WorldWideScience

Sample records for model spark ignition

  1. THERMODYNAMIC MODEL OF THE CYCLE OF SPARK IGNITION ENGINE WITH EXHAUST GAS RECIRCULATION

    OpenAIRE

    Öğüçlü, Özer

    2015-01-01

    A thermodynamic model has been developed and applied to predict the emission levels and performance of a spark ignition engine with using Exhaust Gas Recirculation (EGR) gas. The model simulates the full thermodynamic cycle of the engine and includes heat transfer, combustion, gas exchange process, thermal dissociation of water and carbon dioxide, and chemical equilibrium. 

  2. Sensitivity and Effect of Ignition Timing on the Performance of a Spark Ignition Engine: An Experimental and Modeling Study

    Directory of Open Access Journals (Sweden)

    A. H. Kakaee

    2011-01-01

    Full Text Available The performance of a spark ignition engine is investigated under different values of ignition advance. A two-zone burnt/unburned model with the fuel burning rate described by a Wiebe function is used for modeling in-cylinder combustion, and then experiments are carried out to validate the calculated data. By varying the ignition timing, the results of some characteristics such as power, torque, thermal efficiency, pressure, and heat release are obtained and compared. The results show that optimal power and torque are achieved at 31°CA before top dead center, and performance is decreased if this ignition timing is changed. It is also shown that the maximum thermal efficiency is accomplished when peak pressure occurs between 5 and 15°CA after top dead center.

  3. A new closed-form thermodynamic model for thermal simulation of spark ignition internal combustion engines

    International Nuclear Information System (INIS)

    Barjaneh, Afshin; Sayyaadi, Hoseyn

    2015-01-01

    Highlights: • A new closed-form thermal model was developed for SI engines. • Various irreversibilities of real engines were integrated into the model. • The accuracy of the model was examined on two real SI engines. • The superiority of the model to previous closed-form models was shown. • Accuracy and losses were studied over the operating range of engines. - Abstract: A closed form model based on finite speed thermodynamics, FST, modified to consider various losses was developed on Otto cycle. In this regard, the governing equations of the finite speed thermodynamics were developed for expansion/compression processes while heat absorption/rejection of the Otto cycle was determined based on finite time thermodynamics, FTT. In addition, other irreversibility including power loss caused by heat transfer through the cylinder walls and irreversibility due to throttling process was integrated into the model. The developed model was verified by implementing on two different spark ignition internal combustion engines and the results of modeling were compared with experimental results as well as FTT model. It was found that the developed model was not only very simple in use like a closed form thermodynamic model, but also it models a real spark ignition engine with reasonable accuracy. The error in predicting the output power at rated operating range of the engine was 39%, while in the case of the FTT model, this figure was 167.5%. This comparison for predicting thermal efficiency was +7% error (as difference) for the developed model compared to +39.4% error of FTT model.

  4. Numerical simulation of spark ignition including ionization

    NARCIS (Netherlands)

    Thiele, M; Selle, S; Riedel, U; Warnatz, J; Maas, U

    2000-01-01

    A detailed understanding of the processes associated Midi spark ignition, as a first step during combustion, is of great importance fur clean operation of spark ignition engines. In the past 10 years. a growing concern for environmental protection, including low emission of pollutants, has increased

  5. Fluctuations in the Energetic Properties of a Spark-Ignition Engine Model with Variability

    Directory of Open Access Journals (Sweden)

    Fernando Angulo-Brown

    2013-08-01

    Full Text Available We study the energetic functions obtained in a simulated spark-ignited engine that incorporates cyclic variability through a quasi-dimensional combustion model. Our analyses are focused on the effects of the fuel-air equivalence ratio of the mixture simultaneously over the cycle-to-cycle fluctuations of heat release (QR and the performance outputs, such as the power (P and the efficiency (QR. We explore the fluctuant behavior for QR, P and n related to random variations of the basic physical parameters in an entrainment or eddy-burning combustion model. P and n show triangle shaped first return maps, while QR exhibits a structured map, especially at intermediated fuel-air ratios. Structure disappears to a considerable extent in the case of heat release and close-to-stoichiometry fuel-air ratios. By analyzing the fractal dimension to explore the presence of correlations at different scales, we find that whereas QR displays short-range correlations for intermediate values of the fuel ratio, both P and n are characterized by a single scaling exponent, denoting irregular fluctuations. A novel noisy loop-shaped P vs. n plot for a large number of engine cycles is obtained. This plot, which evidences different levels of irreversibilities as the fuel ratio changes, becomes the observed loop P vs. n curve when fluctuations are disregarded, and thus, only the mean values for efficiency and power are considered.

  6. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  7. Laser spark distribution and ignition system

    Science.gov (United States)

    Woodruff, Steven [Morgantown, WV; McIntyre, Dustin L [Morgantown, WV

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  8. Cycle Engine Modelling Of Spark Ignition Engine Processes during Wide-Open Throttle (WOT) Engine Operation Running By Gasoline Fuel

    International Nuclear Information System (INIS)

    Rahim, M F Abdul; Rahman, M M; Bakar, R A

    2012-01-01

    One-dimensional engine model is developed to simulate spark ignition engine processes in a 4-stroke, 4 cylinders gasoline engine. Physically, the baseline engine is inline cylinder engine with 3-valves per cylinder. Currently, the engine's mixture is formed by external mixture formation using piston-type carburettor. The model of the engine is based on one-dimensional equation of the gas exchange process, isentropic compression and expansion, progressive engine combustion process, and accounting for the heat transfer and frictional losses as well as the effect of valves overlapping. The model is tested for 2000, 3000 and 4000 rpm of engine speed and validated using experimental engine data. Results showed that the engine is able to simulate engine's combustion process and produce reasonable prediction. However, by comparing with experimental data, major discrepancy is noticeable especially on the 2000 and 4000 rpm prediction. At low and high engine speed, simulated cylinder pressures tend to under predict the measured data. Whereas the cylinder temperatures always tend to over predict the measured data at all engine speed. The most accurate prediction is obtained at medium engine speed of 3000 rpm. Appropriate wall heat transfer setup is vital for more precise calculation of cylinder pressure and temperature. More heat loss to the wall can lower cylinder temperature. On the hand, more heat converted to the useful work mean an increase in cylinder pressure. Thus, instead of wall heat transfer setup, the Wiebe combustion parameters are needed to be carefully evaluated for better results.

  9. knock characteristics analysis of a supercharged spark ignition

    African Journals Online (AJOL)

    user

    and manufacturing of spark ignition engines with improved performance. Understanding factors influencing knock in spark ignition engines will help designers understand how to manage knock in engines. Various designs over the years have been introduced in internal combustion engines with the aim of improving.

  10. Quasi-dimensional modeling of a fast-burn combustion dual-plug spark-ignition engine with complex combustion chamber geometries

    International Nuclear Information System (INIS)

    Altın, İsmail; Bilgin, Atilla

    2015-01-01

    This study builds on a previous parametric investigation using a thermodynamic-based quasi-dimensional (QD) cycle simulation of a spark-ignition (SI) engine with dual-spark plugs. The previous work examined the effects of plug-number and location on some performance parameters considering an engine with a simple cylindrical disc-shaped combustion chamber. In order to provide QD thermodynamic models applicable to complex combustion chamber geometries, a novel approach is considered here: flame-maps, which utilizes a computer aided design (CAD) software (SolidWorks). Flame maps are produced by the CAD software, which comprise all the possible flame radiuses with an increment of one-mm between them, according to the spark plug positions, spark timing, and piston position near the top dead center. The data are tabulated and stored as matrices. Then, these tabulated data are adapted to the previously reported cycle simulation. After testing for simple disc-shaped chamber geometries, the simulation is applied to a real production automobile (Honda-Fit) engine to perform the parametric study. - Highlights: • QD model was applied in dual plug engine with complex realistic combustion chamber. • This method successfully modeled the combustion in the dual-plug Honda-Fit engine. • The same combustion chamber is tested for various spark plug(s) locations. • The centrally located single spark-plug results in the fastest combustion

  11. Particular bi-fuel application of spark ignition engines

    Science.gov (United States)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  12. Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms

    International Nuclear Information System (INIS)

    Atashkari, K.; Nariman-Zadeh, N.; Goelcue, M.; Khalkhali, A.; Jamali, A.

    2007-01-01

    The main reason for the efficiency decrease at part load conditions for four-stroke spark-ignition (SI) engines is the flow restriction at the cross-sectional area of the intake system. Traditionally, valve-timing has been designed to optimize operation at high engine-speed and wide open throttle conditions. Several investigations have demonstrated that improvements at part load conditions in engine performance can be accomplished if the valve-timing is variable. Controlling valve-timing can be used to improve the torque and power curve as well as to reduce fuel consumption and emissions. In this paper, a group method of data handling (GMDH) type neural network and evolutionary algorithms (EAs) are firstly used for modelling the effects of intake valve-timing (V t ) and engine speed (N) of a spark-ignition engine on both developed engine torque (T) and fuel consumption (Fc) using some experimentally obtained training and test data. Using such obtained polynomial neural network models, a multi-objective EA (non-dominated sorting genetic algorithm, NSGA-II) with a new diversity preserving mechanism are secondly used for Pareto based optimization of the variable valve-timing engine considering two conflicting objectives such as torque (T) and fuel consumption (Fc). The comparison results demonstrate the superiority of the GMDH type models over feedforward neural network models in terms of the statistical measures in the training data, testing data and the number of hidden neurons. Further, it is shown that some interesting and important relationships, as useful optimal design principles, involved in the performance of the variable valve-timing four-stroke spark-ignition engine can be discovered by the Pareto based multi-objective optimization of the polynomial models. Such important optimal principles would not have been obtained without the use of both the GMDH type neural network modelling and the multi-objective Pareto optimization approach

  13. A new and efficient mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Shadloo, M.S.; Poultangari, R.; Abdollahzadeh Jamalabadi, M.Y.; Rashidi, M.M.

    2015-01-01

    Highlights: • A new slider–crank mechanism, with superior performance is presented. • Thermodynamic processes as well as vibration and internal forces have been modeled. • Comparison with the conventional four-stroke spark ignition engines is made. • Advantages and disadvantages of the proposed mechanism are discussed. - Abstract: In this paper a new symmetrical crank and slider mechanism is proposed and a zero dimensional model is utilized to study its combustion performance enhancement in a four-stroke spark ignition (SI) engine. The main features of this new mechanism are superior thermodynamic efficiency, lower internal frictions, and lower pollutants. Comparison is made between its performance and that of the conventional four-stroke SI engines. Presented mechanism is designed to provide better fuel consumption of internal combustion engines. These advantages over standard engine are achieved through synthesis of new mechanism. Numerical calculation have been performed for several cases of different mechanism parameters, compression ratio and engine speed. A comprehensive comparison between their thermodynamic processes as well as vibration and internal forces has been done. Calculated efficiency and power diagrams are plotted and compared with performance of a conventional SI engine. Advantages and disadvantages of the proposed mechanism are discussed in details

  14. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. As part of the efforts in Lander Technologies, NASA Marshall Space Flight Center (MSFC) is developing liquid oxygen (LOX) and liquid methane (LCH4) engine technology to share with the Lunar CATALYST partners. Liquid oxygen and liquid methane propellants are attractive owing to their relatively high specific impulse for chemical propulsion systems, modest storage requirements, and adaptability to NASA's Journey to Mars plans. Methane has also been viewed as a possible propellant choice for lunar missions, owing to the performance benefits and as a technology development stepping stone to Martian missions. However, in the development of methane propulsion, methane ignition has historically been viewed as a high risk area in the development of such an engine. A great deal of work has been conducted in the past decade devoted to risk reduction in LOX/CH4 ignition. This paper will review and summarize the history and results of LOX/CH4 ignition programs conducted at NASA. More recently, a NASA-developed Augmented Spark Impinging (ASI) igniter body, which utilizes a conventional spark exciter system, is being tested with LOX/CH4 to help support internal and commercial engine development programs, such as those in Lunar CATALYST. One challenge with spark exciter systems, especially at altitude conditions, is the ignition lead that transmits the high voltage pulse from the exciter to the spark igniter (spark plug). The ignition lead can be prone to corona discharge, reducing the energy delivered by the spark and potentially causing non-ignition events. For the current work, a

  15. knock characteristics analysis of a supercharged spark ignition

    African Journals Online (AJOL)

    user

    KNOCK CHARACTERISTICS ANALYSIS OF SUPERCHARGED SPARK IGNITION ENGINE USING THREE GRADES OF FUELS,. D. C. Uguru-Okorie .... pressure with the engine crank angle. The data acquisition system was controlled by a LabView script written which acquired pressure data at a sampling rate of 200 kHz.

  16. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    Science.gov (United States)

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  17. Testing of the J-2X Augmented Spark Igniter (ASI) and Its Electronics

    Science.gov (United States)

    Osborne, Robin

    2015-01-01

    Reliable operation of the spark ignition system electronics in the J-2X Augmented Spark Igniter (ASI) is imperative in assuring ASI ignition and subsequent Main Combustion Chamber (MCC) ignition events are reliable in the J-2X Engine. Similar to the man-rated J-2 and RS-25 engines, the J-2X ignition system electronics are equipped with spark monitor outputs intended to indicate that the spark igniters are properly energized and sparking. To better understand anomalous spark monitor data collected on the J-2X development engines at NASA Stennis Space Center (SSC), a comprehensive subsystem study of the engine's low- and high-tension spark ignition system electronics was conducted at NASA Marshall Space Flight Center (MSFC). Spark monitor output data were compared to more detailed spark diagnostics to determine if the spark monitor was an accurate indication of actual sparking events. In addition, ignition system electronics data were closely scrutinized for any indication of an electrical discharge in some location other than the firing tip of the spark igniter - a problem not uncommon in the development of high voltage ignition systems.

  18. Turbulent spark-jet ignition in SI gas fuelled engine

    Directory of Open Access Journals (Sweden)

    Pielecha Ireneusz

    2017-01-01

    Full Text Available The article contains a thermodynamic analysis of a new combustion system that allows the combustion of stratified gas mixtures with mean air excess coefficient in the range 1.4-1.8. Spark ignition was used in the pre-chamber that has been mounted in the engine cylinder head and contained a rich mixture out of which a turbulent flow of ignited mixture is ejected. It allows spark-jet ignition and the turbulent combustion of the lean mixture in the main combustion chamber. This resulted in a two-stage combustion system for lean mixtures. The experimental study has been conducted using a single-cylinder test engine with a geometric compression ratio ε = 15.5 adapted for natural gas supply. The tests were performed at engine speed n = 2000 rpm under stationary engine load when the engine operating parameters and toxic compounds emissions have been recorded. Analysis of the results allowed to conclude that the evaluated combustion system offers large flexibility in the initiation of charge ignition through an appropriate control of the fuel quantities supplied into the pre-chamber and into the main combustion chamber. The research concluded with determining the charge ignition criterion for a suitably divided total fuel dose fed to the cylinder.

  19. The Use of Spark Ignition Engine in Domestic Cogeneration

    Directory of Open Access Journals (Sweden)

    Feiza Memet

    2009-10-01

    Full Text Available Cogeneration plants are strongly sustained by EU energy policies, one of the best beneficiary of this technology being residential buildings. This paper focus on spark ignition engine as a cogeneration application in order to supply energy for domestic consumers. Are considered two aspects of this solution: the energetic aspect and the environmental one. The energetic aspect deals with the energetic ratios, while the environmental aspect refers to the nitrogen oxide and carbon monoxide emissions.

  20. effect of gasket of varying thickness on spark ignition engines

    African Journals Online (AJOL)

    DJFLEX

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses. (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  1. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    OpenAIRE

    Stelmasiak Zdzisław

    2014-01-01

    This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of t...

  2. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  3. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  4. Development of Augmented Spark Impinging Igniter System for Methane Engines

    Science.gov (United States)

    Marshall, William M.; Osborne, Robin J.; Greene, Sandra E.

    2017-01-01

    The Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) program is establishing multiple no-funds-exchanged Space Act Agreement (SAA) partnerships with U.S. private sector entities. The purpose of this program is to encourage the development of robotic lunar landers that can be integrated with U.S. commercial launch capabilities to deliver payloads to the lunar surface. NASA can share technology and expertise under the SAA for the benefit of the CATALYST partners. MSFC seeking to vacuum test Augmented Spark Impinging (ASI) igniter with methane and new exciter units to support CATALYST partners and NASA programs. ASI has previously been used/tested successfully at sea-level, with both O2/CH4 and O2/H2 propellants. Conventional ignition exciter systems historically experienced corona discharge issues in vacuum. Often utilized purging or atmospheric sealing on high voltage lead to remedy. Compact systems developed since PCAD could eliminate the high-voltage lead and directly couple the exciter to the spark igniter. MSFC developed Augmented Spark Impinging (ASI) igniter. Successfully used in several sea-level test programs. Plasma-assisted design. Portion of ox flow is used to generate hot plasma. Impinging flows downstream of plasma. Additional fuel flow down torch tube sleeve for cooling near stoichiometric torch flame. Testing done at NASA GRC Altitude Combustion Stand (ACS) facility 2000-lbf class facility with altitude simulation up to around 100,000 ft. (0.2 psia [10 Torr]) via nitrogen driven ejectors. Propellant conditioning systems can provide temperature control of LOX/CH4 up to test article.

  5. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  6. A prediction study of a spark ignition supercharged hydrogen engine

    International Nuclear Information System (INIS)

    Al-Baghdadi, Maher A.R. Sadiq.; Al-Janabi, Haroun A.K. Shahad

    2003-01-01

    Hydrogen is found to be a suitable alternative fuel for spark ignition engines with certain drawbacks, such as high NO x emission and small power output. However, supercharging may solve such problems. In this study, the effects of equivalence ratio, compression ratio and inlet pressure on the performance and NO x emission of a four stroke supercharged hydrogen engine have been analyzed using a specially developed computer program. The results are verified and compared with experimental data obtained from tests on a Ricardo E6/US engine. A chart specifying the safe operation zone of the hydrogen engine has been produced. The safe operation zone means no pre-ignition, acceptable NO x emission, high engine efficiency and lower specific fuel consumption in comparison with the gasoline engine. The study also shows that supercharging is a more effective method to increase the output of a hydrogen engine rather than increasing the compression ratio of the engine at the knock limited equivalence ratio

  7. Simulation of Aldehyde Emissions from an Ethanol Fueled Spark Ignition Engine and Comparison with FTIR Measurements

    International Nuclear Information System (INIS)

    Zaránte, Paola Helena Barros; Sodre, Jose Ricardo

    2016-01-01

    This paper presents a mathematical model that calculates aldehyde emissions in the exhaust of a spark ignition engine fueled with ethanol. The numerical model for aldehyde emissions was developed using FORTRAN software, with the input data obtained from a dedicated engine cycle simulation software, AVL BOOST. The model calculates formaldehyde and acetaldehyde emissions, formed from the partial oxidation of methane, ethane and unburned ethanol. The calculated values were compared with experimental data obtained by Fourier Transform Infrared Spectroscopy (FTIR). The experiments were performed with a mid-size sedan powered by a 1.4-liter spark ignition engine on a chassis dynamometer. In general, the results demonstrate that the concentrations of aldehydes and the source elements increased with engine speed and exhaust gas temperature. A reasonable agreement between simulated and measured values was achieved. (paper)

  8. 77 FR 20388 - California State Nonroad Engine Pollution Control Standards; Large Spark-Ignition (LSI) Engines...

    Science.gov (United States)

    2012-04-04

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9655-9] California State Nonroad Engine Pollution Control Standards; Large Spark-Ignition (LSI) Engines; New Emission Standards and In-Use Fleet Requirements; Notice... emission standards and certification and test procedures for large spark-ignition nonroad engines and in...

  9. 76 FR 67184 - California State Nonroad Engine Pollution Control Standards; Large Spark-Ignition (LSI) Engines...

    Science.gov (United States)

    2011-10-31

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9484-9] California State Nonroad Engine Pollution Control Standards; Large Spark-Ignition (LSI) Engines; Fleet Requirements for In-Use LSI Forklifts and Other... its emission standards and certification and test procedures for large spark-ignition nonroad engines...

  10. Development and validation of a multi-zone combustion model for performance and nitric oxide formation in syngas fueled spark ignition engine

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Michos, C.N.

    2008-01-01

    The development of a zero-dimensional, multi-zone combustion model is presented for predicting the performance and nitric oxide (NO) emissions of a spark ignition (SI) engine. The model is validated against experimental data from a multi-cylinder, four-stroke, turbocharged and aftercooled, SI gas engine running with syngas fuel. This alternative fuel, the combustible part of which consists mainly of CO and H 2 with the rest containing non-combustible gases, has been recently identified as a promising substitute of fossil fuels in view of environmentally friendly engine operation. The basic concept of the model is the division of the burned gas into several distinct zones, unlike the simpler two-zone models, for taking into account the temperature stratification of the burned mixture during combustion. This is especially important for accurate NO emissions predictions, since NO formation is strongly temperature dependent. The multi-zone formulation provides the chemical species concentrations gradient existing in the burned zones, as well as the relative contribution of each burned zone to the total in-cylinder NO formation. The burning rate required as input to the model is expressed as a Wiebe function, fitted to experimentally derived burn rates. All model's constants are calibrated at one operating point and then kept unchanged. Zone-resolved combustion related information is obtained, assisting in the understanding of the complex phenomena occurring during combustion in SI engines. Combustion characteristics of the lean-burn gas engine tested are provided for the complete load range, aiding the interpretation of its performance and knocking tendency. Computed NO emissions from the multi-zone model for various values of the engine load (i.e. air-fuel ratios) are presented and found to be in good agreement with the respective experimental ones, providing confidence for the predictive capability of the model. The superiority of the multi-zone model over its two

  11. Research of combustion in older generation spark-ignition engines in the condition of use leaded and unleaded petrol

    OpenAIRE

    Bulatović Željko M.; Rakić Slavko N.; Knežević Dragan M.; Tomić Miroljub V.; Bojer Ljubiša M.; Radić Dragoslav B.; Jerkin Goran L.

    2014-01-01

    This paper analyzes the potential problems in the exploitation of the older generation of spark-ignition engines with higher octane number of petrol (unleaded petrol BMB 95) than required (leaded petrol MB 86). Within the experimental tests on two different engines (STEYR-PUCH model 712 and GAZ 41) by applying piezoelectric pressure sensors integrated with the engine spark plugs, acceleration sensors (accelerometers) and special electronic block connected w...

  12. A Comparative Study of Cycle Variability of Laser Plug Ignition vs Classical Spark Plug Ignition in Combustion Engines

    Science.gov (United States)

    Done, Bogdan

    2017-10-01

    Over the past 30 years numerous studies and laboratory experiments have researched the use of laser energy to ignite gas and fuel-air mixtures. The actual implementation of this laser application has still to be fully achieved in a commercial automotive application. Laser Plug Ignition as a replacement for Spark Plug Ignition in the internal combustion engines of automotive vehicles, offers several potential benefits such as extending lean burn capability, reducing the cyclic variability between combustion cycles and decreasing the total amount of ignition costs, and implicitly weight and energy requirements. The paper presents preliminary results of cycle variability study carried on a SI Engine equipped with laser Plug Ignition system. Versus classic ignition system, the use of the laser Plug Ignition system assures the reduction of the combustion process variability, reflected in the lower values of the coefficient of variability evaluated for indicated mean effective pressure, maximum pressure, maximum pressure angle and maximum pressure rise rate. The laser plug ignition system was mounted on an experimental spark ignition engine and tested at the regime of 90% load and 2800 rev/min, at dosage of λ=1.1. Compared to conventional spark plug, laser ignition assures the efficiency at lean dosage.

  13. Application of Alcohols to Dual - Fuel Feeding the Spark-Ignition and Self-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Stelmasiak Zdzisław

    2014-10-01

    Full Text Available This paper concerns analysis of possible use of alcohols for the feeding of self - ignition and spark-ignition engines operating in a dual- fuel mode, i.e. simultaneously combusting alcohol and diesel oil or alcohol and petrol. Issues associated with the requirements for application of bio-fuels were presented with taking into account National Index Targets, bio-ethanol production methods and dynamics of its production worldwide and in Poland. Te considerations are illustrated by results of the tests on spark- ignition and self- ignition engines fed with two fuels: petrol and methanol or diesel oil and methanol, respectively. Te tests were carried out on a 1100 MPI Fiat four- cylinder engine with multi-point injection and a prototype collector fitted with additional injectors in each cylinder. Te other tested engine was a SW 680 six- cylinder direct- injection diesel engine. Influence of a methanol addition on basic operational parameters of the engines and exhaust gas toxicity were analyzed. Te tests showed a favourable influence of methanol on combustion process of traditional fuels and on some operational parameters of engines. An addition of methanol resulted in a distinct rise of total efficiency of both types of engines at maintained output parameters (maximum power and torque. In the same time a radical drop in content of hydrocarbons and nitrogen oxides in exhaust gas was observed at high shares of methanol in feeding dose of ZI (petrol engine, and 2-3 fold lower smokiness in case of ZS (diesel engine. Among unfavourable phenomena, a rather insignificant rise of CO and NOx content for ZI engine, and THC and NOx - for ZS engine, should be numbered. It requires to carry out further research on optimum control parameters of the engines. Conclusions drawn from this work may be used for implementation of bio-fuels to feeding the combustion engines.

  14. Torch-Augmented Spark Igniter for Nanosat Launch Vehicle LOX/Propylene Rocket Engine, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical innovation proposed here is the introduction of torch-augmented spark ignition for high performance liquid oxygen (LOX) / propylene rocket engines now...

  15. Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 2.

    Science.gov (United States)

    1979-12-01

    Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...

  16. Passenger Car Spark Ignition Data Base : Volume 3. Miscellaneous Data. Part 1.

    Science.gov (United States)

    1979-12-01

    Test data was obtained from spark ignition production and preproduction engines at the engine and vehicle level. The engines were applicable for vehicles 2000 to 3000 pounds in weight. The data obtained provided trade-offs between fuel economy, power...

  17. Skip cycle system for spark ignition engines: An experimental investigation of a new type working strategy

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper T.

    2007-01-01

    A new type working strategy for spark ignition engine, named skip cycle, is examined. The main idea is to reduce the effective stroke volume of an engine by cutting off fuel injection and spark ignition in some of the classical four stroke cycles. When the cycle is skipped, additionally, a rotary valve is used in the intake to reduce pumping losses in part load conditions. The effect of this strategy is similar to that of variable displacement engines. Alternative power stroke fractions in one cycle and applicability in single cylinder engines are specific advantageous properties of the proposed system. A thermodynamic model, besides experimental results, is used to explain the skip cycle strategy in more detail. This theoretical investigation shows considerable potential to increase the efficiency at part load conditions. Experimental results obtained with this novel strategy show that the throttle valve of the engine opens wider and the minimum spark advance for maximum brake torque decreases in comparison to those of the classical operation system. The brake specific fuel consumption decreases at very low speed and load, while it increases at higher speed and load due to the increased fuel loss within the skipped cycles. In this working mode, the engine operates at lower idle speed without any stability problem; and moreover with less fuel consumption

  18. Investigation of Spark Ignition and Autoignition in Methane and Air Using Computational Fluid Dynamics and Chemical Reaction Kinetics. A numerical Study of Ignition Processes in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Nordrik, R.

    1993-12-01

    The processes in the combustion chamber of internal combustion engines have received increased attention in recent years because their efficiencies are important both economically and environmentally. This doctoral thesis studies the ignition phenomena by means of numerical simulation methods. The fundamental physical relations include flow field conservation equations, thermodynamics, chemical reaction kinetics, transport properties and spark modelling. Special attention is given to the inclusion of chemical kinetics in the flow field equations. Using his No Transport of Radicals Concept method, the author reduces the computational efforts by neglecting the transport of selected intermediate species. The method is validated by comparison with flame propagation data. A computational method is described and used to simulate spark ignition in laminar premixed methane-air mixtures and the autoignition process of a methane bubble surrounded by hot air. The spark ignition simulation agrees well with experimental results from the literature. The autoignition simulation identifies the importance of diffusive and chemical processes acting together. The ignition delay times exceed the experimental values found in the literature for premixed ignition delay, presumably because of the mixing process and lack of information on low temperature reactions in the skeletal kinetic mechanism. Transient turbulent methane jet autoignition is simulated by means of the KIVA-II code. Turbulent combustion is modelled by the Eddy Dissipation Concept. 90 refs., 81 figs., 3 tabs.

  19. Utilization of waste glycerin to fuelling of spark ignition engines

    Science.gov (United States)

    Stelmasiak, Z.; Pietras, D.

    2016-09-01

    The paper discusses a possibilities of usage a simple alcohols to fuelling of spark ignition engines. Methanol and blends of methanol with glycerin, being a waste product from production of bio-components to fuels based on rapeseed oil, have been used in course of the investigations. The main objective of the research was to determine possibilities of utilization of glycerin to blending of engine fuels. The investigations have been performed using the Fiat 1100 MPI engine. Parameters obtained with the engine powered by pure methanol and by methanol- glycerin mixtures with 10÷30%vol content of glycerin were compared to parameters of the engine fuelled conventionally with the E95 gasoline. The investigations have shown increase of overall efficiency of the engine run on pure methanol with 2.5÷5.0%, and run on the mixture having 10% addition of glycerin with 2.0÷7.8%. Simultaneously, fuelling of the engine with the investigated alcohols results in reduced concentration of toxic components in exhaust gases like: CO, THC and NOx, as well as the greenhouse gas CO2.

  20. DEDICATED EXHAUST GAS RECIRCULATION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Sooraj Rehan

    2017-06-01

    Full Text Available The impact of high levels of EGR has been well documented to decrease fuel consumption and reduce emissions of spark ignition engines. But there are also many limitations associated with this technology like EGR control and tolerance, which can reduce the potential efficiency improvements. A new concept called D-EGR has been presented in which the exhaust from a sub group of power cylinders is channeled back to the intake of all the cylinders. In this literature review both experimental and numerical analysis of this technology is shown. In the former case experiments were performed on 2.0 L PFI engine with gasoline as a fuel in part and high load conditions and the results show that at part loads the D-EGR engine can lead to lower Brake Specific Fuel Consumption, lower HC and CO emissions and higher brake thermal efficiency. At high load operations the results show improved combustion stability and superior knock tolerance. In the numerical studies it shows comparable thermal efficiency with conventional SI engines and reduction in NOX emissions.

  1. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    Science.gov (United States)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  2. 2-Methylfuran: A bio-derived octane booster for spark-ignition engines

    KAUST Repository

    Sarathy, Mani

    2018-04-02

    The efficiency of spark-ignition engines is limited by the phenomenon of knock, which is caused by auto-ignition of the fuel-air mixture ahead of the spark-initiated flame front. The resistance of a fuel to knock is quantified by its octane index; therefore, increasing the octane index of a spark-ignition engine fuel increases the efficiency of the respective engine. However, raising the octane index of gasoline increases the refining costs, as well as the energy consumption during production. The use of alternative fuels with synergistic blending effects presents an attractive option for improving octane index. In this work, the octane enhancing potential of 2-methylfuran (2-MF), a next-generation biofuel, has been examined and compared to other high-octane components (i.e., ethanol and toluene). A primary reference fuel with an octane index of 60 (PRF60) was chosen as the base fuel since it closely represents refinery naphtha streams, which are used as gasoline blend stocks. Initial screening of the fuels was done in an ignition quality tester (IQT). The PRF60/2-MF (80/20 v/v%) blend exhibited longer ignition delay times compared to PRF60/ethanol (80/20 v/v%) blend and PRF60/toluene (80/20 v/v%) blend, even though pure 2-MF is more reactive than both ethanol and toluene. The mixtures were also tested in a cooperative fuels research (CFR) engine under research octane number and motor octane number like conditions. The PRF60/2-MF blend again possesses a higher octane index than other blending components. A detailed chemical kinetic analysis was performed to understand the synergetic blending effect of 2-MF, using a well-validated PRF/2-MF kinetic model. Kinetic analysis revealed superior suppression of low-temperature chemistry with the addition of 2-MF. The results from simulations were further confirmed by homogeneous charge compression ignition engine experiments, which established its superior low-temperature heat release (LTHR) suppression compared to ethanol

  3. Internal combustion engines a detailed introduction to the thermodynamics of spark and compression ignition engines, their design and development

    CERN Document Server

    Benson, Rowland S

    1979-01-01

    Internal Combustion of Engines: A Detailed Introduction to the Thermodynamics of Spark and Compression Ignition Engines, Their Design and Development focuses on the design, development, and operations of spark and compression ignition engines. The book first describes internal combustion engines, including rotary, compression, and indirect or spark ignition engines. The publication then discusses basic thermodynamics and gas dynamics. Topics include first and second laws of thermodynamics; internal energy and enthalpy diagrams; gas mixtures and homocentric flow; and state equation. The text ta

  4. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  5. Development And Testing Of Biogas-Petrol Blend As An Alternative Fuel For Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Awogbemi

    2015-08-01

    Full Text Available Abstract This research is on the development and testing of a biogas-petrol blend to run a spark ignition engine. A2080 ratio biogaspetrol blend was developed as an alternative fuel for spark ignition engine test bed. Petrol and biogas-petrol blend were comparatively tested on the test bed to determine the effectiveness of the fuels. The results of the tests showed that biogas petrol blend generated higher torque brake power indicated power brake thermal efficiency and brake mean effective pressure but lower fuel consumption and exhaust temperature than petrol. The research concluded that a spark ignition engine powered by biogas-petrol blend was found to be economical consumed less fuel and contributes to sanitation and production of fertilizer.

  6. THE EFFECT OF COMPRESSION RATIO VARIATIONS ON THE ENGINE PERFORMANCE PARAMETRES IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2005-01-01

    Full Text Available Performance of the spark ignition engines may be increased by changing the geometrical compression ratio according to the amount of charging in cylinders. The designed geometrical compression ratio can be realized as an effective compression ratio under the full load and full open throttle conditions since the effective compression ratio changes with the amount of charging into the cylinder in spark ignition engines. So, this condition of the spark ignition engines forces designers to change their geometrical compression ratio according to the amount of charging into the cylinder for improvement of performance and fuel economy. In order to improve the combustion efficiency, fuel economy, power output, exhaust emissions at partial loads, compression ratio must be increased; but, under high load and low speed conditions to prevent probable knock and hard running the compression ratio must be decreased gradually. In this paper, relation of the performance parameters to compression ratio such as power, torque, specific fuel consumption, cylindir pressure, exhaust gas temperature, combustion chamber surface area/volume ratio, thermal efficiency, spark timing etc. in spark ignition engines have been investigated and using of engines with variable compression ratio is suggested to fuel economy and more clear environment.

  7. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  8. Research of combustion in older generation spark-ignition engines in the condition of use leaded and unleaded petrol

    Directory of Open Access Journals (Sweden)

    Bulatović Željko M.

    2014-01-01

    Full Text Available This paper analyzes the potential problems in the exploitation of the older generation of spark-ignition engines with higher octane number of petrol (unleaded petrol BMB 95 than required (leaded petrol MB 86. Within the experimental tests on two different engines (STEYR-PUCH model 712 and GAZ 41 by applying piezoelectric pressure sensors integrated with the engine spark plugs, acceleration sensors (accelerometers and special electronic block connected with distributor, show that the cumulative first and second theoretical phase of combustion when petrol of higher octane number (BMB 95 is used lasts slightly longer than when the low-octane petrol MB 86 is used. For new petrol (BMB 95 higher optimal angles of pre-ignition have been determined by which better performances of the engine are achieved without a danger of the combustion with detonation (also called knocking.

  9. Prediction of small spark ignited engine performance using producer gas as fuel

    Directory of Open Access Journals (Sweden)

    N. Homdoung

    2015-03-01

    Full Text Available Producer gas from biomass gasification is expected to contribute to greater energy mix in the future. Therefore, effect of producer gas on engine performance is of great interest. Evaluation of engine performances can be hard and costly. Ideally, they may be predicted mathematically. This work was to apply mathematical models in evaluating performance of a small producer gas engine. The engine was a spark ignition, single cylinder unit with a CR of 14:1. Simulation was carried out on full load and varying engine speeds. From simulated results, it was found that the simple mathematical model can predict the performance of the gas engine and gave good agreement with experimental results. The differences were within ±7%.

  10. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber

    KAUST Repository

    Wolk, Benjamin

    2013-07-01

    The enhancement of laminar flame development using microwave-assisted spark ignition has been investigated for methane-air mixtures at a range of initial pressures and equivalence ratios in a 1.45. l constant volume combustion chamber. Microwave enhancement was evaluated on the basis of several parameters including flame development time (FDT) (time for 0-10% of total net heat release), flame rise time (FRT) (time for 10-90% of total net heat release), total net heat release, flame kernel growth rate, flame kernel size, and ignitability limit extension. Compared to a capacitive discharge spark, microwave-assisted spark ignition extended the lean and rich ignition limits at all pressures investigated (1.08-7.22. bar). The addition of microwaves to a capacitive discharge spark reduced FDT and increased the flame kernel size for all equivalence ratios tested and resulted in increases in the spatial flame speed for sufficiently lean flames. Flame enhancement is believed to be caused by (1) a non-thermal chemical kinetic enhancement from energy deposition to free electrons in the flame front and (2) induced flame wrinkling from excitation of flame (plasma) instability. The enhancement of flame development by microwaves diminishes as the initial pressure of the mixture increases, with negligible flame enhancement observed above 3. bar. © 2013 The Combustion Institute.

  11. 78 FR 50412 - California State Nonroad Engine Pollution Control Standards; Amendments to Spark Ignition Marine...

    Science.gov (United States)

    2013-08-19

    ... Engine Pollution Control Standards; Amendments to Spark Ignition Marine Engine and Boat Regulations... Marine Engine and Boat Regulations (2008 Marine SI Amendments or 2008 Amendments). CARB requested EPA... outboard and personal watercraft engines and to enforce the first tier of regulations affecting inboard and...

  12. Ignition of Nanocomposite Thermites by Electric Spark and Shock Wave

    Science.gov (United States)

    2014-04-30

    in hexane, was deposited onto a glass slide and the hexane was allowed to evaporate . The thermite was then tapped off the slide onto the cement layer... thermic Reaction and Ignition of Al/CuOx-Based Energetic Ma- terials, J. Mater. Sci. 2012, 47, 1296. [8] Y. Wang, X. Song, W. Jiang, G. Deng, X. Guo, H. Liu

  13. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Edward [General Motors LLC, Pontiac, MI (United States); Gough, Charles [General Motors LLC, Pontiac, MI (United States)

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  14. Effect of gasket of varying thickness on spark ignition engines | Ajayi ...

    African Journals Online (AJOL)

    In the study of Toyota, In-line, 4 cylinders, spark ignition engine using gaskets of varying thicknesses (1.75mm, 3.5mm, 5.25mm, 7mm and 8.75mm) between the cylinder head and the engine block, the performance characteristics of the engine was investigated via the effect of engine speed on brake power, brake thermal ...

  15. Method for operating a spark-ignition, direct-injection internal combustion engine

    Science.gov (United States)

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  16. Over compression influence to the performances of the spark ignition engines

    Science.gov (United States)

    Rakosi, E.; Talif, S. G.; Manolache, G.

    2016-08-01

    This paper presents the theoretical and experimental results of some procedures used in improving the performances of the automobile spark ignition engines. The study uses direct injection and high over-compression applied to a standard engine. To this purpose, the paper contains both the constructive solutions and the results obtained from the test bed concerning the engine power indices, fuel consumption and exhaust emissions.

  17. About the constructive and functional particularities of spark ignition engines with gasoline direct injection: experimental results

    Science.gov (United States)

    Niculae, M.; Ivan, F.; Neacsu, D.

    2017-08-01

    The paper aims to analyze and compare the environmental performances between a gasoline direct engine and a multi-point injection engine. There are analyzed the stages of emission formation during the New European Driving Cycle. The paper points out the dynamic, economic and environmental performances of spark ignition engines equipped with a GDI systems. Reason why, we believe the widespread implementation of this technology is today an immediate need.

  18. Combustion process in a spark ignition engine: dynamics and noise level estimation.

    Science.gov (United States)

    Kaminski, T; Wendeker, M; Urbanowicz, K; Litak, G

    2004-06-01

    We analyze the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from the usual cyclic changes of engine pressure we observed additional oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Based on the pressure time dependence we have calculated the heat released per combustion cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a larger spark advance angle the system is more deterministic. (c) 2004 American Institute of Physics

  19. Numerical investigation of natural gas direct injection properties and mixture formation in a spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yadollahi Bijan

    2014-01-01

    Full Text Available In this study, a numerical model has been developed in AVL FIRE software to perform investigation of Direct Natural Gas Injection into the cylinder of Spark Ignition Internal Combustion Engines. In this regard two main parts have been taken into consideration, aiming to convert an MPFI gasoline engine to direct injection NG engine. In the first part of study multi-dimensional numerical simulation of transient injection process, mixing and flow field have been performed via three different validation cases in order to assure the numerical model validity of results. Adaption of such a modeling was found to be a challenging task because of required computational effort and numerical instabilities. In all cases present results were found to have excellent agreement with experimental and numerical results from literature. In the second part, using the moving mesh capability the validated model has been applied to methane Injection into the cylinder of a Direct Injection engine. Five different piston head shapes along with two injector types have been taken into consideration in investigations. A centrally mounted injector location has been adapted to all cases. The effects of injection parameters, combustion chamber geometry, injector type and engine RPM have been studied on mixing of air-fuel inside cylinder. Based on the results, suitable geometrical configuration for a NG DI Engine has been discussed.

  20. Flatness-based embedded adaptive fuzzy control of spark ignited engines

    Science.gov (United States)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    The paper proposes a differential flatness theory-based adaptive fuzzy controller for spark-ignited (SI) engines. The system's dynamic model is considered to be completely unknown. By applying a change of variables (diffeomorphism) that is based on differential flatness theory the engine's dynamic model is written in the linear canonical (Brunovsky) form. After transforming the SI-engine model into the canonical form, the resulting control inputs are shown to contain nonlinear elements which depend on the system's parameters. These nonlinear terms are approximated with the use of neuro-fuzzy networks while a suitable learning law can be defined for the aforementioned neuro-fuzzy approximators so as to preserve the closed-loop system stability. Moreover, using Lyapunov stability analysis it is shown that the adaptive fuzzy control scheme succeeds H∞ tracking performance, which means that the influence of the modeling errors and the external disturbances on the tracking error is attenuated to an arbitrary desirable level. The efficiency of the proposed adaptive fuzzy control scheme is checked through simulation experiments.

  1. Artificial neural network applications in the calibration of spark-ignition engines: An overview

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson

    2016-09-01

    Full Text Available Emission legislation has become progressively tighter, making the development of new internal combustion engines very challenging. New engine technologies for complying with these regulations introduce an exponential dependency between the number of test combinations required for obtaining optimum results and the time and cost outlays. This makes the calibration task very expensive and virtually impossible to carry out. The potential use of trained neural networks in combination with Design of Experiments (DoE methods for engine calibration has been a subject of research activities in recent times. This is because artificial neural networks, compared with other data-driven modeling techniques, perform better in satisfying a majority of the modeling requirements for engine calibration including the curse of dimensionality; the use of DoE for obtaining few measurements as practicable, with the aim of reducing engine calibration costs; the required flexibility that allows model parameters to be optimized to avoid overfitting; and the facilitation of automated online optimization during the engine calibration process that eliminates the need for user intervention. The purpose of this review is to give an overview of the various applications of neural networks in the calibration of spark-ignition engines. The identified and discussed applications include system identification for rapid prototyping, virtual sensing, use of neural networks as look-up table surrogates, emerging control strategies and On-Board Diagnostic (OBD applications. The demerits of neural networks, future possibilities and alternatives were also discussed.

  2. Ignition study of acetone/air mixtures by using laser-induced spark.

    Science.gov (United States)

    Tihay, Virginie; Gillard, Philippe; Blanc, Denis

    2012-03-30

    The breakdown and the laser-induced spark ignition of acetone-air mixtures were experimentally studied using a nanosecond pulse at 1064 nm from a Q-switched Nd:YAG laser. The breakdown was first characterized for different mixtures with acetone and air. This part of the work highlighted the wide variation in the energy absorbed by the plasma during a breakdown. We also demonstrated that the presence of acetone in air tends to reduce the energy required to obtain a breakdown. Next, the ignition of acetone-air mixtures in the equivalence ratio range 0.9-2.4 was investigated. The probabilities of ignition were calculated in function to the laser energy. However, according to the variability of energy absorption by the plasma, we preferred to present the result according to the energy absorbed by the plasma. The minimum ignition energies were also provided. The minimum ignition energy was obtained for an equivalence ratio of 1.6 and an absorbed energy of 1.15 mJ. Finally the characteristics of the plasma (absorption coefficient and kernel temperature) were calculated for the experiments corresponding to minimum ignition energies. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Modelling of a Spark Ignition Engine for Power-Heat Production Optimization Modèle de moteur à allumage commandé en vue de l’optimisation de la production chaleur-force

    Directory of Open Access Journals (Sweden)

    Descieux D.

    2011-09-01

    Full Text Available Spark ignition gas engine is more and more used in order to produce electricity and heat simultaneously. The engine crankshaft drives a synchronous electric generator. The thermal power output is recovered from the engine coolant system and exhaust gas, and is used to produce generally hot water for heating system. In order to have a better adequacy between supply (production of the engine and user demand, good knowledge of the engine and implemented phenomena are necessary. A generic methodology is proposed to simulate the stationary state response of a SI engine. The engine simulation is based on a one zone thermodynamic model, which characterizes each phase of the engine cycle to predict energy performances: exergy efficiency as high as 0.70 is attainable. Le moteur a allumage commande alimente en gaz est un moteur de plus en plus utilise pour la production simultanee d’electricite et de chaleur. Classiquement le moteur entraine sur l’arbre une generatrice electrique. Le flux thermique est recupere principalement sur le systeme de refroidissement du moteur ainsi que sur les fumees chaudes et il est generalement utilise pour produire de la chaleur pour les systemes de chauffage. Pour avoir une meilleure adaptation entre la production du moteur et la demande de l’usager, une bonne connaissance des evolutions dans le moteur et des phenomenes correspondants est necessaire. Une methode thermodynamique generale est proposee pour simulation du fonctionnement dynamique stationnaire d’un MACI. Le modele utilise une analyse monozone et les caracteristiques de chaque transformation du cycle pour etudier les performances energetiques : rendement exergetique de l’ordre de 0,70.

  4. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  5. Heat transfer comparison between methane and hydrogen in a spark ignited engine

    Energy Technology Data Exchange (ETDEWEB)

    Sierens, Roger; Demuynck, Joachim; Paepe, Michel de; Verhelst, Sebastian [Ghent Univ. (Belgium)

    2010-07-01

    Hydrogen is one of the alternative fuels which are being investigated at Ghent University. NO{sub x} emissions will occur at high engine loads and they are a constraint for power and efficiency optimization. The formation of NO{sub x} emissions is temperature dependent. Consequently, the heat transfer from the burning gases to the cylinder walls has to be accurately modelled if precise computer calculations of the emissions are wanted. Several engine heat transfer models exist but they have been cited to be inaccurate for hydrogen. We have measured the heat flux in a spark ignited engine with a commercially available heat flux sensor. This paper investigates the difference between the heat transfer of hydrogen and a fossil fuel, in this case methane. Measurements with the same indicated power output are compared and the effect of the heat loss on the indicated efficiency is investigated. The power output of hydrogen combustion is lowered by burning lean in contrast to using a throttle in the case of methane. Although the peak in the heat flux of hydrogen is 3 times higher compared to methane for a high engine power output, the indicated efficiency is only 3% lower. The heat loss for hydrogen at a low engine load is smaller than that of methane which results in a higher indicated efficiency. The richness of the hydrogen-air mixture has a great influence on the heat transfer process in contrast to the in-cylinder mass in the case of methane. (orig.)

  6. Large-Eddy Simulations of Motored Flow and Combustion in a Homogeneous-Charge Spark-Ignition Engine

    Science.gov (United States)

    Shekhawat, Yajuvendra Singh

    Cycle-to-cycle variations (CCV) of flow and combustion in internal combustion engines (ICE) limit their fuel efficiency and emissions potential. Large-eddy simulation (LES) is the most practical simulation tool to understand the nature of these CCV. In this research, multi-cycle LES of a two-valve, four-stroke, spark-ignition optical engine has been performed for motored and fired operations. The LES mesh quality is assessed using a length scale resolution parameter and a energy resolution parameter. For the motored operation, two 50-consecutive-cycle LES with different turbulence models (Smagorinsky model and dynamic structure model) are compared with the experiment. The pressure comparison shows that the LES is able to capture the wave-dynamics in the intake and exhaust ports. The LES velocity fields are compared with particle-image velocimetry (PIV) measurements at three cutting planes. Based on the structure and magnitude indices, the dynamic structure model is somewhat better than the Smagorinsky model as far as the ensemble-averaged velocity fields are concerned. The CCV in the velocity fields is assessed by proper-orthogonal decomposition (POD). The POD analysis shows that LES is able to capture the level of CCV seen in the experiment. For the fired operation, two 60-cycle LES with different combustion models (thickened frame model and coherent frame model) are compared with experiment. The in-cylinder pressure and the apparent heat release rate comparison shows higher CCV for LES compared to the experiment, with the thickened frame model showing higher CCV than the coherent frame model. The correlation analysis for the LES using thickened frame model shows that the CCV in combustion/pressure is correlated with: the tumble at the intake valve closing, the resolved and subfilter-scale kinetic energy just before spark time, and the second POD mode (shear flow near spark gap) of the velocity fields just before spark time.

  7. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2013-01-01

    Methanol has been recently used as an alternative to conventional fuels for internal combustion engines in order to satisfy some environmental and economical concerns. In this paper, the ignition in a high compression ratio SI (spark ignition) methanol engine was studied by using LES (large eddy simulation) with detailed chemical kinetics. A 21-species, 84-reaction methanol mechanism was adopted to simulate the auto-ignition process of the methanol/air mixture. The MIT (minimum ignition temperature) and MIE (minimum ignition energy) are two important properties for designing safety standards and understanding the ignition process of combustible mixtures. The effects of the flame kernel size, flame kernel temperature and equivalence ratio were also examined on MIT, MIE and IDP (ignition delay period). The methanol mechanism was validated by experimental test. The simulated results showed that the flame kernel size, temperature and energy dramatically affected the values of the MIT, MIE and IDP for a methanol/air mixture, the value of the ignition delay period was not only related to the flame kernel energy, but also to the flame kernel temperature. - Highlights: • We used LES (large eddy simulation) coupled with detailed chemical kinetics to simulate methanol ignition. • The flame kernel size and temperature affected the minimum ignition temperature. • The flame kernel temperature and energy affected the ignition delay period. • The equivalence ratio of methanol–air mixture affected the ignition delay period

  8. Conversion of a diesel engine to a spark ignition natural gas engine

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  9. Neural network controller development and implementation for spark ignition engines with high EGR levels.

    Science.gov (United States)

    Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2007-07-01

    Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine.

  10. THE EFFECT OF VARIABLE COMPRESSION RATIO ON FUEL CONSUMPTION IN SPARK IGNITION ENGINES

    Directory of Open Access Journals (Sweden)

    Yakup SEKMEN

    2002-02-01

    Full Text Available Due to lack of energy sources in the world, we are obliged to use our current energy sources in the most efficient way. Therefore, in the automotive industry, research works to manufacture more economic cars in terms of fuelconsumption and environmental friendly cars, at the same time satisfying the required performance have been intensively increasing. Some positive results have been obtained by the studies, aimed to change the compression ratio according to the operating conditions of engine. In spark ignition engines in order to improve the combustion efficiency, fuel economy and exhaust emission in the partial loads, the compression ratio must be increased; but, under the high load and low speed conditions to prevent probable knock and hard running compression ratio must be decreased slightly. In this paper, various research works on the variable compression ratio with spark ignition engines, the effects on fuel economy, power output and thermal efficiency have been investigated. According to the results of the experiments performed with engines having variable compression ratio under the partial and mid-load conditions, an increase in engine power, a decrease in fuel consumption, particularly in partial loads up to 30 percent of fuel economy, and also severe reductions of some exhaust emission values were determined.

  11. Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline

    Directory of Open Access Journals (Sweden)

    Musaab O. El-Faroug

    2016-11-01

    Full Text Available This paper reviews the serviceability of hydrous ethanol as a clean, cheap and green renewable substitute fuel for spark ignition engines and discusses the comparative chemical and physical properties of hydrous ethanol and gasoline fuels. The significant differences in the properties of hydrous ethanol and gasoline fuels are sufficient to create a significant change during the combustion phase of engine operation and consequently affect the performance of spark-ignition (SI engines. The stability of ethanol-gasoline-water blends is also discussed. Furthermore, the effects of hydrous ethanol, and its blends with gasoline fuel on SI engine combustion characteristics, cycle-to-cycle variations, engine performance parameters, and emission characteristics have been highlighted. Higher water solubility in ethanol‑gasoline blends may be obviously useful and suitable; nevertheless, the continuous ability of water to remain soluble in the blend is significantly affected by temperature. Nearly all published engine experimental results showed a significant improvement in combustion characteristics and enhanced engine performance for the use of hydrous ethanol as fuel. Moreover, carbon monoxide and oxides of nitrogen emissions were also significantly decreased. It is also worth pointing out that unburned hydrocarbon and carbon dioxide emissions were also reduced for the use of hydrous ethanol. However, unregulated emissions such as acetaldehyde and formaldehyde were significantly increased.

  12. A spectroscopy study of gasoline partially premixed compression ignition spark assisted combustion

    International Nuclear Information System (INIS)

    Pastor, J.V.; García-Oliver, J.M.; García, A.; Micó, C.; Durrett, R.

