WorldWideScience

Sample records for model state idling

  1. Idle reduction assessment for the New York State Department of Transportation region 4 fleet.

    Science.gov (United States)

    2015-03-01

    Energetics Incorporated conducted a study to evaluate the operational, economic, and environmental impacts of advanced technologies to reduce idling in : the New York State Department of Transportation (NYSDOT) Region 4 fleet without compromising fun...

  2. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.

    Science.gov (United States)

    Zhang, Dan; Huang, Bisheng; Wu, Wei; Li, Siliang

    2015-11-01

    Although accurate recognition of the idle state is essential for the application of brain-computer interfaces (BCIs) in real-world situations, it remains a challenging task due to the variability of the idle state. In this study, a novel algorithm was proposed for the idle state detection in a steady-state visual evoked potential (SSVEP)-based BCI. The proposed algorithm aims to solve the idle state detection problem by constructing a better model of the control states. For feature extraction, a maximum evoked response (MER) spatial filter was developed to extract neurophysiologically plausible SSVEP responses, by finding the combination of multi-channel electroencephalogram (EEG) signals that maximized the evoked responses while suppressing the unrelated background EEGs. The extracted SSVEP responses at the frequencies of both the attended and the unattended stimuli were then used to form feature vectors and a series of binary classifiers for recognition of each control state and the idle state were constructed. EEG data from nine subjects in a three-target SSVEP BCI experiment with a variety of idle state conditions were used to evaluate the proposed algorithm. Compared to the most popular canonical correlation analysis-based algorithm and the conventional power spectrum-based algorithm, the proposed algorithm outperformed them by achieving an offline control state classification accuracy of 88.0 ± 11.1% and idle state false positive rates (FPRs) ranging from 7.4 ± 5.6% to 14.2 ± 10.1%, depending on the specific idle state conditions. Moreover, the online simulation reported BCI performance close to practical use: 22.0 ± 2.9 out of the 24 control commands were correctly recognized and the FPRs achieved as low as approximately 0.5 event/min in the idle state conditions with eye open and 0.05 event/min in the idle state condition with eye closed. These results demonstrate the potential of the proposed algorithm for implementing practical SSVEP BCI systems.

  3. Novel 3D Approach to Flare Modeling via Interactive IDL Widget Tools

    Science.gov (United States)

    Nita, G. M.; Fleishman, G. D.; Gary, D. E.; Kuznetsov, A.; Kontar, E. P.

    2011-12-01

    Currently, and soon-to-be, available sophisticated 3D models of particle acceleration and transport in solar flares require a new level of user-friendly visualization and analysis tools allowing quick and easy adjustment of the model parameters and computation of realistic radiation patterns (images, spectra, polarization, etc). We report the current state of the art of these tools in development, already proved to be highly efficient for the direct flare modeling. We present an interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved radio and X-ray spectra. The object-based architecture of this application provides full interaction with imported 3D magnetic field models (e.g., from an extrapolation) that may be embedded in a global coronal model. Various tools provided allow users to explore the magnetic connectivity of the model by generating magnetic field lines originating in user-specified volume positions. Such lines may serve as reference lines for creating magnetic flux tubes, which are further populated with user-defined analytical thermal/non thermal particle distribution models. By default, the application integrates IDL callable DLL and Shared libraries containing fast GS emission codes developed in FORTRAN and C++ and soft and hard X-ray codes developed in IDL. However, the interactive interface allows interchanging these default libraries with any user-defined IDL or external callable codes designed to solve the radiation transfer equation in the same or other wavelength ranges of interest. To illustrate the tool capacity and generality, we present a step-by-step real-time computation of microwave and X-ray images from realistic magnetic structures obtained from a magnetic field extrapolation preceding a real event, and compare them with the actual imaging data obtained by NORH and RHESSI instruments. We discuss further anticipated developments of the tools needed to accommodate

  4. Idling is Not the Way to Go

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    Researchers estimate that idling from heavy-duty and light-duty vehicles combined wastes about 6 billion gallons of fuel annually. Many states have put restrictions on idling, especially in metropolitan areas. Clearly, idling is not the way to go.

  5. 77 FR 9239 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2012-02-16

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9633-1] California State Motor Vehicle and Nonroad Engine... subsequent model year heavy-duty diesel engines in heavy-duty diesel vehicles with a gross vehicle weight rating over 14,000 pounds, and to in-use diesel- fueled commercial vehicles with gross vehicle weight...

  6. Extending the Operational Envelope of a Turbofan Engine Simulation into the Sub-Idle Region

    Science.gov (United States)

    Chapman, Jeffryes Walter; Hamley, Andrew J.; Guo, Ten-Huei; Litt, Jonathan S.

    2016-01-01

    In many non-linear gas turbine simulations, operation in the sub-idle region can lead to model instability. This paper lays out a method for extending the operational envelope of a map based gas turbine simulation to include the sub-idle region. This method develops a multi-simulation solution where the baseline component maps are extrapolated below the idle level and an alternate model is developed to serve as a safety net when the baseline model becomes unstable or unreliable. Sub-idle model development takes place in two distinct operational areas, windmilling/shutdown and purge/cranking/startup. These models are based on derived steady state operating points with transient values extrapolated between initial (known) and final (assumed) states. Model transitioning logic is developed to predict baseline model sub-idle instability, and transition smoothly and stably to the backup sub-idle model. Results from the simulation show a realistic approximation of sub-idle behavior as compared to generic sub-idle engine performance that allows the engine to operate continuously and stably from shutdown to full power.

  7. DanIDL: IDL solutions for science and astronomy

    Science.gov (United States)

    Bramich, Daniel

    2017-09-01

    DanIDL provides IDL functions and routines for many standard astronomy needs, such as searching for matching points between two coordinate lists of two-dimensional points where each list corresponds to a different coordinate space, estimating the full-width half-maximum (FWHM) and ellipticity of the PSF of an image, calculating pixel variances for a set of calibrated image data, and fitting a 3-parameter plane model to image data. The library also supplies astrometry, general image processing, and general scientific applications.

  8. 75 FR 43975 - California State Motor Vehicle and Nonroad Engine Pollution Control Standards; Truck Idling...

    Science.gov (United States)

    2010-07-27

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9180-4] California State Motor Vehicle and Nonroad Engine... diesel engines in heavy-duty diesel vehicles with a gross vehicle weight rating over 14,000 pounds, and to in-use diesel- fueled commercial vehicles with gross vehicle weight ratings over 10,000 pounds...

  9. 78 FR 11751 - Approval and Promulgation of Implementation Plans; State of Kansas; Idle Reduction of Heavy-Duty...

    Science.gov (United States)

    2013-02-20

    ...; mechanical work; armored vehicles; bus idling for passenger comfort (no greater than fifteen minutes in any...).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Carbon monoxide, Incorporation by reference, Intergovernmental relations, Motor carriers, Motor vehicles, Motor vehicle pollution...

  10. Idling - cruising the fuel inefficiency highway.

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.; Levinson, T. (Energy Systems); (DOE)

    2011-06-30

    What is the purpose of idling? The scale of idling can be small, as when parents idle their vehicles while waiting for their children outside of school, or it can be large, as when ocean liners are in port. In many cases, the primary purpose for idling is to control the temperature of a passenger or freight compartment. Large line-haul trucks idle overnight to keep fuel and the engine warm, for the resting driver's comfort, to mask out noises and smells, and for safety. In addition, all classes of trucks idle during the workday at ports and terminals, busy delivery sites, border crossings, and other work sites. They may be idling to enable slow movement in a queue (creep idling) or to provide other services. Bus drivers also idle their vehicles while they wait for passengers and to warm up in the morning. Even locomotive engines are idled so they start, for hotel load, to keep the battery charged, to keep the toilet water from freezing, and for air brakes, or because the operator idles out of habit. Although this document focuses on long-haul trucks, much of the information applies to other vehicles as well. The impacts of idling are substantial, with as much as 6 billion gallons of fuel burned unnecessarily each year in the United States at a cost of over $20 billion. The extra hours of engine operation also cost the owners money for more frequent maintenance and overhauls. In addition, idling vehicles emit particulates (PM{sub 10}), nitrogen dioxide (NO{sub 2}), carbon monoxide (CO), and carbon dioxide (CO{sub 2}). These emissions, along with noise from idling vehicles, have led to many local and state restrictions on idling. Two main factors have combined to create a surge of interest in idling reduction (IR): (1) Increasing restrictions on idling for heavy vehicles and (2) The price of diesel fuel. Because stakeholders focus their efforts on improving different factors (air quality, fuel economy, noise level), they do not necessarily agree on the most

  11. Work Truck Idling Reduction

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-03-01

    Hybrid utility trucks, with auxiliary power sources for on-board equipment, significantly reduce unnecessary idling resulting in fuel costs savings, less engine wear, and reduction in noise and emissions.

  12. Idling Reduction for Personal Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-07

    Fact sheet on reducing engine idling in personal vehicles. Idling your vehicle--running your engine when you're not driving it--truly gets you nowhere. Idling reduces your vehicle's fuel economy, costs you money, and creates pollution. Idling for more than 10 seconds uses more fuel and produces more emissions that contribute to smog and climate change than stopping and restarting your engine does.

  13. Applying IDL Sockets to VSO

    Science.gov (United States)

    Zarro, D. M.

    2004-05-01

    Research Systems Inc. (RSI) introduced support for TCP/IP sockets in Interactive Data Language (IDL) version 5.0. These sockets provide capabilities for remote data access in IDL that are routinely available in languages such as C, PERL, and Java. I will describe how the RHESSI team has incorporated IDL sockets into its analysis software. I will demonstrate how we program and use sockets to access worldwide-distributed archived RHESSI data and synoptic observations. The ideas and techniques that we have implemented lend themselves naturally to VSO applications.

  14. Impact of idling on fuel consumption and exhaust emissions and available idle-reduction technologies for diesel vehicles – A review

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • In this paper we reviewed the impact of diesel vehicles idling on fuel consumption and exhaust emission. • Fuel consumption and emissions during idling are very high compared to driving cycle. • The effects of various operating on fuel consumption and exhaust emission were discussed. • Available idle-reduction technologies impact on idling fuel consumption and emissions were discussed. • Idling reduction technologies reduce fuel consumption and emissions significantly. - Abstract: In order to maintain cab comfort truck drivers have to idle their engine to obtain the required power for accessories, such as the air conditioner, heater, television, refrigerator, and lights. This idling of the engine has a major impact on its fuel consumption and exhaust emission. Idling emissions can be as high as 86.4 g/h, 16,500 g/h, 5130 g/h, 4 g/h, and 375 g/h for HC, CO 2 , CO, PM, and NOx, respectively. Idling fuel consumption rate can be as high as 1.85 gal/h. The accessory loading, truck model, fuel-injection system, ambient temperature, idling speed, etc., also affect significantly the emission levels and fuel consumption rate. An increase in accessory loading and ambient temperature increases the emissions and fuel consumption. During idling, electronic fuel-injection systems reduce HC, PM, and CO emission, but increase NOx emissions compared with a mechanical fuel-injection system. An increase of idling speed increases fuel consumption rate. There are many systems available on the market to reduce engine idling and improve air quality and fuel consumption rate, such as an auxiliary power unit (APU), truck stop electrification, thermal storage systems, fuel cells, and direct fire heaters. A direct fire heater reduces fuel consumption by 94–96% and an APU reduces consumption by 60–87%. Furthermore, these technologies increase air quality significantly by reducing idling emissions, which is the reason why they are considered as key alternatives to

  15. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State.

    Science.gov (United States)

    Shin, Jaeyoung; Kwon, Jinuk; Im, Chang-Hwan

    2018-01-01

    The performance of a brain-computer interface (BCI) can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS) to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR) of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the "one-versus-one" (OVO) classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA) to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs ( p < 0.005). The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary hBCI study.

  16. A Ternary Hybrid EEG-NIRS Brain-Computer Interface for the Classification of Brain Activation Patterns during Mental Arithmetic, Motor Imagery, and Idle State

    Directory of Open Access Journals (Sweden)

    Jaeyoung Shin

    2018-02-01

    Full Text Available The performance of a brain-computer interface (BCI can be enhanced by simultaneously using two or more modalities to record brain activity, which is generally referred to as a hybrid BCI. To date, many BCI researchers have tried to implement a hybrid BCI system by combining electroencephalography (EEG and functional near-infrared spectroscopy (NIRS to improve the overall accuracy of binary classification. However, since hybrid EEG-NIRS BCI, which will be denoted by hBCI in this paper, has not been applied to ternary classification problems, paradigms and classification strategies appropriate for ternary classification using hBCI are not well investigated. Here we propose the use of an hBCI for the classification of three brain activation patterns elicited by mental arithmetic, motor imagery, and idle state, with the aim to elevate the information transfer rate (ITR of hBCI by increasing the number of classes while minimizing the loss of accuracy. EEG electrodes were placed over the prefrontal cortex and the central cortex, and NIRS optodes were placed only on the forehead. The ternary classification problem was decomposed into three binary classification problems using the “one-versus-one” (OVO classification strategy to apply the filter-bank common spatial patterns filter to EEG data. A 10 × 10-fold cross validation was performed using shrinkage linear discriminant analysis (sLDA to evaluate the average classification accuracies for EEG-BCI, NIRS-BCI, and hBCI when the meta-classification method was adopted to enhance classification accuracy. The ternary classification accuracies for EEG-BCI, NIRS-BCI, and hBCI were 76.1 ± 12.8, 64.1 ± 9.7, and 82.2 ± 10.2%, respectively. The classification accuracy of the proposed hBCI was thus significantly higher than those of the other BCIs (p < 0.005. The average ITR for the proposed hBCI was calculated to be 4.70 ± 1.92 bits/minute, which was 34.3% higher than that reported for a previous binary

  17. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory; Adelman, Steve; Yeakel, Skip; Luo, Zhiming; Zehme, John

    2016-03-24

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  18. Long-Haul Truck Sleeper Heating Load Reduction Package for Rest Period Idling

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, Jason Aaron; Kekelia, Bidzina; Tomerlin, Jeff; Kreutzer, Cory J.; Yeakel, Skip; Adelman, Steven; Luo, Zhiming; Zehme, John

    2016-04-05

    Annual fuel use for sleeper cab truck rest period idling is estimated at 667 million gallons in the United States, or 6.8% of long-haul truck fuel use. Truck idling during a rest period represents zero freight efficiency and is largely done to supply accessory power for climate conditioning of the cab. The National Renewable Energy Laboratory's CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck thermal management systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In addition, if the fuel savings provide a one- to three-year payback period, fleet owners will be economically motivated to incorporate them. For candidate idle reduction technologies to be implemented by original equipment manufacturers and fleets, their effectiveness must be quantified. To address this need, several promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. Load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, conductive pathways, and efficient equipment. Technologies in each of these focus areas were investigated in collaboration with industry partners. The most promising of these technologies were then combined with the goal of exceeding a 30% reduction in HVAC loads. These technologies included 'ultra-white' paint, advanced insulation, and advanced curtain design. Previous testing showed more than a 35.7% reduction in air conditioning loads. This paper describes the overall heat transfer coefficient testing of this advanced load reduction technology package that showed more than a 43% reduction in heating load. Adding an additional layer of advanced insulation

  19. Frequency-based Vehicle Idling Detection

    OpenAIRE

    Kai-Chao Yang; Chih-Ting Kuo; Chun-Yu Chen; Chih-Chyau Yang; Chien-Ming Wu; Chun-Ming Huang

    2014-01-01

    Continuous increases in fuel prices and environmental awareness have raised the importance of reducing vehicle emissions, with many national governments passing anti-idling laws. To reduce air pollution and fuel consumption, we propose a frequency-based vehicle idling detection method to remind drivers to turn off the engine vehicle idling exceeds a certain time threshold. The method is implemented in existing handheld devices without any modification to the car or engine, making the solution...

  20. 48 CFR 31.205-17 - Idle facilities and idle capacity costs.

    Science.gov (United States)

    2010-10-01

    ..., or sale, in accordance with sound business, economics, or security practices. Widespread idle...)). (c) Costs of idle capacity are costs of doing business and are a factor in the normal fluctuations of...

  1. Sleeper Cab Climate Control Load Reduction for Long-Haul Truck Rest Period Idling

    Energy Technology Data Exchange (ETDEWEB)

    Lustbader, J. A.; Kreutzer, C.; Adelman, S.; Yeakel, S.; Zehme, J.

    2015-04-29

    Annual fuel use for long-haul truck rest period idling is estimated at 667 million gallons in the United States. The U.S. Department of Energy’s National Renewable Energy Laboratory’s CoolCab project aims to reduce heating, ventilating, and air conditioning (HVAC) loads and resulting fuel use from rest period idling by working closely with industry to design efficient long-haul truck climate control systems while maintaining occupant comfort. Enhancing the thermal performance of cab/sleepers will enable smaller, lighter, and more cost-effective idle reduction solutions. In order for candidate idle reduction technologies to be implemented at the original equipment manufacturer and fleet level, their effectiveness must be quantified. To address this need, a number of promising candidate technologies were evaluated through experimentation and modeling to determine their effectiveness in reducing rest period HVAC loads. For this study, load reduction strategies were grouped into the focus areas of solar envelope, occupant environment, and conductive pathways. The technologies selected for a complete-cab package of technologies were “ultra-white” paint, advanced insulation, and advanced curtains. To measure the impact of these technologies, a nationally-averaged solar-weighted reflectivity long-haul truck paint color was determined and applied to the baseline test vehicle. Using the complete-cab package of technologies, electrical energy consumption for long-haul truck daytime rest period air conditioning was reduced by at least 35% for summer weather conditions in Colorado. The National Renewable Energy Laboratory's CoolCalc model was then used to extrapolate the performance of the thermal load reduction technologies nationally for 161 major U.S. cities using typical weather conditions for each location over an entire year.

  2. The Downside of Downtime: The Prevalence and Work Pacing Consequences of Idle Time at Work.

    Science.gov (United States)

    Brodsky, Andrew; Amabile, Teresa M

    2018-01-22

    Although both media commentary and academic research have focused much attention on the dilemma of employees being too busy, this paper presents evidence of the opposite phenomenon, in which employees do not have enough work to fill their time and are left with hours of meaningless idle time each week. We conducted six studies that examine the prevalence and work pacing consequences of involuntary idle time. In a nationally representative cross-occupational survey (Study 1), we found that idle time occurs frequently across all occupational categories; we estimate that employers in the United States pay roughly $100 billion in wages for time that employees spend idle. Studies 2a-3b experimentally demonstrate that there are also collateral consequences of idle time; when workers expect idle time following a task, their work pace declines and their task completion time increases. This decline reverses the well-documented deadline effect, producing a deadtime effect, whereby workers slow down as a task progresses. Our analyses of work pace patterns provide evidence for a time discounting mechanism: workers discount idle time when it is relatively distant, but act to avoid it increasingly as it becomes more proximate. Finally, Study 4 demonstrates that the expectation of being able to engage in leisure activities during posttask free time (e.g., surfing the Internet) can mitigate the collateral work pace losses due to idle time. Through examination and discussion of the effects of idle time at work, we broaden theory on work pacing. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  3. Characterization of PTO and Idle Behavior for Utility Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Duran, Adam W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Konan, Arnaud M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, Eric S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kelly, Kenneth J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Prohaska, Robert S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-09-28

    This report presents the results of analyses performed on utility vehicle data composed primarily of aerial lift bucket trucks sampled from the National Renewable Energy Laboratory's Fleet DNA database to characterize power takeoff (PTO) and idle operating behavior for utility trucks. Two major data sources were examined in this study: a 75-vehicle sample of Odyne electric PTO (ePTO)-equipped vehicles drawn from multiple fleets spread across the United States and 10 conventional PTO-equipped Pacific Gas and Electric fleet vehicles operating in California. Novel data mining approaches were developed to identify PTO and idle operating states for each of the datasets using telematics and controller area network/onboard diagnostics data channels. These methods were applied to the individual datasets and aggregated to develop utilization curves and distributions describing PTO and idle behavior in both absolute and relative operating terms. This report also includes background information on the source vehicles, development of the analysis methodology, and conclusions regarding the study's findings.

  4. Anti-idling campaign : Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-01

    The efficient use of transportation fuels and other petroleum products is being promoted by the Canadian Petroleum Products Institute. The Institute was busy during the past year in attempting to gain an understanding of the measures that could be adopted to assist motorists clearly identify the relationship between fuel consumption, personal transportation spending, and environmental impacts. The Institute undertook these efforts with Natural Resources Canada (NRCan) Office of Energy Efficiency (which both provided funding) and the Public Policy Forum. A first step proposed was the development of an anti-idling public awareness campaign. It was recognized that idling a vehicle for more than ten seconds costs money and wastes fuel, while simultaneously contributing to air pollution, greenhouse gas emissions, and climate change. The campaign also involved Esso, Shell, Petro-Canada, Canadian Tire and Sunoco for the development and implementation phases over the last two weeks of August 2002. A pilot campaign was tested in Mississauga, Ontario. Various materials were used for this campaign, such as posters, banners, cling vinyl window decals, air fresheners and information cards. The main successes of the campaign were: testing the methods of communicating the anti-idling message to drivers at gasoline retailing sites, increasing awareness among the driving public concerning the problems resulting from excessive idling, and encouraging the reduction of idling whenever and wherever it takes place. 1 tab.

  5. EFFECTS OF ENGINE SPEED AND ACCESSORY LOAD ON IDLING EMISSIONS FROM HEAVY-DUTY DIESEL TRUCK ENGINES

    Science.gov (United States)

    A nontrivial portion of heavy-duty vehicle emissions of nitrogen oxides (NOx) and particulate matter (PM) occurs during idling. Regulators and the environmental community are interested in curtailing truck idling emissions, but current emissions models do not characterize them ac...

  6. The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana.

    Science.gov (United States)

    Vie, Ane Kjersti; Najafi, Javad; Winge, Per; Cattan, Ester; Wrzaczek, Michael; Kangasjärvi, Jaakko; Miller, Gad; Brembu, Tore; Bones, Atle M

    2017-06-15

    Small signalling peptides have emerged as important cell to cell messengers in plant development and stress responses. However, only a few of the predicted peptides have been functionally characterized. Here, we present functional characterization of two members of the IDA-LIKE (IDL) peptide family in Arabidopsis thaliana, IDL6 and IDL7. Localization studies suggest that the peptides require a signal peptide and C-terminal processing to be correctly transported out of the cell. Both IDL6 and IDL7 appear to be unstable transcripts under post-transcriptional regulation. Treatment of plants with synthetic IDL6 and IDL7 peptides resulted in down-regulation of a broad range of stress-responsive genes, including early stress-responsive transcripts, dominated by a large group of ZINC FINGER PROTEIN (ZFP) genes, WRKY genes, and genes encoding calcium-dependent proteins. IDL7 expression was rapidly induced by hydrogen peroxide, and idl7 and idl6 idl7 double mutants displayed reduced cell death upon exposure to extracellular reactive oxygen species (ROS). Co-treatment of the bacterial elicitor flg22 with IDL7 peptide attenuated the rapid ROS burst induced by treatment with flg22 alone. Taken together, our results suggest that IDL7, and possibly IDL6, act as negative modulators of stress-induced ROS signalling in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Idle emissions from medium heavy-duty diesel and gasoline trucks.

    Science.gov (United States)

    Khan, A B M S; Clark, Nigel N; Gautam, Mridul; Wayne, W Scott; Thompson, Gregory J; Lyons, Donald W

    2009-03-01

    Idle emissions data from 19 medium heavy-duty diesel and gasoline trucks are presented in this paper. Emissions from these trucks were characterized using full-flow exhaust dilution as part of the Coordinating Research Council (CRC) Project E-55/59. Idle emissions data were not available from dedicated measurements, but were extracted from the continuous emissions data on the low-speed transient mode of the medium heavy-duty truck (MHDTLO) cycle. The four gasoline trucks produced very low oxides of nitrogen (NOx) and negligible particulate matter (PM) during idle. However, carbon monoxide (CO) and hydrocarbons (HCs) from these four trucks were approximately 285 and 153 g/hr on average, respectively. The gasoline trucks consumed substantially more fuel at an hourly rate (0.84 gal/hr) than their diesel counterparts (0.44 gal/hr) during idling. The diesel trucks, on the other hand, emitted higher NOx (79 g/hr) and comparatively higher PM (4.1 g/hr), on average, than the gasoline trucks (3.8 g/hr of NOx and 0.9 g/hr of PM, on average). Idle NOx emissions from diesel trucks were high for post-1992 model year engines, but no trends were observed for fuel consumption. Idle emissions and fuel consumption from the medium heavy-duty diesel trucks (MHDDTs) were marginally lower than those from the heavy heavy-duty diesel trucks (HHDDTs), previously reported in the literature.

  8. Idling Reduction for Emergency and Other Service Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-07

    This is a fact sheet about reducing idling for emergency and service vehicles. Emergency vehicles, such as police cars, ambulances, and fire trucks, along with other service vehicles such as armored cars, are often exempt from laws that limit engine idling. However, these vehicles can save fuel and reduce emissions with technologies that allow them to perform vital services without idling.

  9. Interactive data language (IDL) for medical image processing

    International Nuclear Information System (INIS)

    Md Saion Salikin

    2002-01-01

    Interactive Data Language (IDL) is one of many softwares available in the market for medical image processing and analysis. IDL is a complete, structured language that can be used both interactively and to create sophisticated functions, procedures, and applications. It provides a suitable processing routines and display method which include animation, specification of colour table including 24-bit capability, 3-D visualization and many graphic operation. The important features of IDL for medical imaging are segmentation, visualization, quantification and pattern recognition. In visualization IDL is capable of allowing greater precision and flexibility when visualizing data. For example, IDL eliminates the limits on Number of Contour level. In term of data analysis, IDL is capable of handling complicated functions such as Fast Fourier Transform (FFT) function, Hough and Radon Transform function, Legendre Polynomial function, as well as simple functions such as Histogram function. In pattern recognition, pattern description is defined as points rather than pixels. With this functionality, it is easy to re-use the same pattern on more than one destination device (even if the destinations have varying resolution). In other words it have the ability to specify values in points. However there are a few disadvantages of using IDL. Licensing is by dongkel key and limited licences hence limited access to potential IDL users. A few examples are shown to demonstrate the capabilities of IDL in carrying out its function for medical image processing. (Author)

  10. Remote Data Exploration with the Interactive Data Language (IDL)

    Science.gov (United States)

    Galloy, Michael

    2013-01-01

    A difficulty for many NASA researchers is that often the data to analyze is located remotely from the scientist and the data is too large to transfer for local analysis. Researchers have developed the Data Access Protocol (DAP) for accessing remote data. Presently one can use DAP from within IDL, but the IDL-DAP interface is both limited and cumbersome. A more powerful and user-friendly interface to DAP for IDL has been developed. Users are able to browse remote data sets graphically, select partial data to retrieve, import that data and make customized plots, and have an interactive IDL command line session simultaneous with the remote visualization. All of these IDL-DAP tools are usable easily and seamlessly for any IDL user. IDL and DAP are both widely used in science, but were not easily used together. The IDL DAP bindings were incomplete and had numerous bugs that prevented their serious use. For example, the existing bindings did not read DAP Grid data, which is the organization of nearly all NASA datasets currently served via DAP. This project uniquely provides a fully featured, user-friendly interface to DAP from IDL, both from the command line and a GUI application. The DAP Explorer GUI application makes browsing a dataset more user-friendly, while also providing the capability to run user-defined functions on specified data. Methods for running remote functions on the DAP server were investigated, and a technique for accomplishing this task was decided upon.

  11. A multi-site analysis of the association between black carbon concentrations and vehicular idling, traffic, background pollution, and meteorology during school dismissals.

    Science.gov (United States)

    Richmond-Bryant, J; Bukiewicz, L; Kalin, R; Galarraga, C; Mirer, F

    2011-05-01

    A study was performed to assess the relationship between black carbon (BC), passing traffic, and vehicular idling outside New York City (NYC) schools during student dismissal. Monitoring was performed at three school sites in East Harlem, the Bronx, and Brooklyn for 1month per year over a two-year period from November 2006-October 2008. Monitoring at each site was conducted before and after the Asthma Free School Zone (AFSZ) asthma reduction education program was administered. Real-time equipment with a one-minute averaging interval was used to obtain the BC data, while volume counts of idling and passing school busses, trucks, and automobiles were collected each minute by study staff. These data were matched to ambient PM(2.5) and meteorology data obtained from the New York State Department of Environmental Conservation. A generalized additive model (GAM) model was run to examine the relationship between BC concentration and each variable while accounting for site-to-site differences. F-tests were employed to assess the significance of each of the predictor variables. The model results suggested that variability in ambient PM(2.5) concentration contributed 24% of the variability in transformed BC concentration, while variability in the number of idling busses and trucks on the street during dismissal contributed 20% of the variability in transformed BC concentration. The results of this study suggest that a combination of urban scale and local traffic control approaches in combination with cessation of school bus idling will produce improved local BC concentration outside schools. Published by Elsevier B.V.

  12. Case Study – Idling Reduction Technologies for Emergency Service Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Owens, Russell J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-01-01

    This case study explores the use of idle reduction technologies (IRTs) on emergency service vehicles in police, fire, and ambulance applications. Various commercially available IRT systems and approaches can decrease, or ultimately eliminate, engine idling. Fleets will thus save money on fuel, and will also decrease their criteria pollutant emissions, greenhouse gas emissions, and noise.

  13. Caterpillar MorElectric DOE Idle Reduction Demonstration Program

    Energy Technology Data Exchange (ETDEWEB)

    John Bernardi

    2007-09-30

    This project titled 'Demonstration of the New MorElectric{trademark} Technology as an Idle Reduction Solution' is one of four demonstration projects awarded by the US Department of Energy in 2002. The goal of these demonstration and evaluation projects was to gather objective in-use information on the performance of available idle reduction technologies by characterizing the cost; fuel, maintenance, and engine life savings; payback; and user impressions of various systems and techniques. In brief, the Caterpillar Inc. project involved applying electrically driven accessories for cab comfort during engine-off stops and for reducing fuel consumption during on-highway operation. Caterpillar had equipped and operated five new trucks with the technology in conjunction with International Truck and Engine Corporation and COX Transfer. The most significant result of the project was a demonstrated average idle reduction of 13.8% for the 5 truck MEI fleet over the control fleet. It should be noted that the control fleet trucks were also equipped with an idle reduction device that would start and stop the main engine automatically in order to maintain cab temperature. The control fleet idle usage would have been reduced by 3858 hours over the 2 year period with the MEI system installed, or approximately 2315 gallons of fuel less (calculations assume a fuel consumption of 0.6 gallons per hour for the 13 liter engine at idle). The fuel saved will be significantly larger for higher displacement engines without idle reduction equipment such as the engine auto start/stop device used by COX Transfer. It is common for engines to consume 1.0 gallons per hour which would increase the fuel savings to approximately 1260 gallons per truck per year of typical idling (1800 hours idle/yr).

  14. Electrical assistance for S.I. engine idle speed control

    Energy Technology Data Exchange (ETDEWEB)

    Bidan, P.; Kouadio, I.K.; Valentin, M.; Montseny, G.

    1997-07-01

    An original method for improving spark-ignition engine idling conditions, is presented. The proposed solution has the distinctive feature of simultaneously combining the traditional airflow rate control and the usual automobile alternator operating as a synchronous motor in order to provide a fast supplementary torque. Experimental validation of the electric assistance system is carried out on a production engine, and the new method is compared with the standard one in terms of idle stability, fuel consumption and pollution emissions

  15. Balanced Neural Architecture and the Idling Brain

    Directory of Open Access Journals (Sweden)

    Brent eDoiron

    2014-05-01

    Full Text Available A signature feature of cortical spike trains is their trial-to-trial variability. This variability is large in spontaneous conditions and is reduced when cortex is driven by a stimulus or task. Models of recurrent cortical networks with unstructured, yet balanced, excitation and inhibition generate variability consistent with evoked conditions. However, these models lack the long timescale fluctuations and large variability present in spontaneous conditions. We propose that global network architectures which support a large number of stable states (attractor networks allow balanced networks to capture key features of neural variability in both spontaneous and evoked conditions. We illustrate this using balanced spiking networks with clustered assembly, feedforward chain, and ring structures. By assuming that global network structure is related to stimulus preference, we show that signal correlations are related to the magnitude of correlations in the spontaneous state. In our models, the dynamics of spontaneous activity encompasses much of the possible evoked states, consistent with many experimental reports. Finally, we contrast the impact of stimulation on the trial-to-trial variability in attractor networks with that of strongly coupled spiking networks with chaotic firing rate instabilities, recently investigated by Ostojic (2014. We find that only attractor networks replicate an experimentally observed stimulus-induced quenching of trial-to-trial variability. In total, the comparison of the trial-variable dynamics of single neurons or neuron pairs during spontaneous and evoked activity can be a window into the global structure of balanced cortical networks.

  16. 40 CFR 85.2219 - Idle test with loaded preconditioning-EPA 91.

    Science.gov (United States)

    2010-07-01

    ... not occurred). (iii) The vehicle must be operated during each mode of the test with the gear selector... (5.1-6.3). 7 or more 32-35 (52-56) 8.4-10.8 (6.3-8.1). (2) Idle mode—(i) Ford Motor Company and Honda vehicles. (Optional.) The engines of 1981-1987 model year Ford Motor Company vehicles and 1984-1985 model...

  17. Models of multiquark states

    International Nuclear Information System (INIS)

    Lipkin, H.J.

    1986-01-01

    The success of simple constituent quark models in single-hardon physics and their failure in multiquark physics is discussed, emphasizing the relation between meson and baryon spectra, hidden color and the color matrix, breakup decay modes, coupled channels, and hadron-hadron interactions via flipping and tunneling of flux tubes. Model-independent predictions for possible multiquark bound states are considered and the most promising candidates suggested. A quark approach to baryon-baryon interactions is discussed

  18. Idle emissions from heavy-duty diesel and natural gas vehicles at high altitude.

    Science.gov (United States)

    McCormick, R L; Graboski, M S; Alleman, T L; Yanowitz, J

    2000-11-01

    Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM. Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with model year with a linear fit (r2 = 0.6). PART5 nationwide fleet average emissions are within 1 order of magnitude of emissions for the group of vehicles tested in this study. Aldehyde emissions for bus idling averaged 6 mg/min. The VOF averaged 19% of total PM for buses and 49% for trucks. CNG vehicle idle emissions averaged 1.435 g/min for THC, 1.119 g/min for CO, 0.267 g/min for NOx, and 0.003 g/min for PM. The g/min PM emissions are only a small fraction of g/min PM emissions during vehicle driving. However, idle emissions of NOx, CO, and THC are significant in comparison with driving emissions.

  19. Development of 1D Liner Compression Code for IDL

    Science.gov (United States)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  20. Improving Energy Efficiency in Idle Listening of IEEE 802.11 WLANs

    Directory of Open Access Journals (Sweden)

    Muhammad Adnan

    2016-01-01

    Full Text Available This paper aims to improve energy efficiency of IEEE 802.11 wireless local area networks (WLANs by effectively dealing with idle listening (IL, which is required for channel sensing and is unavoidable in a contention-based channel access mechanism. Firstly, we show that IL is a dominant source of energy drain in WLANs and it cannot be effectively alleviated by the power saving mechanism proposed in the IEEE 802.11 standard. To solve this problem, we propose an energy-efficient mechanism that combines three schemes in a systematic way: downclocking, frame aggregation, and contention window adjustment. The downclocking scheme lets a station remain in a semisleep state when overhearing frames destined to neighbor stations, whereby the station consumes the minimal energy without impairing channel access capability. As well as decreasing the channel access overhead, the frame aggregation scheme prolongs the period of semisleep time. Moreover, by controlling the size of contention window based on the number of stations, the proposed mechanism decreases unnecessary IL time due to collision and retransmission. By deriving an analysis model and performing extensive simulations, we confirm that the proposed mechanism significantly improves the energy efficiency and throughput, by up to 2.8 and 1.8 times, respectively, compared to the conventional power saving mechanisms.

  1. Environmental Impact Assessment, Brownfield Areas. Brownfields are defined by the Florida DEP as abandoned, idled, or underused industrial and commercial facilities where expansion or redevelopment is complicated by real or perceived environmental contamination., Published in 2001, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection (FDEP).

    Data.gov (United States)

    NSGIC State | GIS Inventory — Environmental Impact Assessment dataset current as of 2001. Brownfield Areas. Brownfields are defined by the Florida DEP as abandoned, idled, or underused industrial...

  2. Long-Haul Truck Idling Burns Up Profits

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-12

    Long-haul truck drivers perform a vitally important service. In the course of their work, they must take rest periods as required by federal law. Most drivers remain in their trucks, which they keep running to provide power for heating, cooling, and other necessities. Such idling, however, comes at a cost; it is an expensive and polluting way to keep drivers safe and comfortable. Increasingly affordable alternatives to idling not only save money and reduce pollution, but also help drivers get a better night's rest.

  3. Easy web interfaces to IDL code for NSTX Data Analysis

    International Nuclear Information System (INIS)

    Davis, W.M.

    2012-01-01

    Highlights: ► Web interfaces to IDL code can be developed quickly. ► Dozens of Web Tools are used effectively on NSTX for Data Analysis. ► Web interfaces are easier to use than X-window applications. - Abstract: Reusing code is a well-known Software Engineering practice to substantially increase the efficiency of code production, as well as to reduce errors and debugging time. A variety of “Web Tools” for the analysis and display of raw and analyzed physics data are in use on NSTX [1], and new ones can be produced quickly from existing IDL [2] code. A Web Tool with only a few inputs, and which calls an IDL routine written in the proper style, can be created in less than an hour; more typical Web Tools with dozens of inputs, and the need for some adaptation of existing IDL code, can be working in a day or so. Efficiency is also increased for users of Web Tools because of the familiar interface of the web browser, and not needing X-windows, or accounts and passwords, when used within our firewall. Web Tools were adapted for use by PPPL physicists accessing EAST data stored in MDSplus with only a few man-weeks of effort; adapting to additional sites should now be even easier. An overview of Web Tools in use on NSTX, and a list of the most useful features, is also presented.

  4. 40 CFR 86.1537 - Idle test run.

    Science.gov (United States)

    2010-07-01

    ... Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled... dilute sampling. (6) For bag sampling, sample idle emissions long enough to obtain a sufficient bag...

  5. Can the identification of an idle line facilitate its removal? A comparison between a proposed guideline and clinical practice.

    Science.gov (United States)

    Kara, Areeba; Johnson, Cynthia S; Murray, Michelle; Dillon, Jill; Hui, Siu L

    2016-07-01

    There are 250,000 cases of central line-associated blood stream infections in the United States annually, some of which may be prevented by the removal of lines that are no longer needed. To test the performance of criteria to identify an idle line as a guideline to facilitate its removal. Patients with central lines on the wards were identified. Criteria for justified use were defined. If none were met, the line was considered "idle." We proposed the guideline that a line may be removed the day following the first idle day and compared actual practice with our proposed guideline. One hundred twenty-six lines in 126 patients were observed. Eighty-three (65.9%) were peripherally inserted central catheters. Twenty-seven percent (n= 34) were placed for antibiotics. Seventy-six patients had lines removed prior to discharge. In these patients, the line was in place for 522 days, of which 32.7% were idle. The most common reasons to justify the line included parenteral antibiotics and meeting systemic inflammatory response (SIRS) criteria. In 11 (14.5%) patients, the line was removed prior to the proposed guideline. Most (n = 36, 47.4%) line removals were observed to be in accordance with our guideline. In another 29 (38.2%), line removal was delayed compared to our guideline. Idle days are common. Central line days may be reduced by the consistent daily reevaluation of a line's justification using defined criteria. The practice of routine central line placement for prolonged antibiotics and the inclusion of SIRS criteria to justify the line may need to be reevaluated. Journal of Hospital Medicine 2016;11:489-493. © 2016 Society of Hospital Medicine. © 2016 Society of Hospital Medicine.

  6. A Study on Cloud Cost Efficiency by Exploiting Idle Billing Period Fractions

    OpenAIRE

    Sampaio, Altino M.; Barbosa, Jorge G.

    2016-01-01

    In most of the current commercial Clouds, resources are billed based on a time interval equal to one hour, as is the case of virtual machine (VM) instances on Amazon EC2. Such time interval is usually long, and yet the user has to pay for the whole last hour, even if he/she has only used a fraction of it, contradicting the pay-as-you-go model of Clouds. In this paper, we analyse the advantages of adopting alternative scheduling policies that exploit idle last time interva...

  7. Inventory of state energy models

    Energy Technology Data Exchange (ETDEWEB)

    Melcher, A.G.; Gist, R.L.; Underwood, R.G.; Weber, J.C.

    1980-03-31

    These models address a variety of purposes, such as supply or demand of energy or of certain types of energy, emergency management of energy, conservation in end uses of energy, and economic factors. Fifty-one models are briefly described as to: purpose; energy system; applications;status; validation; outputs by sector, energy type, economic and physical units, geographic area, and time frame; structure and modeling techniques; submodels; working assumptions; inputs; data sources; related models; costs; references; and contacts. Discussions in the report include: project purposes and methods of research, state energy modeling in general, model types and terminology, and Federal legislation to which state modeling is relevant. Also, a state-by-state listing of modeling efforts is provided and other model inventories are identified. The report includes a brief encylopedia of terms used in energy models. It is assumed that many readers of the report will not be experienced in the technical aspects of modeling. The project was accomplished by telephone conversations and document review by a team from the Colorado School of Mines Research Institute and the faculty of the Colorado School of Mines. A Technical Committee (listed in the report) provided advice during the course of the project.

  8. Reflections on the different sides of idleness in contemporary times

    Directory of Open Access Journals (Sweden)

    Patrícia Zaczuk Bassinello

    2015-04-01

    Full Text Available Over the last century, idleness experienced a modernization and democratization process especially with the crisis of a society focused on work – the post-Industrial Revolution - and the emergence of new ideas that put the free time, the leisure and recreation in the role of structural elements of the new social context and like tools for the new ways of life. In this work, we we seek to focus on the significant aspects of reality and function of leisure in our time, clarifying their relationship with the processes of personal, social and economic innovation by establishing a balance of our acts in thinking the leisure and work and leisure and life from different angles of approach. In order to analyze this phenomenon, we were based on scientific sources which are representative in the context, and then we elaborated a general overview of the subject from the contributions of the bakhtinian perspectives. We observed that the increase in leisure options in the last decades of the twentieth century, along with the growth of the studies of the idleness phenomenon and its possibilities, allowed an evolution of its concepts, from activities or practices associated to the consumption and to digital entertainment, to its understanding as an experience whose key of the discussion is the subject living these experiences. We believe that this reflection about idleness may open possibilities of a better comprehension of its insertion in the social and human sciences field and, especially, in its contribution to a new attitude of the relational production, centered on the subject, which stimulates a society that creates and innovates goods and services and who deepens the studies of leisure from the dynamic experiential horizon to the right to the otherness and to its time – the own one and the others’ – such as "the right to unfunctionality", from listening to the other word.

  9. Tactical Idle Reduction for Heavy Tactical Vehicles Technology Transition Initiative

    Science.gov (United States)

    2008-11-01

    Power Generation and Alternative Energy Branch Army Power Division US Army RDECOM CERDEC C2D Aberdeen Proving Ground, MD...R ed uc tio n fo r H ea vy T ac tic al V eh ic le s T ec hn ol og y Tr an si tio n In iti at iv e Report Documentation Page Form ApprovedOMB No...develop and demonstrate a suitable idling reduction auxiliary power and energy system for the next- generation M915 and family of line haul replacement

  10. Chapter 29: Using an Existing Environment in the VO (IDL)

    Science.gov (United States)

    Miller, C. J.

    The local environment of a Brightest Cluster Galaxy (BCG) can provide insight into the (still not understood) formation process of the BCG itself. BCGs are the most massive galaxies in the Universe, and their formation and evolution are a popular and current research topic (Linden et al. 2006, Bernardi et al. 2006, Lauer et al. 2006). They have been studied for some time (Sandage 1972, Ostriker & Tremaine 1975, White 1976, Thuan & Romanishin 1981, Merritt 1985, Postman and Lauer 1995, among many others). Our goal in this chapter is to study how the local environment can affect the physical and measurable properties of BCGs. We will conduct an exploratory research exercise. In this chapter, we will show how the Virtual Observatory (VO) can be effectively utilized for doing modern scientific research on BCGs. We identify the scientific functionalities we need, the datasets we require, and the service locations in order to discover and access those data. This chapter utilizes IDL's VOlib, which is described in Chapter 24 of this book and is available at http://www.nvo.noao.edu. IDL provides the capability to perform the entire range of astronomical scientific analyses in one environment: from image reduction and analysis to complex catalog manipulations, statistics, and publication quality figures. At the 2005 and 2006 NVO Summer Schools, user statistics show that IDL was the most commonly used programming language by the students (nearly 3-to-1 over languages like IRAF, Perl, and Python). In this chapter we show how the integration of IDL to the VO through VOlib provides even greater capabilities and possibilities for conducting science in the era of the Virtual Observatory. The reader should familiarize themselves with the VOlib libraries before attempting the examples in this tutorial. We first build a research plan. We then discover the service URLs we will need to access the data. We then apply the necessary functions and tools to these data before we can do our

  11. Flight Management System Execution of Idle-Thrust Descents in Operations

    Science.gov (United States)

    Stell, Laurel L.

    2011-01-01

    To enable arriving aircraft to fly optimized descents computed by the flight management system (FMS) in congested airspace, ground automation must accurately predict descent trajectories. To support development of the trajectory predictor and its error models, commercial flights executed idle-thrust descents, and the recorded data includes the target speed profile and FMS intent trajectories. The FMS computes the intended descent path assuming idle thrust after top of descent (TOD), and any intervention by the controllers that alters the FMS execution of the descent is recorded so that such flights are discarded from the analysis. The horizontal flight path, cruise and meter fix altitudes, and actual TOD location are extracted from the radar data. Using more than 60 descents in Boeing 777 aircraft, the actual speeds are compared to the intended descent speed profile. In addition, three aspects of the accuracy of the FMS intent trajectory are analyzed: the meter fix crossing time, the TOD location, and the altitude at the meter fix. The actual TOD location is within 5 nmi of the intent location for over 95% of the descents. Roughly 90% of the time, the airspeed is within 0.01 of the target Mach number and within 10 KCAS of the target descent CAS, but the meter fix crossing time is only within 50 sec of the time computed by the FMS. Overall, the aircraft seem to be executing the descents as intended by the designers of the onboard automation.

  12. Modeling volatility using state space models.

    Science.gov (United States)

    Timmer, J; Weigend, A S

    1997-08-01

    In time series problems, noise can be divided into two categories: dynamic noise which drives the process, and observational noise which is added in the measurement process, but does not influence future values of the system. In this framework, we show that empirical volatilities (the squared relative returns of prices) exhibit a significant amount of observational noise. To model and predict their time evolution adequately, we estimate state space models that explicitly include observational noise. We obtain relaxation times for shocks in the logarithm of volatility ranging from three weeks (for foreign exchange) to three to five months (for stock indices). In most cases, a two-dimensional hidden state is required to yield residuals that are consistent with white noise. We compare these results with ordinary autoregressive models (without a hidden state) and find that autoregressive models underestimate the relaxation times by about two orders of magnitude since they do not distinguish between observational and dynamic noise. This new interpretation of the dynamics of volatility in terms of relaxators in a state space model carries over to stochastic volatility models and to GARCH models, and is useful for several problems in finance, including risk management and the pricing of derivative securities. Data sets used: Olsen & Associates high frequency DEM/USD foreign exchange rates (8 years). Nikkei 225 index (40 years). Dow Jones Industrial Average (25 years).

  13. Studi Implementasi Lean Six Sigma dengan Pendekatan Value Stream Mapping untuk Mereduksi Idle Time Material pada Gudang Pelat dan Profil

    Directory of Open Access Journals (Sweden)

    Wawan Widiatmoko

    2013-03-01

    Full Text Available Peningkatan volume kegiatan industri maritim di Indonesia menuntut industri perkapalan di daerah Surabaya untuk lebih meningkatkan pelayanan baik berupa bangunan baru maupun reparasi kapal. Berdasarkan hal tersebut galangan harus mampu mengelola proses produksi dengan baik sehingga menghasilkan keuntungan yang maksimum. Salah satunya adalah proses inventory dan transport of materials yang efektif. Tugas akhir bertujuan untuk mengetahui sistem inventori yang diterapkan oleh perusahaan yang dijadikan sampel serta idle time material pelat dan profil yang ada di gudang bahan baku dengan menggunakan metode lean six sigma dengan pendekatan value stream mapping. Dari hasil perhitungan menggunakan diperoleh nilai sigma perhitungan idle time sebesar 0.1976 sehingga perlu dilakukan upaya peningkatan nilai sigma pengadaan material itu sendiri. Berdasarkan hasil analisa penyebab adanya idle time dengan menggunakan RCA diperoleh beberapa faktor yaitu : rendahnya nilai sigma penggunaan material, tidak tercapainya target pengerjaan pada proses fabrikasi, proses pengadaan material yang tidak mempertimbangkan strategi proses pembangunan kapal. Dengan penerapan lean six sigma dengan pendekatan value stream mapping dihasilkan usulan perbaikan proses inventori di perusahaan antara lain : meningkatkan nilai sigma penggunaan material, melakukan strategi pembelian material sesuai strategi pembangunan kapal berdasarkan zona, memperbaiki kerjasama dengan supplier material pelat dan profil. Pembuatan future state mapping mendapatkan usulan perbaikan dengan pembuatan perencanaan pengadaan material dengan mempertimbangkan strategi pembangunan kapal berdasarkan zona pembangunannya. Diperoleh strategi pengadaan material yang dilakukan sebanyak 4 kali order.

