Activated Sludge Process

    DEFF Research Database (Denmark)

    Halvgaard, Rasmus Fogtmann; Vezzaro, Luca; Grum, M.

    We present a stochastic greybox model of a BioDenitro WWTP that can be used for short time horizon Model Predictive Control. The model is based on a simplified ASM1 model and takes model uncertainty in to account. It estimates unmeasured state variables in the system, e.g. the inlet concentration...

  6. Stochastic processes, slaves and supersymmetry

    International Nuclear Information System (INIS)

    Drummond, I T; Horgan, R R

    2012-01-01

    We extend the work of Tănase-Nicola and Kurchan on the structure of diffusion processes and the associated supersymmetry algebra by examining the responses of a simple statistical system to external disturbances of various kinds. We consider both the stochastic differential equations (SDEs) for the process and the associated diffusion equation. The influence of the disturbances can be understood by augmenting the original SDE with an equation for slave variables. The evolution of the slave variables describes the behaviour of line elements carried along in the stochastic flow. These line elements, together with the associated surface and volume elements constructed from them, provide the basis of the supersymmetry properties of the theory. For ease of visualization, and in order to emphasize a helpful electromagnetic analogy, we work in three dimensions. The results are all generalizable to higher dimensions and can be specialized to one and two dimensions. The electromagnetic analogy is a useful starting point for calculating asymptotic results at low temperature that can be compared with direct numerical evaluations. We also examine the problems that arise in a direct numerical simulation of the stochastic equation together with the slave equations. We pay special attention to the dependence of the slave variable statistics on temperature. We identify in specific models the critical temperature below which the slave variable distribution ceases to have a variance and consider the effect on estimates of susceptibilities. (paper)

  7. Leaf optical system modeled as a stochastic process. [solar radiation interaction with terrestrial vegetation

    Science.gov (United States)

    Tucker, C. J.; Garratt, M. W.

    1977-01-01

    A stochastic leaf radiation model based upon physical and physiological properties of dicot leaves has been developed. The model accurately predicts the absorbed, reflected, and transmitted radiation of normal incidence as a function of wavelength resulting from the leaf-irradiance interaction over the spectral interval of 0.40-2.50 micron. The leaf optical system has been represented as Markov process with a unique transition matrix at each 0.01-micron increment between 0.40 micron and 2.50 micron. Probabilities are calculated at every wavelength interval from leaf thickness, structure, pigment composition, and water content. Simulation results indicate that this approach gives accurate estimations of actual measured values for dicot leaf absorption, reflection, and transmission as a function of wavelength.

  8. Stochastic models of cell motility

    DEFF Research Database (Denmark)

    Gradinaru, Cristian

    2012-01-01

    Cell motility and migration are central to the development and maintenance of multicellular organisms, and errors during this process can lead to major diseases. Consequently, the mechanisms and phenomenology of cell motility are currently under intense study. In recent years, a new...... interdisciplinary field focusing on the study of biological processes at the nanoscale level, with a range of technological applications in medicine and biological research, has emerged. The work presented in this thesis is at the interface of cell biology, image processing, and stochastic modeling. The stochastic...... models introduced here are based on persistent random motion, which I apply to real-life studies of cell motility on flat and nanostructured surfaces. These models aim to predict the time-dependent position of cell centroids in a stochastic manner, and conversely determine directly from experimental...

  9. Stochastic Still Water Response Model

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2002-01-01

    In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model is...... out that an important parameter of the stochastic cargo field model is the mean number of containers delivered by each customer.......In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...... is to establish the stochastic load field conditional on a given draft and trim of the vessel. The model contributes to a realistic modelling of the stochastic load processes to be used in a reliability evaluation of the ship hull. Emphasis is given to container vessels. The formulation of the model for obtaining...

  10. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  11. Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes.

    Science.gov (United States)

    Sedwards, Sean; Mazza, Tommaso

    2007-10-15

    Compartments and membranes are the basis of cell topology and more than 30% of the human genome codes for membrane proteins. While it is possible to represent compartments and membrane proteins in a nominal way with many mathematical formalisms used in systems biology, few, if any, explicitly model the topology of the membranes themselves. Discrete stochastic simulation potentially offers the most accurate representation of cell dynamics. Since the details of every molecular interaction in a pathway are often not known, the relationship between chemical species in not necessarily best described at the lowest level, i.e. by mass action. Simulation is a form of computer-aided analysis, relying on human interpretation to derive meaning. To improve efficiency and gain meaning in an automatic way, it is necessary to have a formalism based on a model which has decidable properties. We present Cyto-Sim, a stochastic simulator of membrane-enclosed hierarchies of biochemical processes, where the membranes comprise an inner, outer and integral layer. The underlying model is based on formal language theory and has been shown to have decidable properties (Cavaliere and Sedwards, 2006), allowing formal analysis in addition to simulation. The simulator provides variable levels of abstraction via arbitrary chemical kinetics which link to ordinary differential equations. In addition to its compact native syntax, Cyto-Sim currently supports models described as Petri nets, can import all versions of SBML and can export SBML and MATLAB m-files. Cyto-Sim is available free, either as an applet or a stand-alone Java program via the web page (http://www.cosbi.eu/Rpty_Soft_CytoSim.php). Other versions can be made available upon request.

  12. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2012-01-01

    This book provides a unique and balanced approach to probability, statistics, and stochastic processes.   Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area.  The Second Edition features new coverage of analysis of variance (ANOVA), consistency and efficiency of estimators, asymptotic theory for maximum likelihood estimators, empirical distribution function and the Kolmogorov-Smirnov test, general linear models, multiple comparisons, Markov chain Monte Carlo (MCMC), Brownian motion, martingales, and

  13. Using stochastic language models (SLM) to map lexical, syntactic, and phonological information processing in the brain.

    Science.gov (United States)

    Lopopolo, Alessandro; Frank, Stefan L; van den Bosch, Antal; Willems, Roel M

    2017-01-01

    Language comprehension involves the simultaneous processing of information at the phonological, syntactic, and lexical level. We track these three distinct streams of information in the brain by using stochastic measures derived from computational language models to detect neural correlates of phoneme, part-of-speech, and word processing in an fMRI experiment. Probabilistic language models have proven to be useful tools for studying how language is processed as a sequence of symbols unfolding in time. Conditional probabilities between sequences of words are at the basis of probabilistic measures such as surprisal and perplexity which have been successfully used as predictors of several behavioural and neural correlates of sentence processing. Here we computed perplexity from sequences of words and their parts of speech, and their phonemic transcriptions. Brain activity time-locked to each word is regressed on the three model-derived measures. We observe that the brain keeps track of the statistical structure of lexical, syntactic and phonological information in distinct areas.

  14. Space-time-modulated stochastic processes

    Science.gov (United States)

    Giona, Massimiliano

    2017-10-01

    Starting from the physical problem associated with the Lorentzian transformation of a Poisson-Kac process in inertial frames, the concept of space-time-modulated stochastic processes is introduced for processes possessing finite propagation velocity. This class of stochastic processes provides a two-way coupling between the stochastic perturbation acting on a physical observable and the evolution of the physical observable itself, which in turn influences the statistical properties of the stochastic perturbation during its evolution. The definition of space-time-modulated processes requires the introduction of two functions: a nonlinear amplitude modulation, controlling the intensity of the stochastic perturbation, and a time-horizon function, which modulates its statistical properties, providing irreducible feedback between the stochastic perturbation and the physical observable influenced by it. The latter property is the peculiar fingerprint of this class of models that makes them suitable for extension to generic curved-space times. Considering Poisson-Kac processes as prototypical examples of stochastic processes possessing finite propagation velocity, the balance equations for the probability density functions associated with their space-time modulations are derived. Several examples highlighting the peculiarities of space-time-modulated processes are thoroughly analyzed.

  15. Stochastic modelling of turbulence

    DEFF Research Database (Denmark)

    Sørensen, Emil Hedevang Lohse

    previously been shown to be closely connected to the energy dissipation. The incorporation of the small scale dynamics into the spatial model opens the door to a fully fledged stochastic model of turbulence. Concerning the interaction of wind and wind turbine, a new method is proposed to extract wind turbine...

  16. Stochastic Control - External Models

    DEFF Research Database (Denmark)

    Poulsen, Niels Kjølstad

    2005-01-01

    This note is devoted to control of stochastic systems described in discrete time. We are concerned with external descriptions or transfer function model, where we have a dynamic model for the input output relation only (i.e.. no direct internal information). The methods are based on LTI systems...

  17. A Family of Poisson Processes for Use in Stochastic Models of Precipitation

    Science.gov (United States)

    Penland, C.

    2013-12-01

    Both modified Poisson processes and compound Poisson processes can be relevant to stochastic parameterization of precipitation. This presentation compares the dynamical properties of these systems and discusses the physical situations in which each might be appropriate. If the parameters describing either class of systems originate in hydrodynamics, then proper consideration of stochastic calculus is required during numerical implementation of the parameterization. It is shown here that an improper numerical treatment can have severe implications for estimating rainfall distributions, particularly in the tails of the distributions and, thus, on the frequency of extreme events.

  18. Modelling and performance analysis of clinical pathways using the stochastic process algebra PEPA.

    Science.gov (United States)

    Yang, Xian; Han, Rui; Guo, Yike; Bradley, Jeremy; Cox, Benita; Dickinson, Robert; Kitney, Richard

    2012-01-01

    Hospitals nowadays have to serve numerous patients with limited medical staff and equipment while maintaining healthcare quality. Clinical pathway informatics is regarded as an efficient way to solve a series of hospital challenges. To date, conventional research lacks a mathematical model to describe clinical pathways. Existing vague descriptions cannot fully capture the complexities accurately in clinical pathways and hinders the effective management and further optimization of clinical pathways. Given this motivation, this paper presents a clinical pathway management platform, the Imperial Clinical Pathway Analyzer (ICPA). By extending the stochastic model performance evaluation process algebra (PEPA), ICPA introduces a clinical-pathway-specific model: clinical pathway PEPA (CPP). ICPA can simulate stochastic behaviours of a clinical pathway by extracting information from public clinical databases and other related documents using CPP. Thus, the performance of this clinical pathway, including its throughput, resource utilisation and passage time can be quantitatively analysed. A typical clinical pathway on stroke extracted from a UK hospital is used to illustrate the effectiveness of ICPA. Three application scenarios are tested using ICPA: 1) redundant resources are identified and removed, thus the number of patients being served is maintained with less cost; 2) the patient passage time is estimated, providing the likelihood that patients can leave hospital within a specific period; 3) the maximum number of input patients are found, helping hospitals to decide whether they can serve more patients with the existing resource allocation. ICPA is an effective platform for clinical pathway management: 1) ICPA can describe a variety of components (state, activity, resource and constraints) in a clinical pathway, thus facilitating the proper understanding of complexities involved in it; 2) ICPA supports the performance analysis of clinical pathway, thereby assisting

  19. Modeling and identification of ARMG models for stochastic processes: application to on-line computation of the power spectral density

    International Nuclear Information System (INIS)

    Zwingelstein, Gilles; Thabet, Gabriel.

    1977-01-01

    Control algorithms for components of nuclear power plants are currently based on external diagnostic methods. Modeling and identification techniques for autoregressive moving average models (ARMA) for stochastic processes are described. The identified models provide a means of estimating the power spectral density with improved accuracy and computer time compared with the classical methods. They are particularly will suited for on-line estimation of the power spectral density. The observable stochastic process y (t) is modeled assuming that it is the output of a linear filter driven by Gaussian while noise w (t). Two identification schemes were tested to find the orders m and n of the ARMA (m,n) models and to estimate the parameters of the recursion equation relating the input and output signals. The first scheme consists in transforming the ARMA model to an autoregressive model. The parameters of this AR model are obtained using least squares estimation techniques. The second scheme consists in finding the parameters of the ARMA by nonlinear programming techniques. The power spectral density of y(t) is instantaneously deduced from these ARMA models [fr

  20. Statistical inference for stochastic processes

    National Research Council Canada - National Science Library

    Basawa, Ishwar V; Prakasa Rao, B. L. S

    1980-01-01

    The aim of this monograph is to attempt to reduce the gap between theory and applications in the area of stochastic modelling, by directing the interest of future researchers to the inference aspects...

  1. Modeling Aggregation Processes of Lennard-Jones particles Via Stochastic Networks

    Science.gov (United States)

    Forman, Yakir; Cameron, Maria

    2017-07-01

    We model an isothermal aggregation process of particles/atoms interacting according to the Lennard-Jones pair potential by mapping the energy landscapes of each cluster size N onto stochastic networks, computing transition probabilities from the network for an N-particle cluster to the one for N+1, and connecting these networks into a single joint network. The attachment rate is a control parameter. The resulting network representing the aggregation of up to 14 particles contains 6427 vertices. It is not only time-irreversible but also reducible. To analyze its transient dynamics, we introduce the sequence of the expected initial and pre-attachment distributions and compute them for a wide range of attachment rates and three values of temperature. As a result, we find the configurations most likely to be observed in the process of aggregation for each cluster size. We examine the attachment process and conduct a structural analysis of the sets of local energy minima for every cluster size. We show that both processes taking place in the network, attachment and relaxation, lead to the dominance of icosahedral packing in small (up to 14 atom) clusters.

  2. Rainfall Stochastic models

    Science.gov (United States)

    Campo, M. A.; Lopez, J. J.; Rebole, J. P.

    2012-04-01

    This work was carried out in north of Spain. San Sebastian A meteorological station, where there are available precipitation records every ten minutes was selected. Precipitation data covers from October of 1927 to September of 1997. Pulse models describe the temporal process of rainfall as a succession of rainy cells, main storm, whose origins are distributed in time according to a Poisson process and a secondary process that generates a random number of cells of rain within each storm. Among different pulse models, the Bartlett-Lewis was used. On the other hand, alternative renewal processes and Markov chains describe the way in which the process will evolve in the future depending only on the current state. Therefore they are nor dependant on past events. Two basic processes are considered when describing the occurrence of rain: the alternation of wet and dry periods and temporal distribution of rainfall in each rain event, which determines the rainwater collected in each of the intervals that make up the rain. This allows the introduction of alternative renewal processes and Markov chains of three states, where interstorm time is given by either of the two dry states, short or long. Thus, the stochastic model of Markov chains tries to reproduce the basis of pulse models: the succession of storms, each one composed for a series of rain, separated by a short interval of time without theoretical complexity of these. In a first step, we analyzed all variables involved in the sequential process of the rain: rain event duration, event duration of non-rain, average rainfall intensity in rain events, and finally, temporal distribution of rainfall within the rain event. Additionally, for pulse Bartlett-Lewis model calibration, main descriptive statistics were calculated for each month, considering the process of seasonal rainfall in each month. In a second step, both models were calibrated. Finally, synthetic series were simulated with calibration parameters; series

  3. Stochastic Volatility and DSGE Models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller

    This paper argues that a specification of stochastic volatility commonly used to analyze the Great Moderation in DSGE models may not be appropriate, because the level of a process with this specification does not have conditional or unconditional moments. This is unfortunate because agents may...

  4. A stochastic process model for life cycle cost analysis of nuclear power plant systems

    NARCIS (Netherlands)

    Van der Weide, J.A.M.; Pandey, M.D.

    2013-01-01

    The paper presents a general stochastic model to analyze the life cycle cost of an engineering system that is affected by minor but repairable failures interrupting the operation and a major failure that would require the replacement or renewal of the failed system. It is commonly observed that the

  5. A stochastic post-processing method for solar irradiance forecasts derived from NWPs models

    Science.gov (United States)

    Lara-Fanego, V.; Pozo-Vazquez, D.; Ruiz-Arias, J. A.; Santos-Alamillos, F. J.; Tovar-Pescador, J.

    2010-09-01

    Solar irradiance forecast is an important area of research for the future of the solar-based renewable energy systems. Numerical Weather Prediction models (NWPs) have proved to be a valuable tool for solar irradiance forecasting with lead time up to a few days. Nevertheless, these models show low skill in forecasting the solar irradiance under cloudy conditions. Additionally, climatic (averaged over seasons) aerosol loading are usually considered in these models, leading to considerable errors for the Direct Normal Irradiance (DNI) forecasts during high aerosols load conditions. In this work we propose a post-processing method for the Global Irradiance (GHI) and DNI forecasts derived from NWPs. Particularly, the methods is based on the use of Autoregressive Moving Average with External Explanatory Variables (ARMAX) stochastic models. These models are applied to the residuals of the NWPs forecasts and uses as external variables the measured cloud fraction and aerosol loading of the day previous to the forecast. The method is evaluated for a set one-moth length three-days-ahead forecast of the GHI and DNI, obtained based on the WRF mesoscale atmospheric model, for several locations in Andalusia (Southern Spain). The Cloud fraction is derived from MSG satellite estimates and the aerosol loading from the MODIS platform estimates. Both sources of information are readily available at the time of the forecast. Results showed a considerable improvement of the forecasting skill of the WRF model using the proposed post-processing method. Particularly, relative improvement (in terms of the RMSE) for the DNI during summer is about 20%. A similar value is obtained for the GHI during the winter.

  6. An introduction to probability and stochastic processes

    CERN Document Server

    Melsa, James L

    2013-01-01

    Geared toward college seniors and first-year graduate students, this text is designed for a one-semester course in probability and stochastic processes. Topics covered in detail include probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.

  7. A stochastic model of multiple scattering of charged particles: process, transport equation and solutions

    International Nuclear Information System (INIS)

    Papiez, L.; Moskvin, V.; Tulovsky, V.

    2001-01-01

    The process of angular-spatial evolution of multiple scattering of charged particles can be described by a special case of Boltzmann integro-differential equation called Lewis equation. The underlying stochastic process for this evolution is the compound Poisson process on the surface of the unit sphere. The significant portion of events that constitute compound Poisson process that describes multiple scattering have diffusional character. This property allows to analyze the process of angular-spatial evolution of multiple scattering of charged particles as combination of soft and hard collision processes and compute appropriately its transition densities. These computations provide a method of the approximate solution to the Lewis equation. (orig.)

  8. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan; Al-Shedivat, Maruan; Salama, Khaled N.

    2015-01-01

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  9. Stochasticity Modeling in Memristors

    KAUST Repository

    Naous, Rawan

    2015-10-26

    Diverse models have been proposed over the past years to explain the exhibiting behavior of memristors, the fourth fundamental circuit element. The models varied in complexity ranging from a description of physical mechanisms to a more generalized mathematical modeling. Nonetheless, stochasticity, a widespread observed phenomenon, has been immensely overlooked from the modeling perspective. This inherent variability within the operation of the memristor is a vital feature for the integration of this nonlinear device into the stochastic electronics realm of study. In this paper, experimentally observed innate stochasticity is modeled in a circuit compatible format. The model proposed is generic and could be incorporated into variants of threshold-based memristor models in which apparent variations in the output hysteresis convey the switching threshold shift. Further application as a noise injection alternative paves the way for novel approaches in the fields of neuromorphic engineering circuits design. On the other hand, extra caution needs to be paid to variability intolerant digital designs based on non-deterministic memristor logic.

  10. Applied probability and stochastic processes

    CERN Document Server

    Sumita, Ushio

    1999-01-01

    Applied Probability and Stochastic Processes is an edited work written in honor of Julien Keilson. This volume has attracted a host of scholars in applied probability, who have made major contributions to the field, and have written survey and state-of-the-art papers on a variety of applied probability topics, including, but not limited to: perturbation method, time reversible Markov chains, Poisson processes, Brownian techniques, Bayesian probability, optimal quality control, Markov decision processes, random matrices, queueing theory and a variety of applications of stochastic processes. The book has a mixture of theoretical, algorithmic, and application chapters providing examples of the cutting-edge work that Professor Keilson has done or influenced over the course of his highly-productive and energetic career in applied probability and stochastic processes. The book will be of interest to academic researchers, students, and industrial practitioners who seek to use the mathematics of applied probability i...

  11. Doubly stochastic Poisson processes in artificial neural learning.

    Science.gov (United States)

    Card, H C

    1998-01-01

    This paper investigates neuron activation statistics in artificial neural networks employing stochastic arithmetic. It is shown that a doubly stochastic Poisson process is an appropriate model for the signals in these circuits.

  12. Stochastic Mixed-Effects Parameters Bertalanffy Process, with Applications to Tree Crown Width Modeling

    Directory of Open Access Journals (Sweden)

    Petras Rupšys

    2015-01-01

    Full Text Available A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results than the deterministic approaches. We examine tree crown width dynamic with the Bertalanffy type stochastic differential equation (SDE and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals. We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects parameters. All results were implemented in a symbolic algebra system MAPLE.

  13. Identifiability in stochastic models

    CERN Document Server

    1992-01-01

    The problem of identifiability is basic to all statistical methods and data analysis, occurring in such diverse areas as Reliability Theory, Survival Analysis, and Econometrics, where stochastic modeling is widely used. Mathematics dealing with identifiability per se is closely related to the so-called branch of ""characterization problems"" in Probability Theory. This book brings together relevant material on identifiability as it occurs in these diverse fields.

  14. Probability, Statistics, and Stochastic Processes

    CERN Document Server

    Olofsson, Peter

    2011-01-01

    A mathematical and intuitive approach to probability, statistics, and stochastic processes This textbook provides a unique, balanced approach to probability, statistics, and stochastic processes. Readers gain a solid foundation in all three fields that serves as a stepping stone to more advanced investigations into each area. This text combines a rigorous, calculus-based development of theory with a more intuitive approach that appeals to readers' sense of reason and logic, an approach developed through the author's many years of classroom experience. The text begins with three chapters that d

  15. Applied stochastic modelling

    CERN Document Server

    Morgan, Byron JT; Tanner, Martin Abba; Carlin, Bradley P

    2008-01-01

    Introduction and Examples Introduction Examples of data sets Basic Model Fitting Introduction Maximum-likelihood estimation for a geometric model Maximum-likelihood for the beta-geometric model Modelling polyspermy Which model? What is a model for? Mechanistic models Function Optimisation Introduction MATLAB: graphs and finite differences Deterministic search methods Stochastic search methods Accuracy and a hybrid approach Basic Likelihood ToolsIntroduction Estimating standard errors and correlations Looking at surfaces: profile log-likelihoods Confidence regions from profiles Hypothesis testing in model selectionScore and Wald tests Classical goodness of fit Model selection biasGeneral Principles Introduction Parameterisation Parameter redundancy Boundary estimates Regression and influence The EM algorithm Alternative methods of model fitting Non-regular problemsSimulation Techniques Introduction Simulating random variables Integral estimation Verification Monte Carlo inference Estimating sampling distributi...

  16. Stochastic ontogenetic growth model

    Science.gov (United States)

    West, B. J.; West, D.

    2012-02-01

    An ontogenetic growth model (OGM) for a thermodynamically closed system is generalized to satisfy both the first and second law of thermodynamics. The hypothesized stochastic ontogenetic growth model (SOGM) is shown to entail the interspecies allometry relation by explicitly averaging the basal metabolic rate and the total body mass over the steady-state probability density for the total body mass (TBM). This is the first derivation of the interspecies metabolic allometric relation from a dynamical model and the asymptotic steady-state distribution of the TBM is fit to data and shown to be inverse power law.

  17. Stochastic modeling of catalytic processes in nanoporous materials: Beyond mean-field approach

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Andres [Iowa State Univ., Ames, IA (United States)

    2017-08-05

    Transport and reaction in zeolites and other porous materials, such as mesoporous silica particles, has been a focus of interest in recent years. This is in part due to the possibility of anomalous transport effects (e.g. single-file diffusion) and its impact in the reaction yield in catalytic processes. Computational simulations are often used to study these complex nonequilibrium systems. Computer simulations using Molecular Dynamics (MD) techniques are prohibitive, so instead coarse grained one-dimensional models with the aid of Kinetic Monte Carlo (KMC) simulations are used. Both techniques can be computationally expensive, both time and resource wise. These coarse-grained systems can be exactly described by a set of coupled stochastic master equations, that describe the reaction-diffusion kinetics of the system. The equations can be written exactly, however, coupling between the equations and terms within the equations make it impossible to solve them exactly; approximations must be made. One of the most common methods to obtain approximate solutions is to use Mean Field (MF) theory. MF treatments yield reasonable results at high ratios of reaction rate k to hop rate h of the particles, but fail completely at low k=h due to the over-estimation of fluxes of particles within the pore. We develop a method to estimate fluxes and intrapore diffusivity in simple one- dimensional reaction-diffusion models at high and low k=h, where the pores are coupled to an equilibrated three-dimensional fluid. We thus successfully describe analytically these simple reaction-diffusion one-dimensional systems. Extensions to models considering behavior with long range steric interactions and wider pores require determination of multiple boundary conditions. We give a prescription to estimate the required parameters for these simulations. For one dimensional systems, if single-file diffusion is relaxed, additional parameters to describe particle exchange have to be introduced. We use

  18. Two-boundary first exit time of Gauss-Markov processes for stochastic modeling of acto-myosin dynamics.

    Science.gov (United States)

    D'Onofrio, Giuseppe; Pirozzi, Enrica

    2017-05-01

    We consider a stochastic differential equation in a strip, with coefficients suitably chosen to describe the acto-myosin interaction subject to time-varying forces. By simulating trajectories of the stochastic dynamics via an Euler discretization-based algorithm, we fit experimental data and determine the values of involved parameters. The steps of the myosin are represented by the exit events from the strip. Motivated by these results, we propose a specific stochastic model based on the corresponding time-inhomogeneous Gauss-Markov and diffusion process evolving between two absorbing boundaries. We specify the mean and covariance functions of the stochastic modeling process taking into account time-dependent forces including the effect of an external load. We accurately determine the probability density function (pdf) of the first exit time (FET) from the strip by solving a system of two non singular second-type Volterra integral equations via a numerical quadrature. We provide numerical estimations of the mean of FET as approximations of the dwell-time of the proteins dynamics. The percentage of backward steps is given in agreement to experimental data. Numerical and simulation results are compared and discussed.

  19. CAM Stochastic Volatility Model for Option Pricing

    Directory of Open Access Journals (Sweden)

    Wanwan Huang

    2016-01-01

    Full Text Available The coupled additive and multiplicative (CAM noises model is a stochastic volatility model for derivative pricing. Unlike the other stochastic volatility models in the literature, the CAM model uses two Brownian motions, one multiplicative and one additive, to model the volatility process. We provide empirical evidence that suggests a nontrivial relationship between the kurtosis and skewness of asset prices and that the CAM model is able to capture this relationship, whereas the traditional stochastic volatility models cannot. We introduce a control variate method and Monte Carlo estimators for some of the sensitivities (Greeks of the model. We also derive an approximation for the characteristic function of the model.

  20. The dynamics of stochastic processes

    DEFF Research Database (Denmark)

    Basse-O'Connor, Andreas

    In the present thesis the dynamics of stochastic processes is studied with a special attention to the semimartingale property. This is mainly motivated by the fact that semimartingales provide the class of the processes for which it is possible to define a reasonable stochastic calculus due...... to the Bichteler-Dellacherie Theorem. The semimartingale property of Gaussian processes is characterized in terms of their covariance function, spectral measure and spectral representation. In addition, representation and expansion of filtration results are provided as well. Special attention is given to moving...... average processes, and when the driving process is a Lévy or a chaos process the semimartingale property is characterized in the filtration spanned by the driving process and in the natural filtration when the latter is a Brownian motion. To obtain some of the above results an integrability of seminorm...

  1. Is human failure a stochastic process?

    International Nuclear Information System (INIS)

    Dougherty, Ed M.

    1997-01-01

    Human performance results in failure events that occur with a risk-significant frequency. System analysts have taken for granted the random (stochastic) nature of these events in engineering assessments such as risk assessment. However, cognitive scientists and error technologists, at least those who have interest in human reliability, have, over the recent years, claimed that human error does not need this stochastic framework. Yet they still use the language appropriate to stochastic processes. This paper examines the potential for the stochastic nature of human failure production as the basis for human reliability analysis. It distinguishes and leaves to others, however, the epistemic uncertainties over the possible probability models for the real variability of human performance

  2. Topological superposition of abstractions of stochastic processes

    NARCIS (Netherlands)

    Bujorianu, L.M.; Bujorianu, M.C.

    2008-01-01

    In this paper, we present a sound integration mechanism for Markov processes that are abstractions of stochastic hybrid systems (SHS). In a previous work, we have defined a very general model of SHS and we proved that the realization of an SHS is a Markov process. Moreover, we have developed a

  3. Distance covariance for stochastic processes

    DEFF Research Database (Denmark)

    Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

    2017-01-01

    The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

  4. On the stability and dynamics of stochastic spiking neuron models: Nonlinear Hawkes process and point process GLMs.

    Science.gov (United States)

    Gerhard, Felipe; Deger, Moritz; Truccolo, Wilson

    2017-02-01

    Point process generalized linear models (PP-GLMs) provide an important statistical framework for modeling spiking activity in single-neurons and neuronal networks. Stochastic stability is essential when sampling from these models, as done in computational neuroscience to analyze statistical properties of neuronal dynamics and in neuro-engineering to implement closed-loop applications. Here we show, however, that despite passing common goodness-of-fit tests, PP-GLMs estimated from data are often unstable, leading to divergent firing rates. The inclusion of absolute refractory periods is not a satisfactory solution since the activity then typically settles into unphysiological rates. To address these issues, we derive a framework for determining the existence and stability of fixed points of the expected conditional intensity function (CIF) for general PP-GLMs. Specifically, in nonlinear Hawkes PP-GLMs, the CIF is expressed as a function of the previous spike history and exogenous inputs. We use a mean-field quasi-renewal (QR) approximation that decomposes spike history effects into the contribution of the last spike and an average of the CIF over all spike histories prior to the last spike. Fixed points for stationary rates are derived as self-consistent solutions of integral equations. Bifurcation analysis and the number of fixed points predict that the original models can show stable, divergent, and metastable (fragile) dynamics. For fragile models, fluctuations of the single-neuron dynamics predict expected divergence times after which rates approach unphysiologically high values. This metric can be used to estimate the probability of rates to remain physiological for given time periods, e.g., for simulation purposes. We demonstrate the use of the stability framework using simulated single-neuron examples and neurophysiological recordings. Finally, we show how to adapt PP-GLM estimation procedures to guarantee model stability. Overall, our results provide a

  5. Stochastic Processes in Epidemic Theory

    CERN Document Server

    Lefèvre, Claude; Picard, Philippe

    1990-01-01

    This collection of papers gives a representative cross-selectional view of recent developments in the field. After a survey paper by C. Lefèvre, 17 other research papers look at stochastic modeling of epidemics, both from a theoretical and a statistical point of view. Some look more specifically at a particular disease such as AIDS, malaria, schistosomiasis and diabetes.

  6. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    Science.gov (United States)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  7. Stochastic quantization for the axial model

    International Nuclear Information System (INIS)

    Farina, C.; Montani, H.; Albuquerque, L.C.

    1991-01-01

    We use bosonization ideas to solve the axial model in the stochastic quantization framework. We obtain the fermion propagator of the theory decoupling directly the Langevin equation, instead of the Fokker-Planck equation. In the Appendix we calculate explicitly the anomalous divergence of the axial-vector current by using a regularization that does not break the Markovian character of the stochastic process

  8. Introduction to stochastic processes

    CERN Document Server

    Cinlar, Erhan

    2013-01-01

    Clear presentation employs methods that recognize computer-related aspects of theory. Topics include expectations and independence, Bernoulli processes and sums of independent random variables, Markov chains, renewal theory, more. 1975 edition.

  9. Lectures on Topics in Spatial Stochastic Processes

    CERN Document Server

    Capasso, Vincenzo; Ivanoff, B Gail; Dozzi, Marco; Dalang, Robert C; Mountford, Thomas S

    2003-01-01

    The theory of stochastic processes indexed by a partially ordered set has been the subject of much research over the past twenty years. The objective of this CIME International Summer School was to bring to a large audience of young probabilists the general theory of spatial processes, including the theory of set-indexed martingales and to present the different branches of applications of this theory, including stochastic geometry, spatial statistics, empirical processes, spatial estimators and survival analysis. This theory has a broad variety of applications in environmental sciences, social sciences, structure of material and image analysis. In this volume, the reader will find different approaches which foster the development of tools to modelling the spatial aspects of stochastic problems.

  10. Dynamical and hamiltonian dilations of stochastic processes

    International Nuclear Information System (INIS)

    Baumgartner, B.; Gruemm, H.-R.

    1982-01-01

    This is a study of the problem, which stochastic processes could arise from dynamical systems by loss of information. The notions of ''dilation'' and ''approximate dilation'' of a stochastic process are introduced to give exact definitions of this particular relationship. It is shown that every generalized stochastic process is approximately dilatable by a sequence of dynamical systems, but for stochastic processes in full generality one needs nets. (Author)

  11. Trickle or clumped infection process? A stochastic model for the infection process of the parasitic roundworm of humans, Ascaris lumbricoides.

    Science.gov (United States)

    Walker, Martin; Hall, Andrew; Basáñez, María-Gloria

    2010-10-01

    The importance of the mode of acquisition of infectious stages of directly-transmitted parasitic helminths has been acknowledged in population dynamics models; hosts may acquire eggs/larvae singly in a "trickle" type manner or in "clumps". Such models have shown that the mode of acquisition influences the distribution and dynamics of parasite loads, the stability of host-parasite systems and the rate of emergence of anthelmintic resistance, yet very few field studies have allowed these questions to be explored with empirical data. We have analysed individual worm weight data for the parasitic roundworm of humans, Ascaris lumbricoides, collected from a three-round chemo-expulsion study in Dhaka, Bangladesh, with the aim of discerning whether a trickle or a clumped infection process predominates. We found that hosts tend to harbour female worms of a similar weight, indicative of a clumped infection process, but acknowledged that unmeasured host heterogeneities (random effects) could not be completely excluded as a cause. Here, we complement our previous statistical analyses using a stochastic infection model to simulate sizes of individual A. lumbricoides infecting a population of humans. We use the intraclass correlation coefficient (ICC) as a quantitative measure of similarity among simulated worm sizes and explore the behaviour of this statistic under assumptions corresponding to trickle or clumped infections and unmeasured host heterogeneities. We confirm that both mechanisms are capable of generating aggregates of similar-sized worms, but that the particular pattern of ICCs described pre- and post-anthelmintic treatment in the data is more consistent with aggregation generated by clumped infections than by host heterogeneities alone. This provides support to the notion that worms may be acquired in clumps. We discuss our results in terms of the population biology of A. lumbricoides and highlight the significance of our modelling approach for the study of the

  12. Alternative Asymmetric Stochastic Volatility Models

    NARCIS (Netherlands)

    M. Asai (Manabu); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe stochastic volatility model usually incorporates asymmetric effects by introducing the negative correlation between the innovations in returns and volatility. In this paper, we propose a new asymmetric stochastic volatility model, based on the leverage and size effects. The model is

  13. Modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, Vidyadhar G

    2011-01-01

    Based on the author's more than 25 years of teaching experience, Modeling and Analysis of Stochastic Systems, Second Edition covers the most important classes of stochastic processes used in the modeling of diverse systems, from supply chains and inventory systems to genetics and biological systems. For each class of stochastic process, the text includes its definition, characterization, applications, transient and limiting behavior, first passage times, and cost/reward models. Along with reorganizing the material, this edition revises and adds new exercises and examples. New to the second edi

  14. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  15. Verification of Stochastic Process Calculi

    DEFF Research Database (Denmark)

    Skrypnyuk, Nataliya

    algorithms for constructing bisimulation relations, computing (overapproximations of) sets of reachable states and computing the expected time reachability, the last for a linear fragment of IMC. In all the cases we have the complexities of algorithms which are low polynomial in the size of the syntactic....... In support of this claim we have developed analysis methods that belong to a particular type of Static Analysis { Data Flow / Pathway Analysis. These methods have previously been applied to a number of non-stochastic process calculi. In this thesis we are lifting them to the stochastic calculus...... of Interactive Markov Chains (IMC). We have devised the Pathway Analysis of IMC that is not only correct in the sense of overapproximating all possible behaviour scenarios, as is usual for Static Analysis methods, but is also precise. This gives us the possibility to explicitly decide on the trade-o between...

  16. Numerical simulations of piecewise deterministic Markov processes with an application to the stochastic Hodgkin-Huxley model

    Science.gov (United States)

    Ding, Shaojie; Qian, Min; Qian, Hong; Zhang, Xuejuan

    2016-12-01

    The stochastic Hodgkin-Huxley model is one of the best-known examples of piecewise deterministic Markov processes (PDMPs), in which the electrical potential across a cell membrane, V(t), is coupled with a mesoscopic Markov jump process representing the stochastic opening and closing of ion channels embedded in the membrane. The rates of the channel kinetics, in turn, are voltage-dependent. Due to this interdependence, an accurate and efficient sampling of the time evolution of the hybrid stochastic systems has been challenging. The current exact simulation methods require solving a voltage-dependent hitting time problem for multiple path-dependent intensity functions with random thresholds. This paper proposes a simulation algorithm that approximates an alternative representation of the exact solution by fitting the log-survival function of the inter-jump dwell time, H(t), with a piecewise linear one. The latter uses interpolation points that are chosen according to the time evolution of the H(t), as the numerical solution to the coupled ordinary differential equations of V(t) and H(t). This computational method can be applied to all PDMPs. Pathwise convergence of the approximated sample trajectories to the exact solution is proven, and error estimates are provided. Comparison with a previous algorithm that is based on piecewise constant approximation is also presented.