    2013-01-01

    Highlights: ► PPC combustion combined with spark assistance and gasoline fuel on a CI engine. ► Chemiluminescence of different chemical species describes the progress of combustion reaction. ► Spectra of a novel combustion mode under SACI conditions is described. ► UV–Visible spectrometry, high speed imaging and pressure diagnostic were employed for analysis. - Abstract: Nowadays many research efforts are focused on the study and development of new combustion modes, mainly based on the use of locally lean air–fuel mixtures. This characteristic, combined with exhaust gas recirculation, provides low combustion temperatures that reduces pollutant formation and increases efficiency. However these combustion concepts have some drawbacks, related to combustion phasing control, which must be overcome. In this way, the use of a spark plug has shown to be a good solution to improve phasing control in combination with lean low temperature combustion. Its performance is well reported on bibliography, however phenomena involving the combustion process are not completely described. The aim of the present work is to develop a detailed description of the spark assisted compression ignition mode by means of application of UV–Visible spectrometry, in order to improve insight on the combustion process. Tests have been performed in an optical engine by means of broadband radiation imaging and emission spectrometry. The engine hardware is typical of a compression ignition passenger car application. Gasoline was used as the fuel due to its low reactivity. Combining broadband luminosity images with pressure-derived heat-release rate and UV–Visible spectra, it was possible to identify different stages of the combustion reaction. After the spark discharge, a first flame kernel appears and starts growing as a premixed flame front, characterized by a low and constant heat-release rate in combination with the presence of remarkable OH radical radiation. Heat release increases

  13. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, D. L. [West Virginia Univ., Morgantown, WV (United States)

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling

  14. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    Science.gov (United States)

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Experimental analysis on a spark ignition petrol engine fuelled with LPG (liquefied petroleum gas)

    International Nuclear Information System (INIS)

    Masi, Massimo

    2012-01-01

    The use of LPG (liquefied petroleum gas) as alternative fuel to petrol is common practise in spark ignition engines. While the main driving force to the use of LPG still remains the low cost for the end user, its favourable pollutant emissions, in particular carbon dioxide, will in the middle term probably increase interest in LPG as an IC engine fuel. In addition, there are both theoretical and technical reasons to consider LPG as an attractive fuel also in terms of engine performance. Despite the continuously increasing stock production of dual-fuel (petrol–LPG) passenger car models, doubts still exist about both real engine performance in LPG operation and the reliability of the dual-fuel feeding system. This paper deals with the theoretical advantages of using LPG as fuel for SI engines. Brake performance tests of a passenger car engine fed with petrol and LPG are analysed and compared. The stock engine has been equipped with a “third-generation” standard kit for dual-fuel operation. The performance reductions in LPG operation are discussed in both steady state and transient condition. The results of some modifications to the set-up of both the petrol and LPG metering devices, designed for a better justification of the measured performance, are also presented. -- Highlights: ► Experimental research on the actual performances of an SI engine fed with petrol and gaseous LPG. ► Theoretical advantages and drawbacks of fuelling SI ICE’s with LPG. ► Brake performance analysis shows a noticeable gap between LPG and petrol operation. ► Local measurements confirm that the thermodynamic operation of the evaporator-pressure reducer device is crucial for the engine performance. ► The performance of the up-to-date kit for petrol–LPG dual-fuel operation is greatly affected by the settings of the mechanical components of the LPG evaporator device.

  16. THE EFFECT OF GASOLINE-LIKE FUEL PRODUCED FROM WASTE AUTOMOBILE TIRES ON EMISSIONS IN SPARK-IGNITION ENGINES

    OpenAIRE

    ÖZTOP, H. F.; VAROL, Y.; ALTUN, Ş.; FIRAT, M.

    2016-01-01

    In the present paper, the effect of Gasoline-Like Fuel (GLF) on emissions was investigated for direct injection spark-ignited engine. The GLF was obtained from waste automobile tires by using the pyrolysis. The tires are installed to oven without any procedure such as cutting, melding etc. Obtained GLF was then used in a four-cylinder, four-stroke, water-cooled and direct injection spark-ignited engine as blended with unleaded gasoline from 0% to 60% with an increment of 10%. Engine tests res...

  17. 40 CFR Table 1a to Subpart Zzzz of... - Emission Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ..., and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... emission limitations for existing, new and reconstructed 4SRB stationary RICE at 100 percent load plus or...

  18. 40 CFR Table 1b to Subpart Zzzz of... - Operating Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE...

    Science.gov (United States)

    2010-07-01

    ..., New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a Major Source of HAP... Limitations for Existing, New, and Reconstructed Spark Ignition, 4SRB Stationary RICE >500 HP Located at a... following operating emission limitations for existing, new and reconstructed 4SRB stationary RICE >500 HP...

  19. Spectroscoping analysis of ignition in a spark ignition engine with jet-controlled combustion; Spektroskopische Untersuchung der Entflammung an einem Ottomotor mit strahlgefuehrtem Brennverfahren

    Energy Technology Data Exchange (ETDEWEB)

    Palaveev, S. [MOT Forschungs- und Entwicklungsgesellschaft fuer Motorentechnik, Optik und Thermodynamik GmbH, Karlsruhe (Germany); Buri, S.; Xander, B.; Spicher, U. [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Kolbenmaschinen

    2007-07-01

    The gasoline direct injection engine is one of the most promising strategies today to reduce the fuel consumption and CO{sub 2}-emissions of spark-ignition engines. The commercial launch of that combustion system was possible only through the development of new optical measurement techniques, which have been a major contribution for understanding the basics of the combustion in a stratified mode. In terms of space and time, compared to the homogeneous approach, the air-fuel-ratio for a stratified mode may vary significantly. This fluctuation affects in a critical way the process of ignition and combustion. The knowledge of the air-fuel-ratio in the spark plug area both at time of ignition and in during the combustion is therefore critical for the development of this combustion system and it components. This paper presents the spark-emission spectroscopy as a non invasive optical technique for measuring the air-fuel-ratio {lambda} in the spark gap at time of ignition. (orig.)

  20. Development of laser-induced fluorescence for precombustion diagnostics in spark-ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Neij, H.

    1998-11-01

    Motivated by a desire to understand and optimize combustion in spark-ignition (SI) engines, laser techniques have been developed for measurement of fuel and residual gas, respectively, in the precombustion mixture of an operating SI engine. The primary objective was to obtain two-dimensional, quantitative data in the vicinity of the spark gap at the time of ignition. A laser-induced fluorescence (LIF) technique was developed for fuel visualization in engine environments. Since the fluorescence signal from any commercial gasoline fuel would be unknown to its origin, with an unpredictable dependence on collisional partners, pressure and temperature, a non-fluorescent base fuel - isooctane - was used. For LIF detection, a fluorescent species was added to the fuel. An additive not commonly used in this context - 3-pentanone - was chosen based on its suitable vaporization characteristics and fluorescent properties. The LIF technique was applied to an optically accessible research engine. By calibration, the fluorescence signal from the additive was converted to fuel-to-air equivalence ratio ({phi}). The accuracy and precision of the acquired data were assessed. A statistical evaluation revealed that the spatially averaged equivalence ratio around the spark plug had a significant impact on the combustion event. The strong correlation between these two quantities suggested that the early combustion was sensitive to large-scale inhomogeneities in the precombustion mixture. A similar LIF technique, using acetone as a fluorescent additive in methane, was applied to a combustion cell for ion current evaluation. The local equivalence ratio around the spark gap at the time of ignition was extracted from LIF data. Useful relations were identified between different ion current parameters and the local equivalence ratio, although the impact of the flow field, the fuel type, and the electrode geometry were identified as areas for future research. A novel fuel - dimethyl ether (DME

  1. Some aspects of the CI engine modification aimed at operation on LPG with the application of spark ignition

    Science.gov (United States)

    Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.

    2016-09-01

    A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.

  2. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  3. Estimation of operational parameters for a direct injection turbocharged spark ignition engine by using regression analysis and artificial neural network

    Directory of Open Access Journals (Sweden)

    Tosun Erdi

    2017-01-01

    Full Text Available This study was aimed at estimating the variation of several engine control parameters within the rotational speed-load map, using regression analysis and artificial neural network techniques. Duration of injection, specific fuel consumption, exhaust gas at turbine inlet, and within the catalytic converter brick were chosen as the output parameters for the models, while engine speed and brake mean effective pressure were selected as independent variables for prediction. Measurements were performed on a turbocharged direct injection spark ignition engine fueled with gasoline. A three-layer feed-forward structure and back-propagation algorithm was used for training the artificial neural network. It was concluded that this technique is capable of predicting engine parameters with better accuracy than linear and non-linear regression techniques.

  4. A Soft Sensor-Based Fault-Tolerant Control on the Air Fuel Ratio of Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Yu-Jia Zhai

    2017-01-01

    Full Text Available The air/fuel ratio (AFR regulation for spark-ignition (SI engines has been an essential and challenging control problem for engineers in the automotive industry. The feed-forward and feedback scheme has been investigated in both academic research and industrial application. The aging effect can often cause an AFR sensor fault in the feedback loop, and the AFR control performance will degrade consequently. In this research, a new control scheme on AFR with fault-tolerance is proposed by using an artificial neural network model based on fault detection and compensation, which can provide the satisfactory AFR regulation performance at the stoichiometric value for the combustion process, given a certain level of misreading of the AFR sensor.

  5. Research of performance on a spark ignition engine fueled by alcohol–gasoline blends using artificial neural networks

    International Nuclear Information System (INIS)

    Kapusuz, Murat; Ozcan, Hakan; Yamin, Jehad Ahmad

    2015-01-01

    In this paper, we investigate various alcohol–unleaded gasoline mixtures that can be used with no modifications in a spark-ignition engine. The mixtures consisted of 5%, 10% and 15% ethanol, methanol together and separately. Based on the recommendations of the Jordanian Petroleum Company (JoPetrol), total alcohol content should not exceed 15–20% owing to safety and ignition hazards. Optimizations for the use of alcohol were made for the maximum torque, maximum power and minimum specific fuel consumption values. For torque 0.9906, for brake power 0.997, and for brake specific fuel consumption 0.9312 regression values for tests have been obtained from models generated by the neural network. According to the modeling and optimizations, use of fuel mixture containing 11% methanol–1% ethanol for performance, and fuel mixture containing 2% methanol for BSFC were found to have better results. Moreover, the paper demonstrates that ANN (Artificial Neural Network) can be used successfully as an alternative type of modeling technique for internal combustion engines. - Highlights: • ANN model was developed and verified. • Effects of alcohol–gasoline blends on performance of a SI engine are fairly simulated. • Effects of alcohol–gasoline blends on performance of a SI engine are optimized.

  6. Preknock Vibrations in a Spark-Ignition Engine Cylinder as Revealed by High-Speed Photography

    Science.gov (United States)

    Miller, Cearcy D; Logan, Walter O , Jr

    1944-01-01

    The high-speed photographic investigation of the mechanics of spark-ignition engine knock recorded in three previous reports has been extended with use of the NACA high-speed camera and combustion apparatus with a piezoelectric pressure pickup in the combustion chamber. The motion pictures of knocking combustion were taken at the rate of 40,000 frames per second. Existence of the preknock vibrations in the engine cylinder suggested in Technical Report no.727 has been definitely proved and the vibrations have been analyzed both in the high-speed motion pictures and the pressure traces. Data are also included to show that the preknock vibrations do not progressively build up to cause knock. The effect of tetraethyl lead on the preknock vibrations has been studied and results of the tests are presented. Photographs are presented which in some cases clearly show evidence of autoignition in the end zone a considerable length of time before knock occurs.

  7. Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation

    Science.gov (United States)

    Silva, Isaac Alexander

    A method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.

  8. Knock investigation by flame and radical species detection in spark ignition engine for different fuels

    International Nuclear Information System (INIS)

    Merola, Simona S.; Vaglieco, Bianca M.

    2007-01-01

    The present paper aims to evaluate the phenomena of normal combustion and knocking in a single cylinder, ported fuel injection, four-stroke spark-ignition engine with a four-valve production head. All the measurements were realized in an optically accessible engine equipped with a wide quartz window in the bottom of the chamber. The study was carried out using optical techniques based on flame natural emission imaging and spectroscopy from UV to visible. Radical species such as OH and HCO were detected and correlated to the onset and the duration of knock and presence of hot-spots in end-gas. Measurements were carried out at 1000 rpm with wide-open throttle and stoichiometric mixture. Pure iso-octane, suitable mixtures of iso-octane and n-heptane and commercial gasoline were used

  9. Effects of Waste Plastic Oil Blends on a Multi Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Vijaya Kumar Kareddula

    2017-01-01

    Full Text Available Existing fossil fuels are utilizing at their critical rate, leads to depletion of their reserves in a dramatic way. Generating alternative energy sources in a pragmatic way are necessitated, which demands the researchers to utilize the inherent energy of carbon based products as an energy source to the automobile sector. As a part of it, my research is focused on transforming and using the waste plastics as an alternative fuel in multi cylinder spark ignition engine. This paper aims to present the experimental investigations of performance and emission characteristics in an existing Maruti 800 petrol engine running with the blends of 5%, 10%, 15% and 20% of waste Plastic Pyrolysis Oil (PPO with gasoline. From the results, it is noticed that hydrocarbon emissions are substantially reduced and oxides of nitrogen emissions are increased and petrol engine can operate with PPO blends up to 20% without any engine modifications.

  10. Full Load Performance of a Spark Ignition Engine Fueled with Gasoline-Isobutanol Blends

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2009-10-01

    Full Text Available With fossil fuels reserves coming ever closer to depletion and the issue of air pollution caused by automotive transport becoming more and more important, mankind has looked for various solutions in the field of internal combustion engines. One of these solutions is using biofuels, and while the internal combustion engine will most likely disappear along with the last fossil fuel source, studying biofuels and their impact on automotive power-trains is a necessity even if only on a the short term basis. While engines built to run on alcohol-gasoline blends offer good performance levels even at high concentrations of alcohol, unmodified engines fueled with blends of biofuels and fossil fuels can exhibit a drop in power. The object of this study is evaluating such phenomena when a spark ignition engine is operated at full load.

  11. "Simultaneous measurement of flame impingement and piston surface temperatures in an optically accessible spark ignition engine"

    Science.gov (United States)

    Ding, Carl-Philipp; Honza, Rene; Böhm, Benjamin; Dreizler, Andreas

    2017-04-01

    This paper shows the results of spatially resolved temperature measurements of the piston surface of an optically accessible direct injection spark ignition engine during flame impingement. High-speed thermographic phosphor thermometry (TPT), using Gd3Ga5O12:Cr,Ce, and planar laser-induced fluorescence of the hydroxyl radical (OH-PLIF) were used to investigate the temperature increase and the time and position of flame impingement at the piston surface. Measurements were conducted at two operating cases and showed heating rates of up to 16,000 K/s. The OH-PLIF measurements were used to localize flame impingement and calculate conditioned statistics of the temperature profiles. The TPT coating was characterized and its influence on the temperature measurements evaluated.

  12. Mesure et modélisation multidimensionnelle des transferts thermiques gaz-paroi dans le cas des moteurs à allumage commandé Measurement and Multidimensional Modeling of Gas-Wall Heat Transfers in Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Gilaber P.

    2006-11-01

    formulation k-epsilon de la turbulence a été adoptée. La sensibilité du modèle aux effets de densité et de turbulence a été testée par l'intermédiaire de variations de l'avance à l'allumage et du régime. La comparaison entre mesure et simulation a montré un bon accord, tant en termes de flux thermiques locaux et instantanés, qu'en termes de bilan global. The computational fluid dynamics codes, which help to predict the behaviour of combusting gas in reciprocating engines, need, as boundary conditions for the momentum and energy equations, to approximate wall frictions and heat transfer between gas and walls. The purpose of this work is to validate a heat transfer model for spark ignited engines. Two steps of research have been worked on to meet this objective: an experimental phase and a computational phase. In the experimental phase, measurements were made on a test-engine instrumented with fast-response surface heat flux gages. Each gage consisted of a steel cylinder, containing two thermocouples. To analyze the influence of fluid dynamics on heat transfer, a Laser Doppler Velocimeter was used, by means of a spacer placed between the engine head and cylinder. The spacer was equiped with two windows and two heat-flux gages permitting simultaneous measurements of the heat flux and of the fluid dynamics outside the boundary layer. Two other gages were present in the head of the engine and up to ten data inputs could be simultaneously recorded at each crank-angle, including two velocity components and the cylinder pressure. A parametric analysis was carried out revealing the following trends:- the global heat transfer rate for a thermodynamic cycle of the engine decreases as the speed of the engine is increased, but the peak value of the wall heat-flux increases because of the increase of the turbulence level. - the volumetric efficiency appeared to have little effect on the turbulence level, and its influence on the heat transfer is mainly due to the increase of

  13. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun; Zacharakis-Jutz, George E.; Kong, Song-Charng

    2014-01-01

    Highlights: • This is the very first study in utilizing direct injection of gaseous ammonia in an SI engine. • Engine combustion using direct injection of gaseous ammonia is proven feasible. • Energy efficiency using ammonia is comparable to that using gasoline. • CO emissions are decreased but emissions of NOx and HC are increased when ammonia is used. - Abstract: The effects of direct injection of gaseous ammonia on the combustion characteristics and exhaust emissions of a spark-ignition engine were investigated. Port-injection gasoline was used to enhance the burning of ammonia that was directly injected into the engine cylinder. Appropriate direct injection strategies were developed to allow ammonia to be used in spark-ignition engines without sacrifice of volumetric efficiency. Experimental results show that with gasoline providing the baseline power of 0.6 kW, total engine power could increase to 2.7 kW when the injection timing of ammonia was advanced to 370 BTDC with injection duration of 22 ms. Engine performance with use of gasoline–ammonia was compared to that with gasoline alone. For operations using gasoline–ammonia, with baseline power from gasoline at 0.6 kW the appropriate ammonia injection timing was found to range from 320 to 370 BTDC for producing 1.5–2.7 kW. The peak pressures were slightly lower than those using gasoline alone because of the lower flame of ammonia, resulting in reduction of cylinder pressure. The brake specific energy consumption (BSEC) with gasoline–ammonia was very similar to that with gasoline alone. Ammonia direct injection caused slight reductions of BSCO for all the loads studied but significantly increased BSHC because of the reduced combustion temperature of ammonia combustion. The use of ammonia resulted in increased NOx emissions because of formation of fuel NOx. Ammonia slip was also detected in the engine exhaust because of incomplete combustion

  14. Effect of intake manifold water injection on a natural gas spark ignition engine: an experimental study

    Science.gov (United States)

    Arruga, H.; Scholl, F.; Kettner, M.; Amad, O. I.; Klaissle, M.; Giménez, B.

    2017-10-01

    Design and development of gas CHP (combined heat and power) engines are strongly influenced by the progressively more severe European NOx emissions normative. Water injection represents a promising approach to reduce these emissions while attaining high engine efficiency. In this work, the effect of intake manifold water injection on combustion parameters and performance of a single-cylinder naturally aspirated natural gas spark ignition engine is presented. First, the most appropriate injector was selected, using a spray test bed. Subsequently, engine experiments at constant indicated mean effective pressure (IMEP) and engine speed were conducted with water-fuel ratios of 0.1 to 0.3. IMEP was kept constant at about 6.3 bar by adjusting both air-fuel ratio and spark timing. A NOx reduction of 0.2 g/kWhi (15 %) for a constant ISFC of about 204 g/kWhi was achieved. In the low NOx regime, water injection allows for an improvement of the NOx-ISFC trade-off, while leading to poor fuel consumption at same NOx in the high efficiency regime. Furthermore, water injection implies a reduction of intake mixture temperature, lengthened burning delay and combustion duration and a moderate increase of combustion instability.

  15. Devices to improve the performance of a conventional two-stroke spark ignition engine

    Science.gov (United States)

    Poola, R. B.; Nagalingam, B.; Gopalakrishnan, K. V.

    1995-08-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In the second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4 degrees CA), and shorter combustion duration (4-10 degrees CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost, and easy to adopt for both production and existing engines.

  16. Devices to improve the performance of a conventional two-stroke spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Poola, R.B. [Argonne National Lab., IL (United States); Nagalingam, B.; Gopalakrishnan, K.V. [Indian Inst. of Tech., Madras (India)

    1995-06-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In die second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4{degrees}CA){degrees} and shorter combustion duration (4-10 {degrees}CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost and easy to adopt for both production and existing engines.

  17. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    Science.gov (United States)

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  18. Enhanced Model for Fast Ignition

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Rodney J. [Research Applications Corporation, Los Alamos, NM (United States)

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  19. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis

    OpenAIRE

    Elfasakhany, Ashraf

    2015-01-01

    This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.%) in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled wit...

  20. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  1. Cycle-skipping strategies for pumping loss reduction in spark ignition engines: An experimental approach

    International Nuclear Information System (INIS)

    Yüksek, Levent; Özener, Orkun; Sandalcı, Tarkan

    2012-01-01

    Highlights: ► A cycle density variation technique called cycle-skipping was applied. ► Effect on fuel consumption and gaseous emissions was investigated. ► Fuel consumption and gaseous tail-pipe emissions improved at partial loading conditions. - Abstract: Spark ignition (SI) engines are widely used for power generation, especially in the automotive industry. SI engines have a lower thermal efficiency than diesel engines due to a lower compression ratio, higher charge-induction work and lower end of compression stroke pressure. A significant amount of charge induction work is lost when an SI engine runs under partial loading conditions. Under partial loading conditions, a lower intake charge is required, which can be theoretically achieved by varying the displacement volume or the stroke number of the engine without using a throttle. Reducing the displacement volume to control the engine load can be achieved by skipping cycles in single-cylinder engines. This study investigates the effect of cycle-skipping strategies on the brake specific fuel consumption (BSFC) and exhaust emissions of an SI engine under partial loading conditions. Three different skipping modes were applied: normal, normal-skip and normal-normal-skip. A significant improvement in BSFC and carbon monoxide emission was obtained by applying cycle-skipping strategies.

  2. Methods to improve efficiency of four stroke, spark ignition engines at part load

    International Nuclear Information System (INIS)

    Kutlar, Osman Akin; Arslan, Hikmet; Calik, Alper Tolga

    2005-01-01

    The four stroke, spark ignition (SI) engine pressure-volume diagram (p-V) contains two main parts. They are the compression-combustion-expansion (high pressure loop) and the exhaust-intake (low pressure or gas exchange loop) parts. The main reason for efficiency decrease at part load conditions for these types of engines is the flow restriction at the cross sectional area of the intake system by partially closing the throttle valve, which leads to increased pumping losses and to increased low pressure loop area on the p-V diagram. Meanwhile, the poorer combustion quality, i.e. lower combustion speed and cycle to cycle variations, additionally influence these pressure loop areas. In this study, methods for increasing efficiency at part load conditions and their potential for practical use are investigated. The study also includes a review of the vast literature on the solution of this problem. This investigation shows that the potential for increasing the efficiency of SI engines at part load conditions is not yet exhausted. Each method has its own advantages and disadvantages. Among these, the most promising methods to decrease the fuel consumption at part load conditions are stratified charge and variable displacement engines. When used in combination, the other listed methods are more effective than their usage alone

  3. FUEL EFFECTS ON COMBUSTION WITH EGR DILUTION IN SPARK IGNITED ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL

    2016-01-01

    The use of EGR as a diluent allows operation with an overall stoichiometric charge composition, and the addition of cooled EGR results in well-understood thermodynamic benefits for improved fuel consumption. This study investigates the effect of fuel on the combustion and emission response of EGR dilution in spark ignited engines. A 2.0 L GM Ecotec LNF engine equipped with the production side-mounted direct injection (DI) fueling system is used in this study. Ethanol, isooctane and certified gasoline are investigated with EGR from 0% to the EGR dilution tolerance. Constant BMEP at 2000 rpm was operated with varying CA50 from 8 CAD to 16 CAD aTDCf. The results show that ethanol gives the largest EGR tolerance at a given combustion phasing, engine load and speed. The improved EGR dilution tolerance with ethanol is attributed to a faster flame speed, which manifests itself as shorter combustion duration. Data shows that the combustion stability limit occurs at a critical combustion duration that is fuel independent. Due to different flame speeds, this critical combustion duration occurs at different EGR levels for the different fuels.

  4. Selected Issues of the Indicating Measurements in a Spark Ignition Engine with an Additional Expansion Process

    Directory of Open Access Journals (Sweden)

    Marcin Noga

    2017-03-01

    Full Text Available The paper presents the results of research on the turbocharged spark ignition engine with additional exhaust expansion in a separate cylinder, which is commonly known as the five-stroke engine. The research engine has been constructed based on the four cylinder engine in which two outer cylinders work as the fired cylinders, while two internally connected inner cylinders constitute the volume of the additional expansion process. The engine represents a powertrain realizing an ultra-expansion cycle. The purpose of the study was to find an effective additional expansion process in the five-stroke engine. Cylinder-pressure indicating measurements were carried out for one of the fired cylinders and the additional expansion cylinder. The study was performed for over 20 different points on the engine operation map. This allowed us to determine a dependence between the pressure indicated in the fired cylinders and in the additional expansion cylinders. A function of the mean pressure indicated in the additional expansion cylinder versus a brake mean effective pressure was also presented. This showed a load threshold from which the work of the cylinders of additional expansion produced benefits for the output of the experimental engine. The issues of mechanical efficiency and effective efficiency of this engine were also discussed.

  5. Biofuel and Hydrogen Influence for Operation Parameters of Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Martynas Damaševičius

    2016-12-01

    Full Text Available Paper presents research of efficient and ecological parameters of gasoline engine working with biobuthanol (10% and 20% by volume and addi-tionaly supplying oxygen and hydrogen (HHO gas mixture (3.6 l/min, which was obtained from from water by electrolysis. Biobuthanol addition decreases rate of heat release, the combustion temperature and pressure are lower, which has an influence on lower nitrous oxide (NOx emission in exhaust gases. However, biobuthanol increases carbon monoxide (CO concentration. Biobuthanol fuel has a simplier molecular structure, therefore the concentration of HC in the exhaust gas is decreasing. Due to lower heating value of biobuthanol fuel and slower combustion process, the engine efficiency decreases and specific fuel consumptions increase. The change of engine energetical indicators due to biobuthanol, can be compensated with advanced ignition angle. Using experimental investigation, it was determined, that negative biobuthanol influence for the combustion process and engine efficient inicators can be compensated also by additional supplied HHO gas, in which the hydrogen element iprove fuel mixture com-bustion. Fuel combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced biobuthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved, when engine is working for petrol fuel typical optimal spark timing.

  6. An Experimental and Simulation Study of Early Flame Development in a Homogeneous-charge Spark-Ignition Engine

    Directory of Open Access Journals (Sweden)

    Shekhawat Y.

    2017-09-01

    Full Text Available An integrated experimental and Large-Eddy Simulation (LES study is presented for homogeneous premixed combustion in a spark-ignition engine. The engine is a single-cylinder two-valve optical research engine with transparent liner and piston: the Transparent Combustion Chamber (TCC engine. This is a relatively simple, open engine configuration that can be used for LES model development and validation by other research groups. Pressure-based combustion analysis, optical diagnostics and LES have been combined to generate new physical insight into the early stages of combustion. The emphasis has been on developing strategies for making quantitative comparisons between high-speed/high-resolution optical diagnostics and LES using common metrics for both the experiments and the simulations, and focusing on the important early flame development period. Results from two different LES turbulent combustion models are presented, using the same numerical methods and computational mesh. Both models yield Cycle-to-Cycle Variations (CCV in combustion that are higher than what is observed in the experiments. The results reveal strengths and limitations of the experimental diagnostics and the LES models, and suggest directions for future diagnostic and simulation efforts. In particular, it has been observed that flame development between the times corresponding to the laminar-to-turbulent transition and 1% mass-burned fraction are especially important in establishing the subsequent combustion event for each cycle. This suggests a range of temporal and spatial scales over which future experimental and simulation efforts should focus.

  7. Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study

    International Nuclear Information System (INIS)

    Sjerić, Momir; Taritaš, Ivan; Tomić, Rudolf; Blažić, Mislav; Kozarac, Darko; Lulić, Zoran

    2016-01-01

    Highlights: • A cylinder model was calibrated according to experimental results. • A full cycle simulation model of turbocharged spark-ignition engine was made. • Engine performance with high pressure exhaust gas recirculation was studied. • Cooled exhaust gas recirculation lowers exhaust temperature and knock occurrence. • Leaner mixtures enable fuel consumption improvement of up to 11.2%. - Abstract: The numerical analysis of performance of a four cylinder highly boosted spark-ignition engine at full load is described in this paper, with the research focused on introducing high pressure exhaust gas recirculation for control of engine limiting factors such as knock, turbine inlet temperature and cyclic variability. For this analysis the cycle-simulation model which includes modeling of the entire engine flow path, early flame kernel growth, mixture stratification, turbulent combustion, in-cylinder turbulence, knock and cyclic variability was applied. The cylinder sub-models such as ignition, turbulence and combustion were validated by using the experimental results of a naturally aspirated multi cylinder spark-ignition engine. The high load operation, which served as a benchmark value, was obtained by a standard procedure used in calibration of engines, i.e. operation with fuel enrichment and without exhaust gas recirculation. By introducing exhaust gas recirculation and by optimizing other engine operating parameters, the influence of exhaust gas recirculation on engine performance is obtained. The optimum operating parameters, such as spark advance, intake pressure, air to fuel ratio, were found to meet the imposed requirements in terms of fuel consumption, knock occurrence, exhaust gas temperature and variation of indicated mean effective pressure. By comparing the results of the base point with the results that used exhaust gas recirculation the improvement in fuel consumption of 8.7%, 11.2% and 1.5% at engine speeds of 2000 rpm, 3500 rpm and 5000

  8. CONVERSION OF DIESEL ENGINE INTO SPARK IGNITION ENGINE TO WORK WITH CNG AND LPG FUELS FOR MEETING NEW EMISSION NORMS

    Directory of Open Access Journals (Sweden)

    Syed Kaleemuddin

    2010-01-01

    Full Text Available Fluctuating fuel prices and associated pollution problems of largely exploited petroleum liquid fuel has stimulated the research on abundantly available gaseous fuels to keep the mobility industry intact. In the present work an air cooled diesel engine was modified suitably into a spark ignition engine incorporating electronic ignition and variable speed dependant spark timing to accommodate both LPG and CNG as fuels. Engine was optimized for stoichiometric operation on engine dynamometer. Materials of a few intricate engine components were replaced to suit LPG and CNG application. Ignition timing was mapped to work with gaseous fuels for different speeds. Compensation was done for recovering volumetric efficiency when operated with CNG by introducing more volume of air through resonator. Ignition timing was observed to be the pertinent parameter in achieving good performance with gaseous fuels under consideration. Performance and emission tests were carried out on engine dynamometer and chassis dynamometer. Under wide open throttle and at rated speed condition, it was observed that the peak pressure with LPG was lying between diesel fuel and CNG fuel operation due to slow burning nature of gaseous fuels. As compression ratio was maintained same for LPG and CNG fuel operation, low CO emissions were observed with LPG where as HC + NOx emissions were lower with CNG fuel operation. Chassis dynamometer based emission tests yielded lower CO2 levels with CNG operation.

  9. Robust Control of the Air to Fuel Ratio in Spark Ignition Engines with Delayed Measurements from a UEGO Sensor

    Directory of Open Access Journals (Sweden)

    Javier Espinoza-Jurado

    2015-01-01

    Full Text Available A precise control of the normalized air to fuel ratio in spark ignition engines is an essential task. To achieve this goal, in this work we take into consideration the time delay measurement presented by the universal exhaust gas oxygen sensor along with uncertainties in the volumetric efficiency. For that purpose, observers are designed by means of a super-twisting sliding mode estimation scheme. Also two control schemes based on a general nonlinear model and a similar nonlinear affine representation for the dynamics of the normalized air to fuel ratio were designed in this work by using the super-twisting sliding mode methodology. Such dynamics depends on the control input, that is, the injected fuel mass flow, its time derivative, and its reciprocal. The two latter terms are estimated by means of a robust sliding mode differentiator. The observers and controllers are designed based on an isothermal mean value engine model. Numeric and hardware in the loop simulations were carried out with such model, where parameters were taken from a real engine. The obtained results show a good output tracking and rejection of disturbances when the engine is closed loop with proposed control methods.

  10. Numerical analysis of a downsized spark-ignition engine fueled by butanol/gasoline blends at part-load operation

    International Nuclear Information System (INIS)

    Scala, F.; Galloni, E.; Fontana, G.

    2016-01-01

    Highlights: • Bio-fuels will reduce the overall CO 2 emission. • The properties of butanol/gasoline–air mixtures have been determined. • A 1-D model of a SI engine has been calibrated and validated. • The butanol content reduces the combustion duration. • The optimal ignition timing slightly changes. - Abstract: In this paper, the performance of a turbocharged SI engine, firing with butanol/gasoline blends, has been investigated by means of numerical simulations of the engine behavior. When engine fueling is switched from gasoline to alcohol/gasoline mixture, engine control parameters must be adapted. The main necessary modifications in the Electronic Control Unit have been highlighted in the paper. Numerical analyses have been carried out at partial load operation and at two different engine speeds (3000 and 4000 rpm). Several n-butanol/gasoline mixtures, differing for the alcohol contents, have been analyzed. Such engine performances as torque and indicated efficiency have been evaluated. Both these characteristics decrease with the alcohol contents within the mixtures. On the contrary, when the engine is fueled by neat n-butanol, torque and efficiency reach values about 2% higher than those obtained with neat gasoline. Furthermore, the optimal spark timing, for alcohol/gasoline mixture operation, must be retarded (up to 13%) in comparison with the correspondent values of the gasoline operation. In general, engine performance and operation undergo little variations when fuel supplying is switched from gasoline to alcohol/gasoline blends.

  11. Lean hydrous and anhydrous bioethanol combustion in spark ignition engine at idle

    International Nuclear Information System (INIS)

    Chuepeng, Sathaporn; Srisuwan, Sudecha; Tongroon, Manida

    2016-01-01

    Highlights: • Anhydrous ethanol burns fastest in uncalibrated engine at equal equivalence ratio. • The leaner hydrous ethanol combustion tends to elevate the COV in imep. • Hydrous ethanol consumption was 10% greater than anhydrous ethanol at ϕ = 0.67 limit. • Optimizing alternative fuel engine at idle for stability and emission is suggested. - Abstract: The applications of anhydrous bioethanol to substitute or replace gasoline fuel have shown to attain benefits in terms of engine thermal efficiency, power output and exhaust emissions from spark ignition engines. A hydrous bioethanol has also been gained more attention due to its energy and cost effectiveness. The main aim of this work is to minimize fuel quantity injected to the intake ports of a four-cylinder engine under idle condition. The engine running with hydrous ethanol undergoes within lean-burn condition as its combustion stability is analyzed using an engine indicating system. Coefficient of variation in indicated mean effective pressure is an indicator for combustion stability with hydrocarbon and carbon monoxide emission monitoring as a supplement. Anhydrous ethanol burns faster than hydrous ethanol and gasoline in the uncalibrated engine at the same fuel-to-air equivalence ratio under idle condition. The leaner hydrous ethanol combustion tends to elevate the coefficient of variation in indicated mean effective pressure. The experimental results have found that the engine consumes greater hydrous ethanol by 10% on mass basis compared with those of anhydrous ethanol at the lean limit of fuel-to-air equivalence ratio of 0.67. The results of exhaust gas analysis were compared with those predicted by chemical equilibrium analysis of the fuel-air combustion; the resemble trends were found. Calibrating the alternative fueled engine for fuel injection quantity should be accomplished at idle with combustion stability and emissions optimization.

  12. Performance Characteristics Comparison of CNG Port and CNG Direct Injection in Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Rajesh Patel

    2018-03-01

    Full Text Available A comparative performance analysis is being carried out on a four cylinder, four stroke cycle, spark ignition engine having displacement volume 1297cc. The cylinder head of original gasoline based engine was modified by drilling holes from upper surfaces of head to individual combustion chamber to convert the engine in a CNG direct injection engine. The CNG port injection (CNG-PI system and CNG direct injection (CNG-DI system were incorporated with the single engine.  The engine was retrofitted to run on both CNG-PI and CNG-DI system alternately with common CNG tank and other engine loading and measurement system. The engine was equipped with electrical dynamometer having rheostat type loading. The CNG direct injection system was incorporated with various sensors and engine ECU. The operating parameters can be obtained on computer screen by loading the computer with engine through switch box. The engine was run over the speed range of 1000 rpm to 3000 rpm with incremental speed of 300 rpm. The performance parameters were calculated from observations and recorded for both CNG-PI and CNG-DI system. The experimental investigation exhibits that, the average 7-8% reduction in BSFC while the engine was running with CNG-DI system as compared to that of CNG-PI system. Also the engine produced 8-9% higher brake torque and hence higher brake power. The engine gives 6-7% higher brake thermal efficiency with CNG-DI system as compared to CNG-PI system.

  13. On the study of threshold intensity dependence on the gain and loss processes in laser induced spark ignition of molecular hydrogen

    Science.gov (United States)

    Omar, M. M.; Aboulfotouh, A. M.; Gamal, Y. E. E.

    2015-03-01

    In the present work, a numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser spark ignition and plasma formation of H2. The analysis considered H2 over pressure range 150 -3000 torr irradiated by a Nd:YAG laser radiation at wavelengths 1064 and 532 nm with pulse length 5.5 ns. The study based on a modified electron cascade model by one of the authors which solves numerically the time dependent Boltzmann equation as well as a set of rate equations that describe the rate of change of the excited states population. The model includes most of the physical processes that might take place during the interaction. Computations of The threshold intensity are performed for the combined and separate contribution of each of the gain and loss processes. Reasonable agreement with the measured values over the tested pressure range is obtained only for the case of the combined contribution. Basing on the calculation of the electron energy distribution function, the determined relations of the time evolution of the electrons density for selected values of the tested gas pressure region revealed that photo-ionization of the excited states could determine the time of electron generation and hence spark ignition. Collisional ionization contributes to this phenomenon only at the high pressure regime. Loss processes due to electron diffusion, vibrational excitation are found to have significant effect over examined pressure values for the two applied laser wavelengths.

  14. A study of operating parameters on the linear spark ignition engine

    International Nuclear Information System (INIS)

    Lim, Ocktaeck; Hung, Nguyen Ba; Oh, Seokyoung; Kim, Gangchul; Song, Hanho; Iida, Norimasa

    2015-01-01

    Highlights: • An experimental and simulation study of a linear engine is conducted. • The effects of operating parameters on the generating power are investigated. • The air gap length has a significant influence on the generating power. • The generating power of the linear engine is optimized with the value of 111.3 W. • There are no problems for the linear engine after 100 h of durable test. - Abstract: In this paper, we present our experiment and simulation study of a free piston linear engine based on operating conditions and structure of the linear engine for generating electric power. The free piston linear engine includes a two-stroke free piston engine, linear generators, and compressors. In the experimental study, the effects of key parameters such as input caloric value, equivalence ratio, spark timing delay, electrical resistance, and air gap length on the piston dynamics and electric power output are investigated. Propane is used as a fuel in the free piston linear engine, and it is premixed with the air to make a homogeneous charge before go into the cylinder. The air and fuel mass flow rate are varied by a mass flow controller. The experimental results show that the maximum generating power is found with the value of 111 W at the input caloric value of 5.88 kJ/s, spark timing delay of 1.5 ms, equivalence ratio of 1.0, electric resistance of 30 Ω, and air gap length of 1.0 mm. In order to check the durability of the linear engine, a durable test is conducted during 100 h. The experimental results show that there are no problems for the linear engine after about one hundred hours of the durable test. Beside experimental study, a simulation study is conducted to predict operating behavior of the linear engine. In the simulation study, the two-stroke free piston linear engine is modeled and simulated through a combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These

  15. Development of an empirical correlation for combustion durations in spark ignition engines

    International Nuclear Information System (INIS)

    Bayraktar, Hakan; Durgun, Orhan

    2004-01-01

    Development of an empirical correlation for combustion duration is presented. For this purpose, the effects of variations in compression ratio engine speed, fuel/air equivalence ratio and spark advance on combustion duration have been determined by means of a quasi-dimensional SI engine cycle model previously developed by the authors. Burn durations at several engine operating conditions were calculated from the turbulent combustion model. Variations of combustion duration with each operating parameter obtained from the theoretical results were expressed by second degree polynomial functions. By using these functions, a general empirical correlation for the burn duration has been developed. In this correlation, the effects of engine operating parameters on combustion duration were taken into account. Combustion durations predicted by means of this correlation are in good agreement with those obtained from experimental studies and a detailed combustion model

  16. Conversion of a commercial spark ignition engine to run on hydrogen: Performance comparison using hydrogen and gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Sopena, C.; Dieguez, P.M.; Sainz, D.; Urroz, J.C.; Gandia, L.M. [Escuela Tecnica Superior de Ingenieros Industriales y de Telecomunicacion, Universidad Publica de Navarra, Campus de Arrosadia, E-31006 Pamplona (Spain); Guelbenzu, E. [Acciona Biocombustibles S.A., Avenida Ciudad de la Innovacion n 5, E-31621 Sarriguren, Navarra (Spain)

    2010-02-15

    The modifications performed to convert the spark ignition gasoline-fueled internal combustion engine of a Volkswagen Polo 1.4 to run with hydrogen are described. The car is representative of small vehicles widely used for both city and interurban traffic. Main changes included the inlet manifold, gas injectors, oil radiator and the electronic management unit. Injection and ignition advance timing maps were developed for lean mixtures with values of the air to hydrogen equivalence ratio ({lambda}) between 1.6 and 3. The established engine control parameters allowed the safe operation of the hydrogen-fueled engine (H{sub 2}ICE) free of knock, backfire and pre-ignition as well with reasonably low NO{sub x} emissions. The H{sub 2}ICE reached best brake torque of 63 Nm at 3800 rpm and maximum brake power of 32 kW at 5000 rpm. In general, the brake thermal efficiency of the H{sub 2}ICE is greater than that of gasoline-fueled engine except for the H{sub 2}ICE working at very lean conditions ({lambda} = 2.5) and high speeds (above 4000 rpm). A significant effect of the spark advance on the NO{sub x} emissions has been found, specially for relatively rich mixtures ({lambda} < 2). Small changes of spark advance with respect to the optimum value for maximum brake torque give rise to an increase of pollutant emissions. It has been estimated that the hydrogen-fueled Volkswagen Polo could reach a maximum speed of 140 km/h with the adapted engine. Moreover, there is enough reserve of power for the vehicle moving on typical urban routes and routes with slopes up to 10%. (author)

  17. Identification of Knock in NACA High-Speed Photographs of Combustion in a Spark-Ignition Engine

    Science.gov (United States)

    Miller, Cearcy D; Olsen, H Lowell

    1943-01-01

    Report presents the results of a study of combustion in a spark-ignition engine given in NACA Technical Reports 704 and 727. The present investigation was made with the NACA high-speed motion-picture camera, operating at 40,000 photographs a second, and with a cathode-ray oscillograph operating on a piezoelectric pick-up in the combustion chamber. Photographs are presented showing that the origin of knock is not necessarily in the end gas. The data obtained indicates that knock takes place only in a part of the cylinder charge which has been previously ignited either by autoignition or by the passage of the flame fronts but which has not burned to completion. Mottled regions in the high-speed Schlieren photographs are demonstrated to represent combustion regions.

  18. Behaviour analysis of the fuel injected in the intake manifold of port-injected spark ignition engines: modeling and experimental validation; Analyse du comportement du carburant injecte dans les conduits d`admission des moteurs a allumage commande a injection multipoint: modelisation et validation experimentale

    Energy Technology Data Exchange (ETDEWEB)

    Sches, C.

    1999-01-27

    In order to limit pollutant emissions resulting from transient engine operation, the mastering of mixture formation is essential. In this context, an interactive work was undertaken between a modeling job and an experimental study, to get better understanding of the mechanisms of fuel dynamic behavior in the intake manifold of port-injected spark-ignition engines. The experimental study, elaborated thanks to experimental designs, showed out two essential factors: injection timing and coolant liquid temperature, which act on the fuel dynamic behavior through a second order filter. Then, a phenomenological modeling was established and validated, to analyze the various phenomena influencing mixture formation and to calculate the air/fuel ratio evolutions during transient operation. This program uses the results of a 3D model describing the fuel spray transportation, evaporation and impact on the port walls. The calculation does not need any boundary conditions and the running times are vary satisfactory. We showed that a correct description of the liquid fuel film was necessary to get good prediction of the mixture fuel/air ratio. The spray modeling, which is necessary, can however be kept simple. Future work may develop either in the engine control filed (injection strategies development, optimization of the injection system configuration, ...), or in the theoretical field (better modeling of fuel film displacement or of secondary atomization of the fuel on the intake valve). (author) 79 refs.

  19. Ignition of dust clouds by sparks and heated surfaces; Inflammation des nuages de poussieres par des etincelles et des surfaces chauffees

    Energy Technology Data Exchange (ETDEWEB)

    Proust, C.; Boudalaa, M. [Institut National de l' Environnement Industriel et des Risques, 60 - Verneuil en Halatte (INERIS) (France)

    2001-07-01

    The three types of ignition sources described in this article are the sources of mechanical origin, the heated surfaces and the sparks of electrostatic origin. These 3 categories should be at the origin of 75% of the referenced dust explosions. The approach retained is mainly experimental. Hot spots are produced by the impact of a laser beam (Nd-YAG) on a target located inside the cloud. For relatively long delays of ignition (1 to 2 mn), the characteristic ignition parameter is the thermal power supplied by the target to the mixture, at least when the hot-spot size is small enough (less than 2 or 3 mm). Above this size, the ignition parameter would rather be a critical temperature of the hot spot which can be linked to the 'standard' ignition temperature of the cloud. For electrostatic sparks, measurements of current-voltage characteristics have been performed with some measurements of dimensions. Most possible types have been examined, like the discharges between conductive materials (A), between a conductive material and an insulating material (B), and between a conductive material and an insulating material lined with a conductor connected to the ground (C). It appears that the most powerful sparks (several joules) encountered in the industrial environment are those of type A and C. Measurements have shown that the efficiency of the conversion of the energy stored on the surface of the material into electrical energy inside the spark is very high. Finally, a first approach of the examination of the ignition risk has been tempted with a hot spot created during a lapse of time compatible with a mechanical impact. This leads to an ignition criterion in the form of energy. This energy remains at least two scales of size greater than the minimum spark ignition energy. This difference should come from the absorption of heat by solid materials. (J.S.)

  20. Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burton, Jonathan L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sindler, Petr [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Christensen, Earl D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Fouts, Lisa A [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-03

    Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25 degrees C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 degrees C, as well as knock-limited load measurements across a range of IATs up to 90 degrees C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels' knock resistance. The DI load sweeps at 50 degrees C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied. Measurement of knock-limited loads from the IAT sweeps for DI at late combustion phasing showed that a 40 vol% ethanol (E40) blend provided additional knock resistance at the highest temperatures, compared to a 20 vol% ethanol blend and hydrocarbon fuel with similar RON and S. Using the pre-vaporized fuel system, all the high S fuels produced nearly identical knock-limited loads at each temperature across the range of IATs studied. For these fuels RON ranged from 99.2 to 101.1 and S ranged from 9.4 to 12.2, with E40 having the lowest RON and highest S. The higher knock-limited loads for E40 at the highest IATs examined were consistent with the slightly higher S for this fuel, and the lower engine operating condition K values arising from use of this fuel. The study highlights how fuel HOV can affect the temperature at intake valve closing, and consequently the pressure-temperature history of the end gas leading to more negative values of K, thereby enhancing the effect of S on knock resistance.

  1. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    Science.gov (United States)

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs.

  2. Potential benefits of oxygen-enriched intake air in a vehicle powered by a spark-ignition engine

    Science.gov (United States)

    Ng, H. K.; Sekar, R. R.

    1994-04-01

    A production vehicle powered by a spark-ignition engine (3.1-L Chevrolet Lumina, model year 1990) was tested. The test used oxygen-enriched intake air containing 25 and 28% oxygen by volume to determine (1) if the vehicle would run without difficulties and (2) if emissions benefits would result. Standard Federal Test Procedure (FTP) emissions test cycles were run satisfactorily. Test results of catalytic converter-out emissions (emissions out of the converter) showed that both carbon monoxide and hydrocarbons were reduced significantly in all three phases of the emissions test cycle. Test results of engine-out emissions (emissions straight out of the engine, with the converter removed) showed that carbon monoxide was significantly reduced in the cold phase. All emission test results were compared with those for normal air (21% oxygen). The catalytic converter also had an improved carbon monoxide conversion efficiency under the oxygen-enriched-air conditions. Detailed results of hydrocarbon speciation indicated large reductions in 1,3-butadiene, formaldehyde, acetaldehyde, and benzene from the engine with the oxygen-enriched air. Catalytic converter-out ozone was reduced by 60% with 25%-oxygen-content air. Although NO(x) emissions increased significantly, both for engine-out and catalytic converter-out emissions, we anticipate that they can be ameliorated in the near future with new control technologies. The automotive industry currently is developing exhaust-gas control technologies for an oxidizing environment; these technologies should reduce NO(x) emissions more efficiently in vehicles that use oxygen-enriched intake air. On the basis of estimates made from current data, several production vehicles that had low NO(x) emissions could meet the 2004 Tier 2 emissions standards with 25%-oxygen-content air.

  3. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.

  4. Modelling piloted ignition of wood and plastics

    NARCIS (Netherlands)

    Blijderveen, M. van; Bramer, E.A.; Brem, G.

    2012-01-01

    To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The

  5. Analysis of Modifications on a Spark Ignition Engine for Operation with Natural Gas

    Directory of Open Access Journals (Sweden)

    Ramasamy D.

    2016-01-01

    Full Text Available Transportation is one of the key contributors to petroleum usage and emissions to the atmosphere. According to researchers, there are many ways to use transport by using renewable energy sources. Of these solutions, the immediate solution which requires less modification to current engine technology is by using gaseous fuels. Natural gas is the fuel of choice for minor modification to current engines. As it can be derived from anaerobic digestion process, the potential as a renewable energy source is tremendous, especially for an agricultural country such a Malaysia. The aim in the future will be operating an engine with natural gas only with pipelines straight to houses for easy filling. The fuel is light and can be easily carried in vehicles when in compressed form. As such, Compressed Natural Gas (CNG is currently used in bi-fuel engines, but is mostly not optimized in term of their performance. The focus of the paper is to optimize a model of natural gas engine by one dimensional flow modeling for operation with natural gas. The model is analyzed for performance and emission characteristics produced by a gasoline engine and later compared with natural gas. The average performance drop is about 15% from its gasoline counterpart. The 4% benchmark indicates that the modification to ignition timing and compression ratio does improve engine performance using natural gas as fuel.

  6. On the study of threshold intensity dependence on the gain and loss processes in laser induced spark ignition of molecular hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Omar, M. M., E-mail: magdymomar@gmail.com; Aboulfotouh, A. M. [Department of physics, Faculty of Science, Cairo University, Giza (Egypt); Gamal, Y. E. E. [National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt)

    2015-03-30

    In the present work, a numerical analysis is performed to investigate the comparative contribution of the mechanisms responsible for electron gain and losses in laser spark ignition and plasma formation of H{sub 2}. The analysis considered H{sub 2} over pressure range 150 -3000 torr irradiated by a Nd:YAG laser radiation at wavelengths 1064 and 532 nm with pulse length 5.5 ns. The study based on a modified electron cascade model by one of the authors which solves numerically the time dependent Boltzmann equation as well as a set of rate equations that describe the rate of change of the excited states population. The model includes most of the physical processes that might take place during the interaction. Computations of The threshold intensity are performed for the combined and separate contribution of each of the gain and loss processes. Reasonable agreement with the measured values over the tested pressure range is obtained only for the case of the combined contribution. Basing on the calculation of the electron energy distribution function, the determined relations of the time evolution of the electrons density for selected values of the tested gas pressure region revealed that photo-ionization of the excited states could determine the time of electron generation and hence spark ignition. Collisional ionization contributes to this phenomenon only at the high pressure regime. Loss processes due to electron diffusion, vibrational excitation are found to have significant effect over examined pressure values for the two applied laser wavelengths.

  7. Evaluation of performance and emissions characteristics of methanol blend (gasohol) in a naturally aspirated spark ignition engine

    Science.gov (United States)

    Alexandru, Dima; Ilie, Dumitru; Dragos, Tutunea

    2017-10-01

    Alternative fuels for use in internal combustion engines have become recently in attention due the strict regulations regarding the environmental protection, emissions and to reduce the dependency of the fossil fuels. One choice is the use of methanol as it can be produce from renewable sources and blended with gasoline in any proportion. The aim of this study is to compare the effects of methanol - gasoline blends regarding performance, combustion and emission characteristics with gasoline. Five different blends M5, M10, M15, M20 and M25 were tested in a single cylinder spark ignition engine typically used in scooters applications. The experimental results in engine performance show a decrease of torque and power up to 10 %and in emissions characteristics a CO, CO2, HC. It can be concluded that gasohol is viable option to be used in gasoline engines to replace partially the fossil fuel.

  8. Modelling piloted ignition of wood and plastics.

    Science.gov (United States)

    van Blijderveen, Maarten; Bramer, Eddy A; Brem, Gerrit

    2012-09-01

    To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Fuel conversion efficiency improvements in a highly boosted spark-ignition engine with ultra-expansion cycle

    International Nuclear Information System (INIS)

    Li, Tie; Zheng, Bin; Yin, Tao

    2015-01-01

    Highlights: • Ultra-expansion cycle SI engine is investigated. • An improvement of 9–26% in BSFC at most frequently operated conditions is obtained. • At high and medium loads, BSFC improvement is attributed to the increased combustion efficiency and reduced exhaust energy. • At low loads, reduction in pumping loss and exhaust energy is the primary contributors to BSFC improvement. • Technical challenge in practical application of this type of engine is discussed. - Abstract: A four-cylinder, intake boosted, port fuel injection (PFI), spark-ignition (SI) engine is modified to a three-cylinder engine with the outer two cylinders working in the conventional four stroke cycle and with the inner cylinder working only with the expansion and exhausting strokes. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performance of the three-cylinder engine with the ultra-expansion cycle is numerically studied. Compared to the original engine, the fuel consumptions under the most-frequently operated conditions are improved by 9–26% and the low fuel consumption area on the operating map are drastically enlarged for the ultra-expansion cycle engine with the proper design. Nonetheless, a higher intake boosting is needed for the ultra-expansion cycle engine to circumvent the significant drop in the wide-open-throttle (WOT) performance, and compression ratio of the combustion cylinder must be reduced to avoid knocking combustion. Despite of the reduced compression ratio, however, the total expansion ratio is increased to 13.8 with the extra expansion of the working gas in the inner cylinder. Compared to the conventional engine, the theoretical thermal efficiency is therefore increased by up to above 4.0% with the ultra-expansion cycle over the most load range. The energy balance analysis shows that the increased combustion efficiency, reduced exhaust energy and the extra expansion work in the

  10. Critical firing and misfiring boundary in a spark ignition methanol engine during cold start based on single cycle fuel injection

    International Nuclear Information System (INIS)

    Li, Zhaohui; Gong, Changming; Qu, Xiang; Liu, Fenghua; Sun, Jingzhen; Wang, Kang; Li, Yufeng

    2015-01-01

    The influence of the mass of methanol injected per cycle, ambient temperature, injection and ignition timing, preheating methods, and supplying additional liquefied petroleum gas (LPG) injection into the intake manifold on the critical firing and misfiring boundary of an electronically injection controlled spark ignition (SI) methanol engine during cold start were investigated experimentally based on a single cycle fuel injection with cycle-by-cycle control strategy. The critical firing and misfiring boundary was restricted by all parameters. For ambient temperatures below 16 °C, methanol engines must use auxiliary start-aids during cold start. Optimal control of the methanol injection and ignition timing can realize ideal next cycle firing combustion after injection. Resistance wire and glow plug preheating can provide critical firing down to ambient temperatures of 5 °C and 0 °C, respectively. Using an additional LPG injection into the intake manifold can provide critical firing down to an ambient temperature of −13 °C during cold start. As the ambient temperature decreases, the optimal angle difference between methanol injection timing and LPG injection timing for critical firing of a methanol engine increases rapidly during cold start. - Highlights: • A single cycle fuel injection and cycle-by-cycle control strategy are used to study. • In-cylinder pressure and instantaneous speed were used to determine firing boundary. • For the ambient temperatures below 16 °C, an auxiliary start-aids must be used. • A preheating and additional LPG were used to expand critical firing boundary. • Additional LPG can result in critical firing down to ambient temperature of −13 °C

  11. Performance analyses of a spark-ignition engine firing with gasoline–butanol blends at partial load operation

    International Nuclear Information System (INIS)

    Galloni, E.; Fontana, G.; Staccone, S.; Scala, F.