  14. Modeling and Performance Analysis of State Transitions for Energy-Efficient Femto Base Stations

    Directory of Open Access Journals (Sweden)

    YunWon Chung

    2015-05-01

    Full Text Available Lowering the energy required by base stations (BSs is one of the hot issues nowadays in order to achieve green cellular networks. The energy consumption of femto BSs can be reduced, by turning off the radio interface when there is no mobile station (MS under the coverage area of the femto BSs or MSs served by the femto BSs do not transmit or receive data packets for a long time, especially late at night. In the energy-efficient femto BSs, if MSs have any data packet to transmit and the radio interface of femto BSs is in the off state, MSs wake up the radio interface of femto BSs by using an additional low-power radio interface. In this paper, active (data, idle, active (signaling, sleep entering, sleep and waking up states are defined for the state model for the energy-efficient femto BSs, and the state transitions are modeled analytically. The steady-state probability of each state is derived thoroughly using a semi-Markov approach. Then, the performance of the energy-efficient femto BSs is analyzed in detail, from the aspects of energy consumption, cumulative average delay, cost and low-power radio signaling load. From the results, the tradeoff relationship between energy consumption and cumulative average delay is analyzed in detail, and it was concluded that an appropriate inactivity timer value should be selected to balance the tradeoff.

  15. 13 CFR 108.530 - Restrictions on investments of idle funds by NMVC Companies.

    Science.gov (United States)

    2010-01-01

    ... idle funds by NMVC Companies. 108.530 Section 108.530 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION NEW MARKETS VENTURE CAPITAL (âNMVCâ) PROGRAM Managing the Operations of a NMVC Company Cash Management by A Nmvc Company § 108.530 Restrictions on investments of idle funds by NMVC Companies. (a...

  16. Costly myths. An analysis of idling beliefs and behavior in personal motor vehicles

    International Nuclear Information System (INIS)

    Carrico, Amanda R.; Padgett, Paul; Vandenbergh, Michael P.; Gilligan, Jonathan; Wallston, Kenneth A.

    2009-01-01

    Despite the large contribution of individuals and households to climate change, little has been done in the US to reduce the CO 2 emissions attributable to this sector. Motor vehicle idling among individual private citizens is one behavior that may be amenable to large-scale policy interventions. Currently, little data are available to quantify the potential reductions in emissions that could be realized by successful policy interventions. In addition, little is known about the motivations and beliefs that underlie idling. In the fall of 2007, 1300 drivers in the US were surveyed to assess typical idling practices, beliefs and motivations. Results indicate that the average individual idled for over 16 min a day and believed that a vehicle can be idled for at least 3.6 min before it is better to turn it off. Those who held inaccurate beliefs idled, on average, over 1 min longer than the remainder of the sample. These data suggest that idling accounts for over 93 MMt of CO 2 and 10.6 billion gallons (40.1 billion liters) of gasoline a year, equaling 1.6% of all US emissions. Much of this idling is unnecessary and economically disadvantageous to drivers. The policy implications of these findings are discussed. (author)

  17. Conceptualization of Idle (Laghw) and its relation to medical futility

    Science.gov (United States)

    Rezaei Aderyani, Mohsen; Javadi, Mohsen; Nazari Tavakkoli, Saeid; Kiani, Mehrzad; Abbasi, Mahmood

    2016-01-01

    A major debate in medical ethics is the request for futile treatment. The topic of medical futility requires discrete assessment in Iran for at least two reasons. First, the common principles and foundations of medical ethics have taken shape in the context of Western culture and secularism. Accordingly, the implementation of the same guidelines and codes of medical ethics as Western societies in Muslim communities does not seem rational. Second, the challenges arising in health service settings are divergent across different countries. The Quranic concept of idle (laghw) and its derivatives are used in 11 honorable verses of the Holy Quran. Among these verses, the 3rd verse of the blessed Al-Muminūn Surah was selected for its closer connection to the concept under examination. The selected verse was researched in the context of all dictionaries presented in Noor Jami` al-Tafasir 2 (The Noor Collection of Interpretations 2) software. "Idle" is known as any insignificant speech, act, or thing that is not beneficial; an action from which no benefit is gained; any falsehood (that is not stable or realized); an entertaining act; any foul, futile talk and action unworthy of attention; loss of hope; and something that is not derived from method and thought. The word has also been used to refer to anything insignificant. The notes and derived interpretations were placed in the following categories: A) Having no significant benefit (When medical care does not benefit the patient (his body and/or soul and his life in this world and/or the Hereafter), it is wrong to proceed with that medical modality; B) Falsehood (Actions that fail to provide, maintain, and improve health are clearly futile); C) Unworthy of attention (An action that neither improves health nor threatens it is wrong and impermissible). PMID:27390616

  18. Summary of OEM Idling Recommendations from Vehicle Owner's Manuals

    Energy Technology Data Exchange (ETDEWEB)

    Keel-Blackmon, Kristy [East Tennessee Clean Fuels Coalition (ETCleanFuels), Knoxville, TN (United States); Curran, Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lapsa, Melissa Voss [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    The project upon which this report is based was conceived in 2012 during discussions between the East Tennessee Clean Fuels Coalition (ETCleanFuels) and Oak Ridge National Laboratory (ORNL) who both noted that a detailed summary of idling recommendations for a wide variety of engines and vehicles were not available in the literature. The two organizations agreed that ETCleanFuels would develop a first-of-its-kind collection of idling recommendations from the owner’s manuals of modern production vehicles. Vehicle engine idling, a subject that has long been debated, is largely shrouded in misinformation. The justifications for idling seem to be many: driver comfort, waiting in lines, and talking on cell phones to name a few. Assuredly, a great number of people idle because of the myths and misinformation surrounding this issue. This report addresses these myths by turning to statements taken directly from the automobile and engine manufacturers themselves.

  19. Effect of long-term idle periods on the performance of sequencing batch reactors

    DEFF Research Database (Denmark)

    Morgenroth, Eberhard Friedrich; Obermayer, A.; Arnold, E.

    2000-01-01

    Sludge storage can be used as an effective control handle to adjust plant capacity to large influent variations. The sequencing batch reactor (SBR) technology is well suited for temporary sludge storage because reactors can easily be switched off individually and operated in an idle mode....... In this study experimental results on the effect of long term (weeks) idle periods on nitrogen removal are presented. The SBRs were operated with idle times ranging from 6 to 20 days. Batch experiments were performed where sludge was stored without the addition of any substrate for 7 weeks. In the SBRs......, repeated long-term idle phases had only a minor effect on ammonia oxidation. The nitrite oxidation process was more sensitive to long idle phases resulting in temporary nitrite accumulation in the SBRs. Quantitative gene probe analyses demonstrated that the decay of ammonia oxidizers was slower than...

  20. Voices Physics awaits new options as Standard Model idles

    CERN Document Server

    Overbye, Dennis

    2006-01-01

    Author and New York Times deputy science editor Dennis Overbye says experimental clues have yet to produce a "tsunami moment" for revelations beyond the structure of physics formulated in the 1970s. But physicists are hoping for something bizarre.

  1. Functional State Modelling of Cultivation Processes: Dissolved Oxygen Limitation State

    Directory of Open Access Journals (Sweden)

    Olympia Roeva

    2015-04-01

    Full Text Available A new functional state, namely dissolved oxygen limitation state for both bacteria Escherichia coli and yeast Saccharomyces cerevisiae fed-batch cultivation processes is presented in this study. Functional state modelling approach is applied to cultivation processes in order to overcome the main disadvantages of using global process model, namely complex model structure and a big number of model parameters. Alongwith the newly introduced dissolved oxygen limitation state, second acetate production state and first acetate production state are recognized during the fed-batch cultivation of E. coli, while mixed oxidative state and first ethanol production state are recognized during the fed-batch cultivation of S. cerevisiae. For all mentioned above functional states both structural and parameter identification is here performed based on experimental data of E. coli and S. cerevisiae fed-batch cultivations.

  2. A community-based participatory research partnership to reduce vehicle idling near public schools.

    Science.gov (United States)

    Eghbalnia, Cynthia; Sharkey, Ken; Garland-Porter, Denisha; Alam, Mohammad; Crumpton, Marilyn; Jones, Camille; Ryan, Patrick H

    2013-05-01

    The authors implemented and assessed the effectiveness of a public health initiative aimed at reducing traffic-related air pollution exposure of the school community at four Cincinnati public schools. A partnership was fostered with academic environmental health researchers and community members. Anti-idling campaign materials were developed and education and training were provided to school bus drivers, students, parents, and school staff. Pledge drives and pre- and posteducation assessments were documented to measure the effectiveness of the program. After completing the educational component of the public health initiative, bus drivers (n = 397), community members (n = 53), and staff (n = 214) demonstrated significantly increased knowledge about the health effects of idling (p public health intervention. A community-driven public health initiative can be effective in both 1) enhancing community awareness about the benefits of reducing idling vehicles and 2) increasing active participation in idling reduction. The partnership initially developed has continued to develop toward a sustainable and growing process.

  3. Seamless online science workflow development and collaboration using IDL and the ENVI Services Engine

    Science.gov (United States)

    Harris, A. T.; Ramachandran, R.; Maskey, M.

    2013-12-01

    The Exelis-developed IDL and ENVI software are ubiquitous tools in Earth science research environments. The IDL Workbench is used by the Earth science community for programming custom data analysis and visualization modules. ENVI is a software solution for processing and analyzing geospatial imagery that combines support for multiple Earth observation scientific data types (optical, thermal, multi-spectral, hyperspectral, SAR, LiDAR) with advanced image processing and analysis algorithms. The ENVI & IDL Services Engine (ESE) is an Earth science data processing engine that allows researchers to use open standards to rapidly create, publish and deploy advanced Earth science data analytics within any existing enterprise infrastructure. Although powerful in many ways, the tools lack collaborative features out-of-box. Thus, as part of the NASA funded project, Collaborative Workbench to Accelerate Science Algorithm Development, researchers at the University of Alabama in Huntsville and Exelis have developed plugins that allow seamless research collaboration from within IDL workbench. Such additional features within IDL workbench are possible because IDL workbench is built using the Eclipse Rich Client Platform (RCP). RCP applications allow custom plugins to be dropped in for extended functionalities. Specific functionalities of the plugins include creating complex workflows based on IDL application source code, submitting workflows to be executed by ESE in the cloud, and sharing and cloning of workflows among collaborators. All these functionalities are available to scientists without leaving their IDL workbench. Because ESE can interoperate with any middleware, scientific programmers can readily string together IDL processing tasks (or tasks written in other languages like C++, Java or Python) to create complex workflows for deployment within their current enterprise architecture (e.g. ArcGIS Server, GeoServer, Apache ODE or SciFlo from JPL). Using the collaborative IDL

  4. Evaluating Major Electrode Types for Idle Biological Signal Measurements for Modern Medical Technology

    Directory of Open Access Journals (Sweden)

    Anas Albulbul

    2016-08-01

    Full Text Available Biological signals such as electrocardiogram (ECG and electromyography (EMG that can be measured at home can reveal vital information about the patient’s health. In today modern technology, the measured ECG or EMG signals at home can be monitored by medical staff from long distance through the use of internet. Biopotential electrodes are crucial in monitoring ECG, EMG, etc., signals. Applying the right type of electrode that lasts for a long time and assists in recording high signal quality is desirable in medical devices industry. Three types of electrodes (Silver/Silver Chloride (Ag/AgCl electrodes, Orbital electrodes and Stainless steel electrodes were tested to identify the most appropriate one for recording biological signals. The evaluation was based on determining the electrode circuit model components and having high capacitance value or high capacitor value of electrode circuit model (Cd and low electrode-skin impedance value or low resistor value of electrode circuit model (Rd. The results revealed that Ag/AgCl is the best type of electrodes, followed by Orbital electrodes. Stainless steel electrodes had performed poorly. However, Orbital electrodes material can last longer than Ag/AgCl and hence perform similar to Ag/AgCl electrodes, which can be idle for monitoring biological signals at home without the need for medical staff to replace the electrodes in a short period of time.

  5. Edge detection using IDL for mammographic image in Medical Physics laboratory

    International Nuclear Information System (INIS)

    Wan Hazlinda Ismail; Md Saion Salikin; Asmaliza Hashim; Norriza Mohd Isa; Azuhar Ripin

    2004-01-01

    Over the decade, doctors, physicists and scientists have been using radiographic images to diagnosis patient illness as well as to study the anatomy of human body without having to cut them. Now days, in the advancement of technologies these images are available in digital form. The image data can be manipulated to determine exactly the information doctors, physicists and scientists want, which can help them in decision making when diagnosis as well as help them in understanding of the human body better. In this paper, the edge detection technique is discussed in brief which is extensive used in image y segmentation where the method is performed by finding the boundaries between objects, thus indirectly defining the object. Bennet Model DMF- 150 Mammography Machine and breast phantom model l2A with 4. 0 cm compressed thickness are employed in this study. A Vidar film digitizer is used to digitize the images. The digitized images are then manipulated by using Interactive Data language (IDL) software. Results of this study are presented in brief in this presentation. (Author)

  6. My Life with State Space Models

    DEFF Research Database (Denmark)

    Lundbye-Christensen, Søren

    2007-01-01

    State space models have had a tremendous impact on the analysis of time series. Even though the models and ideas are much older the work that Mike West and others started in the 1980ies brought the attention to the statisticians and the models and inferential possibilities have developed enormously....... The conceptual idea behind the state space model is that the evolution over time in the object we are observing and the measurement process itself are modelled separately. My very first serious analysis of a data set was done using a state space model, and since then I seem to have been "haunted" by state space...... models. I will not try to give a thorough exposition of the development from simple linear Gaussian state space models to the highly non-linear models analysed with computer intensive methods. Instead I will give examples of some health related applications, that I have been involved in, and relate...

  7. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real

  8. Estimation of fuel loss due to idling of vehicles at a signalized intersection in Chennai, India

    Science.gov (United States)

    Vasantha Kumar, S.; Gulati, Himanshu; Arora, Shivam

    2017-11-01

    The vehicles while waiting at signalized intersections are generally found to be in idling condition, i.e., not switching off their vehicles during red times. This phenomenon of idling of vehicles during red times at signalized intersections may lead to huge economic loss as lot of fuel is consumed by vehicles when they are in idling condition. The situation may even be worse in countries like India as different vehicle types consume varying amount of fuel. Only limited studies have been reported on estimation of fuel loss due to idling of vehicles in India. In the present study, one of the busy intersections in Chennai, namely, Tidel Park Junction in Rajiv Gandhi salai was considered. Data collection was carried out in one approach road of the intersection during morning and evening peak hours on a typical working day by manually noting down the red timings of each cycle and the corresponding number of two-wheelers, three-wheelers, passenger cars, light commercial vehicles (LCV) and heavy motorized vehicles (HMV) that were in idling mode. Using the fuel consumption values of various vehicles types suggested by Central Road Research Institute (CRRI), the total fuel loss during the study period was found to be Rs. 4,93,849/-. The installation of red timers, synchronization of signals, use of non-motorized transport for short trips and public awareness are some of the measures which government need to focus to save the fuel wasted at signalized intersections in major cities of India.

  9. xdamp Version 6 : an IDL-based data and image manipulation program.

    Energy Technology Data Exchange (ETDEWEB)

    Ballard, William Parker

    2012-04-01

    The original DAMP (DAta Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA{trademark} (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs. time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of Unix(reg sign)-based workstations, a replacement was needed. This package uses the IDL(reg sign) software, available from Research Systems Incorporated, a Xerox company, in Boulder, Colorado, as the engine, and creates a set of widgets to manipulate the data in a manner similar to the original DAMP and earlier versions of xdamp. IDL is currently supported on a wide variety of Unix platforms such as IBM(reg sign) workstations, Hewlett Packard workstations, SUN(reg sign) workstations, Microsoft(reg sign) Windows{trademark} computers, Macintosh(reg sign) computers and Digital Equipment Corporation VMS(reg sign) and Alpha(reg sign) systems. Thus, xdamp is portable across many platforms. We have verified operation, albeit with some minor IDL bugs, on personal computers using Windows 7 and Windows Vista; Unix platforms; and Macintosh computers. Version 6 is an update that uses the IDL Virtual Machine to resolve the need for licensing IDL.

  10. Model Checking Multivariate State Rewards

    DEFF Research Database (Denmark)

    Nielsen, Bo Friis; Nielson, Flemming; Nielson, Hanne Riis

    2010-01-01

    We consider continuous stochastic logics with state rewards that are interpreted over continuous time Markov chains. We show how results from multivariate phase type distributions can be used to obtain higher-order moments for multivariate state rewards (including covariance). We also generalise...

  11. Modeling Per Capita State Health Expenditure Variat...

    Data.gov (United States)

    U.S. Department of Health & Human Services — Modeling Per Capita State Health Expenditure Variation State-Level Characteristics Matter, published in Volume 3, Issue 4, of the Medicare and Medicaid Research...

  12. Fitting State Space Models with EViews

    Directory of Open Access Journals (Sweden)

    Filip A. M. Van den Bossche

    2011-05-01

    Full Text Available This paper demonstrates how state space models can be fitted in EViews. We first briefly introduce EViews as an econometric software package. Next we fit a local level model to the Nile data. We then show how a multivariate “latent risk” model can be developed, making use of the EViews programming environment. We conclude by summarizing the possibilities and limitations of the software package when it comes to state space modeling.

  13. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....

  14. Model Checking Dynamic States in GROOVE

    NARCIS (Netherlands)

    Kastenberg, H.; Rensink, Arend; Valmari, A.

    2006-01-01

    Much research has been done in the field of model-checking complex systems (either hardware or software). Approaches that use explicit state modelling mostly use bit vectors to represent the states of such systems. Unfortunately, that kind of representation does not extend smoothly to systems in

  15. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  16. 46 CFR 281.3 - Method of commencing and terminating voyages and of determining idle status.

    Science.gov (United States)

    2010-10-01

    ... foreign articles, or the completion of final discharge of cargo or ballast at the last U.S. port of... applicable voyage number. A separate accounting period shall be created to cover each idle status period, and... operating costs for said period were reduced to a minimum in accordance with sound commercial practice. [G.O...

  17. Social Media and the Idle No More Movement: Citizenship, Activism and Dissent in Canada

    Science.gov (United States)

    Tupper, Jennifer

    2014-01-01

    This paper, informed by a critique of traditional understandings of citizenship and civic education, explores the use of social media as a means of fostering activism and dissent. Specifically, the paper explores the ways in which the Idle No More Movement, which began in Canada in 2012 marshalled social media to educate about and protest Bill…

  18. 13 CFR 107.530 - Restrictions on investments of idle funds by leveraged Licensees.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Restrictions on investments of idle funds by leveraged Licensees. 107.530 Section 107.530 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES Managing the Operations of a Licensee Cash...

  19. 41 CFR 101-25.109-1 - Identification of idle equipment.

    Science.gov (United States)

    2010-07-01

    ... comprised of senior program management, property management, and scientific personnel who are familiar with... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Identification of idle equipment. 101-25.109-1 Section 101-25.109-1 Public Contracts and Property Management Federal Property...

  20. 75 FR 63110 - Small Business Investment Companies-Conflicts of Interest and Investment of Idle Funds

    Science.gov (United States)

    2010-10-14

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 107 RIN 3245-AF56 Small Business Investment Companies--Conflicts of Interest and Investment of Idle Funds AGENCY: U.S. Small Business Administration. ACTION: Proposed rule. SUMMARY: The U.S. Small Business Administration proposes to revise a rule which prohibits a...

  1. 77 FR 20292 - Small Business Investment Companies-Conflicts of Interest and Investment of Idle Funds

    Science.gov (United States)

    2012-04-04

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 107 RIN 3245-AF56 Small Business Investment Companies--Conflicts of Interest and Investment of Idle Funds AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The U.S. Small Business Administration is revising a rule which prohibits a small...

  2. Markov State Model of Ion Assembling Process.

    Science.gov (United States)

    Shevchuk, Roman

    2016-05-12

    We study the process of ion assembling in aqueous solution by means of molecular dynamics. In this article, we present a method to study many-particle assembly using the Markov state model formalism. We observed that at NaCl concentration higher than 1.49 mol/kg, the system tends to form a big ionic cluster composed of roughly 70-90% of the total number of ions. Using Markov state models, we estimated the average time needed for the system to make a transition from discorded state to a state with big ionic cluster. Our results suggest that the characteristic time to form an ionic cluster is a negative exponential function of the salt concentration. Moreover, we defined and analyzed three different kinetic states of a single ion particle. These states correspond to a different particle location during nucleation process.

  3. Idle reduction programs and potential benefits to schools

    Science.gov (United States)

    2010-11-01

    School districts in Texas and many other states have, in recent years, increased the walk zones : surrounding schools to a 2-mile perimeter. Inside this perimeter, either no school bus service is : offered, or service is offered only with a fee...

  4. The STAMP Software for State Space Models

    Directory of Open Access Journals (Sweden)

    Roy Mendelssohn

    2011-05-01

    Full Text Available This paper reviews the use of STAMP (Structural Time Series Analyser, Modeler and Predictor for modeling time series data using state-space methods with unobserved components. STAMP is a commercial, GUI-based program that runs on Windows, Linux and Macintosh computers as part of the larger OxMetrics System. STAMP can estimate a wide-variety of both univariate and multivariate state-space models, provides a wide array of diagnostics, and has a batch mode capability. The use of STAMP is illustrated for the Nile river data which is analyzed throughout this issue, as well as by modeling a variety of oceanographic and climate related data sets. The analyses of the oceanographic and climate data illustrate the breadth of models available in STAMP, and that state-space methods produce results that provide new insights into important scientific problems.

  5. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    systems. A steady state two-dimensional model is formulated and implemented aiming to obtain good accuracy and short computational times. Comparison with experimental data from the literature shows that the model reproduces the physical behavior of desiccant wheels. Mass diffusion in the desiccant should...

  6. Modeling in the Common Core State Standards

    Science.gov (United States)

    Tam, Kai Chung

    2011-01-01

    The inclusion of modeling and applications into the mathematics curriculum has proven to be a challenging task over the last fifty years. The Common Core State Standards (CCSS) has made mathematical modeling both one of its Standards for Mathematical Practice and one of its Conceptual Categories. This article discusses the need for mathematical…

  7. Multivariable Wind Modeling in State Space

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Pedersen, B. J.

    2011-01-01

    -spectral density matrix a frequency response matrix is constructed which determines the turbulence vector as a linear filtration of Gaussian white noise. Finally, an accurate state space modeling method is proposed which allows selection of an appropriate model order, and estimation of a state space model......Turbulence of the incoming wind field is of paramount importance to the dynamic response of wind turbines. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper an empirical...... cross-spectral density function for the along-wind turbulence component over the rotor plane is taken as the starting point. The spectrum is spatially discretized in terms of a Hermitian cross-spectral density matrix for the turbulence state vector which turns out not to be positive definite. Since...

  8. [Modeling asthma evolution by a multi-state model].

    Science.gov (United States)

    Boudemaghe, T; Daurès, J P

    2000-06-01

    There are many scores for the evaluation of asthma. However, most do not take into account the evolutionary aspects of this illness. We propose a model for the clinical course of asthma by a homogeneous Markov model process based on data provided by the A.R.I.A. (Association de Recherche en Intelligence Artificielle dans le cadre de l'asthme et des maladies respiratoires). The criterion used is the activity of the illness during the month before consultation. The activity is divided into three levels: light (state 1), mild (state 2) and severe (state 3). The model allows the evaluation of the strength of transition between states. We found that strong intensities were implicated towards state 2 (lambda(12) and lambda(32)), less towards state 1 (lambda(21) and lambda(31)), and minimum towards state 3 (lambda(23)). This results in an equilibrium distribution essentially divided between state 1 and 2 (44.6% and 51.0% respectively) with a small proportion in state 3 (4.4%). In the future, the increasing amount of available data should permit the introduction of covariables, the distinction of subgroups and the implementation of clinical studies. The interest of this model falls within the domain of the quantification of the illness as well as the representation allowed thereof, while offering a formal framework for the clinical notion of time and evolution.

  9. [A novel image processing and analysis system for medical images based on IDL language].

    Science.gov (United States)

    Tang, Min

    2009-08-01

    Medical image processing and analysis system, which is of great value in medical research and clinical diagnosis, has been a focal field in recent years. Interactive data language (IDL) has a vast library of built-in math, statistics, image analysis and information processing routines, therefore, it has become an ideal software for interactive analysis and visualization of two-dimensional and three-dimensional scientific datasets. The methodology is proposed to design a novel image processing and analysis system for medical images based on IDL. There are five functional modules in this system: Image Preprocessing, Image Segmentation, Image Reconstruction, Image Measurement and Image Management. Experimental results demonstrate that this system is effective and efficient, and it has the advantages of extensive applicability, friendly interaction, convenient extension and favorable transplantation.

  10. State-Space Modelling in Marine Science

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard

    State-space models provide a natural framework for analysing time series that cannot be observed without error. This is the case for fisheries stock assessments and movement data from marine animals. In fisheries stock assessments, the aim is to estimate the stock size; however, the only data...... available is the number of fish removed from the population and samples on a small fraction of the population. In marine animal movement, accurate position systems such as GPS cannot be used. Instead, inaccurate alternative must be used yielding observations with large errors. Both assessment and individual...... animal movement models are important for management and conservation of marine animals. Consequently, models should be developed to be operational in a management context while adequately evaluating uncertainties in the models. This thesis develops state-space models using the Laplace approximation...

  11. Lean hydrous and anhydrous bioethanol combustion in spark ignition engine at idle

    International Nuclear Information System (INIS)

    Chuepeng, Sathaporn; Srisuwan, Sudecha; Tongroon, Manida

    2016-01-01

    Highlights: • Anhydrous ethanol burns fastest in uncalibrated engine at equal equivalence ratio. • The leaner hydrous ethanol combustion tends to elevate the COV in imep. • Hydrous ethanol consumption was 10% greater than anhydrous ethanol at ϕ = 0.67 limit. • Optimizing alternative fuel engine at idle for stability and emission is suggested. - Abstract: The applications of anhydrous bioethanol to substitute or replace gasoline fuel have shown to attain benefits in terms of engine thermal efficiency, power output and exhaust emissions from spark ignition engines. A hydrous bioethanol has also been gained more attention due to its energy and cost effectiveness. The main aim of this work is to minimize fuel quantity injected to the intake ports of a four-cylinder engine under idle condition. The engine running with hydrous ethanol undergoes within lean-burn condition as its combustion stability is analyzed using an engine indicating system. Coefficient of variation in indicated mean effective pressure is an indicator for combustion stability with hydrocarbon and carbon monoxide emission monitoring as a supplement. Anhydrous ethanol burns faster than hydrous ethanol and gasoline in the uncalibrated engine at the same fuel-to-air equivalence ratio under idle condition. The leaner hydrous ethanol combustion tends to elevate the coefficient of variation in indicated mean effective pressure. The experimental results have found that the engine consumes greater hydrous ethanol by 10% on mass basis compared with those of anhydrous ethanol at the lean limit of fuel-to-air equivalence ratio of 0.67. The results of exhaust gas analysis were compared with those predicted by chemical equilibrium analysis of the fuel-air combustion; the resemble trends were found. Calibrating the alternative fueled engine for fuel injection quantity should be accomplished at idle with combustion stability and emissions optimization.

  12. Application of Finite Element Based Simulation and Modal Testing Methods to Improve Vehicle Powertrain Idle Vibration

    Directory of Open Access Journals (Sweden)

    Polat Sendur

    2017-01-01

    Full Text Available Current practice of analytical and test methods related to the analysis, testing and improvement of vehicle vibrations is overviewed. The methods are illustrated on the determination and improvement of powertrain induced steering wheel vibration of a heavy commercial truck. More specifically, the transmissibility of powertrain idle vibration to cabin is investigated with respect to powertrain rigid body modes and modal alignment of the steering column/wheel system is considered. It is found out that roll mode of the powertrain is not separated from idle excitation for effective vibration isolation as well as steering wheel column mode is close to the 3rd engine excitation frequency order, which results in high vibration levels. Powertrain roll mode is optimized by tuning the powertrain mount stiffness to improve the performance. Steering column mode is also separated from the 3rd engine excitation frequency by the application of a mass absorber. It is concluded that the use of analytical and test methods to address the complex relation between design parameters and powertrain idle response is effective to optimize the system performance and evaluate the trade-offs in the vehicle design such as vibration performance and weight. Reference Number: www.asrongo.org/doi:4.2017.2.1.10

  13. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  14. xdamp Version 3: An IDL reg-sign-based data and image manipulation program

    International Nuclear Information System (INIS)

    Ballard, W.P.

    1998-05-01

    The original DAMP (DAta Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA trademark (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs. time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of Unix reg-sign-based workstations, a replacement was needed. This package uses the IDL reg-sign software, available from Research Systems Incorporated in Boulder, Colorado, as the engine, and creates a set of widgets to manipulate the data in a manner similar to the original DAMP and earlier versions of xdamp. IDL is currently supported on a wide variety of Unix platforms such as IBM reg-sign workstations, Hewlett Packard workstations, SUN reg-sign workstations, Microsoft reg-sign Windows trademark computers, Macintosh reg-sign computers and Digital Equipment Corporation VMS reg-sign and Alpha reg-sign systems. Thus, xdamp is portable across many platforms. The author has verified operation, albeit with some minor IDL bugs, on personal computers using Windows 95 and Windows NT; IBM Unix platforms; and DEC alpha and VMS systems; HP 9000/700 series workstations; and Macintosh computers, both regular and PowerPC trademark versions. Version 3 adds the capability to manipulate images to the original xdamp capabilities

  15. COGNITIVE MODELING OF EPISTEMIC MENTAL STATES

    Directory of Open Access Journals (Sweden)

    Yurovitskaya, L.N.

    2017-03-01

    Full Text Available Epistemic states of mind, connected with the cognitive activity of a man, are aimed not only at apprehending the world around us, but also at the process of this apprehension. A very important step on this way is an attempt to model these states and processes in terms of formal logics and semantics, irrespective of the language of cognition. The article presents the idea of how formal logical and linguistic modeling of the process of thinking shows the correlation and the interdependence of semantic units connected with mental activities of human brain. The basic notions of the conceptual field of cognition are presented in the article

  16. A Model of Mental State Transition Network

    Science.gov (United States)

    Xiang, Hua; Jiang, Peilin; Xiao, Shuang; Ren, Fuji; Kuroiwa, Shingo

    Emotion is one of the most essential and basic attributes of human intelligence. Current AI (Artificial Intelligence) research is concentrating on physical components of emotion, rarely is it carried out from the view of psychology directly(1). Study on the model of artificial psychology is the first step in the development of human-computer interaction. As affective computing remains unpredictable, creating a reasonable mental model becomes the primary task for building a hybrid system. A pragmatic mental model is also the fundament of some key topics such as recognition and synthesis of emotions. In this paper a Mental State Transition Network Model(2) is proposed to detect human emotions. By a series of psychological experiments, we present a new way to predict coming human's emotions depending on the various current emotional states under various stimuli. Besides, people in different genders and characters are taken into consideration in our investigation. According to the psychological experiments data derived from 200 questionnaires, a Mental State Transition Network Model for describing the transitions in distribution among the emotions and relationships between internal mental situations and external are concluded. Further more the coefficients of the mental transition network model were achieved. Comparing seven relative evaluating experiments, an average precision rate of 0.843 is achieved using a set of samples for the proposed model.

  17. Effect of oxygenate additive on diesel engine fuel consumption and emissions operating with biodiesel-diesel blend at idling conditions

    Science.gov (United States)

    Mahmudul, H. M.; Hagos, F. Y.; Mamat, R.; Noor, M. M.; Yusri, I. M.

    2017-10-01

    Biodiesel is promising alternative fuel to run the automotive engine but idling is the main problem to run the vehicles in a big city. Vehicles running with idling condition cause higher fuel supply and higher emission level due to being having fuel residues in the exhaust. The purpose of this study is to evaluate the impact of alcohol additive on fuel consumption and emissions parameters under idling conditions when a multicylinder diesel engine operates with the diesel-biodiesel blend. The study found that using 5% butanol as an additive with B5 (5% Palm biodiesel + 95% diesel) blends fuel lowers brake specific fuel consumption and CO emissions by 38% and 20% respectively. But the addition of butanol increases NOx and CO2 emissions. Based on the result it can be said that 5% butanol can be used in a diesel engine with B5 without any engine modifications to tackle the idling problem.

  18. Multi-state modeling of biomolecules.

    Directory of Open Access Journals (Sweden)

    Melanie I Stefan

    2014-09-01

    Full Text Available Multi-state modeling of biomolecules refers to a series of techniques used to represent and compute the behavior of biological molecules or complexes that can adopt a large number of possible functional states. Biological signaling systems often rely on complexes of biological macromolecules that can undergo several functionally significant modifications that are mutually compatible. Thus, they can exist in a very large number of functionally different states. Modeling such multi-state systems poses two problems: the problem of how to describe and specify a multi-state system (the "specification problem" and the problem of how to use a computer to simulate the progress of the system over time (the "computation problem". To address the specification problem, modelers have in recent years moved away from explicit specification of all possible states and towards rule-based formalisms that allow for implicit model specification, including the κ-calculus, BioNetGen, the Allosteric Network Compiler, and others. To tackle the computation problem, they have turned to particle-based methods that have in many cases proved more computationally efficient than population-based methods based on ordinary differential equations, partial differential equations, or the Gillespie stochastic simulation algorithm. Given current computing technology, particle-based methods are sometimes the only possible option. Particle-based simulators fall into two further categories: nonspatial simulators, such as StochSim, DYNSTOC, RuleMonkey, and the Network-Free Stochastic Simulator (NFSim, and spatial simulators, including Meredys, SRSim, and MCell. Modelers can thus choose from a variety of tools, the best choice depending on the particular problem. Development of faster and more powerful methods is ongoing, promising the ability to simulate ever more complex signaling processes in the future.

  19. Effect of leaving milk trucks empty and idle for 6 h between raw milk loads.

    Science.gov (United States)

    Kuhn, Eva; Meunier-Goddik, Lisbeth; Waite-Cusic, Joy G

    2018-02-01

    The US Pasteurized Milk Ordinance (PMO) allows milk tanker trucks to be used repeatedly for 24 h before mandatory clean-in-place cleaning, but no specifications are given for the length of time a tanker can be empty between loads. We defined a worst-case hauling scenario as a hauling vessel left empty and dirty (idle) for extended periods between loads, especially in warm weather. Initial studies were conducted using 5-gallon milk cans (pilot-scale) as a proof-of-concept and to demonstrate that extended idle time intervals could contribute to compromised raw milk quality. Based on pilot-scale results, a commercial hauling study was conducted through partnership with a Pacific Northwest dairy co-op to verify that extended idle times of 6 h between loads have minimal influence on the microbiological populations and enzyme activity in subsequent loads of milk. Milk cans were used to haul raw milk (load 1), emptied, incubated at 30°C for 3, 6, 10, and 20 h, and refilled with commercially pasteurized whole milk (load 2) to measure cross-contamination. For the commercial-scale study, a single tanker was filled with milk from a farm known to have poorer quality milk (farm A, load 1), emptied, and refilled immediately (0 h) or after a delay (6 h) with milk from a farm known to have superior quality milk (farm B, load 2). In both experiments, milk samples were obtained from each farm's bulk tank and from the milk can or tanker before unloading. Each sample was microbiologically assessed for standard plate count (SPC), lactic acid bacteria (LAB), and coliform counts. Selected isolates were assessed for lipolytic and proteolytic activity using spirit blue agar and skim milk agar, respectively. The pilot-scale experiment effectively demonstrated that extended periods of idle (>3 h) of soiled hauling vessels can significantly affect the microbiological quality of raw milk in subsequent loads; however, extended idle times of 6 h or less would not measurably compromise milk

  20. Multimedia Mapping using Continuous State Space Models

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2004-01-01

    In this paper a system that transforms speech waveforms to animated faces are proposed. The system relies on continuous state space models to perform the mapping, this makes it possible to ensure video with no sudden jumps and allows continuous control of the parameters in 'face space'. Simulatio...

  1. What Characterise the Nordic Welfare State Model

    DEFF Research Database (Denmark)

    Greve, Bent

    2007-01-01

    The main distinctive characteristics of the Nordic welfare states are presented. These include full employment, high degree of equality, a high level of taxes and public sector spending. The Nordic countries are compared to other European countries. The conclusion being that the Nordic Model...

  2. Competing States in the t-J Model: Uniform d-Wave State versus Stripe State versus Stripe State

    NARCIS (Netherlands)

    Corboz, P.R.; Rice, T.M.; Troyer, M.

    2014-01-01

    Variational studies of the t-J model on the square lattice based on infinite projected-entangled pair states confirm an extremely close competition between a uniform d-wave superconducting state and different stripe states. The site-centered stripe with an in-phase d-wave order has an equal or only

  3. Architecture of the Product State Model Environment

    DEFF Research Database (Denmark)

    Holm Larsen, Michael; Lynggaard, Hans Jørgen B.

    2003-01-01

    This paper addresses the issue of using product models to support product lifecycle activities withparticular focus on the production phase. The motivation of the research is that products are producedmore costly and with longer lead-time than necessary.The paper provides a review of product...... modelling technologies and approaches, and the overallarchitecture for the Product State Model (PSM) Environment as a basis for quality monitoring.Especially, the paper focuses on the circumstances prevailing in a one-of-a-kind manufacturingenvironment like the shipbuilding industry, where product modelling...... technologies already haveproved their worth in the design and engineering phases of shipbuilding and in the operation phase.However, the handling of product information on the shop floor is not yet equally developed.The paper reports from the Brite-Euram project (No. BE97-4510) QualiGlobe focusing...

  4. Markov state models and molecular alchemy

    Science.gov (United States)

    Schütte, Christof; Nielsen, Adam; Weber, Marcus

    2015-01-01

    In recent years, Markov state models (MSMs) have attracted a considerable amount of attention with regard to modelling conformation changes and associated function of biomolecular systems. They have been used successfully, e.g. for peptides including time-resolved spectroscopic experiments, protein function and protein folding , DNA and RNA, and ligand-receptor interaction in drug design and more complicated multivalent scenarios. In this article, a novel reweighting scheme is introduced that allows to construct an MSM for certain molecular system out of an MSM for a similar system. This permits studying how molecular properties on long timescales differ between similar molecular systems without performing full molecular dynamics simulations for each system under consideration. The performance of the reweighting scheme is illustrated for simple test cases, including one where the main wells of the respective energy landscapes are located differently and an alchemical transformation of butane to pentane where the dimension of the state space is changed.

  5. Martingale models for quantum state reduction

    Energy Technology Data Exchange (ETDEWEB)

    Adler, S.L.; Brun, T.A. [Institute for Advanced Study, Princeton, NJ (United States)]. E-mails: adler@ias.edu; tbrun@ias.edu; Brody, D.C. [Blackett Laboratory, Imperial College, London (United Kingdom)]. E-mail: dorje@ic.ac.uk; Hughston, L.P. [Department of Mathematics, King' s College, Strand, London (United Kingdom)]. E-mail: lane.hughston@kcl.ac.uk

    2001-10-26

    Stochastic models for quantum state reduction give rise to statistical laws that are in most respects in agreement with those of quantum measurement theory. Here we examine the correspondence of the two theories in detail, making a systematic use of the methods of martingale theory. An analysis is carried out to determine the magnitude of the fluctuations experienced by the expectation of the observable during the course of the reduction process and an upper bound is established for the ensemble average of the greatest fluctuations incurred. We consider the general projection postulate of Lueders applicable in the case of a possibly degenerate eigenvalue spectrum, and derive this result rigorously from the underlying stochastic dynamics for state reduction in the case of both a pure and a mixed initial state. We also analyse the associated Lindblad equation for the evolution of the density matrix, and obtain an exact time-dependent solution for the state reduction that explicitly exhibits the transition from a general initial density matrix to the Lueders density matrix. Finally, we apply Girsanov's theorem to derive a set of simple formulae for the dynamics of the state in terms of a family of geometric Brownian motions, thereby constructing an explicit unravelling of the Lindblad equation. (author)

  6. GNU Data Language (GDL) - a free and open-source implementation of IDL

    Science.gov (United States)

    Arabas, Sylwester; Schellens, Marc; Coulais, Alain; Gales, Joel; Messmer, Peter

    2010-05-01

    GNU Data Language (GDL) is developed with the aim of providing an open-source drop-in replacement for the ITTVIS's Interactive Data Language (IDL). It is free software developed by an international team of volunteers led by Marc Schellens - the project's founder (a list of contributors is available on the project's website). The development is hosted on SourceForge where GDL continuously ranks in the 99th percentile of most active projects. GDL with its library routines is designed as a tool for numerical data analysis and visualisation. As its proprietary counterparts (IDL and PV-WAVE), GDL is used particularly in geosciences and astronomy. GDL is dynamically-typed, vectorized and has object-oriented programming capabilities. The library routines handle numerical calculations, data visualisation, signal/image processing, interaction with host OS and data input/output. GDL supports several data formats such as netCDF, HDF4, HDF5, GRIB, PNG, TIFF, DICOM, etc. Graphical output is handled by X11, PostScript, SVG or z-buffer terminals, the last one allowing output to be saved in a variety of raster graphics formats. GDL is an incremental compiler with integrated debugging facilities. It is written in C++ using the ANTLR language-recognition framework. Most of the library routines are implemented as interfaces to open-source packages such as GNU Scientific Library, PLPlot, FFTW, ImageMagick, and others. GDL features a Python bridge (Python code can be called from GDL; GDL can be compiled as a Python module). Extensions to GDL can be written in C++, GDL, and Python. A number of open software libraries written in IDL, such as the NASA Astronomy Library, MPFIT, CMSVLIB and TeXtoIDL are fully or partially functional under GDL. Packaged versions of GDL are available for several Linux distributions and Mac OS X. The source code compiles on some other UNIX systems, including BSD and OpenSolaris. The presentation will cover the current status of the project, the key

  7. Parameter and State Estimator for State Space Models

    Directory of Open Access Journals (Sweden)

    Ruifeng Ding

    2014-01-01

    Full Text Available This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  8. Parameter and state estimator for state space models.

    Science.gov (United States)

    Ding, Ruifeng; Zhuang, Linfan

    2014-01-01

    This paper proposes a parameter and state estimator for canonical state space systems from measured input-output data. The key is to solve the system state from the state equation and to substitute it into the output equation, eliminating the state variables, and the resulting equation contains only the system inputs and outputs, and to derive a least squares parameter identification algorithm. Furthermore, the system states are computed from the estimated parameters and the input-output data. Convergence analysis using the martingale convergence theorem indicates that the parameter estimates converge to their true values. Finally, an illustrative example is provided to show that the proposed algorithm is effective.

  9. A three states sleep-waking model

    Energy Technology Data Exchange (ETDEWEB)

    Comte, J.C. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France)]. E-mail: comtejc@gmail.com; Schatzman, M. [MAPLY, Laboratoire de Mathematiques appliquees de Lyon, UMR5585, CNRS/Universite Claude Bernard Lyon1, 21, Avenue Claude Bernard, 69622 Villeurbanne Cedex (France); Ravassard, P. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France); Luppi, P.H. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France); Salin, P.A. [Laboratoire de Physiopathologie des Reseaux Neuronaux du Cycle Veille-Sommeil, UMR 5167, CNRS/Universite Claude Bernard Lyon1, Faculte de Medecine RTH Laennec 7, Rue Guillaume Paradin 69372 Lyon Cedex 08 (France)

    2006-08-15

    The mechanisms underlying the sleep-states periodicity in animals are a mystery of biology. Recent studies identified a new neuronal population activated during the slow wave sleep (SWS) in the ventral lateral preoptic area of the hypothalamus. Interactions between this neuronal population and the others populations implicated in the vigilance states (paradoxical sleep (PS) and wake (W)) dynamics are not determined. Thus, we propose here a sleep-waking theoretical model that depicts the potential interactions between the neuronal populations responsible for the three vigilance states. First, we pooled data from previous papers regarding the neuronal populations firing rate time course and characterized statistically the experimental hypnograms. Then, we constructed a nonlinear differential equations system describing the neuronal populations activity time course. A simple rule playing the firing threshold role applied to the model allows to construct a theoretical hypnogram. A random modulation of the neuronal activity, shows that theoretical hypnograms present a dynamics close to the experimental observations. Furthermore, we show that the wake promoting neurons activity can predict the next SWS episode duration.

  10. A three states sleep-waking model

    International Nuclear Information System (INIS)

    Comte, J.C.; Schatzman, M.; Ravassard, P.; Luppi, P.H.; Salin, P.A.

    2006-01-01

    The mechanisms underlying the sleep-states periodicity in animals are a mystery of biology. Recent studies identified a new neuronal population activated during the slow wave sleep (SWS) in the ventral lateral preoptic area of the hypothalamus. Interactions between this neuronal population and the others populations implicated in the vigilance states (paradoxical sleep (PS) and wake (W)) dynamics are not determined. Thus, we propose here a sleep-waking theoretical model that depicts the potential interactions between the neuronal populations responsible for the three vigilance states. First, we pooled data from previous papers regarding the neuronal populations firing rate time course and characterized statistically the experimental hypnograms. Then, we constructed a nonlinear differential equations system describing the neuronal populations activity time course. A simple rule playing the firing threshold role applied to the model allows to construct a theoretical hypnogram. A random modulation of the neuronal activity, shows that theoretical hypnograms present a dynamics close to the experimental observations. Furthermore, we show that the wake promoting neurons activity can predict the next SWS episode duration

  11. An evaluation of interventions for reducing the risk of PRRSV introduction to filtered farms via retrograde air movement through idle fans.

    Science.gov (United States)

    Alonso, Carmen; Otake, Satoshi; Davies, Peter; Dee, Scott

    2012-06-15

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically significant pathogen of pigs that can be transported via the airborne route out to 9.1 km. To reduce this risk, large swine facilities have started to implement systems to filter contaminated incoming air. A proposed means of air filtration failure is the retrograde movement of air (back-drafting) from the external environment into the animal air space through non-filtered points such as idle wall fans; however, this risk has not been validated. Therefore, the purpose of this study was threefold: (1) to prove that PRRSV introduction via retrograde air movement through idle fans is a true risk; (2) to determine the minimum retrograde air velocity necessary to introduce PRRSV to an animal airspace from an external source; and (3) to evaluate the efficacy of different interventions designed to reduce this risk. A retrograde air movement model was used to test a range of velocities and interventions, including a standard plastic shutter, a plastic shutter plus a canvas cover, a nylon air chute, an aluminum shutter plus an air chute and a double shutter system. Results indicated that retrograde air movement is a real risk for PRRSV introduction to a filtered air space; however, it required a velocity of 0.76 m/s. In addition, while all the interventions designed to reduce this risk were superior when compared to a standard plastic shutter, significant differences were detected between treatments. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Generalised linear models for correlated pseudo-observations, with applications to multi-state models

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Klein, John P.; Rosthøj, Susanne

    2003-01-01

    Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model......Generalised estimating equation; Generalised linear model; Jackknife pseudo-value; Logistic regression; Markov Model; Multi-state model...

  13. Low IDL-B and high LDL-1 subfraction levels in serum of ALS patients.

    Science.gov (United States)

    Delaye, J B; Patin, F; Piver, E; Bruno, C; Vasse, M; Vourc'h, P; Andres, C R; Corcia, P; Blasco, H

    2017-09-15

    Converging evidence highlights that lipid metabolism plays a key role in ALS pathophysiology. Dyslipidemia has been described in ALS patients and may be protective but peripheral lipoprotein subclasses have never been studied. We collected sera from 30 ALS patients and 30 gender and age-matched controls. We analyzed 11 distinct lipoprotein subclasses by linear polyacrylamide gel electrophoresis (Lipoprint, Quantimetrix Corporation, USA). We also measured lipoprotein (a), apolipoprotein B, and apolipoprotein E levels. ALS patients had significant higher total cholesterol, HDL-cholesterol, and LDL-cholesterol levels than controls (pALS patients than controls. Our preliminary work confirmed the association between ALS and dyslipidemia. The low IDL-B levels may explain the hepatic steatosis frequently reported in ALS. The high levels of the cholesterol-rich LDL-1 subfraction is consistent with previously reported hypercholesterolemia. This study describes, for the first time, the distribution of serum lipoproteins in ALS patients, with low IDL-B and high LDL-1 subfraction level. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Network robustness assessed within a dual connectivity framework: joint dynamics of the Active and Idle Networks.