  17. Electricity price modeling with stochastic time change

    International Nuclear Information System (INIS)

    Borovkova, Svetlana; Schmeck, Maren Diane

    2017-01-01

    In this paper, we develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. This technique allows us to incorporate the characteristic features of electricity prices (such as seasonal volatility, time varying mean reversion and seasonally occurring price spikes) into the model in an elegant and economically justifiable way. The stochastic time change introduces stochastic as well as deterministic (e.g., seasonal) features in the price process' volatility and in the jump component. We specify the base process as a mean reverting jump diffusion and the time change as an absolutely continuous stochastic process with seasonal component. The activity rate of the stochastic time change can be related to the factors that influence supply and demand. Here we use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change, and show that this choice leads to realistic price paths. We derive properties of the resulting price process and develop the model calibration procedure. We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths by Monte Carlo simulations. We show that the simulated price process matches the distributional characteristics of the observed electricity prices in periods of both high and low demand. - Highlights: • We develop a novel approach to electricity price modeling, based on the powerful technique of stochastic time change. • We incorporate the characteristic features of electricity prices, such as seasonal volatility and spikes into the model. • We use the temperature as a proxy for the demand and hence, as the driving factor of the stochastic time change • We derive properties of the resulting price process and develop the model calibration procedure. • We calibrate the model to the historical EEX power prices and apply it to generating realistic price paths.

  18. Mathematical statistics and stochastic processes

    CERN Document Server

    Bosq, Denis

    2013-01-01

    Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today's practitioners.Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and rob

  19. A stochastic model for the financial market with discontinuous prices

    Directory of Open Access Journals (Sweden)

    Leda D. Minkova

    1996-01-01

    Full Text Available This paper models some situations occurring in the financial market. The asset prices evolve according to a stochastic integral equation driven by a Gaussian martingale. A portfolio process is constrained in such a way that the wealth process covers some obligation. A solution to a linear stochastic integral equation is obtained in a class of cadlag stochastic processes.

  20. Modeling bias and variation in the stochastic processes of small RNA sequencing.

    Science.gov (United States)

    Argyropoulos, Christos; Etheridge, Alton; Sakhanenko, Nikita; Galas, David

    2017-06-20

    The use of RNA-seq as the preferred method for the discovery and validation of small RNA biomarkers has been hindered by high quantitative variability and biased sequence counts. In this paper we develop a statistical model for sequence counts that accounts for ligase bias and stochastic variation in sequence counts. This model implies a linear quadratic relation between the mean and variance of sequence counts. Using a large number of sequencing datasets, we demonstrate how one can use the generalized additive models for location, scale and shape (GAMLSS) distributional regression framework to calculate and apply empirical correction factors for ligase bias. Bias correction could remove more than 40% of the bias for miRNAs. Empirical bias correction factors appear to be nearly constant over at least one and up to four orders of magnitude of total RNA input and independent of sample composition. Using synthetic mixes of known composition, we show that the GAMLSS approach can analyze differential expression with greater accuracy, higher sensitivity and specificity than six existing algorithms (DESeq2, edgeR, EBSeq, limma, DSS, voom) for the analysis of small RNA-seq data. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. A software framework for process flow execution of stochastic multi-scale integrated models

    NARCIS (Netherlands)

    Schmitz, Oliver; de Kok, Jean Luc; Karssenberg, Derek

    2016-01-01

    Dynamic environmental models use a state transition function, external inputs and parameters to simulate the change of real-world processes over time. Modellers specify the state transition function and the external inputs required in the process calculation of each time step in a component model, a

  2. Stochastic Subspace Modelling of Turbulence

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.

    2009-01-01

    positive definite cross-spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modelling method is proposed which allows selection of an appropriate model order......, and estimation of a state space model for the vector turbulence process incorporating its phase spectrum in one stage, and its results are compared with a conventional ARMA modelling method.......Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...

  3. Stochastic interest model driven by compound Poisson process andBrownian motion with applications in life contingencies

    Directory of Open Access Journals (Sweden)

    Shilong Li

    2018-03-01

    Full Text Available In this paper, we introduce a class of stochastic interest model driven by a compoundPoisson process and a Brownian motion, in which the jumping times of force of interest obeyscompound Poisson process and the continuous tiny fluctuations are described by Brownian motion, andthe adjustment in each jump of interest force is assumed to be random. Based on the proposed interestmodel, we discuss the expected discounted function, the validity of the model and actuarial presentvalues of life annuities and life insurances under different parameters and distribution settings. Ournumerical results show actuarial values could be sensitive to the parameters and distribution settings,which shows the importance of introducing this kind interest model.

  4. Stochastic Models of Polymer Systems

    Science.gov (United States)

    2016-01-01

    Distribution Unlimited Final Report: Stochastic Models of Polymer Systems The views, opinions and/or findings contained in this report are those of the...ADDRESS. Princeton University PO Box 0036 87 Prospect Avenue - 2nd floor Princeton, NJ 08544 -2020 14-Mar-2014 ABSTRACT Number of Papers published in...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Stochastic Models of Polymer Systems Report Title

  5. Discrete stochastic processes and applications

    CERN Document Server

    Collet, Jean-François

    2018-01-01

    This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.

  6. Visualisation for Stochastic Process Algebras: The Graphic Truth

    DEFF Research Database (Denmark)

    Smith, Michael James Andrew; Gilmore, Stephen

    2011-01-01

    and stochastic activity networks provide an automaton-based view of the model, which may be easier to visualise, at the expense of portability. In this paper, we argue that we can achieve the benefits of both approaches by generating a graphical view of a stochastic process algebra model, which is synchronised...

  7. A stochastic model of hormesis

    International Nuclear Information System (INIS)

    Yakovlev, A.Yu.; Tsodikov, A.D.; Bass, L.

    1993-01-01

    In order to describe the life-prolonging effect of some agents that are harmful at higher doses, ionizing radiations in particular, a stochastic model is developed in terms of accumulation and progression of intracellular lesions caused by the environment and by the agent itself. The processes of lesion repair, operating at the molecular and cellular level, are assumed to be responsible for this hormesis effect within the framework of the proposed model. Properties of lifetime distributions, derived for analysis of animal experiments with prolonged and acute irradiation, are given special attention. The model provides efficient means of interpreting experimental findings, as evidenced by its application to analysis of some published data on the hormetic effects of prolonged irradiation and of procaine on animal longevity. 51 refs., 2 figs., 1 tabs

  8. Stochastic Modelling Of The Repairable System

    Directory of Open Access Journals (Sweden)

    Andrzejczak Karol

    2015-11-01

    Full Text Available All reliability models consisting of random time factors form stochastic processes. In this paper we recall the definitions of the most common point processes which are used for modelling of repairable systems. Particularly this paper presents stochastic processes as examples of reliability systems for the support of the maintenance related decisions. We consider the simplest one-unit system with a negligible repair or replacement time, i.e., the unit is operating and is repaired or replaced at failure, where the time required for repair and replacement is negligible. When the repair or replacement is completed, the unit becomes as good as new and resumes operation. The stochastic modelling of recoverable systems constitutes an excellent method of supporting maintenance related decision-making processes and enables their more rational use.

  9. Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency

    Science.gov (United States)

    Papalexiou, Simon Michael

    2018-05-01

    Hydroclimatic processes come in all "shapes and sizes". They are characterized by different spatiotemporal correlation structures and probability distributions that can be continuous, mixed-type, discrete or even binary. Simulating such processes by reproducing precisely their marginal distribution and linear correlation structure, including features like intermittency, can greatly improve hydrological analysis and design. Traditionally, modelling schemes are case specific and typically attempt to preserve few statistical moments providing inadequate and potentially risky distribution approximations. Here, a single framework is proposed that unifies, extends, and improves a general-purpose modelling strategy, based on the assumption that any process can emerge by transforming a specific "parent" Gaussian process. A novel mathematical representation of this scheme, introducing parametric correlation transformation functions, enables straightforward estimation of the parent-Gaussian process yielding the target process after the marginal back transformation, while it provides a general description that supersedes previous specific parameterizations, offering a simple, fast and efficient simulation procedure for every stationary process at any spatiotemporal scale. This framework, also applicable for cyclostationary and multivariate modelling, is augmented with flexible parametric correlation structures that parsimoniously describe observed correlations. Real-world simulations of various hydroclimatic processes with different correlation structures and marginals, such as precipitation, river discharge, wind speed, humidity, extreme events per year, etc., as well as a multivariate example, highlight the flexibility, advantages, and complete generality of the method.

  10. Stochastic Wake Modelling Based on POD Analysis

    Directory of Open Access Journals (Sweden)

    David Bastine

    2018-03-01

    Full Text Available In this work, large eddy simulation data is analysed to investigate a new stochastic modeling approach for the wake of a wind turbine. The data is generated by the large eddy simulation (LES model PALM combined with an actuator disk with rotation representing the turbine. After applying a proper orthogonal decomposition (POD, three different stochastic models for the weighting coefficients of the POD modes are deduced resulting in three different wake models. Their performance is investigated mainly on the basis of aeroelastic simulations of a wind turbine in the wake. Three different load cases and their statistical characteristics are compared for the original LES, truncated PODs and the stochastic wake models including different numbers of POD modes. It is shown that approximately six POD modes are enough to capture the load dynamics on large temporal scales. Modeling the weighting coefficients as independent stochastic processes leads to similar load characteristics as in the case of the truncated POD. To complete this simplified wake description, we show evidence that the small-scale dynamics can be captured by adding to our model a homogeneous turbulent field. In this way, we present a procedure to derive stochastic wake models from costly computational fluid dynamics (CFD calculations or elaborated experimental investigations. These numerically efficient models provide the added value of possible long-term studies. Depending on the aspects of interest, different minimalized models may be obtained.

  11. Modelling and simulating decision processes of linked lives: An approach based on concurrent processes and stochastic race

    NARCIS (Netherlands)

    Warnke, T.; Reinhardt, O.; Klabunde, A.; Willekens, F.J.; Uhrmacher, A.

    2017-01-01

    Individuals’ decision processes play a central role in understanding modern migration phenomena and other demographic processes. Their integration into agent-based computational demography depends largely on suitable support by a modelling language. We are developing the Modelling Language for

  12. Stochastic Simulation of Process Calculi for Biology

    Directory of Open Access Journals (Sweden)

    Andrew Phillips

    2010-10-01

    Full Text Available Biological systems typically involve large numbers of components with complex, highly parallel interactions and intrinsic stochasticity. To model this complexity, numerous programming languages based on process calculi have been developed, many of which are expressive enough to generate unbounded numbers of molecular species and reactions. As a result of this expressiveness, such calculi cannot rely on standard reaction-based simulation methods, which require fixed numbers of species and reactions. Rather than implementing custom stochastic simulation algorithms for each process calculus, we propose to use a generic abstract machine that can be instantiated to a range of process calculi and a range of reaction-based simulation algorithms. The abstract machine functions as a just-in-time compiler, which dynamically updates the set of possible reactions and chooses the next reaction in an iterative cycle. In this short paper we give a brief summary of the generic abstract machine, and show how it can be instantiated with the stochastic simulation algorithm known as Gillespie's Direct Method. We also discuss the wider implications of such an abstract machine, and outline how it can be used to simulate multiple calculi simultaneously within a common framework.

  13. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Directory of Open Access Journals (Sweden)

    Hidetoshi Konno

    2018-01-01

    Full Text Available In neural spike counting experiments, it is known that there are two main features: (i the counting number has a fractional power-law growth with time and (ii the waiting time (i.e., the inter-spike-interval distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii can be modeled by the method of SSPPs. Namely, the first one (i associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP.

  14. Stochastic modeling for neural spiking events based on fractional superstatistical Poisson process

    Science.gov (United States)

    Konno, Hidetoshi; Tamura, Yoshiyasu

    2018-01-01

    In neural spike counting experiments, it is known that there are two main features: (i) the counting number has a fractional power-law growth with time and (ii) the waiting time (i.e., the inter-spike-interval) distribution has a heavy tail. The method of superstatistical Poisson processes (SSPPs) is examined whether these main features are properly modeled. Although various mixed/compound Poisson processes are generated with selecting a suitable distribution of the birth-rate of spiking neurons, only the second feature (ii) can be modeled by the method of SSPPs. Namely, the first one (i) associated with the effect of long-memory cannot be modeled properly. Then, it is shown that the two main features can be modeled successfully by a class of fractional SSPP (FSSPP).

  15. ADAPTIVE PARAMETER ESTIMATION OF PERSON RECOGNITION MODEL IN A STOCHASTIC HUMAN TRACKING PROCESS

    OpenAIRE

    W. Nakanishi; T. Fuse; T. Ishikawa

    2015-01-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation ...

  16. 100 years after Smoluchowski: stochastic processes in cell biology

    International Nuclear Information System (INIS)

    Holcman, D; Schuss, Z

    2017-01-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation. (topical review)

  17. Simulations of Technology-Induced and Crisis-Led Stochastic and Chaotic Fluctuations in Higher Education Processes: A Model and a Case Study for Performance and Expected Employment

    Science.gov (United States)

    Ahmet, Kara

    2015-01-01

    This paper presents a simple model of the provision of higher educational services that considers and exemplifies nonlinear, stochastic, and potentially chaotic processes. I use the methods of system dynamics to simulate these processes in the context of a particular sociologically interesting case, namely that of the Turkish higher education…

  18. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  19. Stochastic Modelling of Hydrologic Systems

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa

    2007-01-01

    In this PhD project several stochastic modelling methods are studied and applied on various subjects in hydrology. The research was prepared at Informatics and Mathematical Modelling at the Technical University of Denmark. The thesis is divided into two parts. The first part contains...... an introduction and an overview of the papers published. Then an introduction to basic concepts in hydrology along with a description of hydrological data is given. Finally an introduction to stochastic modelling is given. The second part contains the research papers. In the research papers the stochastic methods...... are described, as at the time of publication these methods represent new contribution to hydrology. The second part also contains additional description of software used and a brief introduction to stiff systems. The system in one of the papers is stiff....

  20. Adaptive Parameter Estimation of Person Recognition Model in a Stochastic Human Tracking Process

    Science.gov (United States)

    Nakanishi, W.; Fuse, T.; Ishikawa, T.

    2015-05-01

    This paper aims at an estimation of parameters of person recognition models using a sequential Bayesian filtering method. In many human tracking method, any parameters of models used for recognize the same person in successive frames are usually set in advance of human tracking process. In real situation these parameters may change according to situation of observation and difficulty level of human position prediction. Thus in this paper we formulate an adaptive parameter estimation using general state space model. Firstly we explain the way to formulate human tracking in general state space model with their components. Then referring to previous researches, we use Bhattacharyya coefficient to formulate observation model of general state space model, which is corresponding to person recognition model. The observation model in this paper is a function of Bhattacharyya coefficient with one unknown parameter. At last we sequentially estimate this parameter in real dataset with some settings. Results showed that sequential parameter estimation was succeeded and were consistent with observation situations such as occlusions.

  1. Weather Derivatives and Stochastic Modelling of Temperature

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2011-01-01

    Full Text Available We propose a continuous-time autoregressive model for the temperature dynamics with volatility being the product of a seasonal function and a stochastic process. We use the Barndorff-Nielsen and Shephard model for the stochastic volatility. The proposed temperature dynamics is flexible enough to model temperature data accurately, and at the same time being analytically tractable. Futures prices for commonly traded contracts at the Chicago Mercantile Exchange on indices like cooling- and heating-degree days and cumulative average temperatures are computed, as well as option prices on them.

  2. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  3. Stochastic Modelling of River Geometry

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Schaarup-Jensen, K.

    1996-01-01

    Numerical hydrodynamic river models are used in a large number of applications to estimate critical events for rivers. These estimates are subject to a number of uncertainties. In this paper, the problem to evaluate these estimates using probabilistic methods is considered. Stochastic models for ...... for river geometries are formulated and a coupling between hydraulic computational methods and numerical reliability methods is presented....

  4. Stochastic processes analysis in nuclear reactor using ARMA models; Analiza stohastichkih procesa u nuklearnom reaktoru korishcjenjem ARMA modela

    Energy Technology Data Exchange (ETDEWEB)

    Zavaljevski, N [Institute of Nuclear Sciences Boris Kidric VINCA, Belgrade (Yugoslavia)

    1990-07-01

    The analysis of ARMA model derived from general stochastic state equations of nuclear reactor is given. The dependence of ARMA model parameters on the main physical characteristics of RB nuclear reactor in Vinca is presented. Preliminary identification results are presented, observed discrepancies between theory and experiment are explained and the possibilities of identification improvement are anticipated. (author)

  5. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  6. Operational Efficiency Forecasting Model of an Existing Underground Mine Using Grey System Theory and Stochastic Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Svetlana Strbac Savic

    2015-01-01

    Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.

  7. Stochastic-field cavitation model

    International Nuclear Information System (INIS)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-01-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian “particles” or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations

  8. Stochastic-field cavitation model

    Science.gov (United States)

    Dumond, J.; Magagnato, F.; Class, A.

    2013-07-01

    Nonlinear phenomena can often be well described using probability density functions (pdf) and pdf transport models. Traditionally, the simulation of pdf transport requires Monte-Carlo codes based on Lagrangian "particles" or prescribed pdf assumptions including binning techniques. Recently, in the field of combustion, a novel formulation called the stochastic-field method solving pdf transport based on Eulerian fields has been proposed which eliminates the necessity to mix Eulerian and Lagrangian techniques or prescribed pdf assumptions. In the present work, for the first time the stochastic-field method is applied to multi-phase flow and, in particular, to cavitating flow. To validate the proposed stochastic-field cavitation model, two applications are considered. First, sheet cavitation is simulated in a Venturi-type nozzle. The second application is an innovative fluidic diode which exhibits coolant flashing. Agreement with experimental results is obtained for both applications with a fixed set of model constants. The stochastic-field cavitation model captures the wide range of pdf shapes present at different locations.

  9. Stochastic Growth Models with No Discounting

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2007-01-01

    Roč. 15, č. 4 (2007), s. 88-98 ISSN 0572-3043 R&D Projects: GA ČR(CZ) GA402/06/0990; GA ČR GA402/05/0115 Institutional research plan: CEZ:AV0Z10750506 Keywords : economic dynamics * stochastic version of the Ramsey growth model * Markov decision processes Subject RIV: AH - Economics

  10. A comparative study of mixed exponential and Weibull distributions in a stochastic model replicating a tropical rainfall process

    Science.gov (United States)

    Abas, Norzaida; Daud, Zalina M.; Yusof, Fadhilah

    2014-11-01

    A stochastic rainfall model is presented for the generation of hourly rainfall data in an urban area in Malaysia. In view of the high temporal and spatial variability of rainfall within the tropical rain belt, the Spatial-Temporal Neyman-Scott Rectangular Pulse model was used. The model, which is governed by the Neyman-Scott process, employs a reasonable number of parameters to represent the physical attributes of rainfall. A common approach is to attach each attribute to a mathematical distribution. With respect to rain cell intensity, this study proposes the use of a mixed exponential distribution. The performance of the proposed model was compared to a model that employs the Weibull distribution. Hourly and daily rainfall data from four stations in the Damansara River basin in Malaysia were used as input to the models, and simulations of hourly series were performed for an independent site within the basin. The performance of the models was assessed based on how closely the statistical characteristics of the simulated series resembled the statistics of the observed series. The findings obtained based on graphical representation revealed that the statistical characteristics of the simulated series for both models compared reasonably well with the observed series. However, a further assessment using the AIC, BIC and RMSE showed that the proposed model yields better results. The results of this study indicate that for tropical climates, the proposed model, using a mixed exponential distribution, is the best choice for generation of synthetic data for ungauged sites or for sites with insufficient data within the limit of the fitted region.

  11. Stochastic processes in mechanical engineering

    NARCIS (Netherlands)

    Brouwers, J.J.H.

    2006-01-01

    Stochastic or random vibrations occur in a variety of applications of mechanicalengineering. Examples are: the dynamics of a vehicle on an irregular roadsurface; the variation in time of thermodynamic variables in municipal wasteincinerators due to fluctuations in heating value of the waste; the

  12. Simulation and inference for stochastic processes with YUIMA a comprehensive R framework for SDEs and other stochastic processes

    CERN Document Server

    Iacus, Stefano M

    2018-01-01

    The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these ...

  13. A stochastic modeling of recurrent measles epidemic | Kassem ...

    African Journals Online (AJOL)

    A simple stochastic mathematical model is developed and investigated for the dynamics of measles epidemic. The model, which is a multi-dimensional diffusion process, includes susceptible individuals, latent (exposed), infected and removed individuals. Stochastic effects are assumed to arise in the process of infection of ...

  14. A study on the stochastic model for nuclide transport in the fractured porous rock using continuous time Markov process

    International Nuclear Information System (INIS)

    Lee, Youn Myoung

    1995-02-01

    As a newly approaching model, a stochastic model using continuous time Markov process for nuclide decay chain transport of arbitrary length in the fractured porous rock medium has been proposed, by which the need for solving a set of partial differential equations corresponding to various sets of side conditions can be avoided. Once the single planar fracture in the rock matrix is represented by a series of finite number of compartments having region wise constant parameter values in them, the medium is continuous in view of various processes associated with nuclide transport but discrete in medium space and such geologic system is assumed to have Markov property, since the Markov process requires that only the present value of the time dependent random variable be known to determine the future value of random variable, nuclide transport in the medium can then be modeled as a continuous time Markov process. Processes that are involved in nuclide transport are advective transport due to groundwater flow, diffusion into the rock matrix, adsorption onto the wall of the fracture and within the pores in the rock matrix, and radioactive decay chain. The transition probabilities for nuclide from the transition intensities between and out of the compartments are represented utilizing Chapman-Kolmogorov equation, through which the expectation and the variance of nuclide distribution for each compartment or the fractured rock medium can be obtained. Some comparisons between Markov process model developed in this work and available analytical solutions for one-dimensional layered porous medium, fractured medium with rock matrix diffusion, and porous medium considering three member nuclide decay chain without rock matrix diffusion have been made showing comparatively good agreement for all cases. To verify the model developed in this work another comparative study was also made by fitting the experimental data obtained with NaLS and uranine running in the artificial fractured

  15. A Stochastic Model for Malaria Transmission Dynamics

    Directory of Open Access Journals (Sweden)

    Rachel Waema Mbogo

    2018-01-01

    Full Text Available Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis. In this paper we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in malaria transmission dynamics. Relationships between the basic reproduction number for malaria transmission dynamics between humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under certain assumptions. The stochastic model is formulated using the continuous-time discrete state Galton-Watson branching process (CTDSGWbp. The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the disease is introduced by infected mosquitoes as opposed to infected humans. These insights demonstrate the importance of a policy or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.

  16. Stochastic models in reliability and maintenance

    CERN Document Server

    2002-01-01

    Our daily lives can be maintained by the high-technology systems. Computer systems are typical examples of such systems. We can enjoy our modern lives by using many computer systems. Much more importantly, we have to maintain such systems without failure, but cannot predict when such systems will fail and how to fix such systems without delay. A stochastic process is a set of outcomes of a random experiment indexed by time, and is one of the key tools needed to analyze the future behavior quantitatively. Reliability and maintainability technologies are of great interest and importance to the maintenance of such systems. Many mathematical models have been and will be proposed to describe reliability and maintainability systems by using the stochastic processes. The theme of this book is "Stochastic Models in Reliability and Main­ tainability. " This book consists of 12 chapters on the theme above from the different viewpoints of stochastic modeling. Chapter 1 is devoted to "Renewal Processes," under which cla...

  17. Selected papers on noise and stochastic processes

    CERN Document Server

    1954-01-01

    Six classic papers on stochastic process, selected to meet the needs of physicists, applied mathematicians, and engineers. Contents: 1.Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. 2. Uhlenbeck, G. E. and Ornstein, L. S.: On the Theory of the Browninan Motion. 3. Ming Chen Wang and Uhlenbeck, G. E.: On the Theory of the Browninan Motion II. 4. Rice, S. O.: Mathematical Analysis of Random Noise. 5. Kac, Mark: Random Walk and the Theory of Brownian Motion. 6. Doob, J. L.: The Brownian Movement and Stochastic Equations. Unabridged republication of the Dover reprint (1954). Pre

  18. Stochastic diffusion models for substitutable technological innovations

    NARCIS (Netherlands)

    Wang, L.; Hu, B.; Yu, X.

    2004-01-01

    Based on the analysis of firms' stochastic adoption behaviour, this paper first points out the necessity to build more practical stochastic models. And then, stochastic evolutionary models are built for substitutable innovation diffusion system. Finally, through the computer simulation of the

  19. Research on nonlinear stochastic dynamical price model

    International Nuclear Information System (INIS)

    Li Jiaorui; Xu Wei; Xie Wenxian; Ren Zhengzheng

    2008-01-01

    In consideration of many uncertain factors existing in economic system, nonlinear stochastic dynamical price model which is subjected to Gaussian white noise excitation is proposed based on deterministic model. One-dimensional averaged Ito stochastic differential equation for the model is derived by using the stochastic averaging method, and applied to investigate the stability of the trivial solution and the first-passage failure of the stochastic price model. The stochastic price model and the methods presented in this paper are verified by numerical studies

  20. Stochastic models for atmospheric dispersion

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager

    2003-01-01

    Simple stochastic differential equation models have been applied by several researchers to describe the dispersion of tracer particles in the planetary atmospheric boundary layer and to form the basis for computer simulations of particle paths. To obtain the drift coefficient, empirical vertical...... positions close to the boundaries. Different rules have been suggested in the literature with justifications based on simulation studies. Herein the relevant stochastic differential equation model is formulated in a particular way. The formulation is based on the marginal transformation of the position...... velocity distributions that depend on height above the ground both with respect to standard deviation and skewness are substituted into the stationary Fokker/Planck equation. The particle position distribution is taken to be uniform *the well/mixed condition( and also a given dispersion coefficient...

  1. Hopf bifurcation of the stochastic model on business cycle

    International Nuclear Information System (INIS)

    Xu, J; Wang, H; Ge, G

    2008-01-01

    A stochastic model on business cycle was presented in thas paper. Simplifying the model through the quasi Hamiltonian theory, the Ito diffusion process was obtained. According to Oseledec multiplicative ergodic theory and singular boundary theory, the conditions of local and global stability were acquired. Solving the stationary FPK equation and analyzing the stationary probability density, the stochastic Hopf bifurcation was explained. The result indicated that the change of parameter awas the key factor to the appearance of the stochastic Hopf bifurcation

  2. Probability and stochastic modeling

    CERN Document Server

    Rotar, Vladimir I

    2012-01-01

    Basic NotionsSample Space and EventsProbabilitiesCounting TechniquesIndependence and Conditional ProbabilityIndependenceConditioningThe Borel-Cantelli TheoremDiscrete Random VariablesRandom Variables and VectorsExpected ValueVariance and Other Moments. Inequalities for DeviationsSome Basic DistributionsConvergence of Random Variables. The Law of Large NumbersConditional ExpectationGenerating Functions. Branching Processes. Random Walk RevisitedBranching Processes Generating Functions Branching Processes Revisited More on Random WalkMarkov ChainsDefinitions and Examples. Probability Distributions of Markov ChainsThe First Step Analysis. Passage TimesVariables Defined on a Markov ChainErgodicity and Stationary DistributionsA Classification of States and ErgodicityContinuous Random VariablesContinuous DistributionsSome Basic Distributions Continuous Multivariate Distributions Sums of Independent Random Variables Conditional Distributions and ExpectationsDistributions in the General Case. SimulationDistribution F...

  3. Stochastic stability and bifurcation in a macroeconomic model

    International Nuclear Information System (INIS)

    Li Wei; Xu Wei; Zhao Junfeng; Jin Yanfei

    2007-01-01

    On the basis of the work of Goodwin and Puu, a new business cycle model subject to a stochastically parametric excitation is derived in this paper. At first, we reduce the model to a one-dimensional diffusion process by applying the stochastic averaging method of quasi-nonintegrable Hamiltonian system. Secondly, we utilize the methods of Lyapunov exponent and boundary classification associated with diffusion process respectively to analyze the stochastic stability of the trivial solution of system. The numerical results obtained illustrate that the trivial solution of system must be globally stable if it is locally stable in the state space. Thirdly, we explore the stochastic Hopf bifurcation of the business cycle model according to the qualitative changes in stationary probability density of system response. It is concluded that the stochastic Hopf bifurcation occurs at two critical parametric values. Finally, some explanations are given in a simply way on the potential applications of stochastic stability and bifurcation analysis

  4. Stochastic processes from physics to finance

    CERN Document Server

    Paul, Wolfgang

    2013-01-01

    This book introduces the theory of stochastic processes with applications taken from physics and finance. Fundamental concepts like the random walk or Brownian motion but also Levy-stable distributions are discussed. Applications are selected to show the interdisciplinary character of the concepts and methods. In the second edition of the book a discussion of extreme events ranging from their mathematical definition to their importance for financial crashes was included. The exposition of basic notions of probability theory and the Brownian motion problem as well as the relation between conservative diffusion processes and quantum mechanics is expanded. The second edition also enlarges the treatment of financial markets. Beyond a presentation of geometric Brownian motion and the Black-Scholes approach to option pricing as well as the econophysics analysis of the stylized facts of financial markets, an introduction to agent based modeling approaches is given.

  5. Analysis of the stochastic channel model by Saleh & Valenzuela via the theory of point processes

    DEFF Research Database (Denmark)

    Jakobsen, Morten Lomholt; Pedersen, Troels; Fleury, Bernard Henri

    2012-01-01

    and underlying features, like the intensity function of the component delays and the delaypower intensity. The flexibility and clarity of the mathematical instruments utilized to obtain these results lead us to conjecture that the theory of spatial point processes provides a unifying mathematical framework...

  6. Forecasting financial asset processes: stochastic dynamics via learning neural networks.

    Science.gov (United States)

    Giebel, S; Rainer, M

    2010-01-01

    Models for financial asset dynamics usually take into account their inherent unpredictable nature by including a suitable stochastic component into their process. Unknown (forward) values of financial assets (at a given time in the future) are usually estimated as expectations of the stochastic asset under a suitable risk-neutral measure. This estimation requires the stochastic model to be calibrated to some history of sufficient length in the past. Apart from inherent limitations, due to the stochastic nature of the process, the predictive power is also limited by the simplifying assumptions of the common calibration methods, such as maximum likelihood estimation and regression methods, performed often without weights on the historic time series, or with static weights only. Here we propose a novel method of "intelligent" calibration, using learning neural networks in order to dynamically adapt the parameters of the stochastic model. Hence we have a stochastic process with time dependent parameters, the dynamics of the parameters being themselves learned continuously by a neural network. The back propagation in training the previous weights is limited to a certain memory length (in the examples we consider 10 previous business days), which is similar to the maximal time lag of autoregressive processes. We demonstrate the learning efficiency of the new algorithm by tracking the next-day forecasts for the EURTRY and EUR-HUF exchange rates each.

  7. Computer simulation of stochastic processes through model-sampling (Monte Carlo) techniques.

    Science.gov (United States)

    Sheppard, C W.

    1969-03-01

    A simple Monte Carlo simulation program is outlined which can be used for the investigation of random-walk problems, for example in diffusion, or the movement of tracers in the blood circulation. The results given by the simulation are compared with those predicted by well-established theory, and it is shown how the model can be expanded to deal with drift, and with reflexion from or adsorption at a boundary.

  8. Stochastic model of energetic nuclear reactor

    International Nuclear Information System (INIS)

    Bojko, R.V.; Ryazanov, V.V.

    2002-01-01

    Behaviour of nuclear reactor was treated using the theory of branching processes. As mathematical model descriptive the neutron number in time the Markov occasional process is proposed. Application of branching occasional processes with variable regime to the description of neutron behaviour in the reactor makes possible conducting strong description of critical operation regime and demonstrates the severity of the process. Three regimes of the critical behaviour depending on the sign of manipulated variables and feedbacks were discovered. Probability regularities peculiar to the behaviour of the reactor are embodied to the suggested stochastic model [ru

  9. Dynamic optimization deterministic and stochastic models

    CERN Document Server

    Hinderer, Karl; Stieglitz, Michael

    2016-01-01

    This book explores discrete-time dynamic optimization and provides a detailed introduction to both deterministic and stochastic models. Covering problems with finite and infinite horizon, as well as Markov renewal programs, Bayesian control models and partially observable processes, the book focuses on the precise modelling of applications in a variety of areas, including operations research, computer science, mathematics, statistics, engineering, economics and finance. Dynamic Optimization is a carefully presented textbook which starts with discrete-time deterministic dynamic optimization problems, providing readers with the tools for sequential decision-making, before proceeding to the more complicated stochastic models. The authors present complete and simple proofs and illustrate the main results with numerous examples and exercises (without solutions). With relevant material covered in four appendices, this book is completely self-contained.

  10. American option pricing with stochastic volatility processes

    Directory of Open Access Journals (Sweden)

    Ping LI

    2017-12-01

    Full Text Available In order to solve the problem of option pricing more perfectly, the option pricing problem with Heston stochastic volatility model is considered. The optimal implementation boundary of American option and the conditions for its early execution are analyzed and discussed. In view of the fact that there is no analytical American option pricing formula, through the space discretization parameters, the stochastic partial differential equation satisfied by American options with Heston stochastic volatility is transformed into the corresponding differential equations, and then using high order compact finite difference method, numerical solutions are obtained for the option price. The numerical experiments are carried out to verify the theoretical results and simulation. The two kinds of optimal exercise boundaries under the conditions of the constant volatility and the stochastic volatility are compared, and the results show that the optimal exercise boundary also has stochastic volatility. Under the setting of parameters, the behavior and the nature of volatility are analyzed, the volatility curve is simulated, the calculation results of high order compact difference method are compared, and the numerical option solution is obtained, so that the method is verified. The research result provides reference for solving the problems of option pricing under stochastic volatility such as multiple underlying asset option pricing and barrier option pricing.

  11. Stochastic resonance during a polymer translocation process

    International Nuclear Information System (INIS)

    Mondal, Debasish; Muthukumar, M.

    2016-01-01

    We have studied the occurrence of stochastic resonance when a flexible polymer chain undergoes a single-file translocation through a nano-pore separating two spherical cavities, under a time-periodic external driving force. The translocation of the chain is controlled by a free energy barrier determined by chain length, pore length, pore-polymer interaction, and confinement inside the donor and receiver cavities. The external driving force is characterized by a frequency and amplitude. By combining the Fokker-Planck formalism for polymer translocation and a two-state model for stochastic resonance, we have derived analytical formulas for criteria for emergence of stochastic resonance during polymer translocation. We show that no stochastic resonance is possible if the free energy barrier for polymer translocation is purely entropic in nature. The polymer chain exhibits stochastic resonance only in the presence of an energy threshold in terms of polymer-pore interactions. Once stochastic resonance is feasible, the chain entropy controls the optimal synchronization conditions significantly.

  12. Bidirectional Classical Stochastic Processes with Measurements and Feedback

    Science.gov (United States)

    Hahne, G. E.

    2005-01-01

    A measurement on a quantum system is said to cause the "collapse" of the quantum state vector or density matrix. An analogous collapse occurs with measurements on a classical stochastic process. This paper addresses the question of describing the response of a classical stochastic process when there is feedback from the output of a measurement to the input, and is intended to give a model for quantum-mechanical processes that occur along a space-like reaction coordinate. The classical system can be thought of in physical terms as two counterflowing probability streams, which stochastically exchange probability currents in a way that the net probability current, and hence the overall probability, suitably interpreted, is conserved. The proposed formalism extends the . mathematics of those stochastic processes describable with linear, single-step, unidirectional transition probabilities, known as Markov chains and stochastic matrices. It is shown that a certain rearrangement and combination of the input and output of two stochastic matrices of the same order yields another matrix of the same type. Each measurement causes the partial collapse of the probability current distribution in the midst of such a process, giving rise to calculable, but non-Markov, values for the ensuing modification of the system's output probability distribution. The paper concludes with an analysis of a classical probabilistic version of the so-called grandfather paradox.