    2016-01-01

    Highlights: • The potential of butanol has been investigated at partial load operation. • Torque and thermal efficiency slightly decrease when the alcohol content increases. • At part load, spark advance does not require changes when alcohol content increases. - Abstract: Biofuels seem to represent one of the most promising means for the limitation of the greenhouse gas emissions coming from traditional energy systems. In this paper, the performance of a “downsized” spark-ignition engine, fueled by gasoline and bio-butanol blends (20% and 40% butanol mass percentage), has been analyzed. In the first phase of this activity, the experimental tests have been carried out at operating points ranging from low to medium engine speed and load. The first investigations were aimed to assess the main differences among the different fuels in terms of output torque, thermal efficiency, combustion duration and optimal spark timing. In order to study the engine behavior in a wide range of fuel mixtures, these parameters have been evaluated for equivalence ratio values ranging from 1.25 to 0.83. The results obtained in this step show that both the engine torque and thermal efficiency slightly decrease (meanly about 4%) when the blend alcohol content increases. However, butanol increases the burning rate of lean mixtures and an interesting result is that the spark advance does not require adjustments when fueling changes from neat gasoline to bio-butanol/gasoline blends. Later, the pollutant emissions and the CO 2 emissions, for both rich and lean mixtures of pure gasoline and gasoline bio-butanol blends, have been measured. In general, firing with alcohol blends, NO x and CO emissions remain quite the same, HC emissions slightly decrease while the CO 2 emissions slightly increase. At the end, in order to reproduce the real world urban driving cycle, stoichiometric mixtures have been analyzed. In these conditions, the engine thermal efficiency, at given speed and torque

  12. Spark ignition engine performance and emissions in a high compression engine using biogas and methane mixtures without knock occurrence

    Directory of Open Access Journals (Sweden)

    Gómez Montoya Juan Pablo

    2015-01-01

    Full Text Available With the purpose to use biogas in an internal combustion engine with high compression ratio and in order to get a high output thermal efficiency, this investigation used a diesel engine with a maximum output power 8.5 kW, which was converted to spark ignition mode to use it with gaseous fuels. Three fuels were used: Simulated biogas, biogas enriched with 25% and 50% methane by volume. After conversion, the output power of the engine decreased by 17.64% when using only biogas, where 7 kW was the new maximum output power of the engine. The compression ratio was kept at 15.5:1, and knocking did not occur during engine operation. Output thermal efficiency operating the engine in SI mode with biogas enriched with 50% methane was almost the same compared with the engine running in diesel-biogas dual mode at full load and was greater at part loads. The dependence of the diesel pilot was eliminated when biogas was used in the engine converted in SI mode. The optimum condition of experiment for the engine without knocking was using biogas enriched with 50% methane, with 12 degrees of spark timing advance and equivalence ratio of 0.95, larger output powers and higher values of methane concentration lead the engine to knock operation. The presence of CO2 allows operating engines at high compression ratios with normal combustion conditions. Emissions of nitrogen oxides, carbon monoxide and unburnt methane all in g/kWh decreased when the biogas was enriched with 50% methane.

  13. The Effect of Exhaust Gas Recirculation (EGR on the Emission of a Single Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Limyaa Mahdi Asaad

    2016-07-01

    Full Text Available A single cylinder variable compression ratio spark ignition engine type PRODIT was used in this study. The  experiments  were  conducted  with  gasoline  fuel  (80  octane  No.at  equivalence  ratio  (Ø  =1.  This study examined the effects of exhaust gas recirculation on emission. It was conducted at engine speeds (1500, 1900, 2300 and 2700 r.p.m..The  exhaust  gases  were  added  in  volumetric  ratios  of  10%,  20%  and  30%  of  the  entering  air/fuel charge. The results showed that the EGR addition decreases the CO2 concentrations, in the same time CO and HC concentrations increase remarkably.  NOx concentration decreased highly with the increase of EGR percentage at variable engine speeds and constant torque. Also, it decreased when the engine run  at  constant  speed  and  variable  engine  torque.  The  exhaust  gas  temperature  decreased  with increasing EGR ratio.

  14. Investigation of emissions characteristics of secondary butyl alcohol-gasoline blends in a port fuel injection spark ignition engine

    Directory of Open Access Journals (Sweden)

    Yusri I.M.

    2017-01-01

    Full Text Available Exhaust emissions especially from light duty gasoline engine are a major contributor to air pollution due to the large number of vehicles on the road. The purpose of this study is to experimentally analyse the exhaust pollutant emissions of a four-stroke port fuel spark ignition engines operating using secondary butyl alcohol–gasoline blends by percentage volume of 5% (GBu5, 10% (GBu10 and 15% (GBu15 of secondary butyl- alcohol (2-butanol additives in gasoline fuels at 50% of wide throttle open. The exhaust emissions characteristics of the engine using blended fuels was compared to the exhaust emissions of the engine with gasoline fuels (G100 as a reference fuels. Exhaust emissions analysis results show that all of the blended fuels produced lower CO by 8.6%, 11.6% and 24.8% for GBu5, GBu10 and GBu15 respectively from 2500 to 4000 RPM, while for HC, both GBu10 and GBu15 were lower than that G100 fuels at all engine speeds. In general, when the engine was operated using blended fuels, the engine produced lower CO and HC, but higher CO2.

  15. Effect of Operating Conditions on Pollutants Concentration Emitted from a Spark Ignition Engine Fueled with Gasoline Bioethanol Blends

    Directory of Open Access Journals (Sweden)

    Haroun A. K. Shahad

    2015-01-01

    Full Text Available This study is an experimental investigation of the effect of bioethanol gasoline blending on exhaust emissions in terms of carbon dioxide CO2, carbon monoxide CO, unburnt hydrocarbons UHC, and nitric oxide NOx of a spark ignition engine. Tests are conducted at controlled throttle and variable speed condition over the range of 1200 to 2000 rpm with intervals 400 rpm. Different compression ratios are tested for each speed, namely (7,8,10, and 11. Pure gasoline and bioethanol gasoline blends are used. The bioethanol used is produced from Iraqi date crop (Zehdi. Blending is done on energy replacement bases. Ethanol energy ratio (EER used is 5%, 10%, and 15%. At each of the three designated engine speeds, the torque is set as 0, 3, 7, 10, and 14 N·m. It is found that ethanol blending reduces CO and UHC concentration in the exhaust gases by about 45% and 40.15%, respectively, and increases NOx and CO2 concentrations in the exhaust gases by about 16.18% and 7.5%, respectively. It is found also that load and speed increase causes an increase in CO2 and NOx concentrations and reduces CO and UHC concentrations. It is also found that increasing the compression ratio causes the emissions of CO2 and NOx to decrease and those of CO and UHC to increase.

  16. The effect of ethanol-gasoline blends on performance and exhaust emissions of a spark ignition engine through exergy analysis

    International Nuclear Information System (INIS)

    Doğan, Battal; Erol, Derviş; Yaman, Hayri; Kodanli, Evren

    2017-01-01

    Highlights: • Examining the performance of ethanol-gasoline blend. • Evaluation of the exhaust emissions. • Energy and exergy analysis. • Calculation of irreversibility from cooling system and the exhaust resulting. - Abstract: Ethanol which is considered as an environmentally cleaner alternative to fossil fuels is used on its own or blended with other fuels in different ratios. In this study, ethanol which has high octane rating, low exhaust emission, and which is easily obtained from agricultural products has been used in fuels prepared by blending it with gasoline in various ratios (E0, E10, E20, and E30). Ethanol-gasoline blends have been used in a four-cylinder four-stroke spark ignition engine for performance and emission analysis under full load. In the experimental studies, engine torque, fuel and cooling water flow rates, and exhaust and engine surface temperature have been measured. Engine energy distribution, irreversible processes in the cooling system and the exhaust, and the exergy distribution have been calculated using the experimental data and the formulas for the first and second laws of thermodynamics. Experiments and theoretical calculations showed that ethanol added fuels show reduction in carbon monoxide (CO), carbon dioxide (CO 2 ) and nitrogen oxide (NO X ) emissions without significant loss of power compared to gasoline. But it was measured that the reduction of the temperature inside the cylinder increases the hydrocarbon (HC) emission.

  17. Effects of a catalytic volatile particle remover (VPR) on the particulate matter emissions from a direct injection spark ignition engine.

    Science.gov (United States)

    Xu, Fan; Chen, Longfei; Stone, Richard

    2011-10-15

    Emissions of fine particles have been shown to have a large impact on the atmospheric environment and human health. Researchers have shown that gasoline engines, especially direct injection spark ignition (DISI) engines, tend to emit large amounts of small size particles compared to diesel engines fitted with diesel particulate filters (DPFs). As a result, the particle number emissions of DISI engines will be restricted by the forthcoming EU6 legislation. The particulate emission level of DISI engines means that they could face some challenges in meeting the EU6 requirement. This paper is an experimental study on the size-resolved particle number emissions from a spray guided DISI engine and the performance of a catalytic volatile particle remover (VPR), as the EU legislation seeks to exclude volatile particles. The performance of the catalytic VPR was evaluated by varying its temperature and the exhaust residence time. The effect of the catalytic VPR acting as an oxidation catalyst on particle emissions was also tested. The results show that the catalytic VPR led to a marked reduction in the number of particles, especially the smaller size (nucleation mode) particles. The catalytic VPR is essentially an oxidation catalyst, and when post three-way catalyst (TWC) exhaust was introduced to the catalytic VPR, the performance of the catalytic VPR was not affected much by the use of additional air, i.e., no significant oxidation of the PM was observed.

  18. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  19. Characterization of Lean Misfire Limits of Mixture Alternative Gaseous Fuels Used for Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Miqdam Tariq Chaichan

    2012-03-01

    Full Text Available Increasing on gaseous fuels as clean, economical and abundant fuels encourages the search for optimum conditions of gas-fueled internal combustion engines. This paper presents the experimental results on the lean operational limits of Recardo E6 engine using gasoline, LPG, NG and hydrogen as fuels. The first appearance of almost motoring cycle was used to define the engine lean limit after the fuel flow was reduced gradually. The effects of compression ratio, engine speed and spark timing on the engine operational limits are presented and discussed in detailed. Increasing compression ratio (CR extend the lean limits, this appears obviously with hydrogen, which has a wide range of equivalence ratios, while for hydrocarbon fuel octane number affect gasoline, so it can' t work above CR=9:1, and for LPG it reaches CR=12:1, NG reaches CR=15:1 at lean limit operation. Movement from low speeds to medium speeds extended lean misfire limits, while moving from medium to high speeds contracted the lean misfiring limits. NOx, CO and UBHC concentrations increased with CR increase for all fuels, while CO2 concentrations reduced with this increment. NOx concentration increased for medium speeds and reduced for high speeds, but the resulted concentrations were inconcedrable for these lean limits. CO and CO2 increased with engine speed increase, while UBHC reduced with this increment. The hydrogen engine runs with zero CO, CO2 and UNHC concentrations, and altra low levels of NOx concentrations at studied lean misfire limits

  20. Effects of turbulence enhancement on combustion process using a double injection strategy in direct-injection spark-ignition (DISI) gasoline engines

    International Nuclear Information System (INIS)

    Kim, Taehoon; Song, Jingeun; Park, Sungwook

    2015-01-01

    Highlights: • Using double injection strategy, turbulent kinetic energy can be improved with slight decrease in mixture homogeneity. • Retarded first injection timing reduces vapor fuel loss to intake port. • Double injection increases tumble intensity. • High turbulent intensity caused by double injection increases flame propagation speed. - Abstract: Direct-injection spark-ignition (DISI) gasoline engines have been spotlighted due to their high thermal efficiency. Increase in the compression ratio that result from the heat absorption effect of fuel vaporization induces higher thermal efficiency than found in port fuel injection (PFI) engines. Since fuel is injected at the cylinder directly, various fuel injection strategies can be used. In this study, turbulent intensity was improved by a double injection strategy while maintaining mixture homogeneity. To analyze the turbulence enhancement effects using the double injection strategy, a side fuel injected, homogeneous-charge-type DISI gasoline engine with a multi-hole-type injector was utilized. The spray model was evaluated using experimental data for various injection pressures and the combustion model was evaluated for varied ignition timing. First and second injection timing was swept by 20 degree interval. The turbulent kinetic energy and mixture inhomogeneity index were mapped. First injection at the middle of the intake stroke and second injection early in the compression stroke showed improved turbulent characteristics that did not significantly decrease with mixture homogeneity. A double injection case that showed improved turbulent intensity while maintaining an adequate level of mixture homogeneity and another double injection case that showed significantly improved turbulent intensity with a remarkable decrease in mixture homogeneity were considered for combustion simulation. We found that the improved turbulent intensity increased the flame propagation speed. Also, the mixture homogeneity

  1. Vacuum spark breakdown model based on exploding metal wire phenomena

    International Nuclear Information System (INIS)

    Haaland, J.

    1984-06-01

    Spark source mass spectra (SSMS) indicates that ions are extracted from an expanding and decaying plasma. The intensity distribution shows no dependance on vaporization properties of individual elements which indicates explosive vapour formation. This seems further to be a requirement for bridging a vacuum gap. A model including plasma ejection from a superheated anode spot by a process similar to that of an exploding metal wire is proposed. The appearance of hot plasma points in low inductance vacuum sparks can then be explained as exploding micro particles ejected from a final central anode spot. The phenomenological model is compared with available experimental results from literature, but no extensive quantification is attempted

  2. Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system

    Science.gov (United States)

    Żmudka, Zbigniew; Postrzednik, Stefan; Przybyła, Grzegorz

    2014-09-01

    The theoretical analysis of the charge exchange process in a spark ignition engine has been presented. This process has significant impact on the effectiveness of engine operation because it is related to the necessity of overcoming the flow resistance, followed by the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by the throttling valve is especially high during the part load operation. The open Atkinson-Miller cycle has been assumed as a model of processes taking place in the engine. Using fully variable inlet valve timing the A-M cycle can be realized according to two systems: system with late inlet valve closing and system with early inlet valve closing. The systems have been analysed individually and comparatively with the open Seiliger-Sabathe cycle which is a theoretical cycle for the classical throttle governing of the engine load. Benefits resulting from application of the systems with independent inlet valve control have been assessed on the basis of the selected parameters: fuel dose, cycle work, charge exchange work and a cycle efficiency. The use of the analysed systems to governing of the SI engine load will enable to eliminate a throttling valve from the system inlet and reduce the charge exchange work, especially within the range of part load operation.

  3. Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system

    Directory of Open Access Journals (Sweden)

    Żmudka Zbigniew

    2014-09-01

    Full Text Available The theoretical analysis of the charge exchange process in a spark ignition engine has been presented. This process has significant impact on the effectiveness of engine operation because it is related to the necessity of overcoming the flow resistance, followed by the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by the throttling valve is especially high during the part load operation. The open Atkinson-Miller cycle has been assumed as a model of processes taking place in the engine. Using fully variable inlet valve timing the A-M cycle can be realized according to two systems: system with late inlet valve closing and system with early inlet valve closing. The systems have been analysed individually and comparatively with the open Seiliger-Sabathe cycle which is a theoretical cycle for the classical throttle governing of the engine load. Benefits resulting from application of the systems with independent inlet valve control have been assessed on the basis of the selected parameters: fuel dose, cycle work, charge exchange work and a cycle efficiency. The use of the analysed systems to governing of the SI engine load will enable to eliminate a throttling valve from the system inlet and reduce the charge exchange work, especially within the range of part load operation.

  4. Measure of the volumetric efficiency and evaporator device performance for a liquefied petroleum gas spark ignition engine

    International Nuclear Information System (INIS)

    Masi, Massimo; Gobbato, Paolo

    2012-01-01

    Highlights: ► Measure of the effect of LPG fuel on volumetric efficiency of a SI petrol ICE. ► Steady-state and transient performance of a LPG evaporator device on a SI ICE. ► Volume displaced by LPG causes slight performance loss in SI petrol engines. ► LPG reveals peak efficiency and high-efficiency range wider than petrol in SI ICE’s. ► One-stage pressure reducer for LPG performs satisfactorily during SI ICE transients. - Abstract: The use of Liquefied Petroleum Gas (LPG) as fuel for spark ignition engines originally designed to be gasoline fuelled is common practice in many countries. Despite this, some questions remain still open. The present paper deals with the two main problems related to LPG port-fuel SI engines: the volumetric efficiency drop and the LPG evaporator device performance. A passengers car SI engine equipped with a “third generation” kit for the dual-fuel operation was tested using a dynamometer test rig. A single-stage pressure reducer was selected as LPG evaporator, to take advantage of an additional pre-heating of the liquid LPG that allows higher power output than a two-stage device of the same size. Engine performance, volumetric efficiency and change of LPG thermodynamic states in the evaporator were measured both in steady-state and transient operation of the engine. Steady-state measurements show the advantage of LPG in terms of engine efficiency, and quantify the drop in steady-state brake torque due to the volume swept by gaseous fuel in the fresh charge admission process. On the other hand, transient measurements show that a single-stage evaporator device is capable to match overall simplicity and satisfactory performance during strong changes in engine load.

  5. Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: Performance and emissions analysis

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2015-12-01

    Full Text Available This study discusses performance and exhaust emissions from spark-ignition engine fueled with ethanol–methanol–gasoline blends. The test results obtained with the use of low content rates of ethanol–methanol blends (3–10 vol.% in gasoline were compared to ethanol–gasoline blends, methanol–gasoline blends and pure gasoline test results. Combustion and emission characteristics of ethanol, methanol and gasoline and their blends were evaluated. Results showed that when the vehicle was fueled with ethanol–methanol–gasoline blends, the concentrations of CO and UHC (unburnt hydrocarbons emissions were significantly decreased, compared to the neat gasoline. Methanol–gasoline blends presented the lowest emissions of CO and UHC among all test fuels. Ethanol–gasoline blends showed a moderate emission level between the neat gasoline and ethanol–methanol–gasoline blends, e.g., ethanol–gasoline blends presented lower CO and UHC emissions than those of the neat gasoline but higher emissions than those of the ethanol–methanol–gasoline blends. In addition, the CO and UHC decreased and CO2 increased when ethanol and/or methanol contents increased in the fuel blends. Furthermore, the effects of blended fuels on engine performance were investigated and results showed that methanol–gasoline blends presents the highest volumetric efficiency and torque; ethanol–gasoline blends provides the highest brake power, while ethanol–methanol–gasoline blends showed a moderate level of volumetric efficiency, torque and brake power between both methanol–gasoline and ethanol–gasoline blends; gasoline, on the other hand, showed the lowest volumetric efficiency, torque and brake power among all test fuels.

  6. Integrated thermodynamic model for ignition target performance

    Directory of Open Access Journals (Sweden)

    Springer P.T.

    2013-11-01

    Full Text Available We have derived a 3-dimensional synthetic model for NIF implosion conditions, by predicting and optimizing fits to a broad set of x-ray and nuclear diagnostics obtained on each shot. By matching x-ray images, burn width, neutron time-of-flight ion temperature, yield, and fuel ρr, we obtain nearly unique constraints on conditions in the hotspot and fuel in a model that is entirely consistent with the observables. This model allows us to determine hotspot density, pressure, areal density (ρr, total energy, and other ignition-relevant parameters not available from any single diagnostic. This article describes the model and its application to National Ignition Facility (NIF tritium–hydrogen–deuterium (THD and DT implosion data, and provides an explanation for the large yield and ρr degradation compared to numerical code predictions.

  7. THE EFFECT OF ADDING HYDROGEN ON THE PERFORMANCE AND THE CYCLIC VARIABILITY OF A SPARK IGNITION ENGINE POWERED BY NATURAL GAS

    Directory of Open Access Journals (Sweden)

    Andrej Chríbik

    2014-02-01

    Full Text Available This paper deals with the influence of blending hydrogen (from 0 to 50% vol. on the parameters and the cyclic variability of a Lombardini LGW702 combustion engine powered by natural gas. The experimental measurements were carried out at various air excess ratios and at various angles of spark advance, at an operating speed of 1500 min−1. An analysis of the combustion pressure showed that as the proportion of hydrogen in the mixture increases, the maximum pressure value also increases. However, at the same time the cyclic variability decreases. Both the ignition-delay period and the period of combustion of the mixture become shorter, which requires optimization of the spark advance angle for various proportions of hydrogen in the fuel. The increasing proportion of hydrogen extends the flammability limit to the area of lean-burn mixtures and, at the same time, the coefficient of cyclic variability of the mean indicated pressure decreases.

  8. Structural and fractal properties of particles emitted from spark ignition engines.

    Science.gov (United States)

    Chakrabarty, Rajan K; Moosmüller, Hans; Arnott, W Patrick; Garro, Mark A; Walker, John

    2006-11-01

    Size, morphology, and microstructure of particles emitted from one light-duty passenger vehicle (Buick Century; model year 1990; PM (particulate matter) mass emission rate 3.1 mg/km) and two light-duty trucks (Chevrolet C2; model year 1973; PM mass emission rate 282 mg/km, and Chevrolet El Camino; model year 1976; PM mass emission rate 31 mg/km), running California's unified driving cycles (UDC) on a chassis dynamometer, were studied using scanning electron microscopy (SEM). SEM images yielded particle properties including three-dimensional density fractal dimensions, monomer and agglomerate number size distributions, and three different shape descriptors, namely aspect ratio, root form factor, and roundness. The density fractal dimension of the particles was between 1.7 and 1.78, while the number size distribution of the particles placed the majority of the particles in the accumulation mode (0.1-0.3 microm). The shape descriptors were found to decrease with increasing particle size. Partial melting of particles, a rare and previously unreported phenomenon, was observed upon exposure of particles emitted during phase 2 of the UDC to the low accelerating voltage electron beam of the SEM. The rate of melting was quantified for individual particles, establishing a near linear relationship between the melting rate and the organic carbon 1 to elemental carbon ratio.

  9. Co-Optimization of Fuels & Engines (Co-Optima) Initiative: Recent Progress on Light-Duty Boosted Spark-Ignition Fuels/Engines

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, John

    2017-07-03

    This presentation reports recent progress on light-duty boosted spark-ignition fuels/engines being developed under the Co-Optimization of Fuels and Engines initiative (Co-Optima). Co-Optima is focused on identifying fuel properties that optimize engine performance, independent of composition, allowing the market to define the best means to blend and provide these fuels. However, in support of this, we are pursuing a systematic study of blendstocks to identify a broad range of feasible options, with the objective of identifying blendstocks that can provide target ranges of key fuel properties, identifying trade-offs on consistent and comprehensive basis, and sharing information with stakeholders.

  10. Marine spark-ignition engine and off-road recreational vehicle emission regulations : discussion document

    International Nuclear Information System (INIS)

    2004-07-01

    In February 2001, the Minister of Environment Canada outlined a series of measures to reduce emissions from vehicles and engines, including off-road engines. This report describes proposed regulations to control emissions form outboard engines, personal watercraft engines, snowmobiles, off-highway motorcycles, all-terrain vehicles and utility vehicles. Since most marine engines and recreational vehicles sold in Canada are imported, the agenda includes the development of new regulations under Division 5 of the Canadian Environmental Protection Act (CEPA) to align Canada's emission standards for off-road vehicles with those of the United States Environmental Protection Agency. A harmonized approach on emissions standards is expected to result in fewer transition and implementation problems. This report describes which vehicles and engines will be subjected to the planned regulations along with those that will be exempted. Planned emission standard swill apply to vehicles and engines of the 2007 and later model years. Persons affected by the planned regulations were also identified. tabs., figs

  11. Performance and emissions assessment of n-butanol–methanol–gasoline blends as a fuel in spark-ignition engi

    Directory of Open Access Journals (Sweden)

    Ashraf Elfasakhany

    2016-09-01

    Full Text Available The sleek of using alternatives to gasoline fuel in internal combustion engines becomes a necessity as the environmental problems of fossil fuels as well as their depleted reserves. This research presents an experimental investigation into a new blended fuel; the effects of n-butanol–methanol–gasoline fuel blends on the performance and pollutant emissions of an SI (spark-ignition engine were examined. Four test fuels (namely 0, 3, 7 and 10 volumetric percent of n-butanol–methanol blends at equal rates, e.g., 0%, 1.5%, 3.5% and 5% for n-butanol and methanol, in gasoline were investigated in an engine speed range of 2600–3400 r/min. In addition, the dual alcohol (methanol and n-butanol–gasoline blends were compared with single alcohol (n-butanol–gasoline blends (for the first time as well as with the neat gasoline fuel in terms of performance and emissions. The experimental results showed that the addition of low content rates of n-butanol–methanol to neat gasoline adversely affects the engine performance and exhaust gas emissions as compared to the results of neat gasoline and single alcohol–gasoline blends; in particular, a reduction in engine volumetric efficiency, brake power, torque, in-cylinder pressure, exhaust gas temperature and CO2 emissions and an increase in concentrations of CO and UHC (unburned hydrocarbons emissions were observed for the dual alcohols. However, higher rates of n-butanol–methanol blended in gasoline were observed to improve the SI engine performance parameters and emission concentration. Oppositely the higher rates of single alcohol–gasoline blends were observed to provide adverse results, e.g., higher emissions and lower performance than those of lower rates of single alcohol. Finally, dual alcohol–gasoline blends could exceed (i.e. provide higher performance and lower emissions single alcohol–gasoline blends and pure gasoline at higher rates (>10 vol.% in the blend and, in turn, it is

  12. The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine

    Science.gov (United States)

    Warju; Harto, S. P.; Soenarto

    2018-01-01

    One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.

  13. Structure ignition assessment model (SIAM)\\t

    Science.gov (United States)

    Jack D. Cohen

    1995-01-01

    Major wildland/urban interface fire losses, principally residences, continue to occur. Although the problem is not new, the specific mechanisms are not well known on how structures ignite in association with wildland fires. In response to the need for a better understanding of wildland/urban interface ignition mechanisms and a method of assessing the ignition risk,...

  14. Identification of Knock in NACA High-Speed Photographs of Combustion in a Spark-Ignition Engine

    Science.gov (United States)

    1943-01-01

    brilliancy control of the oscillo- graph beam was arranged in such a way that the beam would normally be invisible but, when tripped by a contactor at the...oscillator was used. The engine was stopped immediately after fining and the brilliancy control was agg tripped to give a single sweep of the...a spark-ignltfon engine wfth IIght hmcL F@ m pemmt S-1 with XI p?rcent M-z fear -k plaga ; spark advanm, loft-bnnd PltW 2’7’. OthW thiw phla m B

  15. Spark ignition engine control: estimation and prediction of the in-cylinder mass and chemical species; Controle moteur a allumage commande: estimation / prediction de la masse et de la composition du melange enferme dans le cylindre

    Energy Technology Data Exchange (ETDEWEB)

    Giansetti, P.

    2005-09-15

    Spark ignition engine control has become a major issue regarding compliance with emissions legislation while ensuring driving comfort. The objective of this thesis was to estimate the mass and composition of gases inside the cylinder of an engine based on physics in order to insure better control of transient phases taking into account residual gases as well as exhaust gas recirculation. Residual gas fraction has been characterized using two experiments and one CFD code. A model has been validated experimentally and integrated into an observer which predicts pressure and temperature inside the manifold. The predictions of the different gas flows and the chemical species inside the cylinder are deduced. A closed loop observer has been validated experimentally and in simulation. Moreover, an algorithm estimating the fresh and burned gas mass from the cylinder pressure has been proposed in order to obtain the information cycle by cycle and cylinder by cylinder. (author)

  16. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    Science.gov (United States)

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  17. Recent results of full-spatial scale modeling of fast ignition and shock ignition

    Science.gov (United States)

    Tonge, J.; May, J.; Mori, W. B.; Fiuza, F.; Marti, M.; Fonseca, R. A.; Davies, J. R.; Silva, L. O.

    2010-11-01

    We show recent results of full-spatial scale modeling of fast ignition and shock ignition, from both full-PIC and the recently developed hybrid-PIC capability of OSIRIS 2.0. Our results show full-scale modeling of fast ignition over full density and time scales, where laser absorption, electron beam divergence, and energy deposition in the compressed core will be addressed in a self-consistent manner. Full-PIC and hybrid-PIC simulations of isolated targets will be presented, illustrating the importance of this type of modeling in order to accurately infer the beam divergence and transport properties. We will also demonstrate the possibility of performing full-scale simulations of shock ignition with the new hybrid-PIC capability, using compressed target profiles from hydrodynamic simulations, and studying the self-consistent laser absorption, electron transport, and energy deposition that can lead to the generation of the shock required for ignition. Work supported by DOE under DE-FC02-04-ER54789 and DE-FG52-09NA29552, and NSF under NSF-Phy-0904039, FCT (Portugal), and the HiPER project. Simulations performed on Hoffman at UCLA, Thresher at SDSC, and Intrepid at ANL supported by Incite grant FastIgnitionPIC.

  18. Increase in the thermodynamic efficiency of the working process of spark-ignited engines on natural gas with the addition of hydrogen

    Science.gov (United States)

    Mikhailovna Smolenskaya, Natalia; Vladimirovich Smolenskii, Victor; Vladimirovich Korneev, Nicholas

    2018-02-01

    The work is devoted to the substantiation and practical implementation of a new approach for estimating the change in internal energy by pressure and volume. The pressure is measured with a calibrated sensor. The change in volume inside the cylinder is determined by changing the position of the piston. The position of the piston is precisely determined by the angle of rotation of the crankshaft. On the basis of the proposed approach, the thermodynamic efficiency of the working process of spark ignition engines on natural gas with the addition of hydrogen was estimated. Experimental studies were carried out on a single-cylinder unit UIT-85. Their analysis showed an increase in the thermodynamic efficiency of the working process with the addition of hydrogen in a compressed natural gas (CNG).The results obtained make it possible to determine the characteristic of heat release from the analysis of experimental data. The effect of hydrogen addition on the CNG combustion process is estimated.

  19. Prediction on Power Produced from Power Turbine as a Waste Heat Recovery Mechanism on Naturally Aspirated Spark Ignition Engine Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Safarudin Gazali Herawan

    2016-01-01

    Full Text Available The waste heat from exhaust gases represents a significant amount of thermal energy, which has conventionally been used for combined heating and power applications. This paper explores the performance of a naturally aspirated spark ignition engine equipped with waste heat recovery mechanism (WHRM in a sedan car. The amount of heat energy from exhaust is presented and the experimental test results suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine. However, the existence of WHRM affects the performance of engine by slightly reducing the power. The simulation method is created using an artificial neural network (ANN which predicts the power produced from the WHRM.

  20. Thermodynamic analysis of EGR effects on the first and second law efficiencies of a boosted spark-ignited direct-injection gasoline engine

    International Nuclear Information System (INIS)

    Li, Tie; Wu, Da; Xu, Min

    2013-01-01

    Highlights: • We clarified the mechanism of EGR improving fuel economy of gasoline engines. • At constant air–fuel ratio, reduction of heat transfer loss is most significant. • At full load, elimination of fuel enrichment is dominant. • Combustion irreversibility increases with EGR. • Availability in the exhaust and heat transfer losses is smaller than energy losses. - Abstract: Exhaust gas recirculation (EGR) is effective to improve fuel economy of spark-ignition gasoline engines, but the detailed mechanism needs to be further investigated. In this paper, an in-depth analysis of the effects of cooled EGR on the fuel conversion efficiency of a boosted, spark-ignited, direct-injection, gasoline engines operated at the full, medium and low loads is conducted with the engine experiment and 1-D cycle simulation based on the first and second laws of thermodynamics. For all the operating loads, EGR increases the ratio of specific heat of working gas, reduces the fraction of heat transfer through the combustion chamber walls, and improves the pumping work during the gas exchanging stroke. Besides, EGR may replace the fuel enrichment at high load, advance the combustion phasing and increase the degree of constant volume heat release at the medium and high loads. As a result, about 1.1–4.1% improvements in the brake thermal efficiency are obtained by the 12–17% EGR at different loads. Despite the increased fraction of combustion-generated irreversibility (destruction in availability or exergy), the fraction of indicated work in the total availability increases with EGR for all the operating loads. Among the influencing factors, the effect of reduction in the heat transfer loss owing to EGR is dominant in improvement of the fuel conversion efficiency at constant air–fuel ratio, while replacement of the fuel enrichment with EGR is most effective at full load

  1. Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions

    International Nuclear Information System (INIS)

    Zhang, Bo; Ji, Changwei; Wang, Shuofeng; Liu, Xiaolong

    2014-01-01

    Methanol is a promising alternative fuel for the spark-ignition engines. This paper experimentally investigated the performance of a hydrogen-blended methanol engine at lean and various load conditions. The test was conducted on a four-cylinder commercial spark-ignition engine equipped with an electronically controlled hydrogen port injection system. The test was conducted under a typical city driving speed of 1400 rpm and a constant excess air ratio of 1.20. Two hydrogen volume fractions in the intake of 0 and 3% were adopted to investigate the effect of hydrogen addition on combustion and emissions performance of the methanol engine. The test results showed that brake thermal efficiency was improved after the hydrogen addition. When manifolds absolute pressure increased from about 38 to 83 kPa, brake thermal efficiencies after the hydrogen addition were increased by 6.5% and 4.2%. The addition of hydrogen availed shortening flame development and propagation periods. The peak cylinder temperature was raised whereas cylinder temperature at the exhaust valve opening was decreased after the hydrogen addition. The addition of hydrogen contributed to the dropped hydrocarbon and carbon monoxide. However, nitrogen oxides were slightly raised after the hydrogen enrichment. - Highlights: • Load characteristics of a H 2 -blended methanol engine are experimentally studied. • H 2 addition is more effective on raising engine efficiency at low loads. • Flame development and propagation periods are shortened after H 2 addition. • H 2 enrichment contributes to the smooth operation of the methanol engine. • HC and CO emissions from the methanol engine are reduced after H 2 addition

  2. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    Directory of Open Access Journals (Sweden)

    Alfredas Rimkus

    2016-09-01

    Full Text Available In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume gasoline mixtures and additionally supplied oxygen and hydrogen (HHO gas mixture (3.6 l/min in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during combustion phase and decreases effective specific fuel consumption. Buthanol addition decreases the rate of heat release, the combustion temperature and pressure are lower which have an influence on lower nitrous oxide (NOx emission in exhaust gases. Buthanol lowers hydrocarbon (HC formation, but it increases carbon monoxide (CO concentration and fuel consumption. Combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced buthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved when engine is working with optimal spark timing, as it would work on gasoline fuel.

  3. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  4. Shock ignition: modelling and target design robustness

    Energy Technology Data Exchange (ETDEWEB)

    Ribeyre, X; Lafon, M; Schurtz, G; Olazabal-Loume, M; Breil, J; Galera, S; Weber, S, E-mail: ribeyre@celia.u-bordeaux1.f [Centre Lasers Intenses et Applications, Universite Bordeaux 1, CNRS, CEA, Universite Bordeaux 1, 351, cours de la Liberation, 33405 Talence (France)

    2009-12-15

    Shock ignition of a pre-compressed deuterium tritium fuel is considered here. When properly timed, a converging shock launched in the target prior to stagnation time strongly enhances the hot spot pressure. This allows ignition to be reached in a nonisobaric configuration. We show in this work that the igniting mechanism is pressure amplification by shock convergence and shock collision. The shock ignition applied to the HiPER target allows one to study the robustness of this method. It is shown that the spike energy is not a critical parameter and that the spike power delivered on the target depends mainly on the shell implosion velocity. Finally, a family of homothetic targets ignited with a shock wave is studied.

  5. Laser diagnostic and plasma technological fundamentals of emission and fuel consumption reduction in DI internal combustion engines. Investigation of a plasma ignition system for DI spark ignition engines. Final report; Laserdiagnostische und plasmatechnologische Grundlagen zur Verminderung von Emissionen und Kraftstoffverbrauch von DI-Verbrennungsmotoren. Untersuchung eines Plasmazuendsystems fuer DI-Ottomotoren. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Lepperhoff, G.; Geiger, J.; Wolters, P.; Boewing, R.; Neff, W.

    2000-07-01

    Misfire in stratified DI spark ignition engines may result from cyclic variations of the mixture near the spark plugs. More stable ignition is expected from an initiation of inflammation in a volume range which is significantly larger than the ignition spark of a transistor coil ignition system. the research project investigated the interdependence between electric power supply and the development and propagation of the plasma on a plasma spark plug in space and time. Goals of development are: Development of a system for test stand testing (no electromagnetic interference in the electronic system of the test stand; long-term stability and low variation of the ignition energy; low electrode wear); higher thermal efficiency than conventional transistor coil ignition systems; improved ignition of slow-reacting mixtures with ignition energies below 120 mJ; 'remote' inflammation across a gap of several mm inside the combustion space. [German] Bei geschichtet betriebenen DI-Ottomotoren koennen zyklische Schwankungen in der Gemischzusammensetzung in Zuendkerzennaehe zu Verbrennungsaussetzern fuehren. Durch die Initiierung der Entflammung in einem Volumenbereich, der im Vergleich zum Zuendfunken einer Transistorspulenzuendung (TSZ) deutlich groesser ist, wird eine stabilere Verbrennungseinleitung erwartet. In diesem Forschungsvorhaben liegt der Schwerpunkt auf der Untersuchung des Zusammenhangs zwischen der elektrischen Leistungseinkopplung und der zeitlich-raeumlichen Entstehung und Ausbreitung des Plasmas an einer Plasmazuendkerze. Die wesentlichen Ziele sind: - Darstellung eines pruefstandtauglichen Systems fuer den Betrieb an DI-Ottomotoren (keine elektromagnetische Stoerung der Pruefstandelektronik; Langzeitstabilitaet der Zuendenergie bei kleiner Schwankungsbreite; niedriger Verschleiss der Elektroden) - hoeherer thermischer Wirkungsgrad als konventionelle Transistorspulenzuendungen - verbesserte Zuendung reaktionstraeger Gemische mit Zuendenergien <120 m

  6. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    International Nuclear Information System (INIS)

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-01-01

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  7. Benefits and applications of laser-induced sparks in real scale model measurements

    DEFF Research Database (Denmark)

    Gómez-Bolaños, Javier; Delikaris-Manias, Symeon; Pulkki, Ville Topias

    2015-01-01

    The characteristics of using a laser-induced spark as a monopole source in scale model measurements were assessed by comparison with an electric spark and a miniature spherical loudspeaker. Room impulse responses of first order directivity sources were synthesized off-line using six spatially dis...

  8. Development of a simulation model for compression ignition engine running with ignition improved blend

    Directory of Open Access Journals (Sweden)

    Sudeshkumar Ponnusamy Moranahalli

    2011-01-01

    Full Text Available Department of Automobile Engineering, Anna University, Chennai, India. The present work describes the thermodynamic and heat transfer models used in a computer program which simulates the diesel fuel and ignition improver blend to predict the combustion and emission characteristics of a direct injection compression ignition engine fuelled with ignition improver blend using classical two zone approach. One zone consists of pure air called non burning zone and other zone consist of fuel and combustion products called burning zone. First law of thermodynamics and state equations are applied in each of the two zones to yield cylinder temperatures and cylinder pressure histories. Using the two zone combustion model the combustion parameters and the chemical equilibrium composition were determined. To validate the model an experimental investigation has been conducted on a single cylinder direct injection diesel engine fuelled with 12% by volume of 2- ethoxy ethanol blend with diesel fuel. Addition of ignition improver blend to diesel fuel decreases the exhaust smoke and increases the thermal efficiency for the power outputs. It was observed that there is a good agreement between simulated and experimental results and the proposed model requires low computational time for a complete run.

  9. Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A.; Burton, Jonathan; Sindler, Petr; Christensen, Earl; Fouts, Lisa; Chupka, Gina M.; McCormick, Robert L.

    2016-04-01

    Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions. The results show a range of knock resistances that correlate well with RON. Molecules with relatively low boiling point and high vapor pressure had little effect on PM emissions. In contrast, the aromatic oxygenates caused significant increases in PM emissions (factors of 2 to 5) relative to the base gasoline. Thus, any effect of their oxygen atom on increasing local air-fuel ratio was outweighed by their low vapor pressure and high double-bond equivalent values. For most fuels and oxygenate blend components, PMI was a good predictor of PM emissions. However, the high boiling point, low vapor pressure oxygenates 2-phenylethanol and 2,4-xylenol produced lower PM emissions than predicted by PMI. This was likely because they did not fully evaporate and combust, and instead were swept into the lube oil.

  10. Reactive burn models and ignition & growth concept

    Science.gov (United States)

    Menikoff, R.; Shaw, M. S.

    Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i) the density of active hot spots or burn centers; (ii) the growth of the burn fronts triggered by the burn centers; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s) as a function of a dimensionless reaction length s(t) = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps) = [Nbc(Ps)]-1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t) = ∫t0 D(P(t'))dt' is the distance the burn front propagates from a single burn center, where D(P) is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  11. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped

  12. SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics for Scientific Data and Analysis

    Data.gov (United States)

    National Aeronautics and Space Administration — We will construct SciSpark, a scalable system for interactive model evaluation and for the rapid development of climate metrics and analyses. SciSpark directly...

  13. Ignition in an Atomistic Model of Hydrogen Oxidation.

    Science.gov (United States)

    Alaghemandi, Mohammad; Newcomb, Lucas B; Green, Jason R

    2017-03-02

    Hydrogen is a potential substitute for fossil fuels that would reduce the combustive emission of carbon dioxide. However, the low ignition energy needed to initiate oxidation imposes constraints on the efficiency and safety of hydrogen-based technologies. Microscopic details of the combustion processes, ephemeral transient species, and complex reaction networks are necessary to control and optimize the use of hydrogen as a commercial fuel. Here, we report estimates of the ignition time of hydrogen-oxygen mixtures over a wide range of equivalence ratios from extensive reactive molecular dynamics simulations. These data show that the shortest ignition time corresponds to a fuel-lean mixture with an equivalence ratio of 0.5, where the number of hydrogen and oxygen molecules in the initial mixture are identical, in good agreement with a recent chemical kinetic model. We find two signatures in the simulation data precede ignition at pressures above 200 MPa. First, there is a peak in hydrogen peroxide that signals ignition is imminent in about 100 ps. Second, we find a strong anticorrelation between the ignition time and the rate of energy dissipation, suggesting the role of thermal feedback in stimulating ignition.

  14. Mixed butanols addition to gasoline surrogates: Shock tube ignition delay time measurements and chemical kinetic modeling

    KAUST Repository

    AlRamadan, Abdullah S.

    2015-10-01

    The demand for fuels with high anti-knock quality has historically been rising, and will continue to increase with the development of downsized and turbocharged spark-ignition engines. Butanol isomers, such as 2-butanol and tert-butanol, have high octane ratings (RON of 105 and 107, respectively), and thus mixed butanols (68.8% by volume of 2-butanol and 31.2% by volume of tert-butanol) can be added to the conventional petroleum-derived gasoline fuels to improve octane performance. In the present work, the effect of mixed butanols addition to gasoline surrogates has been investigated in a high-pressure shock tube facility. The ignition delay times of mixed butanols stoichiometric mixtures were measured at 20 and 40bar over a temperature range of 800-1200K. Next, 10vol% and 20vol% of mixed butanols (MB) were blended with two different toluene/n-heptane/iso-octane (TPRF) fuel blends having octane ratings of RON 90/MON 81.7 and RON 84.6/MON 79.3. These MB/TPRF mixtures were investigated in the shock tube conditions similar to those mentioned above. A chemical kinetic model was developed to simulate the low- and high-temperature oxidation of mixed butanols and MB/TPRF blends. The proposed model is in good agreement with the experimental data with some deviations at low temperatures. The effect of mixed butanols addition to TPRFs is marginal when examining the ignition delay times at high temperatures. However, when extended to lower temperatures (T < 850K), the model shows that the mixed butanols addition to TPRFs causes the ignition delay times to increase and hence behaves like an octane booster at engine-like conditions. © 2015 The Combustion Institute.

  15. Low-Temperature Catalytic Performance of Ni-Cu/Al2O3 Catalysts for Gasoline Reforming to Produce Hydrogen Applied in Spark Ignition Engines

    Directory of Open Access Journals (Sweden)

    Le Anh Tuan

    2016-03-01

    Full Text Available The performance of Ni-Cu/Al2O3 catalysts for steam reforming (SR of gasoline to produce a hydrogen-rich gas mixture applied in a spark ignition (SI engine was investigated at relatively low temperature. The structural and morphological features and catalysis activity were observed by X-ray diffractometry (XRD, scanning electron microscopy (SEM, and temperature programmed reduction (TPR. The results showed that the addition of copper improved the dispersion of nickel and therefore facilitated the reduction of Ni at low temperature. The highest hydrogen selectivity of 70.6% is observed over the Ni-Cu/Al2O3 catalysts at a steam/carbon ratio of 0.9. With Cu promotion, a gasoline conversion of 42.6% can be achieved at 550 °C, while with both Mo and Ce promotion, the gasoline conversions were 31.7% and 28.3%, respectively, higher than with the conventional Ni catalyst. On the other hand, initial durability testing showed that the conversion of gasoline over Ni-Cu/Al2O3 catalysts slightly decreased after 30 h reaction time.

  16. Characteristics of Early Flame Development in a Direct-Injection Spark-Ignition CNG Engine Fitted with a Variable Swirl Control Valve

    Directory of Open Access Journals (Sweden)

    Abd Rashid Abd Aziz

    2017-07-01

    Full Text Available An experimental study was conducted to investigate the effect of the structure of the induction flow on the characteristics of early flames in a lean-stratified and lean-homogeneous charge combustion of compressed natural gas (CNG fuel in a direct injection (DI engine at different engine speeds. The engine speed was varied at 1500 rpm, 1800 rpm and 2100 rpm, and the ignition timing was set at a 38.5° crank angle (CA after top dead center (TDC for all conditions. The engine was operated in a partial-load mode and a homogeneous air/fuel charge was achieved by injecting the fuel early (before the intake valve closure, while late injection during the compression stroke was used to produce a stratified charge. Different induction flow structures were obtained by adjusting the swirl control valves (SCV. Using an endoscopic intensified CCD (ICCD camera, flame images were captured and analyzed. Code was developed to analyze the level of distortion of the flame and its wrinkledness, displacement and position relative to the spark center, as well as the flame growth rate. The results showed a higher flame growth rate with the flame kernel in the homogeneous charge, compared to the stratified combustion case. In the stratified charge combustion scenario, the 10° SCV closure (medium-tumble resulted in a higher early flame growth rate, whereas a homogeneous charge combustion (characterized by strong swirl resulted in the highest rate of flame growth.

  17. A Comparative study on VOCs and aldehyde-ketone emissions from a spark Ignition vehicle fuelled on compressed natural gas and gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.

    2012-01-01

    In this work, an experimental study was conducted on a spark ignition (SI) vehicle fuelled on compressed natural gas (CNG), and gasoline to compare the unregulated emissions such as volatile organic compounds (VOCs) and aldehyde-ketones or carbonyls. In the meantime, ozone forming potential (OFP) of pollutants was also calculated on the basis of their specific reactivity (SR). The vehicle was run on a chassis dynamometer following the Chinese National Standards test scheduled for light duty vehicle (LDV) emissions. According to the results, total aldehyde-ketones were increased by 39.4% due to the substantial increase in formaldehyde and acrolein + acetone emissions, while VOCs and BTEX (benzene, toluene, ethyl benzene, and xylene) reduced by 85.2 and 86% respectively, in case of CNG fuelled vehicle as compared to gasoline vehicle. Although total aldehyde-ketones were higher with CNG relative to gasoline, their SR was lower due decrease in acetaldehyde, propionaldehyde, crotonaldehyde, and methacrolein species having higher maximum incremental reactivity (MIR) values. The SR of VOCs and aldehyde-ketones emitted from CNG fuelled vehicle was decreased by above 10% and 32% respectively, owing to better physicochemical properties and more complete burning of CNG as compared to gasoline. (author)

  18. Reactive burn models and ignition & growth concept

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

    2010-01-01

    Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  19. Reactive burn models and ignition & growth concept

    Directory of Open Access Journals (Sweden)

    Shaw M.S.

    2011-01-01

    Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  20. Physics-based modeling of live wildland fuel ignition experiments in the Forced Ignition and Flame Spread Test apparatus

    Science.gov (United States)

    C. Anand; B. Shotorban; S. Mahalingam; S. McAllister; D. R. Weise

    2017-01-01

    A computational study was performed to improve our understanding of the ignition of live fuel in the forced ignition and flame spread test apparatus, a setup where the impact of the heating mode is investigated by subjecting the fuel to forced convection and radiation. An improvement was first made in the physics-based model WFDS where the fuel is treated as fixed...

  1. Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline

    International Nuclear Information System (INIS)

    Merola, Simona Silvia; Tornatore, Cinzia; Irimescu, Adrian; Marchitto, Luca; Valentino, Gerardo

    2016-01-01

    Given the instability in supply and finite nature of fossil fuels, alternative renewable energy sources are continuously investigated throughout the production–distribution-use chain. Within this context, the research presented in this work is focused on using butanol as gasoline replacement in a Direct Injection Spark Ignition engine. The impact of this fuel on the combustion processes was investigated using optical diagnostics and conventional methods in a transparent single cylinder engine. Three different load settings were investigated at fixed engine speed, with combined throttling and mixture strength control. The engine was operated in homogenous charge mode, with commercial gasoline and pure n-butanol fueling. High spatial and temporal resolution visualization was applied in the first phase of the combustion process in order to follow the early flame development for the two fuels. The optical data were completed with conventional measurements of thermodynamic data and pollutants emission at the exhaust. Improved performance was obtained in throttled stoichiometric mode when using the alternative fuel, while at wide open throttle, gasoline featured higher indicated mean effective pressure at both air–fuel ratio settings. These overall findings were correlated to flame characteristics; the alcohol was found to feature more distorted flame contour compared to gasoline, especially in lean conditions. Differences were reduced during throttled stoichiometric operation, confirming that mass transfer processes, along with fuel chemistry and physical properties, exert a significant influence on local phenomena during combustion. - Highlights: • Butanol can replace gasoline without performance penalties in throttled, stoichiometric operation. • Butanol induces higher flame contour distortion than gasoline, especially in lean case. • Fuel chemical–physical properties strongly influence local phenomena during combustion. • Butanol ensured lower smoke

  2. Two-stage Lagrangian modeling of ignition processes in ignition quality tester and constant volume combustion chambers

    KAUST Repository

    Alfazazi, Adamu

    2016-08-10

    The ignition characteristics of isooctane and n-heptane in an ignition quality tester (IQT) were simulated using a two-stage Lagrangian (TSL) model, which is a zero-dimensional (0-D) reactor network method. The TSL model was also used to simulate the ignition delay of n-dodecane and n-heptane in a constant volume combustion chamber (CVCC), which is archived in the engine combustion network (ECN) library (http://www.ca.sandia.gov/ecn). A detailed chemical kinetic model for gasoline surrogates from the Lawrence Livermore National Laboratory (LLNL) was utilized for the simulation of n-heptane and isooctane. Additional simulations were performed using an optimized gasoline surrogate mechanism from RWTH Aachen University. Validations of the simulated data were also performed with experimental results from an IQT at KAUST. For simulation of n-dodecane in the CVCC, two n-dodecane kinetic models from the literature were utilized. The primary aim of this study is to test the ability of TSL to replicate ignition timings in the IQT and the CVCC. The agreement between the model and the experiment is acceptable except for isooctane in the IQT and n-heptane and n-dodecane in the CVCC. The ability of the simulations to replicate observable trends in ignition delay times with regard to changes in ambient temperature and pressure allows the model to provide insights into the reactions contributing towards ignition. Thus, the TSL model was further employed to investigate the physical and chemical processes responsible for controlling the overall ignition under various conditions. The effects of exothermicity, ambient pressure, and ambient oxygen concentration on first stage ignition were also studied. Increasing ambient pressure and oxygen concentration was found to shorten the overall ignition delay time, but does not affect the timing of the first stage ignition. Additionally, the temperature at the end of the first stage ignition was found to increase at higher ambient pressure

  3. Modeling spatio-temporal wildfire ignition point patterns

    Science.gov (United States)

    Amanda S. Hering; Cynthia L. Bell; Marc G. Genton

    2009-01-01

    We analyze and model the structure of spatio-temporal wildfire ignitions in the St. Johns River Water Management District in northeastern Florida. Previous studies, based on the K-function and an assumption of homogeneity, have shown that wildfire events occur in clusters. We revisit this analysis based on an inhomogeneous K-...

  4. Progress towards a lightning ignition model for the Northern Rockies

    Science.gov (United States)

    Paul Sopko; Don Latham

    2010-01-01

    We are in the process of constructing a lightning ignition model specific to the Northern Rockies using fire occurrence, lightning strike, ecoregion, and historical weather, NFDRS (National Fire Danger Rating System), lightning efficiency and lightning "possibility" data. Daily grids for each of these categories were reconstructed for the 2003 fire season (...

  5. Acoustic Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  6. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  7. COMBUSTION SIMULATION IN A SPARK IGNITION ENGINE CYLINDER: EFFECTS OF AIR-FUEL RATIO ON THE COMBUSTION DURATION

    Directory of Open Access Journals (Sweden)

    Nureddin Dinler

    2010-01-01

    Full Text Available Combustion is an important subject of internal combustion engine studies. To reduce the air pollution from internal combustion engines and to increase the engine performance, it is required to increase combustion efficiency. In this study, effects of air/fuel ratio were investigated numerically. An axisymmetrical internal combustion engine was modeled in order to simulate in-cylinder engine flow and combustion. Two dimensional transient continuity, momentum, turbulence, energy, and combustion equations were solved. The k-e turbulence model was employed. The fuel mass fraction transport equation was used for modeling of the combustion. For this purpose a computational fluid dynamics code was developed by using the finite volume method with FORTRAN programming code. The moving mesh was utilized to simulate the piston motion. The developed code simulates four strokes of engine continuously. In the case of laminar flow combustion, Arrhenius type combustion equations were employed. In the case of turbulent flow combustion, eddy break-up model was employed. Results were given for rich, stoichiometric, and lean mixtures in contour graphs. Contour graphs showed that lean mixture (l = 1.1 has longer combustion duration.