    Science.gov (United States)

    Tejedor, Alejandro; Longjas, Anthony; Zaliapin, Ilya; Ambroj, Samuel; Foufoula-Georgiou, Efi

    2017-08-17

    Network robustness against attacks has been widely studied in fields as diverse as the Internet, power grids and human societies. But current definition of robustness is only accounting for half of the story: the connectivity of the nodes unaffected by the attack. Here we propose a new framework to assess network robustness, wherein the connectivity of the affected nodes is also taken into consideration, acknowledging that it plays a crucial role in properly evaluating the overall network robustness in terms of its future recovery from the attack. Specifically, we propose a dual perspective approach wherein at any instant in the network evolution under attack, two distinct networks are defined: (i) the Active Network (AN) composed of the unaffected nodes and (ii) the Idle Network (IN) composed of the affected nodes. The proposed robustness metric considers both the efficiency of destroying the AN and that of building-up the IN. We show, via analysis of well-known prototype networks and real world data, that trade-offs between the efficiency of Active and Idle Network dynamics give rise to surprising robustness crossovers and re-rankings, which can have significant implications for decision making.

  15. xdamp Version 4 An IDL Based Data and Image Manipulation Program

    CERN Document Server

    William-Ballar, P

    2002-01-01

    The original DAMP (W t a Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA(trademark) (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs. time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of Unix(reg sub s ign)-based workstations, a replacement was needed. This package uses the IDL(reg sub s ign) software, available from Research Systems Incorporated, a Xerox company, in Boulder, Colorado, as the engine, and creates a set of widgets to manipulate the data in a manner similar to the original DAMP and earlier versions of xdamp. IDL is currently supported on a wide variety of Unix platforms such as IBM(reg sub s ign) workstations, Hewlett Packard workstations, SUN(reg sub s ign) workstations, Microsoft(reg sub s ign) Windows(trademark) computers, Macinto...

  16. The continuum shell-model neutron states of Pb

    Indian Academy of Sciences (India)

    model states with the collective vibrational states from giant resonances. The particle-vibration coupling model can be applied to understand the spreading pattern of the shell-model states lying in continuum region. The single-particle states are ...

  17. A Triaxial Characteristic State Model for Sand

    DEFF Research Database (Denmark)

    Krenk, S.; Borup, M.; Hedegaard, J.

    A non-associated plasticity model for sand is presented. The loading surface is a closed two-parameter surface in the principal stress space, determined by a size and a shape parameter. The shape parameter is determined explicitly from the slope of the characteristic line. For small mean stress t...... that permit ultimate stress states beyond the characteristic line have been proposed. Results from drained triaxial tests show good agreement with the model, usi ng a weighted work hardening rule....... the loading surfaces approach the zero-tension planes asymptotically, generating a nearly triangular contour in the deviator ic stress plane. The gradient of the flow potential is generated directly from the gradient of the loading potential by scaling of the mean stress component. Two hardening rules...

  18. Active State Model for Autonomous Systems

    Science.gov (United States)

    Park, Han; Chien, Steve; Zak, Michail; James, Mark; Mackey, Ryan; Fisher, Forest

    2003-01-01

    The concept of the active state model (ASM) is an architecture for the development of advanced integrated fault-detection-and-isolation (FDI) systems for robotic land vehicles, pilotless aircraft, exploratory spacecraft, or other complex engineering systems that will be capable of autonomous operation. An FDI system based on the ASM concept would not only provide traditional diagnostic capabilities, but also integrate the FDI system under a unified framework and provide mechanism for sharing of information between FDI subsystems to fully assess the overall health of the system. The ASM concept begins with definitions borrowed from psychology, wherein a system is regarded as active when it possesses self-image, self-awareness, and an ability to make decisions itself, such that it is able to perform purposeful motions and other transitions with some degree of autonomy from the environment. For an engineering system, self-image would manifest itself as the ability to determine nominal values of sensor data by use of a mathematical model of itself, and selfawareness would manifest itself as the ability to relate sensor data to their nominal values. The ASM for such a system may start with the closed-loop control dynamics that describe the evolution of state variables. As soon as this model was supplemented with nominal values of sensor data, it would possess self-image. The ability to process the current sensor data and compare them with the nominal values would represent self-awareness. On the basis of self-image and self-awareness, the ASM provides the capability for self-identification, detection of abnormalities, and self-diagnosis.

  19. An IDL-based analysis package for COBE and other skycube-formatted astronomical data

    Science.gov (United States)

    Ewing, J. A.; Isaacman, Richard B.; Gales, J. M.

    1992-01-01

    UIMAGE is a data analysis package written in IDL for the Cosmic Background Explorer (COBE) project. COBE has extraordinarily stringent accuracy requirements: 1 percent mid-infrared absolute photometry, 0.01 percent submillimeter absolute spectrometry, and 0.0001 percent submillimeter relative photometry. Thus, many of the transformations and image enhancements common to analysis of large data sets must be done with special care. UIMAGE is unusual in this sense in that it performs as many of its operations as possible on the data in its native format and projection, which in the case of COBE is the quadrilateralized sphereical cube ('skycube'). That is, after reprojecting the data, e.g., onto an Aitoff map, the user who performs an operation such as taking a crosscut or extracting data from a pixel is transparently acting upon the skycube data from which the projection was made, thereby preserving the accuracy of the result. Current plans call for formatting external data bases such as CO maps into the skycube format with a high-accuracy transformation, thereby allowing Guest Investigators to use UIMAGE for direct comparison of the COBE maps with those at other wavelengths from other instruments. It is completely menu-driven so that its use requires no knowledge of IDL. Its functionality includes I/O from the COBE archives, FITS files, and IDL save sets as well as standard analysis operations such as smoothing, reprojection, zooming, statistics of areas, spectral analysis, etc. One of UIMAGE's more advanced and attractive features is its terminal independence. Most of the operations (e.g., menu-item selection or pixel selection) that are driven by the mouse on an X-windows terminal are also available using arrow keys and keyboard entry (e.g., pixel coordinates) on VT200 and Tektronix-class terminals. Even limited grey scales of images are available this way. Obviously, image processing is very limited on this type of terminal, but it is nonetheless surprising how

  20. L-Band Wide Follow-up Survey: Interesting Candidates and IDL Routines

    Science.gov (United States)

    Nichols, Nathan; Grzeskowiak, S.; Murray, K.; Troischt, P.; ALFALFA Team

    2014-01-01

    ALFALFA-U is a collaborative undertaking of faculty and students at 19 institutions, performing research using the ALFALFA blind HI survey and the L-Band Wide (LBW) follow-up survey. The primary goal of the LBW survey is to conduct targeted L-band Wide observations of the most interesting ALFALFA sources. This included the following four categories: 1. dark galaxy candidates, 2. OH Megamaser candidates, 3. extreme gas-dominated dwarf galaxy candidates, and 4. statistical samples of low signal to noise sources associated with optical counterparts. An IDL (Interactive Data Language) routine was developed to reduce the LBW data, provide integrated fluxes of the signals and calculate RMS noise. There were 312 definite detections and 328 possible detections of 1256 possible sources. This work has been supported by NSF grants AST-1211005 and AST-0725267.

  1. Elaboration d’Indice composite de Développement du secteur bovin Laitier (IDL

    Directory of Open Access Journals (Sweden)

    K. KESSAB BELKHAYAT

    2014-03-01

    Full Text Available Plusieurs travaux de recherche ont été publiés sur la mesure du niveau de développement du secteur bovin laitier. Toutefois, aucun de ces travaux ne traite du secteur dans sa globalité. L’objectif du travail est de construire un tableau de bord du secteur bovin laitier à travers le développement d’un indice composite.Pour la construction de l’indice composite, 39 indicateurs du secteur bovin laitier sont identifiés dans le cadre conceptuel couvrant 8 dimensions. La collecte des données a concerné 41 variables composant les indicateurs, 37 pays et sur une période de 11 années (2000-2010. Après le traitement des données manquantes, la base de données complète est constituée de 21 indicateurs, de 23 pays sur 9 années. Un modèle a été développé pour la normalisation, la pondération des indicateurs puis pour le calcul de l’indice composite. Le test de robustesse est déroulé par le calcul du coefficient de corrélation de Pearson. Ce test a montré que de l’indice composite calculé selon 3 méthodes différentes de normalisation et de pondération est robuste. Les pays ont été classés selon leur l’IDL. Plusieurs axes d’analyse sont possibles à travers l’IDL notamment son évolution dans le temps, les points forts et les points faibles pour chaque pays et les leviers de développement du secteur.

  2. Building a Snow Data Management System using Open Source Software (and IDL)

    Science.gov (United States)

    Goodale, C. E.; Mattmann, C. A.; Ramirez, P.; Hart, A. F.; Painter, T.; Zimdars, P. A.; Bryant, A.; Brodzik, M.; Skiles, M.; Seidel, F. C.; Rittger, K. E.

    2012-12-01

    At NASA's Jet Propulsion Laboratory free and open source software is used everyday to support a wide range of projects, from planetary to climate to research and development. In this abstract I will discuss the key role that open source software has played in building a robust science data processing pipeline for snow hydrology research, and how the system is also able to leverage programs written in IDL, making JPL's Snow Data System a hybrid of open source and proprietary software. Main Points: - The Design of the Snow Data System (illustrate how the collection of sub-systems are combined to create a complete data processing pipeline) - Discuss the Challenges of moving from a single algorithm on a laptop, to running 100's of parallel algorithms on a cluster of servers (lesson's learned) - Code changes - Software license related challenges - Storage Requirements - System Evolution (from data archiving, to data processing, to data on a map, to near-real-time products and maps) - Road map for the next 6 months (including how easily we re-used the snowDS code base to support the Airborne Snow Observatory Mission) Software in Use and their Software Licenses: IDL - Used for pre and post processing of data. Licensed under a proprietary software license held by Excelis. Apache OODT - Used for data management and workflow processing. Licensed under the Apache License Version 2. GDAL - Geospatial Data processing library used for data re-projection currently. Licensed under the X/MIT license. GeoServer - WMS Server. Licensed under the General Public License Version 2.0 Leaflet.js - Javascript web mapping library. Licensed under the Berkeley Software Distribution License. Python - Glue code and miscellaneous data processing support. Licensed under the Python Software Foundation License. Perl - Script wrapper for running the SCAG algorithm. Licensed under the General Public License Version 3. PHP - Front-end web application programming. Licensed under the PHP License Version

  3. Review article: Idle 'just-in-case' peripheral intravenous cannulas in the emergency department: Is something wrong?

    Science.gov (United States)

    Gledstone-Brown, Lynne; McHugh, Douglas

    2017-12-06

    Peripheral intravenous cannula (PIVC) placement is often an essential emergency medicine precursor to lifesaving treatment, but it is not harmless. Patients frequently and without proper consideration of the consequences receive a 'just-in-case' PIVCs as part of their assessment and admission, which, in a not insignificant number of patients, remains unused or idle in situ. We reviewed the literature and performed a thematic analysis of data collated from 21 articles published in the past 24 years regarding redundant PIVCs. The following five common themes emerged: heterogeneous prevalence data on post-insertion PIVC usage, preventable intravascular complications, financial burden, loss of time and a culture of over-investigating. The prevalence of PIVC insertions and idle PIVCs was heterogeneous among these publications; the median ED idle PIVC prevalence value was 32.4%. This practice is associated with compromised patient safety, squandered finances and misdirected practitioner time. Cultures of convenience and shortfalls in PIVC-related education facilitate the prevalence of idle PIVCs. © 2017 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  4. A branch-and-bound algorithm for single-machine earliness-tardiness scheduling with idle time

    NARCIS (Netherlands)

    Hoogeveen, J.A.; van de Velde, S.L.; van de Velde, S.L.

    1996-01-01

    We address the NP-hard single-machine problem of scheduling n independent jobs so as to minimize the sum of α times total completion time and β times total earliness with β > α, which can be rewritten as an earliness–tardiness problem. Postponing jobs by leaving the machine idle may then be

  5. UAV State Estimation Modeling Techniques in AHRS

    Science.gov (United States)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  6. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    OpenAIRE

    О. Davydova

    2013-01-01

    In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namel...

  7. Mathematical model of transmission network static state estimation

    Directory of Open Access Journals (Sweden)

    Ivanov Aleksandar

    2012-01-01

    Full Text Available In this paper the characteristics and capabilities of the power transmission network static state estimator are presented. The solving process of the mathematical model containing the measurement errors and their processing is developed. To evaluate difference between the general model of state estimation and the fast decoupled state estimation model, the both models are applied to an example, and so derived results are compared.

  8. Simple variational ground state and pure-cat-state generation in the quantum Rabi model

    Science.gov (United States)

    Leroux, C.; Govia, L. C. G.; Clerk, A. A.

    2017-10-01

    We introduce a simple, physically motivated variational ground state for the quantum Rabi model and demonstrate that it provides a high-fidelity approximation of the true ground state in all parameter regimes (including intermediate- and strong-coupling regimes). Our variational state is constructed using Gaussian cavity states and nonorthogonal qubit pointer states and contains only three variational parameters. We use our state to develop a heuristic understanding of how the ground state evolves with increasing coupling and find a parameter regime where the ground state corresponds to the cavity being in a nearly pure Schrödinger cat state.

  9. Idling Reduction for Long-Haul Trucks: An Economic Comparison of On-Board and Wayside Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, Linda [Argonne National Lab. (ANL), Argonne, IL (United States); Weikersheimer, Patricia [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    Reducing the idling of long-haul heavy-duty trucks has long been recognized as a particularly low-hanging fruit of fuel efficiency and emissions reduction. The displacement of about 10 hours of diesel idling every day, for most days of the year, for as many as a million long-haul trucks has very clear benefits. This report considers the costs and return on investment (ROI) for idling reduction (IR) equipment for both truck owners and electrified parking space (EPS) equipment owners. For the truck owners, the key variables examined are idling hours to be displaced (generally 1,000 to 2,000 hours per year) and the price of fuel ($0 to $5/gal). The ideal IR option would provide complete services in varied climates in any location and offer the best ROI on trucks that log many idling hours. For trucks that have fewer idling hours, options with a fixed cost per hour (i.e., EPS) might be most attractive if they were available to all, or even most, truck drivers. EPS, however, is particularly cost effective for trucks on prescribed routes with a need for regular, extended stops at terminals. (EPS is also called truck stop electrification, or TSE.) The analysis shows that all IR options save money when fuel costs more than $2/gal. For trucks requiring bunk heat, a simple heater (plug-in or diesel) is almost always the most costeffective way to provide heat, even if the truck is equipped with an auxiliary power unit (APU) or is parked at a single-system EPS location. For trucks requiring bunk air-conditioning, the use of single-system EPS is most cost effective for those logging fewer idling hours. Even for trucks with higher idling hours, the cost of EPS may be about the same as that for on-board air-conditioning. Clearly, trucks’ locations and seasonal factors—and the availability of EPS— are significant in the choice of “best fit” IR equipment for truck owners. This report also considers costs and payback for owners of EPS infrastructure. An industry that 5

  10. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  11. Nonclassical states of the Jaynes - Cummings model and its excitation

    International Nuclear Information System (INIS)

    Verlan, E.M.; Razumova, M.A.

    2002-01-01

    The nonclassical squeezed states of the Jaynes -Cummings (JC) model are built,and the problem of their excitation in parametric processes is considered.The statistical properties of a field oscillator are analyzed in these states

  12. Quantum-Dot Semiconductor Optical Amplifiers: State Space Model versus Rate Equation Model

    Directory of Open Access Journals (Sweden)

    Hussein Taleb

    2013-01-01

    Full Text Available A simple and accurate dynamic model for QD-SOAs is proposed. The proposed model is based on the state space theory, where by eliminating the distance dependence of the rate equation model of the QD-SOA; we derive a state space model for the device. A comparison is made between the rate equation model and the state space model under both steady state and transient regimes. Simulation results demonstrate that the derived state space model not only is much simpler and faster than the rate equation model, but also it is as accurate as the rate equation model.

  13. Modeling software with finite state machines a practical approach

    CERN Document Server

    Wagner, Ferdinand; Wagner, Thomas; Wolstenholme, Peter

    2006-01-01

    Modeling Software with Finite State Machines: A Practical Approach explains how to apply finite state machines to software development. It provides a critical analysis of using finite state machines as a foundation for executable specifications to reduce software development effort and improve quality. This book discusses the design of a state machine and of a system of state machines. It also presents a detailed analysis of development issues relating to behavior modeling with design examples and design rules for using finite state machines. This volume describes a coherent and well-tested fr

  14. Wave Modelling - The State of the Art

    National Research Council Canada - National Science Library

    Cavaleri, L; Rogers, Erick; Tolman, Hendrik L; Ardhuin, Fabrice; Lavrenov, Igor V; Alves, J-H. G; Babanin, A; Banner, M; Belibassakis, K; Benoit, M

    2007-01-01

    .... The many faces of the subject imply separate discussions. This is reflected into the single sections, seven of them, each dealing with a specific topic, the whole providing a broad and solid overview of the present state of the art...

  15. Fundamental State Space Time Series Models for JEPX Electricity Prices

    Science.gov (United States)

    Ofuji, Kenta; Kanemoto, Shigeru

    Time series models are popular in attempts to model and forecast price dynamics in various markets. In this paper, we have formulated two state space models and tested them for its applicability to power price modeling and forecasting using JEPX (Japan Electric Power eXchange) data. The state space models generally have a high degree of flexibility with its time-dependent state transition matrix and system equation configurations. Based on empirical data analysis and past literatures, we used calculation assumptions to a) extract stochastic trend component to capture non-stationarity, and b) detect structural changes underlying in the market. The stepwise calculation algorithm followed that of Kalman Filter. We then evaluated the two models' forecasting capabilities, in comparison with ordinary AR (autoregressive) and ARCH (autoregressive conditional heteroskedasticity) models. By choosing proper explanatory variables, the latter state space model yielded as good a forecasting capability as that of the AR and the ARCH models for a short forecasting horizon.

  16. Numerical modeling of liquid feeding in the liquid-fed ceramic melter

    International Nuclear Information System (INIS)

    Hjelm, R.L.; Donovan, T.E.

    1979-10-01

    A modeling scheme developed by the Pacific Northwest Laboratory numerically simulates the behavior of the Liquid-Fed Ceramic Melter (LFCM) during liquid feeding. The computer code VECTRA (Vorticity Energy Code for TRansport Analysis) was used to simulate the LFCM in the idling and liquid feeding modes. Results for each simulation include molten glass temperature profiles and isotherm contour plots, stream function contour plots, heat generation rate contour plots, refractory isotherms, and heat balances. The results indicated that the model showed no major deviations from real LFCM behavior and that high throughput should be attainable. They also indicated that reboil was a possibility as a steady liquid feeding state was approached, very steep temperature gradients exist in the Monofrax K-3, and that phase separation could occur in the bottom corners during liquid feeding and over the entire floor while idling

  17. A Multiquantum State-to-State Model for the Fundamental States of Air: The Stellar Database

    Science.gov (United States)

    Lino da Silva, M.; Lopez, B.; Guerra, V.; Loureiro, J.

    2012-12-01

    We present a detailed database of vibrationally specific heavy-impact multiquantum rates for transitions between the fundamental states of neutral air species (N2 , O2 , NO, N and O). The most up-to-date datasets for atom- diatom collisions are firstly selected from the literature, scaled to accurate vibrational levels manifolds obtained using realistic intramolecular potentials, and extrapolated to high temperatures when necessary. For diatom-diatom collisions, vibrationally specific rates are produced using the Forced Harmonic Oscillator theory. An adequate manifold of vibrational levels is obtained from an accurate intermolecular potential, and available intermolecular potentials are approximated by a simplified Morse isotropic potential, or assumed through scaling of similar potentials otherwise. The database state-specific rates are valid for a large temperature range of low to very high temperatures, making it suitable for applications such as the modeling of high-enthalpy plasma sources or atmospheric entry applications. As experimentally determined state-specific rates are scarce, specially at high temperatures, emphasis has rather been put into verifying that the obtained rates are physically consistent, and verifying that they scale within the bounds of equilibrium rates available in the literature. The STELLAR database provides a complete and adequate set of heavy-impact rates for vibrational excitation, exchange, dissociation and recombination rates which can then be coupled to more detailed datasets for the simulation of physical-chemical processes in high-temperature plasmas. An application to the dissociation and exchange processes occurring behind an hypersonic shock wave are also presented in this work.

  18. The effect of overbooking on idle dental chair capacity in the Pretoria region of the Gauteng Oral Health Services.

    Science.gov (United States)

    Holtshousen, W S J; Coetzee, E

    2012-09-01

    An analysis of annual reports revealed that on average 20% of patient appointments with oral hygienists in the Department of Health in the Pretoria region were not utilised due to patient noncompliance (i.e. broken appointments). Many solutions have been considered to address the high rate of noncompliance and the resulting idle chair capacity. One solution selected to overcome some of the negative consequences of broken appointments was deliberate overbooking. The aim of our study was to determine the effect of overbooking on idle dental chair capacity by measuring the utilisation rate over a three month period (July to September) after 25% overbooking was introduced in the Pretoria region. A statistical analysis was conducted on our results to determine an overbooking rate that would ensure full utilisation of the available dental chair capacity. The available time units over the three month study period amounted to 1365, allocated to 1427 patients resulting in an overal overbooking rate of 4.54%. The overall utilisation rate was found to be 79.2%. The calculated regression line estimated that there would be full utilisation of dental chair capacity at an overbooking rate of 26.7%. Overbooking at the levels applied in this study had a minimal overall effect on idle dental chair capacity. Our results confirm the need for careful planning and management in addressing noncompliance. In a manner similar to the clinical situation, organisational development requires a correct diagnosis in order that an appropriate and effective intervention may be designed.

  19. Comparing State SAT Scores Using a Mixture Modeling Approach

    Science.gov (United States)

    Kim, YoungKoung Rachel

    2009-01-01

    Presented at the national conference for AERA (American Educational Research Association) in April 2009. The large variability of SAT taker population across states makes state-by-state comparisons of the SAT scores challenging. Using a mixture modeling approach, therefore, the current study presents a method of identifying subpopulations in terms…

  20. Discrete versus continuous state switching models for portfolio credit risk

    NARCIS (Netherlands)

    Lucas, A.; Klaassen, P.

    2006-01-01

    Dynamic models for credit rating transitions are important ingredients for dynamic credit risk analyses. We compare the properties of two such models that have recently been put forward. The models mainly differ in their treatment of systematic risk, which can be modeled either using discrete states

  1. Bayesian variable order Markov models: Towards Bayesian predictive state representations

    NARCIS (Netherlands)

    Dimitrakakis, C.

    2009-01-01

    We present a Bayesian variable order Markov model that shares many similarities with predictive state representations. The resulting models are compact and much easier to specify and learn than classical predictive state representations. Moreover, we show that they significantly outperform a more

  2. Likelihood functions for state space models with diffuse initial conditions

    NARCIS (Netherlands)

    Koopman, S.J.; Shephard, N.; de Vos, A.F.

    2010-01-01

    State space models with non-stationary processes and/or fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time-series models with diffuse initial conditions. In this article, we consider

  3. Likelihood functions for state space models with diffuse initial conditions

    NARCIS (Netherlands)

    Francke, M.K.; Koopmans, S.J.; de Vos, A.F.

    2008-01-01

    State space models with nonstationary processes and fixed regression effects require a state vector with diffuse initial conditions. Different likelihood functions can be adopted for the estimation of parameters in time series models with diffuse initial conditions. In this paper we consider

  4. Modeling solid-state boron carbide low energy neutron detectors

    International Nuclear Information System (INIS)

    Lundstedt, C.; Harken, A.; Day, E.; Robertson, B.W.; Adenwalla, S.

    2006-01-01

    Two independent techniques for modeling boron-based solid-state neutron detectors are presented-one using the GEANT4 Monte Carlo toolkit and the other one an analytical approach using a simplified physical model. Results of these techniques are compared for three different types of solid-state boron carbide detector. These results provide the basis for distinguishing between conversion layer and other solid-state detectors

  5. The continuum shell-model neutron states of Pb

    Indian Academy of Sciences (India)

    even magic core nucleus 208Pb. For the discrete low-lying excited states, the depletion of the shell-model ... nucleon moves. The matrix elements of K(r) has been kept fixed at 50 MeV and this has been discussed in the following section. The shell-model neutron state |j2)has been coupled with the vibrational |λπ)spin state.

  6. Embedding a State Space Model Into a Markov Decision Process

    DEFF Research Database (Denmark)

    Nielsen, Lars Relund; Jørgensen, Erik; Højsgaard, Søren

    2011-01-01

    In agriculture Markov decision processes (MDPs) with finite state and action space are often used to model sequential decision making over time. For instance, states in the process represent possible levels of traits of the animal and transition probabilities are based on biological models...... estimated from data collected from the animal or herd. State space models (SSMs) are a general tool for modeling repeated measurements over time where the model parameters can evolve dynamically. In this paper we consider methods for embedding an SSM into an MDP with finite state and action space. Different...... ways of discretizing an SSM are discussed and methods for reducing the state space of the MDP are presented. An example from dairy production is given...

  7. Minimal model for spoof acoustoelastic surface states

    DEFF Research Database (Denmark)

    Christensen, Johan; Liang, Z.; Willatzen, Morten

    2014-01-01

    Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne...... sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simu- lations confirm the feasibility of the model and we demonstrate illustrative examples...

  8. Four-quark states in potential model

    International Nuclear Information System (INIS)

    Badalyan, A.M.; Kitoroage, D.I.

    1987-01-01

    The mass spectrum of S-wave q 2 q -2 mesons of u, d, s quarks is calculated in the framework of the nonrelativistic potential model and compared with the bag model predictions. The spin-spin splittings of almost all four-quark mesons with J PC = 0 ++ , 2 ++ , 1 +- are shown to coincide with an accuracy of ∼ 50 MeV in both approaches. Two exceptions are O S (9), C π S (9) mesons for which the discrepancy is ∼ 300 MeV. Calculated centers of gravity of the multiplets are systematically ∼ 120 MeV higher than the MIT bag predictions

  9. Modeling new XYZ states at JPAC

    Energy Technology Data Exchange (ETDEWEB)

    Pilloni, Alessandro [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-12-01

    The observation of the unexpected XYZP resonances has challenged the usual heavy quarkonium framework. One of the most studied exotic states, the X(3872), happens to be copiously produced in high-energy hadron collisions. We discuss how this large prompt production cross-section, together with the comparison with light nuclei production data, disfavors a loosely-bound molecule interpretation, and calls for a new interpretation for the exotic hadron resonances. We also present the research of the Joint Physics Analysis Center in Hadron Spectroscopy.

  10. Ground state configurations in two-mode quantum Rabi models

    Science.gov (United States)

    Chilingaryan, Suren; Rodríguez-Lara, B. M.

    We study two models describing a single two-level system coupled to two boson field modes in either a parallel or orthogonal configuration. Both models may be feasible for experimental realization through Raman adiabatic driving in cavity QED. We study their ground state configurations; that is, we find the quantum precursors of the corresponding semi-classical phase transitions. We found that the ground state configurations of both models present the same critical coupling as the quantum Rabi model. Around this critical coupling, the ground state goes from the so-called normal configuration with no excitation, the qubit in the ground state and the fields in the quantum vacuum state, to a ground state with excitations, the qubit in a superposition of ground and excited state, while the fields are not in the vacuum anymore, for the first model. The second model shows a more complex ground state configuration landscape where we find the normal configuration mentioned above, two single-mode configurations, where just one of the fields and the qubit are excited, and a dual-mode configuration, where both fields and the qubit are excited. S A Chilingaryan acknowledges financial support from CONACYT.

  11. Reliability state space model of Power Transformer

    OpenAIRE

    REENA JHARANIYA; M.AHFAZ KHAN

    2011-01-01

    In electrical power network, transformer is one of the most important electrical equipment in power system, which running status is directly concerned with the reliability of power system. Reliability of a power system is considerably influenced by its equipments. Power transformers are one of the most critical and expensive equipments of a power system and their proper functions are vital for the substations and utilities .Therefore, reliability model of power transformer is very important i...

  12. Monitoring alert and drowsy states by modeling EEG source nonstationarity

    Science.gov (United States)

    Hsu, Sheng-Hsiou; Jung, Tzyy-Ping

    2017-10-01

    Objective. As a human brain performs various cognitive functions within ever-changing environments, states of the brain characterized by recorded brain activities such as electroencephalogram (EEG) are inevitably nonstationary. The challenges of analyzing the nonstationary EEG signals include finding neurocognitive sources that underlie different brain states and using EEG data to quantitatively assess the state changes. Approach. This study hypothesizes that brain activities under different states, e.g. levels of alertness, can be modeled as distinct compositions of statistically independent sources using independent component analysis (ICA). This study presents a framework to quantitatively assess the EEG source nonstationarity and estimate levels of alertness. The framework was tested against EEG data collected from 10 subjects performing a sustained-attention task in a driving simulator. Main results. Empirical results illustrate that EEG signals under alert versus drowsy states, indexed by reaction speeds to driving challenges, can be characterized by distinct ICA models. By quantifying the goodness-of-fit of each ICA model to the EEG data using the model deviation index (MDI), we found that MDIs were significantly correlated with the reaction speeds (r  =  ‑0.390 with alertness models and r  =  0.449 with drowsiness models) and the opposite correlations indicated that the two models accounted for sources in the alert and drowsy states, respectively. Based on the observed source nonstationarity, this study also proposes an online framework using a subject-specific ICA model trained with an initial (alert) state to track the level of alertness. For classification of alert against drowsy states, the proposed online framework achieved an averaged area-under-curve of 0.745 and compared favorably with a classic power-based approach. Significance. This ICA-based framework provides a new way to study changes of brain states and can be applied to

  13. Estimation methods for nonlinear state-space models in ecology

    DEFF Research Database (Denmark)

    Pedersen, Martin Wæver; Berg, Casper Willestofte; Thygesen, Uffe Høgsbro

    2011-01-01

    The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of estimation methods for such models are available to ecologists, however it is not always clear, which is the appropriate method to choose. To this end, three approaches to estimation in the theta...... Markov model (HMM). The second method uses the mixed effects modeling and fast numerical integration framework of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular Bayesian framework of BUGS. The study showed that state and parameter estimation performance...

  14. Wave Modelling - The State of the Art

    Science.gov (United States)

    2007-09-27

    conservation of wave energy, wave action and wave momentum. The coupling coefficient is given by G(k, k 2 , k 3 , k 4 ) = 97EgDZ(k, k, k3, )(3.5) 4p 2 CO, (0...applications, with a continuous push by the market forces to improve the quality of the results. Since the first order approximation of the historical SMB... market , their use in practical applications is growing and the present limitations of spectral wave modelling in this respect are beginning to be felt. It

  15. Product State Modelling based on a Meta Production

    DEFF Research Database (Denmark)

    Larsen, Michael Holm; Sørensen, Christian; Langer, Gilad

    1999-01-01

    ) is a product model that contains continuously updated data regarding the outcome of the production processes. The main contribution of this paper is a definition and a description of a Production Meta Product State Model (Production Meta PSM), using the Unified Modelling Language (UML). The meta model......As products often deviate from their original design and specifications when being produced, adjustments of the product or process are required in order to meet specifications. A prerequisite for this adjustment, is appropriate and effectively collected shop floor data. The Product State Model (PSM...... incorporates a set of characteristics associated to the (1) scope or application domain of the PSM, (2) the artefact or product, and (3) the events transforming the product and trigging product state changes. Moreover, the paper provides guidelines for a specialisation of the meta model with respect...

  16. Development of a production meta Product State Model

    DEFF Research Database (Denmark)

    Larsen, Michael Holm; Sørensen, Christian; Langer, Gilad

    1999-01-01

    ) is a product model that contains continuously updated data regarding the outcome of the production processes. The main contribution of this paper is a definition and a description of a Production Meta Product State Model (Production Meta PSM), using the Unified Modelling Language (UML). The meta model......As products often deviate from their original design and specifications when being produced, adjustments of the product or process are required in order to meet specifications. A prerequisite for this adjustment, is appropriate and effectively collected shop floor data. The Product State Model (PSM...... incorporates a set of characteristics associated to the (1) scope or application domain of the PSM, (2) the artefact or product, and (3) the events transforming the product and trigging product state changes. Moreover, the paper provides guidelines for a specialisation of the meta model with respect...

  17. Formulating state space models in R with focus on longitudinal regression models

    DEFF Research Database (Denmark)

    Dethlefsen, Claus; Lundbye-Christensen, Søren

      We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms in the form......  We provide a language for formulating a range of state space models. The described methodology is implemented in the R -package sspir available from cran.r-project.org . A state space model is specified similarly to a generalized linear model in R , by marking the time-varying terms...

  18. Deep-lying hole states in the optical model

    International Nuclear Information System (INIS)

    Klevansky, S.P.; Lemmer, R.H.

    1982-01-01

    The strength function for deep-lying hole states in an optical potential is studied by the method of Green's functions. The role of isospin is emphasized. It is shown that, while the main trends of the experimental data on hole states in isotopes of Sn and Pd can be described by an energy independent optical potential, intermediate structures in these data indicate the specific nuclear polarization effects have to be included. This is done by introducing doorway states of good isospin into the optical model potential. Such states consist of neutron hole plus proton core vibrations as well as more complicated excitations that are analog states of proton hole plus neutron core vibrations of the parent nuclear system. Specific calculations for 115 Sn and 103 Pd give satisfactory fits to the strength function data using optical model and doorway state parameters that are reasonable on physical grounds

  19. A Survey of State Universal Basic Education Board (SUBEB) Model ...

    African Journals Online (AJOL)

    SUBEB) Model Nursery and Primary School Libraries in Ekiti State. How fit are the school libraries to ably play their roles as supporters of schools ' academic programmes? To what extent are the school libraries satisfying the information needs ...

  20. Modeling systems containing alkanolamines with the CPA equation of state

    DEFF Research Database (Denmark)

    Avlund, Ane Søgaard; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2008-01-01

    An association model, the cubic-plus-association (CPA) equation of state (EoS), is applied for the first time to a class of multifunctional compounds (alkanolamines). Three alkanolamines of practical and scientific significance are considered; monoethanolamine (MEA), diethanolamine (DEA...... studied using the CPA equation of state (alcohols, amines, and glycols)....

  1. Application of Prognostic Mesoscale Modeling in the Southeast United States

    International Nuclear Information System (INIS)

    Buckley, R.L.

    1999-01-01

    A prognostic model is being used to provide regional forecasts for a variety of applications at the Savannah River Site (SRS). Emergency response dispersion models available at SRS use the space and time-dependent meteorological data provided by this model to supplement local and regional observations. Output from the model is also used locally to aid in forecasting at SRS, and regionally in providing forecasts of the potential time and location of hurricane landfall within the southeast United States

  2. Dynamic State Space Partitioning for External Memory Model Checking

    DEFF Research Database (Denmark)

    Evangelista, Sami; Kristensen, Lars Michael

    2009-01-01

    We describe a dynamic partitioning scheme usable by model checking techniques that divide the state space into partitions, such as most external memory and distributed model checking algorithms. The goal of the scheme is to reduce the number of transitions that link states belonging to different...... partitions, and thereby limit the amount of disk access and network communication. We report on several experiments made with our verification platform ASAP that implements the dynamic partitioning scheme proposed in this paper....

  3. Joint Bayesian Analysis of Parameters and States in Nonlinear, Non-Gaussian State Space Models

    NARCIS (Netherlands)

    Barra, I.; Hoogerheide, L.F.; Koopman, S.J.; Lucas, A.

    2017-01-01

    We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear, non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent

  4. The New York State Bird Conservation Area (BCA) Program: A Model for the United States

    Science.gov (United States)

    M. F. Burger; D. J. Adams; T. Post; L. Sommers; B. Swift

    2005-01-01

    The New York State Bird Conservation Area (BCA) Program, modeled after the National Audubon Society?s Important Bird Areas Program, is based on legislation signed by Governor Pataki in 1997. New York is the first state in the nation to enact such a program. The BCA Program seeks to provide a comprehensive, ecosystem approach to conserving birds and their habitats on...

  5. A Learning State-Space Model for Image Retrieval

    Directory of Open Access Journals (Sweden)

    Lee Greg C

    2007-01-01

    Full Text Available This paper proposes an approach based on a state-space model for learning the user concepts in image retrieval. We first design a scheme of region-based image representation based on concept units, which are integrated with different types of feature spaces and with different region scales of image segmentation. The design of the concept units aims at describing similar characteristics at a certain perspective among relevant images. We present the details of our proposed approach based on a state-space model for interactive image retrieval, including likelihood and transition models, and we also describe some experiments that show the efficacy of our proposed model. This work demonstrates the feasibility of using a state-space model to estimate the user intuition in image retrieval.

  6. 'tomo_display' and 'vol_tools': IDL VM Packages for Tomography Data Reconstruction, Processing, and Visualization

    Science.gov (United States)

    Rivers, M. L.; Gualda, G. A.

    2009-05-01

    One of the challenges in tomography is the availability of suitable software for image processing and analysis in 3D. We present here 'tomo_display' and 'vol_tools', two packages created in IDL that enable reconstruction, processing, and visualization of tomographic data. They complement in many ways the capabilities offered by Blob3D (Ketcham 2005 - Geosphere, 1: 32-41, DOI: 10.1130/GES00001.1) and, in combination, allow users without programming knowledge to perform all steps necessary to obtain qualitative and quantitative information using tomographic data. The package 'tomo_display' was created and is maintained by Mark Rivers. It allows the user to: (1) preprocess and reconstruct parallel beam tomographic data, including removal of anomalous pixels, ring artifact reduction, and automated determination of the rotation center, (2) visualization of both raw and reconstructed data, either as individual frames, or as a series of sequential frames. The package 'vol_tools' consists of a series of small programs created and maintained by Guilherme Gualda to perform specific tasks not included in other packages. Existing modules include simple tools for cropping volumes, generating histograms of intensity, sample volume measurement (useful for porous samples like pumice), and computation of volume differences (for differential absorption tomography). The module 'vol_animate' can be used to generate 3D animations using rendered isosurfaces around objects. Both packages use the same NetCDF format '.volume' files created using code written by Mark Rivers. Currently, only 16-bit integer volumes are created and read by the packages, but floating point and 8-bit data can easily be stored in the NetCDF format as well. A simple GUI to convert sequences of tiffs into '.volume' files is available within 'vol_tools'. Both 'tomo_display' and 'vol_tools' include options to (1) generate onscreen output that allows for dynamic visualization in 3D, (2) save sequences of tiffs to disk

  7. Modified Critical State Two-Surface Plasticity Model for Sands

    DEFF Research Database (Denmark)

    Sørensen, Kris Wessel; Nielsen, Søren Kjær; Shajarati, Amir

    This article describes the outline of a numerical integration scheme for a critical state two-surface plasticity model for sands. The model is slightly modified by LeBlanc (2008) compared to the original formulation presented by Manzari and Dafalias (1997) and has the ability to correctly model...... the stress-strain response of sands. The model is versatile and can be used to simulate drained and undrained conditions, due to the fact that the model can efficiently calculate change in void ratio as well as pore pressure. The objective of the constitutive model is to investigate if the numerical...

  8. Ising percolation in a three-state majority vote model

    International Nuclear Information System (INIS)

    Balankin, Alexander S.; Martínez-Cruz, M.A.; Gayosso Martínez, Felipe; Mena, Baltasar; Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier

    2017-01-01

    Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  9. Ising percolation in a three-state majority vote model

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Martínez-Cruz, M.A.; Gayosso Martínez, Felipe [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Tobon, Atalo; Patiño-Ortiz, Julián; Patiño-Ortiz, Miguel; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-05

    Highlights: • Three-state non-consensus majority voter model is introduced. • Phase transition in the absorbing state non-consensus is revealed. • The percolation transition belongs to the universality class of Ising percolation. • The effect of an updating rule for a tie between voter neighbors is highlighted. - Abstract: In this Letter, we introduce a three-state majority vote model in which each voter adopts a state of a majority of its active neighbors, if exist, but the voter becomes uncommitted if its active neighbors are in a tie, or all neighbors are the uncommitted. Numerical simulations were performed on square lattices of different linear size with periodic boundary conditions. Starting from a random distribution of active voters, the model leads to a stable non-consensus state in which three opinions coexist. We found that the “magnetization” of the non-consensus state and the concentration of uncommitted voters in it are governed by an initial composition of system and are independent of the lattice size. Furthermore, we found that a configuration of the stable non-consensus state undergoes a second order percolation transition at a critical concentration of voters holding the same opinion. Numerical simulations suggest that this transition belongs to the same universality class as the Ising percolation. These findings highlight the effect of an updating rule for a tie between voter neighbors on the critical behavior of models obeying the majority vote rule whenever a strict majority exists.

  10. Product State Models in Holonic shop floor control systems

    DEFF Research Database (Denmark)

    Langer, Gilad; Sørensen, Christian; Larsen, Michael Holm

    1999-01-01

    This paper reviews the concepts of the product state models as an integrated database for Holonic Shop Floor Control. One of the requirements of agility is to be able to realise real-time control of manufacturing systems based on the actual state of the system and especially the state of its...... workpieces. The Product State Model (PSM) is an integrated object oriented database, which contains the dynamic data concerning the actual state of the workpieces during the manufacturing processing. It is integrated in the HoMuCS architecture by aggregating a PSM in each order holon. The paper outlines...... this as well as the general concepts of the PSM and the important parts of the HoMuCS system architecture. Finally the integration of a PSM is illustrated in a case study based on an industrial case at the Odense Steel Shipyard Ltd....

  11. Ontology and modeling patterns for state-based behavior representation

    Science.gov (United States)

    Castet, Jean-Francois; Rozek, Matthew L.; Ingham, Michel D.; Rouquette, Nicolas F.; Chung, Seung H.; Kerzhner, Aleksandr A.; Donahue, Kenneth M.; Jenkins, J. Steven; Wagner, David A.; Dvorak, Daniel L.; hide

    2015-01-01

    This paper provides an approach to capture state-based behavior of elements, that is, the specification of their state evolution in time, and the interactions amongst them. Elements can be components (e.g., sensors, actuators) or environments, and are characterized by state variables that vary with time. The behaviors of these elements, as well as interactions among them are represented through constraints on state variables. This paper discusses the concepts and relationships introduced in this behavior ontology, and the modeling patterns associated with it. Two example cases are provided to illustrate their usage, as well as to demonstrate the flexibility and scalability of the behavior ontology: a simple flashlight electrical model and a more complex spacecraft model involving instruments, power and data behaviors. Finally, an implementation in a SysML profile is provided.

  12. Exactly solvable model in quadrupole-octupole coupled states

    Science.gov (United States)

    Jalili Majarshin, A.; Sabri, H.; Rezaei, M.

    2018-03-01

    Exactly solvable model in quadrupole-octupole coupled (QOC) states is an interesting nuclear structure phenomenon. For example, several transitions of the electric dipole and quadrupole (E1 and E2) values are indicative of QOC states. Various collective models as three-level and four-level pairing models were employed in order to account for the observed properties of the QOC states. We suggest a simultaneous description of low-lying collective positive and negative-parity states to use the spdf and sdf interacting boson model to reproduce the general characteristics of the QOC states. Also, quantum phase transitions are investigated based on dual algebraic structures for the sd, sdf and spdf-IBM. The low lying positive and negative parity states and the QOC properties of the stable even-even Cd isotopes are calculated in solvable extended transitional Hamiltonian of the IBM-spdf and IBM-sdf models based on the affine SU (1 , 1) ˆ Lie algebra. Some observables such as energy levels, transition rates, expectation value of boson number operators, energy differences and staggering pattern are calculated and examined for Cd isotopes. The IBM calculations indicate a nuclear structure of the electric E1, E2 and E3 strength and energy spectra in the low-lying, thus confirming the experimental results for transition region. The calculations confirm a good agreement for the energy spectra, quantum phase transitions and fragmentation of the E1, E2 and E3 strengths.

  13. 3 QP plus rotor model and high spin states

    International Nuclear Information System (INIS)

    Mathur, Tripti

    1995-01-01

    Nuclear models are approximate methods to describe certain properties of a large number of nuclei. In this paper details of 3 QP (three quasi particle) plus rotor model and high spin state are discussed. The band head energies for the 3 QP rotational bands for 157 Ho and 159 Tm are also given. 5 refs., 8 figs

  14. Microscopic model of the glass transition and the glassy state

    International Nuclear Information System (INIS)

    Shukla, P.

    1982-07-01

    A microscopic model of the glass transition and the glassy state is presented. It is exactly solvable, and offers a unified view of the equilibrium and non-equilibrium aspects of the glass transition. It also provides a statistical-mechanical justification of the irreversible thermodynamic models of the glass transition proposed earlier. (author)

  15. A Modified Microfinance Model Proposed for the United States

    Directory of Open Access Journals (Sweden)

    Eldon H Bernstein

    2014-07-01

    While the goal in the traditional model in developing markets is the elimination of poverty, we show how those critical conditions help to explain the lack of success in the United States.  We propose a modified model whose goal is the creation of an entrepreneurial venture or improving the performance of an existing small enterprise.

  16. Thermodynamic state ensemble models of cis-regulation.

    Directory of Open Access Journals (Sweden)

    Marc S Sherman

    Full Text Available A major goal in computational biology is to develop models that accurately predict a gene's expression from its surrounding regulatory DNA. Here we present one class of such models, thermodynamic state ensemble models. We describe the biochemical derivation of the thermodynamic framework in simple terms, and lay out the mathematical components that comprise each model. These components include (1 the possible states of a promoter, where a state is defined as a particular arrangement of transcription factors bound to a DNA promoter, (2 the binding constants that describe the affinity of the protein-protein and protein-DNA interactions that occur in each state, and (3 whether each state is capable of transcribing. Using these components, we demonstrate how to compute a cis-regulatory function that encodes the probability of a promoter being active. Our intention is to provide enough detail so that readers with little background in thermodynamics can compose their own cis-regulatory functions. To facilitate this goal, we also describe a matrix form of the model that can be easily coded in any programming language. This formalism has great flexibility, which we show by illustrating how phenomena such as competition between transcription factors and cooperativity are readily incorporated into these models. Using this framework, we also demonstrate that Michaelis-like functions, another class of cis-regulatory models, are a subset of the thermodynamic framework with specific assumptions. By recasting Michaelis-like functions as thermodynamic functions, we emphasize the relationship between these models and delineate the specific circumstances representable by each approach. Application of thermodynamic state ensemble models is likely to be an important tool in unraveling the physical basis of combinatorial cis-regulation and in generating formalisms that accurately predict gene expression from DNA sequence.

  17. Formulating state space models in R with focus on longitudinal regression models

    DEFF Research Database (Denmark)

    Dethlefsen, Claus; Lundbye-Christensen, Søren

    2006-01-01

    We provide a language for formulating a range of state space models with response densities within the exponential family. The described methodology is implemented in the R-package sspir. A state space model is specified similarly to a generalized linear model in R, and then the time-varying terms...

  18. Standard State Space Models of Unawareness (Extended Abstract

    Directory of Open Access Journals (Sweden)

    Peter Fritz

    2016-06-01

    Full Text Available The impossibility theorem of Dekel, Lipman and Rustichini has been thought to demonstrate that standard state-space models cannot be used to represent unawareness. We first show that Dekel, Lipman and Rustichini do not establish this claim. We then distinguish three notions of awareness, and argue that although one of them may not be adequately modeled using standard state spaces, there is no reason to think that standard state spaces cannot provide models of the other two notions. In fact, standard space models of these forms of awareness are attractively simple. They allow us to prove completeness and decidability results with ease, to carry over standard techniques from decision theory, and to add propositional quantifiers straightforwardly.

  19. THE EUROPEAN MODEL OF STATE REGULATION OF TOURISM ACTIVITIES

    Directory of Open Access Journals (Sweden)

    О. Davydova

    2013-11-01

    Full Text Available In the article the existing model of state regulation of the development of tourism. Expediency of the European model of state regulation of tourism development in Ukraine. It is noted that the European model of state regulation of tourism activities based on the coordination of marketing activities and the development of cooperation between the public and private sectors. The basic forms of public-private partnerships and the advantages of using cluster model of development of tourism, namely, contracts, production sharing agreement, lease, joint venture. Promising areas of application of the PPP identified the transport sector, housing and utilities, energy and tourism sector. The features of cluster formations in the country and the prospects for tourism clusters.