  13. Chemical kinetics, stochastic processes, and irreversible thermodynamics

    CERN Document Server

    Santillán, Moisés

    2014-01-01

    This book brings theories in nonlinear dynamics, stochastic processes, irreversible thermodynamics, physical chemistry, and biochemistry together in an introductory but formal and comprehensive manner.  Coupled with examples, the theories are developed stepwise, starting with the simplest concepts and building upon them into a more general framework.  Furthermore, each new mathematical derivation is immediately applied to one or more biological systems.  The last chapters focus on applying mathematical and physical techniques to study systems such as: gene regulatory networks and ion channels. The target audience of this book are mainly final year undergraduate and graduate students with a solid mathematical background (physicists, mathematicians, and engineers), as well as with basic notions of biochemistry and cellular biology.  This book can also be useful to students with a biological background who are interested in mathematical modeling, and have a working knowledge of calculus, differential equatio...

  14. Predicting extinction rates in stochastic epidemic models

    International Nuclear Information System (INIS)

    Schwartz, Ira B; Billings, Lora; Dykman, Mark; Landsman, Alexandra

    2009-01-01

    We investigate the stochastic extinction processes in a class of epidemic models. Motivated by the process of natural disease extinction in epidemics, we examine the rate of extinction as a function of disease spread. We show that the effective entropic barrier for extinction in a susceptible–infected–susceptible epidemic model displays scaling with the distance to the bifurcation point, with an unusual critical exponent. We make a direct comparison between predictions and numerical simulations. We also consider the effect of non-Gaussian vaccine schedules, and show numerically how the extinction process may be enhanced when the vaccine schedules are Poisson distributed

  15. An Analytically Tractable Model for Pricing Multiasset Options with Correlated Jump-Diffusion Equity Processes and a Two-Factor Stochastic Yield Curve

    Directory of Open Access Journals (Sweden)

    Tristan Guillaume

    2016-01-01

    Full Text Available This paper shows how to value multiasset options analytically in a modeling framework that combines both continuous and discontinuous variations in the underlying equity or foreign exchange processes and a stochastic, two-factor yield curve. All correlations are taken into account, between the factors driving the yield curve, between fixed income and equity as asset classes, and between the individual equity assets themselves. The valuation method is applied to three of the most popular two-asset options.

  16. Irreversible stochastic processes on lattices

    International Nuclear Information System (INIS)

    Nord, R.S.

    1986-01-01

    Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed

  17. Stochastic models, estimation, and control

    CERN Document Server

    Maybeck, Peter S

    1982-01-01

    This volume builds upon the foundations set in Volumes 1 and 2. Chapter 13 introduces the basic concepts of stochastic control and dynamic programming as the fundamental means of synthesizing optimal stochastic control laws.

  18. Classical and spatial stochastic processes with applications to biology

    CERN Document Server

    Schinazi, Rinaldo B

    2014-01-01

    The revised and expanded edition of this textbook presents the concepts and applications of random processes with the same illuminating simplicity as its first edition, but with the notable addition of substantial modern material on biological modeling. While still treating many important problems in fields such as engineering and mathematical physics, the book also focuses on the highly relevant topics of cancerous mutations, influenza evolution, drug resistance, and immune response. The models used elegantly apply various classical stochastic models presented earlier in the text, and exercises are included throughout to reinforce essential concepts. The second edition of Classical and Spatial Stochastic Processes is suitable as a textbook for courses in stochastic processes at the advanced-undergraduate and graduate levels, or as a self-study resource for researchers and practitioners in mathematics, engineering, physics, and mathematical biology. Reviews of the first edition: An appetizing textbook for a f...

  19. 12th Workshop on Stochastic Models, Statistics and Their Applications

    CERN Document Server

    Rafajłowicz, Ewaryst; Szajowski, Krzysztof

    2015-01-01

    This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

  20. Sequential neural models with stochastic layers

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Sønderby, Søren Kaae; Paquet, Ulrich

    2016-01-01

    How can we efficiently propagate uncertainty in a latent state representation with recurrent neural networks? This paper introduces stochastic recurrent neural networks which glue a deterministic recurrent neural network and a state space model together to form a stochastic and sequential neural...... generative model. The clear separation of deterministic and stochastic layers allows a structured variational inference network to track the factorization of the model's posterior distribution. By retaining both the nonlinear recursive structure of a recurrent neural network and averaging over...

  1. Fast Quantum Algorithm for Predicting Descriptive Statistics of Stochastic Processes

    Science.gov (United States)

    Williams Colin P.

    1999-01-01

    Stochastic processes are used as a modeling tool in several sub-fields of physics, biology, and finance. Analytic understanding of the long term behavior of such processes is only tractable for very simple types of stochastic processes such as Markovian processes. However, in real world applications more complex stochastic processes often arise. In physics, the complicating factor might be nonlinearities; in biology it might be memory effects; and in finance is might be the non-random intentional behavior of participants in a market. In the absence of analytic insight, one is forced to understand these more complex stochastic processes via numerical simulation techniques. In this paper we present a quantum algorithm for performing such simulations. In particular, we show how a quantum algorithm can predict arbitrary descriptive statistics (moments) of N-step stochastic processes in just O(square root of N) time. That is, the quantum complexity is the square root of the classical complexity for performing such simulations. This is a significant speedup in comparison to the current state of the art.

  2. Soil Erosion as a stochastic process

    Science.gov (United States)

    Casper, Markus C.

    2015-04-01

    corrected experimentally. To overcome this disadvantage of our actual models, soil erosion models are needed that are able to use stochastic directly variables and parameter distributions. There are only some minor approaches in this direction. The most advanced is the model "STOSEM" proposed by Sidorchuk in 2005. In this model, only a small part of the soil erosion processes is described, the aggregate detachment and the aggregate transport by flowing water. The concept is highly simplified, for example, many parameters are temporally invariant. Nevertheless, the main problem is that our existing measurements and experiments are not geared to provide stochastic parameters (e.g. as probability density functions); in the best case they deliver a statistical validation of the mean values. Again, we get effective parameters, spatially and temporally averaged. There is an urgent need for laboratory and field experiments on overland flow structure, raindrop effects and erosion rate, which deliver information on spatial and temporal structure of soil and surface properties and processes.

  3. Quantization by stochastic relaxation processes and supersymmetry

    International Nuclear Information System (INIS)

    Kirschner, R.

    1984-01-01

    We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

  4. ON REGRESSION REPRESENTATIONS OF STOCHASTIC-PROCESSES

    NARCIS (Netherlands)

    RUSCHENDORF, L; DEVALK, [No Value

    We construct a.s. nonlinear regression representations of general stochastic processes (X(n))n is-an-element-of N. As a consequence we obtain in particular special regression representations of Markov chains and of certain m-dependent sequences. For m-dependent sequences we obtain a constructive

  5. Stochastic models for tumoral growth

    Science.gov (United States)

    Escudero, Carlos

    2006-02-01

    Strong experimental evidence has indicated that tumor growth belongs to the molecular beam epitaxy universality class. This type of growth is characterized by the constraint of cell proliferation to the tumor border and the surface diffusion of cells at the growing edge. Tumor growth is thus conceived as a competition for space between the tumor and the host, and cell diffusion at the tumor border is an optimal strategy adopted for minimizing the pressure and helping tumor development. Two stochastic partial differential equations are reported in this paper in order to correctly model the physical properties of tumoral growth in (1+1) and (2+1) dimensions. The advantage of these models is that they reproduce the correct geometry of the tumor and are defined in terms of polar variables. An analysis of these models allows us to quantitatively estimate the response of the tumor to an unfavorable perturbation during growth.

  6. Stochastic transport processes in discrete biological systems

    CERN Document Server

    Frehland, Eckart

    1982-01-01

    These notes are in part based on a course for advanced students in the applications of stochastic processes held in 1978 at the University of Konstanz. These notes contain the results of re­ cent studies on the stochastic description of ion transport through biological membranes. In particular, they serve as an introduction to an unified theory of fluctuations in complex biological transport systems. We emphasize that the subject of this volume is not to introduce the mathematics of stochastic processes but to present a field of theoretical biophysics in which stochastic methods are important. In the last years the study of membrane noise has become an important method in biophysics. Valuable information on the ion transport mechanisms in membranes can be obtained from noise analysis. A number of different processes such as the opening and closing of ion channels have been shown to be sources of the measured current or voltage fluctuations. Bio­ logical 'transport systems can be complex. For example, the tr...

  7. Stochastic hyperfine interactions modeling library

    Science.gov (United States)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  8. Stochastic processes and long range dependence

    CERN Document Server

    Samorodnitsky, Gennady

    2016-01-01

    This monograph is a gateway for researchers and graduate students to explore the profound, yet subtle, world of long-range dependence (also known as long memory). The text is organized around the probabilistic properties of stationary processes that are important for determining the presence or absence of long memory. The first few chapters serve as an overview of the general theory of stochastic processes which gives the reader sufficient background, language, and models for the subsequent discussion of long memory. The later chapters devoted to long memory begin with an introduction to the subject along with a brief history of its development, followed by a presentation of what is currently the best known approach, applicable to stationary processes with a finite second moment. The book concludes with a chapter devoted to the author’s own, less standard, point of view of long memory as a phase transition, and even includes some novel results. Most of the material in the book has not previously been publis...

  9. Stationary stochastic processes theory and applications

    CERN Document Server

    Lindgren, Georg

    2012-01-01

    Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...

  10. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    Science.gov (United States)

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  11. Stochastic volatility and stochastic leverage

    DEFF Research Database (Denmark)

    Veraart, Almut; Veraart, Luitgard A. M.

    This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic...... treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility...... models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new...

  12. A stochastic model for quantum measurement

    International Nuclear Information System (INIS)

    Budiyono, Agung

    2013-01-01

    We develop a statistical model of microscopic stochastic deviation from classical mechanics based on a stochastic process with a transition probability that is assumed to be given by an exponential distribution of infinitesimal stationary action. We apply the statistical model to stochastically modify a classical mechanical model for the measurement of physical quantities reproducing the prediction of quantum mechanics. The system+apparatus always has a definite configuration at all times, as in classical mechanics, fluctuating randomly following a continuous trajectory. On the other hand, the wavefunction and quantum mechanical Hermitian operator corresponding to the physical quantity arise formally as artificial mathematical constructs. During a single measurement, the wavefunction of the whole system+apparatus evolves according to a Schrödinger equation and the configuration of the apparatus acts as the pointer of the measurement so that there is no wavefunction collapse. We will also show that while the outcome of each single measurement event does not reveal the actual value of the physical quantity prior to measurement, its average in an ensemble of identical measurements is equal to the average of the actual value of the physical quantity prior to measurement over the distribution of the configuration of the system. (paper)

  13. Stochastic processes and applications diffusion processes, the Fokker-Planck and Langevin equations

    CERN Document Server

    Pavliotis, Grigorios A

    2014-01-01

    This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated.                 The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to eq...

  14. Probability of stochastic processes and spacetime geometry

    International Nuclear Information System (INIS)

    Canessa, E.

    2007-01-01

    We made a first attempt to associate a probabilistic description of stochastic processes like birth-death processes with spacetime geometry in the Schwarzschild metrics on distance scales from the macro- to the micro-domains. We idealize an ergodic system in which system states communicate through a curved path composed of transition arrows where each arrow corresponds to a positive, analogous birth or death rate. (author)

  15. Stochastic Processes in Finance and Behavioral Finance

    OpenAIRE

    Steinbacher, Matjaz

    2008-01-01

    In the paper, we put some foundations for studying asset pricing and finance as a stochastic and behavioral process. In such process, preferences and psychology of agents represent the most important factor in the decision-making of people. Individuals have their own ways of acquiring the information they need, how to deal with them and how to make predictions and decisions. People usually also do not behave consistent in time, but learn. Therefore, in order to understand the behavior on the ...

  16. The trend of the total stock of the private car-petrol in Spain: Stochastic modelling using a new gamma diffusion process

    International Nuclear Information System (INIS)

    Gutierrez, R.; Gutierrez-Sanchez, R.; Nafidi, A.

    2009-01-01

    The main aim of this study is to model the trend of the evolution of the total stock of private petrol-driven cars. In Spain, as in other EU countries, this trend between 2000 and 2005 differed significantly from that observed from 1986 to 1999. Moreover, it varies greatly from that corresponding to the stock of diesel-driven cars, which consistently presents an exponential Gompertz-type increase. Spain constitutes a typical example of a failure to observe the maximum CO 2 emission levels assigned to it by 2012 under the Kyoto Protocol (1992); a significant percentage of these excess emissions is accounted for by the land transport sector, in general, and by the private cars subsector, in particular. This paper proposes a stochastic model based on a new non homogeneous stochastic gamma-type diffusion process which it is a stochastic version of a Gamma function type deterministic growth model considered in Skiadas . We describe its main probabilistic characteristics and establish a statistical methodology by which it can be fitted to real data and obtain medium-term forecasts that, in statistical terms, are quite accurate

  17. Consistent Stochastic Modelling of Meteocean Design Parameters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Sterndorff, M. J.

    2000-01-01

    Consistent stochastic models of metocean design parameters and their directional dependencies are essential for reliability assessment of offshore structures. In this paper a stochastic model for the annual maximum values of the significant wave height, and the associated wind velocity, current...

  18. Periodic linear differential stochastic processes

    NARCIS (Netherlands)

    Kwakernaak, H.

    1975-01-01

    Periodic linear differential processes are defined and their properties are analyzed. Equivalent representations are discussed, and the solutions of related optimal estimation problems are given. An extension is presented of Kailath and Geesey’s [1] results concerning the innovations representation

  19. Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations

    Science.gov (United States)

    Kaulakys, B.; Alaburda, M.; Ruseckas, J.

    2016-05-01

    A well-known fact in the financial markets is the so-called ‘inverse cubic law’ of the cumulative distributions of the long-range memory fluctuations of market indicators such as a number of events of trades, trading volume and the logarithmic price change. We propose the nonlinear stochastic differential equation (SDE) giving both the power-law behavior of the power spectral density and the long-range dependent inverse cubic law of the cumulative distribution. This is achieved using the suggestion that when the market evolves from calm to violent behavior there is a decrease of the delay time of multiplicative feedback of the system in comparison to the driving noise correlation time. This results in a transition from the Itô to the Stratonovich sense of the SDE and yields a long-range memory process.

  20. An Equality in Stochastic Processes

    Science.gov (United States)

    1971-06-21

    Neyman have dis- cussed extensively this model in their study of the probabilities of relapse, re- covery, and death for cancer patients [6] (see also Du...negative constant and vp a positive constant. Explicit formulas of the probabilities Pa )(to, t) have been derived in terms of vP.. and vP. (see [2...transitions from Sp occurring during (T, t); the probability of this sequence of events is (52) P’aja’(to 7-)[ vap d7-]P,’’ (TX t)- Integrating (52) from T

  1. Stochastic analysis in production process and ecology under uncertainty

    CERN Document Server

    Bieda, Bogusław

    2014-01-01

    The monograph addresses a problem of stochastic analysis based on the uncertainty assessment by simulation and application of this method in ecology and steel industry under uncertainty. The first chapter defines the Monte Carlo (MC) method and random variables in stochastic models. Chapter two deals with the contamination transport in porous media. Stochastic approach for Municipal Solid Waste transit time contaminants modeling using MC simulation has been worked out. The third chapter describes the risk analysis of the waste to energy facility proposal for Konin city, including the financial aspects. Environmental impact assessment of the ArcelorMittal Steel Power Plant, in Kraków - in the chapter four - is given. Thus, four scenarios of the energy mix production processes were studied. Chapter five contains examples of using ecological Life Cycle Assessment (LCA) - a relatively new method of environmental impact assessment - which help in preparing pro-ecological strategy, and which can lead to reducing t...

  2. Modeling stochasticity and robustness in gene regulatory networks.

    Science.gov (United States)

    Garg, Abhishek; Mohanram, Kartik; Di Cara, Alessandro; De Micheli, Giovanni; Xenarios, Ioannis

    2009-06-15

    Understanding gene regulation in biological processes and modeling the robustness of underlying regulatory networks is an important problem that is currently being addressed by computational systems biologists. Lately, there has been a renewed interest in Boolean modeling techniques for gene regulatory networks (GRNs). However, due to their deterministic nature, it is often difficult to identify whether these modeling approaches are robust to the addition of stochastic noise that is widespread in gene regulatory processes. Stochasticity in Boolean models of GRNs has been addressed relatively sparingly in the past, mainly by flipping the expression of genes between different expression levels with a predefined probability. This stochasticity in nodes (SIN) model leads to over representation of noise in GRNs and hence non-correspondence with biological observations. In this article, we introduce the stochasticity in functions (SIF) model for simulating stochasticity in Boolean models of GRNs. By providing biological motivation behind the use of the SIF model and applying it to the T-helper and T-cell activation networks, we show that the SIF model provides more biologically robust results than the existing SIN model of stochasticity in GRNs. Algorithms are made available under our Boolean modeling toolbox, GenYsis. The software binaries can be downloaded from http://si2.epfl.ch/ approximately garg/genysis.html.

  3. Gene regulation and noise reduction by coupling of stochastic processes

    Science.gov (United States)

    Ramos, Alexandre F.; Hornos, José Eduardo M.; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  4. Gene regulation and noise reduction by coupling of stochastic processes.

    Science.gov (United States)

    Ramos, Alexandre F; Hornos, José Eduardo M; Reinitz, John

    2015-02-01

    Here we characterize the low-noise regime of a stochastic model for a negative self-regulating binary gene. The model has two stochastic variables, the protein number and the state of the gene. Each state of the gene behaves as a protein source governed by a Poisson process. The coupling between the two gene states depends on protein number. This fact has a very important implication: There exist protein production regimes characterized by sub-Poissonian noise because of negative covariance between the two stochastic variables of the model. Hence the protein numbers obey a probability distribution that has a peak that is sharper than those of the two coupled Poisson processes that are combined to produce it. Biochemically, the noise reduction in protein number occurs when the switching of the genetic state is more rapid than protein synthesis or degradation. We consider the chemical reaction rates necessary for Poisson and sub-Poisson processes in prokaryotes and eucaryotes. Our results suggest that the coupling of multiple stochastic processes in a negative covariance regime might be a widespread mechanism for noise reduction.

  5. Discrete stochastic analogs of Erlang epidemic models.

    Science.gov (United States)

    Getz, Wayne M; Dougherty, Eric R

    2018-12-01

    Erlang differential equation models of epidemic processes provide more realistic disease-class transition dynamics from susceptible (S) to exposed (E) to infectious (I) and removed (R) categories than the ubiquitous SEIR model. The latter is itself is at one end of the spectrum of Erlang SE[Formula: see text]I[Formula: see text]R models with [Formula: see text] concatenated E compartments and [Formula: see text] concatenated I compartments. Discrete-time models, however, are computationally much simpler to simulate and fit to epidemic outbreak data than continuous-time differential equations, and are also much more readily extended to include demographic and other types of stochasticity. Here we formulate discrete-time deterministic analogs of the Erlang models, and their stochastic extension, based on a time-to-go distributional principle. Depending on which distributions are used (e.g. discretized Erlang, Gamma, Beta, or Uniform distributions), we demonstrate that our formulation represents both a discretization of Erlang epidemic models and generalizations thereof. We consider the challenges of fitting SE[Formula: see text]I[Formula: see text]R models and our discrete-time analog to data (the recent outbreak of Ebola in Liberia). We demonstrate that the latter performs much better than the former; although confining fits to strict SEIR formulations reduces the numerical challenges, but sacrifices best-fit likelihood scores by at least 7%.

  6. STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE ...

    African Journals Online (AJOL)

    Test

    Results are highly accurate and promising for all models based on Lewis' criteria. ... hydrological cycle. Future increases in ... STOCHASTIC CHARACTERISTICS AND MODELING OF RELATIVE HUMIDITY OF OGUN BASIN, NIGERIA. 71 ...

  7. Stochastic biomathematical models with applications to neuronal modeling

    CERN Document Server

    Batzel, Jerry; Ditlevsen, Susanne

    2013-01-01

    Stochastic biomathematical models are becoming increasingly important as new light is shed on the role of noise in living systems. In certain biological systems, stochastic effects may even enhance a signal, thus providing a biological motivation for the noise observed in living systems. Recent advances in stochastic analysis and increasing computing power facilitate the analysis of more biophysically realistic models, and this book provides researchers in computational neuroscience and stochastic systems with an overview of recent developments. Key concepts are developed in chapters written by experts in their respective fields. Topics include: one-dimensional homogeneous diffusions and their boundary behavior, large deviation theory and its application in stochastic neurobiological models, a review of mathematical methods for stochastic neuronal integrate-and-fire models, stochastic partial differential equation models in neurobiology, and stochastic modeling of spreading cortical depression.

  8. Modelling the stochastic behaviour of primary nucleation.

    Science.gov (United States)

    Maggioni, Giovanni Maria; Mazzotti, Marco

    2015-01-01

    We study the stochastic nature of primary nucleation and how it manifests itself in a crystallisation process at different scales and under different operating conditions. Such characteristics of nucleation are evident in many experiments where detection times of crystals are not identical, despite identical experimental conditions, but instead are distributed around an average value. While abundant experimental evidence has been reported in the literature, a clear theoretical understanding and an appropriate modelling of this feature is still missing. In this contribution, we present two models describing a batch cooling crystallisation, where the interplay between stochastic nucleation and deterministic crystal growth is described differently in each. The nucleation and growth rates of the two models are estimated by a comprehensive set of measurements of paracetamol crystallisation from aqueous solution in a 1 mL vessel [Kadam et al., Chemical Engineering Science, 2012, 72, 10-19]. Both models are applied to the cooling crystallisation process above under different operating conditions, i.e. different volumes, initial concentrations, cooling rates. The advantages and disadvantages of the two approaches are illustrated and discussed, with particular reference to their use across scales of nucleation rate measured in very small crystallisers.

  9. Minimum uncertainty and squeezing in diffusion processes and stochastic quantization

    Science.gov (United States)

    Demartino, S.; Desiena, S.; Illuminati, Fabrizo; Vitiello, Giuseppe

    1994-01-01

    We show that uncertainty relations, as well as minimum uncertainty coherent and squeezed states, are structural properties for diffusion processes. Through Nelson stochastic quantization we derive the stochastic image of the quantum mechanical coherent and squeezed states.

  10. Stochasticity and determinism in models of hematopoiesis.

    Science.gov (United States)

    Kimmel, Marek

    2014-01-01

    This chapter represents a novel view of modeling in hematopoiesis, synthesizing both deterministic and stochastic approaches. Whereas the stochastic models work in situations where chance dominates, for example when the number of cells is small, or under random mutations, the deterministic models are more important for large-scale, normal hematopoiesis. New types of models are on the horizon. These models attempt to account for distributed environments such as hematopoietic niches and their impact on dynamics. Mixed effects of such structures and chance events are largely unknown and constitute both a challenge and promise for modeling. Our discussion is presented under the separate headings of deterministic and stochastic modeling; however, the connections between both are frequently mentioned. Four case studies are included to elucidate important examples. We also include a primer of deterministic and stochastic dynamics for the reader's use.

  11. Option Pricing with Stochastic Volatility and Jump Diffusion Processes

    Directory of Open Access Journals (Sweden)

    Radu Lupu

    2006-03-01

    Full Text Available Option pricing by the use of Black Scholes Merton (BSM model is based on the assumption that asset prices have a lognormal distribution. In spite of the use of these models on a large scale, both by practioners and academics, the assumption of lognormality is rejected by the history of returns. The objective of this article is to present the methods that developed after the Black Scholes Merton environment and deals with the option pricing model adjustment to the empirical properties of asset returns. The main models that appeared after BSM allowed for special changes of the returns that materialized in jump-diffusion and stochastic volatility processes. The article presents the foundations of risk neutral options evaluation and the empirical evidence that fed the amendment of the lognormal assumption in the first part and shows the evaluation procedure under the assumption of stock prices following the jump-diffusion process and the stochastic volatility process.

  12. Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates

    NARCIS (Netherlands)

    Jiang, G.J.; van der Sluis, P.J.

    2000-01-01

    This paper specifies a multivariate stochastic volatility (SV) model for the S&P500 index and spot interest rate processes. We first estimate the multivariate SV model via the efficient method of moments (EMM) technique based on observations of underlying state variables, and then investigate the

  13. Estimation of parameters in Shot-Noise-Driven Doubly Stochastic Poisson processes using the EM algorithm--modeling of pre- and postsynaptic spike trains.

    Science.gov (United States)

    Mino, H

    2007-01-01

    To estimate the parameters, the impulse response (IR) functions of some linear time-invariant systems generating intensity processes, in Shot-Noise-Driven Doubly Stochastic Poisson Process (SND-DSPP) in which multivariate presynaptic spike trains and postsynaptic spike trains can be assumed to be modeled by the SND-DSPPs. An explicit formula for estimating the IR functions from observations of multivariate input processes of the linear systems and the corresponding counting process (output process) is derived utilizing the expectation maximization (EM) algorithm. The validity of the estimation formula was verified through Monte Carlo simulations in which two presynaptic spike trains and one postsynaptic spike train were assumed to be observable. The IR functions estimated on the basis of the proposed identification method were close to the true IR functions. The proposed method will play an important role in identifying the input-output relationship of pre- and postsynaptic neural spike trains in practical situations.

  14. Introduction to modeling and analysis of stochastic systems

    CERN Document Server

    Kulkarni, V G

    2011-01-01

    This is an introductory-level text on stochastic modeling. It is suited for undergraduate students in engineering, operations research, statistics, mathematics, actuarial science, business management, computer science, and public policy. It employs a large number of examples to teach the students to use stochastic models of real-life systems to predict their performance, and use this analysis to design better systems. The book is devoted to the study of important classes of stochastic processes: discrete and continuous time Markov processes, Poisson processes, renewal and regenerative processes, semi-Markov processes, queueing models, and diffusion processes. The book systematically studies the short-term and the long-term behavior, cost/reward models, and first passage times. All the material is illustrated with many examples, and case studies. The book provides a concise review of probability in the appendix. The book emphasizes numerical answers to the problems. A collection of MATLAB programs to accompany...

  15. A Time-Variant Reliability Model for Copper Bending Pipe under Seawater-Active Corrosion Based on the Stochastic Degradation Process

    Directory of Open Access Journals (Sweden)

    Bo Sun

    2018-03-01

    Full Text Available In the degradation process, the randomness and multiplicity of variables are difficult to describe by mathematical models. However, they are common in engineering and cannot be neglected, so it is necessary to study this issue in depth. In this paper, the copper bending pipe in seawater piping systems is taken as the analysis object, and the time-variant reliability is calculated by solving the interference of limit strength and maximum stress. We did degradation experiments and tensile experiments on copper material, and obtained the limit strength at each time. In addition, degradation experiments on copper bending pipe were done and the thickness at each time has been obtained, then the response of maximum stress was calculated by simulation. Further, with the help of one kind of Monte Carlo method we propose, the time-variant reliability of copper bending pipe was calculated based on the stochastic degradation process and interference theory. Compared with traditional methods and verified by maintenance records, the results show that the time-variant reliability model based on the stochastic degradation process proposed in this paper has better applicability in the reliability analysis, and it can be more convenient and accurate to predict the replacement cycle of copper bending pipe under seawater-active corrosion.

  16. Markov Chain Models for the Stochastic Modeling of Pitting Corrosion

    Directory of Open Access Journals (Sweden)

    A. Valor

    2013-01-01

    Full Text Available The stochastic nature of pitting corrosion of metallic structures has been widely recognized. It is assumed that this kind of deterioration retains no memory of the past, so only the current state of the damage influences its future development. This characteristic allows pitting corrosion to be categorized as a Markov process. In this paper, two different models of pitting corrosion, developed using Markov chains, are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure birth Markov process is used to model external pitting corrosion in underground pipelines. A closed-form solution of the system of Kolmogorov's forward equations is used to describe the transition probability function in a discrete pit depth space. The transition probability function is identified by correlating the stochastic pit depth mean with the empirical deterministic mean. In the second model, the distribution of maximum pit depths in a pitting experiment is successfully modeled after the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time is simulated as the realization of a Weibull process. Pit growth is simulated using a nonhomogeneous Markov process. An analytical solution of Kolmogorov's system of equations is also found for the transition probabilities from the first Markov state. Extreme value statistics is employed to find the distribution of maximum pit depths.

  17. Spatial Stochastic Point Models for Reservoir Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Syversveen, Anne Randi

    1997-12-31

    The main part of this thesis discusses stochastic modelling of geology in petroleum reservoirs. A marked point model is defined for objects against a background in a two-dimensional vertical cross section of the reservoir. The model handles conditioning on observations from more than one well for each object and contains interaction between objects, and the objects have the correct length distribution when penetrated by wells. The model is developed in a Bayesian setting. The model and the simulation algorithm are demonstrated by means of an example with simulated data. The thesis also deals with object recognition in image analysis, in a Bayesian framework, and with a special type of spatial Cox processes called log-Gaussian Cox processes. In these processes, the logarithm of the intensity function is a Gaussian process. The class of log-Gaussian Cox processes provides flexible models for clustering. The distribution of such a process is completely characterized by the intensity and the pair correlation function of the Cox process. 170 refs., 37 figs., 5 tabs.

  18. Numerical Simulation of the Heston Model under Stochastic Correlation

    Directory of Open Access Journals (Sweden)

    Long Teng

    2017-12-01

    Full Text Available Stochastic correlation models have become increasingly important in financial markets. In order to be able to price vanilla options in stochastic volatility and correlation models, in this work, we study the extension of the Heston model by imposing stochastic correlations driven by a stochastic differential equation. We discuss the efficient algorithms for the extended Heston model by incorporating stochastic correlations. Our numerical experiments show that the proposed algorithms can efficiently provide highly accurate results for the extended Heston by including stochastic correlations. By investigating the effect of stochastic correlations on the implied volatility, we find that the performance of the Heston model can be proved by including stochastic correlations.

  19. Stochastic models for predicting pitting corrosion damage of HLRW containers

    International Nuclear Information System (INIS)

    Henshall, G.A.

    1991-10-01

    Stochastic models for predicting aqueous pitting corrosion damage of high-level radioactive-waste containers are described. These models could be used to predict the time required for the first pit to penetrate a container and the increase in the number of breaches at later times, both of which would be useful in the repository system performance analysis. Monte Carlo implementations of the stochastic models are described, and predictions of induction time, survival probability and pit depth distributions are presented. These results suggest that the pit nucleation probability decreases with exposure time and that pit growth may be a stochastic process. The advantages and disadvantages of the stochastic approach, methods for modeling the effects of environment, and plans for future work are discussed

  20. The inverse Gamma process: A family of continuous stochastic models for describing state-dependent deterioration phenomena

    International Nuclear Information System (INIS)

    Guida, M.; Pulcini, G.

    2013-01-01

    This paper proposes the family of non-stationary inverse Gamma processes for modeling state-dependent deterioration processes with nonlinear trend. The proposed family of processes, which is based on the assumption that the “inverse” time process is Gamma, is mathematically more tractable than previously proposed state-dependent processes, because, unlike the previous models, the inverse Gamma process is a time-continuous and state-continuous model and does not require discretization of time and state. The conditional distribution of the deterioration growth over a generic time interval, the conditional distribution of the residual life and the residual reliability of the unit, given the current state, are provided. Point and interval estimation of the parameters which index the proposed process, as well as of several quantities of interest, are also discussed. Finally, the proposed model is applied to the wear process of the liners of some Diesel engines which was previously analyzed and proved to be a purely state-dependent process. The comparison of the inferential results obtained under the competitor models shows the ability of the Inverse Gamma process to adequately model the observed state-dependent wear process

  1. Stochastic approaches to inflation model building

    International Nuclear Information System (INIS)

    Ramirez, Erandy; Liddle, Andrew R.

    2005-01-01

    While inflation gives an appealing explanation of observed cosmological data, there are a wide range of different inflation models, providing differing predictions for the initial perturbations. Typically models are motivated either by fundamental physics considerations or by simplicity. An alternative is to generate large numbers of models via a random generation process, such as the flow equations approach. The flow equations approach is known to predict a definite structure to the observational predictions. In this paper, we first demonstrate a more efficient implementation of the flow equations exploiting an analytic solution found by Liddle (2003). We then consider alternative stochastic methods of generating large numbers of inflation models, with the aim of testing whether the structures generated by the flow equations are robust. We find that while typically there remains some concentration of points in the observable plane under the different methods, there is significant variation in the predictions amongst the methods considered

  2. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin; Zhang, Zhihua; Wong, Ka-Chun; Zhang, Xiangliang; Keyes, David E.

    2017-01-01

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference

  3. Stochastic interest rates model in compounding | Galadima ...

    African Journals Online (AJOL)

    Stochastic interest rates model in compounding. ... in finance, real estate, insurance, accounting and other areas of business administration. The assumption that future rates are fixed and known with certainty at the beginning of an investment, ...

  4. Moment Closure for the Stochastic Logistic Model

    National Research Council Canada - National Science Library

    Singh, Abhyudai; Hespanha, Joao P

    2006-01-01

    ..., which we refer to as the moment closure function. In this paper, a systematic procedure for constructing moment closure functions of arbitrary order is presented for the stochastic logistic model...

  5. Simulation of anaerobic digestion processes using stochastic algorithm.

    Science.gov (United States)

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  6. A stochastic model of enzyme kinetics

    Science.gov (United States)

    Stefanini, Marianne; Newman, Timothy; McKane, Alan

    2003-10-01

    Enzyme kinetics is generally modeled by deterministic rate equations, and in the simplest case leads to the well-known Michaelis-Menten equation. It is plausible that stochastic effects will play an important role at low enzyme concentrations. We have addressed this by constructing a simple stochastic model which can be exactly solved in the steady-state. Throughout a wide range of parameter values Michaelis-Menten dynamics is replaced by a new and simple theoretical result.

  7. Scalable inference for stochastic block models

    KAUST Repository

    Peng, Chengbin

    2017-12-08

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.

  8. A first course in stochastic processes

    CERN Document Server

    Karlin, Samuel

    1975-01-01

    The purpose, level, and style of this new edition conform to the tenets set forth in the original preface. The authors continue with their tack of developing simultaneously theory and applications, intertwined so that they refurbish and elucidate each other.The authors have made three main kinds of changes. First, they have enlarged on the topics treated in the first edition. Second, they have added many exercises and problems at the end of each chapter. Third, and most important, they have supplied, in new chapters, broad introductory discussions of several classes of stochastic processe

  9. Stationary stochastic processes for scientists and engineers

    CERN Document Server

    Lindgren, Georg; Sandsten, Maria

    2013-01-01

    ""This book is designed for a first course in stationary stochastic processes in science and engineering and does a very good job in introducing many concepts and ideas to students in these fields. … the book has probably been tested in the classroom many times, which also manifests itself in its virtual lack of typos. … Another great feature of the book is that it contains a wealth of worked example from many different fields. These help clarify concepts and theorems and I believe students will appreciate them-I certainly did. … The book is well suited for a one-semester course as it contains

  10. Stochastic Model Checking of the Stochastic Quality Calculus

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis; Zeng, Kebin

    2015-01-01

    The Quality Calculus uses quality binders for input to express strategies for continuing the computation even when the desired input has not been received. The Stochastic Quality Calculus adds generally distributed delays for output actions and real-time constraints on the quality binders for input....... This gives rise to Generalised Semi-Markov Decision Processes for which few analytical techniques are available. We restrict delays on output actions to be exponentially distributed while still admitting real-time constraints on the quality binders. This facilitates developing analytical techniques based...

  11. Modelling Cow Behaviour Using Stochastic Automata

    DEFF Research Database (Denmark)

    Jónsson, Ragnar Ingi

    This report covers an initial study on the modelling of cow behaviour using stochastic automata with the aim of detecting lameness. Lameness in cows is a serious problem that needs to be dealt with because it results in less profitable production units and in reduced quality of life...... for the affected livestock. By featuring training data consisting of measurements of cow activity, three different models are obtained, namely an autonomous stochastic automaton, a stochastic automaton with coinciding state and output and an autonomous stochastic automaton with coinciding state and output, all...... of which describe the cows' activity in the two regarded behavioural scenarios, non-lame and lame. Using the experimental measurement data the different behavioural relations for the two regarded behavioural scenarios are assessed. The three models comprise activity within last hour, activity within last...

  12. A stochastic SIS epidemic model with vaccination

    Science.gov (United States)

    Cao, Boqiang; Shan, Meijing; Zhang, Qimin; Wang, Weiming

    2017-11-01

    In this paper, we investigate the basic features of an SIS type infectious disease model with varying population size and vaccinations in presence of environment noise. By applying the Markov semigroup theory, we propose a stochastic reproduction number R0s which can be seen as a threshold parameter to utilize in identifying the stochastic extinction and persistence: If R0s disease-free absorbing set for the stochastic epidemic model, which implies that disease dies out with probability one; while if R0s > 1, under some mild extra conditions, the SDE model has an endemic stationary distribution which results in the stochastic persistence of the infectious disease. The most interesting finding is that large environmental noise can suppress the outbreak of the disease.