  8. Effect of water-containing acetone–butanol–ethanol gasoline blends on combustion, performance, and emissions characteristics of a spark-ignition engine

    International Nuclear Information System (INIS)

    Li, Yuqiang; Nithyanandan, Karthik; Lee, Timothy H.; Donahue, Robert Michael; Lin, Yilu; Lee, Chia-Fon; Liao, Shengming

    2016-01-01

    Highlights: • Water-containing ABE (acetone–butanol–ethanol) was used an alternative fuel. • Water-containing ABE and gasoline blends were investigated in an SI engine. • Water-containing ABE and gasoline blends can enhance engine torque. • Water-containing ABE and gasoline blends can reduce CO, UHC and NO x emissions. - Abstract: Bio-butanol has proved to be a promising alternative fuel in recent years; it is typically produced from ABE (acetone–butanol–ethanol) fermentation from non-edible biomass feedstock. The high costs for dehydration and recovery from dilute fermentation broth have so far prohibited bio-butanol’s use in internal combustion engines. There is an interesting in studying the intermediate fermentation product, i.e. water-containing ABE as a potential fuel. However, most previous studies covered the use of water-containing ABE–diesel blends. In addition, previous studies on SI engines fueled with ABE did not consider the effect of water. Therefore, the evaluation of water-containing ABE gasoline blends in a port fuel-injected spark-ignition (SI) engine was carried out in this study. Effect of adding ABE and water into gasoline on combustion, performance and emissions characteristics was investigated by testing gasoline, ABE30, ABE85, ABE29.5W0.5 and ABE29W1 (29 vol.% ABE, 1 vol.% water and 70 vol.% gasoline). In addition, ABE29W1 was compared with gasoline under various equivalence ratios (Φ = 0.83–1.25) and engine loads (3 and 5 bar BMEP). It was found that ABE29W1 generally had higher engine toque (3.1–8.2%) and lower CO (9.8–35.1%), UHC (27.4–78.2%) and NO x (4.1–39.4%) than those of gasoline. The study indicated that water-containing ABE could be used in SI engines as an alternative fuel with good engine performance and low emissions.

  9. Combined effects of cooled EGR and a higher geometric compression ratio on thermal efficiency improvement of a downsized boosted spark-ignition direct-injection engine

    International Nuclear Information System (INIS)

    Su, Jianye; Xu, Min; Li, Tie; Gao, Yi; Wang, Jiasheng

    2014-01-01

    Highlights: • Experiments for the effects of cooled EGR and two compression ratios (CR) on fuel efficiency were conducted. • The mechanism for the observed fuel efficiency behaviors by cooled EGR and high CR was clarified. • Cooled EGR offers more fuel efficiency improvement than elevating CR from 9.3 to 10.9. • Combining 18–25% cooled EGR with 10.9 CR lead to 2.1–3.5% brake thermal efficiency improvements. - Abstract: The downsized boosted spark-ignition direct-injection (SIDI) engine has proven to be one of the most promising concepts to improve vehicle fuel economy. However, the boosted engine is typically designed at a lower geometric compression ratio (CR) due to the increased knock tendency in comparison to naturally aspirated engines, limiting the potential of improving fuel economy. On the other hand, cooled exhaust gas recirculation (EGR) has drawn attention due to the potential to suppress knock and improve fuel economy. Combing the effects of boosting, increased CR and cooled EGR to further improve fuel economy within acceptable knock tolerance has been investigated using a 2.0 L downsized boosted SIDI engine over a wide range of engine operating conditions from 1000 rpm to 3000 rpm at low to high loads. To clarify the mechanism of this complicated effects, the first law of thermodynamics analysis was conducted with the inputs from GT-Power® engine simulation. Experiment results indicate that cooled EGR provides more brake thermal efficiency improvement than increasing geometric CR from 9.3 to 10.9. The benefit of brake thermal efficiency from the higher CR is limited to low load conditions. The attributes for improving brake thermal efficiency by cooled EGR include reduced heat transfer loss, reduced pumping work and increased ratio of specific heats for all the engine operating conditions, as well as higher degree of constant volume heat release only for the knock-limited high load conditions. The combined effects of 18–25% cooled EGR

  10. Modeling And Simulation Of Combined Extrusion For Spark Plug Body Parts

    Science.gov (United States)

    Canta, T.; Noveanu, D.; Frunza, D.

    2004-06-01

    The paper presents the modeling and simulation for the extrusion technology of a new type of spark plug body for Dacia Supernova car. This technology was simulated using the finite elements modeling and analysis SuperForm software, designed for the simulation of plastic deformation processes. There is also presented a comparison between the results of the simulation and the industrial results.

  11. Improvements to the Composition of Fusel Oil and Analysis of the Effects of Fusel Oil–Gasoline Blends on a Spark-Ignited (SI Engine’s Performance and Emissions

    Directory of Open Access Journals (Sweden)

    Suleyman Simsek

    2018-03-01

    Full Text Available With the increase of energy needs and environmental pollution, alcohol-based alternative fuels are used in spark-ignited (SI engines. Fusel oil, which is a by-product obtained through distillation of ethanol, contains some valuable alcohols. As alcohols are high-octane, they have an important place among the alternative fuels. Fusel also takes its place among those alternatives as it is high-octane and low on exhaust emissions. In this research, the effects of using blends of unleaded gasoline and improved fusel oil on engine performance and exhaust emissions were analyzed experimentally. A four-stroke, single-cylinder, spark-ignited engine was used in the experiments. The tests were conducted at a fixed speed and under different loads. The test fuels were blended supplying with fusel oil at rates incremented by 10%, up to 50%. Under each load, the engine’s performance and emissions were measured. Throughout the experiments, it has been observed that engine torque and specific fuel consumption increases as the amount of fusel oil in the blend is increased. Nitrogen oxide (NOx, carbon monoxide (CO, and hydrocarbon (HC emissions are reduced as the amount of fusel oil in the blends is increased.

  12. Measured and Predicted Vapor Liquid Equilibrium of Ethanol-Gasoline Fuels with Insight on the Influence of Azeotrope Interactions on Aromatic Species Enrichment and Particulate Matter Formation in Spark Ignition Engines

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Matthew A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); McCormick, Robert L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burke, Stephen [Colorado State University; Rhoads, Robert [University of Colorado; Windom, Bret [Colorado State University

    2018-04-03

    A relationship has been observed between increasing ethanol content in gasoline and increased particulate matter (PM) emissions from direct injection spark ignition (DISI) vehicles. The fundamental cause of this observation is not well understood. One potential explanation is that increased evaporative cooling as a result of ethanol's high HOV may slow evaporation and prevent sufficient reactant mixing resulting in the combustion of localized fuel rich regions within the cylinder. In addition, it is well known that ethanol when blended in gasoline forms positive azeotropes which can alter the liquid/vapor composition during the vaporization process. In fact, it was shown recently through a numerical study that these interactions can retain the aromatic species within the liquid phase impeding the in-cylinder mixing of these compounds, which would accentuate PM formation upon combustion. To better understand the role of the azeotrope interactions on the vapor/liquid composition evolution of the fuel, distillations were performed using the Advanced Distillation Curve apparatus on carefully selected samples consisting of gasoline blended with ethanol and heavy aromatic and oxygenated compounds with varying vapor pressures, including cumene, p-cymene, 4-tertbutyl toluene, anisole, and 4-methyl anisole. Samples collected during the distillation indicate an enrichment of the heavy aromatic or oxygenated additive with an increase in initial ethanol concentration from E0 to E30. A recently developed distillation and droplet evaporation model is used to explore the influence of dilution effects versus azeotrope interactions on the aromatic species enrichment. The results suggest that HOV-cooling effects as well as aromatic species enrichment behaviors should be considered in future development of predictive indices to forecast the PM potential of fuels containing oxygenated compounds with comparatively high HOV.

  13. Advances in Modeling Direct-Drive Ignition at the National Ignition Facility

    Science.gov (United States)

    Collins, T. J. B.; Marozas, J. A.

    2017-10-01

    Polar direct drive (PDD) makes it possible to perform direct-drive-ignition experiments at the National Ignition Facility (NIF) while the facility is configured for indirect drive. We present for the first time PDD ignition-relevant target designs with decreased laser intensities. These designs include the physical effects of cross-beam energy transfer (CBET) and nonlocal heat transport, both of which substantially affect the target drive. In the PDD configuration, a multiwavelength detuning strategy was found to be effective in mitigating the loss of coupling caused by CBET, allowing for implosion speeds comparable to those of previous designs. Target designs will be presented that span the region from alpha-particle heating to ignition. In addition, ignition-relevant designs will also be discussed for use in symmetric direct drive on the NIF. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  14. Zero-dimensional mathematical model of the torch ignited engine

    International Nuclear Information System (INIS)

    Cruz, Igor William Santos Leal; Alvarez, Carlos Eduardo Castilla; Teixeira, Alysson Fernandes; Valle, Ramon Molina

    2016-01-01

    Highlights: • Publications about the torch ignition system are mostly CFD or experimental research. • A zero-dimensional mathematical model is presented. • The model is based on classical thermodynamic equations. • Approximations are based on empirical functions. • The model is applied to a prototype by means of a computer code. - Abstract: Often employed in the analysis of conventional SI and CI engines, mathematical models can also be applied to engines with torch ignition, which have been researched almost exclusively by CFD or experimentally. The objective of this work is to describe the development and application of a zero-dimensional model of the compression and power strokes of a torch ignited engine. It is an initial analysis that can be used as a basis for future models. The processes of compression, combustion and expansion were described mathematically and applied to an existing prototype by means of a computer code written in MATLAB language. Conservation of energy and mass and the ideal gas law were used in determining gas temperature, pressure, and mass flow rate within the cylinder. Gas motion through the orifice was modelled as an isentropic compressible flow. The thermodynamic properties of the mixture were found by a weighted arithmetic mean of the data for each component, computed by polynomial functions of temperature. Combustion was modelled by the Wiebe function. Heat transfer to the cylinder walls was estimated by Annand’s correlations. Results revealed the behaviour of pressure, temperature, jet velocity, energy transfer, thermodynamic properties, among other variables, and how some of these are influenced by others.

  15. LASER IGNITION SYSTEM FOR INTERNAL COMBUSTION ENGINE

    OpenAIRE

    Mr.Utsav Kothari*; Mr.Pravin Bharane; Mr.Akash Modasara

    2016-01-01

    Laser ignition is considered to be one of the most promising future ignition concepts for internal combustion engines. It not only combines requirement of reduction of pollutant emissions but also improves engine efficiencies. In general, a well-defined ignition location and ignition time is of great importance for an IC engine. Spark plugs are well suited for such tasks but suffer from disadvantages, like erosion of electrodes & inflexible or un-optimal location of spark plug. Also the conv...

  16. Contribution to the study of an lpg jet in the combustion chamber of a spark-ignition engine; Contribution a l'etude d'un jet de gpl dans la chambre de combustion d'un moteur a allumage commande, pour differentes strategies d'injection

    Energy Technology Data Exchange (ETDEWEB)

    Duong Viet, D.

    2002-07-01

    It appears tempting to combine the less polluting combustion of LPG with the energy performances of a direct injection spark-ignition engine. To this aim the study of high pressure injection of a liquid LPG jet, directly inside the combustion chamber of an engine was performed in two ways: Experimental studies: one with fast cinematography and another with the method of Doppler phases in an one-cylinder 'transparent' engine for various conditions of injection and without combustion. They respectively deliver empirical laws for the jet development and some informations about size and speed of the droplets of LPG. A modeling of the jet could then be made on the basis of a turbulent and deviated jet the parameters of which could be adjusted using results of the preceding experimental study. (author)

  17. SciSpark: Highly Interactive and Scalable Model Evaluation and Climate Metrics

    Science.gov (United States)

    Wilson, B. D.; Palamuttam, R. S.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; Verma, R.; Waliser, D. E.; Lee, H.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark under a NASA AIST grant (PI Mattmann). Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based ApacheTM Hadoop by 100x in memory and by 10x on disk. SciSpark will enable scalable model evaluation by executing large-scale comparisons of A-Train satellite observations to model grids on a cluster of 10 to 1000 compute nodes. This 2nd generation capability for NASA's Regional Climate Model Evaluation System (RCMES) will compute simple climate metrics at interactive speeds, and extend to quite sophisticated iterative algorithms such as machine-learning based clustering of temperature PDFs, and even graph-based algorithms for searching for Mesocale Convective Complexes. We have implemented a parallel data ingest capability in which the user specifies desired variables (arrays) as several time-sorted lists of URL's (i.e. using OPeNDAP model.nc?varname, or local files). The specified variables are partitioned by time/space and then each Spark node pulls its bundle of arrays into memory to begin a computation pipeline. We also investigated the performance of several N-dim. array libraries (scala breeze, java jblas & netlib-java, and ND4J). We are currently developing science codes using ND4J and studying memory behavior on the JVM. On the pyspark side, many of our science codes already use the numpy and SciPy ecosystems. The talk will cover: the architecture of SciSpark, the design of the scientific RDD (sRDD) data structure, our

  18. Fonctionnement transitoire et controle de la richesse des moteurs à allumage commandé à injection multipoint Transient Operation and Air-Fuel Ratio Control of Spark-Ignition Port-Injected Engines

    Directory of Open Access Journals (Sweden)

    Le Moyne L.

    2006-12-01

    Full Text Available Sur les moteurs à allumage commandé à injection multipoint on observe des désadaptations de richesse lors de fonctionnement transitoire. Ces désadaptations sont dues au dépôt, sous forme de film liquide, du carburant injecté dans le collecteur. Elles peuvent être compensées par une gestion adéquate de la masse injectée. Ainsi, afin d'obtenir la masse de carburant qui maintient la richesse constante, nous avons développé un modèle bidimensionnel des écoulements dans le collecteur au cours du cycle moteur. Ce modèle décrit l'écoulement des gaz frais, des gouttes injectées, des gaz brûlés refoulés vers l'admission et du film sur les parois, sur le principe de la séparation des phases. Nous montrons que le modèle reproduit correctement le signal de richesse et comment il permet de supprimer les désadaptations. La mesure de richesse est faite à l'échappement avec une sonde à oxygène dont nous validons le fonctionnement en transitoire avec une corrélation à la pression maximale du cycle dans le cylindre. Air-fuel ratio excursions are observed on port-injected spark ignition engines during transients. This excursions result from the liquid fuel film deposited on intake port. They can be compensated by controlling the injected fuel mass. In order to have the amount of fuel that keeps air-fuel ratio constant, we have developed a 2D model of flows in the intake port during engine cycle. This separate phases model describes the flow of fresh gases, injected droplets, hot burned gases and film on port walls. We show that the model effectively predicts the equivalence ratio and how it allows to eliminate excursions. Equivalence ratio measures are made with an oxygen sensor which functioning is validated during transients by correlating it to maximal pressure during engine cycle.

  19. Pollution provoquée par le moteur Diesel. Niveaux d'émission. Comparaison avec le moteur à allumage commandé Pollution Caused by Diesel Engines. Emission Levels. Comparison with Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Degobert P.

    2006-11-01

    Full Text Available A partir de l'analyse des différences de modes de combustion allumage commandé et Diesel , cet article compare et explique la nature et les niveaux des différents polluants émis en fonction de leurs mécanismes de formation. Les facteurs d'action au niveau moteur sont examinés, ainsi que l'influence du carburant utilisé. Based on an analysis of the difference between spark-ignition and diesel combustion modes, this article compares and explains the nature and levels of different pollutants emitted as a function of their formation mechanisms. The action factors at the engine> level are examined together with the influence of the fuel used.

  20. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    Science.gov (United States)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  1. Controlling spark timing for consecutive cycles to reduce the cyclic variations of SI engines

    International Nuclear Information System (INIS)

    Kaleli, Alirıza; Ceviz, Mehmet Akif; Erenturk, Köksal

    2015-01-01

    Minimization of the cyclic variations is one of the most important design goal for spark-ignited engines. Primary motivation of this study is to reduce the cyclic variations in spark ignition engines by controlling the spark timing for consecutive cycles. A stochastic model was performed between spark timing and in–cylinder maximum pressure by using the system identification techniques. The incylinder maximum pressure of the next cycle was predicted with this model. Minimum variance and generalized minimum variance controllers were designed to regulate the in–cylinder maximum pressure by changing the spark timing for consecutive cycles of the test engine. The produced control algorithms were built in LabView environment and installed to the Field Programmable Gate Arrays (FPGA) chassis. According to the test results, the in–cylinder maximum pressure of the next pressure cycle can be predicted fairly well, and the spark timing can be regulated to keep the in–cylinder maximum pressure in a desired band to reduce the cyclic variations. At fixed spark timing experiments, the COV Pmax and COV imep were 3.764 and 0.677%, whereas they decreased to 3.208 and 0.533% when GMV controller was applied, respectively. - Highlights: • Cycle per cycle spark timing control was carried out. • A stochastic process model was described between P max and the spark timing. • The cyclic variations in P max was decreased by keeping it in a desired band. • Different controllers were used to adjust spark timing signal of the next cycle. • COV Pmax was decreased by about 15% by using GMV controller

  2. Modeling Ignition of HMX with the Gibbs Formulation

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott

    2017-06-01

    We present a HMX model with the Gibbs formulation in which stress tensor and temperature are assumed to be in local equilibrium, but phase/chemical changes are not assumed to be in equilibrium. We assume multi-components for HMX including beta- and delta-phase, liquid, and gas phase of HMX and its gas products. Isotropic small strain solid model, modified Fried Howard liquid EOS, and ideal gas EOS are used for its relevant component. Phase/chemical changes are characterized as reactions and are in individual reaction rate. Maxwell-Stefan model is used for diffusion. Excited gas products in the local domain lead unreacted HMX solid to the ignition event. Density of the mixture, stress, strain, displacement, mass fractions, and temperature are considered in 1D domain with time histories. Office of Naval Research and Air Force Office of Scientific Research.

  3. Optical Propagation Modeling for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  4. New Model for Recruitment of Foreign Students Sparks Debate

    Science.gov (United States)

    Moser, Kate

    2008-01-01

    A London-based company with an unusual model for helping colleges recruit international students has generated concern among faculty members as it has begun expanding into the United States. Into University Partnerships has formed joint ventures with five British universities, building centers where foreign students who may not have qualified for…

  5. Investigation of the Multi-Physics of Laser-Induced Ignition of Transportation Fuels

    Science.gov (United States)

    Peters, Nathan D.

    control their flame kernel development, the dynamics, and fate of initially sustained flames. Laser ignition is further put into context by contrasting with the better established spark ignition process. The duration of energy deposition and heat transfer to the spark plug electrodes are found to be the main reasons for differences between laser and spark ignited flames. By examining these different physical aspects of laser ignition, this thesis advances understanding of forced ignition, consolidating this by contrasting with spark-ignition behavior. The results are useful for the design of fuel-flexible and lean combustion technologies. The data set is also useful for CFD simulations and simplified modeling of the ignition process.

  6. Hydrodynamic modeling and simulations of shock ignition thresholds

    Directory of Open Access Journals (Sweden)

    Lafon M.

    2013-11-01

    Full Text Available The Shock Ignition (SI scheme [1] offers to reduce the laser requirements by relaxing the implosion phase to sub-ignition velocities and later adding an intense laser spike. Depending on laser energy, target characteristics and implosion velocity, high gains are expected [2,3]. Relevant intensities for scaled targets imploded in the velocity range from 150 to 400 km/s are defined at ignition thresholds. A range of moderate implosion velocities is specified to match safe implosions. These conditions for target design are then inferred for relevant NIF and LMJ shock-ignited targets.

  7. Laser-induced breakdown ignition in a gas fed two-stroke engine

    Science.gov (United States)

    Loktionov, E. Y.; Pasechnikov, N. A.; Telekh, V. D.

    2018-01-01

    Laser-induced ignition for internal combustion engines is investigated intensively after demonstration of a compact ‘laser plug’ possibility. Laser spark benefits as compared to traditional spark plugs are higher compression rate, and possibility of almost any fuel ignition, so lean mixtures burning with lower temperatures could reduce harmful exhausts (NO x , CH, etc). No need in electrode and possibility for multi-point, linear or circular ignition can make combustion even more effective. Laser induced combustion wave appears faster and is more stable in time, than electric one, so can be used for ramjets, chemical thrusters, and gas turbines. To the best of our knowledge, we have performed laser spark ignition of a gas fed two-stroke engine for the first time. Combustion temperature and pressure, exhaust composition, ignition timing were investigated at laser and compared to a regular electric spark ignition in a two-stroke model engine. Presented results show possibility for improvement of two-stroke engines performance, in terms of rotation rate increase and NO x emission reduction. Such compact engines using locally mined fuel could be highly demanded in remote Arctic areas.

  8. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S. R.; inivasan, K. K.

    2010-09-14

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NOx). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NOx trends, which showed the lowest NOx emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to

  9. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon

    Science.gov (United States)

    Diaz-Avalos, Carlos; Peterson, D.L.; Alvarado, Ernesto; Ferguson, Sue A.; Besag, Julian E.

    2001-01-01

    Generalized linear mixed models (GLMM) were used to study the effect of vegetation cover, elevation, slope, and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate the probability of ignition occurrence at different locations in space and in time. Data on starting location of lightning-caused ignitions in the Blue Mountains between April 1986 and September 1993 constituted the base for the analysis. The study area was divided into a pixela??time array. For each pixela??time location we associated a value of 1 if at least one ignition occurred and 0 otherwise. Covariate information for each pixel was obtained using a geographic information system. The GLMMs were fitted in a Bayesian framework. Higher ignition probabilities were associated with the following cover types: subalpine herbaceous, alpine tundra, lodgepole pine (Pinus contorta Dougl. ex Loud.), whitebark pine (Pinus albicaulis Engelm.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and grand fir (Abies grandis (Dougl.) Lindl.). Within each vegetation type, higher ignition probabilities occurred at lower elevations. Additionally, ignition probabilities are lower in the northern and southern extremes of the Blue Mountains. The GLMM procedure used here is suitable for analysing ignition occurrence in other forested regions where probabilities of ignition are highly variable because of a spatially complex biophysical environment.

  10. Progress in catalytic ignition fabrication and modeling : fabrication part 2.

    Science.gov (United States)

    2012-06-01

    The ignition temperature and heat generation from oxidation of methane on a platinum catalyst were : determined experimentally. A 127 micron diameter platinum coiled wire was placed crosswise in a : quartz tube of a plug flow reactor. A source meter ...

  11. Evaluation of Butanol–Gasoline Blends in a Port Fuel-injection, Spark-Ignition Engine Évaluation de mélange butanol-essence dans un moteur à allumage commandé à injection indirecte

    Directory of Open Access Journals (Sweden)

    Dernotte J.

    2009-11-01

    Full Text Available This paper assesses different butanol–gasoline blends used in a port fuel-injection, spark-ignition engine to quantify the influence of butanol addition on the emission of unburned hydrocarbons, carbon monoxide, and nitrogen oxide. Furthermore, in-cylinder pressure was measured to quantify combustion stability and to compare the ignition delay and fully developed turbulent combustion phases as given by 0%–10% and 10%–90% Mass Fraction Burned (MFB. The main findings are: 1 a 40% butanol/60% gasoline blend by volume (B40 minimizes HC emissions; 2 no significant change in NOx emissions were observed, with the exception of the 80% butanol/20% gasoline blend; 3 the addition of butanol improves combustion stability as measured by the COV of IMEP; 4 butanol added to gasoline reduces ignition delay (0%–10% MFB; and 5 the specific fuel consumption of B40 blend is within 10% of that of pure gasoline for stoichiometric mixture. Cet article évalue le potentiel de l’utilisation de différents mélanges butanolessence dans un moteur à allumage commandé à injection indirecte afin de quantifier l’influence de l’ajout de butanol sur les émissions des hydrocarbures imbrûlés (HC, le monoxyde de carbone (CO et les oxydes d’azote (NOx. De plus, l’influence sur la stabilité de combustion, le délai d’inflammation et sur la durée de la phase de combustion turbulente développée y sont également présentés. Les principaux résultats: 1 un mélange de 40% butanol et 60% essence (B40 par volume diminue les émissions de HC; 2 aucun effet significatif sur les émissions de NOx n’a été observé à l’exception du mélange 80% butanol/20% essence; 3 l’ajout de butanol améliore la stabilité de combustion ; 4 l’ajout de butanol réduit le délai d’inflammation, quantifié par la durée pour consommer 10% de masse de gaz frais; et 5 la consommation spécifique de carburant pour un mélange stoechiométrique de B40 est 10% sup

  12. Analytical and numerical models of uranium ignition assisted by hydride formation

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.

    1996-01-01

    Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal

  13. Modeling potential structure ignitions from flame radiation exposure with implications for wildland/urban interface fire management

    Science.gov (United States)

    Jack D. Cohen; Bret W. Butler

    1998-01-01

    Residential losses associated with wildland fires have become a serious international fire protection problem. The radiant heat flux from burning vegetation adjacent to a structure is a principal ignition factor. A thermal radiation and ignition model estimated structure ignition potential using designated flame characteristics (inferred from various types and...

  14. Development status of the ignition system for Vinci

    NARCIS (Netherlands)

    Frenken, G.; Vermeulen, E.; Bouquet, F.; Sanders, H.M.

    2002-01-01

    The development status of ignition system for the new cryogenic upper stage engine Vinci is presented. The concept differs from existing upper stage ignition systems as its functioning is engine independent. The system consists of a spark torch igniter, a highpressure igniter feed system and an

  15. SparkJet Efficiency

    Science.gov (United States)

    Golbabaei-Asl, Mona; Knight, Doyle; Anderson, Kellie; Wilkinson, Stephen

    2013-01-01

    A novel method for determining the thermal efficiency of the SparkJet is proposed. A SparkJet is attached to the end of a pendulum. The motion of the pendulum subsequent to a single spark discharge is measured using a laser displacement sensor. The measured displacement vs time is compared with the predictions of a theoretical perfect gas model to estimate the fraction of the spark discharge energy which results in heating the gas (i.e., increasing the translational-rotational temperature). The results from multiple runs for different capacitances of c = 3, 5, 10, 20, and 40 micro-F show that the thermal efficiency decreases with higher capacitive discharges.

  16. Influence of swirl ratio on fuel distribution and cyclic variation under flash boiling conditions in a spark ignition direct injection gasoline engine

    International Nuclear Information System (INIS)

    Yang, Jie; Xu, Min; Hung, David L.S.; Wu, Qiang; Dong, Xue

    2017-01-01

    Highlights: • Influence of swirl on fuel distribution studied using laser induced fluorescence. • Gradient is sufficient for fuel spatial distribution variation analysis. • Close relation between fuel distribution and flame initiation/development. • Quantitative analysis shows high swirl suppresses variation of fuel distribution. • High order modes capable of identifying the distribution fluctuation patterns. - Abstract: One effective way of suppressing the cycle-to-cycle variation in engine is to design a combustion system that is robust to the root causes of engine variation over the entire engine working process. Flash boiling has been demonstrated as an ideal technique to produce stable fuel spray. But the generation of stable intake flow and fuel mixture remains challenging. In this study, to evaluate the capability of enhanced swirl flow to produce repeatable fuel mixture formation, the fuel distribution inside a single cylinder optical engine under two swirl ratios were measured using laser induced fluorescence technique. The swirl ratio was regulated by a swirl control valve installed in one of the intake ports. A 266 nm wavelength laser sheet from a frequency-quadrupled laser was directed into the optical engine through the quartz liner 15 mm below the tip of the spark plug. The fluorescence signal from the polycyclic aromatic hydrocarbon in gasoline was collected by applying a 320–420 nm band pass filter mounted in front of an intensified charge coupled device camera. Test results show that the in-cylinder fuel distribution is strongly influenced by the swirl ratio. Specifically, under high swirl condition, the fuel is mainly concentrated on the left side of the combustion chamber. While under the low swirl flow, fuel is distributed more randomly over the observing plane. This agrees well with the measurements of the stable flame location. Additionally, the cycle-to-cycle variation of the fuel distribution were analyzed. Results show that well

  17. The effect of kerosene injection on ignition probability of local ignition in a scramjet combustor

    Science.gov (United States)

    Bao, Heng; Zhou, Jin; Pan, Yu

    2017-03-01

    The spark ignition of kerosene is investigated in a scramjet combustor with a flight condition of Ma 4, 17 km. Based plentiful of experimental data, the ignition probabilities of the local ignition have been acquired for different injection setups. The ignition probability distributions show that the injection pressure and injection location have a distinct effect on spark ignition. The injection pressure has both upper and lower limit for local ignition. Generally, the larger mass flow rate will reduce the ignition probability. The ignition position also affects the ignition near the lower pressure limit. The reason is supposed to be the cavity swallow effect on upstream jet spray near the leading edge, which will make the cavity fuel rich. The corner recirculation zone near the front wall of the cavity plays a significant role in the stabilization of local flame.

  18. Mean Value Modelling of Turbocharged SI Engines

    DEFF Research Database (Denmark)

    Müller, Martin; Hendricks, Elbert; Sorenson, Spencer C.

    1998-01-01

    The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented.......The development of a computer simulation to predict the performance of a turbocharged spark ignition engine during transient operation. New models have been developed for the turbocharged and the intercooling system. An adiabatic model for the intake manifold is presented....

  19. Surface breakdown igniter for mercury arc devices

    Science.gov (United States)

    Bayless, John R.

    1977-01-01

    Surface breakdown igniter comprises a semiconductor of medium resistivity which has the arc device cathode as one electrode and has an igniter anode electrode so that when voltage is applied between the electrodes a spark is generated when electrical breakdown occurs over the surface of the semiconductor. The geometry of the igniter anode and cathode electrodes causes the igniter discharge to be forced away from the semiconductor surface.

  20. Flammability properties of British heathland and moorland vegetation: models for predicting fire ignition.

    Science.gov (United States)

    Santana, Victor M; Marrs, Rob H

    2014-06-15

    Temperate ecosystems, for example British heathlands and moorlands, are predicted to experience an increase in severe summer drought and wildfire frequency over the next few decades. The development of fire ignition probability models is fundamental for developing fire-danger rating systems and predicting wildfire outbreaks. This work assessed the flammability properties of the fuel complex of British moorlands as a function of their moisture content under laboratory conditions. Specifically, we aimed to develop: (1) models of the probability of fire ignition in peat/litter fuel-beds (litter of four different plant species, Sphagnum moss and peat); (2) flammability properties in terms of ignitability, sustainability, consumability and combustibility of these peat/litter fuel-beds; (3) the probability of ignition in a canopy-layer of Calluna vulgaris (the most dominant heath/moor species in Britain) as a function of its dead-fuel proportion and moisture content; (4) the efficacy of standardized smouldering and flaming ignition sources in developing sustained ignitions. For this, a series of laboratory experiments simulating the fuel structure of moor vegetation were performed. The flammability properties in peat/litter fuel-beds were influenced strongly by the fuel moisture content. There were small differences in moisture thresholds for experiencing initial flaming ignitions (35-59%), however, the threshold for sustained ignitions (i.e. spreading a fixed distance from the ignition point) varied across a much wider range (19-55%). Litter/peat fuel-beds were classified into three groups: fuel-beds with high ignitability and combustibility, fuel-beds with high levels of sustainability, and fuel-beds with low levels in all flammability descriptors. The probability of ignition in the upper Calluna-vegetation layer was influenced by both the proportion of dead fuels and their moisture content, ranging from 19% to 35% of moisture as dead fuel proportion increased

  1. Influence of Injector Location on Part-Load Performance Characteristics of Natural Gas Direct-Injection in a Spark Ignition Engine

    Energy Technology Data Exchange (ETDEWEB)

    Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Hall, Carrie [Illinois Inst. of Technology, Chicago, IL (United States); Miers, Scott [Michigan Technological Univ., Houghton, MI (United States)

    2016-04-05

    performance in terms of combustion metrics and efficiencies. For both systems, part-load dilution tolerance is affected by the injection timing, due to the induced turbulence from the gaseous injection event. CFD simulation results have shown that there is a fundamental difference in how the two injection locations affect the mixture formation process. Delayed injection timing increases the turbulence level in the cylinder at the time of the spark, but reduces the available time for proper mixing. Side injection delivers a gaseous jet that interacts more effectively with the intake induced flow field, and this improves the engine performance in terms of efficiency.

  2. Knock Prediction Using a Simple Model for Ignition Delay

    KAUST Repository

    Kalghatgi, Gautam

    2016-04-05

    An earlier paper has shown the ability to predict the phasing of knock onset in a gasoline PFI engine using a simple ignition delay equation for an appropriate surrogate fuel made up of toluene and PRF (TPRF). The applicability of this approach is confirmed in this paper in a different engine using five different fuels of differing RON, sensitivity, and composition - including ethanol blends. An Arrhenius type equation with a pressure correction for ignition delay can be found from interpolation of previously published data for any gasoline if its RON and sensitivity are known. Then, if the pressure and temperature in the unburned gas can be estimated or measured, the Livengood-Wu integral can be estimated as a function of crank angle to predict the occurrence of knock. Experiments in a single cylinder DISI engine over a wide operating range confirm that this simple approach can predict knock very accurately. The data presented should enable engineers to study knock or other auto-ignition phenomena e.g. in premixed compression ignition (PCI) engines without explicit chemical kinetic calculations. © Copyright 2016 SAE International.

  3. Does charge transfer correlate with ignition probability?

    International Nuclear Information System (INIS)

    Holdstock, Paul

    2008-01-01

    Flammable or explosive atmospheres exist in many industrial environments. The risk of ignition caused by electrostatic discharges is very real and there has been extensive study of the incendiary nature of sparks and brush discharges. It is clear that in order to ignite a gas, an amount of energy needs to be delivered to a certain volume of gas within a comparatively short time. It is difficult to measure the energy released in an electrostatic discharge directly, but it is possible to approximate the energy in a spark generated from a well defined electrical circuit. The spark energy required to ignite a gas, vapour or dust cloud can be determined by passing such sparks through them. There is a relationship between energy and charge in a capacitive circuit and so it is possible to predict whether or not a spark discharge will cause an ignition by measuring the charge transferred in the spark. Brush discharges are in many ways less well defined than sparks. Nevertheless, some work has been done that has established a relationship between charge transferred in brush discharges and the probability of igniting a flammable atmosphere. The question posed by this paper concerns whether such a relationship holds true in all circumstances and if there is a universal correlation between charge transfer and ignition probability. Data is presented on discharges from textile materials that go some way to answering this question.

  4. Modeling and evaluation of the influence of micro-EDM sparking state settings on the tool electrode wear behavior

    DEFF Research Database (Denmark)

    Puthumana, Govindan

    2017-01-01

    materials characterized by considerable wear ofthe tool used for material removal. This paper presents an investigation involving modeling and estimation of the effect of settings for generation of discharges in stable conditions of micro-EDM on the phenomenon of tool electrode wear. A stable sparking...... a condition for the minimum tool wear for this micro-EDM process configuration....

  5. Nanoscale characterization of ODS Fe-9%Cr model alloys compacted by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Heintze, C., E-mail: c.heintze@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Hernandez-Mayoral, M. [CIEMAT, Madrid (Spain); Ulbricht, A.; Bergner, F. [Helmholtz-Zentrum Dresden-Rossendorf (Germany); Shariq, A. [Fraunhofer-Center for Nanoelectronic Technologies, Dresden (Germany); Weissgaerber, T. [Fraunhofer-Institut IFAM, Dresden (Germany); Frielinghaus, H. [Juelich Centre for Neutron Science, Forschungszentrum Juelich, Garching (Germany)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Spark plasma sintered Fe9Cr-xY{sub 2}O{sub 3} (x = 0, 0.3, 0.6) characterized by SANS and TEM. Black-Right-Pointing-Pointer A consistent description of the microstructure was achieved. Black-Right-Pointing-Pointer Y-free and Y-O-rich nano-particles found, radius 2-15 nm, Y:O ratio 1:2-1:3. Black-Right-Pointing-Pointer Both types are stable during additional HIP treatment in Y{sub 2}O{sub 3}-containing alloys. Black-Right-Pointing-Pointer Growth of Y-free particles observed during HIP treatment of Y{sub 2}O{sub 3}-free reference. - Abstract: Ferritic/martensitic high-chromium steels are leading candidates for fission and fusion reactor components. Oxide dispersion strengthening is an effective way to improve properties related to thermal and irradiation-induced creep and to extend their elevated temperature applications. An extensive experimental study focusing on the microstructural characterization of oxide-dispersion strengthened Fe-9wt%Cr model alloys is reported. Several material variants were produced by means of high-energy milling of elemental powders of Fe, Cr and commercial yttria powders. Consolidation was based on spark plasma sintering. Special emphasis is placed on the characterization of the nano-particles using transmission electron microscopy, small-angle neutron scattering and atom probe tomography. The microstructure of the investigated alloys and the role of the process parameters are discussed. Implications for the reliability of the applied characterization techniques are also highlighted.

  6. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  7. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    Science.gov (United States)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave

  8. Modeling anthropogenic and natural fire ignitions in an inner-alpine valley

    Directory of Open Access Journals (Sweden)

    G. Vacchiano

    2018-03-01

    Full Text Available Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995–2009 and MaxEnt modeling. We analyzed separately (i winter forest fires, (ii winter fires on grasslands and fallow land, and (iii summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter–early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %; lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90–0.95. Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation and winter (negative fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.

  9. Modeling anthropogenic and natural fire ignitions in an inner-alpine valley

    Science.gov (United States)

    Vacchiano, Giorgio; Foderi, Cristiano; Berretti, Roberta; Marchi, Enrico; Motta, Renzo

    2018-03-01

    Modeling and assessing the factors that drive forest fire ignitions is critical for fire prevention and sustainable ecosystem management. In southern Europe, the anthropogenic component of wildland fire ignitions is especially relevant. In the Alps, however, the role of fire as a component of disturbance regimes in forest and grassland ecosystems is poorly known. The aim of this work is to model the probability of fire ignition for an Alpine region in Italy using a regional wildfire archive (1995-2009) and MaxEnt modeling. We analyzed separately (i) winter forest fires, (ii) winter fires on grasslands and fallow land, and (iii) summer fires. Predictors were related to morphology, climate, and land use; distance from infrastructures, number of farms, and number of grazing animals were used as proxies for the anthropogenic component. Collinearity among predictors was reduced by a principal component analysis. Regarding ignitions, 30 % occurred in agricultural areas and 24 % in forests. Ignitions peaked in the late winter-early spring. Negligence from agrosilvicultural activities was the main cause of ignition (64 %); lightning accounted for 9 % of causes across the study time frame, but increased from 6 to 10 % between the first and second period of analysis. Models for all groups of fire had a high goodness of fit (AUC 0.90-0.95). Temperature was proportional to the probability of ignition, and precipitation was inversely proportional. Proximity from infrastructures had an effect only on winter fires, while the density of grazing animals had a remarkably different effect on summer (positive correlation) and winter (negative) fires. Implications are discussed regarding climate change, fire regime changes, and silvicultural prevention. Such a spatially explicit approach allows us to carry out spatially targeted fire management strategies and may assist in developing better fire management plans.

  10. Observations and Modeling of Long Negative Laboratory Discharges: Identifying the Physics Important to an Electrical Spark in Air

    Energy Technology Data Exchange (ETDEWEB)

    Biagi, C J; Uman, M A

    2011-12-13

    There are relatively few reports in the literature focusing on negative laboratory leaders. Most of the reports focus exclusively on the simpler positive laboratory leader that is more commonly encountered in high voltage engineering [Gorin et al., 1976; Les Renardieres Group, 1977; Gallimberti, 1979; Domens et al., 1994; Bazelyan and Raizer 1998]. The physics of the long, negative leader and its positive counterpart are similar; the two differ primarily in their extension mechanisms [Bazelyan and Raizer, 1998]. Long negative sparks extend primarily by an intermittent process termed a 'step' that requires the development of secondary leader channels separated in space from the primary leader channel. Long positive sparks typically extend continuously, although, under proper conditions, their extension can be temporarily halted and begun again, and this is sometimes viewed as a stepping process. However, it is emphasized that the nature of positive leader stepping is not like that of negative leader stepping. There are several key observational studies of the propagation of long, negative-polarity laboratory sparks in air that have aided in the understanding of the stepping mechanisms exhibited by such sparks [e.g., Gorin et al., 1976; Les Renardieres Group, 1981; Ortega et al., 1994; Reess et al., 1995; Bazelyan and Raizer, 1998; Gallimberti et al., 2002]. These reports are reviewed below in Section 2, with emphasis placed on the stepping mechanism (the space stem, pilot, and space leader). Then, in Section 3, reports pertaining to modeling of long negative leaders are summarized.

  11. Exergetic Evaluation of Speed and Load Effects in Spark Ignition Engines Évaluation exergétique des effets de la vitesse et de la charge dans les moteurs àallumage par étincelle

    Directory of Open Access Journals (Sweden)

    Sezer I.

    2012-08-01

    Full Text Available This study investigates the effects of various operating conditions in spark ignition engines via an exergy analysis. A thermodynamic cycle model including compression, combustion and expansion processes was used for investigation. Induction and exhaust processes were computed with a simple approximation method. The principles of the second law were applied to the cycle model to perform the exergy analysis. Exergetic variables, i.e., the exergy transfers with heat and work, irreversibilities, thermomechanical exergy, fuel chemical exergy and total exergy were calculated in the exergy analysis. Variation of the exergetic parameters and the distribution of them into the fuel exergy were determined for various operating conditions, i.e., engine speed and load. The first and second law efficiencies and specific fuel consumption were also computed to reveal the optimum operating conditions. The results show that the exergy transfer with heat decreases and the exergy transfer with exhaust gases increases with increasing engine speed. Engine speed of 3 000 rpm gives the maximum exergy transfer as work, the minimum irreversibility and the best efficiency and fuel consumption. Exergy transfers with heat, work and exhaust and irreversibilities increase with increasing engine load. Additionally, the first and second law efficiencies increase and fuel consumption decreases with increasing engine load, so a high engine load gives the best efficiency and fuel consumption. Cette étude examine les effets des différentes conditions de fonctionnement de moteurs à allumage commandé via une analyse exergétique. Un modèle de cycle thermodynamique comprenant les processus de compression, combustion et détente a été utilisé. Les processus d’admission et d’échappement sont modélisés à l’aide d’une méthode simple d’approximation. Les principes de la deuxième loi de la thermodynamique ont été appliqués au modèle de cycle pour effectuer l

  12. Modelling of hot surface ignition within gas turbines subject to flammable gas in the intake

    DEFF Research Database (Denmark)

    Pedersen, Lea Duedahl; Nielsen, Kenny Krogh; Yin, Chungen

    2017-01-01

    successfully developed and implemented in the commercial Computational Fluid Dynamics (CFD) code ANSYS CFX. This model is based on a combination of standard models, User Defined Functions (UDFs) and the CFX Expression Language (CEL). Prediction of ignition is based on a set of criteria to be fulfilled while......Controlling risks associated with fires and explosions from leaks of flammable fluids at oil and gas facilities is paramount to ensuring safe operations. The gas turbine is a significant potential source of ignition; however, the residual risk is still not adequately understood. A model has been...... but decreases with increase in initial mixture temperature and pressure. The model shows a great potential in reliable prediction of the risk of hot surface ignition within gas turbines in the oil and gas industry. In the future, a dedicated experimental study will be performed not only to improve...

  13. Performance of a diesel engine transformed to spark ignition using natural gas; Desempenho de um motor diesel convertido para utilizacao de gas natural como combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, Ricardo H.R. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LEDAV/COPPE/UFRJ), RJ (Brazil). Lab. de Ensaios Dinamicos e Analise de Vibracao; Belchior, Carlos R.P. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LMT/COPPE/UFRJ), RJ (Brazil). Lab. de Maquinas Termicas; Sodre, Jose Ricardo [Pontificia Universidade Catolica de Minas Gerais (PUC/Minas), MG (Brazil)

    2012-07-01

    A zero-dimensional thermodynamic model for a diesel engine converted for dedicated use of natural gas was developed in this work. The computational model covers from the time of closing the inlet valve to the time of opening the exhaust valve and it was divided into three stages (compression, combustion and expansion). A model based on the first law of thermodynamics for closed cycle has been developed to study the performance of the engine. The combustion process was modeled using the equation of Wiebe. It was taken into consideration the convective heat transfer through the walls of the cylinder and the heat transfer coefficient was calculated by the Eichelberg correlation. It was also considered that the thermodynamic properties vary with temperature. To represent the gas mixture behavior inside the cylinder two approaches (Ideal Gas Equation and Van Der Waals's Real Gas Equation) were used and results compared. The computational model was validated with experimental tests. (author)

  14. Thermal Ignition

    Science.gov (United States)

    Boettcher, Philipp Andreas

    Accidental ignition of flammable gases is a critical safety concern in many industrial applications. Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more accurate test methods and standards as a means of designing safer air vehicles. The focus of this work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot surface ignition and flame propagation, and puffing flames. Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659, are used to determine the lowest temperature required to ignite a specific fuel mixed with air at atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is heated also influences the limiting temperature and the type of combustion. This study investigates the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100 kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from 0.6 to 1.2 were investigated. The problem is also modeled computationally using an extension of Semenov's classical auto-ignition theory with a detailed chemical mechanism. Experiments and simulations both show that in the same reactor either a slow reaction or an ignition event can take place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture which approaches the ignition region slowly undergoes a significant modification of its composition. This change in composition induces a progressive shift of the explosion limit until the mixture is no longer flammable. A mixture that approaches the ignition region

  15. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  16. Understanding Piloted Ignition of Solid Combustibles in Spacecraft Environments through Numerical Modeling

    Science.gov (United States)

    Fereres, S.; Fernandez-Pello, C.; Ruff, G.; Urban, D.

    2012-01-01

    Space exploration vehicles can present internal atmospheres different from sea level standard atmospheric conditions (100 kPa, 21%O2). In NASA's most recent human space exploration crew vehicles the cabin environments were designed to have reduced ambient pressure and increased oxygen concentration (around 55 kPa, 32%O2,). These distinct ambient conditions, in addition to the absence of gravity, may increase the fire risk of combustible materials on board. Enhancing the oxygen concentration will lead to higher flame temperatures. Reducing the ambient pressure will decrease convective heat losses from heated surfaces but also will reduce the amount of pyrolyzate required to reach a flammable mixture near the pilot. This study explores the effect of ambient variables such as reduced pressure, oxygen concentration or microgravity on the physical mechanisms that lead to the piloted ignition of solid combustibles through numerical analysis. Two-dimensional simulations of piloted ignition of thermally irradiated samples of PMMA (polymethyl- methacrylate) were performed with the Fire Dynamics Simulator (FDS5) code. Finite-rate single-step combustion kinetics is used in the gas-phase and a single step Arrhenius type reaction rate describes the solid pyrolysis. Oxidative pyrolysis is not considered and the in-depth formed pyrolyzate is assumed to flow unrestricted through the PMMA. The model correctly describes the thermo-physical mechanisms leading to the piloted ignition of solid fuels. It is shown that as the ambient pressure is reduced or the oxygen concentration enhanced, both the time to ignition and the fuel mass loss rate at ignition are reduced, increasing the fire hazard of the material when externally heated. The calculated ignition times and mass loss rates at ignition are compared to those measured experimentally in a laboratory-scale combustion wind tunnel. It is also shown that with appropriate kinetic parameters the model agrees qualitatively well with the

  17. Performance and exhaust emissions of a spark ignition engine using G-Series fuel (mixtures of gasoline, bioethanol, biodiesel and diesel) / G Serisi Yakıt (Benzin, Biyoetanol, Biyodizel ve Dizel Karışımı) Kullanan Kıvılcım Ateşlemeli Bir Motorun Performan

    OpenAIRE

    Nematizade, Pegah; Ghobadian, Barat; Ommi, Fathollah; Najafi, Gholamhassan

    2013-01-01

    In this research, performance and exhaust emissions of a spark ignition (S.I) engine (XU7JP/L3) using gasoline-ethanol blend (E20) and G-Series fuels, of GS1 and GS2, comprised of the mixtures of gasoline, ethanol, biodiesel and diesel were investigated. The results confirm that the power and torque of XU7JP/L3 engine decreases (not significantly) 6.5% and 1.2% respectively for the mixtures of fossil fuel and biofuel blends. In these circumstances the rate of fuel consumption increases by 36%...

  18. Computer aided engineering in exhaust aftertreatment systems design. Pt. 1. Spark ignition engine; Computergestuetzter Entwurf von Abgas-Nachbehandlungskonzepten. T. 1. Ottomotor

    Energy Technology Data Exchange (ETDEWEB)

    Stamatelos, A.M.; Koltsakis, G.C.; Kandylas, I.P. [Aristotelian Univ. of Thessaloniki (Greece)

    1999-02-01

    At the Aristotle University Thessaloniki, Greece, an integrated Computer Aided Engineering (CAE) methodology assisting the design of SI-engine exhaust aftertreatment systems employing the following computational tools was developed: A computer code which models transient exhaust system heat transfer, a tuneable computer code which models the transient operation of a three-way catalytic converter, a database containing chemical kinetics data for a variety of catalyst formulations, and a methodology for ageing assessment calculations. Application of the CAE methodology, which aids the exhaust aftertreatment system design engineer to meet the upcoming, increasingly stringent emission standards, is high-lighted by referring to a number of representative case studies. (orig.) [Deutsch] An der Aristoteles-Universitaet Thessaloniki, Griechenland, wurde eine computergestuetzte Methode (CAE) entwickelt, die den Entwurf und die Konstruktion von Abgasnachbehandlungskonzepten unterstuetzt. Die Methode setzt auf die folgenden Rechenmodelle und Datenbanken: Ein Rechenmodell zur Berechnung des Waermeuebergangs in Motorabgassystemen, ein Rechenmodell zur Abschaetzung des Katalysatorgegendrucks, eine Datenbank mit den chemischen Kinetikdaten fuer die verschiedenen Typen von Dreiwegekatalysatoren und eine computergestuetzte Prozedur zur Abschaetzung des Alterungsverhaltens von Dreiwegekatalysatoren. Integrierte CAE-Methoden koennen beim Entwurf von modernen Abgasnachbehandlungssystemen angewandt werden, um die Entwicklungszeit und -kosten betraechtlich zu reduzieren. (orig.)

  19. Propellant-Flow-Actuated Rocket Engine Igniter

    Science.gov (United States)

    Wollen, Mark

    2013-01-01

    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0

  20. Components of Particle Emissions from Light-Duty Spark-Ignition Vehicles with Varying Aromatic Content and Octane Rating in Gasoline.

    Science.gov (United States)

    Short, Daniel Z; Vu, Diep; Durbin, Thomas D; Karavalakis, Georgios; Asa-Awuku, Akua

    2015-09-01

    Typical gasoline consists of varying concentrations of aromatic hydrocarbons and octane ratings. However, their impacts on particulate matter (PM) such as black carbon (BC) and water-soluble and insoluble particle compositions are not well-defined. This study tests seven 2012 model year vehicles, which include one port fuel injection (PFI) configured hybrid vehicle, one PFI vehicle, and six gasoline direct injection (GDI) vehicles. Each vehicle was driven on the Unified transient testing cycle (UC) using four different fuels. Three fuels had a constant octane rating of 87 with varied aromatic concentrations at 15%, 25%, and 35%. A fourth fuel with higher octane rating, 91, contained 35% aromatics. BC, PM mass, surface tension, and water-soluble organic mass (WSOM) fractions were measured. The water-insoluble mass (WIM) fraction of the vehicle emissions was estimated. Increasing fuel aromatic content increases BC emission factors (EFs) of transient cycles. BC concentrations were higher for the GDI vehicles than the PFI and hybrid vehicles, suggesting a potential climate impact for increased GDI vehicle production. Vehicle steady-state testing showed that the hygroscopicity of PM emissions at high speeds (70 mph; κ > 1) are much larger than emissions at low speeds (30 mph; κ < 0.1). Iso-paraffin content in the fuels was correlated to the decrease in WSOM emissions. Both aromatic content and vehicle speed increase the amount of hygroscopic material found in particle emissions.

  1. A comparison between Miller and five-stroke cycles for enabling deeply downsized, highly boosted, spark-ignition engines with ultra expansion

    International Nuclear Information System (INIS)

    Li, Tie; Wang, Bin; Zheng, Bin

    2016-01-01

    Highlights: • Deeply downsized, highly boosted SI engine with ultra-expansion cycle is studied. • The Miller and five stroke cycles are compared on BSFC improvements and WOT performance. • The mechanism of fuel conversion efficiency improvement at various loads is discussed. • Performance of the two-stage boosting system for the downsized SI engine is investigated. • A unique strategy using the bypass for the five-stroke engine is proposed. - Abstract: It has been well known that the engine downsizing combined with intake boosting is an effective way to improve the fuel conversion efficiency without penalizing the engine torque performance. However, the potential of engine downsizing is not yet fully explored, and the major hurdles include the knocking combustion and the pre-turbine temperature limit, owing to the aggressive intake boosting. Using the engine cycle simulation, this paper compares the effects of the Miller and five stroke cycles on the performance of the deeply downsized and highly boosted SI engine, taking the engine knock and pre-turbine temperature into consideration. In the simulation, the downsizing is implemented by reducing the combustion cylinder number from four to two, while a two stage boosting system is designed for the deeply downsized engine to ensure the wide-open-throttle (WOT) performance comparable to the original four cylinder engine. The Miller cycle is realized by varying the intake valve timing and lift, while the five stroke cycle is enabled with addition of an extra expansion cylinder between the two combustion cylinders. After calibration and validation of the engine cycle simulation models using the experimental data in the original engine, the performances of the deeply downsized engines with both the Miller and five stroke cycles are numerically studied. For the most frequently operated points on the torque-speed map, at low loads the Miller cycle exhibits superior performance over the five-stroke cycle in terms

  2. Microinstability-based models for confinement properties and ignition criteria in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Bishop, C.M.; Coppi, B.; Kaye, S.M.; Perkins, F.W.; Redi, M.H.; Rewoldt, G.

    1987-02-01

    This paper reports on results of theoretical studies dealing with: (1) the use of microinstability-based thermal transport models to interpret the anomalous confinement properties observed in key tokamak experiments such as TFTR and (2) the likely consequences of the presence of such instabilities for future ignition devices. Transport code simulations using profile-consistent forms of anomalous thermal diffusivities due to drift-type instabilities have yielded good agreement with the confinement times and temperatures observed in TFTR under a large variety of operating conditions including pellet-fuelling in both ohmic- and neutral-beam-heated discharges. With regard to achieving an optimal ignition margin, the adverse temperature scaling of anomalous losses caused by drift modes leads to the conclusion that it is best to operate at the maximum allowable density while holding the temperature close to the minimum value required for ignition

  3. Application of transient ignition model to multi-canister (MCO) accident analysis

    International Nuclear Information System (INIS)

    Kummerer, M.