  20. Adverse Selection Models with Three States of Nature

    Directory of Open Access Journals (Sweden)

    Daniela MARINESCU

    2011-02-01

    Full Text Available In the paper we analyze an adverse selection model with three states of nature, where both the Principal and the Agent are risk neutral. When solving the model, we use the informational rents and the efforts as variables. We derive the optimal contract in the situation of asymmetric information. The paper ends with the characteristics of the optimal contract and the main conclusions of the model.

  1. Transformation of Neural State Space Models into LFT Models for Robust Control Design

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2000-01-01

    This paper considers the extraction of linear state space models and uncertainty models from neural networks trained as state estimators with direct application to robust control. A new method for writing a neural state space model in a linear fractional transformation form in a non-conservative ......-conservative way is proposed, and it is demonstrated how a standard robust control law can be designed for a system described by means of a multi layer perceptron....

  2. Validation of ecological state space models using the Laplace approximation

    DEFF Research Database (Denmark)

    Thygesen, Uffe Høgsbro; Albertsen, Christoffer Moesgaard; Berg, Casper Willestofte

    2017-01-01

    for estimation in general mixed effects models. Implementing one-step predictions in the R package Template Model Builder, we demonstrate that it is possible to perform model validation with little effort, even if the ecological model is multivariate, has non-linear dynamics, and whether observations...... are continuous or discrete. With both simulated data, and a real data set related to geolocation of seals, we demonstrate both the potential and the limitations of the techniques. Our results fill a need for convenient methods for validating a state space model, or alternatively, rejecting it while indicating...

  3. Energy-efficient pulse-coupled synchronization strategy design for wireless sensor networks through reduced idle listening.

    Science.gov (United States)

    Wang, Yongqiang; Núñez, Felipe; Doyle, Francis J

    2012-06-20

    Synchronization is crucial to wireless sensor networks due to their decentralized structure. We propose an energy-efficient pulse-coupled synchronization strategy to achieve this goal. The basic idea is to reduce idle listening by intentionally introducing a large refractory period in the sensors' cooperation. The large refractory period greatly reduces idle listening in each oscillation period, and is analytically proven to have no influence on the time to synchronization. Hence, it significantly reduces the total energy consumption in a synchronization process. A topology control approach tailored for pulse-coupled synchronization is given to guarantee a k -edge strongly connected interaction topology, which is tolerant to communication-link failures. The topology control approach is totally decentralized and needs no information exchange among sensors, and it is applicable to dynamic network topologies as well. This facilitates a completely decentralized implementation of the synchronization strategy. The strategy is applicable to mobile sensor networks, too. QualNet case studies confirm the effectiveness of the synchronization strategy.

  4. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    Directory of Open Access Journals (Sweden)

    Natasha Maria Barnes

    2018-03-01

    Full Text Available Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5, total volatile organic compounds (TVOCs, carbon monoxide (CO, carbon dioxide (CO2, airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC concentration positively correlated with the age of the vehicle. Carbon monoxide (CO levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  5. GENESIS - The GENEric SImulation System for Modelling State Transitions.

    Science.gov (United States)

    Gillman, Matthew S

    2017-09-20

    This software implements a discrete time Markov chain model, used to model transitions between states when the transition probabilities are known a priori . It is highly configurable; the user supplies two text files, a "state transition table" and a "config file", to the Perl script genesis.pl. Given the content of these files, the script generates a set of C++ classes based on the State design pattern, and a main program, which can then be compiled and run. The C++ code generated is based on the specification in the text files. Both multiple branching and bi-directional transitions are allowed. The software has been used to model the natural histories of colorectal cancer in Mexico. Although written primarily to model such disease processes, it can be used in any process which depends on discrete states with known transition probabilities between those states. One suitable area may be in environmental modelling. A test suite is supplied with the distribution. Due to its high degree of configurability and flexibility, this software has good re-use potential. It is stored on the Figshare repository.

  6. Multi-state models: metapopulation and life history analyses

    Directory of Open Access Journals (Sweden)

    Arnason, A. N.

    2004-06-01

    Full Text Available Multi–state models are designed to describe populations that move among a fixed set of categorical states. The obvious application is to population interchange among geographic locations such as breeding sites or feeding areas (e.g., Hestbeck et al., 1991; Blums et al., 2003; Cam et al., 2004 but they are increasingly used to address important questions of evolutionary biology and life history strategies (Nichols & Kendall, 1995. In these applications, the states include life history stages such as breeding states. The multi–state models, by permitting estimation of stage–specific survival and transition rates, can help assess trade–offs between life history mechanisms (e.g. Yoccoz et al., 2000. These trade–offs are also important in meta–population analyses where, for example, the pre–and post–breeding rates of transfer among sub–populations can be analysed in terms of target colony distance, density, and other covariates (e.g., Lebreton et al. 2003; Breton et al., in review. Further examples of the use of multi–state models in analysing dispersal and life–history trade–offs can be found in the session on Migration and Dispersal. In this session, we concentrate on applications that did not involve dispersal. These applications fall in two main categories: those that address life history questions using stage categories, and a more technical use of multi–state models to address problems arising from the violation of mark–recapture assumptions leading to the potential for seriously biased predictions or misleading insights from the models. Our plenary paper, by William Kendall (Kendall, 2004, gives an overview of the use of Multi–state Mark–Recapture (MSMR models to address two such violations. The first is the occurrence of unobservable states that can arise, for example, from temporary emigration or by incomplete sampling coverage of a target population. Such states can also occur for life history reasons, such

  7. Dynamic two state stochastic models for ecological regime shifts

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Carstensen, Niels Jacob; Madsen, Henrik

    2009-01-01

    A simple non-linear stochastic two state, discrete-time model is presented. The interaction between benthic and pelagic vegetation in aquatic ecosystems subject to changing external nutrient loading is described by the nonlinear functions. The dynamical behavior of the deterministic part of the m......A simple non-linear stochastic two state, discrete-time model is presented. The interaction between benthic and pelagic vegetation in aquatic ecosystems subject to changing external nutrient loading is described by the nonlinear functions. The dynamical behavior of the deterministic part...

  8. Hindcasting to measure ice sheet model sensitivity to initial states

    Directory of Open Access Journals (Sweden)

    A. Aschwanden

    2013-07-01

    Full Text Available Validation is a critical component of model development, yet notoriously challenging in ice sheet modeling. Here we evaluate how an ice sheet system model responds to a given forcing. We show that hindcasting, i.e. forcing a model with known or closely estimated inputs for past events to see how well the output matches observations, is a viable method of assessing model performance. By simulating the recent past of Greenland, and comparing to observations of ice thickness, ice discharge, surface speeds, mass loss and surface elevation changes for validation, we find that the short term model response is strongly influenced by the initial state. We show that the thermal and dynamical states (i.e. the distribution of internal energy and momentum can be misrepresented despite a good agreement with some observations, stressing the importance of using multiple observations. In particular we identify rates of change of spatially dense observations as preferred validation metrics. Hindcasting enables a qualitative assessment of model performance relative to observed rates of change. It thereby reduces the number of admissible initial states more rigorously than validation efforts that do not take advantage of observed rates of change.

  9. Equations of state for explosive detonation products: The PANDA model

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, G.I.

    1994-05-01

    This paper discusses a thermochemical model for calculating equations of state (EOS) for the detonation products of explosives. This model, which was first presented at the Eighth Detonation Symposium, is available in the PANDA code and is referred to here as ``the Panda model``. The basic features of the PANDA model are as follows. (1) Statistical-mechanical theories are used to construct EOS tables for each of the chemical species that are to be allowed in the detonation products. (2) The ideal mixing model is used to compute the thermodynamic functions for a mixture of these species, and the composition of the system is determined from assumption of chemical equilibrium. (3) For hydrocode calculations, the detonation product EOS are used in tabular form, together with a reactive burn model that allows description of shock-induced initiation and growth or failure as well as ideal detonation wave propagation. This model has been implemented in the three-dimensional Eulerian code, CTH.

  10. Forecasting house prices in the 50 states using Dynamic Model Averaging and Dynamic Model Selection

    DEFF Research Database (Denmark)

    Bork, Lasse; Møller, Stig Vinther

    2015-01-01

    We examine house price forecastability across the 50 states using Dynamic Model Averaging and Dynamic Model Selection, which allow for model change and parameter shifts. By allowing the entire forecasting model to change over time and across locations, the forecasting accuracy improves substantia...

  11. Stochastic Four-State Mechanochemical Model of F1-ATPase

    International Nuclear Information System (INIS)

    Wu Weixia; Zhan Yong; Zhao Tongjun; Han Yingrong; Chen Yafei

    2010-01-01

    F 1 -ATPase, a part of ATP synthase, can synthesize and hydrolyze ATP moleculars in which the central γ-subunit rotates inside the α 3 β 3 cylinder. A stochastic four-state mechanochemical coupling model of F 1 -ATPase is studied with the aid of the master equation. In this model, the ATP hydrolysis and synthesis are dependent on ATP, ADP, and Pi concentrations. The effects of ATP concentration, ADP concentration, and the external torque on the occupation probability of binding-state, the rotation rate and the diffusion coefficient of F 1 -ATPase are investigated. Moreover, the results from this model are compared with experiments. The mechanochemical mechanism F 1 -ATPase is qualitatively explained by the model. (general)

  12. Distributed state-space generation of discrete-state stochastic models

    Science.gov (United States)

    Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David

    1995-01-01

    High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.

  13. Bayesian network modeling of operator's state recognition process

    International Nuclear Information System (INIS)

    Hatakeyama, Naoki; Furuta, Kazuo

    2000-01-01

    Nowadays we are facing a difficult problem of establishing a good relation between humans and machines. To solve this problem, we suppose that machine system need to have a model of human behavior. In this study we model the state cognition process of a PWR plant operator as an example. We use a Bayesian network as an inference engine. We incorporate the knowledge hierarchy in the Bayesian network and confirm its validity using the example of PWR plant operator. (author)

  14. On the quark structure of resonance states in dual models

    International Nuclear Information System (INIS)

    Volkov, D.V.; Zheltukhin, A.A.; Pashnev, A.I.

    1975-01-01

    It is shown using as an example the Veneziano dual model, that each particular dual model already contains a certain latent quark structure unambiauously determined by internal properties of the dual model. To prove this degeneration of the resonance state spectrum is studied by introducing an additional disturbing interaction into the model being considered. Induced transitions of particles into a vacuum act as such an additional disturbance. This method complements the known factorization method of Fubini, Gordon and Veneziano and turns out to be free from an essential limitation of the latter connected with implicit assumption about the basence of internal additive laws of conservation in the model. By using the method of induced transitions of particles into a vacuum it has been possible to show that the resonance state spectrum is indeed more degenerated than it should be expected from the factorization theorem, and that the supplementary degeneration corresponds to the quark model with an infinite number of quarks of the increasing mass. Structures of some terms of the dual amplitude expansion over the degrees of the constant of the induced transition of particles to vacuum are considered; it is shown that the summation of this expansion may be reduced to a solution of a certain integral equation. On the basis of the integral equation obtained an integral representation ofr dual amplitudes is established. The problems related with degeneration of resonance states and with determination of additive quantum numbers leading to the quark interpretation of the degeneration being considered are discussed

  15. Dimensional reduction of Markov state models from renormalization group theory

    Science.gov (United States)

    Orioli, S.; Faccioli, P.

    2016-09-01

    Renormalization Group (RG) theory provides the theoretical framework to define rigorous effective theories, i.e., systematic low-resolution approximations of arbitrary microscopic models. Markov state models are shown to be rigorous effective theories for Molecular Dynamics (MD). Based on this fact, we use real space RG to vary the resolution of the stochastic model and define an algorithm for clustering microstates into macrostates. The result is a lower dimensional stochastic model which, by construction, provides the optimal coarse-grained Markovian representation of the system's relaxation kinetics. To illustrate and validate our theory, we analyze a number of test systems of increasing complexity, ranging from synthetic toy models to two realistic applications, built form all-atom MD simulations. The computational cost of computing the low-dimensional model remains affordable on a desktop computer even for thousands of microstates.

  16. Variational learning for switching state-space models.

    Science.gov (United States)

    Ghahramani, Z; Hinton, G E

    2000-04-01

    We introduce a new statistical model for time series that iteratively segments data into regimes with approximately linear dynamics and learnsthe parameters of each of these linear regimes. This model combines and generalizes two of the most widely used stochastic time-series models -- hidden Markov models and linear dynamical systems -- and is closely related to models that are widely used in the control and econometrics literatures. It can also be derived by extending the mixture of experts neural network (Jacobs, Jordan, Nowlan, & Hinton, 1991) to its fully dynamical version, in which both expert and gating networks are recurrent. Inferring the posterior probabilities of the hidden states of this model is computationally intractable, and therefore the exact expectation maximization (EM) algorithm cannot be applied. However, we present a variational approximation that maximizes a lower bound on the log-likelihood and makes use of both the forward and backward recursions for hidden Markov models and the Kalman filter recursions for linear dynamical systems. We tested the algorithm on artificial data sets and a natural data set of respiration force from a patient with sleep apnea. The results suggest that variational approximations are a viable method for inference and learning in switching state-space models.

  17. Spin-liquid state in an inhomogeneous periodic Anderson model

    Science.gov (United States)

    Caro, R. C.; Franco, R.; Silva-Valencia, J.

    2018-02-01

    We studied the ground state of alkaline-earth-metal atoms confined in one-dimensional optical lattices with an effective hybridization generated by a suitable laser field. This system is modeled by the periodic Anderson model plus a quadratic confining potential, and we adopted the density-matrix renormalization group to calculate its ground state. We found a one-to-one correspondence between the local variance, the local von Neumann entropy, and the on-site spin-spin correlation. For low global densities, we observed the formation of local singlets between delocalized and localized atoms and found Kondo spin-liquid domains that can be tuned with the confining potential, the hybridization, and the local repulsion. Band insulator, metallic, phase separation, and Kondo spin-liquid regions coexist in the ground state.

  18. Modeling Selected Climatic Variables in Ibadan, Oyo State, Nigeria ...

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... The aim of this study was fitting the modified generalized burr density function to total rainfall and temperature data obtained from the meteorological unit in the Department of. Environmental Modelling and Management of the Forestry Research Institute of Nigeria. (FRIN) in Ibadan, Oyo State, Nigeria.

  19. Stationary-state mutagenesis in Escherichia coli: a model

    Indian Academy of Sciences (India)

    Here we propose a more detailed version of this model that also takes into account the observed genetic requirements of stationary-state mutagenesis. Briefly, G:T/U mismatches produced at methylatable cytosines are preferentially repaired in nondividing cells by the very short patch mismatch repair (VSPMR) mechanism ...

  20. From welfare state to welfare society : the partnership model

    NARCIS (Netherlands)

    Gabor Hegyesi

    2003-01-01

    This paper considers the partnership model, which is in the author’s view the best answer in the social policy creation in contemporary conditions. The author refers to changes and reforms in the development of welfare state in the world from 1980s onwards. He describes various approaches and

  1. Estimation of pump operational state with model-based methods

    International Nuclear Information System (INIS)

    Ahonen, Tero; Tamminen, Jussi; Ahola, Jero; Viholainen, Juha; Aranto, Niina; Kestilae, Juha

    2010-01-01

    Pumps are widely used in industry, and they account for 20% of the industrial electricity consumption. Since the speed variation is often the most energy-efficient method to control the head and flow rate of a centrifugal pump, frequency converters are used with induction motor-driven pumps. Although a frequency converter can estimate the operational state of an induction motor without external measurements, the state of a centrifugal pump or other load machine is not typically considered. The pump is, however, usually controlled on the basis of the required flow rate or output pressure. As the pump operational state can be estimated with a general model having adjustable parameters, external flow rate or pressure measurements are not necessary to determine the pump flow rate or output pressure. Hence, external measurements could be replaced with an adjustable model for the pump that uses estimates of the motor operational state. Besides control purposes, modelling the pump operation can provide useful information for energy auditing and optimization purposes. In this paper, two model-based methods for pump operation estimation are presented. Factors affecting the accuracy of the estimation methods are analyzed. The applicability of the methods is verified by laboratory measurements and tests in two pilot installations. Test results indicate that the estimation methods can be applied to the analysis and control of pump operation. The accuracy of the methods is sufficient for auditing purposes, and the methods can inform the user if the pump is driven inefficiently.

  2. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as unit moving imaginary charges i ℏ , which are placed in between the two fixed imaginary charges arising due to the classical turning ...

  3. Herd-Level Modeling and Steady-State Livestock Productivity ...

    African Journals Online (AJOL)

    ... an outline of the scope for applications and addresses the prospects for refinement and model extensions. The algorithms for use in development of steady state derivations include transition of matrices in a Markov Chain approach, continuous differential equations and actuarial approach built on life and fecundity tables.

  4. A steady state model for anaerobic digestion of sewage sludges ...

    African Journals Online (AJOL)

    A steady state model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and ... and a carbonate system weak acid/base chemistry part from which the digester pH is calculated from the partial pressure of CO2 and alkalinity generated.

  5. Forward models and state estimation in compensatory eye movements

    Directory of Open Access Journals (Sweden)

    Maarten A Frens

    2009-11-01

    Full Text Available The compensatory eye movement system maintains a stable retinal image, integrating information from different sensory modalities to compensate for head movements. Inspired by recent models of physiology of limb movements, we suggest that compensatory eye movements (CEM can be modeled as a control system with three essential building blocks: a forward model that predicts the effects of motor commands; a state estimator that integrates sensory feedback into this prediction; and, a feedback controller that translates a state estimate into motor commands. We propose a specific mapping of nuclei within the CEM system onto these control functions. Specifically, we suggest that the Flocculus is responsible for generating the forward model prediction and that the Vestibular Nuclei integrate sensory feedback to generate an estimate of current state. Finally, the brainstem motor nuclei – in the case of horizontal compensation this means the Abducens Nucleus and the Nucleus Prepositus Hypoglossi – implement a feedback controller, translating state into motor commands. While these efforts to understand the physiological control system as a feedback control system are in their infancy, there is the intriguing possibility that compensatory eye movements and targeted voluntary movements use the same cerebellar circuitry in fundamentally different ways.

  6. Stieltjes electrostatic model interpretation for bound state problems

    Indian Academy of Sciences (India)

    Abstract. In this paper, it is shown that Stieltjes electrostatic model and quantum Hamilton Jacobi formalism are analogous to each other. This analogy allows the bound state problem to mimic as n unit moving imaginary charges i¯h, which are placed in between the two fixed imaginary charges arising due to the classical ...

  7. Stability Analysis of Equilibrium States of an SEIR Tuberculosis Model

    African Journals Online (AJOL)

    We examine the stability and equilibrium states of the extended model with respect to the basic reproduction number R0. We show that the disease-free equilibrium (DFE) is globally asymptotically stable if R0 ≤ 1 and that there exists at least one endemic equilibrium which is globally asymptotically stable if R0 > 1. Finally ...

  8. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  9. The two-state dimer receptor model: a general model for receptor dimers.

    Science.gov (United States)

    Franco, Rafael; Casadó, Vicent; Mallol, Josefa; Ferrada, Carla; Ferré, Sergi; Fuxe, Kjell; Cortés, Antoni; Ciruela, Francisco; Lluis, Carmen; Canela, Enric I

    2006-06-01

    Nonlinear Scatchard plots are often found for agonist binding to G-protein-coupled receptors. Because there is clear evidence of receptor dimerization, these nonlinear Scatchard plots can reflect cooperativity on agonist binding to the two binding sites in the dimer. According to this, the "two-state dimer receptor model" has been recently derived. In this article, the performance of the model has been analyzed in fitting data of agonist binding to A(1) adenosine receptors, which are an example of receptor displaying concave downward Scatchard plots. Analysis of agonist/antagonist competition data for dopamine D(1) receptors using the two-state dimer receptor model has also been performed. Although fitting to the two-state dimer receptor model was similar to the fitting to the "two-independent-site receptor model", the former is simpler, and a discrimination test selects the two-state dimer receptor model as the best. This model was also very robust in fitting data of estrogen binding to the estrogen receptor, for which Scatchard plots are concave upward. On the one hand, the model would predict the already demonstrated existence of estrogen receptor dimers. On the other hand, the model would predict that concave upward Scatchard plots reflect positive cooperativity, which can be neither predicted nor explained by assuming the existence of two different affinity states. In summary, the two-state dimer receptor model is good for fitting data of binding to dimeric receptors displaying either linear, concave upward, or concave downward Scatchard plots.

  10. Quintom models with an equation of state crossing -1

    International Nuclear Information System (INIS)

    Zhao Wen; Zhang Yang

    2006-01-01

    In this paper, we investigate a kind of special quintom model, which is made of a quintessence field φ 1 and a phantom field φ 2 , and the potential function has the form of V(φ 1 2 -φ 2 2 ). This kind of quintom field can be separated into two kinds: the hessence model, which has the state of φ 1 2 >φ 2 2 , and the hantom model with the state φ 1 2 2 2 . We discuss the evolution of these models in the ω-ω ' plane (ω is the state equation of the dark energy, and ω ' is its time derivative in units of Hubble time), and find that according to ω>-1 or ' plane can be divided into four parts. The late time attractor solution, if existing, is always quintessencelike or Λ-like for hessence field, so the big rip does not exist. But for hantom field, its late time attractor solution can be phantomlike or Λ-like, and sometimes, the big rip is unavoidable. Then we consider two special cases: one is the hessence field with an exponential potential, and the other is with a power law potential. We investigate their evolution in the ω-ω ' plane. We also develop a theoretical method of constructing the hessence potential function directly from the effective equation-of-state function ω(z). We apply our method to five kinds of parametrizations of equation-of-state parameter, where ω crossing -1 can exist, and find they all can be realized. At last, we discuss the evolution of the perturbations of the quintom field, and find the perturbations of the quintom δ Q and the metric Φ are all finite even at the state of ω=-1 and ω ' ≠0

  11. Vortex ring state by full-field actuator disc model

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, J.N.; Shen, W.Z.; Munduate, X. [DTU, Dept. of Energy Engineering, Lyngby (Denmark)

    1997-08-01

    One-dimensional momentum theory provides a simple analytical tool for analysing the gross flow behavior of lifting propellers and rotors. Combined with a blade-element strip-theory approach, it has for many years been the most popular model for load and performance predictions of wind turbines. The model works well at moderate and high wind velocities, but is not reliable at small wind velocities, where the expansion of the wake is large and the flow field behind the rotor dominated by turbulent mixing. This is normally referred to as the turbulent wake state or the vortex ring state. In the vortex ring state, momentum theory predicts a decrease of thrust whereas the opposite is found from experiments. The reason for the disagreement is that recirculation takes place behind the rotor with the consequence that the stream tubes past the rotor becomes effectively chocked. This represents a condition at which streamlines no longer carry fluid elements from far upstream to far downstream, hence one-dimensional momentum theory is invalid and empirical corrections have to be introduced. More sophisticated analytical or semi-analytical rotor models have been used to describe stationary flow fields for heavily loaded propellers. In recent years generalized actuator disc models have been developed, but up to now no detailed computations of the turbulent wake state or the vortex ring state have been performed. In the present work the phenomenon is simulated by direct simulation of the Navier-Stokes equations, where the influence of the rotor on the flow field is modelled simply by replacing the blades by an actuator disc with a constant normal load. (EG) 13 refs.

  12. Information Sharing In Shipbuilding based on the Product State Model

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1999-01-01

    The paper provides a review of product modelling technologies and the overall architecture for the Product State Model (PSM) environment as a basis for how dynamically updated product data can improve control of production activities. Especially, the paper focuses on the circumstances prevailing...... in a one-of-a-kind manufacturing environment like the shipbuilding industry, where product modelling technologies already have proved their worth in the design and engineering phases of shipbuilding and in the operation phase. However, the handling of product information on the shop floor is not yet...

  13. A Multiyear Model of Influenza Vaccination in the United States.

    Science.gov (United States)

    Kamis, Arnold; Zhang, Yuji; Kamis, Tamara

    2017-07-28

    Vaccinating adults against influenza remains a challenge in the United States. Using data from the Centers for Disease Control and Prevention, we present a model for predicting who receives influenza vaccination in the United States between 2012 and 2014, inclusive. The logistic regression model contains nine predictors: age, pneumococcal vaccination, time since last checkup, highest education level attained, employment, health care coverage, number of personal doctors, smoker status, and annual household income. The model, which classifies correctly 67 percent of the data in 2013, is consistent with models tested on the 2012 and 2014 datasets. Thus, we have a multiyear model to explain and predict influenza vaccination in the United States. The results indicate room for improvement in vaccination rates. We discuss how cognitive biases may underlie reluctance to obtain vaccination. We argue that targeted communications addressing cognitive biases could be useful for effective framing of vaccination messages, thus increasing the vaccination rate. Finally, we discuss limitations of the current study and questions for future research.

  14. New business models for state companies in the oil industry

    Directory of Open Access Journals (Sweden)

    Tanţău Adrian D.

    2016-09-01

    Full Text Available In the scientific literature business models are defined as architecture of the value creation, profit formula, key processes and key resources. For the oil industry there is a need to develop new business models that have to describe the specificity of this industry and to take into consideration the new objectives after the global oil crisis. Although crude oil price has dropped dramatically since second quarter 2014, OPEC raised crude output to the its highest value in more than three years as it pressed on with a strategy to protect market share and pressure competing producers. The objective of this article is to identify and promote new business models for state companies in the oil industry. The research methodology is based on case studies that present and analyze the business models in two of the main oil producers Iran and Iraq, where the state companies are playing an important role in this industry. The subject is relevant because the business models for state companies in the oil industry have to be modified after the oil crisis and these are not real analysed in the scientific literature. Furthermore, the aspects discussed in the current article represent the main factors that will influence investment prospects of companies in the field in the next decade.

  15. Dynamic models for problems of species occurrence with multiple states

    Science.gov (United States)

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture?recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics.

  16. Modeling species occurrence dynamics with multiple states and imperfect detection

    Science.gov (United States)

    MacKenzie, D.I.; Nichols, J.D.; Seamans, M.E.; Gutierrez, R.J.

    2009-01-01

    Recent extensions of occupancy modeling have focused not only on the distribution of species over space, but also on additional state variables (e.g., reproducing or not, with or without disease organisms, relative abundance categories) that provide extra information about occupied sites. These biologist-driven extensions are characterized by ambiguity in both species presence and correct state classification, caused by imperfect detection. We first show the relationships between independently published approaches to the modeling of multistate occupancy. We then extend the pattern-based modeling to the case of sampling over multiple seasons or years in order to estimate state transition probabilities associated with system dynamics. The methodology and its potential for addressing relevant ecological questions are demonstrated using both maximum likelihood (occupancy and successful reproduction dynamics of California Spotted Owl) and Markov chain Monte Carlo estimation approaches (changes in relative abundance of green frogs in Maryland). Just as multistate capture-recapture modeling has revolutionized the study of individual marked animals, we believe that multistate occupancy modeling will dramatically increase our ability to address interesting questions about ecological processes underlying population-level dynamics. ?? 2009 by the Ecological Society of America.

  17. State-Space Modelling of Loudspeakers using Fractional Derivatives

    DEFF Research Database (Denmark)

    King, Alexander Weider; Agerkvist, Finn T.

    2015-01-01

    This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response of a fractio......This work investigates the use of fractional order derivatives in modeling moving-coil loudspeakers. A fractional order state-space solution is developed, leading the way towards incorporating nonlinearities into a fractional order system. The method is used to calculate the response...... of a fractional harmonic oscillator, representing the mechanical part of a loudspeaker, showing the effect of the fractional derivative and its relationship to viscoelasticity. Finally, a loudspeaker model with a fractional order viscoelastic suspension and fractional order voice coil is fit to measurement data...

  18. MODELING THE DEMAND FOR E85 IN THE UNITED STATES

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changzheng [ORNL; Greene, David L [ORNL

    2013-10-01

    How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

  19. Current state of genome-scale modeling in filamentous fungi

    DEFF Research Database (Denmark)

    Brandl, Julian; Andersen, Mikael Rørdam

    2015-01-01

    capacity. One of the major bottlenecks in the development of new strains into viable industrial hosts is the alteration of the metabolism towards optimal production. Genome-scale models promise a reduction in the time needed for metabolic engineering by predicting the most potent targets in silico before...... testing them in vivo. The increasing availability of high quality models and molecular biological tools for manipulating filamentous fungi renders the model-guided engineering of these fungal factories possible with comprehensive metabolic networks. A typical fungal model contains on average 1138 unique...... metabolic reactions and 1050 ORFs, making them a vast knowledge-base of fungal metabolism. In the present review we focus on the current state as well as potential future applications of genome-scale models in filamentous fungi....

  20. Modeling the dynamics of disease states in depression.

    Directory of Open Access Journals (Sweden)

    Selver Demic

    Full Text Available Major depressive disorder (MDD is a common and costly disorder associated with considerable morbidity, disability, and risk for suicide. The disorder is clinically and etiologically heterogeneous. Despite intense research efforts, the response rates of antidepressant treatments are relatively low and the etiology and progression of MDD remain poorly understood. Here we use computational modeling to advance our understanding of MDD. First, we propose a systematic and comprehensive definition of disease states, which is based on a type of mathematical model called a finite-state machine. Second, we propose a dynamical systems model for the progression, or dynamics, of MDD. The model is abstract and combines several major factors (mechanisms that influence the dynamics of MDD. We study under what conditions the model can account for the occurrence and recurrence of depressive episodes and how we can model the effects of antidepressant treatments and cognitive behavioral therapy within the same dynamical systems model through changing a small subset of parameters. Our computational modeling suggests several predictions about MDD. Patients who suffer from depression can be divided into two sub-populations: a high-risk sub-population that has a high risk of developing chronic depression and a low-risk sub-population, in which patients develop depression stochastically with low probability. The success of antidepressant treatment is stochastic, leading to widely different times-to-remission in otherwise identical patients. While the specific details of our model might be subjected to criticism and revisions, our approach shows the potential power of computationally modeling depression and the need for different type of quantitative data for understanding depression.

  1. State space modeling of Memristor-based Wien oscillator

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2011-12-01

    State space modeling of Memristor based Wien \\'A\\' oscillator has been demonstrated for the first time considering nonlinear ion drift in Memristor. Time dependant oscillating resistance of Memristor is reported in both state space solution and SPICE simulation which plausibly provide the basis of realizing parametric oscillation by Memristor based Wien oscillator. In addition to this part Memristor is shown to stabilize the final oscillation amplitude by means of its nonlinear dynamic resistance which hints for eliminating diode in the feedback network of conventional Wien oscillator. © 2011 IEEE.

  2. Control of discrete event systems modeled as hierarchical state machines

    Science.gov (United States)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  3. UP-DOWN cortical dynamics reflect state transitions in a bistable network.

    Science.gov (United States)

    Jercog, Daniel; Roxin, Alex; Barthó, Peter; Luczak, Artur; Compte, Albert; de la Rocha, Jaime

    2017-08-04

    In the idling brain, neuronal circuits transition between periods of sustained firing (UP state) and quiescence (DOWN state), a pattern the mechanisms of which remain unclear. Here we analyzed spontaneous cortical population activity from anesthetized rats and found that UP and DOWN durations were highly variable and that population rates showed no significant decay during UP periods. We built a network rate model with excitatory (E) and inhibitory (I) populations exhibiting a novel bistable regime between a quiescent and an inhibition-stabilized state of arbitrarily low rate. Fluctuations triggered state transitions, while adaptation in E cells paradoxically caused a marginal decay of E-rate but a marked decay of I-rate in UP periods, a prediction that we validated experimentally. A spiking network implementation further predicted that DOWN-to-UP transitions must be caused by synchronous high-amplitude events. Our findings provide evidence of bistable cortical networks that exhibit non-rhythmic state transitions when the brain rests.

  4. SWEDEN AND TURKEY: TWO MODELS OF WELFARE STATE IN EUROPE

    Directory of Open Access Journals (Sweden)

    Andreea - Emanuela Dragoi

    2013-11-01

    Full Text Available Our paper analyzes two models of economic development: Sweden and Turkey. The main objective of this analysis is to highlight in which way two countries with different development strategies, economic geography, mentality and culture have managed to maintain growth before and during the global economic crisis, becoming gradually genuine models of welfare state. The analysis undertaken in this paper is, consequently, divided into two parts. The first shows the Swedish model of welfare state, that was an inspirational one in the ’70 and ’80, and its specific strengths and vulnerabilities. The second part summarizes Turkey's economic development over the past decade,emphasizing comparative advantages that have made it the 16th largest economy of the world and its strategy in terms of managing the international economic crisis. The final part of our comparative approach aims to respond to the following question: may those two economic models be considered proper economic lessons for the other states that are confronted with economic vulnerabilities?

  5. Evaluation of the Current State of Integrated Water Quality Modelling

    Science.gov (United States)

    Arhonditsis, G. B.; Wellen, C. C.; Ecological Modelling Laboratory

    2010-12-01

    Environmental policy and management implementation require robust methods for assessing the contribution of various point and non-point pollution sources to water quality problems as well as methods for estimating the expected and achieved compliance with the water quality goals. Water quality models have been widely used for creating the scientific basis for management decisions by providing a predictive link between restoration actions and ecosystem response. Modelling water quality and nutrient transport is challenging due a number of constraints associated with the input data and existing knowledge gaps related to the mathematical description of landscape and in-stream biogeochemical processes. While enormous effort has been invested to make watershed models process-based and spatially-distributed, there has not been a comprehensive meta-analysis of model credibility in watershed modelling literature. In this study, we evaluate the current state of integrated water quality modeling across the range of temporal and spatial scales typically utilized. We address several common modeling questions by providing a quantitative assessment of model performance and by assessing how model performance depends on model development. The data compiled represent a heterogeneous group of modeling studies, especially with respect to complexity, spatial and temporal scales and model development objectives. Beginning from 1992, the year when Beven and Binley published their seminal paper on uncertainty analysis in hydrological modelling, and ending in 2009, we selected over 150 papers fitting a number of criteria. These criteria involved publications that: (i) employed distributed or semi-distributed modelling approaches; (ii) provided predictions on flow and nutrient concentration state variables; and (iii) reported fit to measured data. Model performance was quantified with the Nash-Sutcliffe Efficiency, the relative error, and the coefficient of determination. Further, our

  6. Enhanced Prognostic Model for Lithium Ion Batteries Based on Particle Filter State Transition Model Modification

    Directory of Open Access Journals (Sweden)

    Buddhi Arachchige

    2017-11-01

    Full Text Available This paper focuses on predicting the End of Life and End of Discharge of Lithium ion batteries using a battery capacity fade model and a battery discharge model. The proposed framework will be able to estimate the Remaining Useful Life (RUL and the Remaining charge through capacity fade and discharge models. A particle filter is implemented that estimates the battery’s State of Charge (SOC and State of Life (SOL by utilizing the battery’s physical data such as voltage, temperature, and current measurements. The accuracy of the prognostic framework has been improved by enhancing the particle filter state transition model to incorporate different environmental and loading conditions without retuning the model parameters. The effect of capacity fade in the reduction of the EOD (End of Discharge time with cycling has also been included, integrating both EOL (End of Life and EOD prediction models in order to get more accuracy in the estimations.

  7. Exactly soluble two-state quantum models with linear couplings

    International Nuclear Information System (INIS)

    Torosov, B T; Vitanov, N V

    2008-01-01

    A class of exact analytic solutions of the time-dependent Schroedinger equation is presented for a two-state quantum system coherently driven by a nonresonant external field. The coupling is a linear function of time with a finite duration and the detuning is constant. Four special models are considered in detail, namely the shark, double-shark, tent and zigzag models. The exact solution is derived by rotation of the Landau-Zener propagator at an angle of π/4 and is expressed in terms of Weber's parabolic cylinder function. Approximations for the transition probabilities are derived for all four models by using the asymptotics of the Weber function; these approximations demonstrate various effects of physical interest for each model

  8. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  9. TPmsm: Estimation of the Transition Probabilities in 3-State Models

    Directory of Open Access Journals (Sweden)

    Artur Araújo

    2014-12-01

    Full Text Available One major goal in clinical applications of multi-state models is the estimation of transition probabilities. The usual nonparametric estimator of the transition matrix for non-homogeneous Markov processes is the Aalen-Johansen estimator (Aalen and Johansen 1978. However, two problems may arise from using this estimator: first, its standard error may be large in heavy censored scenarios; second, the estimator may be inconsistent if the process is non-Markovian. The development of the R package TPmsm has been motivated by several recent contributions that account for these estimation problems. Estimation and statistical inference for transition probabilities can be performed using TPmsm. The TPmsm package provides seven different approaches to three-state illness-death modeling. In two of these approaches the transition probabilities are estimated conditionally on current or past covariate measures. Two real data examples are included for illustration of software usage.

  10. Exploiting the steady state, continuous fueling reactor model

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.; Fowler, T.B.

    1979-01-01

    A continuously fueled reactor presents an analysis challenge, especially so when the neutron accounting is sensitive to the core design and the fuel handling. A scheme was implemented to solve the steady state, continuous fueling problem. This problem is an accurate model of the reactor for assessing performance at a point in its operating history. Available capability in a modular code system developed to treat fixed fuel reactors was extended in this effort. Parametric studies have been made with this capability to assess the performance of a pebble bed power plant reactor over a wide range of fueling possibilities. The model and the calculational methods are discussed. A global iteration scheme is used to effect a solution for the critical reactor state. The schemes used to accelerate the rate of convergence of one- and two-dimensional problems are described and the interactive behavior is shown for representative problems

  11. Reduced modeling and state observation of an activated sludge process.

    Science.gov (United States)

    Queinnec, Isabelle; Gómez-Quintero, Claudia-Sophya

    2009-01-01

    This article first proposes a reduction strategy of the activated sludge process model with alternated aeration. Initiated with the standard activated sludge model (ASM1), the reduction is based on some biochemical considerations followed by linear approximations of nonlinear terms. Two submodels are then obtained, one for the aerobic phase and one for the anoxic phase, using four state variables related to the organic substrate concentration, the ammonium and nitrate-nitrite nitrogen, and the oxygen concentration. Then, a two-step robust estimation strategy is used to estimate both the unmeasured state variables and the unknown inflow ammonium nitrogen concentration. Parameter uncertainty is considered in the dynamics and input matrices of the system. 2009 American Institute of Chemical Engineers

  12. Nonlinear State Space Modeling and System Identification for Electrohydraulic Control

    Directory of Open Access Journals (Sweden)

    Jun Yan

    2013-01-01

    Full Text Available The paper deals with nonlinear modeling and identification of an electrohydraulic control system for improving its tracking performance. We build the nonlinear state space model for analyzing the highly nonlinear system and then develop a Hammerstein-Wiener (H-W model which consists of a static input nonlinear block with two-segment polynomial nonlinearities, a linear time-invariant dynamic block, and a static output nonlinear block with single polynomial nonlinearity to describe it. We simplify the H-W model into a linear-in-parameters structure by using the key term separation principle and then use a modified recursive least square method with iterative estimation of internal variables to identify all the unknown parameters simultaneously. It is found that the proposed H-W model approximates the actual system better than the independent Hammerstein, Wiener, and ARX models. The prediction error of the H-W model is about 13%, 54%, and 58% less than the Hammerstein, Wiener, and ARX models, respectively.

  13. Modelling transition states of a small once-through boiler

    Energy Technology Data Exchange (ETDEWEB)

    Talonpoika, T. [Lappeenranta Univ. of Technology (Finland). Dept. of Energy Technology

    1997-12-31

    This article presents a model for the unsteady dynamic behaviour of a once-through counter flow boiler that uses an organic working fluid. The boiler is a compact waste-heat boiler without a furnace and it has a preheater, a vaporiser and a superheater. The relative lengths of the boiler parts vary with the operating conditions since they are all parts of a single tube. The boiler model is presented using a selected example case that uses toluene as the process fluid and flue gas from natural gas combustion as the heat source. The dynamic behaviour of the boiler means transition from the steady initial state towards another steady state that corresponds to the changed process conditions. The solution method chosen is to find such a pressure of the process fluid that the mass of the process fluid in the boiler equals the mass calculated using the mass flows into and out of the boiler during a time step, using the finite difference method. A special method of fast calculation of the thermal properties is used, because most of the calculation time is spent in calculating the fluid properties. The boiler is divided into elements. The values of the thermodynamic properties and mass flows are calculated in the nodes that connect the elements. Dynamic behaviour is limited to the process fluid and tube wall, and the heat source is regarded as to be steady. The elements that connect the preheater to the vaporiser and the vaporiser to the superheater are treated in a special way that takes into account a flexible change from one part to the other. The initial state of the boiler is received from a steady process model that is not a part of the boiler model. The known boundary values that may vary during the dynamic calculation were the inlet temperature and mass flow rates of both the heat source fluid and the process fluid. The dynamic boiler model is analysed for linear and step charges of the entering fluid temperatures and flow rates. The heat source side tests show that

  14. Constitutive modeling of salt behavior: State of the technology

    International Nuclear Information System (INIS)

    Munson, D.E.; Wawersik, W.R.

    1992-01-01

    The modern investigation of the thermomechanical behavior of salt started in the mid-1930's and, for what appears to be a very narrow discipline, ''salt mechanics'' has acquired considerable technical depth and sophistication. The last three decades have been especially productive in constitutive model development and laboratory investigations of time-dependent creep behavior. This has been largely due ot anticipated use of domal or bedded salt deposits as sites for radioactive waste repositories and to expanded need for hydrocarbon and feedback storage caverns. Salt is an interesting material, in that it is ''metal-like''; and, therefore, constitutive modeling can draw upon a large body of metal deformation information to arrive at appropriate models of behavior. Testing apparatus and methods have centered on either uniaxial or triaxial compression to obtain steady state and transient creep responses. Flow and fracture potentials have been defined. Validation attempts of the models against field data, although limited, have proved promising. The objective here is to summarize the state-of-the-technology of the constitutive modeling of salt behavior or ''salt mechanics.''

  15. Simulated models of perturbed angular correlation (PAC) spectroscopy in a 4-state+S system

    Science.gov (United States)

    Hodges, Jeffery A.; Stufflebeam, Michael A.; Evenson, William E.; Matheson, P.; Zacate, M. O.

    2007-10-01

    Cerium oxide has a cubic crystal structure. A vacancy in CeO2 can be trapped by a probe atom and hop among equivalent 1st or 2nd neighbor sites of the probe, producing a fluctuating electric field gradient (EFG) at the probe nucleus. We have simulated the perturbed angular correlation (PAC) spectrum due to such a changing EFG (4-state model), as well as the case with an additional static background EFG (4-state+S). We have studied the effect of changing the defect hopping rates on the resulting spectrum and the inferred hyperfine parameters. We have analyzed these data to determine experimental conditions under which nonequilibrium initial probe distributions can be detected by PAC.

  16. Rapid State Space Modeling Tool for Rectangular Wing Aeroservoelastic Studies

    Science.gov (United States)

    Suh, Peter M.; Conyers, Howard Jason; Mavris, Dimitri N.

    2015-01-01

    This report introduces a modeling and simulation tool for aeroservoelastic analysis of rectangular wings with trailing-edge control surfaces. The inputs to the code are planform design parameters such as wing span, aspect ratio, and number of control surfaces. Using this information, the generalized forces are computed using the doublet-lattice method. Using Roger's approximation, a rational function approximation is computed. The output, computed in a few seconds, is a state space aeroservoelastic model which can be used for analysis and control design. The tool is fully parameterized with default information so there is little required interaction with the model developer. All parameters can be easily modified if desired. The focus of this report is on tool presentation, verification, and validation. These processes are carried out in stages throughout the report. The rational function approximation is verified against computed generalized forces for a plate model. A model composed of finite element plates is compared to a modal analysis from commercial software and an independently conducted experimental ground vibration test analysis. Aeroservoelastic analysis is the ultimate goal of this tool, therefore, the flutter speed and frequency for a clamped plate are computed using damping-versus-velocity and frequency-versus-velocity analysis. The computational results are compared to a previously published computational analysis and wind-tunnel results for the same structure. A case study of a generic wing model with a single control surface is presented. Verification of the state space model is presented in comparison to damping-versus-velocity and frequency-versus-velocity analysis, including the analysis of the model in response to a 1-cos gust.

  17. Modelling and simulation SSM: latest state of the art technology

    CSIR Research Space (South Africa)

    Jahajeeah, N

    2005-10-01

    Full Text Available during filling stage Supporting the Manufacturing and Materials Industry in its quest for global competitiveness ? Shear rate history important factor in design and casting processes ? Viscosity decreases over time after applied shear rate ? Ideally... and Materials Industry in its quest for global competitiveness Modelling and Simulation SSM Latest state of the art technology N Jahajeeah Supporting the Manufacturing and Materials Industry in its quest for global competitiveness BEHAVIOUR OF THIXOTROPIC...

  18. Generalized isothermal models with strange equation of state

    Indian Academy of Sciences (India)

    intention to study the Einstein–Maxwell system with a linear equation of state with ... It is our intention to model the interior of a dense realistic star with a general ... The definition m(r) = 1. 2. ∫ r. 0 ω2ρ(ω)dω. (14) represents the mass contained within a radius r which is a useful physical quantity. The mass function (14) has ...

  19. Exchange rate predictability and state-of-the-art models

    OpenAIRE

    Yeșin, Pınar

    2016-01-01

    This paper empirically evaluates the predictive performance of the International Monetary Fund's (IMF) exchange rate assessments with respect to future exchange rate movements. The assessments of real trade-weighted exchange rates were conducted from 2006 to 2011, and were based on three state-of-the-art exchange rate models with a medium-term focus which were developed by the IMF. The empirical analysis using 26 advanced and emerging market economy currencies reveals that the "diagnosis" of ...

  20. Modeling, State Estimation and Control of Unmanned Helicopters

    Science.gov (United States)

    Lau, Tak Kit

    Unmanned helicopters hold both tremendous potential and challenges. Without risking the lives of human pilots, these vehicles exhibit agile movement and the ability to hover and hence open up a wide range of applications in the hazardous situations. Sparing human lives, however, comes at a stiff price for technology. Some of the key difficulties that arise in these challenges are: (i) There are unexplained cross-coupled responses between the control axes on the hingeless helicopters that have puzzled researchers for years. (ii) Most, if not all, navigation on the unmanned helicopters relies on Global Navigation Satellite Systems (GNSSs), which are susceptible to jamming. (iii) It is often necessary to accommodate the re-configurations of the payload or the actuators on the helicopters by repeatedly tuning an autopilot, and that requires intensive human supervision and/or system identification. For the dynamics modeling and analysis, we present a comprehensive review on the helicopter actuation and dynamics, and contributes toward a more complete understanding on the on-axis and off-axis dynamical responses on the helicopter. We focus on a commonly used modeling technique, namely the phase-lag treatment, and employ a first-principles modeling method to justify that (i) why that phase-lag technique is inaccurate, (ii) how we can analyze the helicopter actuation and dynamics more accurately. Moreover, these dynamics modeling and analysis reveal the hard-to-measure but crucial parameters on a helicopter model that require the constant identifications, and hence convey the reasoning of seeking a model-implicit method to solve the state estimation and control problems on the unmanned helicopters. For the state estimation, we present a robust localization method for the unmanned helicopter against the GNSS outage. This method infers position from the acceleration measurement from an inertial measurement unit (IMU). In the core of our method are techniques of the sensor

  1. A Knowledge Discovery from POS Data using State Space Models

    Science.gov (United States)

    Sato, Tadahiko; Higuchi, Tomoyuki

    The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.

  2. The 2014 United States National Seismic Hazard Model

    Science.gov (United States)

    Petersen, Mark D.; Moschetti, Morgan P.; Powers, Peter; Mueller, Charles; Haller, Kathleen; Frankel, Arthur; Zeng, Yuehua; Rezaeian, Sanaz; Harmsen, Stephen; Boyd, Oliver; Field, Edward; Chen, Rui; Rukstales, Kenneth S.; Luco, Nicolas; Wheeler, Russell; Williams, Robert; Olsen, Anna H.

    2015-01-01

    New seismic hazard maps have been developed for the conterminous United States using the latest data, models, and methods available for assessing earthquake hazard. The hazard models incorporate new information on earthquake rupture behavior observed in recent earthquakes; fault studies that use both geologic and geodetic strain rate data; earthquake catalogs through 2012 that include new assessments of locations and magnitudes; earthquake adaptive smoothing models that more fully account for the spatial clustering of earthquakes; and 22 ground motion models, some of which consider more than double the shaking data applied previously. Alternative input models account for larger earthquakes, more complicated ruptures, and more varied ground shaking estimates than assumed in earlier models. The ground motions, for levels applied in building codes, differ from the previous version by less than ±10% over 60% of the country, but can differ by ±50% in localized areas. The models are incorporated in insurance rates, risk assessments, and as input into the U.S. building code provisions for earthquake ground shaking.