  13. Dynamics of a Stochastic Intraguild Predation Model

    Directory of Open Access Journals (Sweden)

    Zejing Xing

    2016-04-01

    Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.

  14. Multivariate moment closure techniques for stochastic kinetic models

    International Nuclear Information System (INIS)

    Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.

    2015-01-01

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs

  15. Multivariate moment closure techniques for stochastic kinetic models

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, Eszter, E-mail: e.lakatos13@imperial.ac.uk; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H., E-mail: m.stumpf@imperial.ac.uk [Department of Life Sciences, Centre for Integrative Systems Biology and Bioinformatics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-09-07

    Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.

  16. XI Symposium on Probability and Stochastic Processes

    CERN Document Server

    Pardo, Juan; Rivero, Víctor; Bravo, Gerónimo

    2015-01-01

    This volume features lecture notes and a collection of contributed articles from the XI Symposium on Probability and Stochastic Processes, held at CIMAT Mexico in September 2013. Since the symposium was part of the activities organized in Mexico to celebrate the International Year of Statistics, the program included topics from the interface between statistics and stochastic processes. The book starts with notes from the mini-course given by Louigi Addario-Berry with an accessible description of some features of the multiplicative coalescent and its connection with random graphs and minimum spanning trees. It includes a number of exercises and a section on unanswered questions. Further contributions provide the reader with a broad perspective on the state-of-the art of active areas of research. Contributions by: Louigi Addario-Berry Octavio Arizmendi Fabrice Baudoin Jochen Blath Loïc Chaumont J. Armando Domínguez-Molina Bjarki Eldon Shui Feng Tulio Gaxiola Adrián González Casanova Evgueni Gordienko Daniel...

  17. Stochasticity in processes fundamentals and applications to chemistry and biology

    CERN Document Server

    Schuster, Peter

    2016-01-01

    This book has developed over the past fifteen years from a modern course on stochastic chemical kinetics for graduate students in physics, chemistry and biology. The first part presents a systematic collection of the mathematical background material needed to understand probability, statistics, and stochastic processes as a prerequisite for the increasingly challenging practical applications in chemistry and the life sciences examined in the second part. Recent advances in the development of new techniques and in the resolution of conventional experiments at nano-scales have been tremendous: today molecular spectroscopy can provide insights into processes down to scales at which current theories at the interface of physics, chemistry and the life sciences cannot be successful without a firm grasp of randomness and its sources. Routinely measured data is now sufficiently accurate to allow the direct recording of fluctuations. As a result, the sampling of data and the modeling of relevant processes are doomed t...

  18. Estimation of Stochastic Volatility Models by Nonparametric Filtering

    DEFF Research Database (Denmark)

    Kanaya, Shin; Kristensen, Dennis

    2016-01-01

    /estimated volatility process replacing the latent process. Our estimation strategy is applicable to both parametric and nonparametric stochastic volatility models, and can handle both jumps and market microstructure noise. The resulting estimators of the stochastic volatility model will carry additional biases...... and variances due to the first-step estimation, but under regularity conditions we show that these vanish asymptotically and our estimators inherit the asymptotic properties of the infeasible estimators based on observations of the volatility process. A simulation study examines the finite-sample properties...

  19. Stochastic differential equations used to model conjugation

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    Stochastic differential equations (SDEs) are used to model horizontal transfer of antibiotic resis- tance by conjugation. The model describes the concentration of donor, recipient, transconjugants and substrate. The strength of the SDE model over the traditional ODE models is that the noise can...

  20. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air...... and using simple Monte Carlo techniques to obtain a stochastic estimate of the costs of traffic air pollution for infrastructures....... pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a deterministic model. However, it is straightforward to modify this model to include uncertain parameters...

  1. The multivariate supOU stochastic volatility model

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Stelzer, Robert

    Using positive semidefinite supOU (superposition of Ornstein-Uhlenbeck type) processes to describe the volatility, we introduce a multivariate stochastic volatility model for financial data which is capable of modelling long range dependence effects. The finiteness of moments and the second order...... structure of the volatility, the log returns, as well as their "squares" are discussed in detail. Moreover, we give several examples in which long memory effects occur and study how the model as well as the simple Ornstein-Uhlenbeck type stochastic volatility model behave under linear transformations....... In particular, the models are shown to be preserved under invertible linear transformations. Finally, we discuss how (sup)OU stochastic volatility models can be combined with a factor modelling approach....

  2. Markov Chain Models for the Stochastic Modeling of Pitting Corrosion

    OpenAIRE

    Valor, A.; Caleyo, F.; Alfonso, L.; Velázquez, J. C.; Hallen, J. M.

    2013-01-01

    The stochastic nature of pitting corrosion of metallic structures has been widely recognized. It is assumed that this kind of deterioration retains no memory of the past, so only the current state of the damage influences its future development. This characteristic allows pitting corrosion to be categorized as a Markov process. In this paper, two different models of pitting corrosion, developed using Markov chains, are presented. Firstly, a continuous-time, nonhomogeneous linear growth (pure ...

  3. Distributed parallel computing in stochastic modeling of groundwater systems.

    Science.gov (United States)

    Dong, Yanhui; Li, Guomin; Xu, Haizhen

    2013-03-01

    Stochastic modeling is a rapidly evolving, popular approach to the study of the uncertainty and heterogeneity of groundwater systems. However, the use of Monte Carlo-type simulations to solve practical groundwater problems often encounters computational bottlenecks that hinder the acquisition of meaningful results. To improve the computational efficiency, a system that combines stochastic model generation with MODFLOW-related programs and distributed parallel processing is investigated. The distributed computing framework, called the Java Parallel Processing Framework, is integrated into the system to allow the batch processing of stochastic models in distributed and parallel systems. As an example, the system is applied to the stochastic delineation of well capture zones in the Pinggu Basin in Beijing. Through the use of 50 processing threads on a cluster with 10 multicore nodes, the execution times of 500 realizations are reduced to 3% compared with those of a serial execution. Through this application, the system demonstrates its potential in solving difficult computational problems in practical stochastic modeling. © 2012, The Author(s). Groundwater © 2012, National Ground Water Association.

  4. The critical domain size of stochastic population models.

    Science.gov (United States)

    Reimer, Jody R; Bonsall, Michael B; Maini, Philip K

    2017-02-01

    Identifying the critical domain size necessary for a population to persist is an important question in ecology. Both demographic and environmental stochasticity impact a population's ability to persist. Here we explore ways of including this variability. We study populations with distinct dispersal and sedentary stages, which have traditionally been modelled using a deterministic integrodifference equation (IDE) framework. Individual-based models (IBMs) are the most intuitive stochastic analogues to IDEs but yield few analytic insights. We explore two alternate approaches; one is a scaling up to the population level using the Central Limit Theorem, and the other a variation on both Galton-Watson branching processes and branching processes in random environments. These branching process models closely approximate the IBM and yield insight into the factors determining the critical domain size for a given population subject to stochasticity.

  5. Stochastic fractional differential equations: Modeling, method and analysis

    International Nuclear Information System (INIS)

    Pedjeu, Jean-C.; Ladde, Gangaram S.

    2012-01-01

    By introducing a concept of dynamic process operating under multi-time scales in sciences and engineering, a mathematical model described by a system of multi-time scale stochastic differential equations is formulated. The classical Picard–Lindelöf successive approximations scheme is applied to the model validation problem, namely, existence and uniqueness of solution process. Naturally, this leads to the problem of finding closed form solutions of both linear and nonlinear multi-time scale stochastic differential equations of Itô–Doob type. Finally, to illustrate the scope of ideas and presented results, multi-time scale stochastic models for ecological and epidemiological processes in population dynamic are outlined.

  6. Stochastic inverse problems: Models and metrics

    International Nuclear Information System (INIS)

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.

    2015-01-01

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds

  7. Stochastic inverse problems: Models and metrics

    Science.gov (United States)

    Sabbagh, Elias H.; Sabbagh, Harold A.; Murphy, R. Kim; Aldrin, John C.; Annis, Charles; Knopp, Jeremy S.

    2015-03-01

    In past work, we introduced model-based inverse methods, and applied them to problems in which the anomaly could be reasonably modeled by simple canonical shapes, such as rectangular solids. In these cases the parameters to be inverted would be length, width and height, as well as the occasional probe lift-off or rotation. We are now developing a formulation that allows more flexibility in modeling complex flaws. The idea consists of expanding the flaw in a sequence of basis functions, and then solving for the expansion coefficients of this sequence, which are modeled as independent random variables, uniformly distributed over their range of values. There are a number of applications of such modeling: 1. Connected cracks and multiple half-moons, which we have noted in a POD set. Ideally we would like to distinguish connected cracks from one long shallow crack. 2. Cracks of irregular profile and shape which have appeared in cold work holes during bolt-hole eddy-current inspection. One side of such cracks is much deeper than other. 3. L or C shaped crack profiles at the surface, examples of which have been seen in bolt-hole cracks. By formulating problems in a stochastic sense, we are able to leverage the stochastic global optimization algorithms in NLSE, which is resident in VIC-3D®, to answer questions of global minimization and to compute confidence bounds using the sensitivity coefficient that we get from NLSE. We will also address the issue of surrogate functions which are used during the inversion process, and how they contribute to the quality of the estimation of the bounds.

  8. Infinite-degree-corrected stochastic block model

    DEFF Research Database (Denmark)

    Herlau, Tue; Schmidt, Mikkel Nørgaard; Mørup, Morten

    2014-01-01

    In stochastic block models, which are among the most prominent statistical models for cluster analysis of complex networks, clusters are defined as groups of nodes with statistically similar link probabilities within and between groups. A recent extension by Karrer and Newman [Karrer and Newman...... corrected stochastic block model as a nonparametric Bayesian model, incorporating a parameter to control the amount of degree correction that can then be inferred from data. Additionally, our formulation yields principled ways of inferring the number of groups as well as predicting missing links...

  9. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  10. Methods and models in mathematical biology deterministic and stochastic approaches

    CERN Document Server

    Müller, Johannes

    2015-01-01

    This book developed from classes in mathematical biology taught by the authors over several years at the Technische Universität München. The main themes are modeling principles, mathematical principles for the analysis of these models, and model-based analysis of data. The key topics of modern biomathematics are covered: ecology, epidemiology, biochemistry, regulatory networks, neuronal networks, and population genetics. A variety of mathematical methods are introduced, ranging from ordinary and partial differential equations to stochastic graph theory and  branching processes. A special emphasis is placed on the interplay between stochastic and deterministic models.

  11. From complex to simple: interdisciplinary stochastic models

    International Nuclear Information System (INIS)

    Mazilu, D A; Zamora, G; Mazilu, I

    2012-01-01

    We present two simple, one-dimensional, stochastic models that lead to a qualitative understanding of very complex systems from biology, nanoscience and social sciences. The first model explains the complicated dynamics of microtubules, stochastic cellular highways. Using the theory of random walks in one dimension, we find analytical expressions for certain physical quantities, such as the time dependence of the length of the microtubules, and diffusion coefficients. The second one is a stochastic adsorption model with applications in surface deposition, epidemics and voter systems. We introduce the ‘empty interval method’ and show sample calculations for the time-dependent particle density. These models can serve as an introduction to the field of non-equilibrium statistical physics, and can also be used as a pedagogical tool to exemplify standard statistical physics concepts, such as random walks or the kinetic approach of the master equation. (paper)

  12. Applied probability and stochastic processes. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, Richard M. [Texas A and M Univ., College Station, TX (United States). Industrial and Systems Engineering Dept.; Valdez-Flores, Ciriaco [Sielken and Associates Consulting, Inc., Bryan, TX (United States)

    2010-07-01

    This book presents applied probability and stochastic processes in an elementary but mathematically precise manner, with numerous examples and exercises to illustrate the range of engineering and science applications of the concepts. The book is designed to give the reader an intuitive understanding of probabilistic reasoning, in addition to an understanding of mathematical concepts and principles. The initial chapters present a summary of probability and statistics and then Poisson processes, Markov chains, Markov processes and queuing processes are introduced. Advanced topics include simulation, inventory theory, replacement theory, Markov decision theory, and the use of matrix geometric procedures in the analysis of queues. Included in the second edition are appendices at the end of several chapters giving suggestions for the use of Excel in solving the problems of the chapter. Also new in this edition are an introductory chapter on statistics and a chapter on Poisson processes that includes some techniques used in risk assessment. The old chapter on queues has been expanded and broken into two new chapters: one for simple queuing processes and one for queuing networks. Support is provided through the web site http://apsp.tamu.edu where students will have the answers to odd numbered problems and instructors will have access to full solutions and Excel files for homework. (orig.)

  13. Stochastic processes dominate during boreal bryophyte community assembly.

    Science.gov (United States)

    Fenton, Nicole J; Bergeron, Yves

    2013-09-01

    Why are plant species found in certain locations and not in others? The study of community assembly rules has attempted to answer this question, and many studies articulate the historic dichotomy of deterministic (predictable niches) vs. stochastic (random or semi-random processes). The study of successional sequences to determine whether they converge, as would be expected by deterministic theory, or diverge, as stochastic theory would suggest, has been one method used to investigate this question. In this article we ask the question: Do similar boreal bryophyte communities develop in the similar habitat created by convergent succession after fires of different severities? Or do the stochastic processes generated by fires of different severity lead to different communities? Specifically we predict that deterministic structure will be more important for large forest-floor species than stochastic processes, and that the inverse will be true for small bryophyte species. We used multivariate regression trees and model selection to determine the relative weight of structure (forest structure, substrates, soil structure) and processes (fire severity) for two groups of bryophyte species sampled in 12 sites (seven high-severity and five low-severity fires). Contrary to our first hypothesis, processes were as important for large forest-floor bryophytes as for small pocket species. Fire severity, its interaction with the quality of available habitat, and its impact on the creation of biological legacies played dominant roles in determining community structure. In this study, sites with nearly identical forest structure, generated via convergent succession after high- and low-severity fire, were compared to see whether these sites supported similar bryophyte communities. While similar to some degree, both the large forest-floor species and the pocket species differed after high-severity fire compared to low-severity fire. This result suggests that the "how," or process of

  14. An introduction to stochastic processes with applications to biology

    CERN Document Server

    Allen, Linda J S

    2010-01-01

    An Introduction to Stochastic Processes with Applications to Biology, Second Edition presents the basic theory of stochastic processes necessary in understanding and applying stochastic methods to biological problems in areas such as population growth and extinction, drug kinetics, two-species competition and predation, the spread of epidemics, and the genetics of inbreeding. Because of their rich structure, the text focuses on discrete and continuous time Markov chains and continuous time and state Markov processes.New to the Second EditionA new chapter on stochastic differential equations th

  15. Mapping stochastic processes onto complex networks

    International Nuclear Information System (INIS)

    Shirazi, A H; Reza Jafari, G; Davoudi, J; Peinke, J; Reza Rahimi Tabar, M; Sahimi, Muhammad

    2009-01-01

    We introduce a method by which stochastic processes are mapped onto complex networks. As examples, we construct the networks for such time series as those for free-jet and low-temperature helium turbulence, the German stock market index (the DAX), and white noise. The networks are further studied by contrasting their geometrical properties, such as the mean length, diameter, clustering, and average number of connections per node. By comparing the network properties of the original time series investigated with those for the shuffled and surrogate series, we are able to quantify the effect of the long-range correlations and the fatness of the probability distribution functions of the series on the networks constructed. Most importantly, we demonstrate that the time series can be reconstructed with high precision by means of a simple random walk on their corresponding networks

  16. Hidden Symmetries of Stochastic Models

    Directory of Open Access Journals (Sweden)

    Boyka Aneva

    2007-05-01

    Full Text Available In the matrix product states approach to $n$ species diffusion processes the stationary probability distribution is expressed as a matrix product state with respect to a quadratic algebra determined by the dynamics of the process. The quadratic algebra defines a noncommutative space with a $SU_q(n$ quantum group action as its symmetry. Boundary processes amount to the appearance of parameter dependent linear terms in the algebraic relations and lead to a reduction of the $SU_q(n$ symmetry. We argue that the boundary operators of the asymmetric simple exclusion process generate a tridiagonal algebra whose irriducible representations are expressed in terms of the Askey-Wilson polynomials. The Askey-Wilson algebra arises as a symmetry of the boundary problem and allows to solve the model exactly.

  17. Stochastic volatility models and Kelvin waves

    Energy Technology Data Exchange (ETDEWEB)

    Lipton, Alex [Merrill Lynch, Mlfc Main, 2 King Edward Street, London EC1A 1HQ (United Kingdom); Sepp, Artur [Merrill Lynch, 4 World Financial Center, New York, NY 10080 (United States)], E-mail: Alex_Lipton@ml.com, E-mail: Artur_Sepp@ml.com

    2008-08-29

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  18. Stochastic volatility models and Kelvin waves

    Science.gov (United States)

    Lipton, Alex; Sepp, Artur

    2008-08-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.

  19. Stochastic volatility models and Kelvin waves

    International Nuclear Information System (INIS)

    Lipton, Alex; Sepp, Artur

    2008-01-01

    We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics

  20. Stochastic Modeling Of Wind Turbine Drivetrain Components

    DEFF Research Database (Denmark)

    Rafsanjani, Hesam Mirzaei; Sørensen, John Dalsgaard

    2014-01-01

    reliable components are needed for wind turbine. In this paper focus is on reliability of critical components in drivetrain such as bearings and shafts. High failure rates of these components imply a need for more reliable components. To estimate the reliability of these components, stochastic models...... are needed for initial defects and damage accumulation. In this paper, stochastic models are formulated considering some of the failure modes observed in these components. The models are based on theoretical considerations, manufacturing uncertainties, size effects of different scales. It is illustrated how...

  1. Lithium-ion battery capacity fading dynamics modelling for formulation optimization: A stochastic approach to accelerate the design process

    International Nuclear Information System (INIS)

    Tao, Laifa; Cheng, Yujie; Lu, Chen; Su, Yuzhuan; Chong, Jin; Jin, Haizu; Lin, Yongshou; Noktehdan, Azadeh

    2017-01-01

    Highlights: •The model is linked to known physicochemical degradation processes and material properties. •Aging dynamics of various battery formulations can be understood by the proposed model. •Large number of experiments will be reduced to accelerate the battery design process. •This approach can describe batteries under various operating conditions. •The proposed model is simple and easily implemented. -- Abstract: A five-state nonhomogeneous Markov chain model, which is an effective and promising way to accelerate the Li-ion battery design process by investigating the capacity fading dynamics of different formulations during the battery design phase, is reported. The parameters of this model are linked to known physicochemical degradation dynamics and material properties. Herein, the states and behaviors of the active materials in Li-ion batteries are modelled. To verify the efficiency of the proposed model, a dataset from approximately 3 years of cycling capacity fading experiments of various formulations using several different materials provided by Contemporary Amperex Technology Limited (CATL), as well as a NASA dataset, are employed. The capabilities of the proposed model for different amounts (50%, 70%, and 90%) of available experimental capacity data are tested and analyzed to assist with the final design determination for manufacturers. The average relative errors of life cycling prediction acquired from these tests are less than 2.4%, 0.8%, and 0.3%, even when only 50%, 70%, and 90% of the data, respectively, is available for different anode materials, electrolyte materials, and individual batteries. Furthermore, the variance is 0.518% when only 50% of the data are available; i.e., one can save at least 50% of the total experimental time and cost with an accuracy greater than 97% in the design phase, which demonstrates an effective and promising way to accelerate the Li-ion battery design process. The qualitative and quantitative analyses

  2. Stochastic Analysis 2010

    CERN Document Server

    Crisan, Dan

    2011-01-01

    "Stochastic Analysis" aims to provide mathematical tools to describe and model high dimensional random systems. Such tools arise in the study of Stochastic Differential Equations and Stochastic Partial Differential Equations, Infinite Dimensional Stochastic Geometry, Random Media and Interacting Particle Systems, Super-processes, Stochastic Filtering, Mathematical Finance, etc. Stochastic Analysis has emerged as a core area of late 20th century Mathematics and is currently undergoing a rapid scientific development. The special volume "Stochastic Analysis 2010" provides a sa

  3. Stochastic Modelling of the Diffusion Coefficient for Concrete

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    In the paper, a new stochastic modelling of the diffusion coefficient D is presented. The modelling is based on physical understanding of the diffusion process and on some recent experimental results. The diffusion coefficients D is strongly dependent on the w/c ratio and the temperature....

  4. Stochastic models for transport in a fluidized bed

    NARCIS (Netherlands)

    Dehling, H.G; Hoffmann, A.C; Stuut, H.W.

    1999-01-01

    In this paper we study stochastic models for the transport of particles in a fluidized bed reactor and compute the associated residence time distribution (RTD). Our main model is basically a diffusion process in [0;A] with reflecting/absorbing boundary conditions, modified by allowing jumps to the

  5. Random migration processes between two stochastic epidemic centers.

    Science.gov (United States)

    Sazonov, Igor; Kelbert, Mark; Gravenor, Michael B

    2016-04-01

    We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Computational stochastic model of ions implantation

    Energy Technology Data Exchange (ETDEWEB)

    Zmievskaya, Galina I., E-mail: zmi@gmail.ru; Bondareva, Anna L., E-mail: bal310775@yandex.ru [M.V. Keldysh Institute of Applied Mathematics RAS, 4,Miusskaya sq., 125047 Moscow (Russian Federation); Levchenko, Tatiana V., E-mail: tatlevchenko@mail.ru [VNII Geosystem Russian Federal Center, Varshavskoye roadway, 8, Moscow (Russian Federation); Maino, Giuseppe, E-mail: giuseppe.maino@enea.it [Scuola di Lettere e BeniCulturali, University di Bologna, sede di Ravenna, via Mariani 5, 48100 Ravenna (Italy)

    2015-03-10

    Implantation flux ions into crystal leads to phase transition /PT/ 1-st kind. Damaging lattice is associated with processes clustering vacancies and gaseous bubbles as well their brownian motion. System of stochastic differential equations /SDEs/ Ito for evolution stochastic dynamical variables corresponds to the superposition Wiener processes. The kinetic equations in partial derivatives /KE/, Kolmogorov-Feller and Einstein-Smolukhovskii, were formulated for nucleation into lattice of weakly soluble gases. According theory, coefficients of stochastic and kinetic equations uniquely related. Radiation stimulated phase transition are characterized by kinetic distribution functions /DFs/ of implanted clusters versus their sizes and depth of gas penetration into lattice. Macroscopic parameters of kinetics such as the porosity and stress calculated in thin layers metal/dielectric due to Xe{sup ++} irradiation are attracted as example. Predictions of porosity, important for validation accumulation stresses in surfaces, can be applied at restoring of objects the cultural heritage.

  7. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  8. Some recent developments in stochastic volatility modelling

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Nicolato, Elisa; Shephard, N.

    2002-01-01

    This paper reviews and puts in context some of our recent work on stochastic volatility (SV) modelling for financial economics. Here our main focus is on: (i) the relationship between subordination and SV, (ii) OU based volatility models, (iii) exact option pricing, (iv) realized power variation...

  9. Predicting Footbridge Response using Stochastic Load Models

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2013-01-01

    Walking parameters such as step frequency, pedestrian mass, dynamic load factor, etc. are basically stochastic, although it is quite common to adapt deterministic models for these parameters. The present paper considers a stochastic approach to modeling the action of pedestrians, but when doing so...... decisions need to be made in terms of statistical distributions of walking parameters and in terms of the parameters describing the statistical distributions. The paper explores how sensitive computations of bridge response are to some of the decisions to be made in this respect. This is useful...

  10. Electricity Market Stochastic Dynamic Model and Its Mean Stability Analysis

    Directory of Open Access Journals (Sweden)

    Zhanhui Lu

    2014-01-01

    Full Text Available Based on the deterministic dynamic model of electricity market proposed by Alvarado, a stochastic electricity market model, considering the random nature of demand sides, is presented in this paper on the assumption that generator cost function and consumer utility function are quadratic functions. The stochastic electricity market model is a generalization of the deterministic dynamic model. Using the theory of stochastic differential equations, stochastic process theory, and eigenvalue techniques, the determining conditions of the mean stability for this electricity market model under small Gauss type random excitation are provided and testified theoretically. That is, if the demand elasticity of suppliers is nonnegative and the demand elasticity of consumers is negative, then the stochastic electricity market model is mean stable. It implies that the stability can be judged directly by initial data without any computation. Taking deterministic electricity market data combined with small Gauss type random excitation as numerical samples to interpret random phenomena from a statistical perspective, the results indicate the conclusions above are correct, valid, and practical.

  11. Modeling stochasticity in biochemical reaction networks

    International Nuclear Information System (INIS)

    Constantino, P H; Vlysidis, M; Smadbeck, P; Kaznessis, Y N

    2016-01-01

    Small biomolecular systems are inherently stochastic. Indeed, fluctuations of molecular species are substantial in living organisms and may result in significant variation in cellular phenotypes. The chemical master equation (CME) is the most detailed mathematical model that can describe stochastic behaviors. However, because of its complexity the CME has been solved for only few, very small reaction networks. As a result, the contribution of CME-based approaches to biology has been very limited. In this review we discuss the approach of solving CME by a set of differential equations of probability moments, called moment equations. We present different approaches to produce and to solve these equations, emphasizing the use of factorial moments and the zero information entropy closure scheme. We also provide information on the stability analysis of stochastic systems. Finally, we speculate on the utility of CME-based modeling formalisms, especially in the context of synthetic biology efforts. (topical review)

  12. Process theory for supervisory control of stochastic systems with data

    NARCIS (Netherlands)

    Markovski, J.

    2012-01-01

    We propose a process theory for supervisory control of stochastic nondeterministic plants with data-based observations. The Markovian process theory with data relies on the notion of Markovian partial bisimulation to capture controllability of stochastic nondeterministic systems. It presents a

  13. Modeling surface topography of state-of-the-art x-ray mirrors as a result of stochastic polishing process: recent developments

    Science.gov (United States)

    Yashchuk, Valeriy V.; Centers, Gary; Tyurin, Yuri N.; Tyurina, Anastasia

    2016-09-01

    Recently, an original method for the statistical modeling of surface topography of state-of-the-art mirrors for usage in xray optical systems at light source facilities and for astronomical telescopes [Opt. Eng. 51(4), 046501, 2012; ibid. 53(8), 084102 (2014); and ibid. 55(7), 074106 (2016)] has been developed. In modeling, the mirror surface topography is considered to be a result of a stationary uniform stochastic polishing process and the best fit time-invariant linear filter (TILF) that optimally parameterizes, with limited number of parameters, the polishing process is determined. The TILF model allows the surface slope profile of an optic with a newly desired specification to be reliably forecast before fabrication. With the forecast data, representative numerical evaluations of expected performance of the prospective mirrors in optical systems under development become possible [Opt. Eng., 54(2), 025108 (2015)]. Here, we suggest and demonstrate an analytical approach for accounting the imperfections of the used metrology instruments, which are described by the instrumental point spread function, in the TILF modeling. The efficacy of the approach is demonstrated with numerical simulations for correction of measurements performed with an autocollimator based surface slope profiler. Besides solving this major metrological problem, the results of the present work open an avenue for developing analytical and computational tools for stitching data in the statistical domain, obtained using multiple metrology instruments measuring significantly different bandwidths of spatial wavelengths.

  14. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications

    Science.gov (United States)

    Weiss, Charles J.

    2017-01-01

    An introduction to digital stochastic simulations for modeling a variety of physical and chemical processes is presented. Despite the importance of stochastic simulations in chemistry, the prevalence of turn-key software solutions can impose a layer of abstraction between the user and the underlying approach obscuring the methodology being…

  15. Stochastic modeling of virus capsid assembly pathways

    Science.gov (United States)

    Schwartz, Russell

    2009-03-01

    Virus capsids have become a key model system for understanding self-assembly due to their high complexity, robust and efficient assembly processes, and experimental tractability. Our ability to directly examine and manipulate capsid assembly kinetics in detail nonetheless remains limited, creating a need for computer models that can infer experimentally inaccessible features of the assembly process and explore the effects of hypothetical manipulations on assembly trajectories. We have developed novel algorithms for stochastic simulation of capsid assembly [1,2] that allow us to model capsid assembly over broad parameter spaces [3]. We apply these methods to study the nature of assembly pathway control in virus capsids as well as their sensitivity to assembly conditions and possible experimental interventions. [4pt] [1] F. Jamalyaria, R. Rohlfs, and R. Schwartz. J Comp Phys 204, 100 (2005). [0pt] [2] N. Misra and R. Schwartz. J Chem Phys 129, in press (2008). [0pt] [3] B. Sweeney, T. Zhang, and R. Schwartz. Biophys J 94, 772 (2008).

  16. Response spectrum analysis of a stochastic seismic model

    International Nuclear Information System (INIS)

    Kimura, Koji; Sakata, Masaru; Takemoto, Shinichiro.

    1990-01-01

    The stochastic response spectrum approach is presented for predicting the dynamic behavior of structures to earthquake excitation expressed by a random process, one of whose sample functions can be regarded as a recorded strong-motion earthquake accelerogram. The approach consists of modeling recorded ground motion by a random process and the root-mean-square response (rms) analysis of a single-degree-of-freedom system by using the moment equations method. The stochastic response spectrum is obtained as a plot of the maximum rms response versus the natural period of the system and is compared with the conventional response spectrum. (author)

  17. Stochastic population and epidemic models persistence and extinction

    CERN Document Server

    Allen, Linda J S

    2015-01-01

    This monograph provides a summary of the basic theory of branching processes for single-type and multi-type processes. Classic examples of population and epidemic models illustrate the probability of population or epidemic extinction obtained from the theory of branching processes. The first chapter develops the branching process theory, while in the second chapter two applications to population and epidemic processes of single-type branching process theory are explored. The last two chapters present multi-type branching process applications to epidemic models, and then continuous-time and continuous-state branching processes with applications. In addition, several MATLAB programs for simulating stochastic sample paths  are provided in an Appendix. These notes originated as part of a lecture series on Stochastics in Biological Systems at the Mathematical Biosciences Institute in Ohio, USA. Professor Linda Allen is a Paul Whitfield Horn Professor of Mathematics in the Department of Mathematics and Statistics ...

  18. Stochastic resonance in models of neuronal ensembles

    International Nuclear Information System (INIS)

    Chialvo, D.R.; Longtin, A.; Mueller-Gerkin, J.

    1997-01-01

    Two recently suggested mechanisms for the neuronal encoding of sensory information involving the effect of stochastic resonance with aperiodic time-varying inputs are considered. It is shown, using theoretical arguments and numerical simulations, that the nonmonotonic behavior with increasing noise of the correlation measures used for the so-called aperiodic stochastic resonance (ASR) scenario does not rely on the cooperative effect typical of stochastic resonance in bistable and excitable systems. Rather, ASR with slowly varying signals is more properly interpreted as linearization by noise. Consequently, the broadening of the open-quotes resonance curveclose quotes in the multineuron stochastic resonance without tuning scenario can also be explained by this linearization. Computation of the input-output correlation as a function of both signal frequency and noise for the model system further reveals conditions where noise-induced firing with aperiodic inputs will benefit from stochastic resonance rather than linearization by noise. Thus, our study clarifies the tuning requirements for the optimal transduction of subthreshold aperiodic signals. It also shows that a single deterministic neuron can perform as well as a network when biased into a suprathreshold regime. Finally, we show that the inclusion of a refractory period in the spike-detection scheme produces a better correlation between instantaneous firing rate and input signal. copyright 1997 The American Physical Society

  19. Stochastic dynamic modeling of regular and slow earthquakes

    Science.gov (United States)

    Aso, N.; Ando, R.; Ide, S.

    2017-12-01

    Both regular and slow earthquakes are slip phenomena on plate boundaries and are simulated by a (quasi-)dynamic modeling [Liu and Rice, 2005]. In these numerical simulations, spatial heterogeneity is usually considered not only for explaining real physical properties but also for evaluating the stability of the calculations or the sensitivity of the results on the condition. However, even though we discretize the model space with small grids, heterogeneity at smaller scales than the grid size is not considered in the models with deterministic governing equations. To evaluate the effect of heterogeneity at the smaller scales we need to consider stochastic interactions between slip and stress in a dynamic modeling. Tidal stress is known to trigger or affect both regular and slow earthquakes [Yabe et al., 2015; Ide et al., 2016], and such an external force with fluctuation can also be considered as a stochastic external force. A healing process of faults may also be stochastic, so we introduce stochastic friction law. In the present study, we propose a stochastic dynamic model to explain both regular and slow earthquakes. We solve mode III problem, which corresponds to the rupture propagation along the strike direction. We use BIEM (boundary integral equation method) scheme to simulate slip evolution, but we add stochastic perturbations in the governing equations, which is usually written in a deterministic manner. As the simplest type of perturbations, we adopt Gaussian deviations in the formulation of the slip-stress kernel, external force, and friction. By increasing the amplitude of perturbations of the slip-stress kernel, we reproduce complicated rupture process of regular earthquakes including unilateral and bilateral ruptures. By perturbing external force, we reproduce slow rupture propagation at a scale of km/day. The slow propagation generated by a combination of fast interaction at S-wave velocity is analogous to the kinetic theory of gasses: thermal

  20. Stochastic linear programming models, theory, and computation

    CERN Document Server

    Kall, Peter

    2011-01-01

    This new edition of Stochastic Linear Programming: Models, Theory and Computation has been brought completely up to date, either dealing with or at least referring to new material on models and methods, including DEA with stochastic outputs modeled via constraints on special risk functions (generalizing chance constraints, ICC’s and CVaR constraints), material on Sharpe-ratio, and Asset Liability Management models involving CVaR in a multi-stage setup. To facilitate use as a text, exercises are included throughout the book, and web access is provided to a student version of the authors’ SLP-IOR software. Additionally, the authors have updated the Guide to Available Software, and they have included newer algorithms and modeling systems for SLP. The book is thus suitable as a text for advanced courses in stochastic optimization, and as a reference to the field. From Reviews of the First Edition: "The book presents a comprehensive study of stochastic linear optimization problems and their applications. … T...

  1. Option Pricing with a Levy-Type Stochastic Dynamic Model for Stock Price Process Under Semi-Markovian Structural Perturbations

    Science.gov (United States)

    2015-11-30

    models ( Beckers 1980, Dupire 1997), the volatility depends on time and stock price through a deterministic func- tional. In both cases, in addition to...T1 ≤ T2 ≤ · · · ≤ Tn−1 are the regime switch- ing times caused by the semi-Markov process prior to t. For notational convenience, we denote θ−1 = θ0...of interest are currently being investigated: (1) an evaluation of the effects of the backward recurrence time, the sojourn time distribution and the

  2. Stochastic dynamical models for ecological regime shifts

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Carstensen, Jacob; Madsen, Henrik

    the physical and biological knowledge of the system, and nonlinearities introduced here can generate regime shifts or enhance the probability of regime shifts in the case of stochastic models, typically characterized by a threshold value for the known driver. A simple model for light competition between...... definition and stability of regimes become less subtle. Ecological regime shifts and their modeling must be viewed in a probabilistic manner, particularly if such model results are to be used in ecosystem management....

  3. Reflected stochastic differential equation models for constrained animal movement

    Science.gov (United States)

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  4. Stochastic differential equations and diffusion processes

    CERN Document Server

    Ikeda, N

    1989-01-01

    Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sectio

  5. Population density equations for stochastic processes with memory kernels

    Science.gov (United States)

    Lai, Yi Ming; de Kamps, Marc

    2017-06-01

    We present a method for solving population density equations (PDEs)-a mean-field technique describing homogeneous populations of uncoupled neurons—where the populations can be subject to non-Markov noise for arbitrary distributions of jump sizes. The method combines recent developments in two different disciplines that traditionally have had limited interaction: computational neuroscience and the theory of random networks. The method uses a geometric binning scheme, based on the method of characteristics, to capture the deterministic neurodynamics of the population, separating the deterministic and stochastic process cleanly. We can independently vary the choice of the deterministic model and the model for the stochastic process, leading to a highly modular numerical solution strategy. We demonstrate this by replacing the master equation implicit in many formulations of the PDE formalism by a generalization called the generalized Montroll-Weiss equation—a recent result from random network theory—describing a random walker subject to transitions realized by a non-Markovian process. We demonstrate the method for leaky- and quadratic-integrate and fire neurons subject to spike trains with Poisson and gamma-distributed interspike intervals. We are able to model jump responses for both models accurately to both excitatory and inhibitory input under the assumption that all inputs are generated by one renewal process.

  6. Multiple-scale stochastic processes: Decimation, averaging and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Stefano, E-mail: stefano.bo@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Celani, Antonio [Quantitative Life Sciences, The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, I-34151 - Trieste (Italy)

    2017-02-07

    The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.