    1996-01-01

    The potential for ignition of spent nuclear fuel in a Multi-Canister Overpack (MCO) is examined. A transient model is applied to calculate the highest ambient gas temperature outside an MCO wall tube or shipping cask for which a stable temperature condition exists. This integral analysis couples reaction kinetics with a description of the MCO configuration, heat and mass transfer, and fission product phenomena. It thereby allows ignition theory to be applied to various complex scenarios, including MCO water loss accidents and dry MCO air ingression

  4. The IGNITE network: a model for genomic medicine implementation and research.

    Science.gov (United States)

    Weitzel, Kristin Wiisanen; Alexander, Madeline; Bernhardt, Barbara A; Calman, Neil; Carey, David J; Cavallari, Larisa H; Field, Julie R; Hauser, Diane; Junkins, Heather A; Levin, Phillip A; Levy, Kenneth; Madden, Ebony B; Manolio, Teri A; Odgis, Jacqueline; Orlando, Lori A; Pyeritz, Reed; Wu, R Ryanne; Shuldiner, Alan R; Bottinger, Erwin P; Denny, Joshua C; Dexter, Paul R; Flockhart, David A; Horowitz, Carol R; Johnson, Julie A; Kimmel, Stephen E; Levy, Mia A; Pollin, Toni I; Ginsburg, Geoffrey S

    2016-01-05

    Patients, clinicians, researchers and payers are seeking to understand the value of using genomic information (as reflected by genotyping, sequencing, family history or other data) to inform clinical decision-making. However, challenges exist to widespread clinical implementation of genomic medicine, a prerequisite for developing evidence of its real-world utility. To address these challenges, the National Institutes of Health-funded IGNITE (Implementing GeNomics In pracTicE; www.ignite-genomics.org ) Network, comprised of six projects and a coordinating center, was established in 2013 to support the development, investigation and dissemination of genomic medicine practice models that seamlessly integrate genomic data into the electronic health record and that deploy tools for point of care decision making. IGNITE site projects are aligned in their purpose of testing these models, but individual projects vary in scope and design, including exploring genetic markers for disease risk prediction and prevention, developing tools for using family history data, incorporating pharmacogenomic data into clinical care, refining disease diagnosis using sequence-based mutation discovery, and creating novel educational approaches. This paper describes the IGNITE Network and member projects, including network structure, collaborative initiatives, clinical decision support strategies, methods for return of genomic test results, and educational initiatives for patients and providers. Clinical and outcomes data from individual sites and network-wide projects are anticipated to begin being published over the next few years. The IGNITE Network is an innovative series of projects and pilot demonstrations aiming to enhance translation of validated actionable genomic information into clinical settings and develop and use measures of outcome in response to genome-based clinical interventions using a pragmatic framework to provide early data and proofs of concept on the utility of these

  5. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  6. EcoSmart Fire as structure ignition model in wildland urban interface: predictions and validations

    Science.gov (United States)

    Mark A. Dietenberger; Charles R. Boardman

    2016-01-01

    EcoSmartFire is a Windows program that models heat damage and piloted ignition of structures from radiant exposure to discrete landscaped tree fires. It calculates the radiant heat transfer from cylindrical shaped fires to the walls and roof of the structure while accounting for radiation shadowing, attenuation, and ground reflections. Tests of litter burn, a 0.6 m...

  7. Experimental and Kinetic Modeling Study of Methanol Ignition and Oxidation at High Pressure

    DEFF Research Database (Denmark)

    Aranda, V.; Christensen, J. M.; Alzueta, Maria

    2013-01-01

    the conditions studied, the onset temperature for methanol oxidation was not dependent on the stoichiometry, whereas increasing pressure shifted the ignition temperature toward lower values. Model predictions of the present experimental results, as well as rapid compression machine data from the literature, were...

  8. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    2015-03-01

    Full Text Available The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2.

  9. Hydrodynamic modelling of the shock ignition scheme for inertial confinement fusion

    International Nuclear Information System (INIS)

    Vallet, Alexandra

    2014-01-01

    The shock ignition concept in inertial confinement fusion uses an intense power spike at the end of an assembly laser pulse. The key features of shock ignition are the generation of a high ablation pressure, the shock pressure amplification by at least a factor of a hundred in the cold fuel shell and the shock coupling to the hot-spot. In this thesis, new semi-analytical hydrodynamic models are developed to describe the ignitor shock from its generation up to the moment of fuel ignition. A model is developed to describe a spherical converging shock wave in a pre-heated hot spot. The self-similar solution developed by Guderley is perturbed over the shock Mach number Ms ≥≥1. The first order correction accounts for the effects of the shock strength. An analytical ignition criterion is defined in terms of the shock strength and the hot-spot areal density. The ignition threshold is higher when the initial Mach number of the shock is lower. A minimal shock pressure of 20 Gbar is needed when it enters the hot-spot. The shock dynamics in the imploding shell is then analyzed. The shock is propagating into a non inertial medium with a high radial pressure gradient and an overall pressure increase with time. The collision with a returning shock coming from the assembly phase enhances further the ignitor shock pressure. The analytical theory allows to describe the shock pressure and strength evolution in a typical shock ignition implosion. It is demonstrated that, in the case of the HiPER target design, a generation shock pressure near the ablation zone on the order of 300-400 Mbar is needed. An analysis of experiments on the strong shock generation performed on the OMEGA laser facility is presented. It is shown that a shock pressure close to 300 Mbar near the ablation zone has been reached with an absorbed laser intensity up to 2 * 10 15 W:cm -2 and a laser wavelength of 351 nm. This value is two times higher than the one expected from collisional laser absorption only

  10. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    Science.gov (United States)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  11. Burner ignition system

    Science.gov (United States)

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  12. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    Science.gov (United States)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was

  13. High temperature shock tube experiments and kinetic modeling study of diisopropyl ketone ignition and pyrolysis

    KAUST Repository

    Barari, Ghazal

    2017-03-10

    Diisopropyl ketone (DIPK) is a promising biofuel candidate, which is produced using endophytic fungal conversion. In this work, a high temperature detailed combustion kinetic model for DIPK was developed using the reaction class approach. DIPK ignition and pyrolysis experiments were performed using the UCF shock tube. The shock tube oxidation experiments were conducted between 1093K and 1630K for different reactant compositions, equivalence ratios (φ=0.5–2.0), and pressures (1–6atm). In addition, methane concentration time-histories were measured during 2% DIPK pyrolysis in argon using cw laser absorption near 3400nm at temperatures between 1300 and 1400K near 1atm. To the best of our knowledge, current ignition delay times (above 1050K) and methane time histories are the first such experiments performed in DIPK at high temperatures. Present data were used as validation targets for the new kinetic model and simulation results showed fair agreement compared to the experiments. The reaction rates corresponding to the main consumption pathways of DIPK were found to have high sensitivity in controlling the reactivity, so these were adjusted to attain better agreement between the simulation and experimental data. A correlation was developed based on the experimental data to predict the ignition delay times using the temperature, pressure, fuel concentration and oxygen concentration.

  14. 3rd Conference on Ignition Systems for Gasoline Engines

    CERN Document Server

    Sens, Marc

    2017-01-01

    The volume includes selected and reviewed papers from the 3rd Conference on Ignition Systems for Gasoline Engines in Berlin in November 2016. Experts from industry and universities discuss in their papers the challenges to ignition systems in providing reliable, precise ignition in the light of a wide spread in mixture quality, high exhaust gas recirculation rates and high cylinder pressures. Classic spark plug ignition as well as alternative ignition systems are assessed, the ignition system being one of the key technologies to further optimizing the gasoline engine.

  15. Self-ignition and oxidation of various hydrocarbons between 600 and 1000 K at high pressure: experimental study with fast compression machine and modeling; Autoinflammation et oxydation de divers hydrocarbures entre 600 et 1000 K a haute pression: etude experimentale en machine a compression rapide et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ribaucour, M.

    2002-12-01

    Low- and intermediate-temperature oxidation and self-ignition of hydrocarbons play a major role in spark ignition, diesel and HCCI (homogenous charge compression ignition) engines. A deep understanding of the chemistry linked with both phenomena is necessary to improve the engines efficiency and to reduce the formation of pollutants. This document treats of works about the self-ignition and oxidation at high pressure of various hydrocarbons between 600 and 1000 deg. K. The experimental tool used is a fast compression machine fitted with a fast sampling system for the measurement of self-ignition delays and of the concentrations of intermediate oxidation products. The advantages and limitations of this tool are discussed. The self-ignition of various hydrocarbons is compared using pre-defined data which characterize the phenomenologies like cold flames, negative temperature coefficients and self-ignition limits. The hydrocarbons considered are pure or binary mixtures of alkanes, pent-1-ene and n-butyl-benzene. The development of high pressure oxidation reaction schemes of alkanes between 600 and 1000 deg. K is described. It is directly based on the analysis of intermediate oxidation products. This methodology is also applied to pent-1-ene and n-butyl-benzene. The construction of detailed thermo-kinetic models of oxidation and the modeling of phenomena are made for n-butane, n-heptane, for the 3 pentane isomers, for pent-1-ene and n-butyl-benzene. Finally, the perspectives of future works are evoked. They concern new modeling and new methodologies to be applied in more predictive thermo-kinetic models and the reduction of detailed models in order to include them inside fluid dynamics codes. (J.S.)

  16. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Spark ignition of a bi-propellant rocket engine is a classic, proven, and generally reliable process. However, timing can be critical, and the control logic,...

  17. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Under a Phase 1 effort, IES successfully developed and demonstrated a spark ignition concept where propellant flow drives a very simple fluid mechanical oscillator...

  18. Physical Improvements in Exciter/Igniter Units, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase 2 project consists of the physical integration of our Phase 1 small, compact exciter with a "flight like" igniter or spark plug capable of...

  19. Pulse-actuated fuel-injection spark plug

    Science.gov (United States)

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  20. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    International Nuclear Information System (INIS)

    Auger, M.A.; Castro, V. de; Leguey, T.; Muñoz, A.; Pareja, R.

    2013-01-01

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y 2 O 3 powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y 2 O 3 (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS

  1. Microstructure and mechanical behavior of ODS and non-ODS Fe–14Cr model alloys produced by spark plasma sintering

    Energy Technology Data Exchange (ETDEWEB)

    Auger, M.A.; Castro, V. de [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Leguey, T., E-mail: leguey@fis.uc3m.es [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain); Muñoz, A.; Pareja, R. [Departamento de Física, Universidad Carlos III de Madrid, 28911 Leganés (Spain)

    2013-05-15

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe–14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y{sub 2}O{sub 3} powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe–14%Cr and Fe–14%Cr–0.3%Y{sub 2}O{sub 3} (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe–14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe–14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS.

  2. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    Energy Technology Data Exchange (ETDEWEB)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  3. An experimental investigation of a lean-burn natural-gas pre-chamber spark ignition engine for cogeneration; Swiss Motor. Modification d'un moteur diesel pour le fonctionnement au gaz naturel en cogeneration. Fonctionnement avec prechambre de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Roethlisberger, R.; Favrat, D.

    2001-07-01

    This thesis presented at the Department of Mechanical Engineering of the Swiss Federal Institute of Technology in Lausanne describes the conversion and testing of a commercial diesel engine for use as a lean-burn, natural gas, pre-chamber, spark ignition engine with a rated power of 150 kW, in combined heat and power (CHP) plants. The objective of the investigations - to evaluate the potential of reducing exhaust gas emissions - is discussed in detail with respect to NO{sub x} and CO emissions. The approach adopted includes both experimental work and numerical simulation. The report describes the testing facilities used. The results obtained with experimental spark-plug configurations based on simulation results are presented and the influence of various pre-chamber configuration variants are discussed. The results of the tests are presented and the significant reduction of NO{sub x}, CO and unburned-hydrocarbon (THC) emissions are discussed. The authors state that the engine, which achieves a fuel efficiency of more than 36.5%, fulfils the Swiss requirements on exhaust gas emissions. Also, ways of compensating for the slight loss in fuel-conversion efficiency in the pre-chamber configuration are discussed.

  4. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  5. SI Engine with repetitive NS spark plug

    Science.gov (United States)

    Pancheshniy, Sergey; Nikipelov, Andrey; Anokhin, Eugeny; Starikovskiy, Andrey; Laplase Team; Mipt Team; Pu Team

    2013-09-01

    Now de-facto the only technology for fuel-air mixtures ignition in IC engines exists. It is a spark discharge of millisecond duration in a short discharge gap. The reason for such a small variety of methods of ignition initiation is very specific conditions of the engine operation. First, it is very high-pressure of fuel-air mixture - from 5-7 atmospheres in old-type engines and up to 40-50 atmospheres on the operating mode of HCCI. Second, it is a very wide range of variation of the oxidizer/fuel ratio in the mixture - from almost stoichiometric (0.8-0.9) at full load to very lean (φ = 0.3-0.5) mixtures at idle and/or economical cruising mode. Third, the high velocity of the gas in the combustion chamber (up to 30-50 m/s) resulting in a rapid compression of swirling inlet flow. The paper presents the results of tests of distributed spark ignition system powered by repetitive pulse nanosecond discharge. Dynamic pressure measurements show the increased pressure and frequency stability for nanosecond excitation in comparison with the standard spark plug. Excitation by single nanosecond high-voltage pulse and short train of pulses was examined. In all regimes the nanosecond pulsed excitation demonstrate a better performance.

  6. A Hot Spots Ignition Probability Model for Low-Velocity Impacted Explosive Particles Based on the Particle Size and Distribution

    Directory of Open Access Journals (Sweden)

    Hong-fu Guo

    2017-01-01

    Full Text Available Particle size and distribution play an important role in ignition. The size and distribution of the cyclotetramethylene tetranitramine (HMX particles were investigated by Laser Particle Size Analyzer Malvern MS2000 before experiment and calculation. The mean size of particles is 161 μm. Minimum and maximum sizes are 80 μm and 263 μm, respectively. The distribution function is like a quadratic function. Based on the distribution of micron scale explosive particles, a microscopic model is established to describe the process of ignition of HMX particles under drop weight. Both temperature of contact zones and ignition probability of powder explosive can be predicted. The calculated results show that the temperature of the contact zones between the particles and the drop weight surface increases faster and higher than that of the contact zones between two neighboring particles. For HMX particles, with all other conditions being kept constant, if the drop height is less than 0.1 m, ignition probability will be close to 0. When the drop heights are 0.2 m and 0.3 m, the ignition probability is 0.27 and 0.64, respectively, whereas when the drop height is more than 0.4 m, ignition probability will be close to 0.82. In comparison with experimental results, the two curves are reasonably close to each other, which indicates our model has a certain degree of rationality.

  7. Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

    KAUST Repository

    Sarathy, Mani

    2018-04-03

    Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.

  8. Shock Initiation Experiments with Ignition and Growth Modeling on the HMX-Based Explosive LX-14

    Science.gov (United States)

    Vandersall, Kevin S.; Dehaven, Martin R.; Strickland, Shawn L.; Tarver, Craig M.; Springer, H. Keo; Cowan, Matt R.

    2017-06-01

    Shock initiation experiments on the HMX-based explosive LX-14 were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between sample disks pressed to different densities ( 1.57 or 1.83 g/cm3 that corresponds to 85 or 99% of theoretical maximum density (TMD), respectively). The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities will be compared to prior work published on other HMX-based formulations. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.

  9. Numerical Parameter Optimization of the Ignition and Growth Model for HMX Based Plastic Bonded Explosives

    Science.gov (United States)

    Gambino, James; Tarver, Craig; Springer, H. Keo; White, Bradley; Fried, Laurence

    2017-06-01

    We present a novel method for optimizing parameters of the Ignition and Growth reactive flow (I&G) model for high explosives. The I&G model can yield accurate predictions of experimental observations. However, calibrating the model is a time-consuming task especially with multiple experiments. In this study, we couple the differential evolution global optimization algorithm to simulations of shock initiation experiments in the multi-physics code ALE3D. We develop parameter sets for HMX based explosives LX-07 and LX-10. The optimization finds the I&G model parameters that globally minimize the difference between calculated and experimental shock time of arrival at embedded pressure gauges. This work was performed under the auspices of the U.S. DOE by LLNL under contract DE-AC52-07NA27344. LLNS, LLC LLNL-ABS- 724898.

  10. Ignition of Aluminum Particles and Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  11. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  12. Estudio del empleo de un convertidor catalítico para las emisiones gaseosas en un motor de ignición por chispa usando etanol como combustible. // Study of the employment of a catalytic convertor for the gassy emissions in an spark ignition engine using et

    Directory of Open Access Journals (Sweden)

    K. C. R. Martins

    2005-01-01

    Full Text Available Con este trabajo de investigación se estudia el índice de emisiones gaseosas en un motor de ignición por chispa movido conetanol y se analiza el control de estas emisiones con aplicación de un convertidor catalítico platino/paladio (Pt/Pd en elsistema de descarga del motor. Fueron realizados ensayos dinamométricos de un motor de combustión interna MCI paraanalizar las emisiones y el control de estas, en condiciones operacionales, en función de la rotación y ángulo de avance deignición. El convertidor catalítico alcanzó un 75% de eficiencia cuando el ángulo de avance de ignición del motor aumentópara 16o. Se observó que en rotaciones de 2000 r.p.m el convertidor catalítico presentó mayor reducción de las emisionesde hidrocarburos no quemados HC, monóxido de carbono CO y óxidos de nitrógeno NOx. Con la aplicación de unconvertidor catalítico en un vehículo se debe estandarizar nuevas regulaciones en cuanto al ángulo de avance de igniciónpara optimizar el funcionamiento del motor.Palabras claves: Convertidor catalítico; emisiones de escape; eficiencia catalítica; etanol.____________________________________________________________________________Summary.With this investigation work the index of gassy emissions is studied in an spark ignition engine using ethanol, the control ofthese emissions is analyzed with application of a platinum/palladium (Pt/Pd catalytic convector in the engine dischargesystem. Rehearsals carried out in engines in order to analyze the emissions and the control of these, under operationalconditions, in function of the rotation and angle of ignition advance were carried out. The catalytic convector reaches 75%of efficiency when the ignition advance angle of the engine increased to 16o. It was observed that in rotations of 2000r.p.m the catalytic convector presented bigger reduction of the emissions of non-burnt hydrocarbons HC, monoxide ofcarbon CO and nitrogen oxides NOx. With the application of a

  13. Ignition and Growth Modeling of Detonating LX-04 (85% HMX / 15% VITON) Using New and Previously Obtained Experimental Data

    Science.gov (United States)

    Tarver, Craig

    2017-06-01

    An Ignition and Growth reactive flow model for detonating LX-04 (85% HMX / 15% Viton) was developed using new and previously obtained experimental data on: cylinder test expansion; wave curvature; failure diameter; and laser interferometric copper and tantalum foil free surface velocities and LiF interface particle velocity histories. A reaction product JWL EOS generated by the CHEETAH code compared favorably with the existing, well normalized LX-04 product JWL when both were used with the Ignition and Growth model. Good agreement with all existing experimental data was obtained. Keywords: LX-04, HMX, detonation, Ignition and Growth PACS:82.33.Vx, 82.40.Fp This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  14. Cloud Computing: A model Construct of Real-Time Monitoring for Big Dataset Analytics Using Apache Spark

    Science.gov (United States)

    Alkasem, Ameen; Liu, Hongwei; Zuo, Decheng; Algarash, Basheer

    2018-01-01

    The volume of data being collected, analyzed, and stored has exploded in recent years, in particular in relation to the activity on the cloud computing. While large-scale data processing, analysis, storage, and platform model such as cloud computing were previously and currently are increasingly. Today, the major challenge is it address how to monitor and control these massive amounts of data and perform analysis in real-time at scale. The traditional methods and model systems are unable to cope with these quantities of data in real-time. Here we present a new methodology for constructing a model for optimizing the performance of real-time monitoring of big datasets, which includes a machine learning algorithms and Apache Spark Streaming to accomplish fine-grained fault diagnosis and repair of big dataset. As a case study, we use the failure of Virtual Machines (VMs) to start-up. The methodology proposition ensures that the most sensible action is carried out during the procedure of fine-grained monitoring and generates the highest efficacy and cost-saving fault repair through three construction control steps: (I) data collection; (II) analysis engine and (III) decision engine. We found that running this novel methodology can save a considerate amount of time compared to the Hadoop model, without sacrificing the classification accuracy or optimization of performance. The accuracy of the proposed method (92.13%) is an improvement on traditional approaches.

  15. Relative importance of fuel management, ignition management and weather for area burned: Evidence from five landscape-fire-succession models

    Science.gov (United States)

    Geoffrey J. Cary; Mike D. Flannigan; Robert E. Keane; Ross A. Bradstock; Ian D. Davies; James M. Lenihan; Chao Li; Kimberley A. Logan; Russell A. Parsons

    2009-01-01

    The behaviour of five landscape fire models (CAFE, FIRESCAPE, LAMOS(HS), LANDSUM and SEMLAND) was compared in a standardised modelling experiment. The importance of fuel management approach, fuel management effort, ignition management effort and weather in determining variation in area burned and number of edge pixels burned (a measure of potential impact on assets...

  16. Fastdata processing with Spark

    CERN Document Server

    Karau, Holden

    2013-01-01

    This book will be a basic, step-by-step tutorial, which will help readers take advantage of all that Spark has to offer.Fastdata Processing with Spark is for software developers who want to learn how to write distributed programs with Spark. It will help developers who have had problems that were too much to be dealt with on a single computer. No previous experience with distributed programming is necessary. This book assumes knowledge of either Java, Scala, or Python.

  17. Chemical kinetics modeling of the influence of molecular structure on shock tube ignition delay

    International Nuclear Information System (INIS)

    Westbrook, C.K.; Pitz, W.J.

    1985-07-01

    The current capabilities of kinetic modeling of hydrocarbon oxidation in shock waves are discussed. The influence of molecular size and structure on ignition delay times are stressed. The n-paraffin fuels from CH 4 to n-C 5 H 12 are examined under shock tube conditions, as well as the branched chain fuel isobutane, and the computed results are compared with available experimental data. The modeling results show that it is important in the reaction mechanism to distinguish between abstraction of primary, secondary and tertiary H atom sites from the fuel molecule. This is due to the fact that both the rates and the product distributions of the subsequent alkyl radical decomposition reactions depend on which H atoms were abstracted. Applications of the reaction mechanisms to shock tube problems and to other practical problems such as engine knock are discussed

  18. Analysis of the laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber

    Science.gov (United States)

    Wohlhüter, Michael; Zhukov, Victor P.; Sender, Joachim; Schlechtriem, Stefan

    2017-06-01

    The laser ignition of methane/oxygen mixtures in a sub-scale rocket combustion chamber has been investigated numerically and experimentally. The ignition test case used in the present paper was generated during the In-Space Propulsion project (ISP-1), a project focused on the operation of propulsion systems in space, the handling of long idle periods between operations, and multiple reignitions under space conditions. Regarding the definition of the numerical simulation and the suitable domain for the current model, 2D and 3D simulations have been performed. Analysis shows that the usage of a 2D geometry is not suitable for this type of simulation, as the reduction of the geometry to a 2D domain significantly changes the conditions at the time of ignition and subsequently the flame development. The comparison of the numerical and experimental results shows a strong discrepancy in the pressure evolution and the combustion chamber pressure peak following the laser spark. The detailed analysis of the optical Schlieren and OH data leads to the conclusion that the pressure measurement system was not able to capture the strong pressure increase and the peak value in the combustion chamber during ignition. Although the timing in flame development following the laser spark is not captured appropriately, the 3D simulations reproduce the general ignition phenomena observed in the optical measurement systems, such as pressure evolution and injector flow characteristics.

  19. Modelling of streamer ignition and propagation in the system of two approaching hydrometeors

    Science.gov (United States)

    Jansky, J.; Pasko, V. P.

    2017-12-01

    The lightning initiation in low thundercloud fields represents an unsolved problem in lightning discharge physics. One of the initial conditions required for formation of a hot leader channel is initiation of non-thermal streamer discharges. Streamers can be initiated from electron avalanches, however, the problem of existence of an electric field strong enough for streamer initiation in thunderclouds is still open. The maximum electric field in thunderstorms measured by balloons is typically 3-4 kV cm-1 atm-1, that is significantly smaller than the breakdown electric field needed for avalanche multiplication of electrons Ek≃28.7 kV cm-1 atm-1. One of the possible explanations for the streamer corona initiation is that hydrometeors greatly intensify the local electric field by at least an order of magnitude to initiate an electron avalanche. It was suggested that a particle pair or chain create more favorable conditions for initiation of lightning discharge than a single precipitation particle in low electric fields. Recently Cai et al. [GRL, 44, 5758-5765, 2017] analyzed the ignition conditions for two hydrometeors of same radii. In the present work we use streamer fluid model to study streamer initiation scenarios in a system of two hydrometeors with different radii. When the hydrometeors are approaching the Townsend discharge may develop first between them. Then the Townsend discharge transforms to streamer and two hydrometeors connect electrically, which leads to increase of the electric field on the outside hemispheres of hydrometeors. This increase of field for two particles of same radii was analyzed by Cooray et al. [Proceedings of 24th International Conference on Lightning Protection, Birmingham, United Kingdom, 1998]. The combination of small and large hydrometeors leads to higher enhancement on the outside of small hydrometeor. Simulation results show that streamer ignites there and propagates away from two hydrometeors. The streamer ignites at fields

  20. Electric spark discharges in water. Low-energy nuclear transmutations and light leptonic magnetic monopoles in an extended standard model

    Energy Technology Data Exchange (ETDEWEB)

    Stumpf, Harald [Tuebingen Univ. (Germany). Inst. of Theoretical Physics

    2017-11-01

    Light leptonic magnetic monopoles were predicted by Lochak [G. Lochak, Intern. J. Theor. Phys. 24, 1019 (1985).]. Experimental indications based on nuclear transmutations were announced by Urutskoiev et al. [L. I. Urutskoiev, V. I. Liksonov, V. G. Tsinoev, Ann. Fond. L. de Broglie 27, Nr.4, 791 (2002).] and Urutskoev [L. J. Urutskoev, Ann. Fond. L. de Broglie 29, 1149 (2004).]. A theoretical interpretation of these transmutations is proposed under the assumption that light leptonic magnetic monopoles are created during spark discharges in water. The latter should be excited neutrinos according to Lochak. This hypothesis enforces the introduction of an extended Standard Model described in previous papers. The most important results of this study are (i) that multiple proton captures are responsible for the variety of transmutations and that leptonic magnetic monopoles are involved in these processes (ii) that electromagnetic duality can be established for bound states of leptonic monopoles although massive monopoles are in general unstable (iii) that criteria for the emission of leptonic magnetic monopoles and for their catalytic effect on weak decays are set up and elaborated. The study can be considered as a contribution to the efforts of Urutskoiev and Lochak to understand the reasons for accidents in power plants.

  1. Electric Spark Discharges in Water. Low-energy Nuclear Transmutations and Light Leptonic Magnetic Monopoles in an Extended Standard Model

    Science.gov (United States)

    Stumpf, Harald

    2017-08-01

    Light leptonic magnetic monopoles were predicted by Lochak [G. Lochak, Intern. J. Theor. Phys. 24, 1019 (1985).]. Experimental indications based on nuclear transmutations were announced by Urutskoiev et al. [L. I. Urutskoiev, V. I. Liksonov, V. G. Tsinoev, Ann. Fond. L. de Broglie 27, Nr.4, 791 (2002).] and Urutskoev [L. J. Urutskoev, Ann. Fond. L. de Broglie 29, 1149 (2004).]. A theoretical interpretation of these transmutations is proposed under the assumption that light leptonic magnetic monopoles are created during spark discharges in water. The latter should be excited neutrinos according to Lochak. This hypothesis enforces the introduction of an extended Standard Model described in previous papers. The most important results of this study are (i) that multiple proton captures are responsible for the variety of transmutations and that leptonic magnetic monopoles are involved in these processes (ii) that electromagnetic duality can be established for bound states of leptonic monopoles although massive monopoles are in general unstable (iii) that criteria for the emission of leptonic magnetic monopoles and for their catalytic effect on weak decays are set up and elaborated. The study can be considered as a contribution to the efforts of Urutskoiev and Lochak to understand the reasons for accidents in power plants.

  2. Characterization of ignition transient processes in kerosene-fueled model scramjet engine by dual-pulse laser-induced plasma

    Science.gov (United States)

    Li, Xipeng; Liu, Weidong; Pan, Yu; Yang, Leichao; An, Bin; Zhu, Jiajian

    2018-03-01

    Dual-pulse laser-induced plasma ignition of kerosene in cavity at model scramjet engine is studied. The simulated flight condition is Ma 6 at 30 km, and the isolator entrance has a Mach number of 2.92, a total pressure of 2.6 MPa and a stagnation temperature of 1650 K. Two independent laser pulses at 532 nm with a pulse width of 10 ns, a diameter of 12 mm and a maximum energy of 300 mJ are focused into cavity for ignition. The flame structure and propagation during transient ignition processes are captured by simultaneous CH* and OH* chemiluminescence imaging. The entire ignition process of kerosene can be divided into five stages, which are referred as turbulent dissipation stage, quasi-stable state, combustion enhancement stage, reverting stage and combustion stabilization stage. A local closed loop of propagations of the burning mixtures from the shear layer into the recirculation zone of cavity is revealed, which the large-scale eddy in the shear layer plays a key role. The enhancement of mass exchange between shear layer and the recirculation zone of cavity could promote the flame propagation process and enhance the ignition capability as well as extend the ignition limits. A cavity shear-layer stabilized combustion of kerosene is established in the supersonic flow roughly 3.3 ms after the laser pulse. Chemical reactions mainly occur in the shear layer and the near-wall zone downstream of the cavity. The distribution of OH* is thicker than CH* at stable combustion condition.

  3. Numerical Model to Quantify the Influence of the Cellulosic Substrate on the Ignition Propensity Tests

    Directory of Open Access Journals (Sweden)

    Guindos Pablo

    2016-07-01

    Full Text Available A numerical model based on the finite element method has been constructed to simulate the ignition propensity (IP tests. The objective of this mathematical model was to quantify the influence of different characteristics of the cellulosic substrate on the results of the IP-tests. The creation and validation of the model included the following steps: (I formulation of the model based on experimental thermodynamic characteristics of the cellulosic substrate; (ii calibration of the model according to cone calorimeter tests; (iii validation of the model through mass loss and temperature profiling during IP-testing. Once the model was validated, the influence of each isolated parameter of the cellulosic substrate was quantified via a parametric study. The results revealed that the substrate heat capacity, the cigarette temperature and the pyrolysis activation energy are the most influencing parameters on the thermodynamic response of the substrates, while other parameters like heat of the pyrolysis reaction, density and roughness of the substrate showed little influence. Also the results indicated that the thermodynamic mechanisms involved in the pyrolysis and combustion of the cellulosic substrate are complex and show low repeatability which might impair the reliability of the IP-tests.

  4. An Investigation Into Bayesian Networks for Modeling National Ignition Facility Capsule Implosions

    Energy Technology Data Exchange (ETDEWEB)

    Mitrani, J

    2008-08-18

    Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and it contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.

  5. Ignition probabilities for Compact Ignition Tokamak designs

    International Nuclear Information System (INIS)

    Stotler, D.P.; Goldston, R.J.

    1989-09-01

    A global power balance code employing Monte Carlo techniques had been developed to study the ''probability of ignition'' and has been applied to several different configurations of the Compact Ignition Tokamak (CIT). Probability distributions for the critical physics parameters in the code were estimated using existing experimental data. This included a statistical evaluation of the uncertainty in extrapolating the energy confinement time. A substantial probability of ignition is predicted for CIT if peaked density profiles can be achieved or if one of the two higher plasma current configurations is employed. In other cases, values of the energy multiplication factor Q of order 10 are generally obtained. The Ignitor-U and ARIES designs are also examined briefly. Comparisons of our empirically based confinement assumptions with two theory-based transport models yield conflicting results. 41 refs., 11 figs

  6. Ignition tuning for the National Ignition Campaign

    Directory of Open Access Journals (Sweden)

    Landen O.

    2013-11-01

    Full Text Available The overall goal of the indirect-drive inertial confinement fusion [1] tuning campaigns [2] is to maximize the probability of ignition by experimentally correcting for likely residual uncertainties in the implosion and hohlraum physics [3] used in our radiation-hydrodynamic computational models, and by checking for and resolving unexpected shot-to-shot variability in performance [4]. This has been started successfully using a variety of surrogate capsules that set key laser, hohlraum and capsule parameters to maximize ignition capsule implosion velocity, while minimizing fuel adiabat, core shape asymmetry and ablator-fuel mix.

  7. The spark-plug imitates the lightning; La bougie s'inspire de la foudre

    Energy Technology Data Exchange (ETDEWEB)

    Beaufils, Ph.

    2003-12-01

    The researchers-engineers of Renault company, the French car maker, have developed a spark-plug capable to generate a spark 3 to 6 times more longer than with a classical plug. The geometry of the different parts of the plug keeps the spark (electron avalanche) along the dielectric ceramic insulator between the central electrode and the socket. With this plug, the ignition of heterogenous mixtures is more efficient and the voltage necessary to generate the spark remains below 20000 V (with respect to 40000 V with a classical plug). Short paper. (J.S.)

  8. Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines

    Directory of Open Access Journals (Sweden)

    Lucas Eder

    2018-03-01

    Full Text Available This paper focuses on improving the 3D-Computational Fluid Dynamics (CFD modeling of diesel ignited gas engines, with an emphasis on injection and combustion modeling. The challenges of modeling are stated and possible solutions are provided. A specific approach for modeling injection is proposed that improves the modeling of the ballistic region of the needle lift. Experimental results from an inert spray chamber are used for model validation. Two-stage ignition methods are described along with improvements in ignition delay modeling of the diesel ignited gas engine. The improved models are used in the Extended Coherent Flame Model with the 3 Zones approach (ECFM-3Z. The predictive capability of the models is investigated using data from single cylinder engine (SCE tests conducted at the Large Engines Competence Center (LEC. The results are discussed and further steps for development are identified.

  9. Intershield to tank sparks at the Daresbury tandem

    International Nuclear Information System (INIS)

    James, A.N.

    1983-04-01

    The causes of serious metallic melting and denting due to discharges in the insulating gas of the Daresbury tandem are examined. In order to explain the melting, high oscillating currents have to flow in the spark channels, and those can only be expected when return strokes excite local electromagnetic modes at the site of the origin of breakdown. In the case of intershield to tank sparks, evidence that magnetic confinement of the spark channel produces denting is presented. A model which accounts for the differences between sparks at Oak Ridge and sparks at Daresbury is also presented. (author)

  10. The Effect of Particle Properties on Hot Particle Spot Fire Ignition

    Science.gov (United States)

    Zak, Casey David

    The ignition of natural combustible material by hot metal particles is an important fire ignition pathway by which wildland and wildland-urban-interface spot fires are started. There are numerous cases reported of wild fires started by clashing power-lines or from sparks generated by machines or engines. Similarly there are many cases reported of fires caused by grinding, welding and cutting sparks. Up to this point, research on hot particle spot fire ignition has largely focused on particle generation and transport. A small number of studies have examined what occurs after a hot particle contacts a natural fuel bed, but until recently the process remained poorly understood. This work describes an investigation of the effect of particle size, temperature and thermal properties on the ability of hot particles to cause flaming ignition of cellulosic fuel beds. Both experimental and theoretical approaches are used, with a focus on understanding the physics underlying the ignition process. For the experimental study, spheres of stainless steel, aluminum, brass and copper are heated in a tube furnace and dropped onto a powdered cellulose fuel bed; the occurrence of flaming ignition or lack thereof is visually observed and recorded. This procedure is repeated a large number of times for each metal type, varying particle diameter from 2 to 11 mm and particle temperature between 575 and 1100°C. The results of these experiments are statistically analyzed to find approximate ignition boundaries and identify boundary trends with respect to the particle parameters of interest. Schlieren images recorded during the ignition experiments are also used to more accurately describe the ignition process. Based on these images, a simple theoretical model of hot particle spot fire ignition is developed and used to explore the experimental trends further. The model under-predicts the minimum ignition temperatures required for small spheres, but agrees qualitatively with the experimental

  11. Mathematical modeling of the heat treatment and combustion of a coal particle. IV. Ignition stage

    Science.gov (United States)

    Enkhjargal, Kh.; Salomatov, V. V.

    2011-07-01

    The present paper is the continuation of the previous publications of the present authors in the Journal of Engineering Physics under the general title in which three sequential stages of the thermal preparation of a carbon particle for combustion are considered: heating, drying, and the yield of volatiles. The present paper is devoted to a detailed investigation of the stage of ignition of a carbon particle under the conditions of external radiative-convective supply that most adequately reflects the furnace medium. The characteristics of thermal ignition of a carbon matrix were studied with the aid of the adiabatic method. Such parameters as time and the heating temperature, the time of induction, the total time and the temperature of ignition of a carbon particle, the scale temperature, etc. have been found. The degree of dependence of the time of ignition on the initial temperature of the particle, the temperature of the external medium, heat transfer coefficient, and other inlet data has been analyzed.

  12. Laser-induced ignition of gasoline direct-injection engines

    Science.gov (United States)

    Liedl, Gerhard; Schuoecker, Dieter; Geringer, B.; Graf, J.; Klawatsch, D.; Lenz, H. P.; Piock, W. F.; Jetzinger, M.; Kapus, P.

    2005-03-01

    A q-switched Nd:YAG laser as well as an excimer laser with an unstable resonator have been used for ignition of combustion processes. Following first experiments with a combustion bomb a gasoline direct injection engine has been modified for laser ignition by installation of a focusing element and a beam entrance window. It was possible with the q-switched Nd:YAG laser which delivers short pulses with a duration of lesss than 6 ns to ignite the engine for several 100 hours without problems. Compared to conventional spark ignition, laser ignition allows a more flexible choice of the ignition location inside the combustion chamber with the possibility to ignite even inside the fuel spray. Measurements of fuel consumption and emissions prove that laser ignition has important advantages compared to conventional spark ignition systems. Experiments with the direct injection engine have been carried out at the fundamental wavelength of the Nd:YAG laser as well as with a frequency doubled system. No differences in the minimal pulse energy needed for ignition could be found, since the minimal pulse energy for ignition is mainly determined by the ablation thresholds of combustion deposits at the surface of the window to the combustion chamber. Such combustion deposits reduce the transparency of the window where the laser beam enters the combustion chamber and a "self-cleaning" mechanism of the window by ablation is essential for successful operation. Experiments show that above a certain threshold intensity of the laser beam at the window even highly polluted surfaces could be cleaned with teh first laser pulse which is important for operation in real-world engines. Theoretically calculated energy values for laser ignition are much lower since such mechanisms are usually not considered. Power and space requirements on possible future development of laser ignition systems are discussed briefly. Several concepts for laser ignition, like diode-pumped solid state lasers (DPSS

  13. Modeling of heat release and emissions from droplet combustion of multi component fuels in compression ignition engines

    DEFF Research Database (Denmark)

    Ivarsson, Anders

    emissions from the compression ignition engines (CI engines or diesel engines) are continuously increased. To comply with this, better modeling tools for the diesel combustion process are desired from the engine developers. The complex combustion process of a compression ignition engine may be divided...... it is well suited for optical line of sight diagnostics in both pre and post combustion regions. The work also includes some preliminary studies of radiant emissions from helium stabilized ethylene/air and methane/oxygen flames. It is demonstrated that nano particles below the sooting threshold actually...... of ethylene/air flames well known from the experimental work, was used for the model validation. Two cases were helium stabilized flames with φ = 1 and 2.14. The third case was an unstable flame with φ = 2.14. The unstable case was used to test whether a transient model would be able to predict the frequency...

  14. Shock Tube Ignition Delay Data Affected by Localized Ignition Phenomena

    KAUST Repository

    Javed, Tamour

    2016-12-29

    Shock tubes have conventionally been used for measuring high-temperature ignition delay times ~ O(1 ms). In the last decade or so, the operating regime of shock tubes has been extended to lower temperatures by accessing longer observation times. Such measurements may potentially be affected by some non-ideal phenomena. The purpose of this work is to measure long ignition delay times for fuels exhibiting negative temperature coefficient (NTC) and to assess the impact of shock tube non-idealities on ignition delay data. Ignition delay times of n-heptane and n-hexane were measured over the temperature range of 650 – 1250 K and pressures near 1.5 atm. Driver gas tailoring and long length of shock tube driver section were utilized to measure ignition delay times as long as 32 ms. Measured ignition delay times agree with chemical kinetic models at high (> 1100 K) and low (< 700 K) temperatures. In the intermediate temperature range (700 – 1100 K), however, significant discrepancies are observed between the measurements and homogeneous ignition delay simulations. It is postulated, based on experimental observations, that localized ignition kernels could affect the ignition delay times at the intermediate temperatures, which lead to compression (and heating) of the bulk gas and result in expediting the overall ignition event. The postulate is validated through simple representative computational fluid dynamic simulations of post-shock gas mixtures which exhibit ignition advancement via a hot spot. The results of the current work show that ignition delay times measured by shock tubes may be affected by non-ideal phenomena for certain conditions of temperature, pressure and fuel reactivity. Care must, therefore, be exercised in using such data for chemical kinetic model development and validation.

  15. Optical spark chamber

    CERN Multimedia

    CERN PhotoLab

    1971-01-01

    An optical spark chamber developed for use in the Omega spectrometer. On the left the supporting frame is exceptionally thin to allow low momentum particles to escape and be detected outside the magnetic field.

  16. Ignition and growth reactive flow modeling of recent HMX/TATB detonation experiments

    Science.gov (United States)

    Tarver, Craig M.

    2017-01-01

    Two experimental studies in which faster HMX detonation waves produced oblique detonation waves in adjoining slower detonating TATB charges were modeled using the Ignition and Growth (I&G) reactive flow detonation model parameters for PBX 9501 (95% HMX / 2.5% Estane / 2.5% BDNPA/F) and PBX 9502 (95% TATB / 5% Kel-F binder). Matignon et al. used X1 explosive (96% HMX / 4% binder) to drive an oblique detonation wave into an attached charge of T2 explosive (97% TATB / 3% binder). The flow angles were measured in the T2 shock initiation region and in steady T2 detonation. Anderson et al. used detonating PBX 9501 slabs of various thicknesses ranging from 0.56 mm to 2.5 mm to create oblique detonation waves in 8 mm thick slabs of PBX 9502. Several diagnostics were employed to: photograph the waves; measure detonation velocities and flow angles; and determine the output of the PBX 9501 slabs, the PBX 9502 slabs, and the "initiation regions" using LiF windows and PDV probes.

  17. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  18. Ignition and growth modeling of detonation reaction zone experiments on single crystals of PETN and HMX

    Science.gov (United States)

    White, Bradley W.; Tarver, Craig M.

    2017-01-01

    It has long been known that detonating single crystals of solid explosives have much larger failure diameters than those of heterogeneous charges of the same explosive pressed or cast to 98 - 99% theoretical maximum density (TMD). In 1957, Holland et al. demonstrated that PETN single crystals have failure diameters of about 8 mm, whereas heterogeneous PETN charges have failure diameters of less than 0.5 mm. Recently, Fedorov et al. quantitatively determined nanosecond time resolved detonation reaction zone profiles of single crystals of PETN and HMX by measuring the interface particle velocity histories of the detonating crystals and LiF windows using a PDV system. The measured reaction zone time durations for PETN and HMX single crystal detonations were approximately 100 and 260 nanoseconds, respectively. These experiments provided the necessary data to develop Ignition and Growth (I&G) reactive flow model parameters for the single crystal detonation reaction zones. Using these parameters, the calculated unconfined failure diameter of a PETN single crystal was 7.5 +/- 0.5 mm, close to the 8 mm experimental value. The calculated failure diameter of an unconfined HMX single crystal was 15 +/- 1 mm. The unconfined failure diameter of an HMX single crystal has not yet been determined precisely, but Fedorov et al. detonated 14 mm diameter crystals confined by detonating a HMX-based plastic bonded explosive (PBX) without initially overdriving the HMX crystals.

  19. A Yield Strength Model and Thoughts on an Ignition Criterion for a Reactive PTFE-Aluminum Composite

    Science.gov (United States)

    2008-08-01

    original cylinder. The conical surface shown in Figure 2 displays evidence of ductile flow, and its blackened regions suggest ignition. On the basis of...this specimen, we developed a shear localization hypothesis and adopted a metals -like approach to modeling mechanical properties of PTFE-Al, i.e., an...to the phenomenon of shear localization such as occurs in certain metals . The material is locally unable to equilibrate its load. Additional plastic

  20. STUDENT AWARD FINALIST: Oxygen Pathways in Streamer Discharge for Transient Plasma Ignition

    Science.gov (United States)

    Pendleton, S. J.; Bowman, S.; Singleton, D.; Watrous, J.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2011-10-01

    The use of streamers for the ignition of fuels, also known as transient plasma ignition (TPI), has been shown in a variety of engines to improve combustion through decreased ignition delay, increased lean burn capability and increased energy release relative to conventional spark ignition. The mechanisms behind these improvements, however, remain poorly understood. Temperature measurements by optical emission spectroscopy demonstrate that ignition by TPI is a nonthermal process, and thus is almost entirely dependent on the production and presence of electron impact-created active species in the discharge afterglow. Of particular interest are active oxygen species due to their relatively long lifetimes at high pressures and the pivotal role they play in combustion reactions. In order to elucidate the oxygen pathways, here we report the investigation of the temporal evolution of the populations of atomic oxygen and ozone by use of two-photon absorption laser induced fluorescence (TALIF) and UV absorption, respectively. Experimental results are presented and compared to kinetic modeling of the streamers. Future experiments are proposed to better understand the physics behind TPI. Supported by NSF, AFOSR, NumerEx-ONR, AFRL-WPAFB.

  1. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  2. Self-Ignition Behavior of Propane-Air Mixtures with Hydrogen Addition in Catalytic Micro-Channels Coupling Reduced-Order Kinetic Model and Heat Transfer

    OpenAIRE

    Junjie Chen

    2016-01-01

    Hydrogen-assisted self-ignition of propane-air mixtures under ambient condition were carried out in platinum-coated micro-channels, using a two-dimensional model with reduced-order reaction schemes, heat conduction in the solid walls, convection and surface radiation heat transfer. The self-ignition behavior of the hydrogen-propane mixed fuel is compared for the case of heated feed is analyzed. Simulations indicate that hydrogen can successfully cause self-ignition of propane-air mixtures in ...

  3. Characterization and modeling of 2D-glass micro-machining by spark-assisted chemical engraving (SACE) with constant velocity

    International Nuclear Information System (INIS)

    Didar, Tohid Fatanat; Dolatabadi, Ali; Wüthrich, Rolf

    2008-01-01

    Spark-assisted chemical engraving (SACE) is an unconventional micro-machining technology based on electrochemical discharge used for micro-machining nonconductive materials. SACE 2D micro-machining with constant speed was used to machine micro-channels in glass. Parameters affecting the quality and geometry of the micro-channels machined by SACE technology with constant velocity were presented and the effect of each of the parameters was assessed. The effect of chemical etching on the geometry of micro-channels under different machining conditions has been studied, and a model is proposed for characterization of the micro-channels as a function of machining voltage and applied speed

  4. Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-11

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition engines. Lean burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel [1]. The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco [1, 2]. The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using CONVERGE as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF

  5. Practical internal combustion engine laser spark plug development

    Science.gov (United States)

    Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.

    2007-09-01

    Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.

  6. SparkRS - Spark for Remote Sensing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is Spark-RS, an open source software project that enables GPU-accelerated remote sensing workflows in an Apache Spark distributed computing...

  7. Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    Clark, D S; Weber, C R; Eder, D C; Haan, S W; Hammel, B A; Hinkel, D E; Jones, O S; Kritcher, A L; Marinak, M M; Milovich, J L; Patel, P K; Robey, H F; Salmonson, J D; Sepke, S M

    2016-01-01

    Several dozen high convergence inertial confinement fusion ignition experiments have now been completed on the National Ignition Facility (NIF). These include both “low foot” experiments from the National Ignition Campaign (NIC) and more recent “high foot” experiments. At the time of the NIC, there were large discrepancies between simulated implosion performance and experimental data. In particular, simulations over predicted neutron yields by up to an order of magnitude, and some experiments showed clear evidence of mixing of ablator material deep into the hot spot that could not be explained at the time. While the agreement between data and simulation improved for high foot implosion experiments, discrepancies nevertheless remain. This paper describes the state of detailed modelling of both low foot and high foot implosions using 1-D, 2-D, and 3-D radiation hydrodynamics simulations with HYDRA. The simulations include a range of effects, in particular, the impact of the plastic membrane used to support the capsule in the hohlraum, as well as low-mode radiation asymmetries tuned to match radiography measurements. The same simulation methodology is applied to low foot NIC implosion experiments and high foot implosions, and shows a qualitatively similar level of agreement for both types of implosions. While comparison with the experimental data remains imperfect, a reasonable level of agreement is emerging and shows a growing understanding of the high-convergence implosions being performed on NIF. (paper)

  8. Ignition and flame-growth modeling on realistic building and landscape objects in changing environments

    Science.gov (United States)

    Mark A. Dietenberger

    2010-01-01

    Effective mitigation of external fires on structures can be achieved flexibly, economically, and aesthetically by (1) preventing large-area ignition on structures by avoiding close proximity of burning vegetation; and (2) stopping flame travel from firebrands landing on combustible building objects. Using bench-scale and mid-scale fire tests to obtain flammability...

  9. Using SPARK as a Solver for Modelica

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael; Wetter, Michael; Haves, Philip; Moshier, Michael A.; Sowell, Edward F.

    2008-06-30

    Modelica is an object-oriented acausal modeling language that is well positioned to become a de-facto standard for expressing models of complex physical systems. To simulate a model expressed in Modelica, it needs to be translated into executable code. For generating run-time efficient code, such a translation needs to employ algebraic formula manipulations. As the SPARK solver has been shown to be competitive for generating such code but currently cannot be used with the Modelica language, we report in this paper how SPARK's symbolic and numerical algorithms can be implemented in OpenModelica, an open-source implementation of a Modelica modeling and simulation environment. We also report benchmark results that show that for our air flow network simulation benchmark, the SPARK solver is competitive with Dymola, which is believed to provide the best solver for Modelica.

  10. Modeling Ignition of a Heptane Isomer: Improved Thermodynamics, Reaction Pathways, Kinetic, and Rate Rule Optimizations for 2-Methylhexane

    KAUST Repository

    Mohamed, Samah

    2016-03-21

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important to investigate the combustion behavior of real fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracies in certain portions of the models. This study focuses on updating thermodynamic data and the kinetic reaction mechanism for a gasoline surrogate component, 2-methylhexane, based on recently published thermodynamic group values and rate rules derived from quantum calculations and experiments. Alternative pathways for the isomerization of peroxy-alkylhydroperoxide (OOQOOH) radicals are also investigated. The effects of these updates are compared against new high-pressure shock tube and rapid compression machine ignition delay measurements. It is shown that rate constant modifications are required to improve agreement between kinetic modeling simulations and experimental data. We further demonstrate the ability to optimize the kinetic model using both manual and automated techniques for rate parameter tunings to improve agreement with the measured ignition delay time data. Finally, additional low temperature chain branching reaction pathways are shown to improve the model’s performance. The present approach to model development provides better performance across extended operating conditions while also strengthening the fundamental basis of the model.

  11. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels

    KAUST Repository

    Badra, Jihad A.

    2016-01-29

    Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, "Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion," SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, "Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel," SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier-Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been

  12. One-dimensional Numerical Model of Transient Discharges in Air of a Spatial Plasma Ignition Device

    Science.gov (United States)

    Saceleanu, Florin N.

    This thesis examines the modes of discharge of a plasma ignition device. Oscilloscope data of the discharge voltage and current are analyzed for various pressures in air at ambient temperature. It is determined that the discharge operates in 2 modes: a glow discharge and a postulated streamer discharge. Subsequently, a 1-dimensional fluid simulation of plasma using the finite volume method (FVM) is developed to gain insight into the particle kinetics. Transient results of the simulation agree with theories of electric discharges; however, quasi-steady state results were not reached due to high diffusion time of ions in air. Next, an ordinary differential equation (ODE) is derived to understand the discharge transition. Simulated results were used to estimate the voltage waveform, which describes the ODE's forcing function; additional simulated results were used to estimate the discharge current and the ODE's non-linearity. It is found that the ODE's non-linearity increases exponentially for capacitive discharges. It is postulated that the non-linearity defines the mode transition observed experimentally. The research is motivated by Spatial Plasma Discharge Ignition (SPDI), an innovative ignition system postulated to increase combustion efficiency in automobile engines for up to 9%. The research thus far can only hypothesize SPDI's benefits on combustion, based on the literature review and the modes of discharge.

  13. Research on measurement of aviation magneto ignition strength and balance

    Science.gov (United States)

    Gao, Feng; He, Zhixiang; Zhang, Dingpeng

    2017-12-01

    Aviation magneto ignition system failure accounted for two-thirds of the total fault aviation piston engine and above. At present the method used for this failure diagnosis is often depended on the visual inspections in the civil aviation maintenance field. Due to human factors, the visual inspections cannot provide ignition intensity value and ignition equilibrium deviation value among the different spark plugs in the different cylinder of aviation piston engine. So air magneto ignition strength and balance testing has become an aviation piston engine maintenance technical problem needed to resolve. In this paper, the ultraviolet sensor with detection wavelength of 185~260nm and driving voltage of 320V DC is used as the core of ultraviolet detection to detect the ignition intensity of Aviation magneto ignition system and the balance deviation of the ignition intensity of each cylinder. The experimental results show that the rotational speed within the range 0 to 3500 RPM test error less than 0.34%, ignition strength analysis and calculation error is less than 0.13%, and measured the visual inspection is hard to distinguish between high voltage wire leakage failure of deviation value of 200 pulse ignition strength balance/Sec. The method to detect aviation piston engine maintenance of magneto ignition system fault has a certain reference value.

  14. Laser ignited engines: progress, challenges and prospects.

    Science.gov (United States)

    Dearden, Geoff; Shenton, Tom

    2013-11-04

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability.

  15. Validation of a zero-dimensional and 2-phase combustion model for dual-fuel compression ignition engine simulation

    Directory of Open Access Journals (Sweden)

    Mikulski Maciej

    2017-01-01

    Full Text Available Increasing demands for the reduction of exhaust emissions and the pursuit to re-duce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of liquid fuel injected directly into the cylinder acts as the ignition inhibitor of the gaseous fuel. Achieving the optimum combustion process in such an engine requires the application of advanced control algorithms which require mathematical modelling support. In response to the growing demand for new simulation tools, a 0-D model of a dual-fuel engine was proposed and validated. The validation was performed in a broad range of engine operating points, including various speeds and load condition, as well as different natural gas/diesel blend ratios. It was demonstrated that the average model calculation error within the entire cycle did not exceed 6.2%, and was comparable to the measurement results cycle to cycle variations. The maximum model calculation error in a single point of a cycle was 15% for one of the complex (multipoint injection cases. In other cases, it did not exceed 11%.

  16. Advances for laser ignition of internal combustion and rocket engines

    International Nuclear Information System (INIS)

    Schwarz, E.