  3. Remaining lifetime modeling using State-of-Health estimation

    Science.gov (United States)

    Beganovic, Nejra; Söffker, Dirk

    2017-08-01

    Technical systems and system's components undergo gradual degradation over time. Continuous degradation occurred in system is reflected in decreased system's reliability and unavoidably lead to a system failure. Therefore, continuous evaluation of State-of-Health (SoH) is inevitable to provide at least predefined lifetime of the system defined by manufacturer, or even better, to extend the lifetime given by manufacturer. However, precondition for lifetime extension is accurate estimation of SoH as well as the estimation and prediction of Remaining Useful Lifetime (RUL). For this purpose, lifetime models describing the relation between system/component degradation and consumed lifetime have to be established. In this contribution modeling and selection of suitable lifetime models from database based on current SoH conditions are discussed. Main contribution of this paper is the development of new modeling strategies capable to describe complex relations between measurable system variables, related system degradation, and RUL. Two approaches with accompanying advantages and disadvantages are introduced and compared. Both approaches are capable to model stochastic aging processes of a system by simultaneous adaption of RUL models to current SoH. The first approach requires a priori knowledge about aging processes in the system and accurate estimation of SoH. An estimation of SoH here is conditioned by tracking actual accumulated damage into the system, so that particular model parameters are defined according to a priori known assumptions about system's aging. Prediction accuracy in this case is highly dependent on accurate estimation of SoH but includes high number of degrees of freedom. The second approach in this contribution does not require a priori knowledge about system's aging as particular model parameters are defined in accordance to multi-objective optimization procedure. Prediction accuracy of this model does not highly depend on estimated SoH. This model

  4. Performance enhancement of steady-state Markov analysis for cognitive radio networks via channel reservation

    Directory of Open Access Journals (Sweden)

    Nehal M. El Azaly

    2017-12-01

    Full Text Available Cognitive radio wireless networks CRNs have been considered as an efficient communication paradigm to the utilization of scarce spectrum. The main purpose of channel reservation of dynamic spectrum access (DSA is to access these idle channels intelligently which are specialized for primary users (PUS to be used by unlicensed users temporarily, which are called secondary users (SUS without causing critical interference to the licensed user’s activity. In this paper, continuous-time Markov chain paradigm is improved via channel reservation to show the best usage of the radio spectrum bands, and the transition matrix are deduced for the proposed model. Moreover, the probability state vector is proved by performing steady state analysis. The deduced expressions of the suggested model are illustrated in the numerical results section. Keywords: Cognitive radio networks, Dynamic spectrum access, Channel reservation, Continuous-time Markov chain, Steady-state analysis

  5. Nonlinear State Estimation and Modeling of a Helicopter UAV

    Science.gov (United States)

    Barczyk, Martin

    Experimentally-validated nonlinear flight control of a helicopter UAV has two necessary conditions: an estimate of the vehicle’s states from noisy multirate output measurements, and a nonlinear dynamics model with minimum complexity, physically controllable inputs and experimentally identified parameter values. This thesis addresses both these objectives for the Applied Nonlinear Controls Lab (ANCL)'s helicopter UAV project. A magnetometer-plus-GPS aided Inertial Navigation System (INS) for outdoor flight as well as an Attitude and Heading Reference System (AHRS) for indoor testing are designed, implemented and experimentally validated employing an Extended Kalman Filter (EKF), using a novel calibration technique for the magnetometer aiding sensor added to remove the limitations of an earlier GPS-only aiding design. Next the recently-developed nonlinear observer design methodology of invariant observers is adapted to the aided INS and AHRS examples, employing a rotation matrix representation for the state manifold to obtain designs amenable to global stability analysis, obtaining a direct nonlinear design for gains of the AHRS observer, modifying the previously-proposed Invariant EKF systematic method for computing gains, and culminating in simulation and experimental validation of the observers. Lastly a nonlinear control-oriented model of the helicopter UAV is derived from first principles, using a rigid-body dynamics formulation augmented with models of the on-board subsystems: main rotor forces and blade flapping dynamics, the Bell-Hiller system and flybar flapping dynamics, tail rotor forces, tail gyro unit, engine and rotor speed, servo operation, fuselage drag, and tail stabilizer forces. The parameter values in the resulting models are identified experimentally. Using these the model is further simplified to be tractable for model-based control design.

  6. A microscopic model of rate and state friction evolution

    Science.gov (United States)

    Li, Tianyi; Rubin, Allan M.

    2017-08-01

    Whether rate- and state-dependent friction evolution is primarily slip dependent or time dependent is not well resolved. Although slide-hold-slide experiments are traditionally interpreted as supporting the aging law, implying time-dependent evolution, recent studies show that this evidence is equivocal. In contrast, the slip law yields extremely good fits to velocity step experiments, although a clear physical picture for slip-dependent friction evolution is lacking. We propose a new microscopic model for rate and state friction evolution in which each asperity has a heterogeneous strength, with individual portions recording the velocity at which they became part of the contact. Assuming an exponential distribution of asperity sizes on the surface, the model produces results essentially similar to the slip law, yielding very good fits to velocity step experiments but not improving much the fits to slide-hold-slide experiments. A numerical kernel for the model is developed, and an analytical expression is obtained for perfect velocity steps, which differs from the slip law expression by a slow-decaying factor. By changing the quantity that determines the intrinsic strength, we use the same model structure to investigate aging-law-like time-dependent evolution. Assuming strength to increase logarithmically with contact age, for two different definitions of age we obtain results for velocity step increases significantly different from the aging law. Interestingly, a solution very close to the aging law is obtained if we apply a third definition of age that we consider to be nonphysical. This suggests that under the current aging law, the state variable is not synonymous with contact age.

  7. Modeling Reader's Emotional State Response on Document's Typographic Elements

    Directory of Open Access Journals (Sweden)

    Dimitrios Tsonos

    2011-01-01

    Full Text Available We present the results of an experimental study towards modeling the reader's emotional state variations induced by the typographic elements in electronic documents. Based on the dimensional theory of emotions we investigate how typographic elements, like font style (bold, italics, bold-italics and font (type, size, color and background color, affect the reader's emotional states, namely, Pleasure, Arousal, and Dominance (PAD. An experimental procedure was implemented conforming to International Affective Picture System guidelines and incorporating the Self-Assessment Manikin test. Thirty students participated in the experiment. The stimulus was a short paragraph of text for which any content, emotion, and/or domain dependent information was excluded. The Analysis of Variance revealed the dependency of (a all the three emotional dimensions on font size and font/background color combinations and (b the Pleasure dimension on font type and font style. We introduce a set of mapping rules showing how PAD vary on the discrete values of font style and font type elements. Moreover, we introduce a set of equations describing the PAD dimensions' dependency on font size. This novel model can contribute to the automated reader's emotional state extraction in order, for example, to enhance the acoustic rendition of the documents, utilizing text-to-speech synthesis.

  8. Equivalence and Differences between Structural Equation Modeling and State-Space Modeling Techniques

    Science.gov (United States)

    Chow, Sy-Miin; Ho, Moon-ho R.; Hamaker, Ellen L.; Dolan, Conor V.

    2010-01-01

    State-space modeling techniques have been compared to structural equation modeling (SEM) techniques in various contexts but their unique strengths have often been overshadowed by their similarities to SEM. In this article, we provide a comprehensive discussion of these 2 approaches' similarities and differences through analytic comparisons and…

  9. Real-time dynamic hydraulic model for water distribution networks: steady state modelling

    CSIR Research Space (South Africa)

    Osman, Mohammad S

    2016-09-01

    Full Text Available steady state hydraulic model that will be used within a real-time dynamic hydraulic model (DHM). The Council for Scientific and Industrial Research (CSIR) water distribution network (WDN) is used as a pilot study for this purpose. A hydraulic analysis...

  10. Alignment of Product Models and Product State Models - Integration of the Product Lifecycle Phases

    DEFF Research Database (Denmark)

    Larsen, Michael Holm; Kirkby, Lars Phillip; Vesterager, Johan

    1999-01-01

    The purpose of this paper is to discuss the integration of the Product Model (PM) and the Product State Model (PCM). Focus is on information exchange from the PSM to the PM within the manufacturing of a single ship. The paper distinguishes between information and knowledge integration. The paper...

  11. Modeling of efficient solid-state cooler on layered multiferroics.

    Science.gov (United States)

    Starkov, Ivan; Starkov, Alexander

    2014-08-01

    We have developed theoretical foundations for the design and optimization of a solid-state cooler working through caloric and multicaloric effects. This approach is based on the careful consideration of the thermodynamics of a layered multiferroic system. The main section of the paper is devoted to the derivation and solution of the heat conduction equation for multiferroic materials. On the basis of the obtained results, we have performed the evaluation of the temperature distribution in the refrigerator under periodic external fields. A few practical examples are considered to illustrate the model. It is demonstrated that a 40-mm structure made of 20 ferroic layers is able to create a temperature difference of 25K. The presented work tries to address the whole hierarchy of physical phenomena to capture all of the essential aspects of solid-state cooling.

  12. Nuclear relaxation of N-state symmetric models

    Science.gov (United States)

    Park, Tyler; Hodges, Jeffery A.; Moreno, Carlos; Stufflebeam, Michael; Evenson, W.; Matheson, P.; Zacate, M. O.

    2008-10-01

    Nuclear relaxation of perturbed angular correlation (PAC) spectra offers insights to diffusion because it arises from motion of defects or of a nuclear probe in a crystal. The N-state symmetric model is a model of fluctuation among N symmetric electric field gradients (EFGs) experienced by a radioactive nuclear probe. By simulating the N-state symmetric model for various rates of hopping among the N EFGs, the resulting spectra can be fitted with a damped perturbation function, G22(t), or an exponential decay function to find the decay constant (λ). By plotting λ against the hopping rate, we find the maximum relaxation point. Fitting the raw spectrum, a spectrum weighted by error bars, and a spectrum with simulated errors gives a good indication of the relaxation that would be observed in a PAC experiment. The maximum relaxation point can then be used as an experimental measure of the defect or probe hopping rate, and hence the diffusion rate at that temperature. We report the results of our simulations and their implications, with potential applications to diffusion in intermetallic systems.

  13. Modeling Clinical States and Metabolic Rhythms in Bioarcheology.

    Science.gov (United States)

    Qualls, Clifford; Bianucci, Raffaella; Spilde, Michael N; Phillips, Genevieve; Wu, Cecilia; Appenzeller, Otto

    2015-01-01

    Bioarcheology is cross disciplinary research encompassing the study of human remains. However, life's activities have, up till now, eluded bioarcheological investigation. We hypothesized that growth lines in hair might archive the biologic rhythms, growth rate, and metabolism during life. Computational modeling predicted the physical appearance, derived from hair growth rate, biologic rhythms, and mental state for human remains from the Roman period. The width of repeat growth intervals (RI's) on the hair, shown by confocal microscopy, allowed computation of time series of periodicities of the RI's to model growth rates of the hairs. Our results are based on four hairs from controls yielding 212 data points and the RI's of six cropped hairs from Zweeloo woman's scalp yielding 504 data points. Hair growth was, ten times faster than normal consistent with hypertrichosis. Cantú syndrome consists of hypertrichosis, dyschondrosteosis, short stature, and cardiomegaly. Sympathetic activation and enhanced metabolic state suggesting arousal was also present. Two-photon microscopy visualized preserved portions of autonomic nerve fibers surrounding the hair bulb. Scanning electron microscopy found evidence that a knife was used to cut the hair three to five days before death. Thus computational modeling enabled the elucidation of life's activities 2000 years after death in this individual with Cantu syndrome. This may have implications for archeology and forensic sciences.

  14. Modeling Clinical States and Metabolic Rhythms in Bioarcheology

    Directory of Open Access Journals (Sweden)

    Clifford Qualls

    2015-01-01

    Full Text Available Bioarcheology is cross disciplinary research encompassing the study of human remains. However, life’s activities have, up till now, eluded bioarcheological investigation. We hypothesized that growth lines in hair might archive the biologic rhythms, growth rate, and metabolism during life. Computational modeling predicted the physical appearance, derived from hair growth rate, biologic rhythms, and mental state for human remains from the Roman period. The width of repeat growth intervals (RI’s on the hair, shown by confocal microscopy, allowed computation of time series of periodicities of the RI’s to model growth rates of the hairs. Our results are based on four hairs from controls yielding 212 data points and the RI’s of six cropped hairs from Zweeloo woman’s scalp yielding 504 data points. Hair growth was, ten times faster than normal consistent with hypertrichosis. Cantú syndrome consists of hypertrichosis, dyschondrosteosis, short stature, and cardiomegaly. Sympathetic activation and enhanced metabolic state suggesting arousal was also present. Two-photon microscopy visualized preserved portions of autonomic nerve fibers surrounding the hair bulb. Scanning electron microscopy found evidence that a knife was used to cut the hair three to five days before death. Thus computational modeling enabled the elucidation of life’s activities 2000 years after death in this individual with Cantu syndrome. This may have implications for archeology and forensic sciences.

  15. Language Model Combination and Adaptation Using Weighted Finite State Transducers

    Science.gov (United States)

    Liu, X.; Gales, M. J. F.; Hieronymus, J. L.; Woodland, P. C.

    2010-01-01

    In speech recognition systems language model (LMs) are often constructed by training and combining multiple n-gram models. They can be either used to represent different genres or tasks found in diverse text sources, or capture stochastic properties of different linguistic symbol sequences, for example, syllables and words. Unsupervised LM adaption may also be used to further improve robustness to varying styles or tasks. When using these techniques, extensive software changes are often required. In this paper an alternative and more general approach based on weighted finite state transducers (WFSTs) is investigated for LM combination and adaptation. As it is entirely based on well-defined WFST operations, minimum change to decoding tools is needed. A wide range of LM combination configurations can be flexibly supported. An efficient on-the-fly WFST decoding algorithm is also proposed. Significant error rate gains of 7.3% relative were obtained on a state-of-the-art broadcast audio recognition task using a history dependently adapted multi-level LM modelling both syllable and word sequences

  16. Simple model for the dynamics towards metastable states

    International Nuclear Information System (INIS)

    Meijer, P.H.E.; Keskin, M.; Bodegom, E.

    1986-01-01

    Circumstances under which a quenched system will freeze in a metastable state are studied in simple systems with long-range order. The model used is the time-dependent pair approximation, based on the most probable path (MPP) method. The time dependence of the solution is shown by means of flow diagrams. The fixed points and other features of the differential equations in time are independent of the choice of the rate constants. It is explained qualitatively how the system behaves under varying descending temperatures: the role of the initial conditions, the dependence on the quenching rate, and the response to precooling

  17. New equation of state models for hydrodynamic applications

    Science.gov (United States)

    Young, David A.; Barbee, Troy W.; Rogers, Forrest J.

    1998-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  18. New equation of state models for hydrodynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Barbee, T.W. III; Rogers, F.J. [Physics Department, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    1998-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed. The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations. {copyright} {ital 1998 American Institute of Physics.}

  19. New equation of state model for hydrodynamic applications

    Energy Technology Data Exchange (ETDEWEB)

    Young, D.A.; Barbee, T.W. III; Rogers, F.J.

    1997-07-01

    Two new theoretical methods for computing the equation of state of hot, dense matter are discussed.The ab initio phonon theory gives a first-principles calculation of lattice frequencies, which can be used to compare theory and experiment for isothermal and shock compression of solids. The ACTEX dense plasma theory has been improved to allow it to be compared directly with ultrahigh pressure shock data on low-Z materials. The comparisons with experiment are good, suggesting that these models will be useful in generating global EOS tables for hydrodynamic simulations.

  20. Review of State-Space Models for Fisheries Science

    DEFF Research Database (Denmark)

    Aeberhard, William H.; Flemming, Joanna Mills; Nielsen, Anders

    2018-01-01

    stocks will respond to varying levels of fishing pressure in the future. Such tools are essential with overfishing now reducing stocks and employment worldwide, with in turn many serious social, economic, and environmental implications. Increasingly, a state-space framework is being used in place...... of deterministic and standard parametric stock assessment models. These efforts have not only had considerable impact on fisheries management but have also advanced the supporting statistical theory and inference tools as well as the required software. An application of such techniques to the North Sea cod stock...

  1. Bidirectional Texture Function Modeling: State of the Art Survey

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Haindl, Michal

    2009-01-01

    Roč. 31, č. 11 (2009), s. 1921-1940 ISSN 0162-8828 R&D Projects: GA MŠk 1M0572; GA ČR GA102/08/0593; GA AV ČR 1ET400750407 Grant - others:EC Marie Curie(BE) 41358; GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : BTF * surface texture * 3D texture Subject RIV: BD - Theory of Information Impact factor: 4.378, year: 2009 http://library.utia.cas.cz/separaty/2009/RO/filip-bidirectional texture function modeling state of the art survey.pdf

  2. Modelling of the chemical state in groundwater infiltration systems

    International Nuclear Information System (INIS)

    Zysset, A.

    1993-01-01

    Groundwater is replenished by water stemming either from precipitations, lakes or rivers. The area where such an infiltration occurs is characterized by a change in the environmental conditions, such as a decrease of the flow velocity and an increase in the solid surface marking the boundary of the flow field. With these changes new chemical processes may become relevant to the transport behavior of contaminants. Since the rates of chemical processes usually are a function of the concentrations of several species, an understanding of infiltration sites may require a multicomponent approach. The present study aims at formulating a mathematical model together with its numerical solution for groundwater infiltration sites. Such a model should improve the understanding of groundwater quality changes related to infiltrating contaminants. The groundwater quality is of vital interest to men because at many places most of the drinking water originates from groundwater. In the first part of the present study two partial models are formulated: one accounting for the transport in a one-dimensional, homogeneous and saturated porous medium, the other accounting for chemical reactions. This second model is initially stated for general kinetic systems. Then, it is specified for two systems, namely for a system governed only by reactions which are fast compared to the transport processes and for a system with biologically mediated redox reactions of dissolved substrates. In the second part of the study a numerical solution to the model is developed. For this purpose, the two partial models are coupled. The coupling is either iterative as in the case of a system with fast reactions or sequential as in all other cases. The numerical solutions of simple test cases are compared to analytical solutions. In the third part the model is evaluated using observations of infiltration sites reported in the literature. (author) figs., tabs., 155 refs

  3. Mathematical aspects of ground state tunneling models in luminescence materials

    Energy Technology Data Exchange (ETDEWEB)

    Pagonis, Vasilis, E-mail: vpagonis@mcdaniel.edu [Physics Department, McDaniel College, Westminster, MD 21157 (United States); Kitis, George [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2015-12-15

    Luminescence signals from a variety of natural materials have been known to decrease with storage time at room temperature due to quantum tunneling, a phenomenon known as anomalous fading. This paper is a study of several mathematical aspects of two previously published luminescence models which describe tunneling phenomena from the ground state of a donor–acceptor system. It is shown that both models are described by the same type of integral equation, and two new analytical equations are presented. The first new analytical equation describes the effect of anomalous fading on the dose response curves (DRCs) of naturally irradiated samples. The DRCs in the model were previously expressed in the form of integral equations requiring numerical integration, while the new analytical equation can be used immediately as a tool for analyzing experimental data. The second analytical equation presented in this paper describes the anomalous fading rate (g-Value per decade) as a function of the charge density in the model. This new analytical expression for the g-Value is tested using experimental anomalous fading data for several apatite crystals which exhibit high rate of anomalous fading. The two new analytical results can be useful tools for analyzing anomalous fading data from luminescence materials. In addition to the two new analytical equations, an explanation is provided for the numerical value of a constant previously introduced in the models. - Highlights: • Comparative study of two luminescence models for feldspars. • Two new analytical equations for dose response curves and anomalous fading rate. • The numerical value z=1.8 of previously introduced constant in models explained.

  4. State and parameter estimation of state-space model with entry-wise correlated uniform noise

    Czech Academy of Sciences Publication Activity Database

    Pavelková, Lenka; Kárný, Miroslav

    2014-01-01

    Roč. 28, č. 11 (2014), s. 1189-1205 ISSN 0890-6327 R&D Projects: GA TA ČR TA01030123; GA ČR GA13-13502S Institutional research plan: CEZ:AV0Z1075907 Keywords : state-space models * bounded noise * filtering problems * estimation algorithms * uncertain dynamic systems Subject RIV: BC - Control Systems Theory Impact factor: 1.346, year: 2014 http://library.utia.cas.cz/separaty/2014/AS/pavelkova-0422958.pdf

  5. BR2 reactor core steady state transient modeling

    International Nuclear Information System (INIS)

    Makarenko, A.; Petrova, T.

    2000-01-01

    A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)

  6. Model-independent confirmation of the $Z(4430)^-$ state

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-01-01

    The decay $B^0\\to \\psi(2S) K^+\\pi^-$ is analyzed using $\\rm 3~fb^{-1}$ of $pp$ collision data collected with the LHCb detector. A model-independent description of the $\\psi(2S) \\pi$ mass spectrum is obtained, using as input the $K\\pi$ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the $\\psi(2S)\\pi$ mass spectrum can be described in terms of $K\\pi$ reflections alone is rejected with more than 8$\\sigma$ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the $Z(4430)^-$ exotic state.

  7. High Power Solid State Retrofit Lamp Thermal Characterization and Modeling

    Directory of Open Access Journals (Sweden)

    J. Jakovenko

    2012-04-01

    Full Text Available Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL retrofit LED lamp are presented in this paper. Paramount importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D thermal lamp model for further thermal optimization. Simulations are performed with ANSYS and CoventorWare software tools to compere different simulation approaches. Simulated thermal distribution has been validated with thermal measurement on a commercial 8W LED lamp. Materials parametric study has been carried out to discover problematic parts for heat transfer from power LEDs to ambient and future solutions are proposed. The objectives are to predict the thermal management by simulation of LED lamp, get more understanding in the effect of lamp shape and used materials in order to design more effective LED lamps and predict light quality, life time and reliability.

  8. Generalized flux states of the t-J model

    International Nuclear Information System (INIS)

    Nori, F.; Abrahams, E.; Zimanyi, G.T.

    1990-01-01

    We investigate certain generalized flux phases arising in a mean-field approach to the t-J model. First, we establish that the energy of noninteracting electrons moving in a uniform magnetic field has an absolute minimum as a function of the flux at exactly one flux quantum per particle. Using this result, we show that if the hard-core nature of the hole bosons is taken into account, then the slave-boson mean-field approximation for the t-J Hamiltonian allows for a solution where both the spinons and the holons experience an average flux of one flux quantum per particle. This enables them to achieve the lowest possible energy within the manifold of spatially uniform flux states. In the case of the continuum model, this is possible only for certain fractional fillings and we speculate that the system may react to this frustration effect by phase separation

  9. Public Administration: Modernizing The Current Model Of State Management

    Directory of Open Access Journals (Sweden)

    Evgenii V. Ohotskii

    2014-01-01

    Full Text Available Applying the method of retrospective analysis the article deals with the process of forming the scientific fundamentals and the search by the international community of effective and adequate to the current stage of social development public administration system. The author attempts to analyze, in a number of cases in terms of models, features of public administration systems at different stages of historical development, drawing attention to reasons why the Soviet model of public administration did not manage to meet competition, did not provide the required social effect and as a natural result suffered a defeat in the global confrontation between the two social systems. Current models and theoretical concepts of public administration, especially the "new public administration", which became scientific basis for administrative reforms implemented in many countries, are the particular subject of scientific analysis. The author draws attention to major comprehensive characteristics of modern state public administration: making it impossible to absolutize principles of traditional hierarchy system of forced administration; globalization - gradual destruction of boundaries between national and international levels of administration, the growing role of supranational subjects of administration relations; informatization - increasing importance of information and communication technologies and of political networks: development of civil society, especially political parties and non-governmental organizations, growing public involvement in discussion and adoption of the most important administrative decisions; making the state policy more pluralistic and which will result in the formation of nonlinear - humanistic social consciousness as the intellectual basis of modern social governance. The author's position is that Russia is yet to solve the issue of choosing a public administration model that would be effective for further administrative

  10. PUBLIC ADMINISTRATION: MODERNIZING THE CURRENT MODEL OF STATE MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Evgenii V. Ohotskii

    2014-01-01

    Full Text Available Applying the method of retrospective analysis the article deals with the process of forming the scientific fundamentals and the search by the international community of effective and adequate to the current stage of social development public administration system. The author attempts to analyze, in a number of cases in terms of models, features of public administration systems at different stages of historical development, drawing attention to reasons why the Soviet model of public administration did not manage to meet competition, did not provide the required social effect and as a natural result suffered a defeat in the global confrontation between the two social systems. Current models and theoretical concepts of public administration, especially the "new public administration", which became scientific basis for administrative reforms implemented in many countries, are the particular subject of scientific analysis. The author draws attention to major comprehensive characteristics of modern state public administration: making it impossible to absolutize principles of traditional hierarchy system of forced administration; globalization - gradual destruction of boundaries between national and international levels of administration, the growing role of supranational subjects of administration relations; informatization - increasing importance of information and communication technologies and of political networks: development of civil society, especially political parties and non-governmental organizations, growing public involvement in discussion and adoption of the most important administrative decisions; making the state policy more pluralistic and which will result in the formation of nonlinear - humanistic social consciousness as the intellectual basis of modern social governance. The author's position is that Russia is yet to solve the issue of choosing a public administration model that would be effective for further administrative

  11. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines

    Energy Technology Data Exchange (ETDEWEB)

    Payri, F.; Broatch, A.; Salavert, J.M.; Martin, J. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Aptdo. 22012, E-46071 Valencia (Spain)

    2010-10-15

    A comprehensive investigation was carried out in order to better understand the combustion behaviour in a low compression ratio DI Diesel engine when multiple injection strategies are applied just after the engine cold starts in low temperature conditions (idling). More specifically, the aim of this study was twofold: on one hand, to understand the effect of the multiple injection strategies on the indicated mean effective pressure; on the other hand, to contribute to the understanding of combustion stability characterized by the coefficient of variation of indicated mean effective pressure. The first objective was fulfilled by analyzing the rate of heat release obtained by in-cylinder pressure diagnosis. The results showed that the timing of the pilot injection closest to the main injection was the most influential parameter based on the behaviour of the rate of heat release (regardless of the multiple injection strategy applied). For the second objective, the combustion stability was found to be correlated with the combustion centroid angle. The results showed a trend between them and the existence of a range of centroid angles where the combustion stability is strong enough. In addition, it was also evident that convenient split injection allows shifting the centroid to such a zone and improves combustion stability after start. (author)

  12. Matrix product states and the non-Abelian rotor model

    Science.gov (United States)

    Milsted, Ashley

    2016-04-01

    We use uniform matrix product states to study the (1 +1 )D O (2 ) and O (4 ) rotor models, which are equivalent to the Kogut-Susskind formulation of matter-free non-Abelian lattice gauge theory on a "Hawaiian earring" graph for U (1 ) and S U (2 ), respectively. Applying tangent space methods to obtain ground states and determine the mass gap and the β function, we find excellent agreement with known results, locating the Berezinskii-Kosterlitz-Thouless transition for O (2 ) and successfully entering the asymptotic weak-coupling regime for O (4 ). To obtain a finite local Hilbert space, we truncate in the space of generalized Fourier modes of the gauge group, comparing the effects of different cutoff values. We find that higher modes become important in the crossover and weak-coupling regimes of the non-Abelian theory, where entanglement also suddenly increases. This could have important consequences for tensor network state studies of Yang-Mills on higher-dimensional graphs.

  13. Modeling unsteady-state VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1994-01-01

    This report is a revision of an EG ampersand G Idaho informal report originally titled Modeling VOC Transport in Simulated Waste Drums. A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the permeability had been measured

  14. State-of-the-art Model M-2 Maintenance System

    International Nuclear Information System (INIS)

    Herndon, J.N.; Martin, H.L.; Satterlee, P.E. Jr.; Jelatis, D.G.; Jennrich, C.E.

    1984-04-01

    The Model M-2 Maintenance System is part of an ongoing program within the Consolidated Fuel Reprocessing Program (CFRP) at Oak Ridge National Laboratory (ORNL) to improve remote manipulation technology for future nuclear fuel reprocessing and other remote applications. Techniques, equipment, and guidelines which can improve the efficiency of remote maintenance are being developed. The Model M-2 Maintenance System, installed in the Integrated Equipment Test (IET) Facility at ORNL, provides a complete, integrated remote maintenance system for the demonstration and development of remote maintenance techniques. The system comprises a pair of force-reflecting servomanipulator arms, television viewing, lighting, and auxiliary lifting capabilities, thereby allowing manlike maintenance operations to be executed remotely within the remote cell mockup area in the IET. The Model M-2 Maintenance System incorporates an upgraded version of the proven Central Research Laboratories' Model M servomanipulator. Included are state-of-the-art brushless dc servomotors for improved performance, remotely removable wrist assemblies, geared azimuth drive, and a distributed microprocessor-based digital control system. 5 references, 8 figures

  15. An Examination of State Funding Models Regarding Virtual Schools for Public Elementary and Secondary Education in the United States

    Science.gov (United States)

    Stedrak, Luke J.

    2012-01-01

    This study contains an analysis of virtual schools, public policy, and funding in the United States. The purpose of this study was to determine what public policies and legislation were in place regarding the funding models of virtual education on a state by state basis. Furthermore, this study addressed how allocations were being made by state…

  16. Idle behaviors of the hippocampus reflect endogenous cortisol levels in youth.

    Science.gov (United States)

    Thomason, Moriah E; Tocco, Maria A; Quednau, Kelly A; Bedway, Andrea R; Carré, Justin M

    2013-06-01

    Compelling evidence indicates that disruption in functional connectivity (FC) in brain networks underlies many psychiatric and developmental disorders. Current theory posits that biological (i.e., cortisol) and environmental (i.e., stress) experiences in early life are strong determinants in the development of functional brain systems and formative in the genesis of such disorders. The objective of this study was to examine the extent to which individual differences in cortisol concentrations during FC magnetic resonance imaging (MRI) would map onto variability in hippocampal to default mode network (DMN) connectivity in typically developing youth. Salivary cortisol and FC MRI data were collected concurrently in 33 scan-naive 7- to 15-year-old participants. Twenty-nine of these participants previously completed the Trier Social Stress Test. Hippocampal to DMN FC and endogenous cortisol variability during MRI were examined. A possible association between MRI cortisol and cortisol response to the Trier Social Stress Test during the preceding visit or a participant's ratings of anxiety during MRI was tested. There were significant positive relations between MRI cortisol levels and measurements in the following 3 areas: hippocampal to DMN FC during the resting state, cortisol levels during the Trier Social Stress Test, and fear/anxiety ratings during MRI. Fear/anxiety ratings during MRI also related to self-reported anxiety on standardized measurements. This study shows for the first time that FC of the hippocampus is altered with changing cortisol responsivity in youth. Altered FC during the resting state may represent altered alertness or monitoring resulting from variation in glucocorticoid function in youth, which carries implications for the effect of stress on response monitoring and decision making. Copyright © 2013 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  17. Developing a PLC-friendly state machine model: lessons learned

    Science.gov (United States)

    Pessemier, Wim; Deconinck, Geert; Raskin, Gert; Saey, Philippe; Van Winckel, Hans

    2014-07-01

    Modern Programmable Logic Controllers (PLCs) have become an attractive platform for controlling real-time aspects of astronomical telescopes and instruments due to their increased versatility, performance and standardization. Likewise, vendor-neutral middleware technologies such as OPC Unified Architecture (OPC UA) have recently demonstrated that they can greatly facilitate the integration of these industrial platforms into the overall control system. Many practical questions arise, however, when building multi-tiered control systems that consist of PLCs for low level control, and conventional software and platforms for higher level control. How should the PLC software be structured, so that it can rely on well-known programming paradigms on the one hand, and be mapped to a well-organized OPC UA interface on the other hand? Which programming languages of the IEC 61131-3 standard closely match the problem domains of the abstraction levels within this structure? How can the recent additions to the standard (such as the support for namespaces and object-oriented extensions) facilitate a model based development approach? To what degree can our applications already take advantage of the more advanced parts of the OPC UA standard, such as the high expressiveness of the semantic modeling language that it defines, or the support for events, aggregation of data, automatic discovery, ... ? What are the timing and concurrency problems to be expected for the higher level tiers of the control system due to the cyclic execution of control and communication tasks by the PLCs? We try to answer these questions by demonstrating a semantic state machine model that can readily be implemented using IEC 61131 and OPC UA. One that does not aim to capture all possible states of a system, but rather one that attempts to organize the course-grained structure and behaviour of a system. In this paper we focus on the intricacies of this seemingly simple task, and on the lessons that we

  18. Skein Invariants of Links and Their State Sum Models

    Directory of Open Access Journals (Sweden)

    Louis H. Kauffman

    2017-10-01

    Full Text Available We present the new skein invariants of classical links, H [ H ] , K [ K ] and D [ D ] , based on the invariants of links, H, K and D, denoting the regular isotopy version of the Homflypt polynomial, the Kauffman polynomial and the Dubrovnik polynomial. The invariants are obtained by abstracting the skein relation of the corresponding invariant and making a new skein algorithm comprising two computational levels: first producing unlinked knotted components, then evaluating the resulting knots. The invariants in this paper, were revealed through the skein theoretic definition of the invariants Θ d related to the Yokonuma–Hecke algebras and their 3-variable generalization Θ , which generalizes the Homflypt polynomial. H [ H ] is the regular isotopy counterpart of Θ . The invariants K [ K ] and D [ D ] are new generalizations of the Kauffman and the Dubrovnik polynomials. We sketch skein theoretic proofs of the well-definedness and topological properties of these invariants. The invariants of this paper are reformulated into summations of the generating invariants (H, K, D on sublinks of the given link L, obtained by partitioning L into collections of sublinks. The first such reformulation was achieved by W.B.R. Lickorish for the invariant Θ and we generalize it to the Kauffman and Dubrovnik polynomial cases. State sum models are formulated for all the invariants. These state summation models are based on our skein template algorithm which formalizes the skein theoretic process as an analogue of a statistical mechanics partition function. Relationships with statistical mechanics models are articulated. Finally, we discuss physical situations where a multi-leveled course of action is taken naturally.

  19. Towards an automatic model transformation mechanism from UML state machines to DEVS models

    Directory of Open Access Journals (Sweden)

    Ariel González

    2015-08-01

    Full Text Available The development of complex event-driven systems requires studies and analysis prior to deployment with the goal of detecting unwanted behavior. UML is a language widely used by the software engineering community for modeling these systems through state machines, among other mechanisms. Currently, these models do not have appropriate execution and simulation tools to analyze the real behavior of systems. Existing tools do not provide appropriate libraries (sampling from a probability distribution, plotting, etc. both to build and to analyze models. Modeling and simulation for design and prototyping of systems are widely used techniques to predict, investigate and compare the performance of systems. In particular, the Discrete Event System Specification (DEVS formalism separates the modeling and simulation; there are several tools available on the market that run and collect information from DEVS models. This paper proposes a model transformation mechanism from UML state machines to DEVS models in the Model-Driven Development (MDD context, through the declarative QVT Relations language, in order to perform simulations using tools, such as PowerDEVS. A mechanism to validate the transformation is proposed. Moreover, examples of application to analyze the behavior of an automatic banking machine and a control system of an elevator are presented.

  20. Thermodynamics of bread baking: A two-state model

    Science.gov (United States)

    Zürcher, Ulrich

    2014-03-01

    Bread baking can be viewed as a complex physico-chemical process. It is governed by transport of heat and is accompanied by changes such as gelation of starch, the expansion of air cells within dough, and others. We focus on the thermodynamics of baking and investigate the heat flow through dough and find that the evaporation of excess water in dough is the rate-limiting step. We consider a simplified one-dimensional model of bread, treating the excess water content as a two-state variable that is zero for baked bread and a fixed constant for unbaked dough. We arrive at a system of coupled, nonlinear ordinary differential equations, which are solved using a standard Runge-Kutta integration method. The calculated baking times are consistent with common baking experience.

  1. Using multi-state markov models to identify credit card risk

    Directory of Open Access Journals (Sweden)

    Daniel Evangelista Régis

    2016-06-01

    Full Text Available Abstract The main interest of this work is to analyze the application of multi-state Markov models to evaluate credit card risk by investigating the characteristics of different state transitions in client-institution relationships over time, thereby generating score models for various purposes. We also used logistic regression models to compare the results with those obtained using multi-state Markov models. The models were applied to an actual database of a Brazilian financial institution. In this application, multi-state Markov models performed better than logistic regression models in predicting default risk, and logistic regression models performed better in predicting cancellation risk.

  2. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A; Northrop, William F; Bohac, Stanislav V; Assanis, Dennis N

    2012-11-15

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NO x ), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM 2.5 , EC, formaldehyde, and most VOCs; however, NO x brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM 2.5 , EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM 2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM 2.5 . The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for

  3. Gaseous and Particulate Emissions from Diesel Engines at Idle and under Load: Comparison of Biodiesel Blend and Ultralow Sulfur Diesel Fuels

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A.; Northrop, William F.; Bohac, Stanislav V.; Assanis, Dennis N.

    2015-01-01

    Diesel exhaust emissions have been reported for a number of engine operating strategies, after-treatment technologies, and fuels. However, information is limited regarding emissions of many pollutants during idling and when biodiesel fuels are used. This study investigates regulated and unregulated emissions from both light-duty passenger car (1.7 L) and medium-duty (6.4 L) diesel engines at idle and load and compares a biodiesel blend (B20) to conventional ultralow sulfur diesel (ULSD) fuel. Exhaust aftertreatment devices included a diesel oxidation catalyst (DOC) and a diesel particle filter (DPF). For the 1.7 L engine under load without a DOC, B20 reduced brake-specific emissions of particulate matter (PM), elemental carbon (EC), nonmethane hydrocarbons (NMHCs), and most volatile organic compounds (VOCs) compared to ULSD; however, formaldehyde brake-specific emissions increased. With a DOC and high load, B20 increased brake-specific emissions of NMHC, nitrogen oxides (NOx), formaldehyde, naphthalene, and several other VOCs. For the 6.4 L engine under load, B20 reduced brake-specific emissions of PM2.5, EC, formaldehyde, and most VOCs; however, NOx brake-specific emissions increased. When idling, the effects of fuel type were different: B20 increased NMHC, PM2.5, EC, formaldehyde, benzene, and other VOC emission rates from both engines, and changes were sometimes large, e.g., PM2.5 increased by 60% for the 6.4 L/2004 calibration engine, and benzene by 40% for the 1.7 L engine with the DOC, possibly reflecting incomplete combustion and unburned fuel. Diesel exhaust emissions depended on the fuel type and engine load (idle versus loaded). The higher emissions found when using B20 are especially important given the recent attention to exposures from idling vehicles and the health significance of PM2.5. The emission profiles demonstrate the effects of fuel type, engine calibration, and emission control system, and they can be used as source profiles for apportionment

  4. Projective limits of state spaces III. Toy-models

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2018-01-01

    In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013) [1,2], which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). A strategy to implement the dynamics in this formalism was presented in our first paper Lanéry and Thiemann (2017) (see also Lanéry, 2016, section 4), which we now test in two simple toy-models. The first one is a very basic linear model, meant as an illustration of the general procedure, and we will only discuss it at the classical level. In the second one, we reformulate the Schrödinger equation, treated as a classical field theory, within this projective framework, and proceed to its (non-relativistic) second quantization. We are then able to reproduce the physical content of the usual Fock quantization.

  5. Modelling population dynamics model formulation, fitting and assessment using state-space methods

    CERN Document Server

    Newman, K B; Morgan, B J T; King, R; Borchers, D L; Cole, D J; Besbeas, P; Gimenez, O; Thomas, L

    2014-01-01

    This book gives a unifying framework for estimating the abundance of open populations: populations subject to births, deaths and movement, given imperfect measurements or samples of the populations.  The focus is primarily on populations of vertebrates for which dynamics are typically modelled within the framework of an annual cycle, and for which stochastic variability in the demographic processes is usually modest. Discrete-time models are developed in which animals can be assigned to discrete states such as age class, gender, maturity,  population (within a metapopulation), or species (for multi-species models). The book goes well beyond estimation of abundance, allowing inference on underlying population processes such as birth or recruitment, survival and movement. This requires the formulation and fitting of population dynamics models.  The resulting fitted models yield both estimates of abundance and estimates of parameters characterizing the underlying processes.  

  6. A microphysical model explains rate-and-state friction

    Science.gov (United States)

    Chen, Jianye; Spiers, Christopher J.

    2015-04-01

    The rate-and-state friction (RSF) laws were originally developed as a phenomenological description of the frictional behavior observed in lab experiments. In previous studies, the empirical RSF laws have been extensively and quite successfully applied to fault mechanisms. However, these laws can not readily be envisioned in terms of the underlying physics. There are several critical discrepancies between seismological constraints on RSF behavior associated with earthquakes and lab-derived RSF parameters, in particular regarding the static stress drop and characteristic slip distance associated with seismic events. Moreover, lab friction studies can address only limited fault topographies, displacements, experimental durations and P-T conditions, which means that scale issues, and especially processes like dilatation and fluid-rock interaction, cannot be fully taken into account. Without a physical basis accounting for such effects, extrapolation of lab-derived RSF data to nature involves significant, often unknown uncertainties. In order to more reliably apply experimental results to natural fault zones, and notably to extrapolate lab data beyond laboratory pressure, temperature and velocity conditions, an understanding of the microphysical mechanisms governing fault frictional behavior is required. Here, following some pioneering efforts (e.g. Niemeijer and Spiers, 2007; Den Hartog and Spiers, 2014), a mechanism-based microphysical model is developed for describing the frictional behavior of carbonate fault gouge, assuming that the frictional behavior seen in lab experiments is controlled by competing processes of intergranular slip versus contact creep by pressure solution. The model basically consists of two governing equations derived from energy/entropy balance considerations and the kinematic relations that apply to a granular fault gouge undergoing shear and dilation/compaction. These two equations can be written as ˙τ/K = Vimp- Lt[λ˙γsbps +(1-

  7. MODELS OF STATE REFORMS IN AGRICULTURE: PAST AND PRESENT

    Directory of Open Access Journals (Sweden)

    А Г Киселев

    2017-12-01

    Full Text Available The article outlines social and economic consequences of collectivization to compare this state policy with the changes in agriculture in the 1990s, and to estimate chances of the Russian agriculture to overcome the current crisis. The article is based on archive data on collectivization and on the program developed by the Academy of High Ecotechnologies. The authors believe that at the time of collectivization, it was a way to optimize agriculture: largely due to collectivization, though with all its losses and ‘extremes’, the soviet agriculture was partially industrialized and provided the country with food in the hardest years of the Great Patriotic War and in the post-war period, thus ensuring the food security of the Soviet state. The ‘emergency’ model of the so-called ‘return to civilization’ that was adopted under the reforms of the 1990s aimed at turning the collective farmer into an individual farmer or a rural wageworker, but such a social ‘migration’ strategy imposed ‘from above’ deformed the rural social stratum and determined serious economic problems. Today the authors consider the neo-collective farms as a promising perspec-tive. They also support the program developed by the Academy of High Ecotechnologies for intensification of agricultural production on the basis of progressive domestic and foreign technologies, which will allow to increase the agricultural production in the next three to five years by several times. In particular, for more effective use of agricultural technologies and processing industries, the program suggests develop-ing the enlarged organizational-economic structures - ‘agropromkhozes’.

  8. Making Faces - State-Space Models Applied to Multi-Modal Signal Processing

    DEFF Research Database (Denmark)

    Lehn-Schiøler, Tue

    2005-01-01

    The two main focus areas of this thesis are State-Space Models and multi modal signal processing. The general State-Space Model is investigated and an addition to the class of sequential sampling methods is proposed. This new algorithm is denoted as the Parzen Particle Filter. Furthermore...... optimizer can be applied to speed up convergence. The linear version of the State-Space Model, the Kalman Filter, is applied to multi modal signal processing. It is demonstrated how a State-Space Model can be used to map from speech to lip movements. Besides the State-Space Model and the multi modal...

  9. A steady-state model of the lunar ejecta cloud

    Science.gov (United States)

    Christou, Apostolos

    2014-05-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.

  10. k– fading channels: a finite state Markov modelling approach

    Indian Academy of Sciences (India)

    C Priyanka

    2018-02-07

    Feb 7, 2018 ... identical (i.e., when k = 1), and multipath cluster, l = 1, the SSP is maintained close to 0.1, which means that the channel fading characteristics greatly vary for all states. However, if l value is increased for low amplitude level states, the probability of being in a particular state is 0 and the fading effects are ...

  11. Tabulated Neutron Star Equations of State Modelled within the Chiral Mean Field Model

    Science.gov (United States)

    Dexheimer, V.

    2017-12-01

    In this special issue article, I review some of the accomplishments of the chiral mean field (CMF) model, which contains nucleon, hyperon, and quark degrees of freedom, and its applications to proto-neutron and neutron stars. I also present a set of equation of state and particle population tables built using the CMF model subject to physical constraints necessary to reproduce different environments, such as those present in cold neutron stars, core-collapse supernova explosions, and different stages of compact star mergers.

  12. Network theory model of the United States Patent citation network

    Science.gov (United States)

    Tobochnik, Jan; Erdi, Peter; Strandburg, Katherine; Csardi, Gabor; Zalanyi, Laszlo

    2006-03-01

    We report results of a network theory approach to the study of the United States patent system. We model the patent citation network as a discrete time, discrete space stochastic dynamic system. From data on more than two million patents and their citations, we extract an attractiveness function, A(k,l), which determines the likelihood that a patent will be cited. A(k,l) is approximately separable into a product of a function Ak(k) and a function Al(l), where k is the number of citations already received (in-degree) and l is the age measured in patent number units. Al(l) displays a peak at low l and a long power law tail, suggesting that some patented technologies have very long-term effects. Ak(k) exhibits super-linear preferential attachment. The preferential attachment exponent has been increasing since 1991, suggesting that patent citations are increasingly concentrated on a relatively small number of patents. The overall average probability that a new patent will be cited by a given patent has increased slightly during the same period.

  13. Interprofessional Education in Occupational Therapy: The Idaho State University Model

    Directory of Open Access Journals (Sweden)

    Bryan Gee

    2016-04-01

    Full Text Available Interprofessional education (IPE is becoming a common practice among most allied health professions as a part of entry level training. IPE is intended to promote greater professional collaboration in routine clinical practice. The prerequisites for this type of educational process include gaining an understanding of one’s own and other professions while developing mutual respect, trust, and communication skills. The Idaho State University (ISU Interdisciplinary Evaluation Team (IET course delivery model is one such vehicle which fosters IPE across numerous disciplines while providing significant clinical support to the local community. This study presents the ISU IET course process, which combines clinical care of community pediatric clients via student/clinician partnership, which reflect on the process of interprofessional care. Occupational therapy student perceptions of the IET course consistently trended in favorable directions. All participants desired more opportunities for IPE combined with direct client interaction as a part of their other course work. Occupational therapy educational programs are well suited and positioned to host and/or to establish key roles in IPE to support student clinical training and meet the health and needs of their local communities.

  14. Girsanov reweighting for path ensembles and Markov state models

    Science.gov (United States)

    Donati, L.; Hartmann, C.; Keller, B. G.

    2017-06-01

    The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.

  15. Characterizing the relationship between steady state and response using analytical expressions for the steady states of mass action models.

    Science.gov (United States)

    Loriaux, Paul Michael; Tesler, Glenn; Hoffmann, Alexander

    2013-01-01

    The steady states of cells affect their response to perturbation. Indeed, diagnostic markers for predicting the response to therapeutic perturbation are often based on steady state measurements. In spite of this, no method exists to systematically characterize the relationship between steady state and response. Mathematical models are established tools for studying cellular responses, but characterizing their relationship to the steady state requires that it have a parametric, or analytical, expression. For some models, this expression can be derived by the King-Altman method. However, King-Altman requires that no substrate act as an enzyme, and is therefore not applicable to most models of signal transduction. For this reason we developed py-substitution, a simple but general method for deriving analytical expressions for the steady states of mass action models. Where the King-Altman method is applicable, we show that py-substitution yields an equivalent expression, and at comparable efficiency. We use py-substitution to study the relationship between steady state and sensitivity to the anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First, we use py-substitution to derive an analytical expression for the steady state of a published model of TRAIL-induced apoptosis. Next, we show that the amount of TRAIL required for cell death is sensitive to the steady state concentrations of procaspase 8 and its negative regulator, Bar, but not the other procaspase molecules. This suggests that activation of caspase 8 is a critical point in the death decision process. Finally, we show that changes in the threshold at which TRAIL results in cell death is not always equivalent to changes in the time of death, as is commonly assumed. Our work demonstrates that an analytical expression is a powerful tool for identifying steady state determinants of the cellular response to perturbation. All code is available at http://signalingsystems.ucsd.edu/models-and-code/ or

  16. Modeling regulatory policies associated with offshore structure removal requirements in the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Mark J. [Center for Energy Studies, Louisiana State University, Energy Coast and Environment Building, Baton Rouge, LA (United States)

    2008-07-15

    Federal regulations require that a lease in the Outer Continental Shelf of the Gulf of Mexico be cleared of all structures within one year after production on the lease ceases, but in recent years, the Minerals Management Service has begun to encourage operators to remove idle (non-producing) structures on producing leases that are no longer ''economically viable''. At the end of 2003, there were 2175 producing structures, 898 idle (non-producing) structures, and 440 auxiliary (never-producing) structures on 1356 active leases; and 329 idle structures and 65 auxiliary structures on 273 inactive leases. The purpose of this paper is to model the impact of alternative regulatory policies on the removal trends of structures and the inventory of idle iron, and to provide first-order estimates of the cost of each regulatory option. A description of the modeling framework and implementation results is presented. (author)

  17. Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model

    DEFF Research Database (Denmark)

    Maia, Filipa Meireles; Tsivintzelis, Ioannis; Rodriguez, Oscar

    2012-01-01

    and their interactions with other components is still needed. In this work, we made a review of literature studies on modelling systems with ionic liquids using equation of state models. Furthermore, we applied the Cubic Plus Association (CPA) equation of state to describe the phase behaviour of two ionic liquids, 1...... is in progress for improving the modelling of LLE with the CPA equation of state....