  7. Modeling animal movements using stochastic differential equations

    Science.gov (United States)

    Haiganoush K. Preisler; Alan A. Ager; Bruce K. Johnson; John G. Kie

    2004-01-01

    We describe the use of bivariate stochastic differential equations (SDE) for modeling movements of 216 radiocollared female Rocky Mountain elk at the Starkey Experimental Forest and Range in northeastern Oregon. Spatially and temporally explicit vector fields were estimated using approximating difference equations and nonparametric regression techniques. Estimated...

  8. Stochastic Load Models and Footbridge Response

    DEFF Research Database (Denmark)

    Pedersen, Lars; Frier, Christian

    2015-01-01

    Pedestrians may cause vibrations in footbridges and these vibrations may potentially be annoying. This calls for predictions of footbridge vibration levels and the paper considers a stochastic approach to modeling the action of pedestrians assuming walking parameters such as step frequency, pedes...

  9. Stochastic modeling of sunshine number data

    Energy Technology Data Exchange (ETDEWEB)

    Brabec, Marek, E-mail: mbrabec@cs.cas.cz [Department of Nonlinear Modeling, Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou vezi 2, 182 07 Prague 8 (Czech Republic); Paulescu, Marius [Physics Department, West University of Timisoara, V. Parvan 4, 300223 Timisoara (Romania); Badescu, Viorel [Candida Oancea Institute, Polytechnic University of Bucharest, Spl. Independentei 313, 060042 Bucharest (Romania)

    2013-11-13

    In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar

  10. Stochastic modeling of sunshine number data

    Science.gov (United States)

    Brabec, Marek; Paulescu, Marius; Badescu, Viorel

    2013-11-01

    In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar

  11. Stochastic modeling of sunshine number data

    International Nuclear Information System (INIS)

    Brabec, Marek; Paulescu, Marius; Badescu, Viorel

    2013-01-01

    In this paper, we will present a unified statistical modeling framework for estimation and forecasting sunshine number (SSN) data. Sunshine number has been proposed earlier to describe sunshine time series in qualitative terms (Theor Appl Climatol 72 (2002) 127-136) and since then, it was shown to be useful not only for theoretical purposes but also for practical considerations, e.g. those related to the development of photovoltaic energy production. Statistical modeling and prediction of SSN as a binary time series has been challenging problem, however. Our statistical model for SSN time series is based on an underlying stochastic process formulation of Markov chain type. We will show how its transition probabilities can be efficiently estimated within logistic regression framework. In fact, our logistic Markovian model can be relatively easily fitted via maximum likelihood approach. This is optimal in many respects and it also enables us to use formalized statistical inference theory to obtain not only the point estimates of transition probabilities and their functions of interest, but also related uncertainties, as well as to test of various hypotheses of practical interest, etc. It is straightforward to deal with non-homogeneous transition probabilities in this framework. Very importantly from both physical and practical points of view, logistic Markov model class allows us to test hypotheses about how SSN dependents on various external covariates (e.g. elevation angle, solar time, etc.) and about details of the dynamic model (order and functional shape of the Markov kernel, etc.). Therefore, using generalized additive model approach (GAM), we can fit and compare models of various complexity which insist on keeping physical interpretation of the statistical model and its parts. After introducing the Markovian model and general approach for identification of its parameters, we will illustrate its use and performance on high resolution SSN data from the Solar

  12. Estimating and Forecasting Generalized Fractional Long Memory Stochastic Volatility Models

    NARCIS (Netherlands)

    S. Peiris (Shelton); M. Asai (Manabu); M.J. McAleer (Michael)

    2016-01-01

    textabstractIn recent years fractionally differenced processes have received a great deal of attention due to its flexibility in financial applications with long memory. This paper considers a class of models generated by Gegenbauer polynomials, incorporating the long memory in stochastic volatility

  13. CSL model checking of deterministic and stochastic Petri nets

    NARCIS (Netherlands)

    Martinez Verdugo, J.M.; Haverkort, Boudewijn R.H.M.; German, R.; Heindl, A.

    2006-01-01

    Deterministic and Stochastic Petri Nets (DSPNs) are a widely used high-level formalism for modeling discrete-event systems where events may occur either without consuming time, after a deterministic time, or after an exponentially distributed time. The underlying process dened by DSPNs, under

  14. Stochastic models in risk theory and management accounting

    NARCIS (Netherlands)

    Brekelmans, R.C.M.

    2000-01-01

    This thesis deals with stochastic models in two fields: risk theory and management accounting. Firstly, two extensions of the classical risk process are analyzed. A method is developed that computes bounds of the probability of ruin for the classical risk rocess extended with a constant interest

  15. Stochastic forward and inverse groundwater flow and solute transport modeling

    NARCIS (Netherlands)

    Janssen, G.M.C.M.

    2008-01-01

    Keywords: calibration, inverse modeling, stochastic modeling, nonlinear biodegradation, stochastic-convective, advective-dispersive, travel time, network design, non-Gaussian distribution, multimodal distribution, representers

    This thesis offers three new approaches that contribute

  16. News Impact Curve for Stochastic Volatility Models

    OpenAIRE

    Makoto Takahashi; Yasuhiro Omori; Toshiaki Watanabe

    2012-01-01

    This paper proposes a new method to compute the news impact curve for stochastic volatility (SV) models. The new method incorporates the joint movement of return and volatility, which has been ignored by the extant literature, by simply adding a couple of steps to the Bayesian MCMC estimation procedures for SV models. This simple procedure is versatile and applicable to various SV type models. Contrary to the monotonic news impact functions in the extant literature, the new method gives a U-s...

  17. "An Asymptotic Expansion Approach to Currency Options with a Market Model of Interest Rates under Stochastic Volatility Processes of Spot Exchange Rates"

    OpenAIRE

    Akihiko Takahashi; Kohta Takehara

    2007-01-01

    This paper proposes an asymptotic expansion scheme of currency options with a libor market model of interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas for the density functions of the underlying assets and for pricing currency options based on the third order asymptotic expansion scheme; we do not model a foreign exchange rate's variance such as in Heston[1993], but its volatility that follows a general time-inho...

  18. Model predictive control classical, robust and stochastic

    CERN Document Server

    Kouvaritakis, Basil

    2016-01-01

    For the first time, a textbook that brings together classical predictive control with treatment of up-to-date robust and stochastic techniques. Model Predictive Control describes the development of tractable algorithms for uncertain, stochastic, constrained systems. The starting point is classical predictive control and the appropriate formulation of performance objectives and constraints to provide guarantees of closed-loop stability and performance. Moving on to robust predictive control, the text explains how similar guarantees may be obtained for cases in which the model describing the system dynamics is subject to additive disturbances and parametric uncertainties. Open- and closed-loop optimization are considered and the state of the art in computationally tractable methods based on uncertainty tubes presented for systems with additive model uncertainty. Finally, the tube framework is also applied to model predictive control problems involving hard or probabilistic constraints for the cases of multiplic...

  19. Introduction to probability and stochastic processes with applications

    CERN Document Server

    Castañ, Blanco; Arunachalam, Viswanathan; Dharmaraja, Selvamuthu

    2012-01-01

    An easily accessible, real-world approach to probability and stochastic processes Introduction to Probability and Stochastic Processes with Applications presents a clear, easy-to-understand treatment of probability and stochastic processes, providing readers with a solid foundation they can build upon throughout their careers. With an emphasis on applications in engineering, applied sciences, business and finance, statistics, mathematics, and operations research, the book features numerous real-world examples that illustrate how random phenomena occur in nature and how to use probabilistic t

  20. A hierarchical stochastic model for bistable perception.

    Directory of Open Access Journals (Sweden)

    Stefan Albert

    2017-11-01

    Full Text Available Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM, which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group

  1. A hierarchical stochastic model for bistable perception.

    Science.gov (United States)

    Albert, Stefan; Schmack, Katharina; Sterzer, Philipp; Schneider, Gaby

    2017-11-01

    Viewing of ambiguous stimuli can lead to bistable perception alternating between the possible percepts. During continuous presentation of ambiguous stimuli, percept changes occur as single events, whereas during intermittent presentation of ambiguous stimuli, percept changes occur at more or less regular intervals either as single events or bursts. Response patterns can be highly variable and have been reported to show systematic differences between patients with schizophrenia and healthy controls. Existing models of bistable perception often use detailed assumptions and large parameter sets which make parameter estimation challenging. Here we propose a parsimonious stochastic model that provides a link between empirical data analysis of the observed response patterns and detailed models of underlying neuronal processes. Firstly, we use a Hidden Markov Model (HMM) for the times between percept changes, which assumes one single state in continuous presentation and a stable and an unstable state in intermittent presentation. The HMM captures the observed differences between patients with schizophrenia and healthy controls, but remains descriptive. Therefore, we secondly propose a hierarchical Brownian model (HBM), which produces similar response patterns but also provides a relation to potential underlying mechanisms. The main idea is that neuronal activity is described as an activity difference between two competing neuronal populations reflected in Brownian motions with drift. This differential activity generates switching between the two conflicting percepts and between stable and unstable states with similar mechanisms on different neuronal levels. With only a small number of parameters, the HBM can be fitted closely to a high variety of response patterns and captures group differences between healthy controls and patients with schizophrenia. At the same time, it provides a link to mechanistic models of bistable perception, linking the group differences to

  2. Stochastic model of radioiodine transport

    International Nuclear Information System (INIS)

    Schwarz, G.; Hoffman, F.O.

    1980-01-01

    A research project has been underway at the Oak Ridge National Laboratory with the objective to evaluate dose assessment models and to determine the uncertainty associated with the model predictions. This has resulted in the application of methods to propagate uncertainties through models. Some techniques and results related to this problem are discussed

  3. Model tracking dual stochastic controller design under irregular internal noises

    International Nuclear Information System (INIS)

    Lee, Jong Bok; Heo, Hoon; Cho, Yun Hyun; Ji, Tae Young

    2006-01-01

    Although many methods about the control of irregular external noise have been introduced and implemented, it is still necessary to design a controller that will be more effective and efficient methods to exclude for various noises. Accumulation of errors due to model tracking, internal noises (thermal noise, shot noise and l/f noise) that come from elements such as resistor, diode and transistor etc. in the circuit system and numerical errors due to digital process often destabilize the system and reduce the system performance. New stochastic controller is adopted to remove those noises using conventional controller simultaneously. Design method of a model tracking dual controller is proposed to improve the stability of system while removing external and internal noises. In the study, design process of the model tracking dual stochastic controller is introduced that improves system performance and guarantees robustness under irregular internal noises which can be created internally. The model tracking dual stochastic controller utilizing F-P-K stochastic control technique developed earlier is implemented to reveal its performance via simulation

  4. Stochastic Spectral Descent for Discrete Graphical Models

    International Nuclear Information System (INIS)

    Carlson, David; Hsieh, Ya-Ping; Collins, Edo; Carin, Lawrence; Cevher, Volkan

    2015-01-01

    Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.

  5. Brain-inspired Stochastic Models and Implementations

    KAUST Repository

    Al-Shedivat, Maruan

    2015-05-12

    One of the approaches to building artificial intelligence (AI) is to decipher the princi- ples of the brain function and to employ similar mechanisms for solving cognitive tasks, such as visual perception or natural language understanding, using machines. The recent breakthrough, named deep learning, demonstrated that large multi-layer networks of arti- ficial neural-like computing units attain remarkable performance on some of these tasks. Nevertheless, such artificial networks remain to be very loosely inspired by the brain, which rich structures and mechanisms may further suggest new algorithms or even new paradigms of computation. In this thesis, we explore brain-inspired probabilistic mechanisms, such as neural and synaptic stochasticity, in the context of generative models. The two questions we ask here are: (i) what kind of models can describe a neural learning system built of stochastic components? and (ii) how can we implement such systems e ̆ciently? To give specific answers, we consider two well known models and the corresponding neural architectures: the Naive Bayes model implemented with a winner-take-all spiking neural network and the Boltzmann machine implemented in a spiking or non-spiking fashion. We propose and analyze an e ̆cient neuromorphic implementation of the stochastic neu- ral firing mechanism and study the e ̄ects of synaptic unreliability on learning generative energy-based models implemented with neural networks.

  6. Stochastic Modelling of Energy Systems

    DEFF Research Database (Denmark)

    Andersen, Klaus Kaae

    2001-01-01

    is that the model structure has to be adequate for practical applications, such as system simulation, fault detection and diagnosis, and design of control strategies. This also reflects on the methods used for identification of the component models. The main result from this research is the identification......In this thesis dynamic models of typical components in Danish heating systems are considered. Emphasis is made on describing and evaluating mathematical methods for identification of such models, and on presentation of component models for practical applications. The thesis consists of seven...... research papers (case studies) together with a summary report. Each case study takes it's starting point in typical heating system components and both, the applied mathematical modelling methods and the application aspects, are considered. The summary report gives an introduction to the scope...

  7. Time-variant reliability assessment through equivalent stochastic process transformation

    International Nuclear Information System (INIS)

    Wang, Zequn; Chen, Wei

    2016-01-01

    Time-variant reliability measures the probability that an engineering system successfully performs intended functions over a certain period of time under various sources of uncertainty. In practice, it is computationally prohibitive to propagate uncertainty in time-variant reliability assessment based on expensive or complex numerical models. This paper presents an equivalent stochastic process transformation approach for cost-effective prediction of reliability deterioration over the life cycle of an engineering system. To reduce the high dimensionality, a time-independent reliability model is developed by translating random processes and time parameters into random parameters in order to equivalently cover all potential failures that may occur during the time interval of interest. With the time-independent reliability model, an instantaneous failure surface is attained by using a Kriging-based surrogate model to identify all potential failure events. To enhance the efficacy of failure surface identification, a maximum confidence enhancement method is utilized to update the Kriging model sequentially. Then, the time-variant reliability is approximated using Monte Carlo simulations of the Kriging model where system failures over a time interval are predicted by the instantaneous failure surface. The results of two case studies demonstrate that the proposed approach is able to accurately predict the time evolution of system reliability while requiring much less computational efforts compared with the existing analytical approach. - Highlights: • Developed a new approach for time-variant reliability analysis. • Proposed a novel stochastic process transformation procedure to reduce the dimensionality. • Employed Kriging models with confidence-based adaptive sampling scheme to enhance computational efficiency. • The approach is effective for handling random process in time-variant reliability analysis. • Two case studies are used to demonstrate the efficacy

  8. Solvable stochastic dealer models for financial markets

    Science.gov (United States)

    Yamada, Kenta; Takayasu, Hideki; Ito, Takatoshi; Takayasu, Misako

    2009-05-01

    We introduce solvable stochastic dealer models, which can reproduce basic empirical laws of financial markets such as the power law of price change. Starting from the simplest model that is almost equivalent to a Poisson random noise generator, the model becomes fairly realistic by adding only two effects: the self-modulation of transaction intervals and a forecasting tendency, which uses a moving average of the latest market price changes. Based on the present microscopic model of markets, we find a quantitative relation with market potential forces, which have recently been discovered in the study of market price modeling based on random walks.

  9. Modeling and Prediction Using Stochastic Differential Equations

    DEFF Research Database (Denmark)

    Juhl, Rune; Møller, Jan Kloppenborg; Jørgensen, John Bagterp

    2016-01-01

    Pharmacokinetic/pharmakodynamic (PK/PD) modeling for a single subject is most often performed using nonlinear models based on deterministic ordinary differential equations (ODEs), and the variation between subjects in a population of subjects is described using a population (mixed effects) setup...... deterministic and can predict the future perfectly. A more realistic approach would be to allow for randomness in the model due to e.g., the model be too simple or errors in input. We describe a modeling and prediction setup which better reflects reality and suggests stochastic differential equations (SDEs...

  10. Fuzzy Stochastic Optimization Theory, Models and Applications

    CERN Document Server

    Wang, Shuming

    2012-01-01

    Covering in detail both theoretical and practical perspectives, this book is a self-contained and systematic depiction of current fuzzy stochastic optimization that deploys the fuzzy random variable as a core mathematical tool to model the integrated fuzzy random uncertainty. It proceeds in an orderly fashion from the requisite theoretical aspects of the fuzzy random variable to fuzzy stochastic optimization models and their real-life case studies.   The volume reflects the fact that randomness and fuzziness (or vagueness) are two major sources of uncertainty in the real world, with significant implications in a number of settings. In industrial engineering, management and economics, the chances are high that decision makers will be confronted with information that is simultaneously probabilistically uncertain and fuzzily imprecise, and optimization in the form of a decision must be made in an environment that is doubly uncertain, characterized by a co-occurrence of randomness and fuzziness. This book begins...

  11. Verification and Planning for Stochastic Processes with Asynchronous Events

    National Research Council Canada - National Science Library

    Younes, Hakan L

    2005-01-01

    .... The most common assumption is that of history-independence: the Markov assumption. In this thesis, the author considers the problems of verification and planning for stochastic processes with asynchronous events, without relying on the Markov assumption...

  12. Bibliography on the stochastic processes in plasma and related problems

    International Nuclear Information System (INIS)

    Polovin, R.V.

    1976-01-01

    Stochastic processes in plasma and related matters. The bibliography contains 500 references and was compiled from the open literature only. Some references are annotated or completed with short abstracts. There are subject and authors indexes

  13. Stochastic models for time series

    CERN Document Server

    Doukhan, Paul

    2018-01-01

    This book presents essential tools for modelling non-linear time series. The first part of the book describes the main standard tools of probability and statistics that directly apply to the time series context to obtain a wide range of modelling possibilities. Functional estimation and bootstrap are discussed, and stationarity is reviewed. The second part describes a number of tools from Gaussian chaos and proposes a tour of linear time series models. It goes on to address nonlinearity from polynomial or chaotic models for which explicit expansions are available, then turns to Markov and non-Markov linear models and discusses Bernoulli shifts time series models. Finally, the volume focuses on the limit theory, starting with the ergodic theorem, which is seen as the first step for statistics of time series. It defines the distributional range to obtain generic tools for limit theory under long or short-range dependences (LRD/SRD) and explains examples of LRD behaviours. More general techniques (central limit ...

  14. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective

  15. Evolution and mass extinctions as lognormal stochastic processes

    Science.gov (United States)

    Maccone, Claudio

    2014-10-01

    In a series of recent papers and in a book, this author put forward a mathematical model capable of embracing the search for extra-terrestrial intelligence (SETI), Darwinian Evolution and Human History into a single, unified statistical picture, concisely called Evo-SETI. The relevant mathematical tools are: (1) Geometric Brownian motion (GBM), the stochastic process representing evolution as the stochastic increase of the number of species living on Earth over the last 3.5 billion years. This GBM is well known in the mathematics of finances (Black-Sholes models). Its main features are that its probability density function (pdf) is a lognormal pdf, and its mean value is either an increasing or, more rarely, decreasing exponential function of the time. (2) The probability distributions known as b-lognormals, i.e. lognormals starting at a certain positive instant b>0 rather than at the origin. These b-lognormals were then forced by us to have their peak value located on the exponential mean-value curve of the GBM (Peak-Locus theorem). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to be what evolutionary biologists call Cladistics. (3) The (Shannon) entropy of such b-lognormals is then seen to represent the `degree of progress' reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, human history may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller `chaos'), and have their peaks on the increasing GBM exponential. This exponential is thus the `trend of progress' in human history. (4) All these results also match with SETI in that the statistical Drake equation (generalization of the ordinary Drake equation to encompass statistics) leads just to the lognormal distribution as the probability distribution for the number of extra

  16. Stochastic Modelling of Seafloor Morphology

    Science.gov (United States)

    1990-06-01

    trenches, and linear island chains to the point that many of the interesting questions of marine geology now concern the processes which have shaped...are all located near the Easter Island Microplate (Figure 5.2), a region with a complex tectonic history [Hey et al., 19851, and may be anomalous...the Clipperton Transform Fault [Macdonald and Fox, 1988]. Just south of Clipperton , the ridge crest is shallow (-2550 m) and the crestal horst is broad

  17. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes.

    Science.gov (United States)

    Rozhok, Andrii I; Salstrom, Jennifer L; DeGregori, James

    2014-12-01

    Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.

  18. Stochastic Modeling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2018-01-01

    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  19. Suprathreshold stochastic resonance in neural processing tuned by correlation.

    Science.gov (United States)

    Durrant, Simon; Kang, Yanmei; Stocks, Nigel; Feng, Jianfeng

    2011-07-01

    Suprathreshold stochastic resonance (SSR) is examined in the context of integrate-and-fire neurons, with an emphasis on the role of correlation in the neuronal firing. We employed a model based on a network of spiking neurons which received synaptic inputs modeled by Poisson processes stimulated by a stepped input signal. The smoothed ensemble firing rate provided an output signal, and the mutual information between this signal and the input was calculated for networks with different noise levels and different numbers of neurons. It was found that an SSR effect was present in this context. We then examined a more biophysically plausible scenario where the noise was not controlled directly, but instead was tuned by the correlation between the inputs. The SSR effect remained present in this scenario with nonzero noise providing improved information transmission, and it was found that negative correlation between the inputs was optimal. Finally, an examination of SSR in the context of this model revealed its connection with more traditional stochastic resonance and showed a trade-off between supratheshold and subthreshold components. We discuss these results in the context of existing empirical evidence concerning correlations in neuronal firing.

  20. Stochastic modeling of the hypothalamic pulse generator activity.

    Science.gov (United States)

    Camproux, A C; Thalabard, J C; Thomas, G

    1994-11-01

    Luteinizing hormone (LH) is released by the pituitary in discrete pulses. In the monkey, the appearance of LH pulses in the plasma is invariably associated with sharp increases (i.e, volleys) in the frequency of the hypothalamic pulse generator electrical activity, so that continuous monitoring of this activity by telemetry provides a unique means to study the temporal structure of the mechanism generating the pulses. To assess whether the times of occurrence and durations of previous volleys exert significant influence on the timing of the next volley, we used a class of periodic counting process models that specify the stochastic intensity of the process as the product of two factors: 1) a periodic baseline intensity and 2) a stochastic regression function with covariates representing the influence of the past. This approach allows the characterization of circadian modulation and memory range of the process underlying hypothalamic pulse generator activity, as illustrated by fitting the model to experimental data from two ovariectomized rhesus monkeys.

  1. On cross-currency models with stochastic volatility and correlated interest rates

    NARCIS (Netherlands)

    Grzelak, L.A.; Oosterlee, C.W.

    2010-01-01

    We construct multi-currency models with stochastic volatility and correlated stochastic interest rates with a full matrix of correlations. We first deal with a foreign exchange (FX) model of Heston-type, in which the domestic and foreign interest rates are generated by the short-rate process of

  2. Stochastic Differential Equation-Based Flexible Software Reliability Growth Model

    Directory of Open Access Journals (Sweden)

    P. K. Kapur

    2009-01-01

    Full Text Available Several software reliability growth models (SRGMs have been developed by software developers in tracking and measuring the growth of reliability. As the size of software system is large and the number of faults detected during the testing phase becomes large, so the change of the number of faults that are detected and removed through each debugging becomes sufficiently small compared with the initial fault content at the beginning of the testing phase. In such a situation, we can model the software fault detection process as a stochastic process with continuous state space. In this paper, we propose a new software reliability growth model based on Itô type of stochastic differential equation. We consider an SDE-based generalized Erlang model with logistic error detection function. The model is estimated and validated on real-life data sets cited in literature to show its flexibility. The proposed model integrated with the concept of stochastic differential equation performs comparatively better than the existing NHPP-based models.

  3. Convergence of trajectories in fractal interpolation of stochastic processes

    International Nuclear Information System (INIS)

    MaIysz, Robert

    2006-01-01

    The notion of fractal interpolation functions (FIFs) can be applied to stochastic processes. Such construction is especially useful for the class of α-self-similar processes with stationary increments and for the class of α-fractional Brownian motions. For these classes, convergence of the Minkowski dimension of the graphs in fractal interpolation of the Hausdorff dimension of the graph of original process was studied in [Herburt I, MaIysz R. On convergence of box dimensions of fractal interpolation stochastic processes. Demonstratio Math 2000;4:873-88.], [MaIysz R. A generalization of fractal interpolation stochastic processes to higher dimension. Fractals 2001;9:415-28.], and [Herburt I. Box dimension of interpolations of self-similar processes with stationary increments. Probab Math Statist 2001;21:171-8.]. We prove that trajectories of fractal interpolation stochastic processes converge to the trajectory of the original process. We also show that convergence of the trajectories in fractal interpolation of stochastic processes is equivalent to the convergence of trajectories in linear interpolation

  4. Simulating biological processes: stochastic physics from whole cells to colonies

    Science.gov (United States)

    Earnest, Tyler M.; Cole, John A.; Luthey-Schulten, Zaida

    2018-05-01

    The last few decades have revealed the living cell to be a crowded spatially heterogeneous space teeming with biomolecules whose concentrations and activities are governed by intrinsically random forces. It is from this randomness, however, that a vast array of precisely timed and intricately coordinated biological functions emerge that give rise to the complex forms and behaviors we see in the biosphere around us. This seemingly paradoxical nature of life has drawn the interest of an increasing number of physicists, and recent years have seen stochastic modeling grow into a major subdiscipline within biological physics. Here we review some of the major advances that have shaped our understanding of stochasticity in biology. We begin with some historical context, outlining a string of important experimental results that motivated the development of stochastic modeling. We then embark upon a fairly rigorous treatment of the simulation methods that are currently available for the treatment of stochastic biological models, with an eye toward comparing and contrasting their realms of applicability, and the care that must be taken when parameterizing them. Following that, we describe how stochasticity impacts several key biological functions, including transcription, translation, ribosome biogenesis, chromosome replication, and metabolism, before considering how the functions may be coupled into a comprehensive model of a ‘minimal cell’. Finally, we close with our expectation for the future of the field, focusing on how mesoscopic stochastic methods may be augmented with atomic-scale molecular modeling approaches in order to understand life across a range of length and time scales.

  5. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Alfonso, L.; Rivas, D.; Hallen, J.M.

    2007-01-01

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion

  6. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado, 10400 Havana (Cuba); Caleyo, F. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)]. E-mail: fcaleyo@gmail.com; Alfonso, L. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Rivas, D. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico); Hallen, J.M. [Departamento de Ingenieria, Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2007-02-15

    In this work, a new stochastic model capable of simulating pitting corrosion is developed and validated. Pitting corrosion is modeled as the combination of two stochastic processes: pit initiation and pit growth. Pit generation is modeled as a nonhomogeneous Poisson process, in which induction time for pit initiation is simulated as the realization of a Weibull process. In this way, the exponential and Weibull distributions can be considered as the possible distributions for pit initiation time. Pit growth is simulated using a nonhomogeneous Markov process. Extreme value statistics is used to find the distribution of maximum pit depths resulting from the combination of the initiation and growth processes for multiple pits. The proposed model is validated using several published experiments on pitting corrosion. It is capable of reproducing the experimental observations with higher quality than the stochastic models available in the literature for pitting corrosion.

  7. Stochastic Optimization of Wind Turbine Power Factor Using Stochastic Model of Wind Power

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Siano, Pierluigi; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic optimization algorithm that aims to minimize the expectation of the system power losses by controlling wind turbine (WT) power factors. This objective of the optimization is subject to the probability constraints of bus voltage and line current requirements....... The optimization algorithm utilizes the stochastic models of wind power generation (WPG) and load demand to take into account their stochastic variation. The stochastic model of WPG is developed on the basis of a limited autoregressive integrated moving average (LARIMA) model by introducing a crosscorrelation...... structure to the LARIMA model. The proposed stochastic optimization is carried out on a 69-bus distribution system. Simulation results confirm that, under various combinations of WPG and load demand, the system power losses are considerably reduced with the optimal setting of WT power factor as compared...

  8. Modeling stochastic frontier based on vine copulas

    Science.gov (United States)

    Constantino, Michel; Candido, Osvaldo; Tabak, Benjamin M.; da Costa, Reginaldo Brito

    2017-11-01

    This article models a production function and analyzes the technical efficiency of listed companies in the United States, Germany and England between 2005 and 2012 based on the vine copula approach. Traditional estimates of the stochastic frontier assume that data is multivariate normally distributed and there is no source of asymmetry. The proposed method based on vine copulas allow us to explore different types of asymmetry and multivariate distribution. Using data on product, capital and labor, we measure the relative efficiency of the vine production function and estimate the coefficient used in the stochastic frontier literature for comparison purposes. This production vine copula predicts the value added by firms with given capital and labor in a probabilistic way. It thereby stands in sharp contrast to the production function, where the output of firms is completely deterministic. The results show that, on average, S&P500 companies are more efficient than companies listed in England and Germany, which presented similar average efficiency coefficients. For comparative purposes, the traditional stochastic frontier was estimated and the results showed discrepancies between the coefficients obtained by the application of the two methods, traditional and frontier-vine, opening new paths of non-linear research.

  9. Models of the stochastic activity of neurones

    CERN Document Server

    Holden, Arun Vivian

    1976-01-01

    These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the fin...

  10. Stochastic Analysis of Gaussian Processes via Fredholm Representation

    Directory of Open Access Journals (Sweden)

    Tommi Sottinen

    2016-01-01

    Full Text Available We show that every separable Gaussian process with integrable variance function admits a Fredholm representation with respect to a Brownian motion. We extend the Fredholm representation to a transfer principle and develop stochastic analysis by using it. We show the convenience of the Fredholm representation by giving applications to equivalence in law, bridges, series expansions, stochastic differential equations, and maximum likelihood estimations.

  11. Mathematical models of information and stochastic systems

    CERN Document Server

    Kornreich, Philipp

    2008-01-01

    From ancient soothsayers and astrologists to today's pollsters and economists, probability theory has long been used to predict the future on the basis of past and present knowledge. Mathematical Models of Information and Stochastic Systems shows that the amount of knowledge about a system plays an important role in the mathematical models used to foretell the future of the system. It explains how this known quantity of information is used to derive a system's probabilistic properties. After an introduction, the book presents several basic principles that are employed in the remainder of the t

  12. Modelling conjugation with stochastic differential equations

    DEFF Research Database (Denmark)

    Philipsen, Kirsten Riber; Christiansen, Lasse Engbo; Hasman, Henrik

    2010-01-01

    Enterococcus faecium strains in a rich exhaustible media. The model contains a new expression for a substrate dependent conjugation rate. A maximum likelihood based method is used to estimate the model parameters. Different models including different noise structure for the system and observations are compared......Conjugation is an important mechanism involved in the transfer of resistance between bacteria. In this article a stochastic differential equation based model consisting of a continuous time state equation and a discrete time measurement equation is introduced to model growth and conjugation of two...... using a likelihood-ratio test and Akaike's information criterion. Experiments indicating conjugation on the agar plates selecting for transconjugants motivates the introduction of an extended model, for which conjugation on the agar plate is described in the measurement equation. This model is compared...

  13. Stochastic calculus for fractional Brownian motion and related processes

    CERN Document Server

    Mishura, Yuliya S

    2008-01-01

    The theory of fractional Brownian motion and other long-memory processes are addressed in this volume. Interesting topics for PhD students and specialists in probability theory, stochastic analysis and financial mathematics demonstrate the modern level of this field. Among these are results about Levy characterization of fractional Brownian motion, maximal moment inequalities for Wiener integrals including the values 0models including linear case, and studies financial applications and statistical inference with hypotheses testing and parameter estimation. She proves that the market with stock guided by the mixed model is arbitrage-free without any restriction on the dependence of the components and deduces different forms of the Black-Scholes equation for fractional mark...

  14. Stochastic modeling of central apnea events in preterm infants

    International Nuclear Information System (INIS)

    Clark, Matthew T; Lake, Douglas E; Randall Moorman, J; Delos, John B; Lee, Hoshik; Fairchild, Karen D; Kattwinkel, John

    2016-01-01

    A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally occur after an infant is discharged from the neonatal intensive care unit (NICU). It is not known whether apneas result from a predictable process or from a stochastic process, but the observation that they occur in seemingly random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze the distribution of durations of apneas and the distribution of times between apneas. The model suggests the presence of four breathing states, ranging from very stable (with an average lifetime of 12 h) to very unstable (with an average lifetime of 10 s). Although the states themselves are not visible, the mathematical analysis gives estimates of the transition rates among these states. We have obtained these transition rates, and shown how they change with post-menstrual age; as expected, the residence time in the more stable breathing states increases with age. We also extrapolated the model to predict the frequency of very prolonged apnea during the first year of life. This paradigm—stochastic modeling of cardiorespiratory control in neonatal infants to estimate risk for severe clinical events—may be a first step toward personalized risk assessment for life threatening apnea events after NICU discharge. (paper)

  15. Stochastic modeling of central apnea events in preterm infants.

    Science.gov (United States)

    Clark, Matthew T; Delos, John B; Lake, Douglas E; Lee, Hoshik; Fairchild, Karen D; Kattwinkel, John; Moorman, J Randall

    2016-04-01

    A near-ubiquitous pathology in very low birth weight infants is neonatal apnea, breathing pauses with slowing of the heart and falling blood oxygen. Events of substantial duration occasionally occur after an infant is discharged from the neonatal intensive care unit (NICU). It is not known whether apneas result from a predictable process or from a stochastic process, but the observation that they occur in seemingly random clusters justifies the use of stochastic models. We use a hidden-Markov model to analyze the distribution of durations of apneas and the distribution of times between apneas. The model suggests the presence of four breathing states, ranging from very stable (with an average lifetime of 12 h) to very unstable (with an average lifetime of 10 s). Although the states themselves are not visible, the mathematical analysis gives estimates of the transition rates among these states. We have obtained these transition rates, and shown how they change with post-menstrual age; as expected, the residence time in the more stable breathing states increases with age. We also extrapolated the model to predict the frequency of very prolonged apnea during the first year of life. This paradigm-stochastic modeling of cardiorespiratory control in neonatal infants to estimate risk for severe clinical events-may be a first step toward personalized risk assessment for life threatening apnea events after NICU discharge.

  16. Stochastic model of Rayleigh-Taylor turbulent mixing

    International Nuclear Information System (INIS)

    Abarzhi, S.I.; Cadjan, M.; Fedotov, S.

    2007-01-01

    We propose a stochastic model to describe the random character of the dissipation process in Rayleigh-Taylor turbulent mixing. The parameter alpha, used conventionally to characterize the mixing growth-rate, is not a universal constant and is very sensitive to the statistical properties of the dissipation. The ratio between the rates of momentum loss and momentum gain is the statistic invariant and a robust parameter to diagnose with or without turbulent diffusion accounted for

  17. Diffusive processes in a stochastic magnetic field

    International Nuclear Information System (INIS)

    Wang, H.; Vlad, M.; Vanden Eijnden, E.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    1995-01-01

    The statistical representation of a fluctuating (stochastic) magnetic field configuration is studied in detail. The Eulerian correlation functions of the magnetic field are determined, taking into account all geometrical constraints: these objects form a nondiagonal matrix. The Lagrangian correlations, within the reasonable Corrsin approximation, are reduced to a single scalar function, determined by an integral equation. The mean square perpendicular deviation of a geometrical point moving along a perturbed field line is determined by a nonlinear second-order differential equation. The separation of neighboring field lines in a stochastic magnetic field is studied. We find exponentiation lengths of both signs describing, in particular, a decay (on the average) of any initial anisotropy. The vanishing sum of these exponentiation lengths ensures the existence of an invariant which was overlooked in previous works. Next, the separation of a particle's trajectory from the magnetic field line to which it was initially attached is studied by a similar method. Here too an initial phase of exponential separation appears. Assuming the existence of a final diffusive phase, anomalous diffusion coefficients are found for both weakly and strongly collisional limits. The latter is identical to the well known Rechester-Rosenbluth coefficient, which is obtained here by a more quantitative (though not entirely deductive) treatment than in earlier works

  18. Bayesian inference for hybrid discrete-continuous stochastic kinetic models

    International Nuclear Information System (INIS)

    Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S

    2014-01-01

    We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)

  19. Characterizing economic trends by Bayesian stochastic model specifi cation search

    OpenAIRE

    Grassi, Stefano; Proietti, Tommaso

    2010-01-01

    We apply a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. We illustrate that the methodology can be quite successfully applied to discriminate between stochastic and deterministic trends. In particular, we formulate autoregressive models with stochastic trends components and decide on whether a specific feature of the series, i.e. the underlying level and/or the rate...

  20. Intimate Partner Violence: A Stochastic Model.

    Science.gov (United States)

    Guidi, Elisa; Meringolo, Patrizia; Guazzini, Andrea; Bagnoli, Franco

    2017-01-01

    Intimate partner violence (IPV) has been a well-studied problem in the past psychological literature, especially through its classical methodology such as qualitative, quantitative and mixed methods. This article introduces two basic stochastic models as an alternative approach to simulate the short and long-term dynamics of a couple at risk of IPV. In both models, the members of the couple may assume a finite number of states, updating them in a probabilistic way at discrete time steps. After defining the transition probabilities, we first analyze the evolution of the couple in isolation and then we consider the case in which the individuals modify their behavior depending on the perceived violence from other couples in their environment or based on the perceived informal social support. While high perceived violence in other couples may converge toward the own presence of IPV by means a gender-specific transmission, the gender differences fade-out in the case of received informal social support. Despite the simplicity of the two stochastic models, they generate results which compare well with past experimental studies about IPV and they give important practical implications for prevention intervention in this field. Copyright: © 2016 by Fabrizio Serra editore, Pisa · Roma.