    2011-01-01

    The scope of the PhD thesis presented here is the investigation of theoretical and practical aspects of laser-induced spark ignition and laser thermal ignition. Laser ignition systems are currently undergoing a rapidly development with growing intensity involving more and more research groups who mainly concentrate on the field of car and large combustion engines. This research is primarily driven by the engagement to meet the increasingly strict emission limits and by the intention to use the limited energy reserves more efficiently. For internal combustion engines, laser plasma-induced ignition will allow to combine the goals for legally required reductions of pollutant emissions and higher engine efficiencies. Also for rocket engines laser ignition turns out to be very attractive. A highly reliable ignition system like laser ignition would represent an option for introducing non-toxic propellants in order to replace highly toxic and carcinogenic hydrazine-based propellants commonly used in launch vehicle upper stages and satellites. The most important results on laser ignition and laser plasma generation, accomplished by the author and, in some respects, enriched by cooperation with colleagues are presented in the following. The emphasis of this thesis is placed on the following issues: - Two-color effects on laser plasma generation - Theoretical considerations about the focal volume concerning plasma generation - Plasma transmission experiments - Ignition experiments on laser-induced ignition - Ignition experiments on thermally-induced ignition - Feasibility study on laser ignition of rocket engines The purpose of the two-color laser plasma experiments is to investigate possible constructive interference effects of driving fields that are not monochromatic, but contain (second) harmonic radiation with respect to the goal of lowering the plasma generation threshold. Such effects have been found in a number of related processes, such as laser ablation or high

  17. Antiknock quality and ignition kinetics of 2-phenylethanol, a novel lignocellulosic octane booster

    KAUST Repository

    Shankar, Vijai

    2016-06-28

    High-octane quality fuels are important for increasing spark ignition engine efficiency, but their production comes at a substantial economic and environmental cost. The possibility of producing high anti-knock quality gasoline by blending high-octane bio-derived components with low octane naphtha streams is attractive. 2-phenyl ethanol (2-PE), is one such potential candidate that can be derived from lignin, a biomass component made of interconnected aromatic groups. We first ascertained the blending anti-knock quality of 2-PE by studying the effect of spark advancement on knock for various blends 2-PE, toluene, and ethanol with naphtha in a cooperative fuels research engine. The blending octane quality of 2-PE indicated an anti-knock behavior similar or slightly greater than that of toluene, and ethylbenzene, which could be attributed to either chemical kinetics or charge cooling effects. To isolate chemical kinetic effects, a model for 2-PE auto-ignition was developed and validated using ignition delay times measured in a high-pressure shock tube. Simulated ignition delay times of 2-PE were also compared to those of traditional high-octane gasoline blending components to show that the gas phase reactivity of 2-PE is lower than ethanol, and comparable to toluene, and ethylbenzene at RON, and MON relevant conditions. The gas-phase reactivity of 2-PE is largely controlled by its aromatic ring, while the effect of the hydroxyl group is minimal. The higher blending octane quality of 2-PE compared to toluene, and ethylbenzene can be attributed primarily to the effect of the hydroxyl group on increasing heat of vaporization. © 2016 The Combustion Institute.

  18. An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements

    KAUST Repository

    Burke, Sinéad M.

    2015-02-01

    Experimental data obtained in this study (Part II) complement the speciation data presented in Part I, but also offer a basis for extensive facility cross-comparisons for both experimental ignition delay time (IDT) and laminar flame speed (LFS) observables. To improve our understanding of the ignition characteristics of propene, a series of IDT experiments were performed in six different shock tubes and two rapid compression machines (RCMs) under conditions not previously studied. This work is the first of its kind to directly compare ignition in several different shock tubes over a wide range of conditions. For common nominal reaction conditions among these facilities, cross-comparison of shock tube IDTs suggests 20-30% reproducibility (2σ) for the IDT observable. The combination of shock tube and RCM data greatly expands the data available for validation of propene oxidation models to higher pressures (2-40. atm) and lower temperatures (750-1750. K).Propene flames were studied at pressures from 1 to 20. atm and unburned gas temperatures of 295-398. K for a range of equivalence ratios and dilutions in different facilities. The present propene-air LFS results at 1. atm were also compared to LFS measurements from the literature. With respect to initial reaction conditions, the present experimental LFS cross-comparison is not as comprehensive as the IDT comparison; however, it still suggests reproducibility limits for the LFS observable. For the LFS results, there was agreement between certain data sets and for certain equivalence ratios (mostly in the lean region), but the remaining discrepancies highlight the need to reduce uncertainties in laminar flame speed experiments amongst different groups and different methods. Moreover, this is the first study to investigate the burning rate characteristics of propene at elevated pressures (>5. atm).IDT and LFS measurements are compared to predictions of the chemical kinetic mechanism presented in Part I and good

  19. Spark ignition natural gas engines-A review

    International Nuclear Information System (INIS)

    Cho, Haeng Muk; He, Bang-Quan

    2007-01-01

    Natural gas is a promising alternative fuel to meet strict engine emission regulations in many countries. Natural gas engines can operate at lean burn and stoichiometric conditions with different combustion and emission characteristics. In this paper, the operating envelope, fuel economy, emissions, cycle-to-cycle variations in indicated mean effective pressure and strategies to achieve stable combustion of lean burn natural gas engines are highlighted. Stoichiometric natural gas engines are briefly reviewed. To keep the output power and torque of natural gas engines comparable to those of their gasoline or Diesel counterparts, high boost pressure should be used. High activity catalyst for methane oxidation and lean deNOx system or three way catalyst with precise air-fuel ratio control strategies should be developed to meet future stringent emission standards

  20. Reversed field pinch ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    Plasma models are described and used to calculated numerically the transport confinement (nτ E ) requirements and steady state operation points for both the reversed field pinch (RFP) and the tokamak. The models are used to examine the CIT tokamak ignition conditions and the RFP experimental and ignition conditions. Physics differences between RFPs and tokamaks and their consequences for a D-T ignition machine are discussed. Compared with a tokamak, the ignition RFP has many physics advantages, including Ohmic heating to ignition (no need for auxiliary heating systems), higher beta, lower ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits) and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic field, larger aspect ratios and smaller plasma cross-sections, translate to significant cost reductions for both ignition and reactor applications. The primary drawback of the RFP is the uncertainty that the present scaling will extrapolate to reactor regimes. Devices that are under construction should go a long way toward resolving this scaling uncertainty. The 4 MA ZTH is expected to extend the nτ E transport scaling data by three orders of magnitude above the results of ZT-40M, and, if the present scaling holds, ZTH is expected to achieve a D-T equivalent scientific energy breakeven, Q = 1. A base case RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. (author). 19 refs, 11 figs, 3 tabs

  1. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    Science.gov (United States)

    Wollen, Mark A. (Inventor)

    2015-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  2. Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Nonpremixed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, K; Lu, T; Herbinet, O; Humer, S; Niemann, U; Pitz, W J; Law, C K

    2008-01-09

    Methyl decanoate is a large methyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate is investigated in nonpremixed, nonuniform flows. Experiments are performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream is measured as a function of the strain rate at extinction, and critical conditions of ignition are measured in terms of the temperature of the oxidizer stream as a function of the strain rate. It is not possible to use a fully detailed mechanism for methyl decanoate to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources. Therefore a skeletal mechanism was deduced from a detailed mechanism of 8555 elementary reactions and 3036 species using 'directed relation graph' method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of ignition were calculated using this skeletal mechanism and are found to agree well with experimental data. The predicted strain rate at extinction is found to be lower than the measurements. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  3. Numerical Modeling of a Jet Ignition Direct Injection (JI DI LPG Engine

    Directory of Open Access Journals (Sweden)

    Albert Boretti

    2017-01-01

    Full Text Available The paper presents indirectly validated simulations of the operation of a LPG engine fitted with Direct Injection (DI and Jet Ignition (JI. It is demonstrated that the engine may have diesel like efficiencies and load control by quantity of fuel injected.  As the liquid propane quickly evaporates after injection in the main chamber, the main chamber mixture may be much closer to stoichiometry than a diesel for a better specific power at low engine speeds. This design also works at the high engine speeds impossible for the diesel, as combustion within the main chamber is controlled by the turbulent mixing rather than the vaporization and diffusion processes of the injected fuel of the diesel. 

  4. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  5. A Phenomenological Model for Prediction Auto-Ignition and Soot Formation of Turbulent Diffusion Combustion in a High Pressure Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Qinghui Zhou

    2011-06-01

    Full Text Available A new phenomenological model, the TP (Temperature Phase model, is presented to carry out optimization calculations for turbulent diffusion combustion in a high-pressure common rail diesel engine. Temperature is the most important parameter in the TP model, which includes two parts: an auto-ignition and a soot model. In the auto-ignition phase, different reaction mechanisms are built for different zones. For the soot model, different methods are used for different temperatures. The TP model is then implemented in KIVA code instead of original model to carry out optimization. The results of cylinder pressures, the corresponding heat release rates, and soot with variation of injection time, variation of rail pressure and variation of speed among TP model, KIVA standard model and experimental data are analyzed. The results indicate that the TP model can carry out optimization and CFD (computational fluid dynamics and can be a useful tool to study turbulent diffusion combustion.

  6. Laser performance operations model (LPOM): a computational system that automates the setup and performance analysis of the national ignition facility

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M; House, R; Williams, W; Haynam, C; White, R; Orth, C; Sacks, R [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA, 94550 (United States)], E-mail: shaw7@llnl.gov

    2008-05-15

    The National Ignition Facility (NIF) is a stadium-sized facility containing a 192-beam, 1.8 MJ, 500-TW, 351-nm laser system together with a 10-m diameter target chamber with room for many target diagnostics. NIF will be the world's largest laser experimental system, providing a national center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. A computational system, the Laser Performance Operations Model (LPOM) has been developed and deployed that automates the laser setup process, and accurately predict laser energetics. LPOM determines the settings of the injection laser system required to achieve the desired main laser output, provides equipment protection, determines the diagnostic setup, and supplies post shot data analysis and reporting.

  7. High quality new type spark plug pressure sensor; Koseino plug gata shiatsu sensor ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Urakawa, H.; Yanagihara, S.; Kawa, T. [Tsukasa Sokken Co. Ltd., Tokyo (Japan); Enomoto, Y. [Musashi Institute of Technology, Tokyo (Japan); Sato, T. [Dai Ichi Institute of Technology, Kagoshima (Japan); Gotthard, E.

    1998-05-01

    Investigations were made on a spark plug type pressure sensor using GaPO4 piezoelectric material developed recently by AVL Corporation. This sensor has the ignition electrode installed decentered to assure the installing position for the pressure sensor, where the small pressure sensor with a diameter of 4.4 mm, model GU12P is installed on the side. Experiments were performed on this sensor, a water cooled sensor for comparison, and a cooling-free type sensor for reference. The engine was operated at an outlet cooling water temperature maintained constant at 80 degC, and experimented in a normal combustion condition with full load at 2000 rpm and 4000 rpm, in a knocking condition with full load at 2000 rpm, and in a transient condition from full load at 4000 rpm to no load at 1300 rpm. As a result, it was made clear that the spark plug type pressure sensor showed an output of the same level as that with the water cooled sensor in the normal combustion pressure. Load change drift under the transient condition was found as good as 2.5% FS at maximum. No effect of columnar vibration was discovered, and a knocking waveform of 14 kHz was observed. 6 refs., 12 figs., 1 tab.

  8. Fast data processing with Spark

    CERN Document Server

    Sankar, Krishna

    2015-01-01

    Fast Data Processing with Spark - Second Edition is for software developers who want to learn how to write distributed programs with Spark. It will help developers who have had problems that were too big to be dealt with on a single computer. No previous experience with distributed programming is necessary. This book assumes knowledge of either Java, Scala, or Python.

  9. Primary Science Interview: Science Sparks

    Science.gov (United States)

    Bianchi, Lynne

    2016-01-01

    In this "Primary Science" interview, Lynne Bianchi talks with Emma Vanstone about "Science Sparks," which is a website full of creative, fun, and exciting science activity ideas for children of primary-school age. "Science Sparks" started with the aim of inspiring more parents to do science at home with their…

  10. Technical evaluation of vehicle ignition systems: conduct differences between a high energy capacitive system and a standard inductive system

    Directory of Open Access Journals (Sweden)

    Bruno Santos Goulart

    2014-09-01

    Full Text Available An efficient combustion depends on many factors, such as injection, turbulence and ignition characteristics. With the improvement of internal combustion engines the turbulence intensity and internal pressure have risen, demanding more efficient and powerful ignition systems. In direct injection engines, the stratified charge resultant from the wall/air-guided or spray-guided system requires even more energy. The Paschen’s law shows that spark plug gap and mixture density are proportional to the dielectric rupture voltage. It is known that larger spark gaps promote higher efficiency in the internal combustion engines, since the mixture reaction rate rises proportionally. However, the ignition system must be adequate to the imposed gap, not only on energy, but also on voltage and spark duration. For the reported study in this work two test benches were built: a standard inductive ignition system and a capacitive discharge high energy ignition system, with variable voltage and capacitance. The influence of the important parameters energy and ignition voltage on the spark duration, as well as the electrode gap and shape were analyzed. It was also investigated the utilization of a coil with lower resistance and inductance values, as well as spark plugs with and without internal resistances.

  11. Internal combustion engine ignition apparatus having a primary winding module

    Energy Technology Data Exchange (ETDEWEB)

    Huntzinger, D.A.; Welsh, T.E. Jr.; Boyer, J.A.

    1990-02-27

    This patent describes a primary winding ignition module that is adapted to be mounted on an internal combustion engine and which is adapted to be magnetically coupled to many separate spark developing units associated with the cylinders of the engine. It comprises: an elongated support, many spaced tubular embers carried by the support, a primary coil winding located in each tubular member having a bore, and conductor means carried by the support connected respectively to opposite ends of a respective primary winding for energizing a respective primary winding. The bores adapted to receive portions of the secondary spark developing units when the module is mounted on an engine.

  12. Aqueous Ethanol Ignition and Engine Studies, Phase I

    Science.gov (United States)

    2010-09-01

    Our objectives were to design a micro-dilution tunnel for monitoring engine emissions, measure ignition temperature and heat release from ethanol-water-air mixtures on platinum, and initiate a computational fluid dynamics model of a catalytic igniter...

  13. Resistance of a water spark.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt; Lehr, Jane Marie

    2005-11-01

    The later time phase of electrical breakdown in water is investigated for the purpose of improving understanding of the discharge characteristics. One dimensional simulations in addition to a zero dimensional lumped model are used to study the spark discharge. The goal is to provide better electrical models for water switches used in the pulse compression section of pulsed power systems. It is found that temperatures in the discharge channel under representative drive conditions, and assuming small initial radii from earlier phases of development, reach levels that are as much as an order of magnitude larger than those used to model discharges in atmospheric gases. This increased temperature coupled with a more rapidly rising conductivity with temperature than in air result in a decreased resistance characteristic compared to preceding models. A simple modification is proposed for the existing model to enable the approximate calculation of channel temperature and incorporate the resulting conductivity increase into the electrical circuit for the discharge channel. Comparisons are made between the theoretical predictions and recent experiments at Sandia. Although present and past experiments indicated that preceding late time channel models overestimated channel resistance, the calculations in this report seem to underestimate the resistance relative to recent experiments. Some possible reasons for this discrepancy are discussed.

  14. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  15. 76 FR 37953 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Science.gov (United States)

    2011-06-28

    ... estimated 38 tons per year, and hydrocarbons by an estimated 18 tons per year in the year 2030. DATES: This... Changes Since Proposal A. Definitions B. Emission Standards and Fuel Requirements C. Requirements for... Located in Remote Alaska D. Emission Standards for Marine Engines E. Test Methods F. Definitions VI...

  16. 75 FR 32611 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Science.gov (United States)

    2010-06-08

    ... C404-02), U.S. EPA, Research Triangle Park, NC 27711, Attention Docket ID No. EPA-HQ-OAR-2010-0295... Coordination with Indian Tribal Governments G. Executive Order 13045: Protection of Children From Environmental... diesel engines and fuel for electricity. These communities are scattered over long distances in remote...

  17. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters.

    Science.gov (United States)

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-04-16

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators - a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes.

  18. How to Ignite an Atmospheric Pressure Microwave Plasma Torch without Any Additional Igniters

    Science.gov (United States)

    Leins, Martina; Gaiser, Sandra; Schulz, Andreas; Walker, Matthias; Schumacher, Uwe; Hirth, Thomas

    2015-01-01

    This movie shows how an atmospheric pressure plasma torch can be ignited by microwave power with no additional igniters. After ignition of the plasma, a stable and continuous operation of the plasma is possible and the plasma torch can be used for many different applications. On one hand, the hot (3,600 K gas temperature) plasma can be used for chemical processes and on the other hand the cold afterglow (temperatures down to almost RT) can be applied for surface processes. For example chemical syntheses are interesting volume processes. Here the microwave plasma torch can be used for the decomposition of waste gases which are harmful and contribute to the global warming but are needed as etching gases in growing industry sectors like the semiconductor branch. Another application is the dissociation of CO2. Surplus electrical energy from renewable energy sources can be used to dissociate CO2 to CO and O2. The CO can be further processed to gaseous or liquid higher hydrocarbons thereby providing chemical storage of the energy, synthetic fuels or platform chemicals for the chemical industry. Applications of the afterglow of the plasma torch are the treatment of surfaces to increase the adhesion of lacquer, glue or paint, and the sterilization or decontamination of different kind of surfaces. The movie will explain how to ignite the plasma solely by microwave power without any additional igniters, e.g., electric sparks. The microwave plasma torch is based on a combination of two resonators — a coaxial one which provides the ignition of the plasma and a cylindrical one which guarantees a continuous and stable operation of the plasma after ignition. The plasma can be operated in a long microwave transparent tube for volume processes or shaped by orifices for surface treatment purposes. PMID:25938699

  19. Development of a self-ignition and combustion model for diesel engines; Modelisation de l`auto-inflammation et de la combustion pour les moteurs diesel

    Energy Technology Data Exchange (ETDEWEB)

    Pires Da Cruz, A.

    1997-12-09

    The work concerns self-ignition and combustion modelling in Diesel engines. Special attention is given to turbulence induced effects. Only gas fuel injection is taken into account. Turbulent mixing is identified as one of the main parameters controlling self-ignition in Diesel engines. However, turbulence effects are often neglected by models currently used in engine calculation codes. A new model based on results obtained by direct numerical simulation (DNS) is proposed. It includes turbulence effects by means of the scalar dissipation rate and presumed pdf of the mixture fraction and a chemical reaction progress variable. The model is validated through several steps. First, its results are compared to DNS in simple mixing and self-ignition cases. Then, its averaged version is integrated into the KIVA2-MB calculation code, where its behavior is tested in a one dimensional version and compared to other formulations. Finally, the model is validated with comparisons to experimental results of methane injection into a high pressure combustion chamber filled with hot air. The combustion chamber allows large optical access and therefore, optical diagnostics can be made. (author) 101 refs.

  20. Multi variable control of a switched ignition device: efficiency improvement under various constraints; Commande multivariable d`un moteur a allumage commande: Amelioration du rendement sous differentes contraintes

    Energy Technology Data Exchange (ETDEWEB)

    Chaumerliac, V.

    1995-03-09

    Spark-ignition engine control needs substantial improvement for various reasons: a non-linear and multivariable process, the strictness of anti-pollution constraints, the necessity of fuel economy, the variable running conditions, the aging, the reliability and the cost. The improvement of engine efficiency will be involved in this context and with the pollution constraints. This work develops a system approach and its philosophy is based on a suitable description of the main dynamics. A compartmentalized model of a spark-ignition engine and the dynamic of the vehicle is presented. The aim of this modeling is to have a good representativeness in transients and to describe the behavior of the outputs useful for control. The multivariable control is split in two independent systems. The first one controls the spark advance control to obtain the maximum torque. The second one controls the throttle and the electronic fuel injection device to have lower pollutant emissions. The spark advance closed loop control uses information measured with either a cylinder pressure sensor or a torque sensor. These studies have achieved to an adaptive tuning on engine bench. A new actuator, the electronic throttle control, can provide a higher degree of precision for the fuel/air ratio regulation system, particularly during fast accelerations and decelerations. An intake manifold pressure control is developed to coordinate the air and fuel flows. A delay strategy and a simple compensation of fuel supply dynamics allow to obtain good results on engine bench. Uncoupling the acceleration pedal and the throttle command is a promising way to improve engine efficiency and reduce exhaust emission during transient phases. (author) 59 refs.

  1. SPARK Version 1.1 user manual

    International Nuclear Information System (INIS)

    Weissenburger, D.W.

    1988-01-01

    This manual describes the input required to use Version 1.1 of the SPARK computer code. SPARK 1.1 is a library of FORTRAN main programs and subprograms designed to calculate eddy currents on conducting surfaces where current flow is assumed zero in the direction normal to the surface. Surfaces are modeled with triangular and/or quadrilateral elements. Lorentz forces produced by the interaction of eddy currents with background magnetic fields can be output at element nodes in a form compatible with most structural analysis codes. In addition, magnetic fields due to eddy currents can be determined at points off the surface. Version 1.1 features eddy current streamline plotting with optional hidden-surface-removal graphics and topological enhancements that allow essentially any orientable surface to be modeled. SPARK also has extensive symmetry specification options. In order to make the manual as self-contained as possible, six appendices are included that present summaries of the symmetry options, topological options, coil options and code algorithms, with input and output examples. An edition of SPARK 1.1 is available on the Cray computers at the National Magnetic Fusion Energy Computer Center at Livermore, California. Another more generic edition is operational on the VAX computers at the Princeton Plasma Physics Laboratory and is available on magnetic tape by request. The generic edition requires either the GKS or PLOT10 graphics package and the IMSL or NAG mathematical package. Requests from outside the United States will be subject to applicable federal regulations regarding dissemination of computer programs. 22 refs

  2. MV controlled spark gap

    International Nuclear Information System (INIS)

    Evdokimovich, V.M.; Evlampiev, S.B.; Korshunov, G.S.; Nikolaev, V.A.; Sviridov, Yu.F.; Khmyrov, V.V.

    1980-01-01

    A megavolt gas-filled trigatron gap with a sectional gas-discharge chamber having a more than three-fold range of operating voltages is described. The discharge chamber consists of ten sections, each 70 mm thick, made of organic glass. The sections are separated one from another by aluminium gradient rings to which ohmic voltage divider is connected. Insulational sections and gradient rings are braced between themselves by means of metal flanges through gaskets made of oil-resistant rubber with the help of fiberglass-laminate pins. The gap has two electrodes 110 mm in diameter. The trigatron ignition assembly uses a dielectric bushing projecting over the main electrode plane. Use has been made of a gas mixture containing 10% of SF 6 and 90% of air making possible to ensure stable gap operation without readjusting in the voltage range from 0.4 to 1.35 MV. The operation time lag in this range is equal to 10 μs at a spread of [ru

  3. Auto-ignition modelling: analysis of the dilution effects by the unburnt gases and of the interactions with turbulence for diesel homogeneous charge compression ignition (HCCI) engines; Modelisation de l'auto-inflammation: analyse des effets de la dilution par les gaz brules et des interactions avec la turbulence dediee aux moteurs Diesel a charge homogene

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, G.

    2005-09-15

    Homogeneous Charge Compression Ignition (HCCI) is an alternative engine combustion process that offers the potential for substantial reductions in both NO{sub x} and particulate matter still providing high Diesel-like efficiencies. Combustion in HCCI mode takes place essentially by auto-ignition. It is mainly controlled by the chemical kinetics. It is therefore necessary to introduce detailed chemistry effects in combustion CFD codes in order to properly model the HCCI combustion process. The objective of this work is to develop an auto-ignition model including detailed chemical kinetics and its interactions with turbulence. Also, a comprehensive study has been performed to analyze the chemical influence of CO and H{sub 2} residual species on auto-ignition, which can be present in the exhaust gases. A new auto-ignition model, TKI-PDF (Tabulated Kinetics for Ignition - with turbulent mixing interactions through a pdf approach) dedicated to RANS 3D engine combustion CFD calculations is proposed. The TKI-PDF model is formulated in order to accommodate the detailed chemical kinetics of auto-ignition coupled with turbulence/chemistry interactions. The complete model development and its validation against experimental results are presented in two parts. The first part of this work describes the detailed chemistry input to the model. The second part is dedicated to the turbulent mixing description. A method based on a progress variable reaction rate tabulation is used. A look-up table for the progress variable reaction rates has been built through constant volume complex chemistry simulations. Instantaneous local reaction rates inside the CFD computational cell are then calculated by linear interpolation inside the look-up table depending on the local thermodynamic conditions. In order to introduce the turbulent mixing effects on auto-ignition, a presumed pdf approach is used. The model has been validated in different levels. First, the detailed kinetic approach was

  4. On the assessment of performance and emissions characteristics of a SI engine provided with a laser ignition system

    Science.gov (United States)

    Birtas, A.; Boicea, N.; Draghici, F.; Chiriac, R.; Croitoru, G.; Dinca, M.; Dascalu, T.; Pavel, N.

    2017-10-01

    Performance and exhaust emissions of spark ignition engines are strongly dependent on the development of the combustion process. Controlling this process in order to improve the performance and to reduce emissions by ensuring rapid and robust combustion depends on how ignition stage is achieved. An ignition system that seems to be able for providing such an enhanced combustion process is that based on plasma generation using a Q-switched solid state laser that delivers pulses with high peak power (of MW-order level). The laser-spark devices used in the present investigations were realized using compact diffusion-bonded Nd:YAG/Cr4+:YAG ceramic media. The laser igniter was designed, integrated and built to resemble a classical spark plug and therefore it could be mounted directly on the cylinder head of a passenger car engine. In this study are reported the results obtained using such ignition system provided for a K7M 710 engine currently produced by Renault-Dacia, where the standard calibrations were changed towards the lean mixtures combustion zone. Results regarding the performance, the exhaust emissions and the combustion characteristics in optimized spark timing conditions, which demonstrate the potential of such an innovative ignition system, are presented.

  5. Understanding Biomass Ignition in Power Plant Mills

    DEFF Research Database (Denmark)

    Schwarzer, Lars; Jensen, Peter Arendt; Glarborg, Peter

    2017-01-01

    % oxygen with those under inert atmosphere revealed two distinct pathways, pyrolysis and exothermic heterogeneous oxidation. At low temperatures and sufficient oxygen availability, heterogeneous oxidation of the solid seems to be favored over pyrolysis for wood, but not for coal. Current ignition models do......Converting existing coal fired power plants to biomass is a readily implemented strategy to increase the share of renewable energy. However, changing from one fuel to another is not straightforward: Experience shows that wood pellets ignite more readily than coal in power plant mills or storages....... This is not very well explained by apply-ing conventional thermal ignition theory. An experimental study at lab scale, using pinewood as an example fuel, was conducted to examine self-heating and self-ignition. Supplemental experiments were performed with bituminous coal. Instead of characterizing ignition...

  6. 75 FR 61820 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Science.gov (United States)

    2010-10-06

    ...? (6) Circumvention testing. The 1992 Model Specifications offer a number of procedures for evaluating... believe that they represent a broad consensus in the industry. F. Tampering and Circumvention Testing There was some criticism that the 1992 Model Specifications for tampering and circumvention testing are...

  7. Coil-On-Plug Ignition for LOX/Methane Liquid Rocket Engines in Thermal Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX) / liquid methane rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/methane propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. In order to successfully demonstrate ignition reliability in the vacuum conditions and eliminate corona discharge issues, a coil-on-plug ignition system has been developed. The ICPTA uses spark-plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark-plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp.-2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, Plum Brook testing demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/methane propulsion systems in future spacecraft.

  8. Are Crab nanoshots Schwinger sparks?

    Energy Technology Data Exchange (ETDEWEB)

    Stebbins, Albert [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Yoo, Hojin [Univ. of Wisconsin, Madison, WI (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-05-21

    The highest brightness temperature ever observed are from "nanoshots" from the Crab pulsar which we argue could be the signature of bursts of vacuum e± pair production. If so this would be the first time the astronomical Schwinger effect has been observed. These "Schwinger sparks" would be an intermittent but extremely powerful, ~103 L, 10 PeV e± accelerator in the heart of the Crab. These nanosecond duration sparks are generated in a volume less than 1 m3 and the existence of such sparks has implications for the small scale structure of the magnetic field of young pulsars such as the Crab. As a result, this mechanism may also play a role in producing other enigmatic bright short radio transients such as fast radio bursts.

  9. Direct electrical arc ignition of hybrid rocket motors

    Science.gov (United States)

    Judson, Michael I., Jr.

    Hybrid rockets motors provide distinct safety advantages when compared to traditional liquid or solid propellant systems, due to the inherent stability and relative inertness of the propellants prior to established combustion. As a result of this inherent propellant stability, hybrid motors have historically proven difficult to ignite. State of the art hybrid igniter designs continue to require solid or liquid reactants distinct from the main propellants. These ignition methods however, reintroduce to the hybrid propulsion system the safety and complexity disadvantages associated with traditional liquid or solid propellants. The results of this study demonstrate the feasibility of a novel direct electrostatic arc ignition method for hybrid motors. A series of small prototype stand-alone thrusters demonstrating this technology were successfully designed and tested using Acrylonitrile Butadiene Styrene (ABS) plastic and Gaseous Oxygen (GOX) as propellants. Measurements of input voltage and current demonstrated that arc-ignition will occur using as little as 10 watts peak power and less than 5 joules total energy. The motor developed for the stand-alone small thruster was adapted as a gas generator to ignite a medium-scale hybrid rocket motor using nitrous oxide /and HTPB as propellants. Multiple consecutive ignitions were performed. A large data set as well as a collection of development `lessons learned' were compiled to guide future development and research. Since the completion of this original groundwork research, the concept has been developed into a reliable, operational igniter system for a 75mm hybrid motor using both gaseous oxygen and liquid nitrous oxide as oxidizers. A development map of the direct spark ignition concept is presented showing the flow of key lessons learned between this original work and later follow on development.

  10. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    Science.gov (United States)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  11. Bright Sparks of Our Future!

    Science.gov (United States)

    Riordan, Naoimh

    2016-04-01

    My name is Naoimh Riordan and I am the Vice Principal of Rockboro Primary School in Cork City, South of Ireland. I am a full time class primary teacher and I teach 4th class, my students are aged between 9-10 years. My passion for education has developed over the years and grown towards STEM (Science, Technology, Engineering and Mathematics) subjects. I believe these subjects are the way forward for our future. My passion and beliefs are driven by the unique after school programme that I have developed. It is titled "Sparks" coming from the term Bright Sparks. "Sparks" is an after school programme with a difference where the STEM subjects are concentrated on through lessons such as Science, Veterinary Science Computer Animation /Coding, Eco engineering, Robotics, Magical Maths, Chess and Creative Writing. All these subjects are taught through activity based learning and are one-hour long each week for a ten-week term. "Sparks" is fully inclusive and non-selective which gives all students of any level of ability an opportunity to engage into these subjects. "Sparks" is open to all primary students in County Cork. The "Sparks" after school programme is taught by tutors from the different Universities and Colleges in Cork City. It works very well because the tutor brings their knowledge, skills and specialised equipment from their respective universities and in turn the tutor gains invaluable teaching practise, can trial a pilot programme in a chosen STEM subject and gain an insight into what works in the physical classroom.

  12. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    International Nuclear Information System (INIS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-01-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle -1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  13. Contactless Electric Igniter for Vehicle to Lower Exhaust Emission and Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Chih-Lung Shen

    2014-01-01

    Full Text Available An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  14. Contactless electric igniter for vehicle to lower exhaust emission and fuel consumption.

    Science.gov (United States)

    Shen, Chih-Lung; Su, Jye-Chau

    2014-01-01

    An electric igniter for engine/hybrid vehicles is presented. The igniter comprises a flyback converter, a voltage-stacked capacitor, a PIC-based controller, a differential voltage detector, and an ignition coil, of which structure is non-contact type. Since the electric igniter adopts a capacitor to accumulate energy for engine ignition instead of traditional contacttype approach, it enhances the igniting performance of a spark plug effectively. As a result, combustion efficiency is promoted, fuel consumption is saved, and exhaust emission is reduced. The igniter not only is good for fuel efficiency but also can reduce HC and CO emission significantly, which therefore is an environmentally friendly product. The control core of the igniter is implemented on a single chip, which lowers discrete component count, reduces system volume, and increases reliability. In addition, the ignition timing can be programmed so that a timing regulator can be removed from the proposed system, simplifying its structure. To verify the feasibility and functionality of the igniter, key waveforms are measured and real-car experiments are performed as well.

  15. Modeling and experiments of x-ray ablation of National Ignition Facility first wall materials

    International Nuclear Information System (INIS)

    Anderson, A.T.; Burnham, A.K.; Tobin, M.T.; Peterson, P.F.

    1996-01-01

    This paper discusses results of modeling and experiments on the x-ray response of selected materials relevant to NIF target chamber design. X-ray energy deposition occurs in such small characteristic depths (on the order of a micron) that thermal conduction and hydrodynamic motion significantly affect the material response, even during the typical 10-ns pulses. The finite-difference ablation model integrates four separate processes: x-ray energy deposition, heat conduction, hydrodynamics, and surface vaporization. Experiments have been conducted at the Nova laser facility in Livermore on response of various materials to NIF-relevant x-ray fluences. Fused silica, Si nitride, B carbide, B, Si carbide, C, Al2O3, and Al were tested. Response was diagnosed using post-shot examinations of the surfaces with SEM and atomic force microscopes. Judgements were made about the dominant removal mechanisms for each material; relative importances of these processes were also studied with the x-ray response model

  16. Validation of a zero-dimensional and two-phase combustion model for dual-fuel compression ignition engine simulation

    NARCIS (Netherlands)

    Mikulski, M.; Wierzbicki, S.

    2017-01-01

    Increasing demands for the reduction of exhaust emissions and the pursuit to reduce the use of fossil fuels require the search for new fuelling technologies in combustion engines. One of the most promising technologies is the multi-fuel compression ignition engine concept, in which a small dose of

  17. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis

    NARCIS (Netherlands)

    Lopatka, M.; Sigman, M.E.; Sjerps, M.J.; Williams, M.R.; Vivó-Truyols, G.

    2015-01-01

    Forensic chemical analysis of fire debris addresses the question of whether ignitable liquid residue is present in a sample and, if so, what type. Evidence evaluation regarding this question is complicated by interference from pyrolysis products of the substrate materials present in a fire. A method

  18. Reaching ignition in the tokamak

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-06-01

    This review covers the following areas: (1) the physics of burning plasmas, (2) plasma physics requirements for reaching ignition, (3) design studies for ignition devices, and (4) prospects for an ignition project

  19. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  20. Approach to ignition of tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sigmar, D.J.

    1981-02-01

    Recent transport modeling results for JET, INTOR, and ETF are reviewed and analyzed with respect to existing uncertainties in the underlying physics, the self-consistency of the very large numerical codes, and the margin for ignition. The codes show ignition to occur in ETF/INTOR-sized machines if empirical scaling can be extrapolated to ion temperatures (and beta values) much higher than those presently achieved, if there is no significant impurity accumulation over the first 7 s, and if the known ideal and resistive MHD instabilities remain controllable for the evolving plasma profiles during ignition startup.

  1. Comprehensive study of ignition and combustion of single wooden particles

    DEFF Research Database (Denmark)

    Momenikouchaksaraei, Maryam; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    How quickly large biomass particles can ignite and burn out when transported into a pulverized-fuel (pf) furnace and suddenly exposed to a hot gas flow containing oxygen is very important in biomass co-firing design and optimization. In this paper, the ignition and burnout of the largest possible...... for all the test conditions. As the particle is further heated up and the volume-weighted average temperature reaches the onset of rapid decomposition of hemicellulose and cellulose, a secondary homogeneous ignition occurs. The model-predicted ignition delays and burnout times show a good agreement...... with the experimental results. Homogeneous ignition delays are found to scale with specific surface areas while heterogeneous ignition delays show less dependency on the areas. The ignition and burnout are also affected by the process conditions, in which the oxygen concentration is found to have a more pronounced...

  2. Effect of spark plug and fuel injector location on mixture stratification in a GDI engine - A CFD analysis

    Science.gov (United States)

    Saw, O. P.; Mallikarjuna, J. M.

    2017-09-01

    The mixture preparation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, with a late fuel injection strategy, piston top surface is designed in such a way that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In addition, in these engines, location of spark-plug and fuel injector, fuel injection pressure and timing are also important to create a combustible mixture near the spark plug. Therefore, understanding the mixture formation under the influence of the location of spark plug and fuel injector is very essential for the optimization of the engine parameters. In this study, an attempt is made to understand the effect of spark plug and fuel injector location on the mixture preparation in a four-stroke, four-valve and wall-guided GDI engine operating under a stratified condition by using computational fluid dynamics (CFD) analysis. All the CFD simulations are carried out at an engine speed of 2000 rev/min., and compression ratio of 10.6, at an overall equivalence ratio (ER) of about 0.65. The fuel injection and spark timings are maintained at 605 and 710 CADs respectively. Finally, it is concluded that, combination of central spark plug and side fuel injector results in better combustion and performance.

  3. Observations and modeling of debris and shrapnel impacts on optics and diagnostics at the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Eder D.

    2013-11-01

    Full Text Available A wide range of targets with laser energies spanning two orders of magnitude have been shot at the National Ignition Facility (NIF. The National Ignition Campaign (NIC targets are cryogenic with Si supports and cooling rings attached to an Al Thermo-Mechanical Package (TMP with a thin (30 micron Au hohlraum inside. Particular attention is placed on the low-energy shots where the TMP is not completely vaporized. In addition to NIC targets, a range of other targets has also been fielded on NIF. For all targets, simulations play a critical role in determining if the risks associated with debris and shrapnel are acceptable. In a number of cases, experiments were redesigned, based on simulations, to reduce risks or to obtain data. The majority of these simulations were done using the ALE-AMR code, which provides efficient late-time (100 – 1000 X the pulse duration 3 D calculations of complex NIF targets.

  4. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.

  5. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  6. Fiber coupled optical spark delivery system

    Science.gov (United States)

    Yalin, Azer; Willson, Bryan; Defoort, Morgan

    2008-08-12

    A spark delivery system for generating a spark using a laser beam is provided, the spark delivery system including a laser light source and a laser delivery assembly. The laser delivery assembly includes a hollow fiber and a launch assembly comprising launch focusing optics to input the laser beam in the hollow fiber. In addition, the laser delivery assembly includes exit focusing optics that demagnify an exit beam of laser light from the hollow fiber, thereby increasing the intensity of the laser beam and creating a spark. In accordance with embodiments of the present invention, the assembly may be used to create a spark in a combustion engine. In accordance with other embodiments of the present invention, a method of using the spark delivery system is provided. In addition, a method of choosing an appropriate fiber for creating a spark using a laser beam is also presented.

  7. Confinement scaling and ignition in tokamaks

    International Nuclear Information System (INIS)

    Perkins, F.W.; Sun, Y.C.

    1985-10-01

    A drift wave turbulence model is used to compute the scaling and magnitude of central electron temperature and confinement time of tokamak plasmas. The results are in accord with experiment. Application to ignition experiments shows that high density (1 to 2) . 10 15 cm -3 , high field, B/sub T/ > 10 T, but low temperature T approx. 6 keV constitute the optimum path to ignition

  8. Ignition delay times of Gasoline Distillation Cuts measured with Ignition Quality Tester

    KAUST Repository

    Naser, Nimal

    2017-04-21

    Tailoring fuel properties to maximize the efficiency of internal combustion engines is a way towards achieving cleaner combustion systems. In this work, the ignition properties of various gasoline fuel distillation cuts are analyzed to better understand fuel properties of the full boiling range fuel. An advanced distillation column (ADC) provides a more realistic representation of volatility characteristics, which can be modeled using equilibrium thermodynamic methods. The temperature reported is that of the liquid, as opposed to the vapor temperature in conventional ASTM D86 distillation standard. Various FACE (fuels for advanced combustion engines) gasolines were distilled and various cuts were obtained. The separated fractions were then tested in an ignition quality tester (IQT) to see the effect of chemical composition of different fractions on their ignition delay time. Fuels with lower aromatic content showed decreasing ignition delay time with increasing boiling point (i.e., molecular weight). However, fuels with higher aromatic content showed an initial decrease in ignition delay time with increasing boiling point, followed by drastic increase in ignition delay time due to fractions containing aromatics. This study also provides an understanding on contribution of different fractions to the ignition delay time of the fuel, which provides insights into fuel stratification utilized in gasoline compression ignition (GCI) engines to tailor heat release rates.

  9. Characterization of Erosion and Failure Processes of Spark Plugs After Field Service in Natural Gas Engines

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Hua-Tay [ORNL; Brady, Michael P [ORNL; Richards, Roger K [ORNL; Layton, David [National Transportation Research Center (NTRC)

    2005-01-01

    Microstructural and optical spectroscopic analyses were carried out on as-received and used spark plugs after field service in natural gas (NG) reciprocating engines. The objective of this work was to examine the corrosion and erosion mechanisms of natural gas engine spark plug as well as identify the primary life limiting processes during field operation. The optical emission spectroscopic analysis showed a strong Ca signal in the exposed spark plugs and scanning electron microscopy showed substantial formation of Ca-enriched glassy oxide phase(s) on the electrode surfaces. In addition, intergranular cracking was observed in the subsurface region of both iridium (Ir) and platinum-tungsten (Pt-W) alloy electrode insert tips. The coalescence and subsequent growth of these cracks would accelerate the wear of the electrodes and shorten the lifetime of the spark plugs. Also, extensive internal oxidation and subsequent crack generation occurred along the interface between Ni-base alloy electrode and Pt-W alloy tip insert during field service, which would result in substantial degradation in the ignitability and performance of the electrodes, and thus spark plug failure.

  10. Tokamak two-fluid ignition conditions

    Science.gov (United States)

    Guazzotto, L.; Betti, R.

    2017-08-01

    This work focuses on modeling the properties needed by a plasma to reach ignition, where ignition is the condition in which fusion power is produced at the steady state without any external input power. We extend the classic work by Lawson giving the ptotτE (product between density, temperature, and energy confinement time) needed for ignition [J. D. Lawson, Proc. Phys. Soc. London, Sect. B 70, 6 (1957)] by improving the original zero-dimensional, single fluid model. The effect of multi-fluid physics is included, by distinguishing ions, electrons, and α particles. The effects of one-dimensional density and temperature profiles are also considered. It is found that the multi-fluid model predicts a larger Lawson product required for ignition than the single-fluid one. A detailed analysis of the energy confinement times for each species and energy equilibration times between species shows that the electron energy confinement time is the parameter more strongly affecting the Lawson product needed for ignition. It is also found that peaked profiles (of either temperature or density) require a smaller Lawson product for ignition than flat profiles.

  11. Nanosecond repetitively pulsed discharges in air at atmospheric pressure-the spark regime

    International Nuclear Information System (INIS)

    Pai, David Z; Lacoste, Deanna A; Laux, Christophe O

    2010-01-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N 2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 10 15 cm -3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 10 11 cm -3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 10 8 cm -3 .

  12. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    Science.gov (United States)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  13. Modeling Multiple-Core Updraft Plume Rise for an Aerial Ignition Prescribed Burn by Coupling Daysmoke with a Cellular Automata Fire Model

    Directory of Open Access Journals (Sweden)

    Yongqiang Liu

    2012-07-01

    Full Text Available Smoke plume rise is critically dependent on plume updraft structure. Smoke plumes from landscape burns (forest and agricultural burns are typically structured into “sub-plumes” or multiple-core updrafts with the number of updraft cores depending on characteristics of the landscape, fire, fuels, and weather. The number of updraft cores determines the efficiency of vertical transport of heat and particulate matter and therefore plume rise. Daysmoke, an empirical-stochastic plume rise model designed for simulating wildland fire plumes, requires updraft core number as an input. In this study, updraft core number was gained via a cellular automata fire model applied to an aerial ignition prescribed burn conducted at Eglin AFB on 6 February 2011. Typically four updraft cores were simulated in agreement with a photo-image of the plume showing three/four distinct sub-plumes. Other Daysmoke input variables were calculated including maximum initial updraft core diameter, updraft core vertical velocity, and relative emissions production. Daysmoke simulated a vertical tower that mushroomed 1,000 m above the mixing height. Plume rise was validated by ceilometer. Simulations with two temperature profiles found 89–93 percent of the PM2.5 released during the flaming phase was transported into the free atmosphere above the mixing layer. The minimal ground-level smoke concentrations were verified by a small network of particulate samplers. Implications of these results for inclusion of wildland fire smoke in air quality models are discussed.

  14. Laser ignition of liquid petroleum gas at elevated pressures

    Science.gov (United States)

    Loktionov, E.; Pasechnikov, N.; Telekh, V.

    2017-11-01

    Recent development of laser spark plugs for internal combustion engines have shown lack of data on laser ignition of fuel mixtures at multi-bar pressures needed for laser pulse energy and focusing optimisation. Methane and hydrogen based mixtures are comparatively well investigated, but propane and butane based ones (LPG), which are widely used in vehicles, are still almost unstudied. Optical breakdown thresholds in gases decrease with pressure increase up to ca. 100 bar, but breakdown is not a sufficient condition for combustion ignition. So minimum ignition energy (MIE) becomes more important for combustion core onset, and its dependency on mixture composition and pressure has several important features. For example, unlike breakdown threshold, is poorly dependent on laser pulse length, at least in pico- and to microsecond range. We have defined experimentally the dependencies of minimum picosecond laser pulse energies (MIE related value) needed for ignition of LPG based mixtures of 1.0 to 1.6 equivalence ratios and pressure of 1.0 to 3.5 bar. In addition to expected values decrease, low-energy flammability range broadening has been found at pressure increase. Laser ignition of LPG in Wankel rotary engine is reported for the first time.

  15. Homogeneous charge compression ignition engine-out emissions - does flame propagation occur in homogeneous charge compression ignition?

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, E.W.; Yang, J.; Culp, T.; Maricq, M.M. [Ford Motor Co., Research Lab., Dearborn, MI (United States)

    2002-12-01

    Engine-out emissions data [CO, CO{sub 2}, speciated hydrocarbons (HC), and particulate matter (size and number density)] were obtained from a single-cylinder, 660 cm{sup 3}, homogeneous charge compression ignition (HCCI) engine operated on gasoline fuel using direct in-cylinder injection. Data were taken as functions of the air-fuel ratio (A/F) (30-270), r/min, inlet air temperature and fuel injection timing. Three important observations were made: 1. A sharp break occurs in the CO and CO{sub 2} emissions indices beginning near A/F = 75. Above A/F {approx} 100, CO is the primary carbon oxide while for A/F < 70, CO{sub 2} is the major carbon oxide. 2. The HC emissions index increases linearly, beginning near A/F {approx}30 : 1. Below this A/F, the HC index is characteristic of crevice emissions ({approx} 3.5 per cent). These results do not prove this unequivocally, but can be explained by a mechanism in which, for A/F < 75, flame propagation occurs over relatively short distances between the multiple autoignition sites within the combustion chamber. Adiabatic compression calculations indicate that for A/F < 75, the compression temperature ({approx}1150 K) is sufficiently high to support flame propagation. The linear increase in HC emissions above that expected from crevice storage can be explained by noting that autoignition becomes more difficult as the A/F becomes leaner and fewer ignition sites are likely to exist within the combustion chamber, reducing the amount of fuel combusted. Conventional models of HCCI combustion involving multi-zone autoignition may also explain the data, but the above concept is an alternative combustion mechanism for HCCI, which should be considered. 3. Particulate emissions at moderate load from this HCCI engine, while much lower than from a diesel, are similar to those from early-injection DISI (direct injection spark ignition) engines and should not be assumed to be negligible. (Author)

  16. Distributorless ignition system interface for engine diagnostic testers

    Energy Technology Data Exchange (ETDEWEB)

    Friedline, J.G.; Rich, L.G.

    1987-02-17

    This patent describes an interface for use with a test engine analyzer to analyze a computer controlled automotive engine having an electronic control module which develops timing signals to a coil ignition module which fires the spark plugs of the engine, the timing signals carrying dwell information. The interface comprises: input means for receiving timing signals from the electronic control module; output means for transmitting timing signals to the coil ignition module; cylinder clock modification circuitry for receiving the timing signals from the input means and for passing timing signals to the output means. The cylinder clock modification circuitry generates a modified timing signal in response to an inhibit command signal for transmission to the coil ignition module. The modified timing signal carries dwell information of a dwell period insufficient to fire a spark plug; and power balance command circuitry for receiving a cylinder inhibit command from the engine analyzer and responsively generating the inhibit command signal, whereby a cylinder of the engine is inhibited from firing.

  17. Compression ignition of low-octane gasoline: Life cycle energy consumption and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hao, Han; Liu, Feiqi; Liu, Zongwei; Zhao, Fuquan

    2016-01-01

    Highlights: • A process-based, well-to-wheel conceptualized life cycle assessment model is established. • The impacts of using low-octane gasoline on compression ignition engines are examined. • Life cycle energy consumption and GHG emissions reductions are 24.6% and 21.6%. • Significant technical and market barriers are still to be overcome. - Abstract: The use of low-octane gasoline on Gasoline Compression Ignition (GCI) engines is considered as a competitive alternative to the conventional vehicle propulsion technologies. In this study, a process-based, well-to-wheel conceptualized life cycle assessment model is established to estimate the life cycle energy consumption and greenhouse gas (GHG) emissions of the conventional gasoline-Spark Ignition (SI) and low-octane gasoline-GCI pathways. It is found that compared with the conventional pathway, the low-octane gasoline-GCI pathway leads to a 24.6% reduction in energy consumption and a 22.8% reduction in GHG emissions. The removal of the isomerization and catalytic reforming units in the refinery and the higher energy efficiency in the vehicle use phase are the substantial drivers behind the reductions. The results indicate that by promoting the use of low-octane gasoline coupled with the deployment of GCI vehicles, considerable reductions of energy consumption and GHG emissions in the transport sector can be achieved. However, significant technical and market barriers are still to be overcome. The inherent problems of NO x and PM exhaust emissions associated with GCI engines need to be further addressed with advanced combustion techniques. Besides, the yield of low-octane gasoline needs to be improved through adjusting the refinery configurations.

  18. Sliding-spark spectrometry of sediment samples.

    Science.gov (United States)

    Angeyo, H; Flórían, K; Golloch, A; Vojtekovà, V

    2002-10-01

    Direct analysis of non-conducting solids and dielectric surface layers for elements at trace levels has been shown to be feasible by the new so-called sliding-spark spectroscopy, in which a discharge plasma is bound by, and propagates on, the surface of a dielectric sample matrix. By using a river sediment as a model matrix, bound in PVC to improve elemental atomization and excitation efficiency, as a result of the formation of volatile chlorides, the potential of the technique for environmental applications has been investigated by studying the characteristic UV-visible radiation emitted in the wavelength range 210-510 nm for the elements Fe, Cr, Ni, Cu, Pb, Cd, Zn, Co, V, Ti, and Mn. The radiation was detected by means of a CCD spectrometer and analysed for spectral line identification, selection, and the linearity of the spectral response, to determine whether this was suitable for establishing a calibration strategy for quantitative analysis using the sliding-spark source.

  19. A mechanistic approach to safe igniter implementation for hydrogen mitigation

    International Nuclear Information System (INIS)

    Breitung, W.; Dorofeev, S.B.; Travis, J.R.

    1997-01-01

    A new methodology for safe igniter implementation in a full-scale 3-d containment is described. The method consists of the following steps: determination of bounding H 2 /steam sources; high-resolution analysis of the 3-d transport and mixing processes; evaluation of the detonation potential at the time of ignition; optimization of the igniter system such that only early ignition and nonenergetic combustion occurs; and modelling of the continuous deflagration processes during H 2 -release. The method was implemented into the GASFLOW code. The principle and the feasibility is demonstrated for a single room geometry. A full-scale 3-d reactor case is analyzed without and with deliberate ignition, assuming a severe dry H 2 release sequence (1200 kg). In the unmitigated case significant DDT potential in the whole containment develops, including the possibility of global detonations. The analysis with igniters in different positions predicted deflagration or detonation in the break compartment, depending on the igniter location. Igniter positions were found which lead to early ignition, effective H 2 -removal, and negligible pressure loads. The approach can be used to determine number, position and frequency of a safe igniter system for a given large dry containment. (author)

  20. Coil-On-Plug Ignition for Oxygen/Methane Liquid Rocket Engines in Thermal-Vacuum Environments

    Science.gov (United States)

    Melcher, John C.; Atwell, Matthew J.; Morehead, Robert L.; Hurlbert, Eric A.; Bugarin, Luz; Chaidez, Mariana

    2017-01-01

    A coil-on-plug ignition system has been developed and tested for Liquid Oxygen (LOX)/liquid methane (LCH4) rocket engines operating in thermal vacuum conditions. The igniters were developed and tested as part of the Integrated Cryogenic Propulsion Test Article (ICPTA), previously tested as part of the Project Morpheus test vehicle. The ICPTA uses an integrated, pressure-fed, cryogenic LOX/LCH4 propulsion system including a reaction control system (RCS) and a main engine. The ICPTA was tested at NASA Glenn Research Center's Plum Brook Station in the Spacecraft Propulsion Research Facility (B-2) under vacuum and thermal vacuum conditions. A coil-on-plug ignition system has been developed to successfully demonstrate ignition reliability at these conditions while preventing corona discharge issues. The ICPTA uses spark plug ignition for both the main engine igniter and the RCS. The coil-on-plug configuration eliminates the conventional high-voltage spark plug cable by combining the coil and the spark plug into a single component. Prior to ICPTA testing at Plum Brook, component-level reaction control engine (RCE) and main engine igniter testing was conducted at NASA Johnson Space Center (JSC), which demonstrated successful hot-fire ignition using the coil-on-plug from sea-level ambient conditions down to 10(exp -2) torr. Integrated vehicle hot-fire testing at JSC demonstrated electrical and command/data system performance. Lastly, hot-fire testing at Plum Brook demonstrated successful ignitions at simulated altitude conditions at 30 torr and cold thermal-vacuum conditions at 6 torr. The test campaign successfully proved that coil-on-plug technology will enable integrated LOX/LCH4 propulsion systems in future spacecraft.

  1. Concept of a Helias ignition experiment

    Science.gov (United States)

    Wobig, H.; Andreeva, T.; Beidler, C. D.; Harmeyer, E.; Herrnegger, F.; Igitkhanov, Y.; Kisslinger, J.; Kolesnichenko, Ya. I.; Lutsenko, V. V.; Marchenko, V. S.; Nührenberg, C.; Sidorenko, I.; Turkin, Y.; Wieczorek, A.; Yakovenko, Yu. V.

    2003-09-01

    The Helias ignition experiment is an upgraded version of the Wendelstein 7-X experiment. The magnetic configuration is a four-period Helias configuration (major radius 18 m, plasma radius 2.0 m, B = 4.5 T), which presents a more compact option than the five-period configuration. Much effort has been focused on two versions of the four-period configuration. One option is the power reactor HSR4/18 providing at least 3 GW of fusion power and the second is the ignition experiment HSR 4/18i aiming at a minimum of fusion power and the demonstration of self-sustaining burn. The design criteria of the ignition experiment HSR 4/18i are the following: The experiment should demonstrate a safe and reliable route to ignition; self-sustained burn without external heating; steady-state operation during several hundred seconds; reliability of the technical components and tritium breeding in a test blanket. The paper discusses the technical issues of the coil system and describes the vacuum vessel and the shielding blanket. The power balance will be modelled with a transport code and the ignition conditions will be investigated using current scaling laws of energy confinement in stellarators. The plasma parameters of the ignition experiment are: peak density 2-3×1020 m-3, peak temperature 11-15 keV, average beta 3.6% and fusion power 1500-1700 MW.