  18. Rate heterogeneity across Squamata, misleading ancestral state reconstruction and the importance of proper null model specification.

    Science.gov (United States)

    Harrington, S; Reeder, T W

    2017-02-01

    The binary-state speciation and extinction (BiSSE) model has been used in many instances to identify state-dependent diversification and reconstruct ancestral states. However, recent studies have shown that the standard procedure of comparing the fit of the BiSSE model to constant-rate birth-death models often inappropriately favours the BiSSE model when diversification rates vary in a state-independent fashion. The newly developed HiSSE model enables researchers to identify state-dependent diversification rates while accounting for state-independent diversification at the same time. The HiSSE model also allows researchers to test state-dependent models against appropriate state-independent null models that have the same number of parameters as the state-dependent models being tested. We reanalyse two data sets that originally used BiSSE to reconstruct ancestral states within squamate reptiles and reached surprising conclusions regarding the evolution of toepads within Gekkota and viviparity across Squamata. We used this new method to demonstrate that there are many shifts in diversification rates across squamates. We then fit various HiSSE submodels and null models to the state and phylogenetic data and reconstructed states under these models. We found that there is no single, consistent signal for state-dependent diversification associated with toepads in gekkotans or viviparity across all squamates. Our reconstructions show limited support for the recently proposed hypotheses that toepads evolved multiple times independently in Gekkota and that transitions from viviparity to oviparity are common in Squamata. Our results highlight the importance of considering an adequate pool of models and null models when estimating diversification rate parameters and reconstructing ancestral states. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  19. Degenerate ground states and multiple bifurcations in a two-dimensional q-state quantum Potts model.

    Science.gov (United States)

    Dai, Yan-Wei; Cho, Sam Young; Batchelor, Murray T; Zhou, Huan-Qiang

    2014-06-01

    We numerically investigate the two-dimensional q-state quantum Potts model on the infinite square lattice by using the infinite projected entangled-pair state (iPEPS) algorithm. We show that the quantum fidelity, defined as an overlap measurement between an arbitrary reference state and the iPEPS ground state of the system, can detect q-fold degenerate ground states for the Z_{q} broken-symmetry phase. Accordingly, a multiple bifurcation of the quantum ground-state fidelity is shown to occur as the transverse magnetic field varies from the symmetry phase to the broken-symmetry phase, which means that a multiple-bifurcation point corresponds to a critical point. A (dis)continuous behavior of quantum fidelity at phase transition points characterizes a (dis)continuous phase transition. Similar to the characteristic behavior of the quantum fidelity, the magnetizations, as order parameters, obtained from the degenerate ground states exhibit multiple bifurcation at critical points. Each order parameter is also explicitly demonstrated to transform under the Z_{q} subgroup of the symmetry group of the Hamiltonian. We find that the q-state quantum Potts model on the square lattice undergoes a discontinuous (first-order) phase transition for q=3 and q=4 and a continuous phase transition for q=2 (the two-dimensional quantum transverse Ising model).

  20. The Impact of State Legislation and Model Policies on Bullying in Schools

    Science.gov (United States)

    Terry, Amanda

    2018-01-01

    Background: The purpose of this study was to determine the impact of the coverage of state legislation and the expansiveness ratings of state model policies on the state-level prevalence of bullying in schools. Methods: The state-level prevalence of bullying in schools was based on cross-sectional data from the 2013 High School Youth Risk Behavior…

  1. Fuzzy Adaptive Model Following Speed Control for Vector Controlled Permanent Magnet Synchronous Motor

    Directory of Open Access Journals (Sweden)

    Baghdad BELABES

    2008-12-01

    Full Text Available In this paper a hybrid controller combining a linear model following controller (LMFC and fuzzy logic control (FLC for speed vector controlled permanent magnet synchronous motor (PMSM is described on this study. The FLC is introduced at the adaptive mechanism level. First, an LMFC system is designed to allow the plant states to be controlled to follow the states produced by a reference model. In the nominal conditions, the model following is perfect and the adaptive mechanism based on the fuzzy logic is idle. Secondly, when parameter variations or external disturbances occur, an augmented signal will be generated by FLC mechanism to preserve the desired model following control performance. The effectiveness and robustness of the proposed controller is demonstrated by some simulation results.

  2. Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions

    International Nuclear Information System (INIS)

    Rahman, S.M. Ashrafur; Masjuki, H.H.; Kalam, M.A.; Abedin, M.J.; Sanjid, A.; Sajjad, H.

    2013-01-01

    Highlights: • Biodiesel produced from palm and Calophyllum oil using trans-esterification process. • Produced biodiesels properties were compared with ASTM D6751 standards. • Engine performance and exhaust emissions were evaluated at high idling conditions. • Idling CO and HC emission was reduced using biodiesel–diesel blends. • For low percentages of biodiesel–diesel blends NO X emission increased negligibly. - Abstract: Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in many countries of the world production and use of biodiesel has gained popularity. In this research, biodiesel from palm and Calophyllum inophyllum oil has been produced using the trans-esterification process. Properties of the produced biodiesels were compared with the ASTM D6751 standard: biodiesel standard and testing methods. Density, kinematic viscosity, flash point, cloud point, pour point and calorific value, these are the six main physicochemical properties that were investigated. Both palm biodiesel and Calophyllum biodiesel were within the standard limits, so they both can be used as the alternative of diesel fuel. Furthermore, engine performance and emission parameters of a diesel engine run by both palm biodiesel–diesel and Calophyllum biodiesel–diesel blends were evaluated at high idling conditions. Brake specific fuel consumption increased for both the biodiesel–diesel blends compared to pure diesel fuel; however, at highest idling condition, this increase was almost negligible. Exhaust gas temperatures decreased as blend percentages increased for both the biodiesel–diesel blends. For low blend percentages increase in NO

  3. The Impact of State Legislation and Model Policies on Bullying in Schools.

    Science.gov (United States)

    Terry, Amanda

    2018-04-01

    The purpose of this study was to determine the impact of the coverage of state legislation and the expansiveness ratings of state model policies on the state-level prevalence of bullying in schools. The state-level prevalence of bullying in schools was based on cross-sectional data from the 2013 High School Youth Risk Behavior Survey. Multiple regression was conducted to determine whether the coverage of state legislation and the expansiveness rating of a state model policy affected the state-level prevalence of bullying in schools. The purpose and definition category of components in state legislation and the expansiveness rating of a state model policy were statistically significant predictors of the state-level prevalence of bullying in schools. The other 3 categories of components in state legislation-District Policy Development and Review, District Policy Components, and Additional Components-were not statistically significant predictors in the model. Extensive coverage in the purpose and definition category of components in state legislation and a high expansiveness rating of a state model policy may be important in efforts to reduce bullying in schools. Improving these areas may reduce the state-level prevalence of bullying in schools. © 2018, American School Health Association.

  4. State Models to Incentivize and Streamline Small Hydropower Development

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Taylor [National Renewable Energy Lab. (NREL), Golden, CO (United States); Levine, Aaron [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, Kurt [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-10-31

    In 2016, the hydropower fleet in the United States produced more than 6 percent (approximately 265,829 gigawatt-hours [GWh]) of the total net electricity generation. The median-size hydroelectric facility in the United States is 1.6 MW and 75 percent of total facilities have a nameplate capacity of 10 MW or less. Moreover, the U.S. Department of Energy's Hydropower Vision study identified approximately 79 GW hydroelectric potential beyond what is already developed. Much of the potential identified is at low-impact new stream-reaches, existing conduits, and non-powered dams with a median project size of 10 MW or less. To optimize the potential and value of small hydropower development, state governments are crafting policies that provide financial assistance and expedite state and federal review processes for small hydroelectric projects. This report analyzes state-led initiatives and programs that incentivize and streamline small hydroelectric development.

  5. Absence of Energy Level Crossing for the Ground State Energy of the Rabi Model

    OpenAIRE

    Hirokawa, Masao; Hiroshima, Fumio

    2012-01-01

    The Hamiltonian of the Rabi model is considered. It is shown that the ground state energy of the Rabi Hamiltonian is simple for all values of the coupling strength, which implies the ground state energy does not cross other energy

  6. Intercomparison of state-of-the-art models for wind energy resources with mesoscale models:

    Science.gov (United States)

    Olsen, Bjarke Tobias; Hahmann, Andrea N.; Sempreviva, Anna Maria; Badger, Jake; Joergensen, Hans E.

    2016-04-01

    vertical resolution, model parameterizations, surface roughness length) that could be used to group the various models and interpret the results of the intercomparison. 3. Main body abstract Twenty separate entries were received by the deadline of 31 March 2015. They included simulations done with various versions of the Weather Research and Forecast (WRF) model, but also of six other well-known mesoscale models. The various entries represent an excellent sample of the various models used in by the wind energy industry today. The analysis of the submitted time series included comparison to observations, summarized with well-known measures such as biases, RMSE, correlations, and of sector-wise statistics, e.g. frequency and Weibull A and k. The comparison also includes the observed and modeled temporal spectra. The various statistics were grouped as a function of the various models, their spatial resolution, forcing data, and the various integration methods. Many statistics have been computed and will be presented in addition to those shown in the Helsinki presentation. 4. Conclusions The analysis of the time series from twenty entries has shown to be an invaluable source of information about state of the art in wind modeling with mesoscale models. Biases between the simulated and observed wind speeds at hub heights (80-100 m AGL) from the various models are around ±1.0 m/s and fairly independent of the site and do not seem to be directly related to the model horizontal resolution used in the modeling. As probably expected, the wind speeds from the simulations using the various version of the WRF model cluster close to each other, especially in their description of the wind profile.

  7. Modeling of an Adjustable Beam Solid State Light

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax OpticStudio ®. The...

  8. Combined discrete particle and continuum model predicting solid-state fermentation in a drum fermentor

    NARCIS (Netherlands)

    Schutyser, M.A.I.; Schutyser, M.A.I.; Briels, Willem J.; Boom, R.M.; Boom, R.M.; Rinzema, A.

    2004-01-01

    The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model

  9. Transient thermal model of passenger car's cabin and implementation to saturation cycle with alternative working fluids

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Song, Ilguk; Jang, Kilsang

    2015-01-01

    A transient thermal model of a passenger car's cabin is developed to investigate the dynamic behavior of cabin thermal conditions. The model is developed based on a lumped-parameter model and solved using integral methods. Solar radiation, engine heat through the firewall, and engine heat to the air ducts are all considered. Using the thermal model, transient temperature profiles of the interior mass and cabin air are obtained. This model is used to investigate the transient behavior of the cabin under various operating conditions: the recirculation mode in the idling state, the fresh air mode in the idling state, the recirculation mode in the driving state, and fresh air mode in the driving state. The developed model is validated by comparing with experimental data and is within 5% of deviation. The validated model is then applied for evaluating the mobile air conditioning system's design. The study found that a saturation cycle concept (four-stage cycle with two-phase refrigerant injection) could improve the system efficiency by 23.9% and reduce the power consumption by 19.3%. Lastly, several alternative refrigerants are applied and their performance is discussed. When the saturation cycle concept is applied, R1234yf MAC (mobile air conditioning) shows the largest COP (coefficient of performance) improvement and power consumption reduction. - Highlights: • The transient thermal model of the passenger car cabin is developed. • The developed model is validated with experimental data and showed 5% deviation. • Saturation cycle concept is applied to the developed cabin model. • There is 24% COP improvement by applying the saturation cycle concept. • R1234yf showed the highest potential when it is applied to the saturation cycle.

  10. Analyzing latent state-trait and multiple-indicator latent growth curve models as multilevel structural equation models

    OpenAIRE

    Geiser, Christian; Bishop, Jacob; Lockhart, Ginger; Shiffman, Saul; Grenard, Jerry L.

    2013-01-01

    Latent state-trait (LST) and latent growth curve (LGC) models are frequently used in the analysis of longitudinal data. Although it is well-known that standard single-indicator LGC models can be analyzed within either the structural equation modeling (SEM) or multilevel (ML; hierarchical linear modeling) frameworks, few researchers realize that LST and multivariate LGC models, which use multiple indicators at each time point, can also be specified as ML models. In the present paper, we demons...

  11. State-to-State Internal Energy Relaxation Following the Quantum-Kinetic Model in DSMC

    Science.gov (United States)

    Liechty, Derek S.

    2014-01-01

    A new model for chemical reactions, the Quantum-Kinetic (Q-K) model of Bird, has recently been introduced that does not depend on macroscopic rate equations or values of local flow field data. Subsequently, the Q-K model has been extended to include reactions involving charged species and electronic energy level transitions. Although this is a phenomenological model, it has been shown to accurately reproduce both equilibrium and non-equilibrium reaction rates. The usefulness of this model becomes clear as local flow conditions either exceed the conditions used to build previous models or when they depart from an equilibrium distribution. Presently, the applicability of the relaxation technique is investigated for the vibrational internal energy mode. The Forced Harmonic Oscillator (FHO) theory for vibrational energy level transitions is combined with the Q-K energy level transition model to accurately reproduce energy level transitions at a reduced computational cost compared to the older FHO models.

  12. A Stochastic and State Space Model for Tumour Growth and Applications

    Directory of Open Access Journals (Sweden)

    Wai-Yuan Tan

    2009-01-01

    Full Text Available We develop a state space model documenting Gompertz behaviour of tumour growth. The state space model consists of two sub-models: a stochastic system model that is an extension of the deterministic model proposed by Gyllenberg and Webb (1991, and an observation model that is a statistical model based on data for the total number of tumour cells over time. In the stochastic system model we derive through stochastic equations the probability distributions of the numbers of different types of tumour cells. Combining with the statistic model, we use these distribution results to develop a generalized Bayesian method and a Gibbs sampling procedure to estimate the unknown parameters and to predict the state variables (number of tumour cells. We apply these models and methods to real data and to computer simulated data to illustrate the usefulness of the models, the methods, and the procedures.

  13. Specification, construction, and exact reduction of state transition system models of biochemical processes.

    Science.gov (United States)

    Bugenhagen, Scott M; Beard, Daniel A

    2012-10-21

    Biochemical reaction systems may be viewed as discrete event processes characterized by a number of states and state transitions. These systems may be modeled as state transition systems with transitions representing individual reaction events. Since they often involve a large number of interactions, it can be difficult to construct such a model for a system, and since the resulting state-level model can involve a huge number of states, model analysis can be difficult or impossible. Here, we describe methods for the high-level specification of a system using hypergraphs, for the automated generation of a state-level model from a high-level model, and for the exact reduction of a state-level model using information from the high-level model. Exact reduction is achieved through the automated application to the high-level model of the symmetry reduction technique and reduction by decomposition by independent subsystems, allowing potentially significant reductions without the need to generate a full model. The application of the method to biochemical reaction systems is illustrated by models describing a hypothetical ion-channel at several levels of complexity. The method allows for the reduction of the otherwise intractable example models to a manageable size.

  14. Competition among various charge-inhomogeneous states and d -wave superconducting state in Hubbard models on square lattices

    Science.gov (United States)

    Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi

    2018-01-01

    We study competitions among charge-uniform and -inhomogeneous states in two-dimensional Hubbard models by using a variational Monte Carlo method. At realistic parameters for cuprate superconductors, emergent effective attraction of carriers generated from repulsive Coulomb interaction leads to charge/spin stripe ground states, which severely compete with uniform superconducting excited states in the energy scale of 10 K for cuprates. Stripe period increases with decreasing hole doping δ , which agrees with the experiments for La-based cuprates at δ =1 /8 . For lower δ , we find a phase separation. Implications of the emergent attraction for cuprates are discussed.

  15. A non-parametric hidden Markov model for climate state identification

    Directory of Open Access Journals (Sweden)

    M. F. Lambert

    2003-01-01

    Full Text Available Hidden Markov models (HMMs can allow for the varying wet and dry cycles in the climate without the need to simulate supplementary climate variables. The fitting of a parametric HMM relies upon assumptions for the state conditional distributions. It is shown that inappropriate assumptions about state conditional distributions can lead to biased estimates of state transition probabilities. An alternative non-parametric model with a hidden state structure that overcomes this problem is described. It is shown that a two-state non-parametric model produces accurate estimates of both transition probabilities and the state conditional distributions. The non-parametric model can be used directly or as a technique for identifying appropriate state conditional distributions to apply when fitting a parametric HMM. The non-parametric model is fitted to data from ten rainfall stations and four streamflow gauging stations at varying distances inland from the Pacific coast of Australia. Evidence for hydrological persistence, though not mathematical persistence, was identified in both rainfall and streamflow records, with the latter showing hidden states with longer sojourn times. Persistence appears to increase with distance from the coast. Keywords: Hidden Markov models, non-parametric, two-state model, climate states, persistence, probability distributions

  16. Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model

    Science.gov (United States)

    Lou, Yuan; Tao, Youshan; Winkler, Michael

    2017-05-01

    In this paper we study the Shigesada-Kawasaki-Teramoto model for two competing species with triangular cross-diffusion. We determine explicit parameter ranges within which the model exclusively possesses constant steady state solutions.

  17. Underlying finite state machine for the social engineering attack detection model

    CSIR Research Space (South Africa)

    Mouton, Francois

    2017-08-01

    Full Text Available one to have a clearer overview of the mental processing performed within the model. While the current model provides a general procedural template for implementing detection mechanisms for social engineering attacks, the finite state machine provides a...

  18. Network structures as a model of interaction between state and non-state actors in EU foreign policy

    Directory of Open Access Journals (Sweden)

    Sinegubov Alexey Leonidovich

    2013-11-01

    Full Text Available This article studies the role of network structures in EU foreign policy. The role of networks in functioning of EU is analyzed as the model of interaction between state and non-state actors in contemporary world politics. Some studies, including the project of National Intelligence Council of USA, demonstrate that there is a tendency of growing influence of non-state actors. The model of interaction that has developed in EU can be considered as a model of the future. That’s why the type of force used by EU is called “post-modern”. This model is conductive to wide use of “soft power” and some of its variants including “normative” and “network” power. Quasi-federal character of EU’s structure, whiсh is characterized by many intersecting and delegated sovereign functions, is a reason of appearance of the analyzed model. Network practices and network technologies are widely used in the process of developing and realization of EU’s policy on three levels: 1 development and realization of EU’s general policy; 2 the policy of EU’s enlargement and deeper integration of the newcomers into Europe’s life; 3 the neighborhood policy and “Europeanization” of neighboring to EU states that cannot become EU members. The last dimension of EU policy causes a conflict with Russia, which makes this analysis politically relevant.

  19. Image Coding using Markov Models with Hidden States

    DEFF Research Database (Denmark)

    Forchhammer, Søren Otto

    1999-01-01

    The Cylinder Partially Hidden Markov Model (CPH-MM) is applied to lossless coding of bi-level images. The original CPH-MM is relaxed for the purpose of coding by not imposing stationarity, but otherwise the model description is the same.......The Cylinder Partially Hidden Markov Model (CPH-MM) is applied to lossless coding of bi-level images. The original CPH-MM is relaxed for the purpose of coding by not imposing stationarity, but otherwise the model description is the same....

  20. Energy Demand Modeling Methodology of Key State Transitions of Turning Processes

    Directory of Open Access Journals (Sweden)

    Shun Jia

    2017-04-01

    Full Text Available Energy demand modeling of machining processes is the foundation of energy optimization. Energy demand of machining state transition is integral to the energy requirements of the machining process. However, research focus on energy modeling of state transition is scarce. To fill this gap, an energy demand modeling methodology of key state transitions of the turning process is proposed. The establishment of an energy demand model of state transition could improve the accuracy of the energy model of the machining process, which also provides an accurate model and reliable data for energy optimization of the machining process. Finally, case studies were conducted on a CK6153i CNC lathe, the results demonstrating that predictive accuracy with the proposed method is generally above 90% for the state transition cases.

  1. Role of band states and trap states in the electrical properties of organic semiconductors: Hopping versus mobility edge model

    KAUST Repository

    Mehraeen, Shafigh

    2013-05-01

    We compare the merits of a hopping model and a mobility edge model in the description of the effect of charge-carrier concentration on the electrical conductivity, carrier mobility, and Fermi energy of organic semiconductors. We consider the case of a composite electronic density of states (DOS) that consists of a superposition of a Gaussian DOS and an exponential DOS. Using kinetic Monte Carlo simulations, we apply the two models in order to interpret the recent experimental data reported for n-doped C60 films. While both models are capable of reproducing the experimental data very well and yield qualitatively similar characteristic parameters for the density of states, some discrepancies are found at the quantitative level. © 2013 American Physical Society.

  2. Modeling of Flood Risk for the Continental United States

    Science.gov (United States)

    Lohmann, D.; Li, S.; Katz, B.; Goteti, G.; Kaheil, Y. H.; Vojjala, R.

    2011-12-01

    The science of catastrophic risk modeling helps people to understand the physical and financial implications of natural catastrophes (hurricanes, flood, earthquakes, etc.), terrorism, and the risks associated with changes in life expectancy. As such it depends on simulation techniques that integrate multiple disciplines such as meteorology, hydrology, structural engineering, statistics, computer science, financial engineering, actuarial science, and more in virtually every field of technology. In this talk we will explain the techniques and underlying assumptions of building the RMS US flood risk model. We especially will pay attention to correlation (spatial and temporal), simulation and uncertainty in each of the various components in the development process. Recent extreme floods (e.g. US Midwest flood 2008, US Northeast flood, 2010) have increased the concern of flood risk. Consequently, there are growing needs to adequately assess the flood risk. The RMS flood hazard model is mainly comprised of three major components. (1) Stochastic precipitation simulation module based on a Monte-Carlo analogue technique, which is capable of producing correlated rainfall events for the continental US. (2) Rainfall-runoff and routing module. A semi-distributed rainfall-runoff model was developed to properly assess the antecedent conditions, determine the saturation area and runoff. The runoff is further routed downstream along the rivers by a routing model. Combined with the precipitation model, it allows us to correlate the streamflow and hence flooding from different rivers, as well as low and high return-periods across the continental US. (3) Flood inundation module. It transforms the discharge (output from the flow routing) into water level, which is further combined with a two-dimensional off-floodplain inundation model to produce comprehensive flood hazard map. The performance of the model is demonstrated by comparing to the observation and published data. Output from

  3. Optimal Number of States in Hidden Markov Models and its ...

    African Journals Online (AJOL)

    In this paper, Hidden Markov Model is applied to model human movements as to facilitate an automatic detection of the same. A number of activities were simulated with the help of two persons. The four movements considered are walking, sitting down-getting up, fall while walking and fall while standing. The data is ...

  4. Dynamic causal models of neural system dynamics: current state ...

    Indian Academy of Sciences (India)

    Prakash

    2006-09-28

    Sep 28, 2006 ... 3. Principles of DCM. An important limitation of previous methods for determining effective connectivity from functional imaging data, e.g. structural equation modelling (McIntosh and Gonzalez-. Lima 1994; Büchel and Friston 1997) or multivariate autoregressive models (Goebel et al 2003; Harrison et al.

  5. Generalized isothermal models with strange equation of state

    Indian Academy of Sciences (India)

    Sri Lanka. *Corresponding author. E-mail: maharaj@ukzn.ac.za. MS received 30 October 2008; revised 5 December 2008; accepted 16 December 2008. Abstract. We consider the linear equation of state for matter distributions that may be applied to strange stars with quark matter. In our general approach the compact.

  6. K-nuclear bound states in a dynamical model

    Czech Academy of Sciences Publication Activity Database

    Mareš, Jiří; Friedman, E.; Gal, A.

    2006-01-01

    Roč. 770, 1/2 (2006), s. 84-105 ISSN 0375-9474 Institutional research plan: CEZ:AV0Z10480505 Keywords : kaonic atoms * K-nuclear bound states * K-nucleus interaction Subject RIV: BE - Theoretical Physics Impact factor: 2.155, year: 2006

  7. Forest ingrowth prediction model for the Northeastern United States

    Science.gov (United States)

    Linda S. Gribko

    1997-01-01

    In the last 20 years, there has been a revival of interest in the use of uneven-aged forest management techniques in the production of timber and forest amenity values. Uneven-aged management is coming into renewed favor especially among non-industrial private landowners in the northeastern United States. The practice allows periodic timber removals on relatively small...

  8. Solid-state fermentation : modelling fungal growth and activity

    NARCIS (Netherlands)

    Smits, J.P.

    1998-01-01

    In solid-state fermentation (SSF) research, it is not possible to separate biomass quantitatively from the substrate. The evolution of biomass dry weight in time can therefore not be measured. Of the aiternatives to dry weight available, glucosamine content is most

  9. Filtering and smoothing of stae vector for diffuse state space models

    NARCIS (Netherlands)

    Koopman, S.J.; Durbin, J.

    2003-01-01

    This paper presents exact recursions for calculating the mean and mean square error matrix of the state vector given the observations for the multi-variate linear Gaussian state-space model in the case where the initial state vector is (partially) diffuse.

  10. Modelling Subaqueous Debris Flows - A comparison of two state-of-the-art integrated models

    Science.gov (United States)

    Spinewine, Benoit; Sfouni-Grigoriadou, Mariangela; Ingarfield, Samuel

    2015-04-01

    With the gradual depletion of nearshore resources and technological advances in oil and gas production, developments are now often located beyond the continental shelf in environments susceptible to mass movement events. The risk to subsea infrastructure from these events is often quantified through: i) an assessment of potential unstable slope areas and ii) numerical modelling of the potential slide runout behaviour. This submission compares two different state-of-the-art depth-averaged numerical models for debris flow runout. These models both incorporate advanced rheology modelling and are capable of modelling slide behaviour over complex 3D bathymetry, but solve the governing equations in two drastically differing fashions - the first of which solves these equations within an Eulerian, Finite Volume framework, whilst the second solves the equations within a Lagrangian framework through a technique known as Smoothed Particle Hydrodynamics (SPH). The relationship between shear stress and shear strain rate is modelled using either the linear viscoplastic Bingham or non-linear viscoplastic Herschel-Bulkley model. These numerical models also have a facility for the modelling of soil strength degradation during runout as a consequence of remoulding, as well as through the entrainment of ambient fluid. The soil mass itself is modelled as a rigid plug layer with an internal shear strain rate of zero, overlying a sheared layer where the shear stress at the interface between these layers is equal to the yield stress of the soil. The velocity in the plug layer is constant throughout its depth, whilst in the sheared layer it gradually diminishes to zero. The Eurlerian model relies on an unstructured triangular mesh for the representation of the bathymetry. This is constructed using a generator which provides for local refinement in the area of anticipated runout and along steeper slopes or channelised areas. The equations are solved using a finite volume approach, using a

  11. Current State of Animal (Mouse Modeling in Melanoma Research

    Directory of Open Access Journals (Sweden)

    Omer F. Kuzu

    2015-01-01

    Full Text Available Despite the considerable progress in understanding the biology of human cancer and technological advancement in drug discovery, treatment failure remains an inevitable outcome for most cancer patients with advanced diseases, including melanoma. Despite FDA-approved BRAF-targeted therapies for advanced stage melanoma showed a great deal of promise, development of rapid resistance limits the success. Hence, the overall success rate of melanoma therapy still remains to be one of the worst compared to other malignancies. Advancement of next-generation sequencing technology allowed better identification of alterations that trigger melanoma development. As development of successful therapies strongly depends on clinically relevant preclinical models, together with the new findings, more advanced melanoma models have been generated. In this article, besides traditional mouse models of melanoma, we will discuss recent ones, such as patient-derived tumor xenografts, topically inducible BRAF mouse model and RCAS/TVA-based model, and their advantages as well as limitations. Although mouse models of melanoma are often criticized as poor predictors of whether an experimental drug would be an effective treatment, development of new and more relevant models could circumvent this problem in the near future.

  12. Efimov states in Li-Cs mixtures within a minimal model

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Nygaard, N. G.

    2015-01-01

    We use a minimal zero-range model for describing the bound state spectrum of three-body states consisting of two Cesium and one Lithium atom. Using a broad Feshbach resonance model for the two-body interactions, we show that recent experimental data from the Chin group can be described surprising...

  13. Multi-state models for bleeding episodes and mortality in liver cirrhosis

    DEFF Research Database (Denmark)

    Andersen, Per Kragh; Esbjerg, Sille; Sørensen, Thorkild I.A.

    2000-01-01

    Data from a controlled clinical trial in liver cirrhosis are used to illustrate that multi-state models may be a useful tool in the analysis of data where survival is the ultimate outcome of interest but where intermediate, transient states are identified. We compare models for the marginal survi...

  14. Surface states of a system of Dirac fermions: A minimal model

    International Nuclear Information System (INIS)

    Volkov, V. A.; Enaldiev, V. V.

    2016-01-01

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  15. State-level electricity demand forecasting model. [For 1980, 1985, 1990

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, H. D.

    1978-01-01

    This note briefly describes the Oak Ridge National Laboratory (ORNL) state-level electricity demand (SLED) forecasting model developed for the Nuclear Regulatory Commission. Specifically, the note presents (1) the special features of the model, (2) the methodology used to forecast electricity demand, and (3) forecasts of electricity demand and average price by sector for 15 states for 1980, 1985, 1990.

  16. Predicting landscape vegetation dynamics using state-and-transition simulation models

    Science.gov (United States)

    Colin J. Daniel; Leonardo. Frid

    2012-01-01

    This paper outlines how state-and-transition simulation models (STSMs) can be used to project changes in vegetation over time across a landscape. STSMs are stochastic, empirical simulation models that use an adapted Markov chain approach to predict how vegetation will transition between states over time, typically in response to interactions between succession,...

  17. State of the Short Dipole Model Program for the LHC

    CERN Document Server

    Andreyev, N I; Kurtyka, T; Oberli, L R; Perini, D; Russenschuck, Stephan; Siegel, N; Siemko, A; Tommasini, D; Vanenkov, I; Walckiers, L

    1998-01-01

    Superconducting single and twin aperture 1-m long dipole magnets are currently being fabricated at CERN at a rate of about one per month in the framework of the short dipole model program for the LHC. The program allows to study performance improvements coming from refinements in design, components and assembly options and to accumulate statistics based on a small-scale production. The experience thus gained provides in turn feedback into the long magnet program in industry. In recent models initial quenching fields above 9 T have been obtained and after a short training the conductor limit at 2 K is reached, resulting in a central bore field exceeding 10 T. The paper describes the features of recent single aperture models, the results obtained during cold tests and the plans to ensure the continuation of a vigorous model program providing input for the fabrication of the main LHC dipoles.

  18. The steady state of epidermis: mathematical modeling and numerical simulations.

    Science.gov (United States)

    Gandolfi, Alberto; Iannelli, Mimmo; Marinoschi, Gabriela

    2016-12-01

    We consider a model with age and space structure for the epidermis evolution. The model, previously presented and analyzed with respect to the suprabasal epidermis, includes different types of cells (proliferating cells, differentiated cells, corneous cells, and apoptotic cells) moving with the same velocity, under the constraint that the local volume fraction occupied by the cells is constant in space and time. Here, we complete the model proposing a mechanism regulating the cell production in the basal layer and we focus on the stationary case of the problem, i.e. on the case corresponding to the normal status of the skin. A numerical scheme to compute the solution of the model is proposed and its convergence is studied. Simulations are provided for realistic values of the parameters, showing the possibility of reproducing the structure of both "thin" and "thick" epidermis.

  19. Modeling steel deformation in the semi-solid state

    CERN Document Server

    Hojny, Marcin

    2017-01-01

    This book addresses selected aspects of steel-deformation modelling, both at very high temperatures and under the conditions in which the liquid and the solid phases coexist. Steel-deformation modelling with its simultaneous solidification is particularly difficult due to its specificity and complexity. With regard to industrial applications and the development of new, integrated continuous casting and rolling processes, the issues related to modelling are becoming increasingly important. Since the numerous industrial tests that are necessary when traditional methods are used to design the process of continuous casting immediately followed by rolling are expensive, new modelling concepts have been sought. Comprehensive tests were applied to solve problems related to the deformation of steel with a semi-solid core. Physical tests using specialist laboratory instruments (Gleeble 3800thermo-mechanical simulator, NANOTOM 180 N computer tomography, Zwick Z250 testing equipment, 3D blue-light scanning systems), and...

  20. Modeling and Calculator Tools for State and Local Transportation Resources

    Science.gov (United States)

    Air quality models, calculators, guidance and strategies are offered for estimating and projecting vehicle air pollution, including ozone or smog-forming pollutants, particulate matter and other emissions that pose public health and air quality concerns.

  1. Anisotropic charged physical models with generalized polytropic equation of state

    Science.gov (United States)

    Nasim, A.; Azam, M.

    2018-01-01

    In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state.

  2. Public Administration: Modernizing The Current Model Of State Management

    OpenAIRE

    Evgenii V. Ohotskii

    2014-01-01

    Applying the method of retrospective analysis the article deals with the process of forming the scientific fundamentals and the search by the international community of effective and adequate to the current stage of social development public administration system. The author attempts to analyze, in a number of cases in terms of models, features of public administration systems at different stages of historical development, drawing attention to reasons why the Soviet model of public administra...

  3. Steady state load models for power system analysis

    OpenAIRE

    Cresswell, Charles

    2009-01-01

    The last full review of load models used for power system studies occurred in the 1980s. Since then, new types of loads have been introduced and system load mix has changed considerably. The examples of newly introduced loads include drive-controlled motors, low energy consumption light sources and other modern power electronic loads. Their numbers have been steadily increasing in recent years, a trend which is expected to escalate. Accordingly, the majority of load models used...

  4. A model for steady-state HNF combustion

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States)

    1997-09-01

    A simple model for the combustion of solid monopropellants is presented. The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: high activation energy, and low activation energy. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of the model are compared with experimental results of Hydrazinium Nitroformate (HNF) combustion.

  5. The Development of an Intelligent Leadership Model for State Universities

    OpenAIRE

    Aleme Keikha; Reza Hoveida; Nour Mohammad Yaghoubi

    2017-01-01

    Higher education and intelligent leadership are considered important parts of every country’s education system, which could potentially play a key role in accomplishing the goals of society. In theories of leadership, new patterns attempt to view leadership through the prism of creative and intelligent phenomena. This paper aims to design and develop an intelligent leadership model for public universities. A qualitativequantitative research method was used to design a basic model of intellige...

  6. State boundary surface of a hypoplastic model for clays

    Czech Academy of Sciences Publication Activity Database

    Mašín, David; Herle, Ivo

    2005-01-01

    Roč. 32, č. 6 (2005), s. 400-410 ISSN 0266-352X R&D Projects: GA ČR(CZ) GA103/04/0672 Grant - others:Evropská komise SSPI-CT-2003-501837 Institutional research plan: CEZ:AV0Z20710524 Keywords : hypoplasticity * clay * limit state Subject RIV: JM - Building Engineering Impact factor: 0.562, year: 2005

  7. Current State of the Art Historic Building Information Modelling

    Science.gov (United States)

    Dore, C.; Murphy, M.

    2017-08-01

    In an extensive review of existing literature a number of observations were made in relation to the current approaches for recording and modelling existing buildings and environments: Data collection and pre-processing techniques are becoming increasingly automated to allow for near real-time data capture and fast processing of this data for later modelling applications. Current BIM software is almost completely focused on new buildings and has very limited tools and pre-defined libraries for modelling existing and historic buildings. The development of reusable parametric library objects for existing and historic buildings supports modelling with high levels of detail while decreasing the modelling time. Mapping these parametric objects to survey data, however, is still a time-consuming task that requires further research. Promising developments have been made towards automatic object recognition and feature extraction from point clouds for as-built BIM. However, results are currently limited to simple and planar features. Further work is required for automatic accurate and reliable reconstruction of complex geometries from point cloud data. Procedural modelling can provide an automated solution for generating 3D geometries but lacks the detail and accuracy required for most as-built applications in AEC and heritage fields.

  8. A steady-state target calculation method based on "point" model for integrating processes.

    Science.gov (United States)

    Pang, Qiang; Zou, Tao; Zhang, Yanyan; Cong, Qiumei

    2015-05-01

    Aiming to eliminate the influences of model uncertainty on the steady-state target calculation for integrating processes, this paper presented an optimization method based on "point" model and a method determining whether or not there is a feasible solution of steady-state target. The optimization method resolves the steady-state optimization problem of integrating processes under the framework of two-stage structure, which builds a simple "point" model for the steady-state prediction, and compensates the error between "point" model and real process in each sampling interval. Simulation results illustrate that the outputs of integrating variables can be restricted within the constraints, and the calculation errors between actual outputs and optimal set-points are small, which indicate that the steady-state prediction model can predict the future outputs of integrating variables accurately. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Local Hidden Variable Models for Entangled Quantum States Using Finite Shared Randomness

    Science.gov (United States)

    Bowles, Joseph; Hirsch, Flavien; Quintino, Marco Túlio; Brunner, Nicolas

    2015-03-01

    The statistics of local measurements performed on certain entangled states can be reproduced using a local hidden variable (LHV) model. While all known models make use of an infinite amount of shared randomness, we show that essentially all entangled states admitting a LHV model can be simulated with finite shared randomness. Our most economical model simulates noisy two-qubit Werner states using only log2(12 )≃3.58 bits of shared randomness. We also discuss the case of positive operator valued measures, and the simulation of nonlocal states with finite shared randomness and finite communication. Our work represents a first step towards quantifying the cost of LHV models for entangled quantum states.

  10. MILITARY RECRUITMENT MODEL FOR ARMED FORCES OF SMALL STATES AND MIDDLE POWERS

    OpenAIRE

    Jaroslav Usiak; Erik Gorner

    2018-01-01

    States have many functions. The core one should be keeping its sovereignty and territorial integrity. Diplomacy and international law cannot guarantee their security. An armed force is an inherent part of each state that wants to be truly independent. Small states and middle powers have more difficulties when recruiting manpower for the military service compared to the great powers. The aim of this article is to find out what kind of recruitment model is the most suitable for small states and...

  11. Regional Evacuation Modeling: A State of the Art Reviewing

    Energy Technology Data Exchange (ETDEWEB)

    Southworth, F.

    1991-01-01

    Regional evacuation modeling is treated as a five step process: involving vehicle trip generation, trip departure time, trip destination, and trip route selection modeling, supplemented by plan set-up and analysis procedures. Progress under each of these headings is reviewed and gaps in the process identified. The potential for emergency planners to make use of real time traffic data, resulting from the recent technical and economic revolutions in telecommunications and infrared traffic sensing, is identified as the single greatest opportunity for the near future; and some beginnings in the development of real time dynamic traffic modeling specifically geared to evacuation planning are highlighted. Significant data problems associated with the time of day location of large urban populations represent a second area requiring extensive research. A third area requiring much additional effort is the translation of the considerable knowledge we have on evacuee behavior in times of crisis into reliable quantitative measures of the timing of evacuee mobilization, notably by distance from the source of the hazard. Specific evacuation models are referenced and categorized by method. Incorporation of evacuation model findings into the definition of emergency planning zone boundaries is also discussed.

  12. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  13. State of the art of sonic boom modeling.

    Science.gov (United States)

    Plotkin, Kenneth J

    2002-01-01

    Based on fundamental theory developed through the 1950s and 1960s, sonic boom modeling has evolved into practical tools. Over the past decade, there have been requirements for design tools for an advanced supersonic transport, and for tools for environmental assessment of various military and aerospace activities. This has resulted in a number of advances in the understanding of the physics of sonic booms, including shock wave rise times, propagation through turbulence, and blending sonic boom theory with modern computational fluid dynamics (CFD) aerodynamic design methods. This article reviews the early fundamental theory, recent advances in theory, and the application of these advances to practical models.

  14. Modeling Enzymatic Transition States by Force Field Methods

    DEFF Research Database (Denmark)

    Hansen, Mikkel Bo; Jensen, Hans Jørgen Aagaard; Jensen, Frank

    2009-01-01

    The SEAM method, which models a transition structure as a minimum on the seam of two diabatic surfaces represented by force field functions, has been used to generate 20 transition structures for the decarboxylation of orotidine by the orotidine-5'-monophosphate decarboxylase enzyme. The dependence...... by various electronic structure methods, where part of the enzyme is represented by a force field description and the effects of the solvent are represented by a continuum model. The relative energies vary by several hundreds of kJ/mol between the transition structures, and tests showed that a large part...

  15. Composite models of hadrons and relativistic bound states

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1977-01-01

    The following problems are considered: what the constituents of the hadrons are; what their quantum numbers and their broken and unbroken symmetries are; what the dynamics of the constituents (equations, binding forces and the origin of symmetry violations) is. The most puzzling question is: why the constituents ''escape from freedom'' and are confined inside the hadrons; what experimentalists can report about the hadron constituents and their dynamics if not finding them. There are no final answers to all these questions. The achievements of quark model are described, some problems concerning the comparison of the quark model with experiment are considered. The attempt is also made to present alternative views on the same problems

  16. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    Science.gov (United States)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  17. State variables for modelling thermohaline flow in rocks

    Energy Technology Data Exchange (ETDEWEB)

    Kroehn, Klaus-Peter

    2010-12-15

    Modelling thermohaline flow can easily involve complex physical interactions even if only the basic processes occurring in density-driven flow and heat transport are considered. In the light of these complexities it is of vital importance to know the thermal and hydraulic parameters required for the model and their dependencies as precise as possible. But also for designing a numerical simulator it is useful to know the dependencies of the parameters on the primary variables temperature, pressure and salinity in order to select an appropriate underlying mathematical model. The present report thus compiles the mathematical formulations for the fluid parameters from the literature. For each parameter the origin, at least one meaningful figure, a comment where necessary and conclusions about the influence of each primary variable on the thermo-hydraulic parameters are given. All required coefficients and auxiliary functions including dimensions are listed, too. Simulation of heat transport requires also information about some properties of the porous medium. Thus some complementary information about the properties of rocks is also given. In contrast to the properties for pure substances that are considered for the fluid the porous medium cannot be characterised as easily. Usually, the solids are a mixture of different materials with locally varying composition. Thus rather hints than exact values are provided for the rocks considered here. This compilation represents a complete set of mathematical formulations for fluid and solid properties to be used for thermohaline modelling that can directly used in the composing of a numerical simulator. (orig.)

  18. Network estimation in State Space Models with L1-regularization ...

    African Journals Online (AJOL)

    Microarray technologies and related methods coupled with appropriate mathematical and statistical models have made it possible to identify dynamic regulatory networks by measuring time course expression levels of many genes simultaneously. However one of the challenges is the high-dimensional nature of such data ...

  19. Hopfield Models as Nondeterministic Finite-state Machines

    NARCIS (Netherlands)

    Drossaers, M.F.J.

    1992-01-01

    The use of neural networks for integrated linguistic analysis may be profitable. This paper presents the first results of our research on that subject: a Hopfield model for syntactical analysis. We construct a neural network as an implementation of a bounded push-down automaton, which can accept

  20. Ozone transmittance in a model atmosphere at Ikeja, Lagos state ...

    African Journals Online (AJOL)

    Variation of ozone transmittance with height in the atmosphere for radiation in the 9.6m absorption band was studied using Goody's model atmosphere, with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different altitudes (0-22 km) for the month of ...

  1. Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling

    Science.gov (United States)

    Trujillo, Anna C.; Gregory, Irene M.

    2012-01-01

    Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.

  2. Soluble Boltzmann equations for internal state and Maxwell models

    NARCIS (Netherlands)

    Futcher, E.; Hoare, M.R.; Hendriks, E.M.; Ernst, M.H.

    We consider a class of scalar nonlinear Boltzmann equations describing the evolution of a microcanonical ensemble in which sub-systems exchange internal energy ‘randomly’ in binary interactions. In the continuous variable version these models can equally be interpreted as Boltzmann equations for

  3. Mathematical Modeling, Sense Making, and the Common Core State Standards

    Science.gov (United States)

    Schoenfeld, Alan H.

    2013-01-01

    On October 14, 2013 the Mathematics Education Department at Teachers College hosted a full-day conference focused on the Common Core Standards Mathematical Modeling requirements to be implemented in September 2014 and in honor of Professor Henry Pollak's 25 years of service to the school. This article is adapted from my talk at this conference…

  4. Advanced Breakdown Modeling for Solid-State Circuit Design

    NARCIS (Netherlands)

    Milovanovi?, V.

    2010-01-01

    Modeling of the effects occurring outside the usual region of application of semiconductor devices is becoming more important with increasing demands set upon electronic systems for simultaneous speed and output power. Analog integrated circuit designers are forced to enter regimes of transistor

  5. Developing Performance Management in State Government: An Exploratory Model for Danish State Institutions

    DEFF Research Database (Denmark)

    Nielsen, Steen; Rikhardsson, Pall M.

    This paper, focus on the utilization of new public management models and the perceived benefit within a central government settings. The Danish central government is like many other governments focused on making the public sector more effective and productive. Accounting departments in central...... government institutions are seen as key players in achieving these objectives by measuring progress, showing how resources are being used, monitoring if the institutions is achieving its strategic objectives, planning future resource use and checking if current resource use is according to plans...... management model. The findings are built on a questionnaire study of 45 high level accounting officers in central governmental institutions. Our statistical model consists of five explored constructs: improvements; initiatives and reforms, incentives and contracts, the use of management accounting practices...

  6. Partition-based Unscented Kalman Filter for Reconfigurable Battery Pack State Estimation using an Electrochemical Model

    OpenAIRE

    Couto, Luis D.; Kinnaert, Michel

    2017-01-01

    Accurate state estimation of large-scale lithium-ion battery packs is necessary for the advanced control of batteries, which could potentially increase their lifetime through e.g. reconfiguration. To tackle this problem, an enhanced reduced-order electrochemical model is used here. This model allows considering a wider operating range and thermal coupling between cells, the latter turning out to be significant. The resulting nonlinear model is exploited for state estimation through unscented ...

  7. Steady state phosphorus mass balance model during hemodialysis based on a pseudo one-compartment kinetic model.

    Science.gov (United States)

    Leypoldt, John K; Agar, Baris U; Akonur, Alp; Gellens, Mary E; Culleton, Bruce F

    2012-11-01

    Mathematical models of phosphorus kinetics and mass balance during hemodialysis are in early development. We describe a theoretical phosphorus steady state mass balance model during hemodialysis based on a novel pseudo one-compartment kinetic model. The steady state mass balance model accounted for net intestinal absorption of phosphorus and phosphorus removal by both dialysis and residual kidney function. Analytical mathematical solutions were derived to describe time-dependent intradialytic and interdialytic serum phosphorus concentrations assuming hemodialysis treatments were performed symmetrically throughout a week. Results from the steady state phosphorus mass balance model are described for thrice weekly hemodialysis treatment prescriptions only. The analysis predicts 1) a minimal impact of dialyzer phosphorus clearance on predialysis serum phosphorus concentration using modern, conventional hemodialysis technology, 2) variability in the postdialysis-to-predialysis phosphorus concentration ratio due to differences in patient-specific phosphorus mobilization, and 3) the importance of treatment time in determining the predialysis serum phosphorus concentration. We conclude that a steady state phosphorus mass balance model can be developed based on a pseudo one-compartment kinetic model and that predictions from this model are consistent with previous clinical observations. The predictions from this mass balance model are theoretical and hypothesis-generating only; additional prospective clinical studies will be required for model confirmation.

  8. Limitations of steady state solutions to a two-state model of population oscillations and hole burning

    International Nuclear Information System (INIS)

    Payne, M. G.; Deng, L.; Jiang, K. J.