  1. Stochastic model of forecasting spare parts demand

    Directory of Open Access Journals (Sweden)

    Ivan S. Milojević

    2012-01-01

    Full Text Available If demand is known for the whole planning period (complete information, then this type of demand or a supply system is deterministic. In the simplest cases, the demand per time unit is constant. If demand levels change over time following a precisely determined and pre-known principle, this type of demand is also classified as deterministic. This quality of demand is very rare. In most cases demand is the product of a process, for example TMS maintenance, whose progression cannot be predicted due to a number of factors influencing the process and causing random demand changes. In this case, a supply system must function according to the complete information and with a certain degree of uncertainty. In cases when demand may be defined by some of the laws of the probability theory, we are talking about stochastic demand and a stochastic supply system. Demand can be described by mathematical expectation, mathematical expectation and standard deviation, probability distribution or as a random process. However, there is usually a need for the most complex description, i.e. the complex random process because both intensity of demand and the probability distribution change during the observed intervals. The level of temporal (dynamic series is traditionally considered as a complex phenomenon consisting of four components: - basic tendency of phenomenon development - cyclical impact (long-term, 'ancient' - seasonal effects - random fluctuations. The basic tendency of phenomenon development means a long-term evolution of phenomena. A function that expresses the trajectory of changes of the basic tendency of a phenomenon development in the form of the equation is called a trend. Often, the trend involves time regression; i.e. the coefficients of the proposed functions are often determined by the least squares method. To roughly determine the coefficients of the proposed function, the sum of three and three-point methods are also used. After checking the

  2. Stochastic Model of TCP SYN Attacks

    Directory of Open Access Journals (Sweden)

    Simona Ramanauskaitė

    2011-08-01

    Full Text Available A great proportion of essential services are moving into internet space making the threat of DoS attacks even more actual. To estimate the real risk of some kind of denial of service (DoS attack in real world is difficult, but mathematical and software models make this task easier. In this paper we overview the ways of implementing DoS attack models and offer a stochastic model of SYN flooding attack. It allows evaluating the potential threat of SYN flooding attacks, taking into account both the legitimate system flow as well as the possible attack power. At the same time we can assess the effect of such parameters as buffer capacity, open connection storage in the buffer or filte­ring efficiency on the success of different SYN flooding attacks. This model can be used for other type of memory depletion denial of service attacks.Article in Lithuanian

  3. Description of quantum-mechanical motion by using the formalism of non-Markov stochastic process

    International Nuclear Information System (INIS)

    Skorobogatov, G.A.; Svertilov, S.I.

    1999-01-01

    The principle possibilities of mathematical modeling of quantum mechanical motion by the theory of a real stochastic processes is considered. The set of equations corresponding to the simplest case of a two-level system undergoing transitions under the influence of electromagnetic field are obtained. It is shown that quantum-mechanical processes are purely discrete processes of non-Markovian type. They are continuous processes in the space of probability amplitudes and posses the properties of quantum Markovity. The formulation of quantum mechanics in terms of the theory of stochastic processes is necessary for its generalization on small space-time intervals [ru

  4. Stochastic modeling of financial electricity contracts

    International Nuclear Information System (INIS)

    Benth, Fred Espen; Koekebakker, Steen

    2008-01-01

    We discuss the modeling of electricity contracts traded in many deregulated power markets. These forward/futures type contracts deliver (either physically or financially) electricity over a specified time period, and is frequently referred to as swaps since they in effect represent an exchange of fixed for floating electricity price. We propose to use the Heath-Jarrow-Morton approach to model swap prices since the notion of a spot price is not easily defined in these markets. For general stochastic dynamical models, we connect the spot price, the instantaneous-delivery forward price and the swap price, and analyze two different ways to apply the Heath-Jarrow-Morton approach to swap pricing: Either one specifies a dynamics for the non-existing instantaneous-delivery forwards and derives the implied swap dynamics, or one models directly on the swaps. The former is shown to lead to quite complicated stochastic models for the swap price, even when the forward dynamics is simple. The latter has some theoretical problems due to a no-arbitrage condition that has to be satisfied for swaps with overlapping delivery periods. To overcome this problem, a practical modeling approach is analyzed. The market is supposed only to consist of non-overlapping swaps, and these are modelled directly. A thorough empirical study is performed using data collected from Nord Pool. Our investigations demonstrate that it is possible to state reasonable models for the swap price dynamics which is analytically tractable for risk management and option pricing purposes, however, this is an area of further research. (author)

  5. Stochastic Model for Population Exposed to Low Level Risk

    International Nuclear Information System (INIS)

    Merkle, J.M.

    1996-01-01

    In this paper the stochastic model for population size, i.e. calculation of the number of deaths due to lethal stochastic health effects caused by the exposure to low level ionising radiation is presented. The model is defined for subpopulation with parameter (a, b) being fixed. Using the corresponding density function, it is possible to find all the quantities of interest by averaging over whole possible values for (a, l). All processes ar at first defined for one radionuclide, exposure pathway and the health effect under consideration. The results obtained in this paper are the basic quantities in the risk assessment, loss of life expectancy etc. The results presented in this paper are also applicable to the other sources of low level risk, not only the radiation risk

  6. A data driven nonlinear stochastic model for blood glucose dynamics.

    Science.gov (United States)

    Zhang, Yan; Holt, Tim A; Khovanova, Natalia

    2016-03-01

    The development of adequate mathematical models for blood glucose dynamics may improve early diagnosis and control of diabetes mellitus (DM). We have developed a stochastic nonlinear second order differential equation to describe the response of blood glucose concentration to food intake using continuous glucose monitoring (CGM) data. A variational Bayesian learning scheme was applied to define the number and values of the system's parameters by iterative optimisation of free energy. The model has the minimal order and number of parameters to successfully describe blood glucose dynamics in people with and without DM. The model accounts for the nonlinearity and stochasticity of the underlying glucose-insulin dynamic process. Being data-driven, it takes full advantage of available CGM data and, at the same time, reflects the intrinsic characteristics of the glucose-insulin system without detailed knowledge of the physiological mechanisms. We have shown that the dynamics of some postprandial blood glucose excursions can be described by a reduced (linear) model, previously seen in the literature. A comprehensive analysis demonstrates that deterministic system parameters belong to different ranges for diabetes and controls. Implications for clinical practice are discussed. This is the first study introducing a continuous data-driven nonlinear stochastic model capable of describing both DM and non-DM profiles. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  7. Extinction in neutrally stable stochastic Lotka-Volterra models

    Science.gov (United States)

    Dobrinevski, Alexander; Frey, Erwin

    2012-05-01

    Populations of competing biological species exhibit a fascinating interplay between the nonlinear dynamics of evolutionary selection forces and random fluctuations arising from the stochastic nature of the interactions. The processes leading to extinction of species, whose understanding is a key component in the study of evolution and biodiversity, are influenced by both of these factors. Here, we investigate a class of stochastic population dynamics models based on generalized Lotka-Volterra systems. In the case of neutral stability of the underlying deterministic model, the impact of intrinsic noise on the survival of species is dramatic: It destroys coexistence of interacting species on a time scale proportional to the population size. We introduce a new method based on stochastic averaging which allows one to understand this extinction process quantitatively by reduction to a lower-dimensional effective dynamics. This is performed analytically for two highly symmetrical models and can be generalized numerically to more complex situations. The extinction probability distributions and other quantities of interest we obtain show excellent agreement with simulations.

  8. Stochastic modeling of thermal fatigue crack growth

    CERN Document Server

    Radu, Vasile

    2015-01-01

    The book describes a systematic stochastic modeling approach for assessing thermal-fatigue crack-growth in mixing tees, based on the power spectral density of temperature fluctuation at the inner pipe surface. It shows the development of a frequency-temperature response function in the framework of single-input, single-output (SISO) methodology from random noise/signal theory under sinusoidal input. The frequency response of stress intensity factor (SIF) is obtained by a polynomial fitting procedure of thermal stress profiles at various instants of time. The method, which takes into account the variability of material properties, and has been implemented in a real-world application, estimates the probabilities of failure by considering a limit state function and Monte Carlo analysis, which are based on the proposed stochastic model. Written in a comprehensive and accessible style, this book presents a new and effective method for assessing thermal fatigue crack, and it is intended as a concise and practice-or...

  9. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  10. Double diffusivity model under stochastic forcing

    Science.gov (United States)

    Chattopadhyay, Amit K.; Aifantis, Elias C.

    2017-05-01

    The "double diffusivity" model was proposed in the late 1970s, and reworked in the early 1980s, as a continuum counterpart to existing discrete models of diffusion corresponding to high diffusivity paths, such as grain boundaries and dislocation lines. It was later rejuvenated in the 1990s to interpret experimental results on diffusion in polycrystalline and nanocrystalline specimens where grain boundaries and triple grain boundary junctions act as high diffusivity paths. Technically, the model pans out as a system of coupled Fick-type diffusion equations to represent "regular" and "high" diffusivity paths with "source terms" accounting for the mass exchange between the two paths. The model remit was extended by analogy to describe flow in porous media with double porosity, as well as to model heat conduction in media with two nonequilibrium local temperature baths, e.g., ion and electron baths. Uncoupling of the two partial differential equations leads to a higher-ordered diffusion equation, solutions of which could be obtained in terms of classical diffusion equation solutions. Similar equations could also be derived within an "internal length" gradient (ILG) mechanics formulation applied to diffusion problems, i.e., by introducing nonlocal effects, together with inertia and viscosity, in a mechanics based formulation of diffusion theory. While being remarkably successful in studies related to various aspects of transport in inhomogeneous media with deterministic microstructures and nanostructures, its implications in the presence of stochasticity have not yet been considered. This issue becomes particularly important in the case of diffusion in nanopolycrystals whose deterministic ILG-based theoretical calculations predict a relaxation time that is only about one-tenth of the actual experimentally verified time scale. This article provides the "missing link" in this estimation by adding a vital element in the ILG structure, that of stochasticity, that takes into

  11. ? filtering for stochastic systems driven by Poisson processes

    Science.gov (United States)

    Song, Bo; Wu, Zheng-Guang; Park, Ju H.; Shi, Guodong; Zhang, Ya

    2015-01-01

    This paper investigates the ? filtering problem for stochastic systems driven by Poisson processes. By utilising the martingale theory such as the predictable projection operator and the dual predictable projection operator, this paper transforms the expectation of stochastic integral with respect to the Poisson process into the expectation of Lebesgue integral. Then, based on this, this paper designs an ? filter such that the filtering error system is mean-square asymptotically stable and satisfies a prescribed ? performance level. Finally, a simulation example is given to illustrate the effectiveness of the proposed filtering scheme.

  12. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  13. Stochastic models of solute transport in highly heterogeneous geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.

    2009-09-15

    A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.

  14. Anomalous scaling of stochastic processes and the Moses effect.

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E; McCauley, Joseph L; Gunaratne, Gemunu H

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t^{1/2}. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  15. Anomalous scaling of stochastic processes and the Moses effect

    Science.gov (United States)

    Chen, Lijian; Bassler, Kevin E.; McCauley, Joseph L.; Gunaratne, Gemunu H.

    2017-04-01

    The state of a stochastic process evolving over a time t is typically assumed to lie on a normal distribution whose width scales like t1/2. However, processes in which the probability distribution is not normal and the scaling exponent differs from 1/2 are known. The search for possible origins of such "anomalous" scaling and approaches to quantify them are the motivations for the work reported here. In processes with stationary increments, where the stochastic process is time-independent, autocorrelations between increments and infinite variance of increments can cause anomalous scaling. These sources have been referred to as the Joseph effect and the Noah effect, respectively. If the increments are nonstationary, then scaling of increments with t can also lead to anomalous scaling, a mechanism we refer to as the Moses effect. Scaling exponents quantifying the three effects are defined and related to the Hurst exponent that characterizes the overall scaling of the stochastic process. Methods of time series analysis that enable accurate independent measurement of each exponent are presented. Simple stochastic processes are used to illustrate each effect. Intraday financial time series data are analyzed, revealing that their anomalous scaling is due only to the Moses effect. In the context of financial market data, we reiterate that the Joseph exponent, not the Hurst exponent, is the appropriate measure to test the efficient market hypothesis.

  16. Stochastic models for surface diffusion of molecules

    Energy Technology Data Exchange (ETDEWEB)

    Shea, Patrick, E-mail: patrick.shea@dal.ca; Kreuzer, Hans Jürgen [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5 (Canada)

    2014-07-28

    We derive a stochastic model for the surface diffusion of molecules, starting from the classical equations of motion for an N-atom molecule on a surface. The equation of motion becomes a generalized Langevin equation for the center of mass of the molecule, with a non-Markovian friction kernel. In the Markov approximation, a standard Langevin equation is recovered, and the effect of the molecular vibrations on the diffusion is seen to lead to an increase in the friction for center of mass motion. This effective friction has a simple form that depends on the curvature of the lowest energy diffusion path in the 3N-dimensional coordinate space. We also find that so long as the intramolecular forces are sufficiently strong, memory effects are usually not significant and the Markov approximation can be employed, resulting in a simple one-dimensional model that can account for the effect of the dynamics of the molecular vibrations on the diffusive motion.

  17. Can Household Benefit from Stochastic Programming Models?

    DEFF Research Database (Denmark)

    Rasmussen, Kourosh Marjani; Madsen, Claus A.; Poulsen, Rolf

    2014-01-01

    The Danish mortgage market is large and sophisticated. However, most Danish mortgage banks advise private home-owners based on simple, if sensible, rules of thumb. In recent years a number of papers (from Nielsen and Poulsen in J Econ Dyn Control 28:1267–1289, 2004 over Rasmussen and Zenios in J...... Risk 10:1–18, 2007 to Pedersen et al. in Ann Oper Res, 2013) have suggested a model-based, stochastic programming approach to mortgage choice. This paper gives an empirical comparison of performance over the period 2000–2010 of the rules of thumb to the model-based strategies. While the rules of thumb.......3–0.9 %-points (depending on the borrower’s level of conservatism) compared to the rules of thumb without increasing the risk. The answer to the question in the title is thus affirmative....

  18. A Constructive Sharp Approach to Functional Quantization of Stochastic Processes

    OpenAIRE

    Junglen, Stefan; Luschgy, Harald

    2010-01-01

    We present a constructive approach to the functional quantization problem of stochastic processes, with an emphasis on Gaussian processes. The approach is constructive, since we reduce the infinite-dimensional functional quantization problem to a finite-dimensional quantization problem that can be solved numerically. Our approach achieves the sharp rate of the minimal quantization error and can be used to quantize the path space for Gaussian processes and also, for example, Lévy processes.

  19. Davidson's generalization of the Fenyes-Nelson stochastic model of quantum mechanics

    International Nuclear Information System (INIS)

    Shucker, D.S.

    1980-01-01

    Davidson's generalization of the Fenyes-Nelson stochastic model of quantum mechanics is discussed. It is shown that this author's previous results concerning the Fenyes-Nelson process extend to the more general theory of Davidson. (orig.)

  20. An adaptive stochastic model for financial markets

    International Nuclear Information System (INIS)

    Hernández, Juan Antonio; Benito, Rosa Marı´a; Losada, Juan Carlos

    2012-01-01

    An adaptive stochastic model is introduced to simulate the behavior of real asset markets. The model adapts itself by changing its parameters automatically on the basis of the recent historical data. The basic idea underlying the model is that a random variable uniformly distributed within an interval with variable extremes can replicate the histograms of asset returns. These extremes are calculated according to the arrival of new market information. This adaptive model is applied to the daily returns of three well-known indices: Ibex35, Dow Jones and Nikkei, for three complete years. The model reproduces the histograms of the studied indices as well as their autocorrelation structures. It produces the same fat tails and the same power laws, with exactly the same exponents, as in the real indices. In addition, the model shows a great adaptation capability, anticipating the volatility evolution and showing the same volatility clusters observed in the assets. This approach provides a novel way to model asset markets with internal dynamics which changes quickly with time, making it impossible to define a fixed model to fit the empirical observations.

  1. Stochastic simulation of destruction processes in self-irradiated materials

    Directory of Open Access Journals (Sweden)

    T. Patsahan

    2017-09-01

    Full Text Available Self-irradiation damages resulting from fission processes are common phenomena observed in nuclear fuel containing (NFC materials. Numerous α-decays lead to local structure transformations in NFC materials. The damages appearing due to the impacts of heavy nuclear recoils in the subsurface layer can cause detachments of material particles. Such a behaviour is similar to sputtering processes observed during a bombardment of the material surface by a flux of energetic particles. However, in the NFC material, the impacts are initiated from the bulk. In this work we propose a two-dimensional mesoscopic model to perform a stochastic simulation of the destruction processes occurring in a subsurface region of NFC material. We describe the erosion of the material surface, the evolution of its roughness and predict the detachment of the material particles. Size distributions of the emitted particles are obtained in this study. The simulation results of the model are in a qualitative agreement with the size histogram of particles produced from the material containing lava-like fuel formed during the Chernobyl nuclear power plant disaster.

  2. A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis

    Directory of Open Access Journals (Sweden)

    Linda J.S. Allen

    2017-05-01

    Full Text Available Some mathematical methods for formulation and numerical simulation of stochastic epidemic models are presented. Specifically, models are formulated for continuous-time Markov chains and stochastic differential equations. Some well-known examples are used for illustration such as an SIR epidemic model and a host-vector malaria model. Analytical methods for approximating the probability of a disease outbreak are also discussed. Keywords: Branching process, Continuous-time Markov chain, Minor outbreak, Stochastic differential equation, 2000 MSC: 60H10, 60J28, 92D30

  3. Stochastic modeling of consumer preferences for health care institutions.

    Science.gov (United States)

    Malhotra, N K

    1983-01-01

    This paper proposes a stochastic procedure for modeling consumer preferences via LOGIT analysis. First, a simple, non-technical exposition of the use of a stochastic approach in health care marketing is presented. Second, a study illustrating the application of the LOGIT model in assessing consumer preferences for hospitals is given. The paper concludes with several implications of the proposed approach.

  4. Review of "Stochastic Modelling for Systems Biology" by Darren Wilkinson

    Directory of Open Access Journals (Sweden)

    Bullinger Eric

    2006-12-01

    Full Text Available Abstract "Stochastic Modelling for Systems Biology" by Darren Wilkinson introduces the peculiarities of stochastic modelling in biology. This book is particularly suited to as a textbook or for self-study, and for readers with a theoretical background.

  5. Learning Theory Estimates with Observations from General Stationary Stochastic Processes.

    Science.gov (United States)

    Hang, Hanyuan; Feng, Yunlong; Steinwart, Ingo; Suykens, Johan A K

    2016-12-01

    This letter investigates the supervised learning problem with observations drawn from certain general stationary stochastic processes. Here by general, we mean that many stationary stochastic processes can be included. We show that when the stochastic processes satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning schemes with various mixing processes can be conducted and a sharp oracle inequality for generic regularized empirical risk minimization schemes can be established. The obtained oracle inequality is then applied to derive convergence rates for several learning schemes such as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs) using given generic kernels, and SVMs using gaussian kernels for both least squares and quantile regression. It turns out that for independent and identically distributed (i.i.d.) processes, our learning rates for ERM recover the optimal rates. For non-i.i.d. processes, including geometrically [Formula: see text]-mixing Markov processes, geometrically [Formula: see text]-mixing processes with restricted decay, [Formula: see text]-mixing processes, and (time-reversed) geometrically [Formula: see text]-mixing processes, our learning rates for SVMs with gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As a by-product, the assumed generalized Bernstein-type inequality also provides an interpretation of the so-called effective number of observations for various mixing processes.

  6. ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Pedersen, Troels; Bak-Jensen, Birgitte

    2010-01-01

    This paper proposes a stochastic wind power model based on an autoregressive integrated moving average (ARIMA) process. The model takes into account the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from...... the Nysted offshore wind farm in Denmark. The proposed limited-ARIMA (LARIMA) model introduces a limiter and characterizes the stochastic wind power generation by mean level, temporal correlation and driving noise. The model is validated against the measurement in terms of temporal correlation...... and probability distribution. The LARIMA model outperforms a first-order transition matrix based discrete Markov model in terms of temporal correlation, probability distribution and model parameter number. The proposed LARIMA model is further extended to include the monthly variation of the stochastic wind power...

  7. Approximate models for broken clouds in stochastic radiative transfer theory

    International Nuclear Information System (INIS)

    Doicu, Adrian; Efremenko, Dmitry S.; Loyola, Diego; Trautmann, Thomas

    2014-01-01

    This paper presents approximate models in stochastic radiative transfer theory. The independent column approximation and its modified version with a solar source computed in a full three-dimensional atmosphere are formulated in a stochastic framework and for arbitrary cloud statistics. The nth-order stochastic models describing the independent column approximations are equivalent to the nth-order stochastic models for the original radiance fields in which the gradient vectors are neglected. Fast approximate models are further derived on the basis of zeroth-order stochastic models and the independent column approximation. The so-called “internal mixing” models assume a combination of the optical properties of the cloud and the clear sky, while the “external mixing” models assume a combination of the radiances corresponding to completely overcast and clear skies. A consistent treatment of internal and external mixing models is provided, and a new parameterization of the closure coefficient in the effective thickness approximation is given. An efficient computation of the closure coefficient for internal mixing models, using a previously derived vector stochastic model as a reference, is also presented. Equipped with appropriate look-up tables for the closure coefficient, these models can easily be integrated into operational trace gas retrieval systems that exploit absorption features in the near-IR solar spectrum. - Highlights: • Independent column approximation in a stochastic setting. • Fast internal and external mixing models for total and diffuse radiances. • Efficient optimization of internal mixing models to match reference models

  8. Counting statistics of non-markovian quantum stochastic processes

    DEFF Research Database (Denmark)

    Flindt, Christian; Novotny, T.; Braggio, A.

    2008-01-01

    We derive a general expression for the cumulant generating function (CGF) of non-Markovian quantum stochastic transport processes. The long-time limit of the CGF is determined by a single dominating pole of the resolvent of the memory kernel from which we extract the zero-frequency cumulants...

  9. Conditional Stochastic Processes Applied to Wave Load Predictions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2015-01-01

    The concept of conditional stochastic processes provides a powerful tool for evaluation and estimation of wave loads on ships and offshore structures. This article first considers conditional waves with a focus on critical wave episodes. Then the inherent uncertainty in the results is illustrated...

  10. Stochastic evolution of the Universe: A possible dynamical process ...

    Indian Academy of Sciences (India)

    C Sivakumar

    2017-12-11

    Dec 11, 2017 ... https://doi.org/10.1007/s12043-017-1491-z. Stochastic evolution of the Universe: A possible dynamical process leading to fractal structures. C SIVAKUMAR. Department of Physics, Maharaja's College, Ernakulam 682 011, India. E-mail: thrisivc@yahoo.com. MS received 6 July 2016; revised 26 June 2017; ...

  11. Interplanetary Alfvenic fluctuations: A stochastic model

    International Nuclear Information System (INIS)

    Barnes, A.

    1981-01-01

    The strong alignment of the average directions of minimum magnetic variance and mean magnetic field in interplanetary Alfvenic fluctuations is inconsistent with the usual wave-propagation models. We investigate the concept of minimum variance for nonplanar Alfvenic fluctuations in which the field direction varies stochastically. It is found that the tendency of the minimum variance and mean field directions to be aligned may be purely a consequence of the randomness of the field direction. In particular, a well-defined direction of minimum variance does not imply that the fluctuations are necessarily planar. The fluctuation power spectrum is a power law for frequencies much higher than the inverse of the correlation time. The probability distribution of directions a randomly fluctuating field of constant magnitude is calculated. A new approach for observational studies of interplanetary fluctuations is suggested

  12. Cultural evolution as a nonstationary stochastic process

    DEFF Research Database (Denmark)

    Nicholson, Arwen; Sibani, Paolo

    2016-01-01

    We present an individual based model of cultural evolution, where interacting agents are coded by binary strings standing for strategies for action, blueprints for products or attitudes and beliefs. The model is patterned on an established model of biological evolution, the Tangled Nature Model...... (TNM), where a “tangle” of interactions between agents determines their reproductive success. In addition, our agents also have the ability to copy part of each other's strategy, a feature inspired by the Axelrod model of cultural diversity. Unlike the latter, but similarly to the TNM, the model...

  13. Uncertainty Reduction for Stochastic Processes on Complex Networks

    Science.gov (United States)

    Radicchi, Filippo; Castellano, Claudio

    2018-05-01

    Many real-world systems are characterized by stochastic dynamical rules where a complex network of interactions among individual elements probabilistically determines their state. Even with full knowledge of the network structure and of the stochastic rules, the ability to predict system configurations is generally characterized by a large uncertainty. Selecting a fraction of the nodes and observing their state may help to reduce the uncertainty about the unobserved nodes. However, choosing these points of observation in an optimal way is a highly nontrivial task, depending on the nature of the stochastic process and on the structure of the underlying interaction pattern. In this paper, we introduce a computationally efficient algorithm to determine quasioptimal solutions to the problem. The method leverages network sparsity to reduce computational complexity from exponential to almost quadratic, thus allowing the straightforward application of the method to mid-to-large-size systems. Although the method is exact only for equilibrium stochastic processes defined on trees, it turns out to be effective also for out-of-equilibrium processes on sparse loopy networks.

  14. Gompertzian stochastic model with delay effect to cervical cancer growth

    International Nuclear Information System (INIS)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti; Bahar, Arifah

    2015-01-01

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits

  15. Gompertzian stochastic model with delay effect to cervical cancer growth

    Energy Technology Data Exchange (ETDEWEB)

    Mazlan, Mazma Syahidatul Ayuni binti; Rosli, Norhayati binti [Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang (Malaysia); Bahar, Arifah [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor and UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor (Malaysia)

    2015-02-03

    In this paper, a Gompertzian stochastic model with time delay is introduced to describe the cervical cancer growth. The parameters values of the mathematical model are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic model numerically. The efficiency of mathematical model is measured by comparing the simulated result and the clinical data of cervical cancer growth. Low values of Mean-Square Error (MSE) of Gompertzian stochastic model with delay effect indicate good fits.

  16. Simultaneous perturbation stochastic approximation for tidal models

    KAUST Repository

    Altaf, M.U.

    2011-05-12

    The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.

  17. Simultaneous perturbation stochastic approximation for tidal models

    KAUST Repository

    Altaf, M.U.; Heemink, A.W.; Verlaan, M.; Hoteit, Ibrahim

    2011-01-01

    The Dutch continental shelf model (DCSM) is a shallow sea model of entire continental shelf which is used operationally in the Netherlands to forecast the storm surges in the North Sea. The forecasts are necessary to support the decision of the timely closure of the moveable storm surge barriers to protect the land. In this study, an automated model calibration method, simultaneous perturbation stochastic approximation (SPSA) is implemented for tidal calibration of the DCSM. The method uses objective function evaluations to obtain the gradient approximations. The gradient approximation for the central difference method uses only two objective function evaluation independent of the number of parameters being optimized. The calibration parameter in this study is the model bathymetry. A number of calibration experiments is performed. The effectiveness of the algorithm is evaluated in terms of the accuracy of the final results as well as the computational costs required to produce these results. In doing so, comparison is made with a traditional steepest descent method and also with a newly developed proper orthogonal decompositionbased calibration method. The main findings are: (1) The SPSA method gives comparable results to steepest descent method with little computational cost. (2) The SPSA method with little computational cost can be used to estimate large number of parameters.

  18. A stochastic model for early placental development.

    KAUST Repository

    Cotter, Simon L

    2014-08-01

    In the human, placental structure is closely related to placental function and consequent pregnancy outcome. Studies have noted abnormal placental shape in small-for-gestational-age infants which extends to increased lifetime risk of cardiovascular disease. The origins and determinants of placental shape are incompletely understood and are difficult to study in vivo. In this paper, we model the early development of the human placenta, based on the hypothesis that this is driven by a chemoattractant effect emanating from proximal spiral arteries in the decidua. We derive and explore a two-dimensional stochastic model, and investigate the effects of loss of spiral arteries in regions near to the cord insertion on the shape of the placenta. This model demonstrates that disruption of spiral arteries can exert profound effects on placental shape, particularly if this is close to the cord insertion. Thus, placental shape reflects the underlying maternal vascular bed. Abnormal placental shape may reflect an abnormal uterine environment, predisposing to pregnancy complications. Through statistical analysis of model placentas, we are able to characterize the probability that a given placenta grew in a disrupted environment, and even able to distinguish between different disruptions.

  19. Stochastic model of the spinning electron

    International Nuclear Information System (INIS)

    Simaciu, I.; Borsos, Z.

    2002-01-01

    In Stochastic Electrodynamics (SED) it is demonstrated that electrostatic interaction is the result of the scattering of the Classical Zero-Point Field (CZPF) background by the charged particles. In such models, the electron is modelled as a two-dimensional oscillator, which interacts with the electric component of the CZPF background. The electron with spin is not only an electric monopole but also a magnetic dipole. The interaction of the spin electron with the CZPF background is not only electric but also magnetic. We calculate the scattering cross-section of magnetic dipole in the situation when a magnetic field, variable in time B arrow = B 0 arrow sin ωt, acts over the rigid magnetic dipole given by the symmetry of the model. The cross-section of a magnetic dipole σ m must be equal to the cross-section of an electric monopole σ e . This equality between σ m and σ e cross-sections is motivated, too, by the fact that, in the model of the two-dimensional oscillator, the electric charge q e has the motion speed c. (authors)

  20. A Simple, Realistic Stochastic Model of Gastric Emptying.

    Directory of Open Access Journals (Sweden)

    Jiraphat Yokrattanasak

    Full Text Available Several models of Gastric Emptying (GE have been employed in the past to represent the rate of delivery of stomach contents to the duodenum and jejunum. These models have all used a deterministic form (algebraic equations or ordinary differential equations, considering GE as a continuous, smooth process in time. However, GE is known to occur as a sequence of spurts, irregular both in size and in timing. Hence, we formulate a simple stochastic process model, able to represent the irregular decrements of gastric contents after a meal. The model is calibrated on existing literature data and provides consistent predictions of the observed variability in the emptying trajectories. This approach may be useful in metabolic modeling, since it describes well and explains the apparently heterogeneous GE experimental results in situations where common gastric mechanics across subjects would be expected.

  1. Stochastic modelling of two-phase flows including phase change

    International Nuclear Information System (INIS)

    Hurisse, O.; Minier, J.P.

    2011-01-01

    Stochastic modelling has already been developed and applied for single-phase flows and incompressible two-phase flows. In this article, we propose an extension of this modelling approach to two-phase flows including phase change (e.g. for steam-water flows). Two aspects are emphasised: a stochastic model accounting for phase transition and a modelling constraint which arises from volume conservation. To illustrate the whole approach, some remarks are eventually proposed for two-fluid models. (authors)

  2. A stochastic surplus production model in continuous time

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte

    2017-01-01

    surplus production model in continuous time (SPiCT), which in addition to stock dynamics also models the dynamics of the fisheries. This enables error in the catch process to be reflected in the uncertainty of estimated model parameters and management quantities. Benefits of the continuous-time state......Surplus production modelling has a long history as a method for managing data-limited fish stocks. Recent advancements have cast surplus production models as state-space models that separate random variability of stock dynamics from error in observed indices of biomass. We present a stochastic......-space model formulation include the ability to provide estimates of exploitable biomass and fishing mortality at any point in time from data sampled at arbitrary and possibly irregular intervals. We show in a simulation that the ability to analyse subannual data can increase the effective sample size...

  3. Survival Analysis of a Nonautonomous Logistic Model with Stochastic Perturbation

    Directory of Open Access Journals (Sweden)

    Chun Lu

    2012-01-01

    Full Text Available Taking white noise into account, a stochastic nonautonomous logistic model is proposed and investigated. Sufficient conditions for extinction, nonpersistence in the mean, weak persistence, stochastic permanence, and global asymptotic stability are established. Moreover, the threshold between weak persistence and extinction is obtained. Finally, we introduce some numerical simulink graphics to illustrate our main results.

  4. On the small-time behavior of stochastic logistic models

    Directory of Open Access Journals (Sweden)

    Dung Tien Nguyen

    2017-09-01

    Full Text Available In this paper we investigate the small-time behaviors of the solution to  a stochastic logistic model. The obtained results allow us to estimate the number of individuals in the population and can be used to study stochastic prey-predator systems.

  5. Analysis and reconstruction of stochastic coupled map lattice models

    International Nuclear Information System (INIS)

    Coca, Daniel; Billings, Stephen A.

    2003-01-01

    The Letter introduces a general stochastic coupled lattice map model together with an algorithm to estimate the nodal equations involved based only on a small set of observable variables and in the presence of stochastic perturbations. More general forms of the Frobenius-Perron and the transfer operators, which describe the evolution of densities under the action of the CML transformation, are derived

  6. Forecasting total natural-gas consumption in Spain by using the stochastic Gompertz innovation diffusion model

    International Nuclear Information System (INIS)

    Gutierrez, R.; Nafidi, A.; Gutierrez Sanchez, R.

    2005-01-01

    The principal objective of the present study is to examine the possibilities of using a Gompertz-type innovation diffusion process as a stochastic growth model of natural-gas consumption in Spain, and to compare our results with those obtained, on the one hand, by stochastic logistic innovation modelling and, on the other, by using a stochastic lognormal growth model based on a non-innovation diffusion process. Such a comparison is carried out taking into account the macroeconomic characteristics and natural-gas consumption patterns in Spain, both of which reflect the current expansive situation characterizing the Spanish economy. From the technical standpoint a contribution is also made to the theory of the stochastic Gompertz Innovation diffusion process (SGIDP), as applied to the case in question. (author)

  7. Two new algorithms to combine kriging with stochastic modelling

    Science.gov (United States)

    Venema, Victor; Lindau, Ralf; Varnai, Tamas; Simmer, Clemens

    2010-05-01

    Two main groups of statistical methods used in the Earth sciences are geostatistics and stochastic modelling. Geostatistical methods, such as various kriging algorithms, aim at estimating the mean value for every point as well as possible. In case of sparse measurements, such fields have less variability at small scales and a narrower distribution as the true field. This can lead to biases if a nonlinear process is simulated driven by such a kriged field. Stochastic modelling aims at reproducing the statistical structure of the data in space and time. One of the stochastic modelling methods, the so-called surrogate data approach, replicates the value distribution and power spectrum of a certain data set. While stochastic methods reproduce the statistical properties of the data, the location of the measurement is not considered. This requires the use of so-called constrained stochastic models. Because radiative transfer through clouds is a highly nonlinear process, it is essential to model the distribution (e.g. of optical depth, extinction, liquid water content or liquid water path) accurately. In addition, the correlations within the cloud field are important, especially because of horizontal photon transport. This explains the success of surrogate cloud fields for use in 3D radiative transfer studies. Up to now, however, we could only achieve good results for the radiative properties averaged over the field, but not for a radiation measurement located at a certain position. Therefore we have developed a new algorithm that combines the accuracy of stochastic (surrogate) modelling with the positioning capabilities of kriging. In this way, we can automatically profit from the large geostatistical literature and software. This algorithm is similar to the standard iterative amplitude adjusted Fourier transform (IAAFT) algorithm, but has an additional iterative step in which the surrogate field is nudged towards the kriged field. The nudging strength is gradually

  8. The stochastic resonance for the incidence function model of metapopulation

    Science.gov (United States)

    Li, Jiang-Cheng; Dong, Zhi-Wei; Zhou, Ruo-Wei; Li, Yun-Xian; Qian, Zhen-Wei

    2017-06-01

    A stochastic model with endogenous and exogenous periodicities is proposed in this paper on the basis of metapopulation dynamics to model the crop yield losses due to pests and diseases. The rationale is that crop yield losses occur because the physiology of the growing crop is negatively affected by pests and diseases in a dynamic way over time as crop both grows and develops. Metapopulation dynamics can thus be used to model the resultant crop yield losses. The stochastic metapopulation process is described by using the Simplified Incidence Function model (IFM). Compared to the original IFMs, endogenous and exogenous periodicities are considered in the proposed model to handle the cyclical patterns observed in pest infestations, diseases epidemics, and exogenous affecting factors such as temperature and rainfalls. Agricultural loss data in China are used to fit the proposed model. Experimental results demonstrate that: (1) Model with endogenous and exogenous periodicities is a better fit; (2) When the internal system fluctuations and external environmental fluctuations are negatively correlated, EIL or the cost of loss is monotonically increasing; when the internal system fluctuations and external environmental fluctuations are positively correlated, an outbreak of pests and diseases might occur; (3) If the internal system fluctuations and external environmental fluctuations are positively correlated, an optimal patch size can be identified which will greatly weaken the effects of external environmental influence and hence inhibit pest infestations and disease epidemics.