  2. New spark test device for material characterization

    CERN Document Server

    Kildemo, Morten

    2004-01-01

    An automated spark test system based on combining field emission and spark measurements, exploiting a discharging capacitor is investigated. In particular, the remaining charge on the capacitor is analytically solved assuming the field emitted current to follow the Fowler Nordheim expression. The latter allows for field emission measurements from pA to A currents, and spark detection by complete discharge of the capacitor. The measurement theory and experiments on Cu and W are discussed.

  3. Underwater spark discharge with long transmission line for cleaning horizontal wells

    Science.gov (United States)

    Lee, Kern; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, C. Y.

    2017-06-01

    A transmission line is discussed for application in an underwater spark-discharge technique in the cleaning of a horizontal well by incorporating a power-transmission model into the simulation. The pulsed-spark-discharge technique has been proposed for clogged-well rehabilitation, because it removes incrustations that are attached to well screens by using strong pressure waves that are generated by the rapid expansion of a spark channel. To apply the pulsed-spark-discharge technique to the cleaning of horizontal wells, the coaxial cable between the pulsed power supply and the spark gap as a load needs to be extended to a few hundred meters. Prior to field application, pulsed-spark-discharge experiments were conducted and the role of the transmission line was examined using an improved simulation model. In the model, a non-linear interaction of the spark channel and the capacitor bank is described by the pulse-forming action of the coaxial cable. Based on the accurate physical properties of the water plasma, such as the equation of state and electrical conductivity within the region of interest, the amount of energy contributed to the development of a shock wave was evaluated. The simulation shows that if the initial conditions of the spark channel are the same, no further reduction in strength of the pressure wave occurs, even if the cable length is increased above 50 m. Hence, the degraded peak pressure that was observed in the experiments using the longer cable is attributed to a change in the initial condition of the spark channel. The parametric study suggests that the low initial charging voltage, the high ambient water pressure, and the long cable length yield the low initial spark-channel density, which results in a reduced peak pressure. The simulation of line charging is presented to discuss the principle of disturbing the pre-breakdown process by an extended cable.

  4. ESTIMATION OF GAS EXCHANGE INDICATORS AT 3-D MODELING OF THE WORKING PROCESS OF THE TWO-STROKE PETROL ENGINE

    Directory of Open Access Journals (Sweden)

    V. Korohodskyi

    2017-06-01

    Full Text Available With the help of 3-D modeling of the workflow of a two-stroke engine with spark ignition, crank-chamber scavenging and a carburetor feeding system in the modes of external speed characteristic the indices of gas exchange were evaluated. The simulation results are consistent with the experimental data and 3D simulation results in the AVL FIRE and MTFS® software complexes. The model allows performing optimized calculations of multiphase flow in ICE during experimental design work.

  5. Reduction to spark coordinates of data generated by automatic measurement of spark chamber film

    International Nuclear Information System (INIS)

    Maybury, R.; Hart, J.C.

    1976-09-01

    The initial stage in the data reduction for film from two spark chamber experiments is described. The film was automatically measured at the Rutherford Laboratory. The data from these measurements were reduced to a series of spark coordinates for each gap of the spark chambers. Quality control checks are discussed. (author)

  6. Evaluation of plasma jet ignition for improved performance of alternate fuels

    Science.gov (United States)

    Grant, J. F.; Golenko, Z.; McIlwain, M. E.

    1982-08-01

    Alcohols, such as ethanol and methanol, are potential substitutes for gasolines during periods of fuel shortages. The pure alcohols have been reported to cause performance and starting problems when used to fuel internal combustion engines. This study characterized how three modes of ignition, OEM magneto, high energy conventional spark (CI) and plasma jet ignition (PJI) influenced the engine combustion properties of ethanol, methanol and gasoline alcohol blends. Specific combustion properties examined in these measurement were burning velocity and lean limit. In addition, the engine performance was determined for 30% alcohol gasoline containing blends. These engine performance measurements determined brake power, brake specific fuel consumption and brake emissions of carbon monoxide and hydrocarbons. The findings of this study suggest that high energy ignition systems, such as plasma jet ignition, will improve both fuel combustion properties and engine performance.

  7. Experimental and Modeling Investigation of the Effectof H2S Addition to Methane on the Ignition and Oxidation at High Pressures

    DEFF Research Database (Denmark)

    Gersen, Sander; van Essen, Martijn; Darmeveil, Harry

    2017-01-01

    has been established, describing the oxidation of CH4 and H2S as well as the formation and consumption of organo sulfuric species. Computations with the modelshow good agreement with the ignition measurements, provided that reactions of H2S and SH with peroxides (HO2 and CH3OO) are constrained....... A comparison of the flow reactordata to modeling predictions shows satisfactory agreement under stoichiometric conditions, while at very reducing conditions, the model underestimates the consumption of both H2S and CH4. Similar to the RCM experiments, the presence of H2S is predicted to promote oxidation...... of methane. Analysis of the calculations indicates a significant interaction between the oxidation chemistry of H2S and CH4, but this chemistry is not well understood at present. More work is desirable on the reactions of H2S and SH with peroxides (HO2 and CH3OO) and the formation and consumption...

  8. Modeling Stimulated Raman Scattering in Direct-Drive Inertial Confinement Fusion Plasmas for National Ignition Facility Conditions

    Science.gov (United States)

    Maximov, A. V.; Shaw, J. G.; Myatt, J. F.; Short, R. W.

    2017-10-01

    In the plasmas of direct-drive inertial confinement fusion (ICF), the coupling of laser power to the target plasma is strongly influenced by the laser-plasma interaction (LPI) processes driven by multiple crossing laser beams. For the plasma parameters relevant to the conditions of the experiments at the National Ignition Facility (NIF), the threshold of the stimulated Raman scattering (SRS) is usually well exceeded because of the large scale length of the plasma density, making the study of SRS vital for the NIF ICF program. The SRS evolution starts as a convective or absolute instability, and the nonlinear saturation is determined by the ion-acoustic perturbations and kinetic effects. The LPI processes of cross-beam energy transfer and two-plasmon decay also drive the ion-acoustic modes and their interplay with SRS is analyzed. This work was supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  9. Proton Fast Ignition

    International Nuclear Information System (INIS)

    Key, M H; Freeman, R R; Hatchett, S P; MacKinnon, A J; Patel, P K; Snavely, R A; Stephens, R B

    2006-04-01

    Fast ignition (FI) by a laser generated ballistically focused proton beam is a more recently proposed alternative to the original concept of FI by a laser generated beam of relativistic electrons. It has potential advantages in less complex energy transport into dense plasma. Recent successful target heating experiments motivate further investigation of the feasibility of proton fast ignition. The concept, the physics and characteristics of the proton beams, the recent experimental work on focusing of the beams and heating of solid targets and the overall prospects for proton FI are discussed

  10. Interferometric fiber-optic sensor embedded in a spark plug for in-cylinder pressure measurement in engines.

    Science.gov (United States)

    Bae, Taehan; Atkins, Robert A; Taylor, Henry F; Gibler, William N

    2003-02-20

    Pressure sensing in an internal combustion engine with an intrinsic fiber Fabry-Perot interferometer (FFPI) integrated with a spark plug is demonstrated for the first time. The spark plug was used for the ignition of the cylinder in which it was mounted. The FFPI element, protected with a copper/gold coating, was embedded in a groove in the spark-plug housing. Gas pressure inthe engine induced longitudinal strain in this housing, which was also experienced by the fiber-optic sensing element. The sensor was monitored with a signal conditioning unit containing a chirped distributed-feedback laser. Pressure sensitivities as high as 0.00339 radians round-trip phase shift per pounds per square inch of pressure were observed. Measured pressure versus time traces showed good agreement with those from a piezoelectric reference sensor mounted in the same engine cylinder.

  11. A time-varying copula mixture for hedging the clean spark spread with wind power futures

    DEFF Research Database (Denmark)

    Christensen, Troels Sønderby; Pircalabu, Anca; Høg, Esben

    2018-01-01

    trading in the spot clean spark spread and wind power futures. To facilitate hedging decisions, we propose a time-varying copula mixture for the joint behavior of the spot clean spark spread and the daily wind index. The model describes the data surprisingly well, both in terms of the marginals...... and the dependence structure, while being straightforward and easy to implement. Based on Monte Carlo simulations from the proposed model, the results indicate that significant benefits can be achieved by using wind power futures to hedge the spot clean spark spread. Moreover, a comparison study shows...

  12. SparkText: Biomedical Text Mining on Big Data Framework.

    Directory of Open Access Journals (Sweden)

    Zhan Ye

    Full Text Available Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment.In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM, and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes.This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research.

  13. SparkText: Biomedical Text Mining on Big Data Framework.

    Science.gov (United States)

    Ye, Zhan; Tafti, Ahmad P; He, Karen Y; Wang, Kai; He, Max M

    Many new biomedical research articles are published every day, accumulating rich information, such as genetic variants, genes, diseases, and treatments. Rapid yet accurate text mining on large-scale scientific literature can discover novel knowledge to better understand human diseases and to improve the quality of disease diagnosis, prevention, and treatment. In this study, we designed and developed an efficient text mining framework called SparkText on a Big Data infrastructure, which is composed of Apache Spark data streaming and machine learning methods, combined with a Cassandra NoSQL database. To demonstrate its performance for classifying cancer types, we extracted information (e.g., breast, prostate, and lung cancers) from tens of thousands of articles downloaded from PubMed, and then employed Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression to build prediction models to mine the articles. The accuracy of predicting a cancer type by SVM using the 29,437 full-text articles was 93.81%. While competing text-mining tools took more than 11 hours, SparkText mined the dataset in approximately 6 minutes. This study demonstrates the potential for mining large-scale scientific articles on a Big Data infrastructure, with real-time update from new articles published daily. SparkText can be extended to other areas of biomedical research.

  14. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  15. Effect of laser induced plasma ignition timing and location on Diesel spray combustion

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2017-01-01

    Highlights: • Laser plasma ignition is applied to a direct injection Diesel spray, compared with auto-ignition. • Critical local fuel/air ratio for LIP provoked ignition is obtained. • The LIP system is able to stabilize Diesel combustion compared to auto-ignition cases. • Varying LIP position along spray axis directly affects Ignition-delay. • Premixed combustion is reduced both by varying position and delay of the LIP ignition system. - Abstract: An experimental study about the influence of the local conditions at the ignition location on combustion development of a direct injection spray is carried out in an optical engine. A laser induced plasma ignition system has been used to force the spray ignition, allowing comparison of combustion’s evolution and stability with the case of conventional autoignition on the Diesel fuel in terms of ignition delay, rate of heat release, spray penetration and soot location evolution. The local equivalence ratio variation along the spray axis during the injection process was determined with a 1D spray model, previously calibrated and validated. Upper equivalence ratios limits for the ignition event of a direct injected Diesel spray, both in terms of ignition success possibilities and stability of the phenomena, could been determined thanks to application of the laser plasma ignition system. In all laser plasma induced ignition cases, heat release was found to be higher than for the autoignition reference cases, and it was found to be linked to a decrease of ignition delay, with the premixed peak in the rate of heat release curve progressively disappearing as the ignition delay time gets shorter. Ignition delay has been analyzed as a function of the laser position, too. It was found that ignition delay increases for plasma positions closer to the nozzle, indicating that the amount of energy introduced by the laser induced plasma is not the only parameter affecting combustion initiation, but local equivalence ratio

  16. Effects of various intake valve timings and spark timings on combustion, cyclic THC and NOX emissions during cold start phase with idle operation in CVVT engine

    International Nuclear Information System (INIS)

    Choi, Kwan Hee; Lee, Hyung Min; Hwang, In Goo; Myung, Cha Lee; Park, Sim Soo

    2008-01-01

    In a gasoline SI engine, valve events and spark timings put forth a major influence on overall efficiency, fuel economy, and exhaust emissions. Residual gases controlled by the valve overlap can be used to reduce NOx emissions and the spark retardation technique can be used to improve raw THC emissions and catalyst light-off performance during the cold start phase. This paper investigated the behaviors of the engine and its combustion characteristics with various intake valve timings and spark timings during the fast idle condition and cold start. And cyclic THC and NOx emissions were measured at the exhaust port and their formation mechanisms were examined with fast response gas analyzers. As a result, THCs and NOx were reduced by 35% and 23% with optimizing valve overlap and spark advance during the cold transient start phase. Consequently, the valve events and ignition timings were found to significantly affect combustion phenomena and cold-start emissions

  17. Spark discharge and flame inception analysis through spectroscopy in a DISI engine fuelled with gasoline and butanol

    Science.gov (United States)

    Irimescu, A.; Merola, S. S.

    2017-10-01

    Extensive application of downsizing, as well as the application of alternative combustion control with respect to well established stoichiometric operation, have determined a continuous increase in the energy that is delivered to the working fluid in order to achieve stable and repeatable ignition. Apart from the complexity of fluid-arc interactions, the extreme thermodynamic conditions of this initial combustion stage make its characterization difficult, both through experimental and numerical techniques. Within this context, the present investigation looks at the analysis of spark discharge and flame kernel formation, through the application of UV-visible spectroscopy. Characterization of the energy transfer from the spark plug’s electrodes to the air-fuel mixture was achieved by the evaluation of vibrational and rotational temperatures during ignition, for stoichiometric and lean fuelling of a direct injection spark ignition engine. Optical accessibility was ensured from below the combustion chamber through an elongated piston design, that allowed the central region of the cylinder to be investigated. Fuel effects were evaluated for gasoline and n-butanol; roughly the same load was investigated in throttled and wide-open throttle conditions for both fuels. A brief thermodynamic analysis confirmed that significant gains in efficiency can be obtained with lean fuelling, mainly due to the reduction of pumping losses. Minimal effect of fuel type was observed, while mixture strength was found to have a stronger influence on calculated temperature values, especially during the initial stage of ignition. In-cylinder pressure was found to directly determine emission intensity during ignition, but the vibrational and rotational temperatures featured reduced dependence on this parameter. As expected, at the end of kernel formation, temperature values converged towards those typically found for adiabatic flames. The results show that indeed only a relatively small part

  18. Multi-dimensional modelling of spray, in-cylinder air motion and fuel ...

    Indian Academy of Sciences (India)

    Keywords. SI engine; direct injection; in-cylinder fuel–air mixing; CFD; two-phase flow. ... with regards to injector and spark plug locations. Simulations over a range of speed and load indicate the need for a novel ignition strategy involving dual spark plugs and also provide guidelines in deciding spark plug locations.

  19. Spark gap produced plasma diagnostics

    International Nuclear Information System (INIS)

    Chang, H.Y.

    1990-01-01

    A Spark Gap (Applied voltage : 2-8KV, Capacitor : 4 Micro F. Dia of the tube : 1 inch, Electrode distance : .3 ∼.5 inch) was made to generate a small size dynamic plasma. To measure the plasma density and temperature as a function of time and position, we installed and have been installing four detection systems - Mach-Zehnder type Interferometer for the plasma refractivity, Expansion speed detector using two He-Ne laser beams, Image Processing using Lens and A Optical-Fiber Array for Pointwise Radiation Sensing, Faraday Rotation of a Optical Fiber to measure the azimuthal component of B-field generated by the plasma drift. These systems was used for the wire explosion diagnostics, and can be used for the Laser driven plasma also

  20. Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology

    Science.gov (United States)

    Bjorklund, Roy A.

    1983-01-01

    An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.

  1. A hydrocode study of explosive shock ignition

    Science.gov (United States)

    Butler, George; Horie, Yasuyuki

    2011-06-01

    This paper discusses the results of hydrocode simulations of shock-induced ignition of PBXN-109, Octol, and PETN, using the History Variable Reactive Burn model in the CTH hydrocode. The simulations began with small-scale sympathetic detonation experiments, from which normalized values of pressure and time were derived and used to define an upper bound for ignition. This upper bound corresponds to the well established Pop-plot data for supported detonation, i . e . detonations in which a constant shock pressure is applied to an explosive until full detonation is achieved. Subsequently, one-dimensional flyer-plate simulations were conducted where the response of constant-amplitude, limited-duration shock pulses into semi-infinite explosive samples was examined. These simulations confirmed not only the existence of an upper bound for ignition as expected, but also showed ignition by ``lower level'' shocks, in which full detonation is reached at a time longer than the input shock duration. These lower-level shocks can be used to define a distinct minimal ignition threshold, below which shock pulses do not result in detonation. Numerical experiments using these bounds offer a new framework for interpreting explosive initiation data.

  2. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  3. SciSpark: In-Memory Map-Reduce for Earth Science Algorithms

    Science.gov (United States)

    Ramirez, P.; Wilson, B. D.; Whitehall, K. D.; Palamuttam, R. S.; Mattmann, C. A.; Shah, S.; Goodman, A.; Burke, W.

    2016-12-01

    We are developing a lightning fast Big Data technology called SciSpark based on ApacheTM Spark under a NASA AIST grant (PI Mattmann). Spark implements the map-reduce paradigm for parallel computing on a cluster, but emphasizes in-memory computation, "spilling" to disk only as needed, and so outperforms the disk-based Apache Hadoop by 100x in memory and by 10x on disk. SciSpark extends Spark to support Earth Science use in three ways: Efficient ingest of N-dimensional geo-located arrays (physical variables) from netCDF3/4, HDF4/5, and/or OPeNDAP URLS; Array operations for dense arrays in scala and Java using the ND4S/ND4J or Breeze libraries; Operations to "split" datasets across a Spark cluster by time or space or both. For example, a decade-long time-series of geo-variables can be split across time to enable parallel "speedups" of analysis by day, month, or season. Similarly, very high-resolution climate grids can be partitioned into spatial tiles for parallel operations across rows, columns, or blocks. In addition, using Spark's gateway into python, PySpark, one can utilize the entire ecosystem of numpy, scipy, etc. Finally, SciSpark Notebooks provide a modern eNotebook technology in which scala, python, or spark-sql codes are entered into cells in the Notebook and executed on the cluster, with results, plots, or graph visualizations displayed in "live widgets". We have exercised SciSpark by implementing three complex Use Cases: discovery and evolution of Mesoscale Convective Complexes (MCCs) in storms, yielding a graph of connected components; PDF Clustering of atmospheric state using parallel K-Means; and statistical "rollups" of geo-variables or model-to-obs. differences (i.e. mean, stddev, skewness, & kurtosis) by day, month, season, year, and multi-year. Geo-variables are ingested and split across the cluster using methods on the sciSparkContext object including netCDFVariables() for spatial decomposition and wholeNetCDFVariables() for time-series. The

  4. GeoSpark SQL: An Effective Framework Enabling Spatial Queries on Spark

    Directory of Open Access Journals (Sweden)

    Zhou Huang

    2017-09-01

    Full Text Available In the era of big data, Internet-based geospatial information services such as various LBS apps are deployed everywhere, followed by an increasing number of queries against the massive spatial data. As a result, the traditional relational spatial database (e.g., PostgreSQL with PostGIS and Oracle Spatial cannot adapt well to the needs of large-scale spatial query processing. Spark is an emerging outstanding distributed computing framework in the Hadoop ecosystem. This paper aims to address the increasingly large-scale spatial query-processing requirement in the era of big data, and proposes an effective framework GeoSpark SQL, which enables spatial queries on Spark. On the one hand, GeoSpark SQL provides a convenient SQL interface; on the other hand, GeoSpark SQL achieves both efficient storage management and high-performance parallel computing through integrating Hive and Spark. In this study, the following key issues are discussed and addressed: (1 storage management methods under the GeoSpark SQL framework, (2 the spatial operator implementation approach in the Spark environment, and (3 spatial query optimization methods under Spark. Experimental evaluation is also performed and the results show that GeoSpark SQL is able to achieve real-time query processing. It should be noted that Spark is not a panacea. It is observed that the traditional spatial database PostGIS/PostgreSQL performs better than GeoSpark SQL in some query scenarios, especially for the spatial queries with high selectivity, such as the point query and the window query. In general, GeoSpark SQL performs better when dealing with compute-intensive spatial queries such as the kNN query and the spatial join query.

  5. Experimental investigation of the vibrational and thermal response of a laser spark plug

    Science.gov (United States)

    Yoder, Gregory S.

    A study was conducted in order to evaluate the external thermal and vibrational effects on the operation of a laser ignition system for internal combustion (IC) engine applications. West Virginia University (WVU) in conjunction with the National Energy Technology Laboratory (NETL) have constructed a prototype laser spark plug which has been designed to mount directly onto the head of a natural gas engine for the purpose of igniting an air/fuel (A/F) mixture in the engine's combustion chamber. To be considered as a viable replacement for the conventional electrode-based ignition system, integrity, durability and reliability must be justified. Thermal and oscillatory perturbations induced upon the ignition system are major influences that affect laser spark plug (LSP) operation and, therefore, quantifying these effects is necessary to further the advancement and development of this technology. The passively q-switched Nd:YAG laser was mounted on Bruel & Kjaer (B&K) Vibration Exciter Type 4808 Shaker in conjunction with at B&K Power Amplifier Type 2719, which was oscillated in 10 Hz intervals from 0 to 60 Hz using a sine wave to mimic natural gas engine operation. The input signal simulated the rotational velocity of the engine operating from 0 to 3600 RPM with the laser mounted in three different axial orientations. The laser assembly was wrapped with medium-temperature heat tape, outfitted with thermocouples and heated from room temperature to 140 ºF to simulate the temperatures that the LSP may experience when installed on an engine. The acceleration of the payload was varied between 50% and 100% of the oscillator's maximum allowable acceleration in each mounting orientation resulting in a total of 294 total setpoints. For each setpoint, pulse width, pulse width variation, q-switch delay, jitter and output energy were measured and recorded. Each of these dependent variables plays a critical role in multi photon ionization and precise control is necessary to limit

  6. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George; Fatouraie, Mohammad

    2017-11-30

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to train a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the

  7. Bubbles, sparks, and the postwar laboratory

    International Nuclear Information System (INIS)

    Galison, P.

    1989-01-01

    The development and use of bubble chambers and spark chambers in the 1950s form the main thrust of this article, the bubble chamber as an example of ''image-producing'' instruments and the spark chamber as a ''logic'' device. Work on a cloud chamber by Glaser led to the development of the bubble chamber detector using liquid hydrogen, which was later linked to a computer for accurate automatic track analysis. It made possible demonstrations of the existence of a particle or interaction. Spark chambers were easier to build and so soon became common, various types being developed across the world. The development of spark chambers originated in the need for timing devices for the Manhattan Project, but work on their design occurred in a number of units worldwide. (UK)

  8. Ignition in net for different energy confinement time scalings

    International Nuclear Information System (INIS)

    Johner, J.; Prevot, F.

    1988-06-01

    A zero-dimensional profile dependent model is used to assess the feasibility of ignition in the extended version of NET. Five recent scalings for the energy confinement time (Goldston, Kaye All, Kaye Big, Shimomura-Odajima, Rebut-Lallia) are compared in the frame of two different scenarii, i.e., H-mode with a flat density profile or L-mode with a peaked density profile. For the flat density H-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the peaked density L-mode case, ignition is accessible with none of the scalings except Rebut-Lallia's. For the two Kaye's scalings, ignition is forbidden in H-mode even with the peaked density profile. For the Rebut-Lallia scaling, ignition is allowed in L-mode even with the flat density profile

  9. Transport simulations of ohmic ignition experiment: IGNITEX

    International Nuclear Information System (INIS)

    Uckan, N.A.; Howe, H.C.

    1987-12-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large, and anomalous radiation and alpha losses and/or other enhanced transport losses (eta/sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab

  10. Transport simulations of ohmic ignition experiment: IGNITEX

    International Nuclear Information System (INIS)

    Uckan, N.A.; Howe, H.C.

    1987-01-01

    The IGNITEX device, proposed by Rosenbluth et al., is a compact, super-high-field, high-current, copper-coil tokamak envisioned to reach ignition with ohmic (OH) heating alone. Several simulations of IGNITEX were made with a 0-D global model and with the 1-D PROCTR transport code. It is shown that OH ignition is a sensitive function of the assumptions about density profile, wall reflectivity of synchrotron radiation, impurity radiation, plasma edge conditions, and additional anomalous losses. In IGNITEX, OH ignition is accessible with nearly all scalings based on favorable OH confinement (such as neo-Alcator). Also, OH ignition appears to be accessible for most (not all) L-mode scalings (such as Kaye-Goldston), provided that the density profile is not too broad (parabolic or more peaked profiles are needed), Z/sub eff/ is not too large (≤2), and anomalous radiation and alpha losses and/or other enhanced transport losses (/eta//sub i/ modes, edge convective energy losses, etc.) are not present. In IGNITEX, because the figure-of-merit parameters (aB 0 2 /q* /approximately/ IB 0 , etc.) are large, ignition can be accessed (either with OH heating alone or with the aid of a small amount of auxiliary power) at relatively low beta, far from stability limits. Once the plasma is ignited, thermal runaway is prevented naturally by a combination of increased synchrotron radiation, burnout of the fuel in the plasma core and replacement by thermal alphas, and the reduction in the thermal plasma confinement assumed in L-mode-like scalings. 12 refs., 5 figs., 1 tab

  11. Study of the shock ignition scheme in inertial confinement fusion

    International Nuclear Information System (INIS)

    Lafon, M.

    2011-01-01

    The Shock Ignition (SI) scheme is an alternative to classical ignition schemes in Inertial Confinement Fusion. Its singularity relies on the relaxation of constraints during the compression phase and fulfilment of ignition conditions by launching a short and intense laser pulse (∼500 ps, ∼300 TW) on the pre-assembled fuel at the end of the implosion.In this thesis, it has been established that the SI process leads to a non-isobaric fuel configuration at the ignition time thus modifying the ignition criteria of Deuterium-Tritium (DT) against the conventional schemes. A gain model has been developed and gain curves have been inferred and numerically validated. This hydrodynamical modeling has demonstrated that the SI process allows higher gain and lower ignition energy threshold than conventional ignition due to the high hot spot pressure at ignition time resulting from the ignitor shock propagation.The radiative hydrodynamic CHIC code developed at the CELIA laboratory has been used to determine parametric dependences describing the optimal conditions for target design leading to ignition. These numerical studies have enlightened the potential of SI with regards to saving up laser energy, obtain high gains but also to safety margins and ignition robustness.Finally, the results of the first SI experiments performed in spherical geometry on the OMEGA laser facility (NY, USA) are presented. An interpretation of the experimental data is proposed from mono and bidimensional hydrodynamic simulations. Then, different trails are explored to account for the differences observed between experimental and numerical data and alternative solutions to improve performances are suggested. (author) [fr

  12. Central ignition scenarios for TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.J.; Redi, M.H.; Bateman, G.

    1986-03-01

    The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs.

  13. Central ignition scenarios for TFTR

    International Nuclear Information System (INIS)

    Zweben, S.J.; Redi, M.H.; Bateman, G.

    1986-03-01

    The possibility of obtaining ignition in TFTR by means of very centrally peaked density profiles is examined. It is shown that local central alpha heating can be made to exceed local central energy losses (''central ignition'') under global conditions for which Q greater than or equal to 1. Time dependent 1-D transport simulations show that the normal global ignition requirements are substantially relaxed for plasmas with peaked density profiles. 18 refs., 18 figs

  14. Control and diagnosis oriented modelling of the compression ignition engine; Modelisation du moteur a allumage par compression dans la perspective du controle et du diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Grondin, O.

    2004-12-15

    This thesis has described an investigation into the modelling of compression ignition engine for control and diagnosis purpose. The Diesel engine is the most efficient and clean internal combustion engine due to modem electromechanical actuators. However, pollutant emission regulations are much more stricter, thus, these complex systems need sophisticated and efficient control algorithms to reach very low emission levels. For this task, engine models are required at each step of the control system development: control laws synthesis, simulation and validation. The system under study is a six cylinder direct injection Diesel engine fitted with a turbocharger. The model of this system is based on physical laws for some parts of the engine such as cylinders, manifolds, turbocharger and crank-slider system. In order to reduce computing time we choose to model heat transfer and heat release during combustion using simple empirical correlations. Resulting model has been implemented in the Matlab-Simulink environment and it can predict variables of interest for control purpose with one degree crank angle resolution. The model has been tested numerically and compared with an industrial engine simulation code with good results. Moreover, model output variables are in good agreement with experimental data recorded on a heavy-duty research engine. The engine model has been embedded on a board providing enough computing performances to perform real-time simulations, this will be helpful for 'hardware-in-the-loop' simulations. Another part of this study is dedicated to the combustion process modelling using a non linear phenomenological model: the NARMAX model. The goal is to predict the in-cylinder pressure evolution using other measurements available on the engine. The NARMAX model parameters have been identified using input-output data carried out from the experimental engine. Such model is well suited for real-time applications compare to numerically cost

  15. Laser induced plasma methodology for ignition control in direct injection sprays

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2016-01-01

    Highlights: • Laser Induced Plasma Ignition system is designed and applied to a Diesel Spray. • A method for quantification of the system effectiveness and reliability is proposed. • The ignition system is optimized in atmospheric and engine-like conditions. • Higher system effectiveness is reached with higher ambient density. • The system is able to stabilize Diesel combustion compared to auto-ignition cases. - Abstract: New combustion modes for internal combustion engines represent one of the main fields of investigation for emissions control in transportation Industry. However, the implementation of lean fuel mixture condition and low temperature combustion in real engines is limited by different unsolved practical issues. To achieve an appropriate combustion phasing and cycle-to-cycle control of the process, the laser plasma ignition system arises as a valid alternative to the traditional electrical spark ignition system. This paper proposes a methodology to set-up and optimize a laser induced plasma ignition system that allows ensuring reliability through the quantification of the system effectiveness in the plasma generation and positional stability, in order to reach optimal ignition performance. For this purpose, experimental tests have been carried out in an optical test rig. At first the system has been optimized in an atmospheric environment, based on the statistical analysis of the plasma records taken with a high speed camera to evaluate the induction effectiveness and consequently regulate and control the system settings. The same optimization method has then been applied under engine-like conditions, analyzing the effect of thermodynamic ambient conditions on the plasma induction success and repeatability, which have shown to depend mainly on ambient density. Once optimized for selected engine conditions, the laser plasma induction system has been used to ignite a direct injection Diesel spray, and to compare the evolution of combustion

  16. Ignition of detonation in accreted helium envelopes

    Science.gov (United States)

    Ami Glasner, S.; Livne, E.; Steinberg, E.; Yalinewich, A.; Truran, James W.

    2018-02-01

    Sub Chandrasekhar CO white dwarfs accreting helium have been considered as candidates for SNIa progenitors since the early 1980's (helium shell mass >0.1M⊙). These models, once detonated did not fit the observed spectra and light curve of typical SNIa observations. New theoretical work examined detonations on much less massive (<0.05M⊙) envelopes. They find stable detonations that lead to light curves, spectra and abundances that compare relatively well with the observational data. The exact mechanism leading to the ignition of helium detonation is a key issue, since it is a mandatory first step for the whole scenario. As the flow of the accreted envelope is unstable to convection long before any hydrodynamic phenomena develops, a multidimensional approach is needed in order to study the ignition process. The complex convective reactive flow is challenging to any hydrodynamical solver. According to our best knowledge all previous 2D studies ignited the detonation artificially. We present here, for the first time, fully consistent results from two hydrodynamical 2D solvers that adopt two independent accurate schemes. For both solvers an effort was made to overcome the problematics raised by the finite resolution and numerical diffusion by the advective terms. Our best models lead to the ignition of a detonation in a convective cell. Our results are robust and the agreement between the two different numerical approaches is very good.

  17. Electrostatic hazards of charging of bedclothes and ignition in medical facilities.

    Science.gov (United States)

    Endo, Yuta; Ohsawa, Atsushi; Yamaguma, Mizuki

    2018-02-26

    We investigated the charge generated on bedclothes (cotton and polyester) during bedding exchange with different humidities and the ignitability of an alcohol-based hand sanitizer (72.3 mass% ethanol) due to static spark with different temperatures to identify the hazards of electrostatic shocks and ignitions occurring previously in medical facilities. The results indicated that charging of the polyester bedclothes may induce a human body potential of over about 10 kV, resulting in shocks even at a relative humidity of 50%, and a human body potential of higher than about 8 kV can cause a risk for the ignition of the hand sanitizer. The grounding of human bodies via footwear and flooring, therefore, is essential to avoid such hazards (or to reduce such risks).

  18. High-Gain Shock Ignition on the National Ignition Facility

    Science.gov (United States)

    Perkins, L. J.; Lafortune, K.; Bailey, D.; Lambert, M.; MacKinnon, A.; Blackfield, D.; Comley, A.; Schurtz, G.; Ribeyre, X.; Lebel, E.; Casner, A.; Craxton, R. S.; Betti, R.; McKenty, P.; Anderson, K.; Theobald, W.; Schmitt, A.; Atzeni, S.; Schiavi, A.

    2010-11-01

    Shock ignition offers the possibility for a near-term test of high-gain ICF on the NIF at less than 1MJ drive energy and with day-1 laser hardware. We will summarize the status of target performance simulations, delineate the critical issues and describe the R&D program to be performed in order to test the potential of a shock-ignited target on NIF. In shock ignition, compressed fuel is separately ignited by a late-time laser-driven shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, simulations indicate that fusion energy gains of 60 may be achievable at laser energies around 0.5MJ. Like fast ignition, shock ignition offers high gain but requires only a single laser with less demanding timing and focusing requirements. Conventional symmetry and stability constraints apply, thus a key immediate step towards attempting shock ignition on NIF is to demonstrate adequacy of low-mode uniformity and shock symmetry under polar drive

  19. Simple model of the indirect compression of targets under conditions close to the national ignition facility at an energy of 1.5 MJ

    Science.gov (United States)

    Rozanov, V. B.; Vergunova, G. A.

    2015-11-01

    The possibility of the analysis and interpretation of the reported experiments with the megajoule National Ignition Facility (NIF) laser on the compression of capsules in indirect-irradiation targets by means of the one-dimensional RADIAN program in the spherical geometry has been studied. The problem of the energy balance in a target and the determination of the laser energy that should be used in the spherical model of the target has been considered. The results of action of pulses differing in energy and time profile ("low-foot" and "high-foot" regimes) have been analyzed. The parameters of the compression of targets with a high-density carbon ablator have been obtained. The results of the simulations are in satisfactory agreement with the measurements and correspond to the range of the observed parameters. The set of compared results can be expanded, in particular, for a more detailed determination of the parameters of a target near the maximum compression of the capsule. The physical foundation of the possibility of using the one-dimensional description is the necessity of the closeness of the last stage of the compression of the capsule to a one-dimensional process. The one-dimensional simulation of the compression of the capsule can be useful in establishing the boundary behind which two-dimensional and three-dimensional simulation should be used.

  20. Scattering profiles of sparks and combustibility of filter against hot sparks

    International Nuclear Information System (INIS)

    Asazuma, Shinichiro; Okada, Takashi; Kashiro, Kashio

    2004-01-01

    The glove-box dismantling facility in the Plutonium Fuel Production Facility is developed to dismantle after-service glove-boxes with remote-controlled devices such as an arm-type manipulator. An abrasive wheel cutter, which is used to size reduce the gloveboxes, generates sparks during operation. This dispersing spark was a problem from the fire prevention point of view. A suitable spark control measures for this operation were required. We developed panels to minimize spark dispersion, shields to prevent the income of sparks to the pre-filter, and incombustible pre-filters. The equipment was tested and effectiveness was confirmed. This report provides the results of these tests. (author)

  1. Investigations on gas-air mixture formation in the ignition chamber of two-stage combustion chamber using high-speed Schlieren imaging

    Directory of Open Access Journals (Sweden)

    Bueschke Wojciech

    2017-01-01

    Full Text Available Combustion of the lean mixtures in the spark ignition engines provides higher thermal efficiency compared to the combustion of the stoichiometric mixture but is more restrictive to the ignition systems. Due to the limitations of conventional ignition systems, advanced concepts are being used, e. g. spark-jet ignition. Presented research has been carried to determine: 1. The impact of fuel injection pressure on the velocity of mixture formation, 2. Fuel distribution inside ignition chamber in defined phases of chamber filling, 3. Influence of chamber back-pressure on gas jet development. Investigations have been carried using the ignition chamber providing optical access. The visualization has been done with Schlieren-method with “Z”-setup basing on two ϕ = 150 mm parabolic mirrors. Images have been recorded with LaVision HSS5 camera with CMOS transducer. The paper contains a comparison of gas penetration parameters for a different injection pressures and chamber backpressures. The injection into the quasi-static air has been compared to the injection in dynamic conditions. It is stated, that both injection pressure and chamber back-pressure influence gas jet-development in the ignition chamber. The regions of the chamber with increased swirling and therefore providing more efficient micromixing have been identified.

  2. Estimating fuel octane numbers from homogeneous gas-phase ignition delay times

    KAUST Repository

    Naser, Nimal

    2017-11-05

    Fuel octane numbers are directly related to the autoignition properties of fuel/air mixtures in spark ignition (SI) engines. This work presents a methodology to estimate the research and the motor octane numbers (RON and MON) from homogeneous gas-phase ignition delay time (IDT) data calculated at various pressures and temperatures. The hypothesis under investigation is that at specific conditions of pressure and temperature (i.e., RON-like and MON-like conditions), fuels with IDT identical to that of a primary reference fuel (PRF) have the same octane rating. To test this hypothesis, IDTs with a detailed gasoline surrogate chemical kinetic model have been calculated at various temperatures and pressures. From this dataset, temperatures that best represent RON and MON have been correlated at a specified pressure. Correlations for pressures in the range of 10–50 bar were obtained. The proposed correlations were validated with toluene reference fuels (TRF), toluene primary reference fuels (TPRF), ethanol reference fuels (ERF), PRFs and TPRFs with ethanol, and multi-component gasoline surrogate mixtures. The predicted RON and MON showed satisfactory accuracy against measurements obtained by the standard ASTM methods and blending rules, demonstrating that the present methodology can be a viable tool for a first approximation. The correlations were also validated against an extensive set of experimental IDT data obtained from literature with a high degree of accuracy in RON/MON prediction. Conditions in homogeneous reactors such as shock tubes and rapid compression machines that are relevant to modern SI engines were also identified. Uncertainty analysis of the proposed correlations with linear error propagation theory is also presented.

  3. Physics evaluation of compact tokamak ignition experiments

    International Nuclear Information System (INIS)

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/ 2 /q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Considering both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs

  4. Rocket Ignition Demonstrations Using Silane

    Science.gov (United States)

    Pal, Sibtosh; Santoro, Robert; Watkins, William B.; Kincaid, Kevin

    1998-01-01

    Rocket ignition demonstration tests using silane were performed at the Penn State Combustion Research Laboratory. A heat sink combustor with one injection element was used with gaseous propellants. Mixtures of silane and hydrogen were used as fuel, and oxygen was used as oxidizer. Reliable ignition was demonstrated using fuel lead and and a swirl injection element.

  5. Final environmental statement concerning rule making. Exemption from licensing requirements for spark-gap irradiators that contain cobalt-60. Docket No. PRM 30-54

    International Nuclear Information System (INIS)

    1977-12-01

    The potential environmental impacts and adverse environmental effects from distribution, use only in commercial-sized oil burners, and disposal of 6000 spark-gap irradiators per year that contain 60 Co are summarized. On the basis of the analysis and evaluation set forth in this statement and after weighing the environmental, economic, technical, and other benefits against environmental costs and after considering available alternatives, it is concluded that the action called for under the National Environmental Policy Act of 1969 (NEPA) and 10 CFR Part 51 is the issuance of an exemption from licensing requirements for spark-gap irradiators that contain 60 Co, subject to the following conditions for the protection of the environment: persons who apply 60 Co to, or persons who incorporate 60 Co into, spark-gap irradiators or persons who import for sale or distribution spark-gap irradiators containing 60 Co are not exempt from the requirements for a license; each spark-gap irradiator shall contain no more than 1 μCi of 60 Co; and the 60 Co shall be applied to the spark-gap irradiators for use in electrically ignited fuel-oil burners having a firing rate of at least 3 gal/h

  6. Laser imprint and implications for direct drive ignition with the National Ignition Facility

    International Nuclear Information System (INIS)

    Weber, S.V.; Glendinning, S.G.; Kalantar, D.H.; Remington, B.A.; Rothenberg, J.E.

    1996-01-01

    For direct drive ICF, nonuniformities in laser illumination can seed ripples at the ablation front in a process called imprint. Such nonuniformities will grow during the capsule implosion and can penetrate the capsule shell impede ignition, or degrade burn. We have simulated imprint for a number of experiments on tile Nova laser. Results are in generally good agreement with experimental data. We leave also simulated imprint upon National Ignition Facility (NIF) direct drive ignition capsules. Imprint modulation amplitude comparable to the intrinsic surface finish of ∼40 nm is predicted for a laser bandwidth of 0.5 THz. Ablation front modulations experience growth factors up to several thousand, carrying modulation well into the nonlinear regime. Saturation modeling predicts that the shell should remain intact at the time of peak velocity, but penetration at earlier times appears more marginal

  7. Spark - a modern approach for distributed analytics

    CERN Multimedia

    CERN. Geneva; Kothuri, Prasanth

    2016-01-01

    The Hadoop ecosystem is the leading opensource platform for distributed storing and processing big data. It is a very popular system for implementing data warehouses and data lakes. Spark has also emerged to be one of the leading engines for data analytics. The Hadoop platform is available at CERN as a central service provided by the IT department. By attending the session, a participant will acquire knowledge of the essential concepts need to benefit from the parallel data processing offered by Spark framework. The session is structured around practical examples and tutorials. Main topics: Architecture overview - work distribution, concepts of a worker and a driver Computing concepts of transformations and actions Data processing APIs - RDD, DataFrame, and SparkSQL

  8. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  9. SciSpark's SRDD : A Scientific Resilient Distributed Dataset for Multidimensional Data

    Science.gov (United States)

    Palamuttam, R. S.; Wilson, B. D.; Mogrovejo, R. M.; Whitehall, K. D.; Mattmann, C. A.; McGibbney, L. J.; Ramirez, P.

    2015-12-01

    Remote sensing data and climate model output are multi-dimensional arrays of massive sizes locked away in heterogeneous file formats (HDF5/4, NetCDF 3/4) and metadata models (HDF-EOS, CF) making it difficult to perform multi-stage, iterative science processing since each stage requires writing and reading data to and from disk. We have developed SciSpark, a robust Big Data framework, that extends ApacheTM Spark for scaling scientific computations. Apache Spark improves the map-reduce implementation in ApacheTM Hadoop for parallel computing on a cluster, by emphasizing in-memory computation, "spilling" to disk only as needed, and relying on lazy evaluation. Central to Spark is the Resilient Distributed Dataset (RDD), an in-memory distributed data structure that extends the functional paradigm provided by the Scala programming language. However, RDDs are ideal for tabular or unstructured data, and not for highly dimensional data. The SciSpark project introduces the Scientific Resilient Distributed Dataset (sRDD), a distributed-computing array structure which supports iterative scientific algorithms for multidimensional data. SciSpark processes data stored in NetCDF and HDF files by partitioning them across time or space and distributing the partitions among a cluster of compute nodes. We show usability and extensibility of SciSpark by implementing distributed algorithms for geospatial operations on large collections of multi-dimensional grids. In particular we address the problem of scaling an automated method for finding Mesoscale Convective Complexes. SciSpark provides a tensor interface to support the pluggability of different matrix libraries. We evaluate performance of the various matrix libraries in distributed pipelines, such as Nd4jTM and BreezeTM. We detail the architecture and design of SciSpark, our efforts to integrate climate science algorithms, parallel ingest and partitioning (sharding) of A-Train satellite observations from model grids. These

  10. High performance Spark best practices for scaling and optimizing Apache Spark

    CERN Document Server

    Karau, Holden

    2017-01-01

    Apache Spark is amazing when everything clicks. But if you haven’t seen the performance improvements you expected, or still don’t feel confident enough to use Spark in production, this practical book is for you. Authors Holden Karau and Rachel Warren demonstrate performance optimizations to help your Spark queries run faster and handle larger data sizes, while using fewer resources. Ideal for software engineers, data engineers, developers, and system administrators working with large-scale data applications, this book describes techniques that can reduce data infrastructure costs and developer hours. Not only will you gain a more comprehensive understanding of Spark, you’ll also learn how to make it sing. With this book, you’ll explore: How Spark SQL’s new interfaces improve performance over SQL’s RDD data structure The choice between data joins in Core Spark and Spark SQL Techniques for getting the most out of standard RDD transformations How to work around performance issues i...

  11. Effect of Various Ignition Timings on Combustion Process and Performance of Gasoline Engine

    Directory of Open Access Journals (Sweden)

    Lukáš Tunka

    2017-01-01

    Full Text Available This article deals with the effect of the ignition timing on the output parameters of a spark-ignition engine. The main assessed parameters include the output parameters of the engine (engine power and torque, cylinder pressure variation, heat generation and burn rate. However, the article also discusses the effect of the ignition timing on the temperature of exhaust gases, the indicated mean effective pressure, the combustion duration, combustion stability, etc. All measurements were performed in an engine test room in the Department of Technology and Automobile Transport at Mendel University in Brno, on a four-cylinder AUDI engine with a maximum power of 110 kW, as indicated by the manufacturer. To control and change the ignition timing of the engine, a fully programmable Magneti Marelli control unit was used. The experimental measurements were performed on 8 different ignition timings, from 18 °CA to 32 °CA BTDC at wide throttle open and a constant engine speed (2500 rpm, with a stoichiometric mixture fraction. The measurement results showed that as the ignition timing increases, the engine power and torque also increase. The increase in these parameters is a reflection of higher pressure in the cylinder, the maximum value of which is achieved at a higher ignition timing near top dead centre in thepower stroke. In these conditions we can expect higher engine efficiency. It was also found that the combustion is more stable with a higher value of ignition timing. No significant difference was found in the combustion duration.

  12. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    Energy Technology Data Exchange (ETDEWEB)

    Ted Bestor

    2003-03-04

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement

  13. The Compact Ignition Tokamak

    International Nuclear Information System (INIS)

    Schmidt, J.

    1987-01-01

    The author discusses his lab's plan for completing the Compact Ignition Tokamak (CIT) conceptual design during calendar year 1987. Around July 1 they froze the subsystem envelopes on the device to continue with the conceptual design. They did this by formalizing a general requirements document. They have been developing the management plan and submitted a version to the DOE July 10. He describes a group of management activities. They released the vacuum vessel Request For Proposals (RFP) on August 5. An RFP to do a major part of the system engineering on the device is being developed. They intend to assemble the device outside of the test cell, then move it into the the test cell, install it there, and bring to the test cell many of the auxiliary facilities from TFTR, for example, power supplies

  14. Numerical investigation on soot particles emission in compression ignition diesel engine by using particulate mimic soot model

    Directory of Open Access Journals (Sweden)

    Ibrahim Fadzli

    2017-01-01

    Full Text Available Research via computational method, specifically by detailed-kinetic soot model offers much more advantages than the simple model as more detailed formation/oxidation process is taken into consideration, thus providing better soot mass concentration, soot size, soot number density as well as information regarding other related species. In the present computational study, investigation of in-cylinder soot concentration as well as other emissions in a single cylinder diesel engine has been conducted, using a commercial multidimensional CFD software, CONVERGE CFD. The simulation was carried out for a close-cycle combustion environment from inlet valve closing (IVC to exhaust valve opening (EVO. In this case, detailed-kinetic Particulate Mimic (PM soot model was implemented as to take benefit of the method of moment, instead of commonly implemented simple soot model. Analyses of the results are successfully plotted to demonstrate that the soot size and soot mass concentration are strongly dependent on the detailed soot formation and oxidation process rates. The calculated of soot mass concentration and average soot size at EVO provide the end value of 29.2 mg/m3 and 2.04 × 10−8 m, respectively. Besides, post-processing using EnSight shows the qualitative results of soot concentration along simulation period in the combustion chamber.

  15. Fusion ignition and burning of D-3He system

    International Nuclear Information System (INIS)

    Zeng Xiancai; Zhang Lifa; Gao Yaoming; Li Yunsheng

    1997-01-01

    The processes of ignition and burning in the fusion system of D- 3 He with a small number of neutrons have been analyzed and the corresponding conditions of ignition and burning have been given. Several typical physics models of D- 3 He reaction have also been simulated numerically. The results further demonstrate that the fusion system of D- 3 He is the optimum candidate of the fusion power with a small number of neutrons in future

  16. The suppression of destructive sparks in parallel plate proportional counters

    Energy Technology Data Exchange (ETDEWEB)

    Cockshott, R.A.; Mason, I.M.

    1984-02-01

    The authors find that high energy background events produce localised sparks in parallel plate counters when operated in the proportional mode. These sparks increase dead-time and lead to degradation ranging from electrode damage to spurious pulsing and continuous breakdown. The problem is particularly serious in low energy photon detectors for X-ray astronomy which are required to have lifetimes of several years in the high radiation environment of space. For the parallel plate imaging detector developed for the European X-ray Observatory Satellite (EXOSAT) they investigate quantitatively the spark thresholds, spark rates and degradation processes. They discuss the spark mechanism, pointing out differences from the situation in spark chambers and counters. They show that the time profile of the sparks allows them to devise a spark suppression system which reduces the degradation rate by a factor of ''200.

  17. Spark Length and the Van de Graaff Generator

    OpenAIRE

    Suthinand Jirakulpatana

    2007-01-01

    The maximum discharge spark length of a Van de Graaf generator as a function of belt speed was studied. It was found that the maximum spark length was proportional to the square root of the belt speed.

  18. Spark Length and the Van de Graaff Generator

    Directory of Open Access Journals (Sweden)

    Suthinand Jirakulpatana

    2007-06-01

    Full Text Available The maximum discharge spark length of a Van de Graaf generator as a function of belt speed was studied. It was found that the maximum spark length was proportional to the square root of the belt speed.

  19. Modelling Air Pollution Near Arterial Roads and Highways

    Science.gov (United States)

    Shenouda, Deloor Abdel Shaheed

    In this study emissions of carbon dioxide (CO _2), carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NO_{rm x}) from vehicles are modelled by considering the instantaneous power generated by each vehicle and modifying the expressions developed by Post et al, (1981). The emissions from both spark ignition (SI) and diesel vehicles have been included. The model was used to estimate fuel consumption and emissions over a standard driving cycle. When used for spark ignition vehicles over a driving cycle, the influence of cold starts was quantified and allowance was made, in the case of equipped vehicles, for catalyst warm-up and for variations in catalyst efficiency. The model was validated against fuel consumption and emissions data obtained using ADR27 and ADR37 tests, and also against detailed, high time resolution analysis of ADR27 tests carried out by the Victorian EPA. The emissions model was used in conjunction with two pollution dispersion models viz: HIWAY and CALINE to compare predicted concentrations with an experimental data -set consisting of measurements of the pollutants of CO _2, CO, HC, and NO_ {rm x}, and were made under a variety of traffic and meteorological conditions. The measurements were made at locations up to 60 metres downwind from the roadside and to heights of 10m above the ground. A video camera was used to record the traffic flow, speed and type (classified simply as domestic, light or heavy commercial). The emission rates of CO, HC, and NO_ {rm x} (at slope 0^ circ) for spark ignition and diesel vehicles produced by the power-based emissions model were found to be similar to those produced by the California EPA, EMFAC7, emissions model.

  20. Plans for ignition experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moses, E.I.; Meier, W.R. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2007-07-01

    The National Ignition Facility (NIF) is a 192 beam Nd-glass laser facility presently under construction at LLNL for performing ignition experiments for inertial confinement fusion (ICF) and experiments studying high energy density (HED) science. NIF will produce 1.8 MJ, 500 TW of ultraviolet light making it the world's largest and most powerful laser system. NIF will be the world's preeminent facility for the study of matter at extreme temperatures and densities producing and for developing ICF. The ignition studies will be the next important step in developing inertial fusion energy. The NIF Project is over 90% complete and scheduled for completion in 2009. The building and nearly the entire beam path have been completed. The Project is presently installing the optics and electronics and commissioning the beams. Over half of the optical and electronics components needed to complete the Project have been installed. One cluster of 48 beams has been commissioned in the laser bay with the demonstrated capability of producing 1000 kJ of 1053 nm light (1), nearly ten times the capability of Nova or Omega, the previous largest laser systems. In addition, experiments using one beam have demonstrated that NIF can meet all of its performance goals. A detailed plan called the National Ignition Campaign (NIC) has been developed to begin ignition experiments in 2010. The plan includes the target physics and the equipment such as diagnostics, cryogenic target manipulator and user optics required for the ignition experiment. Target designs have been developed that calculate to ignite at energy as low as 1 MJ. Experiments using the OMEGA laser at the University of Rochester are validating these designs. Development of manufacturing capability is well under way for producing these targets to the required tolerances. Diagnostics and other support equipment is being designed and fabricated to perform the ignition experiments. (orig.)

  1. SparkJet Actuators for Flow Control

    Science.gov (United States)

    2007-03-01

    characteristics 5. Computational Predictions Both 2D and 3D time-dependent Navier -Stokes calculations of the SparkJet operation have been conducted using the...single sheet of stainless steel shim stock . This metal structure is oriented vertically and clamped at the top and bottom in a Lexan® fixture. The

  2. Magnetite Nanoparticles Prepared By Spark Erosion

    Directory of Open Access Journals (Sweden)

    Maiorov M.

    2016-08-01

    Full Text Available In the present research, we study a possibility of using the electric spark erosion method as an alternative to the method of chemical co-precipitation for preparation of magnetic nanoparticles. Initiation of high frequency electric discharge between coarse iron particles under a layer of distilled water allows obtaining pure magnetite nanoparticles.

  3. Magnetite Nanoparticles Prepared By Spark Erosion

    Science.gov (United States)

    Maiorov, M.; Blums, E.; Kronkalns, G.; Krumina, A.; Lubane, M.

    2016-08-01

    In the present research, we study a possibility of using the electric spark erosion method as an alternative to the method of chemical co-precipitation for preparation of magnetic nanoparticles. Initiation of high frequency electric discharge between coarse iron particles under a layer of distilled water allows obtaining pure magnetite nanoparticles.

  4. Magnetite Nanoparticles Prepared By Spark Erosion

    OpenAIRE

    Maiorov M.; Blums E.; Kronkalns G.; Krumina A.; Lubane M.

    2016-01-01

    In the present research, we study a possibility of using the electric spark erosion method as an alternative to the method of chemical co-precipitation for preparation of magnetic nanoparticles. Initiation of high frequency electric discharge between coarse iron particles under a layer of distilled water allows obtaining pure magnetite nanoparticles.

  5. Book Review of Nicholas Sparks' Safe Haven

    OpenAIRE

    Putriyani, Maygananda

    2015-01-01

    Safe Haven (2010) is a novel written by Nicholas Sparks. It is a story about a woman who suffers from traumatic experience due to her abusive husband. She manages to escape to a safe place and find happiness in that place. The woman wants to start a new life even though the shadow of the past will always haunt her.