    2006-01-01

    We consider a two-state system driven by an on-resonance, continuous wave pump laser and a much weaker pulsed probe laser that is slightly detuned from the pump laser frequency (usually this detuning is about ω p -ω P =Δ≅1 kHz). The upper state population is assumed to be slowly decaying, but the off-diagonal element of the density matrix decays rapidly due to homogeneous broadening. This model has been solved by others in rare-earth-element-doped fibers and crystals in a usual steady state approximation for slow optical wave propagation. We show that in general the usual steady state approximation does not apply unless either Δτ>>1 or (2S+1)γ 2 τ>>1 where γ 2 is the decay rate of the excited state population, τ is the pulse length of the probe field, and 2S is the saturation parameter. Both conditions, however, are not satisfied in many population-oscillation- and corresponding group-velocity-reduction-related studies. Our theory and corresponding numerical simulations have indicated that for probe pulses that are much shorter than the lifetime of the upper state, there is no analytical theory for the amplitude, pulse shape, and group velocity of the probe field. In addition, there is no reason to assume that the group velocity remains small when γ 2 τ<<1 and there is no reason to believe that many pulse length decays can be obtained for such short pulses

  9. State space model-based trust evaluation over wireless sensor networks: an iterative particle filter approach

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2017-03-01

    Full Text Available In this study, the authors propose a state space modelling approach for trust evaluation in wireless sensor networks. In their state space trust model (SSTM, each sensor node is associated with a trust metric, which measures to what extent the data transmitted from this node would better be trusted by the server node. Given the SSTM, they translate the trust evaluation problem to be a non-linear state filtering problem. To estimate the state based on the SSTM, a component-wise iterative state inference procedure is proposed to work in tandem with the particle filter (PF, and thus the resulting algorithm is termed as iterative PF (IPF. The computational complexity of the IPF algorithm is theoretically linearly related with the dimension of the state. This property is desirable especially for high-dimensional trust evaluation and state filtering problems. The performance of the proposed algorithm is evaluated by both simulations and real data analysis.

  10. The European Welfare Model. Is Romania a Welfare State?!

    Directory of Open Access Journals (Sweden)

    Pop-Radu, I.

    2014-06-01

    Full Text Available The paper presents the various interpretations of the social model and welfare regime concepts. In order to observe Romania’s position within the European welfare regimes, the paper presents a short analysis of the main characteristics of the welfare regimes identified in Europe – i.e. the corporatist welfare regime, the liberal welfare regime and the social democratic/Scandinavian welfare system. We analyze the dynamics of several indicators relevant for establishing the performance of the Romanian welfare regime. Using the results of this study, the current research might offer a new approach on proving that Romania’s case is a particular one among the CEE countries and its sustainability could become a model for other countries.

  11. Endogenous fishing mortalities: a state-space bioeconomic model

    OpenAIRE

    DA-ROCHA JOSÉ MARIA; GARCÍA-CUTRÍN JAVIER; GUTIÉRREZ MARÍA-JOSÉ; GAMITO JARDIM JOSÉ ERNESTO

    2017-01-01

    A methodology that endogenously determines catchability functions that link fishing mortality with contemporaneous stock abundance is presented. We consider a stochastic age-structured model for a fishery composed by a number of fishing units (fleets, vessels or métiers) that optimally select the level of fishing effort to be applied considering total mortalities as given. The introduction of a balance constrain which guarantees that total mortality is equal to the sum of individual fishing m...

  12. Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor.

    Science.gov (United States)

    He, Qiulai; Zhang, Wei; Zhang, Shilu; Zou, Zhuocheng; Wang, Hongyu

    2017-08-01

    The evolution of removal performance and bacterial population dynamics of an aerobic granular sequencing batch reactor were investigated during stable operation and reactivation after prolonged storage. The system was run for a period of 130days including the stable condition phase, storage period and the subsequent reactivation process. Excellent removal performance was obtained during the stable operation period, which was decayed by the extended idle conditions. The removal efficiencies for both carbon and nitrogen decayed while phosphorus removal remained unaffected. Both granules structure and physical properties could be fully restored. Microbial populations shifted sharply and the storage perturbations irreversibly altered the microbial communities at different levels. Extracellular polymeric substances (especially protein) and key groups were identified as contributors for storage and re-startup of the aerobic granular system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of various intake valve timings and spark timings on combustion, cyclic THC and NOX emissions during cold start phase with idle operation in CVVT engine

    International Nuclear Information System (INIS)

    Choi, Kwan Hee; Lee, Hyung Min; Hwang, In Goo; Myung, Cha Lee; Park, Sim Soo

    2008-01-01

    In a gasoline SI engine, valve events and spark timings put forth a major influence on overall efficiency, fuel economy, and exhaust emissions. Residual gases controlled by the valve overlap can be used to reduce NOx emissions and the spark retardation technique can be used to improve raw THC emissions and catalyst light-off performance during the cold start phase. This paper investigated the behaviors of the engine and its combustion characteristics with various intake valve timings and spark timings during the fast idle condition and cold start. And cyclic THC and NOx emissions were measured at the exhaust port and their formation mechanisms were examined with fast response gas analyzers. As a result, THCs and NOx were reduced by 35% and 23% with optimizing valve overlap and spark advance during the cold transient start phase. Consequently, the valve events and ignition timings were found to significantly affect combustion phenomena and cold-start emissions

  14. Regenerative electronic load for electric power sources tests using capacitive idling converter; Carga eletronica regenerativa para testes de fontes de energia eletrica utilizando conversor com capacitor flutuante

    Energy Technology Data Exchange (ETDEWEB)

    Vendrusculo, Edson Adriano

    1996-07-01

    The conventional method for testing power supplies, batteries, uninterruptible power supply and other sources of electric power uses resistors as load. This results in wasted heat and increases the equipment production cost. This work presents a Regenerative electronic Load to substitute those resistors. The basic topology is a capacitive idling Cuk converter. This converter allows to control independently the input current and permits to provide a sinusoidal output current. An appropriate gate command allows to have some soft-commutation without the use of any auxiliary circuit. The same converter, with input and output changed, can operate as a Power Supply with Input Power Factor Correction. The characteristics of soft-commutation and high efficiency are maintained. A simple high-efficiency transformer allows output isolation. All theoretical results are experimentally verified. (author)

  15. Models of Innovation Activity Firms and the Competitive State

    Directory of Open Access Journals (Sweden)

    Nekrasova Ekaterina, A.

    2015-12-01

    Full Text Available The paper clarified the concept of innovation activity of firms from the perspective of the model open innovation with traditional and alternative approaches to the methods of the protection of innovation activity results outlined. With the use of institutional tools, theoretical concepts and practical study the patterns of innovative activity of firms (external, internal & cooperative strategies are analyzed and the selection criteria for models of innovation are proposed on the basis of a comparison of transaction costs and benefits specific to the closed forms and conditions for cooperation. The forms of cooperation, their pros & cons are mentioned given the results of some empirical evidence. Practical recommendations for the Russian companies to organize their innovation activities are given, as well as on the improvement of competition policy with regard to the inclusion of innovation factor in the analysis of mergers in Russia (also based on the mechanism of the use of this factor by means of merger simulation models. The paper also suggests the criteria for the evaluation of collaborative R&D projects of firms as antitrust tools aimed to use the “rule of reason” when the decisions are made.

  16. State Space Models and the Kalman-Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing

    Directory of Open Access Journals (Sweden)

    Nataliya Chukhrova

    2017-05-01

    Full Text Available This paper gives a detailed overview of the current state of research in relation to the use of state space models and the Kalman-filter in the field of stochastic claims reserving. Most of these state space representations are matrix-based, which complicates their applications. Therefore, to facilitate the implementation of state space models in practice, we present a scalar state space model for cumulative payments, which is an extension of the well-known chain ladder (CL method. The presented model is distribution-free, forms a basis for determining the entire unobservable lower and upper run-off triangles and can easily be applied in practice using the Kalman-filter for prediction, filtering and smoothing of cumulative payments. In addition, the model provides an easy way to find outliers in the data and to determine outlier effects. Finally, an empirical comparison of the scalar state space model, promising prior state space models and some popular stochastic claims reserving methods is performed.

  17. Multi-state models for the analysis of time-to-event data

    DEFF Research Database (Denmark)

    Meira-Machado, Luís; de Uña-Alvarez, Jacobo; Cadarso-Suárez, Carmen

    2009-01-01

    or prognostic forecasting. In this article, we review modelling approaches for multi-state models, and we focus on the estimation of quantities such as the transition probabilities and survival probabilities. Differences between these approaches are discussed, focussing on possible advantages and disadvantages...... for each method. We also review the existing software currently available to fit the various models and present new software developed in the form of an R library to analyse such models. Different approaches and software are illustrated using data from the Stanford heart transplant study and data from...... corresponding to a particular stage of the illness. In such studies, multi-state models can be used to model the movement of patients among the various states. In these models issues, of interest include the estimation of progression rates, assessing the effects of individual risk factors, survival rates...

  18. Choosing the observational likelihood in state-space stock assessment models

    DEFF Research Database (Denmark)

    Albertsen, Christoffer Moesgaard; Nielsen, Anders; Thygesen, Uffe Høgsbro

    By implementing different observational likelihoods in a state-space age-based stock assessment model, we are able to compare the goodness-of-fit and effects on estimated fishing mortallity for different model choices. Model fit is improved by estimating suitable correlations between agegroups. We...

  19. The Multi-state Latent Factor Intensity Model for Credit Rating Transitions

    NARCIS (Netherlands)

    Koopman, S.J.; Lucas, A.; Monteiro, A.

    2008-01-01

    A new empirical reduced-form model for credit rating transitions is introduced. It is a parametric intensity-based duration model with multiple states and driven by exogenous covariates and latent dynamic factors. The model has a generalized semi-Markov structure designed to accommodate many of the

  20. Estimation and asymptotic theory for transition probabilities in markov renewal multi-state models

    NARCIS (Netherlands)

    Spitoni, Cristian|info:eu-repo/dai/nl/304625957; Verduijn, Marion; Putter, Hein

    2014-01-01

    In this paper we discuss estimation of transition probabilities for semi-Markov multi-state models. Non-parametric and semi-parametric estimators of the transition probabilities for a large class of models (forward going models) are proposed. Large sample theory is derived using the functional delta

  1. Structure of transition nuclei states in fermion dynamic-symmetry model

    International Nuclear Information System (INIS)

    Baktybaev, K.; Kojlyk, N.O.; Romankulov, K.

    2007-01-01

    In the paper collective structures of osmium heavy isotopes nucleons are studied. Results of diagonalization of SO(6) symmetric Hamiltonian of fermion-dynamical symmetry-model are comparing with results of other phenomenological methods such as Bohr-Mottelson model and interacting bosons model. For heavy osmium isotopes not only collective excitations spectral bands but also for probability of E2-electromagnet transition are which are compared with existing experimental data. It is revealed, that complexity of state structure for examined nuclei is related with competition and interweaving of rotation and vibration states and also more complicated states of γ instable nature

  2. Modeling HIV transmission and AIDS in the united states

    CERN Document Server

    Hethcote, Herbert W

    1992-01-01

    The disease that came to be called acquired immunodeficiency syndrome (AIDS) was first identified in the summer of 1981. By that time, nearly 100,000 persons in the United States may have been infected with human immunodeficiency virus (HIV). By the time the routes of transmission were clearly identified and HIV was established as the cause of AIDS in 1983, over 300,000 people may have been infected. That number has continued to increase, with approximately 1,000,000 Americans believed to be infected in 1991. The epidemic is of great public health concern because HlV is infectious, causes severe morbidity and death in most if not all of those infected, and often occurs in relatively young persons. In addition, the cost of medical care for a person with HIV disease is high, and the medical care needs of HIV-infected persons place a severe burden on the medical care systems in many areas. Understanding and controlling the HIV epidemic is a particularly difficult challenge. The long and variable period between H...

  3. Solid-state-drives (SSDs) modeling simulation tools & strategies

    CERN Document Server

    2017-01-01

    This book introduces simulation tools and strategies for complex systems of solid-state-drives (SSDs) which consist of a flash multi-core microcontroller plus NAND flash memories. It provides a broad overview of the most popular simulation tools, with special focus on open source solutions. VSSIM, NANDFlashSim and DiskSim are benchmarked against performances of real SSDs under different traffic workloads. PROs and CONs of each simulator are analyzed, and it is clearly indicated which kind of answers each of them can give and at a what price. It is explained, that speed and precision do not go hand in hand, and it is important to understand when to simulate what, and with which tool. Being able to simulate SSD’s performances is mandatory to meet time-to-market, together with product cost and quality. Over the last few years the authors developed an advanced simulator named “SSDExplorer” which has been used to evaluate multiple phenomena with great accuracy, from QoS (Quality Of Service) to Read Retry, fr...

  4. Adaptive Packet Combining Scheme in Three State Channel Model

    Science.gov (United States)

    Saring, Yang; Bulo, Yaka; Bhunia, Chandan Tilak

    2018-01-01

    The two popular techniques of packet combining based error correction schemes are: Packet Combining (PC) scheme and Aggressive Packet Combining (APC) scheme. PC scheme and APC scheme have their own merits and demerits; PC scheme has better throughput than APC scheme, but suffers from higher packet error rate than APC scheme. The wireless channel state changes all the time. Because of this random and time varying nature of wireless channel, individual application of SR ARQ scheme, PC scheme and APC scheme can't give desired levels of throughput. Better throughput can be achieved if appropriate transmission scheme is used based on the condition of channel. Based on this approach, adaptive packet combining scheme has been proposed to achieve better throughput. The proposed scheme adapts to the channel condition to carry out transmission using PC scheme, APC scheme and SR ARQ scheme to achieve better throughput. Experimentally, it was observed that the error correction capability and throughput of the proposed scheme was significantly better than that of SR ARQ scheme, PC scheme and APC scheme.

  5. 76 FR 55325 - Approval and Promulgation of State Implementation Plans: Alaska

    Science.gov (United States)

    2011-09-07

    ... hybrid method that combined measured idle test data and plug-in data with outputs from MOBILE6.2. The... Alaska's State Implementation Plan (SIP) relating to the motor vehicle inspection and maintenance program... emissions inventory and motor vehicle emissions budget. EPA is proposing to approve the 2010 submittal...

  6. Number-conserving interacting fermion models with exact topological superconducting ground states

    Science.gov (United States)

    Wang, Zhiyuan; Xu, Youjiang; Pu, Han; Hazzard, Kaden R. A.

    2017-09-01

    We present a method to construct number-conserving Hamiltonians whose ground states exactly reproduce an arbitrarily chosen BCS-type mean-field state. Such parent Hamiltonians can be constructed not only for the usual s -wave BCS state, but also for more exotic states of this form, including the ground states of Kitaev wires and two-dimensional topological superconductors. This method leads to infinite families of locally interacting fermion models with exact topological superconducting ground states. After explaining the general technique, we apply this method to construct two specific classes of models. The first one is a one-dimensional double wire lattice model with Majorana-like degenerate ground states. The second one is a two-dimensional px+i py superconducting model, where we also obtain analytic expressions for topologically degenerate ground states in the presence of vortices. Our models may provide a deeper conceptual understanding of how Majorana zero modes could emerge in condensed matter systems, as well as inspire novel routes to realize them in experiment.

  7. Astronomy across State Lines: A Collaborative Model for Astronomical Research

    Science.gov (United States)

    Johnson, Chelen H.; Barge, Jacqueline; Linahan, Marcella; York, Donald G.; Cante, David; Cook, Mary; Daw, Maeve; Donahoe, Katherine E.; Ford, Sydney; Haecker, Lille W.; Hibbs, Cecily A.; Hogan, Eleanor B.; Karos, Demetra N.; Kozikowski, Kendall G.; Martin, Taylor A.; Miranda, Fernando; Ng, Emily; Noel, Imany; O'Bryan, Sophie E.; Sharma, Vikrant; Zegeye, David

    2015-01-01

    Scientists do not work in isolation, nor should student scientists. In a collaborative effort, students from three high schools examined plates from the Sloan Digital Sky Survey (SDSS) to estimate the number of galaxies that contain evidence of a black hole. Working under the direction of Don York, former SDSS director, the three teachers used Google hangouts to discuss weekly progress. At their home institutions, students examined optical spectra from SDSS Data Release 10 to determine if a quasar could be discerned. Both Type I and Type II quasars can be seen in the SDSS data. Seven teams of students from different schools compared their findings and collaborated online to discuss potential discoveries. This project can serve as a model for high school teachers who want to facilitate their students participating in an authentic research project. The keys to a successful project are working with a mentor who can guide the group through difficult concepts and communicating frequently throughout the project.

  8. Formal Analysis of Self-Efficacy in Job Interviewee’s Mental State Model

    Science.gov (United States)

    Ajoge, N. S.; Aziz, A. A.; Yusof, S. A. Mohd

    2017-08-01

    This paper presents a formal analysis approach for self-efficacy model of interviewee’s mental state during a job interview session. Self-efficacy is a construct that has been hypothesised to combine with motivation and interviewee anxiety to define state influence of interviewees. The conceptual model was built based on psychological theories and models related to self-efficacy. A number of well-known relations between events and the course of self-efficacy are summarized from the literature and it is shown that the proposed model exhibits those patterns. In addition, this formal model has been mathematically analysed to find out which stable situations exist. Finally, it is pointed out how this model can be used in a software agent or robot-based platform. Such platform can provide an interview coaching approach where support to the user is provided based on their individual metal state during interview sessions.

  9. State-space models for bio-loggers: A methodological road map

    DEFF Research Database (Denmark)

    Jonsen, I.D.; Basson, M.; Bestley, S.

    2012-01-01

    Ecologists have an unprecedented array of bio-logging technologies available to conduct in situ studies of horizontal and vertical movement patterns of marine animals. These tracking data provide key information about foraging, migratory, and other behaviours that can be linked with bio...... development of state-space modelling approaches for animal movement data provides statistical rigor for inferring hidden behavioural states, relating these states to bio-physical data, and ultimately for predicting the potential impacts of climate change. Despite the widespread utility, and current popularity......, of state-space models for analysis of animal tracking data, these tools are not simple and require considerable care in their use. Here we develop a methodological “road map” for ecologists by reviewing currently available state-space implementations. We discuss appropriate use of state-space methods...

  10. Dynamics of coherent states in regular and chaotic regimes of the non-integrable Dicke model

    Science.gov (United States)

    Lerma-Hernández, S.; Chávez-Carlos, J.; Bastarrachea-Magnani, M. A.; López-del-Carpio, B.; Hirsch, J. G.

    2018-04-01

    The quantum dynamics of initial coherent states is studied in the Dicke model and correlated with the dynamics, regular or chaotic, of their classical limit. Analytical expressions for the survival probability, i.e. the probability of finding the system in its initial state at time t, are provided in the regular regions of the model. The results for regular regimes are compared with those of the chaotic ones. It is found that initial coherent states in regular regions have a much longer equilibration time than those located in chaotic regions. The properties of the distributions for the initial coherent states in the Hamiltonian eigenbasis are also studied. It is found that for regular states the components with no negligible contribution are organized in sequences of energy levels distributed according to Gaussian functions. In the case of chaotic coherent states, the energy components do not have a simple structure and the number of participating energy levels is larger than in the regular cases.

  11. Steady-state brain glucose transport kinetics re-evaluated with a four-state conformational model

    Directory of Open Access Journals (Sweden)

    João M N Duarte

    2009-10-01

    Full Text Available Glucose supply from blood to brain occurs through facilitative transporter proteins. A near linear relation between brain and plasma glucose has been experimentally determined and described by a reversible model of enzyme kinetics. A conformational four-state exchange model accounting for trans-acceleration and asymmetry of the carrier was included in a recently developed multi-compartmental model of glucose transport. Based on this model, we demonstrate that brain glucose (Gbrain as function of plasma glucose (Gplasma can be described by a single analytical equation namely comprising three kinetic compartments: blood, endothelial cells and brain. Transport was described by four parameters: apparent half saturation constant Kt, apparent maximum rate constant Tmax, glucose consumption rate CMRglc, and the iso-inhibition constant Kii that suggests Gbrain as inhibitor of the isomerisation of the unloaded carrier. Previous published data, where Gbrain was quantified as a function of plasma glucose by either biochemical methods or NMR spectroscopy, were used to determine the aforementioned kinetic parameters. Glucose transport was characterized by Kt ranging from 1.5 to 3.5 mM, Tmax/CMRglc from 4.6 to 5.6, and Kii from 51 to 149 mM. It was noteworthy that Kt was on the order of a few mM, as previously determined from the reversible model. The conformational four-state exchange model of glucose transport into the brain includes both efflux and transport inhibition by Gbrain, predicting that Gbrain eventually approaches a maximum concentration. However, since Kii largely exceeds Gplasma, iso-inhibition is unlikely to be of substantial importance for plasma glucose below 25 mM. As a consequence, the reversible model can account for most experimental observations under euglycaemia and moderate cases of hypo- and hyperglycaemia.

  12. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    DEFF Research Database (Denmark)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.

    2016-01-01

    pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict......Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non......-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a ‘behavioural’ interpretation of the ECN model; as Li...

  13. Investigating the northern Adriatic Sea ecosystem state with a very high resolution model

    Science.gov (United States)

    Mattia, Gelsomina; Zavatarelli, Marco; Lovato, Tomas

    2015-04-01

    The northern Adriatic Sea ecosystem dynamics is simulated using the coupling of the BFM (Biogeochemical Flux Model) with the NEMO (Nucleus for European Models of the Ocean) model. The modeling system is implemented at very high horizontal (~800 m) and vertical (95 z-level) resolution and is nested with a coarser scale Adriatic/Mediterranean model. Simulation in hindcast and projection mode are being executed and are aimed to evaluate the ecosystem attributes (vigor, organization, resilience), in order to understand the ecosystem state of the basin with respect to the so-called "Good Ecosystem State" (GES) as defined by the EU-MSF9 Directive. Skill of the model in replicating integrated environmental indices such as the EU-EEACS1023+ is also investigated. Finally the model is also open to an off-line coupling with an higher trophic level (HTL) model.

  14. Efficient Symmetry Reduction and the Use of State Symmetries for Symbolic Model Checking

    Directory of Open Access Journals (Sweden)

    Christian Appold

    2010-06-01

    Full Text Available One technique to reduce the state-space explosion problem in temporal logic model checking is symmetry reduction. The combination of symmetry reduction and symbolic model checking by using BDDs suffered a long time from the prohibitively large BDD for the orbit relation. Dynamic symmetry reduction calculates representatives of equivalence classes of states dynamically and thus avoids the construction of the orbit relation. In this paper, we present a new efficient model checking algorithm based on dynamic symmetry reduction. Our experiments show that the algorithm is very fast and allows the verification of larger systems. We additionally implemented the use of state symmetries for symbolic symmetry reduction. To our knowledge we are the first who investigated state symmetries in combination with BDD based symbolic model checking.

  15. Modeling Hydrodynamic State of Oil and Gas Condensate Mixture in a Pipeline

    Directory of Open Access Journals (Sweden)

    Dudin Sergey

    2016-01-01

    Based on the developed model a calculation method was obtained which is used to analyze hydrodynamic state and composition of hydrocarbon mixture in each ith section of the pipeline when temperature-pressure and hydraulic conditions change.

  16. A Three-State Markov-Modulated Switching Model for Exchange Rates

    Directory of Open Access Journals (Sweden)

    Idowu Oluwasayo Ayodeji

    2016-01-01

    Full Text Available Several authors have examined the long swings hypothesis in exchange rates using a two-state Markov switching model. This study developed a model to investigate long swings hypothesis in currencies which may exhibit a k-state (k≥2 pattern. The proposed model was then applied to euros, British pounds, Japanese yen, and Nigerian naira. Specification measures such as AIC, BIC, and HIC favoured a three-state pattern in Nigerian naira but a two-state one in the other three currencies. For the period January 2004 to May 2016, empirical results suggested the presence of asymmetric swings in naira and yen and long swings in euros and pounds. In addition, taking 0.5 as the benchmark for smoothing probabilities, choice models provided a clear reading of the cycle in a manner that is consistent with the realities of the movements in corresponding exchange rate series.

  17. State impulsive control strategies for a two-languages competitive model with bilingualism and interlinguistic similarity

    Science.gov (United States)

    Nie, Lin-Fei; Teng, Zhi-Dong; Nieto, Juan J.; Jung, Il Hyo

    2015-07-01

    For reasons of preserving endangered languages, we propose, in this paper, a novel two-languages competitive model with bilingualism and interlinguistic similarity, where state-dependent impulsive control strategies are introduced. The novel control model includes two control threshold values, which are different from the previous state-dependent impulsive differential equations. By using qualitative analysis method, we obtain that the control model exhibits two stable positive order-1 periodic solutions under some general conditions. Moreover, numerical simulations clearly illustrate the main theoretical results and feasibility of state-dependent impulsive control strategies. Meanwhile numerical simulations also show that state-dependent impulsive control strategy can be applied to other general two-languages competitive model and obtain the desired result. The results indicate that the fractions of two competitive languages can be kept within a reasonable level under almost any circumstances. Theoretical basis for finding a new control measure to protect the endangered language is offered.

  18. Calibration of steady-state car-following models using macroscopic loop detector data.

    Science.gov (United States)

    2010-05-01

    The paper develops procedures for calibrating the steady-state component of various car following models using : macroscopic loop detector data. The calibration procedures are developed for a number of commercially available : microscopic traffic sim...

  19. It's a Catastrophe! Testing dynamics between competing cognitive states using mixture and hidden Markov models

    NARCIS (Netherlands)

    Visser, I.; Speekenbrink, M.; Bello, P.; Guarini, M.; McShane, M.; Scassellati, B.

    2014-01-01

    Dual or multiple systems approaches are ubiquitous in cognitive science, with examples in memory, perception, categorization, cognitive development, and many other fields. Dynamical systems models with multiple stable states or modes of behavior are also increasingly used in explaining cognitive

  20. Validation of the United States Marine Corps Qualified Candidate Population Model

    National Research Council Canada - National Science Library

    Hallahan, William

    2003-01-01

    This thesis attempts to verify, validate, and then expand a model of the population of college students that may be qualified and interested in seeking a commission in the United States Marine Corps...

  1. Blended learning in anesthesia education: current state and future model.

    Science.gov (United States)

    Kannan, Jaya; Kurup, Viji

    2012-12-01

    Educators in anesthesia residency programs across the country are facing a number of challenges as they attempt to integrate blended learning techniques in their curriculum. Compared with the rest of higher education, which has made advances to varying degrees in the adoption of online learning anesthesiology education has been sporadic in the active integration of blended learning. The purpose of this review is to discuss the challenges in anesthesiology education and relevance of the Universal Design for Learning framework in addressing them. There is a wide chasm between student demand for online education and the availability of trained faculty to teach. The design of the learning interface is important and will significantly affect the learning experience for the student. This review examines recent literature pertaining to this field, both in the realm of higher education in general and medical education in particular, and proposes the application of a comprehensive learning model that is new to anesthesiology education and relevant to its goals of promoting self-directed learning.

  2. Bound states in a model of interaction of Dirac field with material plane

    Directory of Open Access Journals (Sweden)

    Pismak Yu. M.

    2016-01-01

    Full Text Available In the framework of the Symanzik approach model of the interaction of the Dirac spinor field with the material plane in the 3 + 1-dimensional space is constructed. The model contains eight real parameters characterizing the properties of the material plane. The general solution of the Euler-Lagrange equations of the model and dispersion equations for bound states are analyzed. It is shown that there is a choice of parameters of the model in which the connected states are characterized by dispersion law of a mass-less particle moving along the material plane with the dimensionless Fermi velocity not exceeding one.

  3. Ultimate Limit State Model Basis for Assessment of Offshore Wind Energy Converters

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Faber, M. H.; Rücker, W.

    2012-01-01

    This paper establishes the model basis regarding the ultimate limit state consisting of structural, loading, and probabilistic models of the support structure of offshore wind energy converters together with a sensitivity study. The model basis is part of a risk based assessment and monitoring...... structure and the tripod structure are determined with a geometrically and materially nonlinear finite element analysis. The observed failure mechanisms are the basis for the definition of the ultimate limit state responses. A probabilistic model accounting for the uncertainties involved is derived...

  4. Robust Quasi-LPV Control Based on Neural State Space Models

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2000-01-01

    the system description into a linear part and a nonlinear part. Linear parameter-varying control synthesis methods are then applied to design a nonlinear control law for this system. Since the model is assumed to have been identified from input-output measurement data only, it must be expected......In this paper we derive a synthesis result for robust LPV output feedback controllers for nonlinear systems modelled by neural state space models. This result is achieved by writing the neural state space model on a linear fractional transformation form in a non-conservative way, separating...

  5. Robust Quasi-LPV Control Based on Neural State Space Models

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2002-01-01

    the system description into a linear part and a nonlinear part. Linear parameter-varying control synthesis methods are then applied to design a nonlinear control law for this system. Since the model is assumed to have been identified from input-output measurement data only, it must be expected......In this paper we derive a synthesis result for robust LPV output feedback controllers for nonlinear systems modelled by neural state space models. This result is achieved by writing the neural state space model on a linear fractional transformation form in a non-conservative way, separating...

  6. A 9-state hidden Markov model using protein secondary structure information for protein fold recognition.

    Science.gov (United States)

    Lee, Sun Young; Lee, Jong Yun; Jung, Kwang Su; Ryu, Keun Ho

    2009-06-01

    In protein fold recognition, the main disadvantage of hidden Markov models (HMMs) is the employment of large-scale model architectures which require large data sets and high computational resources for training. Also, HMMs must consider sequential information about secondary structures of proteins, to improve prediction performance and reduce model parameters. Therefore, we propose a novel method for protein fold recognition based on a hidden Markov model, called a 9-state HMM. The method can (i) reduce the number of states using secondary structure information about proteins for each fold and (ii) recognize protein folds more accurately than other HMMs.

  7. Modelling dynamic processes in a nuclear reactor by state change modal method

    Science.gov (United States)

    Avvakumov, A. V.; Strizhov, V. F.; Vabishchevich, P. N.; Vasilev, A. O.

    2017-12-01

    Modelling of dynamic processes in nuclear reactors is carried out, mainly, using the multigroup neutron diffusion approximation. The basic model includes a multidimensional set of coupled parabolic equations and ordinary differential equations. Dynamic processes are modelled by a successive change of the reactor states. It is considered that the transition from one state to another occurs promptly. In the modal method the approximate solution is represented as eigenfunction expansion. The numerical-analytical method is based on the use of dominant time-eigenvalues of a group diffusion model taking into account delayed neutrons.

  8. A Modified Critical State Two-surface Plasticity Model for Sand

    DEFF Research Database (Denmark)

    Bakmar, Christian LeBlanc; Hededal, O.; Ibsen, Lars Bo

    This paper provides background information and documentation for the implementation of a robust plasticity model as a user-subroutine in the commercial finite difference code, FLAC3D by Itasca. The plasticity model presented is equal to the 3 dimensional critical state two-surface plasticity model...... for sands by Manzari et al., but uses a modified multi-axial surface formulation based on a versatile shape function prescribing a family of smooth and convex contours in the π-plane. The model is formulated within the framework of critical state soil mechanics and is capable of accurately simulating...

  9. Little rip cosmological models with quadratic equation of state with time dependent parameters

    Science.gov (United States)

    Shelote, R. D.; Khadekar, G. S.

    2018-02-01

    We have studied flat FRW cosmological model of the universe filled with an ideal fluid with quadratic equation of state (EOS) with time dependent parameters ω(t) and Λ(t). We found the equation of the state parameter ω(t) is less than -1 and also found Little Rip (LR) and Pseudo Rip (PR) behavior for dark energy.

  10. An Integrated Agent Model Addressing Situation Awareness and Functional State in Decision Making

    NARCIS (Netherlands)

    Hoogendoorn, M.; van Lambalgen, R.M.; Treur, J.

    2011-01-01

    In this paper, an integrated agent model is introduced addressing mutually interacting Situation Awareness and Functional State dynamics in decision making. This shows how a human's functional state, more specific a human's exhaustion and power, can influence a human's situation awareness, and in

  11. Modeling potential climate change impacts on the trees of the northeastern United States

    Science.gov (United States)

    Louis Iverson; Anantha Prasad; Stephen Matthews

    2008-01-01

    We evaluated 134 tree species from the eastern United States for potential response to several scenarios of climate change, and summarized those responses for nine northeastern United States. We modeled and mapped each species individually and show current and potential future distributions for two emission scenarios (A1fi [higher emission] and B1 [lower emission]) and...

  12. Development of a restricted state space stochastic differential equation model for bacterial growth in rich media

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg; Philipsen, Kirsten Riber; Christiansen, Lasse Engbo

    2012-01-01

    In the present study, bacterial growth in a rich media is analysed in a Stochastic Differential Equation (SDE) framework. It is demonstrated that the SDE formulation and smoothened state estimates provide a systematic framework for data driven model improvements, using random walk hidden states...

  13. State-and-transition models as guides for adaptive management: What are the needs?

    Science.gov (United States)

    State and transaction models (STMs) were conceived as a means to organize information about land potential and vegetation dynamics in rangelands to be used in their management. The basic idea is to describe the plant community states that can occur on a site and the causes of transitions between the...

  14. State-and-transition prototype model of riparian vegetation downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Starfield, Anthony M.; Black, Ronald S.; Van Lonkhuyzen, Robert A.

    2014-01-01

    Facing an altered riparian plant community dominated by nonnative species, resource managers are increasingly interested in understanding how to manage and promote healthy riparian habitats in which native species dominate. For regulated rivers, managing flows is one tool resource managers consider to achieve these goals. Among many factors that can influence riparian community composition, hydrology is a primary forcing variable. Frame-based models, used successfully in grassland systems, provide an opportunity for stakeholders concerned with riparian systems to evaluate potential riparian vegetation responses to alternative flows. Frame-based, state-and-transition models of riparian vegetation for reattachment bars, separation bars, and the channel margin found on the Colorado River downstream of Glen Canyon Dam were constructed using information from the literature. Frame-based models can be simple spreadsheet models (created in Microsoft® Excel) or developed further with programming languages (for example, C-sharp). The models described here include seven community states and five dam operations that cause transitions between states. Each model divides operations into growing (April–September) and non-growing seasons (October–March) and incorporates upper and lower bar models, using stage elevation as a division. The inputs (operations) can be used by stakeholders to evaluate flows that may promote dynamic riparian vegetation states, or identify those flow options that may promote less desirable states (for example, Tamarisk [Tamarix sp.] temporarily flooded shrubland). This prototype model, although simple, can still elicit discussion about operational options and vegetation response.

  15. A Rigorous Investigation on the Ground State of the Penson-Kolb Model

    Science.gov (United States)

    Yang, Kai-Hua; Tian, Guang-Shan; Han, Ru-Qi

    2003-05-01

    By using either numerical calculations or analytical methods, such as the bosonization technique, the ground state of the Penson-Kolb model has been previously studied by several groups. Some physicists argued that, as far as the existence of superconductivity in this model is concerned, it is canonically equivalent to the negative-U Hubbard model. However, others did not agree. In the present paper, we shall investigate this model by an independent and rigorous approach. We show that the ground state of the Penson-Kolb model is nondegenerate and has a nonvanishing overlap with the ground state of the negative-U Hubbard model. Furthermore, we also show that the ground states of both the models have the same good quantum numbers and may have superconducting long-range order at the same momentum q = 0. Our results support the equivalence between these models. The project partially supported by the Special Funds for Major State Basic Research Projects (G20000365) and National Natural Science Foundation of China under Grant No. 10174002

  16. State-and-transition simulation models: a framework for forecasting landscape change

    Science.gov (United States)

    Daniel, Colin; Frid, Leonardo; Sleeter, Benjamin M.; Fortin, Marie-Josée

    2016-01-01

    SummaryA wide range of spatially explicit simulation models have been developed to forecast landscape dynamics, including models for projecting changes in both vegetation and land use. While these models have generally been developed as separate applications, each with a separate purpose and audience, they share many common features.We present a general framework, called a state-and-transition simulation model (STSM), which captures a number of these common features, accompanied by a software product, called ST-Sim, to build and run such models. The STSM method divides a landscape into a set of discrete spatial units and simulates the discrete state of each cell forward as a discrete-time-inhomogeneous stochastic process. The method differs from a spatially interacting Markov chain in several important ways, including the ability to add discrete counters such as age and time-since-transition as state variables, to specify one-step transition rates as either probabilities or target areas, and to represent multiple types of transitions between pairs of states.We demonstrate the STSM method using a model of land-use/land-cover (LULC) change for the state of Hawai'i, USA. Processes represented in this example include expansion/contraction of agricultural lands, urbanization, wildfire, shrub encroachment into grassland and harvest of tree plantations; the model also projects shifts in moisture zones due to climate change. Key model output includes projections of the future spatial and temporal distribution of LULC classes and moisture zones across the landscape over the next 50 years.State-and-transition simulation models can be applied to a wide range of landscapes, including questions of both land-use change and vegetation dynamics. Because the method is inherently stochastic, it is well suited for characterizing uncertainty in model projections. When combined with the ST-Sim software, STSMs offer a simple yet powerful means for developing a wide range of models of

  17. Wavelet modeling and prediction of the stability of states: the Roman Empire and the European Union

    Science.gov (United States)

    Yaroshenko, Tatyana Y.; Krysko, Dmitri V.; Dobriyan, Vitalii; Zhigalov, Maksim V.; Vos, Hendrik; Vandenabeele, Peter; Krysko, Vadim A.

    2015-09-01

    How can the stability of a state be quantitatively determined and its future stability predicted? The rise and collapse of empires and states is very complex, and it is exceedingly difficult to understand and predict it. Existing theories are usually formulated as verbal models and, consequently, do not yield sharply defined, quantitative prediction that can be unambiguously validated with data. Here we describe a model that determines whether the state is in a stable or chaotic condition and predicts its future condition. The central model, which we test, is that growth and collapse of states is reflected by the changes of their territories, populations and budgets. The model was simulated within the historical societies of the Roman Empire (400 BC to 400 AD) and the European Union (1957-2007) by using wavelets and analysis of the sign change of the spectrum of Lyapunov exponents. The model matches well with the historical events. During wars and crises, the state becomes unstable; this is reflected in the wavelet analysis by a significant increase in the frequency ω (t) and wavelet coefficients W (ω, t) and the sign of the largest Lyapunov exponent becomes positive, indicating chaos. We successfully reconstructed and forecasted time series in the Roman Empire and the European Union by applying artificial neural network. The proposed model helps to quantitatively determine and forecast the stability of a state.

  18. Verification and Validation of FAARR Model and Data Envelopment Analysis Models for United States Army Recruiting

    National Research Council Canada - National Science Library

    Piskator, Gene

    1998-01-01

    ...) model and to develop a Data Envelopment Analysis (DEA) modeling strategy. First, the FAARR model was verified using a simulation of a known production function and validated using sensitivity analysis and ex-post forecasts...

  19. Two-state model based on the block-localized wave function method

    Science.gov (United States)

    Mo, Yirong

    2007-06-01

    The block-localized wave function (BLW) method is a variant of ab initio valence bond method but retains the efficiency of molecular orbital methods. It can derive the wave function for a diabatic (resonance) state self-consistently and is available at the Hartree-Fock (HF) and density functional theory (DFT) levels. In this work we present a two-state model based on the BLW method. Although numerous empirical and semiempirical two-state models, such as the Marcus-Hush two-state model, have been proposed to describe a chemical reaction process, the advantage of this BLW-based two-state model is that no empirical parameter is required. Important quantities such as the electronic coupling energy, structural weights of two diabatic states, and excitation energy can be uniquely derived from the energies of two diabatic states and the adiabatic state at the same HF or DFT level. Two simple examples of formamide and thioformamide in the gas phase and aqueous solution were presented and discussed. The solvation of formamide and thioformamide was studied with the combined ab initio quantum mechanical and molecular mechanical Monte Carlo simulations, together with the BLW-DFT calculations and analyses. Due to the favorable solute-solvent electrostatic interaction, the contribution of the ionic resonance structure to the ground state of formamide and thioformamide significantly increases, and for thioformamide the ionic form is even more stable than the covalent form. Thus, thioformamide in aqueous solution is essentially ionic rather than covalent. Although our two-state model in general underestimates the electronic excitation energies, it can predict relative solvatochromic shifts well. For instance, the intense π →π* transition for formamide upon solvation undergoes a redshift of 0.3eV, compared with the experimental data (0.40-0.5eV).

  20. A Probit Model for the State of the Greek GDP Growth

    Directory of Open Access Journals (Sweden)

    Stavros Degiannakis

    2015-08-01

    Full Text Available The paper provides probability estimates of the state of the GDP growth. A regime-switching model defines the probability of the Greek GDP being in boom or recession. Then probit models extract the predictive information of a set of explanatory (economic and financial variables regarding the state of the GDP growth. A contemporaneous, as well as a lagged, relationship between the explanatory variables and the state of the GDP growth is conducted. The mean absolute distance (MAD between the probability of not being in recession and the probability estimated by the probit model is the function that evaluates the performance of the models. The probit model with the industrial production index and the realized volatility as the explanatory variables has the lowest MAD value of 6.43% (7.94% in the contemporaneous (lagged relationship.

  1. Fatigue and Serviceability Limit State Model Basis for Assessment of Offshore Wind Energy Converters

    DEFF Research Database (Denmark)

    Thöns, Sebastian; Faber, M. H.; Rücker, W.

    2012-01-01

    and monitoring framework and will be applied for estab-lishing the "as designed and constructed" reliability as prior information for the assessment and the design of monitoring systems. The constitutive physical equations are introduced in combination with the fatigue and serviceability limit state requirements......This paper develops the models for the structural performance of the loading and probabilistic characterization for the fatigue and the serviceability limit states for the support structure of offshore wind energy converters. These models and a sensitivity study are part of a risk based assessment...... as the starting point for the development of the structural performance and loading models. With these models introduced in detail, several modeling aspects for both limit states are analyzed. This includes analyses of the influence on the hot spot stresses by applying a contact formulation for the pile guide...

  2. Effects of model error on cardiac electrical wave state reconstruction using data assimilation.

    Science.gov (United States)

    LaVigne, Nicholas S; Holt, Nathan; Hoffman, Matthew J; Cherry, Elizabeth M

    2017-09-01

    Reentrant electrical scroll waves have been shown to underlie many cardiac arrhythmias, but the inability to observe locations away from the heart surfaces and the restriction of observations to only one or two state variables have made understanding arrhythmia mechanisms challenging. Recently, we showed that data assimilation from spatiotemporally sparse surrogate observations could be used to reconstruct a reliable time series of state estimates of reentrant cardiac electrical waves including unobserved variables in one and three spatial dimensions. However, real cardiac tissue is unlikely to be described accurately by mathematical models because of errors in model formulation and parameterization as well as intrinsic but poorly described spatial heterogeneity of electrophysiological properties in the heart. Here, we extend our previous work to assess how model error affects the accuracy of cardiac state estimates achieved using data assimilation with the Local Ensemble Transform Kalman Filter. We focus on one-dimensional states of discordant alternans characterized by significant wavelength oscillations. We demonstrate that data assimilation can provide high-quality estimates under a wide range of model error conditions, ranging from varying one or more parameter values to using an entirely different model to generate the truth state. We illustrate how multiplicative and additive inflation can be used to reduce error in the state estimates. Even when the truth state contains underlying spatial heterogeneity, we show that using a homogeneous model in the data assimilation algorithm can achieve good results. Overall, we find data assimilation to be a robust approach for reconstructing complex cardiac electrical states corresponding to arrhythmias even in the presence of model error.

  3. Effects of model error on cardiac electrical wave state reconstruction using data assimilation

    Science.gov (United States)

    LaVigne, Nicholas S.; Holt, Nathan; Hoffman, Matthew J.; Cherry, Elizabeth M.

    2017-09-01

    Reentrant electrical scroll waves have been shown to underlie many cardiac arrhythmias, but the inability to observe locations away from the heart surfaces and the restriction of observations to only one or two state variables have made understanding arrhythmia mechanisms challenging. Recently, we showed that data assimilation from spatiotemporally sparse surrogate observations could be used to reconstruct a reliable time series of state estimates of reentrant cardiac electrical waves including unobserved variables in one and three spatial dimensions. However, real cardiac tissue is unlikely to be described accurately by mathematical models because of errors in model formulation and parameterization as well as intrinsic but poorly described spatial heterogeneity of electrophysiological properties in the heart. Here, we extend our previous work to assess how model error affects the accuracy of cardiac state estimates achieved using data assimilation with the Local Ensemble Transform Kalman Filter. We focus on one-dimensional states of discordant alternans characterized by significant wavelength oscillations. We demonstrate that data assimilation can provide high-quality estimates under a wide range of model error conditions, ranging from varying one or more parameter values to using an entirely different model to generate the truth state. We illustrate how multiplicative and additive inflation can be used to reduce error in the state estimates. Even when the truth state contains underlying spatial heterogeneity, we show that using a homogeneous model in the data assimilation algorithm can achieve good results. Overall, we find data assimilation to be a robust approach for reconstructing complex cardiac electrical states corresponding to arrhythmias even in the presence of model error.

  4. Charge state evolution in the solar wind. III. Model comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Landi, E.; Oran, R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A.; Van der Holst, B. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

    2014-08-01

    We test three theoretical models of the fast solar wind with a set of remote sensing observations and in-situ measurements taken during the minimum of solar cycle 23. First, the model electron density and temperature are compared to SOHO/SUMER spectroscopic measurements. Second, the model electron density, temperature, and wind speed are used to predict the charge state evolution of the wind plasma from the source regions to the freeze-in point. Frozen-in charge states are compared with Ulysses/SWICS measurements at 1 AU, while charge states close to the Sun are combined with the CHIANTI spectral code to calculate the intensities of selected spectral lines, to be compared with SOHO/SUMER observations in the north polar coronal hole. We find that none of the theoretical models are able to completely reproduce all observations; namely, all of them underestimate the charge state distribution of the solar wind everywhere, although the levels of disagreement vary from model to model. We discuss possible causes of the disagreement, namely, uncertainties in the calculation of the charge state evolution and of line intensities, in the atomic data, and in the assumptions on the wind plasma conditions. Last, we discuss the scenario where the wind is accelerated from a region located in the solar corona rather than in the chromosphere as assumed in the three theoretical models, and find that a wind originating from the corona is in much closer agreement with observations.

  5. Numerical transfer-matrix study of a model with competing metastable states

    DEFF Research Database (Denmark)

    Fiig, T.; Gorman, B.M.; Rikvold, P.A.

    1994-01-01

    The Blume-Capel model, a three-state lattice-gas model capable of displaying competing metastable states, is investigated in the limit of weak, long-range interactions. The methods used are scalar field theory, a numerical transfer-matrix method, and dynamical Monte Carlo simulations...... 'metastable free-energy density This transfer-matrix approach gives a free-energy cost of nucleation that supports the proportionality relation for the decay rate of the metastable phase T proportional to\\Imf alpha\\, even in cases where two metastable states compete. The picture that emerges from this study...

  6. Modeling of HVDC in Dynamic State Estimation Using Unscented Kalman Filter Method

    DEFF Research Database (Denmark)

    Khazraj, Hesam; Silva, Filipe Miguel Faria da; Bak, Claus Leth

    2016-01-01

    HVDC transmission is an integral part of various power system networks. This article presents an Unscented Kalman Filter dynamic state estimator algorithm that considers the presence of HVDC links. The AC - DC power flow analysis, which is implemented as power flow solver for Dynamic State...... Estimation (DSE), creates an updated admittance matrix. First, a hybrid AC/DC network model is developed to combine the AC network and DC links. Then a non-linear state estimator can solve for hybrid AC/DC states by applying the unscented Kalman filter (UKF) algorithm. It is demonstrated that UKF is easy...

  7. Dual states estimation of a subsurface flow-transport coupled model using ensemble Kalman filtering

    KAUST Repository

    El Gharamti, Mohamad

    2013-10-01

    Modeling the spread of subsurface contaminants requires coupling a groundwater flow model with a contaminant transport model. Such coupling may provide accurate estimates of future subsurface hydrologic states if essential flow and contaminant data are assimilated in the model. Assuming perfect flow, an ensemble Kalman filter (EnKF) can be used for direct data assimilation into the transport model. This is, however, a crude assumption as flow models can be subject to many sources of uncertainty. If the flow is not accurately simulated, contaminant predictions will likely be inaccurate even after successive Kalman updates of the contaminant model with the data. The problem is better handled when both flow and contaminant states are concurrently estimated using the traditional joint state augmentation approach. In this paper, we introduce a dual estimation strategy for data assimilation into a one-way coupled system by treating the flow and the contaminant models separately while intertwining a pair of distinct EnKFs, one for each model. The presented strategy only deals with the estimation of state variables but it can also be used for state and parameter estimation problems. This EnKF-based dual state-state estimation procedure presents a number of novel features: (i) it allows for simultaneous estimation of both flow and contaminant states in parallel; (ii) it provides a time consistent sequential updating scheme between the two models (first flow, then transport); (iii) it simplifies the implementation of the filtering system; and (iv) it yields more stable and accurate solutions than does the standard joint approach. We conducted synthetic numerical experiments based on various time stepping and observation strategies to evaluate the dual EnKF approach and compare its performance with the joint state augmentation approach. Experimental results show that on average, the dual strategy could reduce the estimation error of the coupled states by 15% compared with the

  8. State-dependent errors in a land surface model across biomes inferred from eddy covariance observations on multiple timescales

    NARCIS (Netherlands)

    Wang, T.; Brender, P.; Ciais, P.; Piao, S.; Mahecha, M.D.; Chevallier, F.; Reichstein, M.; Ottle, C.; Maignan, F.; Arain, A.; Bohrer, G.; Cescatti, A.; Kiely, G.; Law, B.E.; Lutz, M.; Montagnani, L.; Moors, E.J.