  9. Comments on the use of stochastic processes in the field of the ionizing radiations

    International Nuclear Information System (INIS)

    Alvarez Romero, Jose T.

    2008-01-01

    Stochastic process is the name given to a time dependent random process, unfortunately, its time dependence is not always clearly emphasized. In fact, such dependence is not unequivocally stated in the different disciplines of radiation physics, radiobiology or in radiation protection. This is the cause of some conceptual confusion when interpreting relationships between quantities is analyzed, e.g.: imparted energy vs. absorbed dose, stochastic vs. deterministic biological effects; or in radiation protection models, whether: linear or quadratic, relative or absolute. Most of these relationships are associated to stochastic phenomena, and they carry a time dependence that requires clarification. To mention some examples, in radiation physics: the absorbed dose is a non stochastic quantity resulting from averaging a stochastic one namely, the imparted energy, over a representative ensemble via an operation analogous to the Gibbs-Einstein algorithm. On the other hand stochastic quantities require specialized mathematical techniques of stochastic processes to handle them. These refinements are unfortunately ignored in the reports of ICRU 33 and 60. Essentially, a problem to be solved is to establish a clear relationship between micro or mesoscopic stochastic quantities and their macroscopic counterparts, these latter ones possibly being time dependent or not. This is the main objective of microdosimetry. Another problem is to describe phenomena such as electronic equilibrium which is nothing else than a stationary state thus exhibiting no time dependence. Still a different question is the interpretation of radioactive decay as a stochastic process of the Poisson and Markov type. In radiobiology a basic problem is the study of biological stochastic phenomena is to determine the characteristics and structure of those time dependent probabilistic functions allowing the quantification of macroscopic biological manifestations, such as carcinogenesis or genetic effects

  10. Expectation propagation for continuous time stochastic processes

    International Nuclear Information System (INIS)

    Cseke, Botond; Schnoerr, David; Sanguinetti, Guido; Opper, Manfred

    2016-01-01

    We consider the inverse problem of reconstructing the posterior measure over the trajectories of a diffusion process from discrete time observations and continuous time constraints. We cast the problem in a Bayesian framework and derive approximations to the posterior distributions of single time marginals using variational approximate inference, giving rise to an expectation propagation type algorithm. For non-linear diffusion processes, this is achieved by leveraging moment closure approximations. We then show how the approximation can be extended to a wide class of discrete-state Markov jump processes by making use of the chemical Langevin equation. Our empirical results show that the proposed method is computationally efficient and provides good approximations for these classes of inverse problems. (paper)

  11. A probabilistic graphical model based stochastic input model construction

    International Nuclear Information System (INIS)

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  12. Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process.

    Science.gov (United States)

    Quan, Ji; Liu, Wei; Chu, Yuqing; Wang, Xianjia

    2017-11-23

    Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.

  13. Field Trial Measurements to Validate a Stochastic Aircraft Boarding Model

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-03-01

    Full Text Available Efficient boarding procedures have to consider both operational constraints and the individual passenger behavior. In contrast to the aircraft handling processes of fueling, catering and cleaning, the boarding process is more driven by passengers than by airport or airline operators. This paper delivers a comprehensive set of operational data including classification of boarding times, passenger arrival times, times to store hand luggage, and passenger interactions in the aircraft cabin as a reliable basis for calibrating models for aircraft boarding. In this paper, a microscopic approach is used to model the passenger behavior, where the passenger movement is defined as a one-dimensional, stochastic, and time/space discrete transition process. This model is used to compare measurements from field trials of boarding procedures with simulation results and demonstrates a deviation smaller than 5%.

  14. Entropy Measures for Stochastic Processes with Applications in Functional Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Gabriel Martos

    2018-01-01

    Full Text Available We propose a definition of entropy for stochastic processes. We provide a reproducing kernel Hilbert space model to estimate entropy from a random sample of realizations of a stochastic process, namely functional data, and introduce two approaches to estimate minimum entropy sets. These sets are relevant to detect anomalous or outlier functional data. A numerical experiment illustrates the performance of the proposed method; in addition, we conduct an analysis of mortality rate curves as an interesting application in a real-data context to explore functional anomaly detection.

  15. Systematic parameter inference in stochastic mesoscopic modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Huan; Yang, Xiu [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Li, Zhen [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Karniadakis, George Em, E-mail: george_karniadakis@brown.edu [Division of Applied Mathematics, Brown University, Providence, RI 02912 (United States)

    2017-02-01

    We propose a method to efficiently determine the optimal coarse-grained force field in mesoscopic stochastic simulations of Newtonian fluid and polymer melt systems modeled by dissipative particle dynamics (DPD) and energy conserving dissipative particle dynamics (eDPD). The response surfaces of various target properties (viscosity, diffusivity, pressure, etc.) with respect to model parameters are constructed based on the generalized polynomial chaos (gPC) expansion using simulation results on sampling points (e.g., individual parameter sets). To alleviate the computational cost to evaluate the target properties, we employ the compressive sensing method to compute the coefficients of the dominant gPC terms given the prior knowledge that the coefficients are “sparse”. The proposed method shows comparable accuracy with the standard probabilistic collocation method (PCM) while it imposes a much weaker restriction on the number of the simulation samples especially for systems with high dimensional parametric space. Fully access to the response surfaces within the confidence range enables us to infer the optimal force parameters given the desirable values of target properties at the macroscopic scale. Moreover, it enables us to investigate the intrinsic relationship between the model parameters, identify possible degeneracies in the parameter space, and optimize the model by eliminating model redundancies. The proposed method provides an efficient alternative approach for constructing mesoscopic models by inferring model parameters to recover target properties of the physics systems (e.g., from experimental measurements), where those force field parameters and formulation cannot be derived from the microscopic level in a straight forward way.

  16. Modified stochastic fragmentation of an interval as an ageing process

    Science.gov (United States)

    Fortin, Jean-Yves

    2018-02-01

    We study a stochastic model based on modified fragmentation of a finite interval. The mechanism consists of cutting the interval at a random location and substituting a unique fragment on the right of the cut to regenerate and preserve the interval length. This leads to a set of segments of random sizes, with the accumulation of small fragments near the origin. This model is an example of record dynamics, with the presence of ‘quakes’ and slow dynamics. The fragment size distribution is a universal inverse power law with logarithmic corrections. The exact distribution for the fragment number as function of time is simply related to the unsigned Stirling numbers of the first kind. Two-time correlation functions are defined, and computed exactly. They satisfy scaling relations, and exhibit aging phenomena. In particular, the probability that the same number of fragments is found at two different times t>s is asymptotically equal to [4πlog(s)]-1/2 when s\\gg 1 and the ratio t/s is fixed, in agreement with the numerical simulations. The same process with a reset impedes the aging phenomenon-beyond a typical time scale defined by the reset parameter.

  17. 5th Seminar on Stochastic Processes, Random Fields and Applications

    CERN Document Server

    Russo, Francesco; Dozzi, Marco

    2008-01-01

    This volume contains twenty-eight refereed research or review papers presented at the 5th Seminar on Stochastic Processes, Random Fields and Applications, which took place at the Centro Stefano Franscini (Monte Verità) in Ascona, Switzerland, from May 30 to June 3, 2005. The seminar focused mainly on stochastic partial differential equations, random dynamical systems, infinite-dimensional analysis, approximation problems, and financial engineering. The book will be a valuable resource for researchers in stochastic analysis and professionals interested in stochastic methods in finance. Contributors: Y. Asai, J.-P. Aubin, C. Becker, M. Benaïm, H. Bessaih, S. Biagini, S. Bonaccorsi, N. Bouleau, N. Champagnat, G. Da Prato, R. Ferrière, F. Flandoli, P. Guasoni, V.B. Hallulli, D. Khoshnevisan, T. Komorowski, R. Léandre, P. Lescot, H. Lisei, J.A. López-Mimbela, V. Mandrekar, S. Méléard, A. Millet, H. Nagai, A.D. Neate, V. Orlovius, M. Pratelli, N. Privault, O. Raimond, M. Röckner, B. Rüdiger, W.J. Runggaldi...

  18. A stochastic phase-field model determined from molecular dynamics

    KAUST Repository

    von Schwerin, Erik; Szepessy, Anders

    2010-01-01

    The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.

  19. A stochastic phase-field model determined from molecular dynamics

    KAUST Repository

    von Schwerin, Erik

    2010-03-17

    The dynamics of dendritic growth of a crystal in an undercooled melt is determined by macroscopic diffusion-convection of heat and by capillary forces acting on the nanometer scale of the solid-liquid interface width. Its modelling is useful for instance in processing techniques based on casting. The phase-field method is widely used to study evolution of such microstructural phase transformations on a continuum level; it couples the energy equation to a phenomenological Allen-Cahn/Ginzburg-Landau equation modelling the dynamics of an order parameter determining the solid and liquid phases, including also stochastic fluctuations to obtain the qualitatively correct result of dendritic side branching. This work presents a method to determine stochastic phase-field models from atomistic formulations by coarse-graining molecular dynamics. It has three steps: (1) a precise quantitative atomistic definition of the phase-field variable, based on the local potential energy; (2) derivation of its coarse-grained dynamics model, from microscopic Smoluchowski molecular dynamics (that is Brownian or over damped Langevin dynamics); and (3) numerical computation of the coarse-grained model functions. The coarse-grained model approximates Gibbs ensemble averages of the atomistic phase-field, by choosing coarse-grained drift and diffusion functions that minimize the approximation error of observables in this ensemble average. © EDP Sciences, SMAI, 2010.

  20. Calibration of a stochastic health evolution model using NHIS data

    Science.gov (United States)

    Gupta, Aparna; Li, Zhisheng

    2011-10-01

    This paper presents and calibrates an individual's stochastic health evolution model. In this health evolution model, the uncertainty of health incidents is described by a stochastic process with a finite number of possible outcomes. We construct a comprehensive health status index (HSI) to describe an individual's health status, as well as a health risk factor system (RFS) to classify individuals into different risk groups. Based on the maximum likelihood estimation (MLE) method and the method of nonlinear least squares fitting, model calibration is formulated in terms of two mixed-integer nonlinear optimization problems. Using the National Health Interview Survey (NHIS) data, the model is calibrated for specific risk groups. Longitudinal data from the Health and Retirement Study (HRS) is used to validate the calibrated model, which displays good validation properties. The end goal of this paper is to provide a model and methodology, whose output can serve as a crucial component of decision support for strategic planning of health related financing and risk management.

  1. Stochastic modeling of wetland-groundwater systems

    Science.gov (United States)

    Bertassello, Leonardo Enrico; Rao, P. Suresh C.; Park, Jeryang; Jawitz, James W.; Botter, Gianluca

    2018-02-01

    Modeling and data analyses were used in this study to examine the temporal hydrological variability in geographically isolated wetlands (GIWs), as influenced by hydrologic connectivity to shallow groundwater, wetland bathymetry, and subject to stochastic hydro-climatic forcing. We examined the general case of GIWs coupled to shallow groundwater through exfiltration or infiltration across wetland bottom. We also examined limiting case with the wetland stage as the local expression of the shallow groundwater. We derive analytical expressions for the steady-state probability density functions (pdfs) for wetland water storage and stage using few, scaled, physically-based parameters. In addition, we analyze the hydrologic crossing time properties of wetland stage, and the dependence of the mean hydroperiod on climatic and wetland morphologic attributes. Our analyses show that it is crucial to account for shallow groundwater connectivity to fully understand the hydrologic dynamics in wetlands. The application of the model to two different case studies in Florida, jointly with a detailed sensitivity analysis, allowed us to identify the main drivers of hydrologic dynamics in GIWs under different climate and morphologic conditions.

  2. Discrete stochastic processes and optimal filtering

    CERN Document Server

    Bertein, Jean-Claude

    2012-01-01

    Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which ar

  3. Generation of a stochastic precipitation model for the tropical climate

    Science.gov (United States)

    Ng, Jing Lin; Abd Aziz, Samsuzana; Huang, Yuk Feng; Wayayok, Aimrun; Rowshon, MK

    2017-06-01

    A tropical country like Malaysia is characterized by intense localized precipitation with temperatures remaining relatively constant throughout the year. A stochastic modeling of precipitation in the flood-prone Kelantan River Basin is particularly challenging due to the high intermittency of precipitation events of the northeast monsoons. There is an urgent need to have long series of precipitation in modeling the hydrological responses. A single-site stochastic precipitation model that includes precipitation occurrence and an intensity model was developed, calibrated, and validated for the Kelantan River Basin. The simulation process was carried out separately for each station without considering the spatial correlation of precipitation. The Markov chains up to the fifth-order and six distributions were considered. The daily precipitation data of 17 rainfall stations for the study period of 1954-2013 were selected. The results suggested that second- and third-order Markov chains were suitable for simulating monthly and yearly precipitation occurrences, respectively. The fifth-order Markov chain resulted in overestimation of precipitation occurrences. For the mean, distribution, and standard deviation of precipitation amounts, the exponential, gamma, log-normal, skew normal, mixed exponential, and generalized Pareto distributions performed superiorly. However, for the extremes of precipitation, the exponential and log-normal distributions were better while the skew normal and generalized Pareto distributions tend to show underestimations. The log-normal distribution was chosen as the best distribution to simulate precipitation amounts. Overall, the stochastic precipitation model developed is considered a convenient tool to simulate the characteristics of precipitation in the Kelantan River Basin.

  4. Uncertainty modelling of atmospheric dispersion by stochastic ...

    Indian Academy of Sciences (India)

    by stochastic response surface method under aleatory ... 3Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India e-mail: ...... Brandimarte P 2011 Quantitative methods: An introduction for business management.

  5. Stochastic models for predicting environmental impact in aquatic ecosystems

    International Nuclear Information System (INIS)

    Stewart-Oaten, A.

    1986-01-01

    The purpose of stochastic predictions are discussed in relation to the environmental impacts of nuclear power plants on aquatic ecosystems. One purpose is to aid in making rational decisions about whether a power plant should be built, where, and how it should be designed. The other purpose is to check on the models themselves in the light of what eventually happens. The author discusses the role or statistical decision theory in the decision-making problem. Various types of stochastic models and their problems are presented. In addition some suggestions are made for generating usable stochastic models, and checking and improving on them. 12 references

  6. Using Max-Plus Algebra for the Evaluation of Stochastic Process Algebra Prefixes

    NARCIS (Netherlands)

    Cloth, L.; de Alfaro, L.; Gilmore, S.; Bohnenkamp, H.C.; Haverkort, Boudewijn R.H.M.

    2001-01-01

    In this paper, the concept of complete finite prefixes for process algebra expressions is extended to stochastic models. Events are supposed to happen after a delay that is determined by random variables assigned to the preceding conditions. Max-plus algebra expressions are shown to provide an

  7. Evaluating the role of soil variability on groundwater pollution and recharge at regional scale by integrating a process-based vadose zone model in a stochastic approach

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Lamaddalena, Nicola; Zdruli, Pandi

    2013-04-01

    modelling approaches have been developed at small space scales. Their extension to the applicative macroscale of the regional model is not a simple task mainly because of the heterogeneity of vadose zone properties, as well as of non-linearity of hydrological processes. Besides, one of the problems when applying distributed models is that spatial and temporal scales for data to be used as input in the models vary on a wide range of scales and are not always consistent with the model structure. Under these conditions, a strictly deterministic response to questions about the fate of a pollutant in the soil is impossible. At best, one may answer "this is the average behaviour within this uncertainty band". Consequently, the extension of these equations to account for regional-scale processes requires the uncertainties of the outputs be taken into account if the pollution vulnerability maps that may be drawn are to be used as agricultural management tools. A map generated without a corresponding map of associated uncertainties has no real utility. The stochastic stream tube approach is a frequently used to the water flux and solute transport through the vadose zone at applicative scales. This approach considers the field soil as an ensemble of parallel and statistically independent tubes, assuming only vertical flow. The stream tubes approach is generally used in a probabilistic framework. Each stream tube defines local flow properties that are assumed to vary randomly between the different stream tubes. Thus, the approach allows average water and solute behaviour be described, along with the associated uncertainty bands. These stream tubes are usually considered to have parameters that are vertically homogeneous. This would be justified by the large difference between the horizontal and vertical extent of the spatial applicative scale. Vertical is generally overlooked. Obviously, all the model outputs are conditioned by this assumption. The latter, in turn, is more dictated by

  8. Hermite-Hadamard type inequality for φ{sub h}-convex stochastic processes

    Energy Technology Data Exchange (ETDEWEB)

    Sarıkaya, Mehmet Zeki, E-mail: sarikayamz@gmail.com [Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce (Turkey); Kiriş, Mehmet Eyüp, E-mail: kiris@aku.edu.tr [Department of Mathematics, Institute of Science and Arts, Afyon Kocatepe University, Afyonkarahisar (Turkey); Çelik, Nuri, E-mail: ncelik@bartin.edu.tr [Department of Statistics, Faculty of Science, Bartın University, Bartın-Turkey (Turkey)

    2016-04-18

    The main aim of the present paper is to introduce φ{sub h}-convex stochastic processes and we investigate main properties of these mappings. Moreover, we prove the Hadamard-type inequalities for φ{sub h}-convex stochastic processes. We also give some new general inequalities for φ{sub h}-convex stochastic processes.

  9. Stochastic Watershed Models for Risk Based Decision Making

    Science.gov (United States)

    Vogel, R. M.

    2017-12-01

    Over half a century ago, the Harvard Water Program introduced the field of operational or synthetic hydrology providing stochastic streamflow models (SSMs), which could generate ensembles of synthetic streamflow traces useful for hydrologic risk management. The application of SSMs, based on streamflow observations alone, revolutionized water resources planning activities, yet has fallen out of favor due, in part, to their inability to account for the now nearly ubiquitous anthropogenic influences on streamflow. This commentary advances the modern equivalent of SSMs, termed `stochastic watershed models' (SWMs) useful as input to nearly all modern risk based water resource decision making approaches. SWMs are deterministic watershed models implemented using stochastic meteorological series, model parameters and model errors, to generate ensembles of streamflow traces that represent the variability in possible future streamflows. SWMs combine deterministic watershed models, which are ideally suited to accounting for anthropogenic influences, with recent developments in uncertainty analysis and principles of stochastic simulation

  10. Model selection for integrated pest management with stochasticity.

    Science.gov (United States)

    Akman, Olcay; Comar, Timothy D; Hrozencik, Daniel

    2018-04-07

    In Song and Xiang (2006), an integrated pest management model with periodically varying climatic conditions was introduced. In order to address a wider range of environmental effects, the authors here have embarked upon a series of studies resulting in a more flexible modeling approach. In Akman et al. (2013), the impact of randomly changing environmental conditions is examined by incorporating stochasticity into the birth pulse of the prey species. In Akman et al. (2014), the authors introduce a class of models via a mixture of two birth-pulse terms and determined conditions for the global and local asymptotic stability of the pest eradication solution. With this work, the authors unify the stochastic and mixture model components to create further flexibility in modeling the impacts of random environmental changes on an integrated pest management system. In particular, we first determine the conditions under which solutions of our deterministic mixture model are permanent. We then analyze the stochastic model to find the optimal value of the mixing parameter that minimizes the variance in the efficacy of the pesticide. Additionally, we perform a sensitivity analysis to show that the corresponding pesticide efficacy determined by this optimization technique is indeed robust. Through numerical simulations we show that permanence can be preserved in our stochastic model. Our study of the stochastic version of the model indicates that our results on the deterministic model provide informative conclusions about the behavior of the stochastic model. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Estimation of some stochastic models used in reliability engineering

    International Nuclear Information System (INIS)

    Huovinen, T.

    1989-04-01

    The work aims to study the estimation of some stochastic models used in reliability engineering. In reliability engineering continuous probability distributions have been used as models for the lifetime of technical components. We consider here the following distributions: exponential, 2-mixture exponential, conditional exponential, Weibull, lognormal and gamma. Maximum likelihood method is used to estimate distributions from observed data which may be either complete or censored. We consider models based on homogeneous Poisson processes such as gamma-poisson and lognormal-poisson models for analysis of failure intensity. We study also a beta-binomial model for analysis of failure probability. The estimators of the parameters for three models are estimated by the matching moments method and in the case of gamma-poisson and beta-binomial models also by maximum likelihood method. A great deal of mathematical or statistical problems that arise in reliability engineering can be solved by utilizing point processes. Here we consider the statistical analysis of non-homogeneous Poisson processes to describe the failing phenomena of a set of components with a Weibull intensity function. We use the method of maximum likelihood to estimate the parameters of the Weibull model. A common cause failure can seriously reduce the reliability of a system. We consider a binomial failure rate (BFR) model as an application of the marked point processes for modelling common cause failure in a system. The parameters of the binomial failure rate model are estimated with the maximum likelihood method

  12. On changes of measure in stochastic volatility models

    Directory of Open Access Journals (Sweden)

    Bernard Wong

    2006-01-01

    models. This had led many researchers to “assume the condition away,” even though the condition is not innocuous, and nonsensical results can occur if it is in fact not satisfied. We provide an applicable theorem to check the conditions for a general class of Markovian stochastic volatility models. As an example we will also provide a detailed analysis of the Stein and Stein and Heston stochastic volatility models.

  13. Fitting PAC spectra with stochastic models: PolyPacFit

    Energy Technology Data Exchange (ETDEWEB)

    Zacate, M. O., E-mail: zacatem1@nku.edu [Northern Kentucky University, Department of Physics and Geology (United States); Evenson, W. E. [Utah Valley University, College of Science and Health (United States); Newhouse, R.; Collins, G. S. [Washington State University, Department of Physics and Astronomy (United States)

    2010-04-15

    PolyPacFit is an advanced fitting program for time-differential perturbed angular correlation (PAC) spectroscopy. It incorporates stochastic models and provides robust options for customization of fits. Notable features of the program include platform independence and support for (1) fits to stochastic models of hyperfine interactions, (2) user-defined constraints among model parameters, (3) fits to multiple spectra simultaneously, and (4) any spin nuclear probe.

  14. Stochastic models for spike trains of single neurons

    CERN Document Server

    Sampath, G

    1977-01-01

    1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic de...

  15. Some Remarks on Stochastic Versions of the Ramsey Growth Model

    Czech Academy of Sciences Publication Activity Database

    Sladký, Karel

    2012-01-01

    Roč. 19, č. 29 (2012), s. 139-152 ISSN 1212-074X R&D Projects: GA ČR GAP402/10/1610; GA ČR GAP402/10/0956; GA ČR GAP402/11/0150 Institutional support: RVO:67985556 Keywords : Economic dynamics * Ramsey growth model with disturbance * stochastic dynamic programming * multistage stochastic programs Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2013/E/sladky-some remarks on stochastic versions of the ramsey growth model.pdf

  16. Stochastic Modeling and Analysis of Power System with Renewable Generation

    DEFF Research Database (Denmark)

    Chen, Peiyuan

    Unlike traditional fossil-fuel based power generation, renewable generation such as wind power relies on uncontrollable prime sources such as wind speed. Wind speed varies stochastically, which to a large extent determines the stochastic behavior of power generation from wind farms...... that such a stochastic model can be used to simulate the effect of load management on the load duration curve. As CHP units are turned on and off by regulating power, CHP generation has discrete output and thus can be modeled by a transition matrix based discrete Markov chain. As the CHP generation has a strong diurnal...

  17. Kinetic theory of age-structured stochastic birth-death processes

    Science.gov (United States)

    Greenman, Chris D.; Chou, Tom

    2016-01-01

    Classical age-structured mass-action models such as the McKendrick-von Foerster equation have been extensively studied but are unable to describe stochastic fluctuations or population-size-dependent birth and death rates. Stochastic theories that treat semi-Markov age-dependent processes using, e.g., the Bellman-Harris equation do not resolve a population's age structure and are unable to quantify population-size dependencies. Conversely, current theories that include size-dependent population dynamics (e.g., mathematical models that include carrying capacity such as the logistic equation) cannot be easily extended to take into account age-dependent birth and death rates. In this paper, we present a systematic derivation of a new, fully stochastic kinetic theory for interacting age-structured populations. By defining multiparticle probability density functions, we derive a hierarchy of kinetic equations for the stochastic evolution of an aging population undergoing birth and death. We show that the fully stochastic age-dependent birth-death process precludes factorization of the corresponding probability densities, which then must be solved by using a Bogoliubov--Born--Green--Kirkwood--Yvon-like hierarchy. Explicit solutions are derived in three limits: no birth, no death, and steady state. These are then compared with their corresponding mean-field results. Our results generalize both deterministic models and existing master equation approaches by providing an intuitive and efficient way to simultaneously model age- and population-dependent stochastic dynamics applicable to the study of demography, stem cell dynamics, and disease evolution.

  18. Continuum modeling of ion-beam eroded surfaces under normal incidence: Impact of stochastic fluctuations

    International Nuclear Information System (INIS)

    Dreimann, Karsten; Linz, Stefan J.

    2010-01-01

    Graphical abstract: Deterministic surface pattern (left) and its stochastic counterpart (right) arising in a stochastic damped Kuramoto-Sivashinsky equation that serves as a model equation for ion-beam eroded surfaces and is systematically investigated. - Abstract: Using a recently proposed field equation for the surface evolution of ion-beam eroded semiconductor target materials under normal incidence, we systematically explore the impact of additive stochastic fluctuations that are permanently present during the erosion process. Specifically, we investigate the dependence of the surface roughness, the underlying pattern forming properties and the bifurcation behavior on the strength of the fluctuations.

  19. Stochastic higher spin six vertex model and Macdonald measures

    Science.gov (United States)

    Borodin, Alexei

    2018-02-01

    We prove an identity that relates the q-Laplace transform of the height function of a (higher spin inhomogeneous) stochastic six vertex model in a quadrant on one side and a multiplicative functional of a Macdonald measure on the other. The identity is used to prove the GUE Tracy-Widom asymptotics for two instances of the stochastic six vertex model via asymptotic analysis of the corresponding Schur measures.

  20. Modeling energy price dynamics: GARCH versus stochastic volatility

    International Nuclear Information System (INIS)

    Chan, Joshua C.C.; Grant, Angelia L.

    2016-01-01

    We compare a number of GARCH and stochastic volatility (SV) models using nine series of oil, petroleum product and natural gas prices in a formal Bayesian model comparison exercise. The competing models include the standard models of GARCH(1,1) and SV with an AR(1) log-volatility process, as well as more flexible models with jumps, volatility in mean, leverage effects, and t distributed and moving average innovations. We find that: (1) SV models generally compare favorably to their GARCH counterparts; (2) the jump component and t distributed innovations substantially improve the performance of the standard GARCH, but are unimportant for the SV model; (3) the volatility feedback channel seems to be superfluous; (4) the moving average component markedly improves the fit of both GARCH and SV models; and (5) the leverage effect is important for modeling crude oil prices—West Texas Intermediate and Brent—but not for other energy prices. Overall, the SV model with moving average innovations is the best model for all nine series. - Highlights: • We compare a variety of GARCH and SV models for fitting nine series of energy prices. • We find that SV models generally compare favorably to their GARCH counterparts. • The SV model with moving average innovations is the best model for all nine series.

  1. Testing for Volatility Co-movement in Bivariate Stochastic Volatility Models

    OpenAIRE

    Chen, Jinghui; Kobayashi, Masahito; McAleer, Michael

    2017-01-01

    markdownabstractThe paper considers the problem of volatility co-movement, namely as to whether two financial returns have perfectly correlated common volatility process, in the framework of multivariate stochastic volatility models and proposes a test which checks the volatility co-movement. The proposed test is a stochastic volatility version of the co-movement test proposed by Engle and Susmel (1993), who investigated whether international equity markets have volatility co-movement using t...

  2. Whole-field visual motion drives swimming in larval zebrafish via a stochastic process.

    Science.gov (United States)

    Portugues, Ruben; Haesemeyer, Martin; Blum, Mirella L; Engert, Florian

    2015-05-01

    Caudo-rostral whole-field visual motion elicits forward locomotion in many organisms, including larval zebrafish. Here, we investigate the dependence on the latency to initiate this forward swimming as a function of the speed of the visual motion. We show that latency is highly dependent on speed for slow speeds (1.5 s, which is much longer than neuronal transduction processes. What mechanisms underlie these long latencies? We propose two alternative, biologically inspired models that could account for this latency to initiate swimming: an integrate and fire model, which is history dependent, and a stochastic Poisson model, which has no history dependence. We use these models to predict the behavior of larvae when presented with whole-field motion of varying speed and find that the stochastic process shows better agreement with the experimental data. Finally, we discuss possible neuronal implementations of these models. © 2015. Published by The Company of Biologists Ltd.

  3. Reliability and maintenance in European nuclear power plants: A structural analysis of a controlled stochastic process

    International Nuclear Information System (INIS)

    Sturm, R.

    1991-01-01

    Two aspects of performance are of main concern: plant availability and plant reliability (defined as the conditional probability of an unplanned shutdown). The goal of the research is a unified framework that combines behavioral models of optimizing agents with models of complex technical systems that take into account the dynamic and stochastic features of the system. In order to achieve this synthesis, two liens of work are necessary. One line requires a deeper understanding of complex production systems and the type of data they give rise to; the other line involves the specification and estimation of a rigorously specified behavioral model. Plant operations are modeled as a controlled stochastic process, and the sequence of up and downtime spells is analyzed during failure time and point process models. Similar to work on rational expectations and structural econometric models, the behavior model of how the plant process is controlled is formulated at the level of basic processes, i.e., the objective function of the plant manager, technical constraints, and stochastic disturbances

  4. Explicit calibration and simulation of stochastic fields by low-order ARMA processes

    DEFF Research Database (Denmark)

    Krenk, Steen

    2011-01-01

    A simple framework for autoregressive simulation of stochastic fields is presented. The autoregressive format leads to a simple exponential correlation structure in the time-dimension. In the case of scalar processes a more detailed correlation structure can be obtained by adding memory...... to the process via an extension to autoregressive moving average (ARMA) processes. The ARMA format incorporates a more detailed correlation structure by including previous values of the simulated process. Alternatively, a more detailed correlation structure can be obtained by including additional 'state......-space' variables in the simulation. For a scalar process this would imply an increase of the dimension of the process to be simulated. In the case of a stochastic field the correlation in the time-dimension is represented, although indirectly, in the simultaneous spatial correlation. The model with the shortest...

  5. Composed particle model in stochastic electrodynamics

    International Nuclear Information System (INIS)

    Brunini, S.A.

    1985-01-01

    We analyse the statistical properties of the non-relativistic motion of a particle that has two constituents having finite nasses and charges. The main interaction is in contact with thermal and zero point radiation of Stochastic Electrodynamics. (M.W.O.) [pt

  6. The Limit Behavior of a Stochastic Logistic Model with Individual Time-Dependent Rates

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    2013-01-01

    Full Text Available We investigate a variant of the stochastic logistic model that allows individual variation and time-dependent infection and recovery rates. The model is described as a heterogeneous density dependent Markov chain. We show that the process can be approximated by a deterministic process defined by an integral equation as the population size grows.

  7. Earthquake occurrence as stochastic event: (1) theoretical models

    Energy Technology Data Exchange (ETDEWEB)

    Basili, A.; Basili, M.; Cagnetti, V.; Colombino, A.; Jorio, V.M.; Mosiello, R.; Norelli, F.; Pacilio, N.; Polinari, D.

    1977-01-01

    The present article intends liaisoning the stochastic approach in the description of earthquake processes suggested by Lomnitz with the experimental evidence reached by Schenkova that the time distribution of some earthquake occurrence is better described by a Negative Bionomial distribution than by a Poisson distribution. The final purpose of the stochastic approach might be a kind of new way for labeling a given area in terms of seismic risk.

  8. Maximum likelihood approach for several stochastic volatility models

    International Nuclear Information System (INIS)

    Camprodon, Jordi; Perelló, Josep

    2012-01-01

    Volatility measures the amplitude of price fluctuations. Despite it being one of the most important quantities in finance, volatility is not directly observable. Here we apply a maximum likelihood method which assumes that price and volatility follow a two-dimensional diffusion process where volatility is the stochastic diffusion coefficient of the log-price dynamics. We apply this method to the simplest versions of the expOU, the OU and the Heston stochastic volatility models and we study their performance in terms of the log-price probability, the volatility probability, and its Mean First-Passage Time. The approach has some predictive power on the future returns amplitude by only knowing the current volatility. The assumed models do not consider long-range volatility autocorrelation and the asymmetric return-volatility cross-correlation but the method still yields very naturally these two important stylized facts. We apply the method to different market indices and with a good performance in all cases. (paper)

  9. Biochemical Network Stochastic Simulator (BioNetS: software for stochastic modeling of biochemical networks

    Directory of Open Access Journals (Sweden)

    Elston Timothy C

    2004-03-01

    Full Text Available Abstract Background Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. Results We have developed the software package Biochemical Network Stochastic Simulator (BioNetS for efficientlyand accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solvesthe appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. Conclusions We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  10. Stochastic bifurcation in a model of love with colored noise

    Science.gov (United States)

    Yue, Xiaokui; Dai, Honghua; Yuan, Jianping

    2015-07-01

    In this paper, we wish to examine the stochastic bifurcation induced by multiplicative Gaussian colored noise in a dynamical model of love where the random factor is used to describe the complexity and unpredictability of psychological systems. First, the dynamics in deterministic love-triangle model are considered briefly including equilibrium points and their stability, chaotic behaviors and chaotic attractors. Then, the influences of Gaussian colored noise with different parameters are explored such as the phase plots, top Lyapunov exponents, stationary probability density function (PDF) and stochastic bifurcation. The stochastic P-bifurcation through a qualitative change of the stationary PDF will be observed and bifurcation diagram on parameter plane of correlation time and noise intensity is presented to find the bifurcation behaviors in detail. Finally, the top Lyapunov exponent is computed to determine the D-bifurcation when the noise intensity achieves to a critical value. By comparison, we find there is no connection between two kinds of stochastic bifurcation.

  11. A complementarity model for solving stochastic natural gas market equilibria

    International Nuclear Information System (INIS)

    Zhuang Jifang; Gabriel, Steven A.

    2008-01-01

    This paper presents a stochastic equilibrium model for deregulated natural gas markets. Each market participant (pipeline operators, producers, etc.) solves a stochastic optimization problem whose optimality conditions, when combined with market-clearing conditions give rise to a certain mixed complementarity problem (MiCP). The stochastic aspects are depicted by a recourse problem for each player in which the first-stage decisions relate to long-term contracts and the second-stage decisions relate to spot market activities for three seasons. Besides showing that such a market model is an instance of a MiCP, we provide theoretical results concerning long-term and spot market prices and solve the resulting MiCP for a small yet representative market. We also note an interesting observation for the value of the stochastic solution for non-optimization problems

  12. Tsunamis: stochastic models of occurrence and generation mechanisms

    Science.gov (United States)

    Geist, Eric L.; Oglesby, David D.

    2014-01-01

    The devastating consequences of the 2004 Indian Ocean and 2011 Japan tsunamis have led to increased research into many different aspects of the tsunami phenomenon. In this entry, we review research related to the observed complexity and uncertainty associated with tsunami generation, propagation, and occurrence described and analyzed using a variety of stochastic methods. In each case, seismogenic tsunamis are primarily considered. Stochastic models are developed from the physical theories that govern tsunami evolution combined with empirical models fitted to seismic and tsunami observations, as well as tsunami catalogs. These stochastic methods are key to providing probabilistic forecasts and hazard assessments for tsunamis. The stochastic methods described here are similar to those described for earthquakes (Vere-Jones 2013) and volcanoes (Bebbington 2013) in this encyclopedia.

  13. A complementarity model for solving stochastic natural gas market equilibria

    International Nuclear Information System (INIS)

    Jifang Zhuang; Gabriel, S.A.

    2008-01-01

    This paper presents a stochastic equilibrium model for deregulated natural gas markets. Each market participant (pipeline operators, producers, etc.) solves a stochastic optimization problem whose optimality conditions, when combined with market-clearing conditions give rise to a certain mixed complementarity problem (MiCP). The stochastic aspects are depicted by a recourse problem for each player in which the first-stage decisions relate to long-term contracts and the second-stage decisions relate to spot market activities for three seasons. Besides showing that such a market model is an instance of a MiCP, we provide theoretical results concerning long-term and spot market prices and solve the resulting MiCP for a small yet representative market. We also note an interesting observation for the value of the stochastic solution for non-optimization problems. (author)

  14. Parameter estimation in stochastic rainfall-runoff models

    DEFF Research Database (Denmark)

    Jonsdottir, Harpa; Madsen, Henrik; Palsson, Olafur Petur

    2006-01-01

    A parameter estimation method for stochastic rainfall-runoff models is presented. The model considered in the paper is a conceptual stochastic model, formulated in continuous-discrete state space form. The model is small and a fully automatic optimization is, therefore, possible for estimating all...... the parameter values are optimal for simulation or prediction. The data originates from Iceland and the model is designed for Icelandic conditions, including a snow routine for mountainous areas. The model demands only two input data series, precipitation and temperature and one output data series...