  6. Generation of Nanoparticles by Spark Discharge

    NARCIS (Netherlands)

    Salman Tabrizi, N.

    2009-01-01

    Spark discharge is a method for producing nanoparticles from conductive materials. Besides the general advantages of nanoparticle synthesis in the gas phase, the method offers additional advantages like simplicity, compactness and versatility. The synthesis process is continuous and is performed at

  7. Origin and simulation of sparks in MPGD

    CERN Document Server

    Procureur, S; Ball, J; Charles, G; Moreno, B; Moutarde, H; Sabatié, F

    2012-01-01

    The development of Micro-Pattern Gaseous Detectors for high luminosity experiments requires a better understanding of the origin of the sparks in these detectors. Assuming a spark occurs whenever the electron number reaches the well known Raether limit, previous Geant4 simulations quantitatively reproduced the spark rate observed in Micromegas with high energy hadron beams. Large release of energies are provided by fragments from nuclear interactions between the beam and the detector material. In order to further check the validity of our simulation, hadron beam tests have been performed at the CERN/SPS and PS on Micromegas and hybrid Micromegas-GEM detectors. In particular, large variations of the spark rate have been observed in positively charged hadron beams below 1 GeV/c, which are well described by the simulation. The role of the charge density has also been investigated with measurements in magnetic fields and with a Micromegas-GEM. The simulation has therefore been upgraded to take into account the tr...

  8. Ambient fields generated by a laser spark

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Karel; Mašek, Martin

    2016-01-01

    Roč. 61, č. 2 (2016), s. 119-124 ISSN 0029-5922 R&D Projects: GA MŠk(CZ) LD14089; GA MŠk(CZ) LG13031 Institutional support: RVO:68378271 Keywords : laser spark * radiation chemistry * field generation Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.760, year: 2016

  9. Efficiency calibration of solid track spark auto counter

    International Nuclear Information System (INIS)

    Wang Mei; Wen Zhongwei; Lin Jufang; Liu Rong; Jiang Li; Lu Xinxin; Zhu Tonghua

    2008-01-01

    The factors influencing detection efficiency of solid track spark auto counter were analyzed, and the best etch condition and parameters of charge were also reconfirmed. With small plate fission ionization chamber, the efficiency of solid track spark auto counter at various experiment assemblies was re-calibrated. The efficiency of solid track spark auto counter at various experimental conditions was obtained. (authors)

  10. Wavelength Detuning Cross-Beam Energy Transfer Mitigation Scheme for Direct-Drive: Modeling and Evidence from National Ignition Facility Implosions

    Science.gov (United States)

    Marozas, J. A.

    2017-10-01

    Cross-beam energy transfer (CBET) has been shown to significantly reduce the laser absorption and implosion speed in direct-drive implosion experiments on OMEGA and the National Ignition Facility (NIF). Mitigating CBET assists in achieving ignition-relevant hot-spot pressures in deuterium-tritium cryogenic OMEGA implosions. In addition, reducing CBET permits lower, more hydrodynamically stable, in-flight aspect ratio ignition designs with smaller nonuniformity growth during the acceleration phase. Detuning the wavelengths of the crossing beams is one of several techniques under investigation at the University of Rochester to mitigate CBET. This talk will describe these techniques with an emphasis on wavelength detuning. Recent experiments designed and predicted using multidimensional hydrodynamic simulations including CBET on the NIF have exploited the wavelength arrangement of the NIF beam geometry to demonstrate CBET mitigation through wavelength detuning in polar-direct-drive (PDD) implosions. Shapes and trajectories inferred from time-resolved x-ray radiography of the imploding shell, scattered-light spectra, and hard x-ray spectra generated by suprathermal electrons all indicate a reduction in CBET. These results and their implications for direct-drive ignition will be presented and discussed. In addition, hydrodynamically scaled ignition-relevant designs for OMEGA implosions exploiting wavelength detuning will be presented. Changes required to the OMEGA laser to permit wavelength detuning will be discussed. Future plans for PDD on the NIF including more-uniform implosions with CBET mitigation will be explored. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  11. Resolving a central ICF issue for ignition: Implosion symmertry

    International Nuclear Information System (INIS)

    Cray, M.; Delamater, N.D.; Fernandez, J.C.

    1994-01-01

    The Los Alamos National Laboratory Inertial Confinement Fusion (ICF) Program focuses on resolving key target-physics issues and developing technology needed for the National Ignition Facility (NIF). This work is being performed in collaboration with Lawrence Livermore National Laboratory (LLNL). A major requirement for the indirect-drive NIF ignition target is to achieve the irradiation uniformity on the capsule surface needed for a symmetrical high-convergence implosion. Los Alamos employed an integrated modeling technique using the Lasnex radiation-hydrodynamics code to design two different targets that achieve ignition and moderate gain. Los Alamos is performing experiments on the Nova Laser at LLNL in order to validate our NIF ignition calculations

  12. Investigation on minimum ignition energy of mixtures of α-pinene-benzene/air.

    Science.gov (United States)

    Coudour, B; Chetehouna, K; Rudz, S; Gillard, P; Garo, J P

    2015-01-01

    Minimum ignition energies (MIE) of α-pinene-benzene/air mixtures at a given temperature for different equivalence ratios and fuel proportions are experimented in this paper. We used a cylindrical chamber of combustion using a nanosecond pulse at 1,064 nm from a Q-switched Nd:YAG laser. Laser-induced spark ignitions were studied for two molar proportions of α-pinene/benzene mixtures, respectively 20-80% and 50-50%. The effect of the equivalence ratio (Φ) has been investigated for 0.7, 0.9, 1.1 and 1.5 and ignition of fuel/air mixtures has been experimented for two different incident laser energies: 25 and 33 mJ. This study aims at observing the influence of different α-pinene/benzene proportions on the flammability of the mixture to have further knowledge of the potential of biogenic volatile organic compounds (BVOCs) and smoke mixtures to influence forest fires, especially in the case of the accelerating forest fire phenomenon (AFF). Results of ignition probability and energy absorption are based on 400 laser shots for each studied fuel proportions. MIE results as functions of equivalence ratio compared to data of pure α-pinene and pure benzene demonstrate that the presence of benzene in α-pinene-air mixture tends to increase ignition probability and reduce MIE without depending strongly on the α-pinene/benzene proportion. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of Pertalite-Spiritus Blend Fuel on Performance of Single Cylinder Spark Ignition Engine

    Science.gov (United States)

    Wibowo, H.; Susastriawan, A. A. P.; Andrian, D.

    2018-02-01

    This work aims to experimentally investigate an effect of Spiritus and Pertalite blend on engine’s performance (brake horsepower and torque, specific fuel consumption rate, and exhaust gas emission). The tests are conducted at 3000-7000 rpm for four different fuels, i.e., pertalite, 95%P-5%S, 90%P-10%S, and 85%P-15%S to obtain an optimum ratio of the Pertalite-Spiritus blend. The blend ratios of Pertalite (P) and Spiritus (S) are measured by volume. The result shows that addition of 15% Spiritus (by volume) on Pertalilte can enhance the combustion process of the blend hence increasing engine’s brake horsepower and decreasing specific fuel consumption rate. However, engine’s torque is lower when using the blend 85%P-15%S if compared with using Pertalite.

  14. Analysis of fuel consumption of a spark ignition engine in the conditions of a variable load

    Directory of Open Access Journals (Sweden)

    Bieniek Andrzej

    2017-01-01

    Full Text Available This paper reports the results of a study into operating parameters of an system consisting of an SI engine and a driver train in a Fiat Panda passenger car in the conditions of a variable load. The analysis was primarily concerned with the variability of fuel consumption resulting of the changing load applied to the driving wheels in the conditions of a test performed on dynamometer rollers. The bench test included a dedicated driving cycle in which a constant linear speed of the car was changed every 10 km/h and subsequently maintained for registration and analysis purposes. The focus of the study involved the identification of the points characterized with the minimum specific fuel consumption. Throughout the test, the load applied to the transmission was alternated by simulating an increase of road inclination for which the variability of the engine efficiency was analyzed.

  15. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine

    Directory of Open Access Journals (Sweden)

    Gürbüz Habib

    2015-01-01

    Full Text Available In this study, we have investigated the recovery of energy lost as waste heat from exhaust gas and engine coolant, using an improved thermoelectric generator (TEG in a LPG fueled SI engine. For this purpose, we have designed and manufactured a 5-layer heat exchanger from aluminum sheet. Electrical energy generated by the TEG was then used to produce hydrogen in a PEM water electrolyzer. The experiment was conducted at a stoichiometric mixture ratio, 1/2 throttle position and six different engine speeds at 1800-4000 rpm. The results of this study show that the configuration of 5-layer counterflow produce a higher TEG output power than 5-layer parallel flow and 3-layer counterflow. The TEG produced a maximum power of 63.18 W when used in a 5-layer counter flow configuration. This resulted in an improved engine performance, reduced exhaust emission as well as an increased engine speed when LPG fueled SI engine is enriched with hydrogen produced by the PEM electrolyser supported by TEG. Also, the need to use an extra evaporator for the LPG fueled SI engine is eliminated as LPG heat exchangers are added to the fuel line. It can be concluded that an improved exhaust recovery system for automobiles can be developed by incorporating a PEM electrolyser, however at the expense of increasing costs.

  16. HYDROGEN ADDITION ON COMBUSTION AND EMISSION CHARACTERISTICS OF HIGH SPEED SPARK IGNITION ENGINE- AN EXPERIMENTAL STUDY

    Directory of Open Access Journals (Sweden)

    SHIVAPRASAD K. V.

    2016-11-01

    Full Text Available The present article aims at characterizing the combustion and emission parameters of a single cylinder high speed SI engine operating with different concentrations of hydrogen with gasoline fuel. The conventional carburetted SI engine was modified into an electronically controllable engine, wherein ECU was used to control the injection timings and durations of gasoline. The engine was maintained at a constant speed of 3000 rpm and wide open throttle position. The experimental results demonstrated that heat release rate and cylinder pressure were increased with the addition of hydrogen until 20%. The CO and HC emissions were reduced considerably whereas NOx emission was increased with the addition of hydrogen in comparison with pure gasoline engine operation.

  17. Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends

    International Nuclear Information System (INIS)

    Li, Yuqiang; Meng, Lei; Nithyanandan, Karthik; Lee, Timothy H.; Lin, Yilu; Lee, Chia-fon F.; Liao, Shengming

    2017-01-01

    Bio-butanol is typically produced by acetone-butanol-ethanol (ABE) fermentation, however, the recovery of bio-butanol from the ABE mixture involves high costs and energy consumption. Hence it is of interest to study the intermediate fermentation product, i.e. ABE, as a potentially alternative fuel. In this study, an experimental investigation of the performance, combustion and emission characteristics of a port fuel-injection SI engine fueled with ABE-gasoline blends was carried out. By testing different ABE-gasoline blends with varying ABE content (0 vol%, 10 vol%, 30 vol% and 60 vol% referred to as G100, ABE10, ABE30 and ABE60), ABE formulation (A:B:E of 1:8:1, 3:6:1 and 5:4:1 referred to as ABE(181), ABE(361) and ABE(541)), and water content (0.5 vol% and 1 vol% water referred to as W0.5 and W1), it was found that ABE(361)30 performed well in terms of engine performance and emissions, including brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), carbon monoxide (CO), unburned hydrocarbons (UHC) and nitrogen oxides (NO x ) emissions. Then, ABE(361)30 was compared with conventional fuels, including E30, B30 (30 vol% ethanol or butanol blended with gasoline) and pure gasoline (G100) under various equivalence ratios and engine loads. Overall, a higher BTE (0.2–1.4%) and lower CO (1.4–4.4%), UHC (0.3–9.9%) and NO x (4.2–14.6%) emissions were observed for ABE(361)30 compared to those of G100 in some cases. Therefore, ABE could be a good alternative fuel to gasoline due to the environmentally benign manufacturing process (from non-edible biomass feedstock and without a recovery process), and the potential to improve energy efficiency and reduce pollutant emissions. - Highlights: • ABE (acetone-butanol-ethanol) was used as a green alternative fuel. • ABE-gasoline blends with various ratios of ABE, ABE component and water were test. • Combustion, performance and emissions characteristics were investigated. • Adding ABE into gasoline can enhance BTE and reduce CO, UHC and NO x emissions.

  18. Towards 40% efficiency with BMEP exceeding 30 bar in directly injected, turbocharged, spark ignition ethanol engines

    International Nuclear Information System (INIS)

    Boretti, Alberto

    2012-01-01

    Highlights: ► The main advantages of ethanol vs. gasoline are higher knock resistance and heat of vaporization. ► Direct injection and turbo charging are the key features of high efficiency and high power density ethanol engines. ► Advanced ethanol engines are enablers of vehicle fuel energy economy similar to Diesel engines. ► Waste bio mass ethanol may cut the nonrenewable energy costs of fossil fuels passenger cars by almost 90%. - Abstract: Current flexi fuel gasoline and ethanol engines have efficiencies generally lower than dedicated gasoline engines. Considering ethanol has a few advantages with reference to gasoline, namely the higher octane number and the larger heat of vaporization, the paper explores the potentials of dedicated pure ethanol engines using the most advanced techniques available for gasoline engines, specifically direct injection, turbo charging and variable valve actuation. Computations are performed with state-of-the-art, well validated, engine and vehicle performance simulations packages, generally accepted to produce accurate results when targeting major trends in engine developments. The higher compression ratio and the higher boost permitted by ethanol allows larger than gasoline top engine brake thermal efficiencies and peak power and torque, while the variable valve actuation produces smaller penalties in efficiency changing the load than in conventional throttle controlled engines.

  19. 75 FR 56477 - Technical Amendments for Marine Spark-Ignition Engines and Vessels

    Science.gov (United States)

    2010-09-16

    ... technical issues with the performance of the tanks/fuel systems in use that were not fully apparent to them... included portable marine fuel tanks commonly used in recreational boating. During their efforts to certify portable fuel tanks to these new requirements, manufacturers working together on systems integration...

  20. 75 FR 56491 - Technical Amendments for Marine Spark-Ignition Engines and Vessels

    Science.gov (United States)

    2010-09-16

    ... the performance of the tanks/fuel systems in use that were not fully apparent to them before these... included portable marine fuel tanks commonly used in recreational boating. During their efforts to certify portable fuel tanks to these new requirements, manufacturers working together on systems integration...

  1. Evaluation of Knock Behavior for Natural Gas - Gasoline Blends in a Light Duty Spark Ignited Engine

    Energy Technology Data Exchange (ETDEWEB)

    Pamminger, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Sevik, James [Argonne National Lab. (ANL), Argonne, IL (United States); Scarcelli, Riccardo [Argonne National Lab. (ANL), Argonne, IL (United States); Wallner, Thomas [Argonne National Lab. (ANL), Argonne, IL (United States); Wooldridge, Steven [Ford Motor Co., Detroit, MI (United States); Boyer, Brad [Ford Motor Co., Detroit, MI (United States); Hall, Carrie M. [Illinois Inst. of Technology, Chicago, IL (United States)

    2016-10-17

    The compression ratio is a strong lever to increase the efficiency of an internal combustion engine. However, among others, it is limited by the knock resistance of the fuel used. Natural gas shows a higher knock resistance compared to gasoline, which makes it very attractive for use in internal combustion engines. The current paper describes the knock behavior of two gasoline fuels, and specific incylinder blend ratios with one of the gasoline fuels and natural gas. The engine used for these investigations is a single cylinder research engine for light duty application which is equipped with two separate fuel systems. Both fuels can be used simultaneously which allows for gasoline to be injected into the intake port and natural gas to be injected directly into the cylinder to overcome the power density loss usually connected with port fuel injection of natural gas. Adding natural gas at wide open throttle helps to reduce knock mitigating measures and increases the efficiency and power density compared to the other gasoline type fuels with lower knock resistance. The used methods, knock intensity and number of pressure waves, do not show significant differences in knock behavior for the natural gas - gasoline blends compared to the gasoline type fuels. A knock integral was used to describe the knock onset location of the fuels tested. Two different approaches were used to determine the experimental knock onset and were compared to the knock onset delivered by the knock integral (chemical knock onset). The gasoline type fuels show good agreement between chemical and experimental knock onset. However, the natural gas -gasoline blends show higher discrepancies comparing chemical and experimental knock onset.

  2. Impact of N2 dilution on combustion and emissions in a spark ignition CNG engine

    International Nuclear Information System (INIS)

    Wang, Zhongshu; Zuo, Hongbin; Liu, Zhongchang; Li, Weifeng; Dou, Huili

    2014-01-01

    Highlights: • Combustion characteristic of a CNG engine diluted with N 2 was investigated. • N 2 was injected into the end of intake manifold by a specially-designed device. • N 2 dilution can reduce NOx emissions while maintaining fuel economy. • The change of BSFC can be ignored with N 2 dilution ratio no more than 167%. - Abstract: In order to reduce NOx (nitrogen oxides) emissions, N 2 (nitrogen) was introduced as dilution gas to dilute mixture with a specially-designed injection device. The impacts of varying N 2 DR (dilution ratio) on the combustion and the exhaust emissions were investigated, including engine heat release rate, indicator diagram, NOx, CO (carbon monoxide), THC (total hydrocarbon) emissions and so on. For this study, a modified 6.6 L CNG (compressed natural gas) engine was tested and N 2 was injected into the end of intake manifold by a specially-designed device. The results showed that N 2 dilution has a significant influence on the combustion and the exhaust emissions. With the rise of N 2 DR, the maximum of pressure in cylinder and the maximum of heat release rate exhibited decrease trends, the centre of heat release curve showed a moving backward tendency. Higher N 2 DR exhibited lower NOx (17–81%) emissions, but higher emissions of THC (3–78%) and CO (1–28%). The change of BSFC (brake specific fuel consumption) can be ignored with N 2 DR no more than 167%. Satisfactory results can be obtained, with lower NOx (31%) emissions, lower BSFC (0.5%), and relatively higher THC (6%) and CO (1%) emissions, when N 2 DR is 67%

  3. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    Directory of Open Access Journals (Sweden)

    A. SONTHALIA

    2015-04-01

    Full Text Available Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported from Middle East Asian countries and on the other hand combustion of fossil fuel has negative impact on air quality in urban areas. Use of CNG as a fuel in internal combustion engines can reduce the intensiveness of these pervasive problems. The performance of CNG can further be improved by addition of small percentages of hydrogen to it to overcome the drawbacks like lower energy density of the fuel, drop in engine power and engine out exhaust emissions. When hydrogen is added to CNG it is called as Hythane or Hydrogen enriched Compressed Natural Gas (HCNG. This can be considered as a first step towards promotion of hydrogen in automobiles. In this study, the effects of mixing hydrogen with CNG on a small air cooled four stroke SI engine’s performance, emissions and heat release rate was analyzed. A comparison of performance and emission by running engine separately on gasoline, hydrogen, CNG and HCNG was done. The results show a significant decrease in HC, CO and NOx emissions and marginal increase in specific energy consumption when fuelled with HCNG.

  4. CFD and Experimental Analysis on Thermal Performance of Exhaust System of a Spark Ignition Engine

    OpenAIRE

    DURAT, Mesut; PARLAK, Zekeriya; KAPSIZ, Murat; PARLAK, Adnan; FIÇICI, Ferit

    2013-01-01

    Catalysts of a gasoline engine become active when the exhaust temperature exceeds 200 oC. Cold start HCs are extremely high until catalysts reach the light-off temperature. Determination of optimum place and necessary time of the catalyst to reach this temperature is of vital importance. Interaction between exhaust gas and inner wall, along with the exhaust pipe needs to be well-understood. The interaction can be computed by numerical solutions based on fluid dynamics and heat transfer equati...

  5. An analysis of direct-injection spark-ignition (DISI) soot morphology

    Science.gov (United States)

    Barone, Teresa L.; Storey, John M. E.; Youngquist, Adam D.; Szybist, James P.

    2012-03-01

    We have characterized particle emissions produced by a 4-cylinder, 2.0 L DISI engine using transmission electron microscopy (TEM) and image analysis. Analyses of soot morphology provide insight to particle formation mechanisms and strategies for prevention. Particle emissions generated by two fueling strategies were investigated, early injection and injection modified for low particle number concentration emissions. A blend of 20% ethanol and 80% emissions certification gasoline was used for the study given the likelihood of increased ethanol content in widely available fuel. In total, about 200 particles and 3000 primary soot spherules were individually measured. For the fuel injection strategy which produced low particle number concentration emissions, we found a prevalence of single solid sub-25 nm particles and fractal-like aggregates. The modal diameter of single solid particles and aggregate primary particles was between 10 and 15 nm. Solid particles as small as 6 nm were present. Although nanoparticle aggregates had fractal-like morphology similar to diesel soot, the average primary particle diameter per aggregate had a much wider range that spanned from 7 to 60 nm. For the early fuel injection strategy, liquid droplets were prevalent, and the modal average primary particle diameter was between 20 and 25 nm. The presence of liquid droplets may have been the result of unburned fuel and/or lubricating oil originating from fuel impingement on the piston or cylinder wall; the larger modal aggregate primary particle diameter suggests greater fuel-rich zones in-cylinder than for the low particle number concentration point. However, both conditions produced aggregates with a wide range of primary particle diameters, which indicates heterogeneous fuel and air mixing.

  6. Fuelling regulation with Electronic fuel injection for small spark ignition engine using Fuzzy Logic

    International Nuclear Information System (INIS)

    Shah, S.R.; Sahir, M.H.

    2004-01-01

    The use of Electronic Control systems in automotive applications gives the design engineer greater control over various processes compared with mechanical methods Examples of such electronic control systems are Electronic Fuel Injection (EFI), Traction Control Systems (TCS) and Anti-lock Braking Systems (ABS). In addition, the development of inexpensive and fast microcontrollers has remarkably improve, performance of passive and active safety systems of automobiles, without causing excessive increase in prices of vehicles -a favourable factor from the consumer's perspective. This paper deals with a possible electronic aid for the improvement of power control in a motorcycle. Controlling the speed and power of a motorcycle is difficult; especially on bumpy and uneven terrain. In this paper, the development of an EPI system is discussed, incorporating artificial intelligence to regulate the fuel supplied to the engine. It would minimize wheel slippage and jerky and sudden acceleration which potentially dangerous. It would also reduce production of large quantities of pollutant like hydrocarbons and carbon monoxide. Fuel consumption would also improve during stop-and-go traffic. (author)

  7. Potential of Spark Ignition and Diesel Engines, Engine Catalog and Performance Analysis

    Science.gov (United States)

    1980-03-01

    Detailed specifications and EPA certification data for 134 automotive production engines (60 domestic and 74 imported) which are used in the United States and several preproduction engines are provided. When available, experimentally derived performa...

  8. Oil Coking Prevention Using Electric Water Pump for Turbo-Charge Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Han-Ching Lin

    2014-01-01

    Full Text Available Turbocharger has been widely implemented for internal combustion engine to increase an engine's power output and reduce fuel consumption. However, its operating temperature would rise to 340°C when engine stalls. This higher temperature may results in bearing wear, run-out, and stick, due to oil coking and insufficient lubrication. In order to overcome these problems, this paper employs Electric Water Pump (EWP to supply cool liquid to turbocharger actively when the engine stalls. The system layout, operating timing, and duration of EWP are investigated for obtaining optimal performance. The primarily experimental results show that the proposed layout and control strategy have a lower temperature of 100°C than the conventional temperature 225°C.

  9. Performance and emissions of a spark-ignited engine driven generator on biomass based syngas.

    Science.gov (United States)

    Shah, Ajay; Srinivasan, Radhakrishnan; To, Suminto D Filip; Columbus, Eugene P

    2010-06-01

    The emergence of biomass based energy warrants the evaluation of syngas from biomass gasification as a fuel for personal power systems. The objectives of this study were to determine the performance and exhaust emissions of a commercial 5.5 kW generator modified for operation with 100% syngas at different syngas flows and to compare the results with those obtained for gasoline operation at same electrical power. The maximum electrical power output for syngas operation was 1392 W and that for gasoline operation was 2451 W. However, the overall efficiency of the generator at maximum electrical power output for both the fuels were found to be the same. The concentrations of CO and NO(x) in the generator exhaust were lower for the syngas operation, respectively by 30-96% and 54-84% compared to the gasoline operation. However, the concentrations of CO(2) in the generator exhaust were significantly higher by 33-167% for the syngas operation. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Fuel structure effects on HC emissions from a spark-ignited engine

    International Nuclear Information System (INIS)

    Kaiser, E.W.; Siegl, W.O.; Henig, Y.I.; Anderson, R.W.; Trinker, F.H.

    1992-01-01

    This paper reports that tailpipe emissions are a critical consideration in the design process of automobiles because of government regulations based on environmental concerns. To meet these standards, the combined effects of engine design, catalyst design, and fuel composition on regulation emissions must be understood. The effects of variable related to engine design (e.g. crevice volumes, oil films, and fuel-air equivalence ratio) on hydrocarbon (HC) emissions have been investigated. However, systematic studies of the effect of fuel composition on emissions have not been pursued as thoroughly. In particular, no extensive experiments have been performed using pure fuels in the same engine in order to carefully compare the effect of fuel structure on emissions under nearly identical engine operating conditions

  11. Biogas Laminar Burning Velocity and Flammability Characteristics in Spark Ignited Premix Combustion

    Science.gov (United States)

    Anggono, Willyanto; Wardana, I. N. G.; Lawes, M.; Hughes, K. J.; Wahyudi, Slamet; Hamidi, Nurkholis; Hayakawa, Akihiro

    2013-04-01

    Spherically expanding flames propagating at constant pressure were employed to determine the laminar burning velocity and flammability characteristics of biogas-air mixtures in premixed combustion to uncover the fundamental flame propagation characteristics of a new alternative and renewable fuel. The results are compared with those from a methane-air flame. Biogas is a sustainable and renewable fuel that is produced in digestion facilities. The composition of biogas discussed in this paper consists of 66.4% methane, 30.6% carbon dioxide and 3% nitrogen. Burning velocity was measured at various equivalence ratios (phi) using a photographic technique in a high pressure fan-stirred bomb, the initial condition being at room temperature and atmospheric pressure. The flame for methane-air mixtures propagates from phi=0.6 till phi=1.3. The flame at phi >= 1.4 does not propagate because the combustion reaction is quenched by the larger mass of fuel. At phiflame for biogas-air mixtures propagates in a narrower range, that is from phi=0.6 to phi=1.2. Different from the methane flame, the biogas flame does not propagate at phi>=1.3 because the heat absorbed by inhibitors strengthens the quenching effect by the larger mass of fuel. As in the methane flame, the biogas flame at phi<=0.5 does not propagate. This shows that the effect of inhibitors in extremely lean mixtures is small. Compared to a methane-air mixture, the flammability characteristic (flammable region) of biogas becomes narrower in the presence of inhibitors (carbon dioxide and nitrogen) and the presence of inhibitors causes a reduction in the laminar burning velocity. The inhibitor gases work more effectively at rich mixtures because the rich biogas-air mixtures have a higher fraction of carbon dioxide and nitrogen components compared to the lean biogas-air mixtures.

  12. Ignitability and explosibility of gases and vapors

    CERN Document Server

    Ma, Tingguang

    2015-01-01

    The book provides a systematic view on flammability and a collection of solved engineering problems in the fields of dilution and purge, mine gas safety, clean burning safety and gas suppression modeling. For the first time, fundamental principles of energy conservation are used to develop theoretical flammability diagrams and are then explored to understand various safety-related mixing problems. This provides the basis for a fully-analytical solution to any flammability problem. Instead of the traditional view that flammability is a fundamental material property, here flammability is discovered to be a result of the explosibility of air and the ignitability of fuel, or a process property. By exploring the more fundamental concepts of explosibility and ignitability, the safety targets of dilution and purge can be better defined and utilized for guiding safe operations in process safety. This book provides various engineering approaches to mixture flammability, benefiting not only the safety students, but al...

  13. Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation

    KAUST Repository

    Rachidi, Mariam El

    2017-06-12

    This study reports cyclopentane ignition delay measurements over a wide range of conditions. The measurements were obtained using two shock tubes and a rapid compression machine, and were used to test a detailed low- and high-temperature mechanism of cyclopentane oxidation that was presented in part I of this study (Al Rashidi et al., 2017). The ignition delay times of cyclopentane/air mixtures were measured over the temperature range of 650–1350K at pressures of 20 and 40atm and equivalence ratios of 0.5, 1.0 and 2.0. The ignition delay times simulated using the detailed chemical kinetic model of cyclopentane oxidation show very good agreement with the experimental measurements, as well as with the cyclopentane ignition and flame speed data available in the literature. The agreement is significantly improved compared to previous models developed and investigated at higher temperatures. Reaction path and sensitivity analyses were performed to provide insights into the ignition-controlling chemistry at low, intermediate and high temperatures. The results obtained in this study confirm that cycloalkanes are less reactive than their non-cyclic counterparts. Moreover, cyclopentane, a high octane number and high octane sensitivity fuel, exhibits minimal low-temperature chemistry and is considerably less reactive than cyclohexane. This study presents the first experimental low-temperature ignition delay data of cyclopentane, a potential fuel-blending component of particular interest due to its desirable antiknock characteristics.

  14. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in inertial confinement fusion targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effects testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule, and costs associated with the construction project

  15. The National Ignition Facility Project

    International Nuclear Information System (INIS)

    Paisner, J.A.; Campbell, E.M.; Hogan, W.J.

    1994-01-01

    The mission of the National Ignition Facility is to achieve ignition and gain in ICF targets in the laboratory. The facility will be used for defense applications such as weapons physics and weapons effect testing, and for civilian applications such as fusion energy development and fundamental studies of matter at high temperatures and densities. This paper reviews the design, schedule and costs associated with the construction project

  16. Alcohol ignition interlock programs.

    Science.gov (United States)

    Beirness, D J; Marques, P R

    2004-09-01

    The alcohol ignition interlock is an in-vehicle DWI control device that prevents a car from starting until the operator provides a breath alcohol concentration (BAC) test below a set level, usually .02% (20 mg/dl) to .04% (40 mg/dl). The first interlock program was begun as a pilot test in California 18 years ago; today all but a few US states, and Canadian provinces have interlock enabling legislation. Sweden has recently implemented a nationwide interlock program. Other nations of the European Union and as well as several Australian states are testing it on a small scale or through pilot research. This article describes the interlock device and reviews the development and current status of interlock programs including their public safety benefit and the public practice impediments to more widespread adoption of these DWI control devices. Included in this review are (1) a discussion of the technological breakthroughs and certification standards that gave rise to the design features of equipment that is in widespread use today; (2) a commentary on the growing level of adoption of interlocks by governments despite the judicial and legislative practices that prevent more widespread use of them; (3) a brief overview of the extant literature documenting a high degree of interlock efficacy while installed, and the rapid loss of their preventative effect on repeat DWI once they are removed from the vehicles; (4) a discussion of the representativeness of subjects in the current research studies; (5) a discussion of research innovations, including motivational intervention efforts that may extend the controlling effect of the interlock, and data mining research that has uncovered ways to use the stored interlock data record of BAC tests in order to predict high risk drivers; and (6) a discussion of communication barriers and conceptual rigidities that may be preventing the alcohol ignition interlock from taking a more prominent role in the arsenal of tools used to control

  17. Plasma engineering assessments of compact ignition experiments

    International Nuclear Information System (INIS)

    Houlberg, W.A.

    1985-01-01

    Confinement, startup sequences, and fast-alpha particle effects are assessed for a class of compact tokamak ignition experiments having high toroidal magnetic fields (8 to 12 T) and high toroidal currents (7 to 10 MA). The uncertainties in confinement scaling are spanned through examples of performance with an optimistic model based on ohmically heated plasmas and a pessimistic model that includes confinement degradation by both auxiliary and alpha heating. The roles of neoclassical resistivity enhancement and sawtooth behavior are also evaluated. Copper toroidal field coils place restrictions on pulse lengths due to resistive heating, so a simultaneous rampup of the toroidal field and plasma current is proposed as a means of compressing the startup phase and lengthening the burn phase. If the ignition window is small, fast-alpha particle physics is restricted to the high-density regime where a short slowing-down time leads to low fast-particle density and pressure contributions. Under more optimistic confinement, a larger ignition margin broadens the range of alpha particle physics that can be addressed. These issues are illustrated through examples of transport simulations for a set of machine parameters called BRAND-X, which typify the designs under study

  18. Ignition inhibitors for cellulosic materials

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1976-01-01

    By exposing samples to various irradiance levels from a calibrated thermal radiation source, the ignition responses of blackened alpha-cellulose and cotton cloth with and without fire-retardant additives were compared. Samples treated with retardant compounds which showed the most promise were then isothermally pyrolyzed in air for comparisons between the pyrolysis rates. Alpha-cellulose samples containing a mixture of boric acid, borax, and ammonium di-hydrogen phosphate could not be ignited by irradiances up to 4.0 cal cm -2 s-1 (16.7 W/cm 2 ). At higher irradiances the specimens ignited, but flaming lasted only until the flammable gases were depleted. Cotton cloth containing a polymeric retardant with the designation THPC + MM was found to be ignition-resistant to all irradiances below 7.0 cal cm -2 s -1 (29.3 W/cm 2 ). Comparison of the pyrolysis rates of the retardant-treated alpha-cellulose and the retardant-treated cotton showed that the retardant mechanism is qualitatively the same. Similar ignition-response measurements were also made with specimens exposed to ionizing radiation. It was observed that gamma radiation results in ignition retardance of cellulose, while irradiation by neutrons does not

  19. E25 stratified torch ignition engine performance, CO2 emission and combustion analysis

    International Nuclear Information System (INIS)

    Rodrigues Filho, Fernando Antonio; Moreira, Thiago Augusto Araujo; Valle, Ramon Molina; Baêta, José Guilherme Coelho; Pontoppidan, Michael; Teixeira, Alysson Fernandes

    2016-01-01

    Highlights: • A torch ignition engine prototype was built and tested. • Significant reduction of BSFC was achieved due to the use of the torch ignition system. • Low cyclic variability characterized the lean combustion process of the torch ignition engine prototype. • The torch ignition system allowed an average reduction of 8.21% at the CO 2 specific emissions. - Abstract: Vehicular emissions significantly increase atmospheric air pollution and the greenhouse effect. This fact associated with the fast growth of the global motor vehicle fleet demands technological solutions from the scientific community in order to achieve a decrease in fuel consumption and CO 2 emission, especially of fossil fuels to comply with future legislation. To meet this goal, a prototype stratified torch ignition engine was designed from a commercial baseline engine. In this system, the combustion starts in a pre-combustion chamber where the pressure increase pushes the combustion jet flames through a calibrated nozzle to be precisely targeted into the main chamber. These combustion jet flames are endowed with high thermal and kinetic energy being able to promote a stable lean combustion process. The high kinetic and thermal energy of the combustion jet flame results from the load stratification. This is carried out through direct fuel injection in the pre-combustion chamber by means of a prototype gasoline direct injector (GDI) developed for low fuel flow rate. During the compression stroke, lean mixture coming from the main chamber is forced into the pre-combustion chamber and, a few degrees before the spark timing, fuel is injected into the pre-combustion chamber aiming at forming a slightly rich mixture cloud around the spark plug which is suitable for the ignition and kernel development. The performance of the torch ignition engine running with E25 is presented for different mixture stratification levels, engine speed and load. The performance data such as combustion phasing

  20. Fast ignition breakeven scaling

    International Nuclear Information System (INIS)

    Slutz, Stephen A.; Vesey, Roger Alan

    2005-01-01

    A series of numerical simulations have been performed to determine scaling laws for fast ignition break even of a hot spot formed by energetic particles created by a short pulse laser. Hot spot break even is defined to be when the fusion yield is equal to the total energy deposited in the hot spot through both the initial compression and the subsequent heating. In these simulations, only a small portion of a previously compressed mass of deuterium-tritium fuel is heated on a short time scale, i.e., the hot spot is tamped by the cold dense fuel which surrounds it. The hot spot tamping reduces the minimum energy required to obtain break even as compared to the situation where the entire fuel mass is heated, as was assumed in a previous study [S. A. Slutz, R. A. Vesey, I. Shoemaker, T. A. Mehlhorn, and K. Cochrane, Phys. Plasmas 7, 3483 (2004)]. The minimum energy required to obtain hot spot break even is given approximately by the scaling law E T = 7.5(ρ/100) -1.87 kJ for tamped hot spots, as compared to the previously reported scaling of E UT = 15.3(ρ/100) -1.5 kJ for untamped hotspots. The size of the compressed fuel mass and the focusability of the particles generated by the short pulse laser determines which scaling law to use for an experiment designed to achieve hot spot break even

  1. Characterization of laser-induced ignition of biogas-air mixtures

    International Nuclear Information System (INIS)

    Forsich, Christian; Lackner, Maximilian; Winter, Franz; Kopecek, Herbert; Wintner, Ernst

    2004-01-01

    Fuel-rich to fuel-lean biogas-air mixtures were ignited by a Nd:YAG laser at initial pressures of up to 3 MPa and compared to the ignition of methane-air mixtures. The investigations were performed in a constant volume vessel heatable up to 473 K. An InGaAsSb/AlGaAsSb quantum well ridge diode laser operating at 2.55 μm was used to track the generation of water in the vicinity of the laser spark in a semi-quantitative manner. Additionally, the flame emissions during the ignition process were recorded and a gas inhomogeneity index was deduced. Laser-induced ignition and its accompanying effects could be characterized on a time scale spanning four orders of magnitude. The presence of CO 2 in the biogas reduces the burning velocity. The flame emissions result in a much higher intensity for methane than it was the case during biogas ignition. This knowledge concludes that engines fuelled with biogas ultimately affect the performance of the process in a different way than with methane. Methane-air mixtures can be utilized in internal combustion engines with a higher air-fuel ratio than biogas. Comparing failed laser-induced ignition of methane-air and biogas-air mixtures similar results were obtained. The three parameters water absorbance, flame emission and the gas inhomogeneity index constitute a suitable tool for judging the quality of laser-induced ignition of hydrocarbon-air mixtures at elevated pressures and temperatures as encountered in internal combustion engines

  2. Carbon footprint of automotive ignition coil

    Science.gov (United States)

    Chang, Huey-Ling; Chen, Chih-Ming; Sun, Chin-Huang; Lin, Hung-Di

    2015-07-01

    In recent years, environmental issues, such as climate change and global warming due to the excessive development of industry, have attracted increasing attention of citizens worldwide. It is known that CO2 accounts for the largest proportion of greenhouse gases. Therefore, how to reduce CO2 emissions during the life cycle of a product to lessen its impact on environment is an important topic in the industrial society. Furthermore, it is also of great significance to cut down the required energy so as to lower its production costs during the manufacturing process nowadays. This study presents the carbon footprint of an automotive ignition coil and its partial materials are defined to explore their carbon emissions and environmental impact. The model IPCC GWP100a calculates potential global greenhouse effect by converting them into CO2 equivalents. In this way, the overall carbon footprint of an ignition coil can be explored. By using IPCC GWP100a, the results display that the shell has the most carbon emissions. The results can help the industry reduce the carbon emissions of an ignition coil product.

  3. Pseudo-spark switch (PSS) characteristics under different operation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamad, B. H., E-mail: dr.bassmahussain@gmail.com; Ahmad, A. K., E-mail: ahmad.kamal@sc.nahrainuniv.edu.iq [College of Science, Al Nahrain University, Jadria, Baghdad (Iraq); Lateef, K. H., E-mail: kamalhlatif@yahoo.com [Ministry of Science and Technology, Jadria, Baghdad (Iraq)

    2016-08-15

    The present paper concentrates on the characteristics of the pseudospark switch (PSS) designed in a previous work. The special characteristics of PSS make it a replacement for other high voltage switches such as thyratrons and ordinary high-pressure spark gaps. PSS is characterized by short rise time and small jitter time. The pseudo park chamber consists of two hollow cylindrical electrodes made of a stainless steel material (type 306L) separated by an insulator. The insulator used in our design is a glazed ceramic 70 mm in diameter and 3.5 mm in thickness. A PSS with an anode voltage of 29.2 kV, and a current of 3.6 kA and 11 ns rise time was achieved and used successfully at a repetition rate of about 2.2 kHz. A simple trigger circuit designed, built, and used effectively reaching more than 1.56 kV trigger pulse which is sufficient to ignite the argon gas inside the cathode to cause a breakdown. A non-inductive dummy load is designed to be a new technique to find the accurate value of the PSS inductance. A jitter time of ±10 ns pulses is observed to occur in a reliable manner for more than 6 h of continuous operation. In this research, the important parameters of this switch like rise time, peak current, and anode voltage were studied at various values of charging capacitance. The lifetime of this system is depending on the kind of the electrode material and on the type of insulation material in the main gap of the pseudospark switch.

  4. THE MARINE HEAVY FUEL IGNITION AND COMBUSTION BY PLASMA

    Directory of Open Access Journals (Sweden)

    MOROIANU CORNELIU

    2015-05-01

    Full Text Available The continuous damage of the used fuel quality, of its dispersion due to the increasing viscosity, make necessary the volume expansion and the rise of the e electric spark power used at ignition. A similar situation appears to the transition of the generator operation from the marine Diesel heavy fuel to the residues of water-fuel mixture. So, it feels like using an ignition system with high specific energy and power able to perform the starting and burning of the fuels mentioned above. Such a system is that which uses a low temperature plasma jet. Its use involves obtaining a high temperature area round about the jet, with a high discharge power, extending the possibility of obtaining a constant burning of different concentration (density mixtures. Besides the action of the temperature of the air-fuel mixture, the plasma jet raises the rate of oxidation reaction as a result of appearance of lot number of active centers such as loaded molecules, atoms, ions, free radicals.

  5. Characteristics of a miniature vacuum spark

    Science.gov (United States)

    Wong, C. S.; Ong, C. X.; Chin, O. H.; Lee, S.; Choi, P.

    1989-12-01

    The characteristics of a miniature vacuum spark device are investigated. It is powered by a 2-stage 50 kV Marx and operated without an external triggering source. Discharge initiation is effected by an electron beam produced by the Pseudospark effect behind the hollow cathode. For discharges performed in air at a pressure of below 10-2 mbar, intense X-ray is detected. Although this X-ray has been found to consist of predominantly the Fe-Kα line produced by the electron beam bombardment of the stainless steel anode, its high intensity, singly-pulsed short-duration temporal structure and nearly monochromatic spectrum make the present vacuum spark an ideal pulsed X-ray source for many applications. The device is also compact, low cost and easy to operate. As an example of its applications, the contact radiography of a living lizard has been obtained using this X-ray source.

  6. Progress Toward Ignition on the National Ignition Facility

    International Nuclear Information System (INIS)

    Kauffman, R.L.

    2011-01-01

    The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is ∼0.5 cm diameter by ∼1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a ∼2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer

  7. Trace amount analysis using spark mass spectrometry

    International Nuclear Information System (INIS)

    Stefani, Rene

    1975-01-01

    Characteristics of spark mass spectrometers (ion source, properties of the ion beam, ion optics, and performance) and their use in qualitative and quantitative analysis are described. This technique is very interesting for the semi-quantitative analysis of trace amounts, down to 10 -8 atoms. Examples of applications such as the analysis of high purity materials and non-conducting mineral samples, and determination of carbon and gas trace amounts are presented. (50 references) [fr

  8. Review: laser ignition for aerospace propulsion

    Directory of Open Access Journals (Sweden)

    Steven A. O’Briant

    2016-03-01

    This paper aims to provide the reader an overview of advanced ignition methods, with an emphasis on laser ignition and its applications to aerospace propulsion. A comprehensive review of advanced ignition systems in aerospace applications is performed. This includes studies on gas turbine applications, ramjet and scramjet systems, and space and rocket applications. A brief overview of ignition and laser ignition phenomena is also provided in earlier sections of the report. Throughout the reading, research papers, which were presented at the 2nd Laser Ignition Conference in April 2014, are mentioned to indicate the vast array of projects that are currently being pursued.

  9. Progress Towards Ignition on the National Ignition Facility

    Science.gov (United States)

    Edwards, John

    2012-10-01

    Since completion of the National Ignition Facility (NIF) construction project in March 2009, a wide variety of diagnostics, facility infrastructure, and experimental platforms have been commissioned in pursuit of generating the conditions necessary to reach thermonuclear ignition in the laboratory via the inertial confinement approach. NIF's capabilities and infrastructure include over 50 X-ray, optical, and nuclear diagnostics systems and the ability to shoot cryogenic DT layered capsules. There are two main approaches to ICF: direct drive in which laser light impinges directly on a capsule containing a solid layer of DT fuel, and indirect drive in which the laser light is first converted to thermal X-rays. To date NIF has been conducting experiments using the indirect drive approach, injecting up to 1.8MJ of ultraviolet light (0.35 micron) into 1 cm scale cylindrical gold or gold-coated uranium, gas-filled hohlraums, to implode 1mm radius plastic capsules containing solid DT fuel layers. In order to achieve ignition conditions the implosion must be precisely controlled. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress toward this. Utilizing precision pulse-shaping experiments in early 2012 the NIC achieve fuel rhoR of approximately 1.2 gm/cm^2 with densities of around 600-800 g/cm^3 along with neutron yields within about a factor of 5 necessary to enter a regime in which alpha particle heating will become important. To achieve these results, experimental platforms were developed to carefully control key attributes of the implosion. This talk will review NIF's capabilities and the progress toward ignition, as well as the physics of ignition targets on NIF and on other facilities. Acknowledgement: this work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Auto-Ignition and Spray Characteristics of n-Heptane and iso-Octane Fuels in Ignition Quality Tester

    KAUST Repository

    Jaasim, Mohammed

    2018-04-04

    Numerical simulations were conducted to systematically assess the effects of different spray models on the ignition delay predictions and compared with experimental measurements obtained at the KAUST ignition quality tester (IQT) facility. The influence of physical properties and chemical kinetics over the ignition delay time is also investigated. The IQT experiments provided the pressure traces as the main observables, which are not sufficient to obtain a detailed understanding of physical (breakup, evaporation) and chemical (reactivity) processes associated with auto-ignition. A three-dimensional computational fluid dynamics (CFD) code, CONVERGE™, was used to capture the detailed fluid/spray dynamics and chemical characteristics within the IQT configuration. The Reynolds-averaged Navier-Stokes (RANS) turbulence with multi-zone chemistry sub-models was adopted with a reduced chemical kinetic mechanism for n-heptane and iso-octane. The emphasis was on the assessment of two common spray breakup models, namely the Kelvin-Helmholtz/Rayleigh-Taylor (KH-RT) and linearized instability sheet atomization (LISA) models, in terms of their influence on auto-ignition predictions. Two spray models resulted in different local mixing, and their influence in the prediction of auto-ignition was investigated. The relative importance of physical ignition delay, characterized by spray evaporation and mixing processes, in the overall ignition behavior for the two different fuels were examined. The results provided an improved understanding of the essential contribution of physical and chemical processes that are critical in describing the IQT auto-ignition event at different pressure and temperature conditions, and allowed a systematic way to distinguish between the physical and chemical ignition delay times.

  11. Plasma-assisted ignition and deflagration-to-detonation transition.

    Science.gov (United States)

    Starikovskiy, Andrey; Aleksandrov, Nickolay; Rakitin, Aleksandr

    2012-02-13

    Non-equilibrium plasma demonstrates great potential to control ultra-lean, ultra-fast, low-temperature flames and to become an extremely promising technology for a wide range of applications, including aviation gas turbine engines, piston engines, RAMjets, SCRAMjets and detonation initiation for pulsed detonation engines. The analysis of discharge processes shows that the discharge energy can be deposited into the desired internal degrees of freedom of molecules when varying the reduced electric field, E/n, at which the discharge is maintained. The amount of deposited energy is controlled by other discharge and gas parameters, including electric pulse duration, discharge current, gas number density, gas temperature, etc. As a rule, the dominant mechanism of the effect of non-equilibrium plasma on ignition and combustion is associated with the generation of active particles in the discharge plasma. For plasma-assisted ignition and combustion in mixtures containing air, the most promising active species are O atoms and, to a smaller extent, some other neutral atoms and radicals. These active particles are efficiently produced in high-voltage, nanosecond, pulse discharges owing to electron-impact dissociation of molecules and electron-impact excitation of N(2) electronic states, followed by collisional quenching of these states to dissociate the molecules. Mechanisms of deflagration-to-detonation transition (DDT) initiation by non-equilibrium plasma were analysed. For longitudinal discharges with a high power density in a plasma channel, two fast DDT mechanisms have been observed. When initiated by a spark or a transient discharge, the mixture ignited simultaneously over the volume of the discharge channel, producing a shock wave with a Mach number greater than 2 and a flame. A gradient mechanism of DDT similar to that proposed by Zeldovich has been observed experimentally under streamer initiation.

  12. Experimental and modeling study of hydrogen/syngas production and particulate emissions from a natural gas-fueled partial oxidation engine

    International Nuclear Information System (INIS)

    McMillian, Michael H.; Lawson, Seth A.

    2006-01-01

    In this study, a combustion model was first applied to conditions representing varying compression ratios and equivalence ratios to investigate engine exhaust composition from partial oxidation (POX) of natural gas in reciprocating engines. The model was experimentally validated over a range of equivalence ratios from 1.3 to 1.6 with a spark-ignited single cylinder engine fueled by natural gas. The modeling results matched well with engine gaseous emission data over the experimental range. The model was also extended to higher equivalence ratios to predict H 2 and CO production at engine conditions and stoichiometries representative of homogeneous charge compression ignition (HCCI) engine operation. Secondly, over the same experimental range of equivalence ratios, particulate samples were taken to determine both total particulate mass production (g/hph) via gravimetric measurement as well as particle size distribution and loading via a scanning mobility particle sizer (SMPS). While experiments indicate hydrogen yields up to 11% using spark ignition (SI), modeling results indicate that greater than 20% H 2 yield may be possible in HCCI operation. Over the experimental range, rich-burn particulate matter (PM) production is no greater than that from typical lean-burn operation. Finally, an energy balance was performed over the range of engine experimental operation. (author)

  13. ClimateSpark: An In-memory Distributed Computing Framework for Big Climate Data Analytics

    Science.gov (United States)

    Hu, F.; Yang, C. P.; Duffy, D.; Schnase, J. L.; Li, Z.

    2016-12-01

    Massive array-based climate data is being generated from global surveillance systems and model simulations. They are widely used to analyze the environment problems, such as climate changes, natural hazards, and public health. However, knowing the underlying information from these big climate datasets is challenging due to both data- and computing- intensive issues in data processing and analyzing. To tackle the challenges, this paper proposes ClimateSpark, an in-memory distributed computing framework to support big climate data processing. In ClimateSpark, the spatiotemporal index is developed to enable Apache Spark to treat the array-based climate data (e.g. netCDF4, HDF4) as native formats, which are stored in Hadoop Distributed File System (HDFS) without any preprocessing. Based on the index, the spatiotemporal query services are provided to retrieve dataset according to a defined geospatial and temporal bounding box. The data subsets will be read out, and a data partition strategy will be applied to equally split the queried data to each computing node, and store them in memory as climateRDDs for processing. By leveraging Spark SQL and User Defined Function (UDFs), the climate data analysis operations can be conducted by the intuitive SQL language. ClimateSpark is evaluated by two use cases using the NASA Modern-Era Retrospective Analysis for Research and Applications (MERRA) climate reanalysis dataset. One use case is to conduct the spatiotemporal query and visualize the subset results in animation; the other one is to compare different climate model outputs using Taylor-diagram service. Experimental results show that ClimateSpark can significantly accelerate data query and processing, and enable the complex analysis services served in the SQL-style fashion.

  14. Progress in catalytic ignition fabrication, modeling and infrastructure : (part 2) development of a multi-zone engine model simulated using MATLAB software.

    Science.gov (United States)

    2014-02-01

    A mathematical model was developed for the purpose of providing students with data : acquisition and engine modeling experience at the University of Idaho. In developing the : model, multiple heat transfer and emissions models were researched and com...

  15. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    Science.gov (United States)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  16. Sensitivity analysis on the zirconium ignition in a postulated SFP loss of coolant accident

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sanggil; Lee, Jaeyoung [Handong Global Univ., Pohang (Korea, Republic of); Kim, Sun-ki; Chun, Tae-hyun; Bang, Je-geon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    From both SFP complete LOCA experiments, it was observed that zirconium alloy cladding temperature was abruptly increased at a certain point and the cladding was almost fully oxidized. To capture this phenomenon, the concept of air oxidation breakaway model was adopted in MELCOR code. This paper examines this air oxidation breakaway model by comparing the SFP project test data and MELCOR code calculation results by using this model. The air oxidation model parameters are slightly altered to see their sensitivities on the occurrence of the zirconium ignition. Through such sensitivity analysis, limitations of the air oxidation breakaway model are revealed in comparison to the actual zirconium ignition phenomenon during air ingress scenarios. In addition, ways to overcome the identified limitations of the air oxidation model are recommended to estimate better the zirconium ignition phenomenon in SFP sequences. In this paper, the zirconium ignition phenomenon was reviewed and the model to capture this phenomenon was investigated. The model is the air oxidation breakaway model in MELCOR code, and its sensitivity of the model parameters on the time to ignition was studied. From the sensitivity analysis, the slight change of model parameters induce the large variation of the time to ignition. The model itself includes its weakness to fully represent both the air oxidation breakaway phenomenon and the followed zirconium ignition behavior. Furthermore, this model considers no effect of N2 on the cladding degradation and its promoted exothermic heat release.

  17. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-05-01

    This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for

  18. Spark and HPC for High Energy Physics Data Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Sehrish, Saba; Kowalkowski, Jim; Paterno, Marc

    2017-05-01

    A full High Energy Physics (HEP) data analysis is divided into multiple data reduction phases. Processing within these phases is extremely time consuming, therefore intermediate results are stored in files held in mass storage systems and referenced as part of large datasets. This processing model limits what can be done with interactive data analytics. Growth in size and complexity of experimental datasets, along with emerging big data tools are beginning to cause changes to the traditional ways of doing data analyses. Use of big data tools for HEP analysis looks promising, mainly because extremely large HEP datasets can be represented and held in memory across a system, and accessed interactively by encoding an analysis using highlevel programming abstractions. The mainstream tools, however, are not designed for scientific computing or for exploiting the available HPC platform features. We use an example from the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in Geneva, Switzerland. The LHC is the highest energy particle collider in the world. Our use case focuses on searching for new types of elementary particles explaining Dark Matter in the universe. We use HDF5 as our input data format, and Spark to implement the use case. We show the benefits and limitations of using Spark with HDF5 on Edison at NERSC.

  19. Low-adiabat rugby hohlraum experiments on the National Ignition Facility: Comparison with high-flux modeling and the potential for gas-wall interpenetration

    International Nuclear Information System (INIS)

    Amendt, Peter; Ross, J. Steven; Milovich, Jose L.; Schneider, Marilyn; Storm, Erik; Callahan, Debra A.; Hinkel, Denise; Lasinski, Barbara; Meeker, Don; Michel, Pierre; Moody, John; Strozzi, David

    2014-01-01

    Rugby-shaped gold hohlraums driven by a nominal low-adiab