    2012-01-01

    Characterization of state-dependent model biases in land surface models can highlight model deficiencies, and provide new insights into model development. In this study, artificial neural networks (ANNs) are used to estimate the state-dependent biases of a land surface model (ORCHIDEE: ORganising

  9. General three-state model with biased population replacement: analytical solution and application to language dynamics.

    Science.gov (United States)

    Colaiori, Francesca; Castellano, Claudio; Cuskley, Christine F; Loreto, Vittorio; Pugliese, Martina; Tria, Francesca

    2015-01-01

    Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent-based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low-frequency state, where the lemma becomes fully regular, and a high-frequency one, where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve analytically a very general class of three-state models that allows us to fully understand these behaviors in a unified framework. Realistic sets of interaction rules, including the well-known naming game (NG) model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results for the general three-state model, although discussed in terms of language dynamics, are widely applicable.

  10. Exploring alternate states and oligomerization preferences of coiled-coils by de novo structure modeling.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-02-01

    Homomeric coiled-coils can self-assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled-coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled-coils. Collectively, our results demonstrate that high-resolution structure of coiled-coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled-coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled-coils. The computational methods developed here should be broadly applicable to studies of sequence-structure relationships in coiled-coils and the design of higher order assemblies with improved oligomerization specificity. © 2014 Wiley Periodicals, Inc.

  11. A Bayesian state-space model for mixed-stock migrations, with ...

    African Journals Online (AJOL)

    We present a multi-stock, multi-fleet, multi-area, seasonally structured Bayesian state-space model in which different stocks spawn in spatially different areas and the mixing of these stocks is explicitly accounted for in the absence of sufficient tagging data with which to estimate migration rates. The model is applied to the ...

  12. Development of corresponding states model for estimation of the surface tension of chemical compounds

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Eslamimanesh, Ali; Sattari, Mehdi

    2013-01-01

    The gene expression programming (GEP) strategy is applied for presenting two corresponding states models to represent/predict the surface tension of about 1,700 compounds (mostly organic) from 75 chemical families at various temperatures collected from the DIPPR 801 database. The models parameter...

  13. Non-parametric Bayesian graph models reveal community structure in resting state fMRI

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman

    2014-01-01

    Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...

  14. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper

    2011-01-01

    This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF expe...

  15. Stated choice models for predicting the impact of user fees at public recreation sites

    Science.gov (United States)

    Herbert W. Schroeder; Jordan Louviere

    1999-01-01

    A crucial question in the implementation of fee programs is how the users of recreation sites will respond to various levels and types of fees. Stated choice models can help managers anticipate the impact of user fees on people's choices among the alternative recreation sites available to them. Models developed for both day and overnight trips to several areas and...

  16. Exploring Solid-State Structure and Physical Properties: A Molecular and Crystal Model Exercise

    Science.gov (United States)

    Bindel, Thomas H.

    2008-01-01

    A crystal model laboratory exercise is presented that allows students to examine relations among the microscopic-macroscopic-symbolic levels, using crystalline mineral samples and corresponding crystal models. Students explore the relationship between solid-state structure and crystal form. Other structure-property relationships are explored. The…

  17. Approaches to incorporating climate change effects in state and transition simulation models of vegetation

    Science.gov (United States)

    Becky K. Kerns; Miles A. Hemstrom; David Conklin; Gabriel I. Yospin; Bart Johnson; Dominique Bachelet; Scott Bridgham

    2012-01-01

    Understanding landscape vegetation dynamics often involves the use of scientifically-based modeling tools that are capable of testing alternative management scenarios given complex ecological, management, and social conditions. State-and-transition simulation model (STSM) frameworks and software such as PATH and VDDT are commonly used tools that simulate how landscapes...

  18. Modeling of Asphaltene Precipitation from Crude Oil with the Cubic Plus Association Equation of State

    DEFF Research Database (Denmark)

    Arya, Alay; Liang, Xiaodong; von Solms, Nicolas

    2017-01-01

    In this study, different modeling approaches using the Cubic Plus Association (CPA) equation of state (EoS) are developed to calculate the asphaltene precipitation onset condition and asphaltene yield from degassed crude oil during the addition of n-paraffin. A single model parameter is fitted...

  19. System Identification of Civil Engineering Structures using State Space and ARMAV Models

    DEFF Research Database (Denmark)

    Andersen, P.; Kirkegaard, Poul Henning; Brincker, Rune

    In this paper the relations between an ambient excited structural system, represented by an innovation state space system, and the Auto-Regressive Moving Average Vector (ARMAV) model are considered. It is shown how to obtain a multivariate estimate of the ARMAV model from output measurements, usi...

  20. κ–μ fading channels: a finite state Markov modelling approach

    Indian Academy of Sciences (India)

    Finite state Markov channel (FSMC) is the automatic choice for accurate modelling of slow fading channels with memory. FSMC model for a κ–μ fading channel is investigated in this paper. Small-scale variations of the fading signal under Line-Of-Sight conditions are represented by κ–μ fading distributions. Here, FSMC is ...

  1. State-and-transition model archetypes: a global taxonomy of rangeland change

    Science.gov (United States)

    State and transition models (STMs) synthesize science-based and local knowledge to formally represent the dynamics of rangeland and other ecosystems. Mental models or concepts of ecosystem dynamics implicitly underlie all management decisions in rangelands and thus how people influence rangeland sus...

  2. Modeling Quality-Adjusted Life Expectancy Loss Resulting from Tobacco Use in the United States

    Science.gov (United States)

    Kaplan, Robert M.; Anderson, John P.; Kaplan, Cameron M.

    2007-01-01

    Purpose: To describe the development of a model for estimating the effects of tobacco use upon Quality Adjusted Life Years (QALYs) and to estimate the impact of tobacco use on health outcomes for the United States (US) population using the model. Method: We obtained estimates of tobacco consumption from 6 years of the National Health Interview…

  3. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    NARCIS (Netherlands)

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  4. State-space modelling for the ejector-based refrigeration system driven by low grade energy

    International Nuclear Information System (INIS)

    Xue, Binqiang; Cai, Wenjian; Wang, Xinli

    2015-01-01

    This paper presents a novel global state-space model to describe the ejector-based refrigeration system, which includes the dynamics of the two heat exchangers and the static properties of ejector, compressor and expansion valve. Different from the existing methods, the proposed method introduces some intermediate variables into the dynamic modelling in developing reduced order models of the heat exchangers (evaporator and condenser) based on the Number of Transfer Units (NTU) method. This global model with fewer dimensions is much simpler and can be more convenient for the real-time control system design, compared with other dynamic models. Finally, the proposed state-space model has been validated by dynamic response experiments on the ejector-based refrigeration cycle with refrigerant R134a.The experimental results indicate that the proposed model can predict well the dynamics of the ejector-based refrigeration system. - Highlights: • A low-order state-space model of ejector-based refrigeration system is presented. • Reduced-order models of heat exchangers are developed based on NTU method. • The variations of mass flow rates are introduced in multiple fluid phase regions. • Experimental results show the proposed model has a good performance

  5. A five states survivability model for missions with ground-to-air threats

    Science.gov (United States)

    Erlandsson, Tina; Niklasson, Lars

    2013-05-01

    Fighter pilots are exposed to the risk of getting hit by enemy fire when flying missions with ground-to-air threats. A tactical support system including a survivability model could aid the pilot to assess and handle this risk. The survivability model presented here is a Markov model with five states; Undetected, Detected, Tracked, Engaged and Hit. The output from the model is the probabilities that the aircraft is in these states during the mission. The enemy's threat systems are represented with sensor and weapon areas and the transitions between the states depend on whether or not the aircraft is within any of these areas. Contrary to previous work, the model can capture the behaviors that the enemy's sensor systems communicate and that the risk of getting hit depends on the enemy's knowledge regarding the aircraft's kinematics. The paper includes a discussion regarding the interpretation of the states and the factors that influence the transitions between the states. Further developments are also identified for using the model to aid fighter pilots and operators of unmanned aerial vehicles with planning and evaluating missions as well as analyzing the situation during flight.

  6. Two-dimensional lattice model for the surface states of topological insulators

    Science.gov (United States)

    Zhou, Yan-Feng; Jiang, Hua; Xie, X. C.; Sun, Qing-Feng

    2017-06-01

    The surface states in three-dimensional (3D) topological insulators can be described by a two-dimensional (2D) continuous Dirac Hamiltonian. However, there exists the fermion doubling problem when putting the continuous 2D Dirac equation into a lattice model. In this paper, we introduce a Wilson term with a zero bare mass into the 2D lattice model to overcome the difficulty. By comparing with a 3D Hamiltonian, we show that the modified 2D lattice model can faithfully describe the low-energy electrical and transport properties of surface states of 3D topological insulators. So this 2D lattice model provides a simple and cheap way to numerically simulate the surface states of 3D topological-insulator nanostructures. Based on the 2D lattice model, we also establish the wormhole effect in a topological-insulator nanowire by a magnetic field along the wire and show the surface states being robust against disorder. The proposed 2D lattice model can be extensively applied to study the various properties and effects, such as the transport properties, Hall effect, universal conductance fluctuations, localization effect, etc. So, it paves a way to study the surface states of the 3D topological insulators.

  7. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    Science.gov (United States)

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. CALS and the Product State Model - Methodology and Supporting Schools and Paradigms

    DEFF Research Database (Denmark)

    Larsen, Michael Holm

    1998-01-01

    This paper address the preliminary considerations in a research project, initiated February 1997, regarding Continuous Acquisition and Life-cycle Support (CALS) which is a part of the activities in CALS Center Denmark. The CALS concept is presented focusing on the Product State Model (PSM). The PSM...... incorporates relevant information about each stage of the production process.The paper will describe the research object, the model object and discuss a part of the methodology in developing a Product State Model. The project is primarily technological, however, organisational and human aspects...

  9. Systems of Systems Modeled by a Hierarchical Part-Whole State-Based Formalism

    Directory of Open Access Journals (Sweden)

    Luca Pazzi

    2013-11-01

    Full Text Available The paper presents an explicit state-based modeling approach aimed at modeling Systems of Systems behavior. The approach allows to specify and verify incrementally safety and liveness rules without using model checking techniques. The state-based approach allows moreover to use the system behavior directly as an interface, greatly improving the effectiveness of the recursive composition needed when assembling Systems of Systems. Such systems are, at the same time, both parts and wholes, thus giving a formal characterization to the notion of Holon.

  10. On thermodynamic states of the Ising model on scale-free graphs

    Directory of Open Access Journals (Sweden)

    Yu. Kozitsky

    2013-06-01

    Full Text Available There is proposed a model of scale-free random graphs which are locally close to the uncorrelated complex random networks with divergent 2> studied in, e.g., S. N. Dorogovtsev et al, Rev. Mod. Phys., 80, 1275 (2008. It is shown that the Ising model on the proposed graphs with interaction intensities of arbitrary signs with probability one is in a paramagnetic state at sufficiently high finite values of the temperature. For the same graphs, the bond percolation model with probability one is in a nonpercolative state for positive values of the percolation probability. These results and their possible extensions are also discussed.

  11. The solid-state terahertz spectrum of MDMA (Ecstasy) - A unique test for molecular modeling assignments

    Science.gov (United States)

    Allis, Damian G.; Hakey, Patrick M.; Korter, Timothy M.

    2008-10-01

    The terahertz (THz, far-infrared) spectrum of 3,4-methylene-dioxymethamphetamine hydrochloride (Ecstasy) is simulated using solid-state density functional theory. While a previously reported isolated-molecule calculation is noteworthy for the precision of its solid-state THz reproduction, the solid-state calculation predicts that the isolated-molecule modes account for only half of the spectral features in the THz region, with the remaining structure arising from lattice vibrations that cannot be predicted without solid-state molecular modeling. The molecular origins of the internal mode contributions to the solid-state THz spectrum, as well as the proper consideration of the protonation state of the molecule, are also considered.

  12. Multi-State Models for Panel Data: The msm Package for R

    Directory of Open Access Journals (Sweden)

    Christopher H. Jackson

    2011-01-01

    Full Text Available Panel data are observations of a continuous-time process at arbitrary times, for example, visits to a hospital to diagnose disease status. Multi-state models for such data are generally based on the Markov assumption. This article reviews the range of Markov models and their extensions which can be fitted to panel-observed data, and their implementation in the msm package for R. Transition intensities may vary between individuals, or with piecewise-constant time-dependent covariates, giving an inhomogeneous Markov model. Hidden Markov models can be used for multi-state processes which are misclassified or observed only through a noisy marker. The package is intended to be straightforward to use, flexible and comprehensively documented. Worked examples are given of the use of msm to model chronic disease progression and screening. Assessment of model fit, and potential future developments of the software, are also discussed.

  13. Modelling of different enzyme productions by solid-state fermentation on several agro-industrial residues.

    Science.gov (United States)

    Diaz, Ana Belen; Blandino, Ana; Webb, Colin; Caro, Ildefonso

    2016-11-01

    A simple kinetic model, with only three fitting parameters, for several enzyme productions in Petri dishes by solid-state fermentation is proposed in this paper, which may be a valuable tool for simulation of this type of processes. Basically, the model is able to predict temporal fungal enzyme production by solid-state fermentation on complex substrates, maximum enzyme activity expected and time at which these maxima are reached. In this work, several fermentations in solid state were performed in Petri dishes, using four filamentous fungi grown on different agro-industrial residues, measuring xylanase, exo-polygalacturonase, cellulose and laccase activities over time. Regression coefficients after fitting experimental data to the proposed model turned out to be quite high in all cases. In fact, these results are very interesting considering, on the one hand, the simplicity of the model and, on the other hand, that enzyme activities correspond to different enzymes, produced by different fungi on different substrates.

  14. State-Dependent Impulsive Control Strategies for a Tumor-Immune Model

    Directory of Open Access Journals (Sweden)

    Kwang Su Kim

    2016-01-01

    Full Text Available Controlling the number of tumor cells leads us to expect more efficient strategies for treatment of tumor. Towards this goal, a tumor-immune model with state-dependent impulsive treatments is established. This model may give an efficient treatment schedule to control tumor’s abnormal growth. By using the Poincaré map and analogue of Poincaré criterion, some conditions for the existence and stability of a positive order-1 periodic solution of this model are obtained. Moreover, we carry out numerical simulations to illustrate the feasibility of our main results and compare fixed-time impulsive treatment effects with state-dependent impulsive treatment effects. The results of our simulations say that, in determining optimal treatment timing, the model with state-dependent impulsive control is more efficient than that with fixed-time impulsive control.

  15. Genetic Algorithm-Based Model Order Reduction of Aeroservoelastic Systems with Consistant States

    Science.gov (United States)

    Zhu, Jin; Wang, Yi; Pant, Kapil; Suh, Peter M.; Brenner, Martin J.

    2017-01-01

    This paper presents a model order reduction framework to construct linear parameter-varying reduced-order models of flexible aircraft for aeroservoelasticity analysis and control synthesis in broad two-dimensional flight parameter space. Genetic algorithms are used to automatically determine physical states for reduction and to generate reduced-order models at grid points within parameter space while minimizing the trial-and-error process. In addition, balanced truncation for unstable systems is used in conjunction with the congruence transformation technique to achieve locally optimal realization and weak fulfillment of state consistency across the entire parameter space. Therefore, aeroservoelasticity reduced-order models at any flight condition can be obtained simply through model interpolation. The methodology is applied to the pitch-plant model of the X-56A Multi-Use Technology Testbed currently being tested at NASA Armstrong Flight Research Center for flutter suppression and gust load alleviation. The present studies indicate that the reduced-order model with more than 12× reduction in the number of states relative to the original model is able to accurately predict system response among all input-output channels. The genetic-algorithm-guided approach exceeds manual and empirical state selection in terms of efficiency and accuracy. The interpolated aeroservoelasticity reduced order models exhibit smooth pole transition and continuously varying gains along a set of prescribed flight conditions, which verifies consistent state representation obtained by congruence transformation. The present model order reduction framework can be used by control engineers for robust aeroservoelasticity controller synthesis and novel vehicle design.

  16. Comparison of kinetic and fluid neutral models for attached and detached state

    International Nuclear Information System (INIS)

    Furubayashi, M.; Hoshino, K.; Toma, M.; Hatayama, A.; Coster, D.; Schneider, R.; Bonnin, X.; Kawashima, H.; Asakura, N.; Suzuki, Y.

    2009-01-01

    Neutral behavior has an important role in the transport simulations of the edge plasma. Most of the edge plasma transport codes treat neutral particles by a simple fluid model or a kinetic model. The fluid model allows faster calculations. However, the applicability of the fluid model is limited. In this study, simulation results of JT-60U from kinetic neutral model and fluid neutral model are compared under the attached and detached state, using the 2D edge plasma code package, SOLPS5.0. In the SOL region, no significant differences are observed in the upstream plasma profiles between kinetic and fluid neutral models. However, in the divertor region, large differences are observed in plasma and neutral profiles. Therefore, further optimization of the fluid neutral model should be performed. Otherwise kinetic neutral model should be used to analyze the divertor region.

  17. State-of-the-art and research needs for oil spill impact assessment modelling

    International Nuclear Information System (INIS)

    French-McCay, D.

    2009-01-01

    Many oil spill models focus on trajectory and fate in aquatic environments. Models designed to address subsurface oil concentrations typically overlay fates model concentration results on maps or grids of biological distributions to assess impacts. This paper discussed a state-of-the-art biological effects model designed to evaluate the impacts and dose of oil spill hydrocarbons on aquatic biota including birds, mammals, reptiles, fish, invertebrates and plants. The biological effects model was coupled to an oil trajectory and fates spill impact model application package (SIMAP) in order to obtain accurate spatial and temporal quantifications of oil distributions and hydrocarbon component concentrations. Processes simulated in the model included slick spreading, evaporation of volatiles from surface oil, transport on the water surface, and various types of oil dispersion and emulsification. The design of the model was discussed, as well as strategies used for applying the model for hindcasts and risk assessments. 204 refs., 3 tabs., 5 figs

  18. Inferring nonlinear lateral flow immunoassay state-space models via an unscented Kalman filter

    OpenAIRE

    Zeng, N; Wang, Z; Zhang, H

    2016-01-01

    This paper is concerned with the problem of learning structure of the lateral flow immunoassay (LFIA) devices via short but available time series of the experiment measurement. The model for the LFIA is considered as a nonlinear state-space model that includes equations describing both the biochemical reaction process of LFIA system and the observation output. Especially, the time-delays occurring among the biochemical reactions are considered in the established model. Furthermore, we utilize...

  19. Car sharing demand estimation and urban transport demand modelling using stated preference techniques

    OpenAIRE

    Catalano, Mario; Lo Casto, Barbara; Migliore, Marco

    2008-01-01

    The research deals with the use of the stated preference technique (SP) and transport demand modelling to analyse travel mode choice behaviour for commuting urban trips in Palermo, Italy. The principal aim of the study was the calibration of a demand model to forecast the modal split of the urban transport demand, allowing for the possibility of using innovative transport systems like car sharing and car pooling. In order to estimate the demand model parameters, a specific survey was carried ...

  20. An optical flow-based state-space model of the vocal folds

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas

    2017-01-01

    High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation....... A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able...

  1. System Model Bias Processing Approach for Regional Coordinated States Information Involved Filtering

    Directory of Open Access Journals (Sweden)

    Zebo Zhou

    2016-01-01

    Full Text Available In the Kalman filtering applications, the conventional dynamic model which connects the states information of two consecutive epochs by state transition matrix is usually predefined and assumed to be invariant. Aiming to improve the adaptability and accuracy of dynamic model, we propose multiple historical states involved filtering algorithm. An autoregressive model is used as the dynamic model which is subsequently combined with observation model for deriving the optimal window-recursive filter formulae in the sense of minimum mean square error principle. The corresponding test statistics characteristics of system residuals are discussed in details. The test statistics of regional predicted residuals are then constructed in a time-window for model bias testing with two hypotheses, that is, the null and alternative hypotheses. Based on the innovations test statistics, we develop a model bias processing procedure including bias detection, location identification, and state correction. Finally, the minimum detectable bias and bias-to-noise ratio are both computed for evaluating the internal and external reliability of overall system, respectively.

  2. The neural correlates of problem states: testing FMRI predictions of a computational model of multitasking.

    Directory of Open Access Journals (Sweden)

    Jelmer P Borst

    Full Text Available BACKGROUND: It has been shown that people can only maintain one problem state, or intermediate mental representation, at a time. When more than one problem state is required, for example in multitasking, performance decreases considerably. This effect has been explained in terms of a problem state bottleneck. METHODOLOGY: In the current study we use the complimentary methodologies of computational cognitive modeling and neuroimaging to investigate the neural correlates of this problem state bottleneck. In particular, an existing computational cognitive model was used to generate a priori fMRI predictions for a multitasking experiment in which the problem state bottleneck plays a major role. Hemodynamic responses were predicted for five brain regions, corresponding to five cognitive resources in the model. Most importantly, we predicted the intraparietal sulcus to show a strong effect of the problem state manipulations. CONCLUSIONS: Some of the predictions were confirmed by a subsequent fMRI experiment, while others were not matched by the data. The experiment supported the hypothesis that the problem state bottleneck is a plausible cause of the interference in the experiment and that it could be located in the intraparietal sulcus.

  3. State reduced order models for the modelling of the thermal behavior of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Menezo, Christophe; Bouia, Hassan; Roux, Jean-Jacques; Depecker, Patrick [Institute National de Sciences Appliquees de Lyon, Villeurbanne Cedex, (France). Centre de Thermique de Lyon (CETHIL). Equipe Thermique du Batiment]. E-mail: menezo@insa-cethil-etb.insa-lyon.fr; bouia@insa-cethil-etb.insa-lyon.fr; roux@insa-cethil-etb.insa-lyon.fr; depecker@insa-cethil-etb.insa-lyon.fr

    2000-07-01

    This work is devoted to the field of building physics and related to the reduction of heat conduction models. The aim is to enlarge the model libraries of heat and mass transfer codes through limiting the considerable dimensions reached by the numerical systems during the modelling process of a multizone building. We show that the balanced realization technique, specifically adapted to the coupling of reduced order models with the other thermal phenomena, turns out to be very efficient. (author)

  4. Legal model of state coercion as to a special category of persons

    Directory of Open Access Journals (Sweden)

    Tatyana M. Sekretareva

    2016-09-01

    Full Text Available Objective to develop a legal model of state coercion against individuals with mental disorders. Methods dialectical method analysis synthesis description explanation. Results identifying features of the semantic and meaningful understanding of state coercion against persons with mental disorders allowed to designate state coercion in respect of special category of persons as an independent state coercion which has an interdisciplinary and multidisciplinary character. Scientific novelty for the first time the article investigated the place and role of state coercion in relation to special categories of persons in the system of legal policy means state coercion against a particular category of persons is considered as an independent form of state coercion. The classification of actors is proposed who are involved in the application of state coercion against persons with mental disorders as well as the structure of state coercion consisting of preventive measures suppressive measures measures to ensure proceedings in criminal civil cases cases of administrative offenses punishment other enforcement measures. Practical significance the research results can be used to improve the system of state coercion in the Russian Federation.

  5. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  6. Critical review of activated sludge modeling: state of process knowledge, modeling concepts, and limitations.

    Science.gov (United States)

    Hauduc, H; Rieger, L; Oehmen, A; van Loosdrecht, M C M; Comeau, Y; Héduit, A; Vanrolleghem, P A; Gillot, S

    2013-01-01

    This work critically reviews modeling concepts for standard activated sludge wastewater treatment processes (e.g., hydrolysis, growth and decay of organisms, etc.) for some of the most commonly used models. Based on a short overview on the theoretical biochemistry knowledge this review should help model users to better understand (i) the model concepts used; (ii) the differences between models, and (iii) the limits of the models. The seven analyzed models are: (1) ASM1; (2) ASM2d; (3) ASM3; (4) ASM3 + BioP; (5) ASM2d + TUD; (6) Barker & Dold model; and (7) UCTPHO+. Nine standard processes are distinguished and discussed in the present work: hydrolysis; fermentation; ordinary heterotrophic organisms (OHO) growth; autotrophic nitrifying organisms (ANO) growth; OHO & ANO decay; poly-hydroxyalkanoates (PHA) storage; polyphosphate (polyP) storage; phosphorus accumulating organisms PAO) growth; and PAO decay. For a structured comparison, a new schematic representation of these processes is proposed. Each process is represented as a reaction with consumed components on the left of the figure and produced components on the right. Standardized icons, based on shapes and color codes, enable the representation of the stoichiometric modeling concepts and kinetics. This representation allows highlighting the conceptual differences of the models, and the level of simplification between the concepts and the theoretical knowledge. The model selection depending on their theoretical limitations and the main research needs to increase the model quality are finally discussed. Copyright © 2012 Wiley Periodicals, Inc.

  7. Multi-temperature state-dependent equivalent circuit discharge model for lithium-sulfur batteries

    Science.gov (United States)

    Propp, Karsten; Marinescu, Monica; Auger, Daniel J.; O'Neill, Laura; Fotouhi, Abbas; Somasundaram, Karthik; Offer, Gregory J.; Minton, Geraint; Longo, Stefano; Wild, Mark; Knap, Vaclav

    2016-10-01

    Lithium-sulfur (Li-S) batteries are described extensively in the literature, but existing computational models aimed at scientific understanding are too complex for use in applications such as battery management. Computationally simple models are vital for exploitation. This paper proposes a non-linear state-of-charge dependent Li-S equivalent circuit network (ECN) model for a Li-S cell under discharge. Li-S batteries are fundamentally different to Li-ion batteries, and require chemistry-specific models. A new Li-S model is obtained using a 'behavioural' interpretation of the ECN model; as Li-S exhibits a 'steep' open-circuit voltage (OCV) profile at high states-of-charge, identification methods are designed to take into account OCV changes during current pulses. The prediction-error minimization technique is used. The model is parameterized from laboratory experiments using a mixed-size current pulse profile at four temperatures from 10 °C to 50 °C, giving linearized ECN parameters for a range of states-of-charge, currents and temperatures. These are used to create a nonlinear polynomial-based battery model suitable for use in a battery management system. When the model is used to predict the behaviour of a validation data set representing an automotive NEDC driving cycle, the terminal voltage predictions are judged accurate with a root mean square error of 32 mV.

  8. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    Science.gov (United States)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  9. Modulation of Soil Initial State on WRF Model Performance Over China

    Science.gov (United States)

    Xue, Haile; Jin, Qinjian; Yi, Bingqi; Mullendore, Gretchen L.; Zheng, Xiaohui; Jin, Hongchun

    2017-11-01

    The soil state (e.g., temperature and moisture) in a mesoscale numerical prediction model is typically initialized by reanalysis or analysis data that may be subject to large bias. Such bias may lead to unrealistic land-atmosphere interactions. This study shows that the Climate Forecast System Reanalysis (CFSR) dramatically underestimates soil temperature and overestimates soil moisture over most parts of China in the first (0-10 cm) and second (10-25 cm) soil layers compared to in situ observations in July 2013. A correction based on the global optimal dual kriging is employed to correct CFSR bias in soil temperature and moisture using in situ observations. To investigate the impacts of the corrected soil state on model forecasts, two numerical model simulations—a control run with CFSR soil state and a disturbed run with the corrected soil state—were conducted using the Weather Research and Forecasting model. All the simulations are initiated 4 times per day and run 48 h. Model results show that the corrected soil state, for example, warmer and drier surface over the most parts of China, can enhance evaporation over wet regions, which changes the overlying atmospheric temperature and moisture. The changes of the lifting condensation level, level of free convection, and water transport due to corrected soil state favor precipitation over wet regions, while prohibiting precipitation over dry regions. Moreover, diagnoses indicate that the remote moisture flux convergence plays a dominant role in the precipitation changes over the wet regions.

  10. State-Dependence of the Climate Sensitivity in Earth System Models of Intermediate Complexity

    Science.gov (United States)

    Pfister, Patrik L.; Stocker, Thomas F.

    2017-10-01

    Growing evidence from general circulation models (GCMs) indicates that the equilibrium climate sensitivity (ECS) depends on the magnitude of forcing, which is commonly referred to as state-dependence. We present a comprehensive assessment of ECS state-dependence in Earth system models of intermediate complexity (EMICs) by analyzing millennial simulations with sustained 2×CO2 and 4×CO2 forcings. We compare different extrapolation methods and show that ECS is smaller in the higher-forcing scenario in 12 out of 15 EMICs, in contrast to the opposite behavior reported from GCMs. In one such EMIC, the Bern3D-LPX model, this state-dependence is mainly due to the weakening sea ice-albedo feedback in the Southern Ocean, which depends on model configuration. Due to ocean-mixing adjustments, state-dependence is only detected hundreds of years after the abrupt forcing, highlighting the need for long model integrations. Adjustments to feedback parametrizations of EMICs may be necessary if GCM intercomparisons confirm an opposite state-dependence.

  11. ONLINE MODEL OF EDUCATION QUALITY ASSURANCE EQUASP IMPLEMENTATION: EXPERIENCE OF VYATKA STATE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    Valentin Pugach

    2015-10-01

    Full Text Available The article is devoted to the problem of assessing the quality of higher education. In the Russian Federation recently quality assessment of educational services provided by state-accredited universities is carried out by the state represented by the Ministry of education and science. State universities have simulated internal systemseducation quality assessment in accordance with the methodology proposed by the Ministry of education and science. Currently more attention is paid to the independent assessment of education quality which is the basis of professional public accreditation. The project "EQUASP" financed within the framework of the TEMPUS programme is directed to the problem of implementing the methodology of the online model of independent higher education quality assessment in the practice of Russian universities. The proposed model for assessing the quality of education is based on usage of 5 standards. The authors have done a comparative analysis of the model of higher education quality assessment existing in Vyatka State University and the model of education quality assessing offered by European universities-participants of the project EQUASP. The authors have presented the main results of investigation of this problem and some suggestions for improving the model of education quality assessment used by Vyatka State University.

  12. Enabling intelligent copernicus services for carbon and water balance modeling of boreal forest ecosystems - North State

    Science.gov (United States)

    Häme, Tuomas; Mutanen, Teemu; Rauste, Yrjö; Antropov, Oleg; Molinier, Matthieu; Quegan, Shaun; Kantzas, Euripides; Mäkelä, Annikki; Minunno, Francesco; Atli Benediktsson, Jon; Falco, Nicola; Arnason, Kolbeinn; Storvold, Rune; Haarpaintner, Jörg; Elsakov, Vladimir; Rasinmäki, Jussi

    2015-04-01

    The objective of project North State, funded by Framework Program 7 of the European Union, is to develop innovative data fusion methods that exploit the new generation of multi-source data from Sentinels and other satellites in an intelligent, self-learning framework. The remote sensing outputs are interfaced with state-of-the-art carbon and water flux models for monitoring the fluxes over boreal Europe to reduce current large uncertainties. This will provide a paradigm for the development of products for future Copernicus services. The models to be interfaced are a dynamic vegetation model and a light use efficiency model. We have identified four groups of variables that will be estimated with remote sensed data: land cover variables, forest characteristics, vegetation activity, and hydrological variables. The estimates will be used as model inputs and to validate the model outputs. The earth observation variables are computed as automatically as possible, with an objective to completely automatic estimation. North State has two sites for intensive studies in southern and northern Finland, respectively, one in Iceland and one in state Komi of Russia. Additionally, the model input variables will be estimated and models applied over European boreal and sub-arctic region from Ural Mountains to Iceland. The accuracy assessment of the earth observation variables will follow statistical sampling design. Model output predictions are compared to earth observation variables. Also flux tower measurements are applied in the model assessment. In the paper, results of hyperspectral, Sentinel-1, and Landsat data and their use in the models is presented. Also an example of a completely automatic land cover class prediction is reported.

  13. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    Science.gov (United States)

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  14. Knowledge management for modelling nuclear power plants control in incidental and accidental states

    International Nuclear Information System (INIS)

    MIllerat, P.

    1996-11-01

    A knowledge model uses different techniques of complex systems management. Progress realised in the computer representation of links between different documents allows us to design a software facilitating the comprehension of the model built. This model is a qualitative model of the operators' behaviour in nuclear power plant accidental control. This model concerned three topics closely linked together. The first gives a description of every physical phenomena implied the application of the State-oriented Approach (APE in French) procedures. It's referred as model of process. The second gives a description of every activities used by the operators' team to manage all thermohydraulic incidents and accidents. It's a functional model also referred as tasks model. The quality of the method, based on the Systems' Science, capitalized a know-how simply transferable to design a new software on industrial process to support the operators. (author)

  15. A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations

    DEFF Research Database (Denmark)

    Hansen, M.H.; Gaunaa, Mac; Aagaard Madsen, Helge

    2004-01-01

    This report contains a description of a Beddoes-Leishman type dynamic stall model in both a state-space and an indicial function formulation. The model predicts the unsteady aerodynamic forces and moment on an airfoil section undergoing arbitrary motionin heave, lead-lag, and pitch. The model...... features, such as overshoot of the lift, in the stall region. The linearized model is shown to give identicalresults to the full model for small amplitude oscillations. Furthermore, it is shown that the response of finite thichkness airfoils can be reproduced to a high accuracy by the use of specific...... is carried out by comparing the response of the model with inviscid solutions and observing the general behavior of the model using known airfoil data as input. Theproposed dynamic model gives results identical to inviscid solutions within the attached-flow region; and it exhibits the expected dynamic...

  16. Static Object Detection Based on a Dual Background Model and a Finite-State Machine

    Directory of Open Access Journals (Sweden)

    Heras Evangelio Rubén

    2011-01-01

    Full Text Available Detecting static objects in video sequences has a high relevance in many surveillance applications, such as the detection of abandoned objects in public areas. In this paper, we present a system for the detection of static objects in crowded scenes. Based on the detection of two background models learning at different rates, pixels are classified with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction; it can be implemented as a look-up table with negligible computational cost and it can be easily extended. Due to the definition of the states in the state machine, the system can be used either full automatically or interactively, making it extremely suitable for real-life surveillance applications. The system was successfully validated with several public datasets.

  17. Long-range order and symmetry breaking in projected entangled-pair state models

    Science.gov (United States)

    Rispler, Manuel; Duivenvoorden, Kasper; Schuch, Norbert

    2015-10-01

    Projected entangled-pair states (PEPS) provide a framework for the construction of models where a single tensor gives rise to both Hamiltonian and ground state wave function on the same footing. A key problem is to characterize the behavior which emerges in the system in terms of the properties of the tensor, and thus of the Hamiltonian. In this paper, we consider PEPS models with Z2 on-site symmetry and study the occurrence of long-range order and spontaneous symmetry breaking. We show how long-range order is connected to a degeneracy in the spectrum of the PEPS transfer operator, and how the latter gives rise to spontaneous symmetry breaking under perturbations. We provide a succinct characterization of the symmetry-broken states in terms of the PEPS tensor, and find that using the symmetry-broken states we can derive a local entanglement Hamiltonian, thereby restoring locality of the entanglement Hamiltonian for all gapped phases.

  18. Independent effects of temperature and precipitation on modeled runoff in the conterminous United States

    Science.gov (United States)

    McCabe, G.J.; Wolock, D.M.

    2011-01-01

    A water-balance model is used to simulate time series of water-year runoff for 4 km ?? 4 km grid cells for the conterminous United States during the 1900-2008 period. Model outputs are used to examine the separate effects of precipitation and temperature on runoff variability. Overall, water-year runoff has increased in the conterminous United States and precipitation has accounted for almost all of the variability in water-year runoff during the past century. In contrast, temperature effects on runoff have been small for most locations in the United States even during periods when temperatures for most of the United States increased significantly. Copyright 2011 by the American Geophysical Union.

  19. A heuristic finite-state model of the human driver in a car-following situation

    Science.gov (United States)

    Burnham, G. O.; Bekey, G. A.

    1976-01-01

    An approach to modeling human driver behavior in single-lane car following which is based on a finite-state decision structure is considered. The specific strategy at each point in the decision tree was obtained from observations of typical driver behavior. The synthesis of the decision logic is based on position and velocity thresholds and four states defined by regions in the phase plane. The performance of the resulting assumed intuitively logical model was compared with actual freeway data. The match of the model to the data was optimized by adapting the model parameters using a modified PARTAN algorithm. The results indicate that the heuristic model behavior matches actual car-following performance better during deceleration and constant velocity phases than during acceleration periods.

  20. A simplified model for computing equation of state of argon plasma

    International Nuclear Information System (INIS)

    Wang Caixia; Tian Yangmeng

    2006-01-01

    The paper present a simplified new model of computing equation of state and ionization degree of Argon plasma, which based on Thomas-Fermi (TF) statistical model: the authors fitted the numerical results of the ionization potential calculated by Thomas-Fermi statistical model and gained the analytical function of the potential versus the degree of ionization, then calculated the ionization potential and the average degree of ionization for Argon versus temperature and density in local thermal equilibrium case at 10-1000 eV. The results calculated of this simplified model are basically in agreement with several sets of theory data and experimental data. This simplified model can be used to calculation of the equation of state of plasmas mixture and is expected to have a more wide use in the field of EML technology involving the strongly ionized plasmas. (authors)

  1. An improved Corten-Dolan's model based on damage and stress state effects

    International Nuclear Information System (INIS)

    Gao, Huiying; Huang, Hong Zhong; Lv, Zhiqiang; Zuo, Fang Jun; Wang, Hai Kun

    2015-01-01

    The value of exponent d in Corten-Dolan's model is generally considered to be a constant. Nonetheless, the results predicted on the basis of this statement deviate significantly from the real values. In consideration of the effects of damage and stress state on fatigue life prediction, Corten-Dolan's model is improved by redefining the exponent d used in the traditional model. The improved model performs better than the traditional one with respect to the demonstration of a fatigue failure mechanism. Predictions of fatigue life on the basis of investigations into three metallic specimens indicate that the errors caused by the improved model are significantly smaller than those induced by the traditional model. Meanwhile, predictions derived according to the improved model fall into a narrower dispersion zone than those made as per Miner's rule and the traditional model. This finding suggests that the proposed model improves the life prediction accuracy of the other two models. The predictions obtained using the improved Corten-Dolan's model differ slightly from those derived according to a model proposed in previous literature; a few life predictions obtained on the basis of the former are more accurate than those derived according to the latter. Therefore, the improved model proposed in this paper is proven to be rational and reliable given the proven validity of the existing model. Therefore, the improved model can be feasibly and credibly applied to damage accumulation and fatigue life prediction to some extent.

  2. Einstein's steady-state theory: an abandoned model of the cosmos

    Science.gov (United States)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  3. Strange matter equation of state in the quark mass-density-dependent model

    International Nuclear Information System (INIS)

    Benvenuto, O.G.; Lugones, G.

    1995-01-01

    We study the properties and stability of strange matter at T=0 in the quark mass-density-dependent model for noninteracting quarks. We found a wide ''stability window'' for the values of the parameters (C,M s0 ) and the resulting equation of state at low densities is stiffer than that of the MIT bag model. At high densities it tends to the ultrarelativistic behavior expected because of the asymptotic freedom of quarks. The density of zero pressure is near the one predicted by the bag model and not shifted away as stated before; nevertheless, at these densities the velocity of sound is ∼50% larger in this model than in the bag model. We have integrated the equations of stellar structure for strange stars with the present equation of state. We found that the mass-radius relation is very much the same as in the bag model, although it extends to more massive objects, due to the stiffening of the equation of state at low densities

  4. Combinatorial identities and quantum state densities of sigma models on N-folds

    International Nuclear Information System (INIS)

    Abdalla, M.C.B.; Bytsenko, A.A.; Guimaraes, M.E.X.

    2005-07-01

    There is a remarkable connection between the number of quantum states of conformal theories and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with (supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors in the state density expansion and in the coefficient of the logarithmic correction to the entropy. (author)

  5. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    International Nuclear Information System (INIS)

    Saito, H; Jansen, K.; Cichy, K.; Frankfurt Univ.; Poznan Univ.

    2014-12-01

    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  6. Unique parity states in 109Pd as a test of particle-rotor and IBFA models

    International Nuclear Information System (INIS)

    Casten, R.F.

    1980-01-01

    Calculations were performed for anti-aligned levels in 109 Pd. For a Nilsson model with pairing, variable moment of inertia, and Coriolis coupling, the favored levels were well reproduced, but the low-spin unfavored states exhibited serious disagreement with experiment results. Calculations with the IBFA were a significant improvement, in particular a regards the splitting of states of common spin. Comments on the source of this improvement are offered. 2 figures, 1 table

  7. Identification of a Class of Non-linear State Space Models using RPE Techniques

    DEFF Research Database (Denmark)

    Zhou, Wei-Wu; Blanke, Mogens

    1989-01-01

    The RPE (recursive prediction error) method in state-space form is developed in the nonlinear systems and extended to include the exact form of a nonlinearity, thus enabling structure preservation for certain classes of nonlinear systems. Both the discrete and the continuous-discrete versions...... of the algorithm in an innovations model are investigated, and a nonlinear simulation example shows a quite convincing performance of the filter as combined parameter and state estimator...

  8. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  9. Non-existence of Steady State Equilibrium in the Neoclassical Growth Model with a Longevity Trend

    DEFF Research Database (Denmark)

    Hermansen, Mikkel Nørlem

    of steady state equilibrium when considering the empirically observed trend in longevity. We extend a standard continuous time overlapping generations model by a longevity trend and are thereby able to study the properties of mortality-driven population growth. This turns out to be exceedingly complicated...... to handle, and it is shown that in general no steady state equilibrium exists. Consequently analytical results and long run implications cannot be obtained in a setting with a realistic demographic setup....

  10. Anonymous As a Cyber Tribe: A New Model for Complex, Non-State Cyber Actors

    Science.gov (United States)

    2015-05-01

    non- state cyber actors. The Air Force values a professional workplace that strictly prohibits racism , sexism, lewd material, and most forms of...AU/ACSC/LIDOWSKI, R/AY15 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY ANONYMOUS AS A CYBER TRIBE: A NEW MODEL FOR COMPLEX, NON- STATE ...government or the Department of Defense. In accordance with Air Force Instruction 51-303, it is not copyrighted, but is the property of the United

  11. Towards a shell-model description of intruder states and the onset of deformation

    International Nuclear Information System (INIS)

    Heyde, K.; Van Isacker, P.; Casten, R.F.; Wood, J.L.

    1985-01-01

    Basing on the nuclear shell-model and concentrating on the monopole, pairing and quadrupole corrections originating from the nucleon-nucleon force, both the appearance of low-lying 0 + intruder states near major closed shells (Z = 50, 82) and sub-shell regions (Z = 40, 64) can be described. Moreover, a number of new facets related to the study of intruder states are presented. 19 refs., 3 figs

  12. Evolutionary Trees can be Learned in Polynomial-Time in the Two-State General Markov Model

    DEFF Research Database (Denmark)

    Cryan, Mary; Goldberg, Leslie Ann; Goldberg, Paul Wilfred

    2001-01-01

    The j-state general Markov model of evolution (due to Steel) is a stochastic model concerned with the evolution of strings over an alphabet of size j. In particular, the two-state general Markov model of evolution generalizes the well-known Cavender-Farris-Neyman model of evolution by removing th...

  13. Stochastic State Space Modelling of Nonlinear systems - With application to Marine Ecosystems

    DEFF Research Database (Denmark)

    Møller, Jan Kloppenborg

    of unobserved states. Based on estimation of random walk hidden states and examination of simulated distributions and stationarity characteristics, a methodological framework for structural identification based on information embedded in the observations of the system has been developed. The applicability......This thesis deals with stochastic dynamical systems in discrete and continuous time. Traditionally dynamical systems in continuous time are modelled using Ordinary Differential Equations (ODEs). Even the most complex system of ODEs will not be able to capture every detail of a complex system like...... a natural ecosystem, and hence residual variation between the model and observations will always remain. In stochastic state-space models the residual variation is separated into observation and system noise and a main theme of the thesis is a proper description of the system noise. Additive Gaussian noise...

  14. Model potential for the description of metal/organic interface states

    Science.gov (United States)

    Armbrust, Nico; Schiller, Frederik; Güdde, Jens; Höfer, Ulrich

    2017-01-01

    We present an analytical one-dimensional model potential for the description of electronic interface states that form at the interface between a metal surface and flat-lying adlayers of π-conjugated organic molecules. The model utilizes graphene as a universal representation of these organic adlayers. It predicts the energy position of the interface state as well as the overlap of its wave function with the bulk metal without free fitting parameters. We show that the energy of the interface state depends systematically on the bond distance between the carbon backbone of the adayers and the metal. The general applicability and robustness of the model is demonstrated by a comparison of the calculated energies with numerous experimental results for a number of flat-lying organic molecules on different closed-packed metal surfaces that cover a large range of bond distances. PMID:28425444

  15. Maximum profile likelihood estimation of differential equation parameters through model based smoothing state estimates.

    Science.gov (United States)

    Campbell, D A; Chkrebtii, O

    2013-12-01

    Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  16. Quantum state transfer via a two-qubit Heisenberg XXZ spin model

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jia; Zhang Guofeng [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China); Chen Ziyu [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)], E-mail: chenzy@buaa.edu.cn

    2008-04-14

    Transfer of quantum states through a two-qubit Heisenberg XXZ spin model with a nonuniform magnetic field b is investigated by means of quantum theory. The influences of b, the spin exchange coupling J and the effective transfer time T=Jt on the fidelity have been studied for some different initial states. Results show that fidelity of the transferred state is determined not only by J, T and b but also by the initial state of this quantum system. Ideal information transfer can be realized for some kinds of initial states. We also found that the interactions of the z-component J{sub z} and uniform magnetic field B do not have any contribution to the fidelity. These results may be useful for quantum information processing.

  17. Transition probabilities of health states for workers in Malaysia using a Markov chain model

    Science.gov (United States)

    Samsuddin, Shamshimah; Ismail, Noriszura

    2017-04-01

    The aim of our study is to estimate the transition probabilities of health states for workers in Malaysia who contribute to the Employment Injury Scheme under the Social Security Organization Malaysia using the Markov chain model. Our study uses four states of health (active, temporary disability, permanent disability and death) based on the data collected from the longitudinal studies of workers in Malaysia for 5 years. The transition probabilities vary by health state, age and gender. The results show that men employees are more likely to have higher transition probabilities to any health state compared to women employees. The transition probabilities can be used to predict the future health of workers in terms of a function of current age, gender and health state.

  18. MILITARY RECRUITMENT MODEL FOR ARMED FORCES OF SMALL STATES AND MIDDLE POWERS

    Directory of Open Access Journals (Sweden)

    Jaroslav Usiak

    2018-01-01

    Full Text Available States have many functions. The core one should be keeping its sovereignty and territorial integrity. Diplomacy and international law cannot guarantee their security. An armed force is an inherent part of each state that wants to be truly independent. Small states and middle powers have more difficulties when recruiting manpower for the military service compared to the great powers. The aim of this article is to find out what kind of recruitment model is the most suitable for small states and middle powers, focusing on the example of European democratic states. The article concludes that the best military recruitment system is based on a strong link between armed forces and society. National defence education is also of high importance. Regular armed forces should be composed of highly trained professionals backed by reserves

  19. Evaluating the equation-of-state models of nitrogen in the dissociation regime: an experimental effort

    Science.gov (United States)

    Li, Jiangtao; Chen, Qifeng; Fu, Zhijian; Gu, Yunjun; Zheng, Jun; Li, Chengjun

    2017-06-01

    A number of experiments were designed so that pre-compressed nitrogen (20 MPa) was shock-compressed reverberatively into a regime where molecular dissociation is expected to influence significantly the equation-of-state and transport properties. The equation of state of nitrogen after each compression process was probed by a joint diagnostics of multichannel optical pyrometer (MCOP) and Doppler pin system (DPS). The equation of state data thereby obtained span a pressure-density range of about 0.02-130 GPa and 0.22-5.9 g/cc. Furthermore, based on the uncertainties of the measurements, a Monte Carlo method was employed to evaluate the probability distribution of the thermodynamic state after each compression. According to Monte Carlo results, a number of equation-of-state models or calculations for nitrogen in the dissociation regime were assessed.

  20. Joint state and parameter estimation for a class of cascade systems: Application to a hemodynamic model

    KAUST Repository

    Zayane, Chadia

    2014-06-01

    In this paper, we address a special case of state and parameter estimation, where the system can be put on a cascade form allowing to estimate the state components and the set of unknown parameters separately. Inspired by the nonlinear Balloon hemodynamic model for functional Magnetic Resonance Imaging problem, we propose a hierarchical approach. The system is divided into two subsystems in cascade. The state and input are first estimated from a noisy measured signal using an adaptive observer. The obtained input is then used to estimate the parameters of a linear system using the modulating functions method. Some numerical results are presented to illustrate the efficiency of the proposed method.