  15. Introduction to stochastic models in biology

    DEFF Research Database (Denmark)

    Ditlevsen, Susanne; Samson, Adeline

    2013-01-01

    This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential equations (ODEs). These models assume that the observed dynamics are driven exclusively by internal, deterministic mechanisms. However, real biological systems will always be exp...

  16. Analysis of dynamic regimes in stochastically forced Kaldor model

    International Nuclear Information System (INIS)

    Bashkirtseva, Irina; Ryazanova, Tatyana; Ryashko, Lev

    2015-01-01

    We consider the business cycle Kaldor model forced by random noise. Detailed parametric analysis of deterministic system is carried out and zones of coexisting stable equilibrium and stable limit cycle are found. Noise-induced transitions between these attractors are studied using stochastic sensitivity function technique and confidence domains method. Critical values of noise intensity corresponding to noise-induced transitions “equilibrium → cycle” and “cycle → equilibrium” are estimated. Dominants in combined stochastic regimes are discussed.

  17. A stochastic analysis for a phytoplankton-zooplankton model

    International Nuclear Information System (INIS)

    Ge, G; Wang, H-L; Xu, J

    2008-01-01

    A simple phytoplankton-zooplankton nonlinear dynamical model was proposed to study the coexistence of all the species and a Hopf bifurcation was observed. In order to study the effect of environmental robustness on this system, we have stochastically perturbed the system with respect to white noise around its positive interior equilibrium. We have observed that the system remains stochastically stable around the positive equilibrium for same parametric values in the deterministic situation

  18. Strategy and model building in the fourth dimension: a null model for genotype x age interaction as a Gaussian stationary stochastic process.

    Science.gov (United States)

    Diego, Vincent P; Almasy, Laura; Dyer, Thomas D; Soler, Júlia M P; Blangero, John

    2003-12-31

    Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype x age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. We found evidence for genotype x age interaction for fasting glucose and systolic blood pressure. There is polygenic genotype x age interaction for fasting glucose and systolic blood pressure and quantitative trait locus x age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.

  19. Analysis of stochastic effects in Kaldor-type business cycle discrete model

    Science.gov (United States)

    Bashkirtseva, Irina; Ryashko, Lev; Sysolyatina, Anna

    2016-07-01

    We study nonlinear stochastic phenomena in the discrete Kaldor model of business cycles. A numerical parametric analysis of stochastically forced attractors (equilibria, closed invariant curves, discrete cycles) of this model is performed using the stochastic sensitivity functions technique. A spatial arrangement of random states in stochastic attractors is modeled by confidence domains. The phenomenon of noise-induced transitions ;chaos-order; is discussed.

  20. A Stochastic Fractional Dynamics Model of Rainfall Statistics

    Science.gov (United States)

    Kundu, Prasun; Travis, James

    2013-04-01

    Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is designed to faithfully reflect the scale dependence and is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. The main restriction is the assumption that the statistics of the precipitation field is spatially homogeneous and isotropic and stationary in time. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of the radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment. Some data sets containing periods of non-stationary behavior that involves occasional anomalously correlated rain events, present a challenge for the model.

  1. Stochastic line motion and stochastic flux conservation for nonideal hydromagnetic models

    International Nuclear Information System (INIS)

    Eyink, Gregory L.

    2009-01-01

    We prove that smooth solutions of nonideal (viscous and resistive) incompressible magnetohydrodynamic (MHD) equations satisfy a stochastic law of flux conservation. This property implies that the magnetic flux through a surface is equal to the average of the magnetic fluxes through an ensemble of surfaces advected backward in time by the plasma velocity perturbed with a random white noise. Our result is an analog of the well-known Alfven theorem of ideal MHD and is valid for any value of the magnetic Prandtl number. A second stochastic conservation law is shown to hold at unit Prandtl number, a random version of the generalized Kelvin theorem derived by Bekenstein and Oron for ideal MHD. These stochastic conservation laws are not only shown to be consequences of the nonideal MHD equations but are proved in fact to be equivalent to those equations. We derive similar results for two more refined hydromagnetic models, Hall MHD and the two-fluid plasma model, still assuming incompressible velocities and isotropic transport coefficients. Finally, we use these results to discuss briefly the infinite-Reynolds-number limit of hydromagnetic turbulence and to support the conjecture that flux conservation remains stochastic in that limit.

  2. Stochastic motion of a particle in a model fluctuating medium

    International Nuclear Information System (INIS)

    Moreau, M.; Gaveau, B.; Perera, A.; Frankowicz, M.

    1993-01-01

    We present several models of time fluctuating media with finite memory, consisting in one and two-dimensional lattices, the Modes of which fluctuate between two internal states according to a Poisson process. A particle moves on the lattice, the diffusion by the Modes depending on their internal state. Such models can be used for the microscopic theory of reaction constants in a dense phase, or for the study of diffusion or reactivity in a complex medium. In a number of cases, the transmission probability of the medium is computed exactly; it is shown that stochastic resonances can occur, an optimal transmission being obtained for a convenient choice of parameters. In more general situations, approximate solutions are given in the case of short and moderate memory of the obstacles. The diffusion in an infinite two-dimensional lattice is studied, and the memory is shown to affect the distribution of the particles rather than the diffusion law. (author). 25 refs, 5 figs

  3. Variability of tsunami inundation footprints considering stochastic scenarios based on a single rupture model: Application to the 2011 Tohoku earthquake

    KAUST Repository

    Goda, Katsuichiro; Yasuda, Tomohiro; Mori, Nobuhito; Mai, Paul Martin

    2015-01-01

    distributions. Stochastic tsunami scenarios are generated based on the spectral analysis and synthesis method with regards to an inverted source model. To assess spatial inundation processes accurately, tsunami modeling is conducted using bathymetry

  4. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Valor, A. [Facultad de Fisica, Universidad de La Habana, San Lazaro y L, Vedado 10400, La Habana (Cuba); Caleyo, F. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)], E-mail: fcaleyo@gmail.com; Rivas, D.; Hallen, J.M. [Departamento de Ingenieria Metalurgica, IPN-ESIQIE, UPALM Edif. 7, Zacatenco, Mexico DF 07738 (Mexico)

    2010-03-15

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  5. Using stochastic models to incorporate spatial and temporal variability [Exercise 14

    Science.gov (United States)

    Carolyn Hull Sieg; Rudy M. King; Fred Van Dyke

    2003-01-01

    To this point, our analysis of population processes and viability in the western prairie fringed orchid has used only deterministic models. In this exercise, we conduct a similar analysis, using a stochastic model instead. This distinction is of great importance to population biology in general and to conservation biology in particular. In deterministic models,...

  6. Stochastic approach to pitting-corrosion-extreme modelling in low-carbon steel

    International Nuclear Information System (INIS)

    Valor, A.; Caleyo, F.; Rivas, D.; Hallen, J.M.

    2010-01-01

    A stochastic model previously developed by the authors using Markov chains has been improved in the light of new experimental evidence. The new model has been successfully applied to reproduce the time evolution of extreme pitting corrosion depths in low-carbon steel. The model is shown to provide a better physical understanding of the pitting process.

  7. A stochastic multiscale framework for modeling flow through random heterogeneous porous media

    International Nuclear Information System (INIS)

    Ganapathysubramanian, B.; Zabaras, N.

    2009-01-01

    Flow through porous media is ubiquitous, occurring from large geological scales down to the microscopic scales. Several critical engineering phenomena like contaminant spread, nuclear waste disposal and oil recovery rely on accurate analysis and prediction of these multiscale phenomena. Such analysis is complicated by inherent uncertainties as well as the limited information available to characterize the system. Any realistic modeling of these transport phenomena has to resolve two key issues: (i) the multi-length scale variations in permeability that these systems exhibit, and (ii) the inherently limited information available to quantify these property variations that necessitates posing these phenomena as stochastic processes. A stochastic variational multiscale formulation is developed to incorporate uncertain multiscale features. A stochastic analogue to a mixed multiscale finite element framework is used to formulate the physical stochastic multiscale process. Recent developments in linear and non-linear model reduction techniques are used to convert the limited information available about the permeability variation into a viable stochastic input model. An adaptive sparse grid collocation strategy is used to efficiently solve the resulting stochastic partial differential equations (SPDEs). The framework is applied to analyze flow through random heterogeneous media when only limited statistics about the permeability variation are given

  8. Stochastic models to simulate paratuberculosis in dairy herds

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Weber, M.F.; Kudahl, Anne Margrethe Braad

    2011-01-01

    Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...

  9. Deterministic and stochastic CTMC models from Zika disease transmission

    Science.gov (United States)

    Zevika, Mona; Soewono, Edy

    2018-03-01

    Zika infection is one of the most important mosquito-borne diseases in the world. Zika virus (ZIKV) is transmitted by many Aedes-type mosquitoes including Aedes aegypti. Pregnant women with the Zika virus are at risk of having a fetus or infant with a congenital defect and suffering from microcephaly. Here, we formulate a Zika disease transmission model using two approaches, a deterministic model and a continuous-time Markov chain stochastic model. The basic reproduction ratio is constructed from a deterministic model. Meanwhile, the CTMC stochastic model yields an estimate of the probability of extinction and outbreaks of Zika disease. Dynamical simulations and analysis of the disease transmission are shown for the deterministic and stochastic models.

  10. Simulation of Stochastic Processes by Coupled ODE-PDE

    Science.gov (United States)

    Zak, Michail

    2008-01-01

    A document discusses the emergence of randomness in solutions of coupled, fully deterministic ODE-PDE (ordinary differential equations-partial differential equations) due to failure of the Lipschitz condition as a new phenomenon. It is possible to exploit the special properties of ordinary differential equations (represented by an arbitrarily chosen, dynamical system) coupled with the corresponding Liouville equations (used to describe the evolution of initial uncertainties in terms of joint probability distribution) in order to simulate stochastic processes with the proscribed probability distributions. The important advantage of the proposed approach is that the simulation does not require a random-number generator.

  11. Stochastic Modeling of Wind Derivatives in Energy Markets

    Directory of Open Access Journals (Sweden)

    Fred Espen Benth

    2018-05-01

    Full Text Available We model the logarithm of the spot price of electricity with a normal inverse Gaussian (NIG process and the wind speed and wind power production with two Ornstein–Uhlenbeck processes. In order to reproduce the correlation between the spot price and the wind power production, namely between a pure jump process and a continuous path process, respectively, we replace the small jumps of the NIG process by a Brownian term. We then apply our models to two different problems: first, to study from the stochastic point of view the income from a wind power plant, as the expected value of the product between the electricity spot price and the amount of energy produced; then, to construct and price a European put-type quanto option in the wind energy markets that allows the buyer to hedge against low prices and low wind power production in the plant. Calibration of the proposed models and related price formulas is also provided, according to specific datasets.

  12. Dynamic stochastic accumulation model with application to pension savings management

    Directory of Open Access Journals (Sweden)

    Melicherčik Igor

    2010-01-01

    Full Text Available We propose a dynamic stochastic accumulation model for determining optimal decision between stock and bond investments during accumulation of pension savings. Stock prices are assumed to be driven by the geometric Brownian motion. Interest rates are modeled by means of the Cox-Ingersoll-Ross model. The optimal decision as a solution to the corresponding dynamic stochastic program is a function of the duration of saving, the level of savings and the short rate. Qualitative and quantitative properties of the optimal solution are analyzed. The model is tested on the funded pillar of the Slovak pension system. The results are calculated for various risk preferences of a saver.

  13. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya

    2017-10-03

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  14. Stochastic description of heterogeneities of permeability within groundwater flow models

    International Nuclear Information System (INIS)

    Cacas, M.C.; Lachassagne, P.; Ledoux, E.; Marsily, G. de

    1991-01-01

    In order to model radionuclide migration in the geosphere realistically at the field scale, the hydrogeologist needs to be able to simulate groundwater flow in heterogeneous media. Heterogeneity of the medium can be described using a stochastic approach, that affects the way in which a flow model is formulated. In this paper, we discuss the problems that we have encountered in modelling both continuous and fractured media. The stochastic approach leads to a methodology that enables local measurements of permeability to be integrated into a model which gives a good prediction of groundwater flow on a regional scale. 5 Figs.; 8 Refs

  15. INFERENCE AND SENSITIVITY IN STOCHASTIC WIND POWER FORECAST MODELS.

    KAUST Repository

    Elkantassi, Soumaya; Kalligiannaki, Evangelia; Tempone, Raul

    2017-01-01

    Reliable forecasting of wind power generation is crucial to optimal control of costs in generation of electricity with respect to the electricity demand. Here, we propose and analyze stochastic wind power forecast models described by parametrized stochastic differential equations, which introduce appropriate fluctuations in numerical forecast outputs. We use an approximate maximum likelihood method to infer the model parameters taking into account the time correlated sets of data. Furthermore, we study the validity and sensitivity of the parameters for each model. We applied our models to Uruguayan wind power production as determined by historical data and corresponding numerical forecasts for the period of March 1 to May 31, 2016.

  16. On a Versatile Stochastic Growth Model

    Directory of Open Access Journals (Sweden)

    Samiur Arif

    2012-06-01

    Full Text Available Growth phenomena are ubiquitous and pervasive not only in biology and the medical sciences, but also in economics, marketing and the computer and social sciences. We introduce a three-parameter version of the classic pure-birth process growth model when suitably instantiated, can be used to model growth phenomena in many seemingly unrelated application domains. We point out that the model is computationally attractive since it admits of conceptually simple, closed form solutions for the time-dependent probabilities.

  17. Stochastic models of the Social Security trust funds.

    Science.gov (United States)

    Burdick, Clark; Manchester, Joyce

    Each year in March, the Board of Trustees of the Social Security trust funds reports on the current and projected financial condition of the Social Security programs. Those programs, which pay monthly benefits to retired workers and their families, to the survivors of deceased workers, and to disabled workers and their families, are financed through the Old-Age, Survivors, and Disability Insurance (OASDI) Trust Funds. In their 2003 report, the Trustees present, for the first time, results from a stochastic model of the combined OASDI trust funds. Stochastic modeling is an important new tool for Social Security policy analysis and offers the promise of valuable new insights into the financial status of the OASDI trust funds and the effects of policy changes. The results presented in this article demonstrate that several stochastic models deliver broadly consistent results even though they use very different approaches and assumptions. However, they also show that the variation in trust fund outcomes differs as the approach and assumptions are varied. Which approach and assumptions are best suited for Social Security policy analysis remains an open question. Further research is needed before the promise of stochastic modeling is fully realized. For example, neither parameter uncertainty nor variability in ultimate assumption values is recognized explicitly in the analyses. Despite this caveat, stochastic modeling results are already shedding new light on the range and distribution of trust fund outcomes that might occur in the future.

  18. Characterizing economic trends by Bayesian stochastic model specification search

    DEFF Research Database (Denmark)

    Grassi, Stefano; Proietti, Tommaso

    We extend a recently proposed Bayesian model selection technique, known as stochastic model specification search, for characterising the nature of the trend in macroeconomic time series. In particular, we focus on autoregressive models with possibly time-varying intercept and slope and decide on ...

  19. Time Series, Stochastic Processes and Completeness of Quantum Theory

    International Nuclear Information System (INIS)

    Kupczynski, Marian

    2011-01-01

    Most of physical experiments are usually described as repeated measurements of some random variables. Experimental data registered by on-line computers form time series of outcomes. The frequencies of different outcomes are compared with the probabilities provided by the algorithms of quantum theory (QT). In spite of statistical predictions of QT a claim was made that it provided the most complete description of the data and of the underlying physical phenomena. This claim could be easily rejected if some fine structures, averaged out in the standard descriptive statistical analysis, were found in time series of experimental data. To search for these structures one has to use more subtle statistical tools which were developed to study time series produced by various stochastic processes. In this talk we review some of these tools. As an example we show how the standard descriptive statistical analysis of the data is unable to reveal a fine structure in a simulated sample of AR (2) stochastic process. We emphasize once again that the violation of Bell inequalities gives no information on the completeness or the non locality of QT. The appropriate way to test the completeness of quantum theory is to search for fine structures in time series of the experimental data by means of the purity tests or by studying the autocorrelation and partial autocorrelation functions.

  20. Nonparametric estimation of stochastic differential equations with sparse Gaussian processes.

    Science.gov (United States)

    García, Constantino A; Otero, Abraham; Félix, Paulo; Presedo, Jesús; Márquez, David G

    2017-08-01

    The application of stochastic differential equations (SDEs) to the analysis of temporal data has attracted increasing attention, due to their ability to describe complex dynamics with physically interpretable equations. In this paper, we introduce a nonparametric method for estimating the drift and diffusion terms of SDEs from a densely observed discrete time series. The use of Gaussian processes as priors permits working directly in a function-space view and thus the inference takes place directly in this space. To cope with the computational complexity that requires the use of Gaussian processes, a sparse Gaussian process approximation is provided. This approximation permits the efficient computation of predictions for the drift and diffusion terms by using a distribution over a small subset of pseudosamples. The proposed method has been validated using both simulated data and real data from economy and paleoclimatology. The application of the method to real data demonstrates its ability to capture the behavior of complex systems.

  1. Estimating Stochastic Volatility Models using Prediction-based Estimating Functions

    DEFF Research Database (Denmark)

    Lunde, Asger; Brix, Anne Floor

    to the performance of the GMM estimator based on conditional moments of integrated volatility from Bollerslev and Zhou (2002). The case where the observed log-price process is contaminated by i.i.d. market microstructure (MMS) noise is also investigated. First, the impact of MMS noise on the parameter estimates from......In this paper prediction-based estimating functions (PBEFs), introduced in Sørensen (2000), are reviewed and PBEFs for the Heston (1993) stochastic volatility model are derived. The finite sample performance of the PBEF based estimator is investigated in a Monte Carlo study, and compared...... to correctly account for the noise are investigated. Our Monte Carlo study shows that the estimator based on PBEFs outperforms the GMM estimator, both in the setting with and without MMS noise. Finally, an empirical application investigates the possible challenges and general performance of applying the PBEF...

  2. Qualitative and Quantitative Integrated Modeling for Stochastic Simulation and Optimization

    Directory of Open Access Journals (Sweden)

    Xuefeng Yan

    2013-01-01

    Full Text Available The simulation and optimization of an actual physics system are usually constructed based on the stochastic models, which have both qualitative and quantitative characteristics inherently. Most modeling specifications and frameworks find it difficult to describe the qualitative model directly. In order to deal with the expert knowledge, uncertain reasoning, and other qualitative information, a qualitative and quantitative combined modeling specification was proposed based on a hierarchical model structure framework. The new modeling approach is based on a hierarchical model structure which includes the meta-meta model, the meta-model and the high-level model. A description logic system is defined for formal definition and verification of the new modeling specification. A stochastic defense simulation was developed to illustrate how to model the system and optimize the result. The result shows that the proposed method can describe the complex system more comprehensively, and the survival probability of the target is higher by introducing qualitative models into quantitative simulation.

  3. Considerations when ranking stochastically modeled oil sands resource models for mining applications

    Energy Technology Data Exchange (ETDEWEB)

    Etris, E.L. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Petro-Canada, Calgary, AB (Canada); Idris, Y.; Hunter, A.C. [Petro-Canada, Calgary, AB (Canada)

    2008-10-15

    Alberta's Athabasca oil sands deposit has been targeted as a major resource for development. Bitumen recovery operations fall into 2 categories, namely mining and in situ operations. Mining recovery is done above ground level and consists of open pit digging, disaggregation of the bitumen-saturated sediment through crushing followed by pipeline transport in a water-based slurry and then separation of oil, water and sediment. In situ recovery consists of drilling wells and stimulating the oil sands in the subsurface with a thermal treatment to reduce the viscosity of the bitumen and allow it to come to the surface. Steam assisted gravity drainage (SAGD) is the most popular thermal treatment currently in use. Resource models that simulate the recovery process are needed for both mining and in situ recovery operations. Both types can benefit from the advantages of a stochastic modeling process for resource model building and uncertainty evaluation. Stochastic modeling provides a realistic geology and allows for multiple realizations, which mining operations can use to evaluate the variability of recoverable bitumen volumes and develop mine plans accordingly. This paper described the processes of stochastic modelling and of determining the appropriate single realization for mine planning as applied to the Fort Hills oil sands mine which is currently in the early planning stage. The modeling exercise was used to estimate the in-place resource and quantify the uncertainty in resource volumes. The stochastic models were checked against those generated from conventional methods to identify any differences and to make the appropriate adaptations. 13 refs., 3 tabs., 16 figs.

  4. A stochastic model for intermittent search strategies

    International Nuclear Information System (INIS)

    Benichou, O; Coppey, M; Moreau, M; Suet, P H; Voituriez, R

    2005-01-01

    It is often necessary, in scientific or everyday life problems, to find a randomly hidden target. What is then the optimal strategy to reach it as rapidly as possible? In this article, we develop a stochastic theory for intermittent search behaviours, which are often observed: the searcher alternates phases of intensive search and slow motion with fast displacements. The first results of this theory have already been announced recently. Here we provide a detailed presentation of the theory, as well as the full derivation of the results. Furthermore, we explicitly discuss the minimization of the time needed to find the target

  5. Evaluation of Stochastic Rainfall Models in Capturing Climate Variability for Future Drought and Flood Risk Assessment

    Science.gov (United States)

    Chowdhury, A. F. M. K.; Lockart, N.; Willgoose, G. R.; Kuczera, G. A.; Kiem, A.; Nadeeka, P. M.

    2016-12-01

    One of the key objectives of stochastic rainfall modelling is to capture the full variability of climate system for future drought and flood risk assessment. However, it is not clear how well these models can capture the future climate variability when they are calibrated to Global/Regional Climate Model data (GCM/RCM) as these datasets are usually available for very short future period/s (e.g. 20 years). This study has assessed the ability of two stochastic daily rainfall models to capture climate variability by calibrating them to a dynamically downscaled RCM dataset in an east Australian catchment for 1990-2010, 2020-2040, and 2060-2080 epochs. The two stochastic models are: (1) a hierarchical Markov Chain (MC) model, which we developed in a previous study and (2) a semi-parametric MC model developed by Mehrotra and Sharma (2007). Our hierarchical model uses stochastic parameters of MC and Gamma distribution, while the semi-parametric model uses a modified MC process with memory of past periods and kernel density estimation. This study has generated multiple realizations of rainfall series by using parameters of each model calibrated to the RCM dataset for each epoch. The generated rainfall series are used to generate synthetic streamflow by using a SimHyd hydrology model. Assessing the synthetic rainfall and streamflow series, this study has found that both stochastic models can incorporate a range of variability in rainfall as well as streamflow generation for both current and future periods. However, the hierarchical model tends to overestimate the multiyear variability of wet spell lengths (therefore, is less likely to simulate long periods of drought and flood), while the semi-parametric model tends to overestimate the mean annual rainfall depths and streamflow volumes (hence, simulated droughts are likely to be less severe). Sensitivity of these limitations of both stochastic models in terms of future drought and flood risk assessment will be discussed.

  6. Bi-Objective Flexible Job-Shop Scheduling Problem Considering Energy Consumption under Stochastic Processing Times.

    Science.gov (United States)

    Yang, Xin; Zeng, Zhenxiang; Wang, Ruidong; Sun, Xueshan

    2016-01-01

    This paper presents a novel method on the optimization of bi-objective Flexible Job-shop Scheduling Problem (FJSP) under stochastic processing times. The robust counterpart model and the Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to solve the bi-objective FJSP with consideration of the completion time and the total energy consumption under stochastic processing times. The case study on GM Corporation verifies that the NSGA-II used in this paper is effective and has advantages to solve the proposed model comparing with HPSO and PSO+SA. The idea and method of the paper can be generalized widely in the manufacturing industry, because it can reduce the energy consumption of the energy-intensive manufacturing enterprise with less investment when the new approach is applied in existing systems.

  7. Deterministic and stochastic models for middle east respiratory syndrome (MERS)

    Science.gov (United States)

    Suryani, Dessy Rizki; Zevika, Mona; Nuraini, Nuning

    2018-03-01

    World Health Organization (WHO) data stated that since September 2012, there were 1,733 cases of Middle East Respiratory Syndrome (MERS) with 628 death cases that occurred in 27 countries. MERS was first identified in Saudi Arabia in 2012 and the largest cases of MERS outside Saudi Arabia occurred in South Korea in 2015. MERS is a disease that attacks the respiratory system caused by infection of MERS-CoV. MERS-CoV transmission occurs directly through direct contact between infected individual with non-infected individual or indirectly through contaminated object by the free virus. Suspected, MERS can spread quickly because of the free virus in environment. Mathematical modeling is used to illustrate the transmission of MERS disease using deterministic model and stochastic model. Deterministic model is used to investigate the temporal dynamic from the system to analyze the steady state condition. Stochastic model approach using Continuous Time Markov Chain (CTMC) is used to predict the future states by using random variables. From the models that were built, the threshold value for deterministic models and stochastic models obtained in the same form and the probability of disease extinction can be computed by stochastic model. Simulations for both models using several of different parameters are shown, and the probability of disease extinction will be compared with several initial conditions.

  8. Quantifying intrinsic and extrinsic variability in stochastic gene expression models.

    Science.gov (United States)

    Singh, Abhyudai; Soltani, Mohammad

    2013-01-01

    Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.

  9. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession.

    Science.gov (United States)

    Dini-Andreote, Francisco; Stegen, James C; van Elsas, Jan Dirk; Salles, Joana Falcão

    2015-03-17

    Ecological succession and the balance between stochastic and deterministic processes are two major themes within microbial ecology, but these conceptual domains have mostly developed independent of each other. Here we provide a framework that integrates shifts in community assembly processes with microbial primary succession to better understand mechanisms governing the stochastic/deterministic balance. Synthesizing previous work, we devised a conceptual model that links ecosystem development to alternative hypotheses related to shifts in ecological assembly processes. Conceptual model hypotheses were tested by coupling spatiotemporal data on soil bacterial communities with environmental conditions in a salt marsh chronosequence spanning 105 years of succession. Analyses within successional stages showed community composition to be initially governed by stochasticity, but as succession proceeded, there was a progressive increase in deterministic selection correlated with increasing sodium concentration. Analyses of community turnover among successional stages--which provide a larger spatiotemporal scale relative to within stage analyses--revealed that changes in the concentration of soil organic matter were the main predictor of the type and relative influence of determinism. Taken together, these results suggest scale-dependency in the mechanisms underlying selection. To better understand mechanisms governing these patterns, we developed an ecological simulation model that revealed how changes in selective environments cause shifts in the stochastic/deterministic balance. Finally, we propose an extended--and experimentally testable--conceptual model integrating ecological assembly processes with primary and secondary succession. This framework provides a priori hypotheses for future experiments, thereby facilitating a systematic approach to understand assembly and succession in microbial communities across ecosystems.

  10. Stochastic investigation of precipitation process for climatic variability identification

    Science.gov (United States)

    Sotiriadou, Alexia; Petsiou, Amalia; Feloni, Elisavet; Kastis, Paris; Iliopoulou, Theano; Markonis, Yannis; Tyralis, Hristos; Dimitriadis, Panayiotis; Koutsoyiannis, Demetris

    2016-04-01

    The precipitation process is important not only to hydrometeorology but also to renewable energy resources management. We use a dataset consisting of daily and hourly records around the globe to identify statistical variability with emphasis on the last period. Specifically, we investigate the occurrence of mean, maximum and minimum values and we estimate statistical properties such as marginal probability distribution function and the type of decay of the climacogram (i.e., mean process variance vs. scale). Acknowledgement: This research is conducted within the frame of the undergraduate course "Stochastic Methods in Water Resources" of the National Technical University of Athens (NTUA). The School of Civil Engineering of NTUA provided moral support for the participation of the students in the Assembly.

  11. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  12. Stochastic Robust Mathematical Programming Model for Power System Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Changhyeok, Lee; Haoyong, Chen; Mehrotra, Sanjay

    2016-01-01

    This paper presents a stochastic robust framework for two-stage power system optimization problems with uncertainty. The model optimizes the probabilistic expectation of different worst-case scenarios with ifferent uncertainty sets. A case study of unit commitment shows the effectiveness of the proposed model and algorithms.

  13. AUTOMATIC CALIBRATION OF A STOCHASTIC-LAGRANGIAN TRANSPORT MODEL (SLAM)

    Science.gov (United States)

    Numerical models are a useful tool in evaluating and designing NAPL remediation systems. Traditional constitutive finite difference and finite element models are complex and expensive to apply. For this reason, this paper presents the application of a simplified stochastic-Lagran...

  14. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles

    Science.gov (United States)

    Katsoulakis, Markos A.; Vlachos, Dionisios G.

    2003-11-01

    We derive a hierarchy of successively coarse-grained stochastic processes and associated coarse-grained Monte Carlo (CGMC) algorithms directly from the microscopic processes as approximations in larger length scales for the case of diffusion of interacting particles on a lattice. This hierarchy of models spans length scales between microscopic and mesoscopic, satisfies a detailed balance, and gives self-consistent fluctuation mechanisms whose noise is asymptotically identical to the microscopic MC. Rigorous, detailed asymptotics justify and clarify these connections. Gradient continuous time microscopic MC and CGMC simulations are compared under far from equilibrium conditions to illustrate the validity of our theory and delineate the errors obtained by rigorous asymptotics. Information theory estimates are employed for the first time to provide rigorous error estimates between the solutions of microscopic MC and CGMC, describing the loss of information during the coarse-graining process. Simulations under periodic boundary conditions are used to verify the information theory error estimates. It is shown that coarse-graining in space leads also to coarse-graining in time by q2, where q is the level of coarse-graining, and overcomes in part the hydrodynamic slowdown. Operation counting and CGMC simulations demonstrate significant CPU savings in continuous time MC simulations that vary from q3 for short potentials to q4 for long potentials. Finally, connections of the new coarse-grained stochastic processes to stochastic mesoscopic and Cahn-Hilliard-Cook models are made.

  15. Stochastic modeling concepts in groundwater and risk assessment: potential application to marine problems

    International Nuclear Information System (INIS)

    Hamed, Maged M.

    2000-01-01

    Parameter uncertainty is ubiquitous in marine environmental processes. Failure to account for this uncertainty may lead to erroneous results, and may have significant environmental and economic ramifications. Stochastic modeling of oil spill transport and fate is, therefore, central in the development of an oil spill contingency plan for new oil and gas projects. Over the past twenty years, several stochastic modeling tools have been developed for modeling parameter uncertainty, including the spectral, perturbation, and simulation methods. In this work we explore the application of a new stochastic methodology, the first-order reliability method (FORM), in oil spill modeling. FORM was originally developed in the structural reliability field and has been recently applied to various environmental problems. The method has many appealing features that makes it a powerful tool for modeling complex environmental systems. The theory of FORM is presented, identifying the features that distinguish the method from other stochastic tools. Different formulations to the reliability-based stochastic oil spill modeling are presented in a decision-analytic context. (Author)

  16. Stochastic volatility and multi-dimensional modeling in the European energy market

    Energy Technology Data Exchange (ETDEWEB)

    Vos, Linda

    2012-07-01

    In energy prices there is evidence for stochastic volatility. Stochastic volatility has effect on the price of path-dependent options and therefore has to be modeled properly. We introduced a multi-dimensional non-Gaussian stochastic volatility model with leverage which can be used in energy pricing. It captures special features of energy prices like price spikes, mean-reversion, stochastic volatility and inverse leverage. Moreover it allows modeling dependencies between different commodities.The derived forward price dynamics based on this multi-variate spot price model, provides a very flexible structure. It includes cotango, backwardation and hump shape forward curves.Alternatively energy prices could be modeled by a 2-factor model consisting of a non-Gaussian stable CARMA process and a non-stationary trend models by a Levy process. Also this model is able to capture special features like price spikes, mean reversion and the low frequency dynamics in the market. An robust L1-filter is introduced to filter out the states of the CARMA process. When applying to German electricity EEX exchange data an overall negative risk-premium is found. However close to delivery a positive risk-premium is observed.(Author)

  17. Multi-scenario modelling of uncertainty in stochastic chemical systems

    International Nuclear Information System (INIS)

    Evans, R. David; Ricardez-Sandoval, Luis A.

    2014-01-01

    Uncertainty analysis has not been well studied at the molecular scale, despite extensive knowledge of uncertainty in macroscale systems. The ability to predict the effect of uncertainty allows for robust control of small scale systems such as nanoreactors, surface reactions, and gene toggle switches. However, it is difficult to model uncertainty in such chemical systems as they are stochastic in nature, and require a large computational cost. To address this issue, a new model of uncertainty propagation in stochastic chemical systems, based on the Chemical Master Equation, is proposed in the present study. The uncertain solution is approximated by a composite state comprised of the averaged effect of samples from the uncertain parameter distributions. This model is then used to study the effect of uncertainty on an isomerization system and a two gene regulation network called a repressilator. The results of this model show that uncertainty in stochastic systems is dependent on both the uncertain distribution, and the system under investigation. -- Highlights: •A method to model uncertainty on stochastic systems was developed. •The method is based on the Chemical Master Equation. •Uncertainty in an isomerization reaction and a gene regulation network was modelled. •Effects were significant and dependent on the uncertain input and reaction system. •The model was computationally more efficient than Kinetic Monte Carlo

  18. A computer model of the biosphere, to estimate stochastic and non-stochastic effects of radionuclides on humans

    International Nuclear Information System (INIS)

    Laurens, J.M.

    1985-01-01

    A computer code was written to model food chains in order to estimate the internal and external doses, for stochastic and non-stochastic effects, on humans (adults and infants). Results are given for 67 radionuclides, for unit concentration in water (1 Bq/L) and in atmosphere (1 Bq/m 3 )

  19. Population stochastic modelling (PSM)-An R package for mixed-effects models based on stochastic differential equations

    DEFF Research Database (Denmark)

    Klim, Søren; Mortensen, Stig Bousgaard; Kristensen, Niels Rode

    2009-01-01

    are often partly ignored in PK/PD modelling although violating the hypothesis for many standard statistical tests. This article presents a package for the statistical program R that is able to handle SDEs in a mixed-effects setting. The estimation method implemented is the FOCE1 approximation......The extension from ordinary to stochastic differential equations (SDEs) in pharmacokinetic and pharmacodynamic (PK/PD) modelling is an emerging field and has been motivated in a number of articles [N.R. Kristensen, H. Madsen, S.H. Ingwersen, Using stochastic differential equations for PK/PD model...... development, J. Pharmacokinet. Pharmacodyn. 32 (February(l)) (2005) 109-141; C.W. Tornoe, R.V Overgaard, H. Agerso, H.A. Nielsen, H. Madsen, E.N. Jonsson, Stochastic differential equations in NONMEM: implementation, application, and comparison with ordinary differential equations, Pharm. Res. 22 (August(8...

  20. Stochastic lattice model of synaptic membrane protein domains.

    Science.gov (United States)

    Li, Yiwei; Kahraman, Osman; Haselwandter, Christoph A

    2017-05-01

    Neurotransmitter receptor molecules, concentrated in synaptic membrane domains along with scaffolds and other kinds of proteins, are crucial for signal transmission across chemical synapses. In common with other membrane protein domains, synaptic domains are characterized by low protein copy numbers and protein crowding, with rapid stochastic turnover of individual molecules. We study here in detail a stochastic lattice model of the receptor-scaffold reaction-diffusion dynamics at synaptic domains that was found previously to capture, at the mean-field level, the self-assembly, stability, and characteristic size of synaptic domains observed in experiments. We show that our stochastic lattice model yields quantitative agreement with mean-field models of nonlinear diffusion in crowded membranes. Through a combination of analytic and numerical solutions of the master equation governing the reaction dynamics at synaptic domains, together with kinetic Monte Carlo simulations, we find substantial discrepancies between mean-field and stochastic models for the reaction dynamics at synaptic domains. Based on the reaction and diffusion properties of synaptic receptors and scaffolds suggested by previous experiments and mean-field calculations, we show that the stochastic reaction-diffusion dynamics of synaptic receptors and scaffolds provide a simple physical mechanism for collective fluctuations in synaptic domains, the molecular turnover observed at synaptic domains, key features of the observed single-molecule trajectories, and spatial heterogeneity in the effective rates at which receptors and scaffolds are recycled at the cell membrane. Our work sheds light on the physical mechanisms and principles linking the collective properties of membrane protein domains to the stochastic dynamics that rule their molecular components.