Energy Technology Data Exchange (ETDEWEB)
Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik, E-mail: soumik.banerjee@wsu.edu
2017-02-01
Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.
International Nuclear Information System (INIS)
Mortuza, S.M.; Taufique, M.F.N.; Banerjee, Soumik
2017-01-01
Highlights: • The model determined the surface coverage of solution-processed film on perovskite. • Calculated surface density map provides insight into morphology of the monolayer. • Carbonyl oxygen atom of PCBM strongly attaches to the (110) surface of perovskite. • Uniform distribution of clusters on perovskite surface at lower PCBM concentration. • Deposition rate of PCBM on the surface is very high at initial stage of film growth. - Abstract: The power conversion efficiency (PCE) of planar perovskite solar cells (PSCs) has reached up to ∼20%. However, structural and chemicals defects that lead to hysteresis in the perovskite based thin film pose challenges. Recent work has shown that thin films of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) deposited on the photo absorption layer, using solution processing techniques, minimize surface pin holes and defects thereby increasing the PCE. We developed and employed a multiscale model based on molecular dynamics (MD) and kinetic Monte Carlo (kMC) to establish a relationship between deposition rate and surface coverage on perovskite surface. The MD simulations of PCBMs dispersed in chlorobenzene, sandwiched between (110) perovskite substrates, indicate that PCBMs are deposited through anchoring of the oxygen atom of carbonyl group to the exposed lead (Pb) atom of (110) perovskite surface. Based on rates of distinct deposition events calculated from MD, kMC simulations were run to determine surface coverage at much larger time and length scales than accessible by MD alone. Based on the model, a generic relationship is established between deposition rate of PCBMs and surface coverage on perovskite crystal. The study also provides detailed insights into the morphology of the deposited film.
Iannicelli-Zubiani, Elena Maria; Cristiani, Cinzia; Dotelli, Giovanni; Gallo Stampino, Paola
2017-02-01
The demand of valuable metals, as precious metals and rare earths, is constantly increasing in the global market, as many and different technological applications exploit these materials because of their unique properties. Since natural resources are located just in focused areas, an interesting possibility could be the recovery of metals from Waste Electrical and Electronic Equipment (WEEE). The aim of this work is to evaluate the recovery potentialities of clays and organo-clay based systems towards the metals contained in the solutions of electronic scraps dissolved in strong acid, by preliminary tests on bi-ionic model solutions. Lanthanum has been chosen as representative of the rare earths while copper has been considered since it is by far the most used metal in electric and electronic equipment. The considered sorbents are a montmorillonitic clay and two polyamine based organo-clays. Uptake and release processes have been carried out in order to assess the performances of these solids and to evaluate the uptake and release mechanisms. The results showed that the cationic exchange is the prevailing mechanism in the case of pristine clay, while both coordinating effect due to amino groups and cationic exchange occur in the case of modified clays, respectively accounting for copper and lanthanum uptake. Furthermore the pH was found having a great influence in both the adsorption and desorption phenomena. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pati, Y Anusooya; Ramasesha, S
2014-06-12
Tetracene is an important conjugated molecule for device applications. We have used the diagrammatic valence bond method to obtain the desired states, in a Hilbert space of about 450 million singlets and 902 million triplets. We have also studied the donor/acceptor (D/A)-substituted tetracenes with D and A groups placed symmetrically about the long axis of the molecule. In these cases, by exploiting a new symmetry, which is a combination of C2 symmetry and electron-hole symmetry, we are able to obtain their low-lying states. In the case of substituted tetracene, we find that optically allowed one-photon excitation gaps reduce with increasing D/A strength, while the lowest singlet-triplet gap is only weakly affected. In all the systems we have studied, the excited singlet state, S1, is at more than twice the energy of the lowest triplet state and the second triplet is very close to the S1 state. Thus, donor-acceptor-substituted tetracene could be a good candidate in photovoltaic device application as it satisfies energy criteria for singlet fission. We have also obtained the model exact second harmonic generation (SHG) coefficients using the correction vector method, and we find that the SHG responses increase with the increase in D/A strength.
Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G
2009-05-07
We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but rather as a dielectric medium with surface tension at the solute-solvent boundary. SMD is a universal solvation model, where "universal" denotes its applicability to any charged or uncharged solute in any solvent or liquid medium for which a few key descriptors are known (in particular, dielectric constant, refractive index, bulk surface tension, and acidity and basicity parameters). The model separates the observable solvation free energy into two main components. The first component is the bulk electrostatic contribution arising from a self-consistent reaction field treatment that involves the solution of the nonhomogeneous Poisson equation for electrostatics in terms of the integral-equation-formalism polarizable continuum model (IEF-PCM). The cavities for the bulk electrostatic calculation are defined by superpositions of nuclear-centered spheres. The second component is called the cavity-dispersion-solvent-structure term and is the contribution arising from short-range interactions between the solute and solvent molecules in the first solvation shell. This contribution is a sum of terms that are proportional (with geometry-dependent proportionality constants called atomic surface tensions) to the solvent-accessible surface areas of the individual atoms of the solute. The SMD model has been parametrized with a training set of 2821 solvation data including 112 aqueous ionic solvation free energies, 220 solvation free energies for 166 ions in acetonitrile, methanol, and dimethyl sulfoxide, 2346 solvation free energies for 318 neutral solutes in 91 solvents (90 nonaqueous
International Nuclear Information System (INIS)
Gao Yitian; Tian Bo
2003-01-01
A variable-coefficient unstable nonlinear Schroedinger model is hereby investigated, which arises in such applications as the electron-beam plasma waves and Rayleigh-Taylor instability in nonuniform plasmas. With computerized symbolic computation, families of exact analytic dark- and bright-soliton-like solutions are found, of which some previously published solutions turn out to be the special cases. Similarity solutions also come out, which are expressible in terms of the elliptic functions and the second Painleve transcendent. Some observable effects caused by the variable coefficient are predicted, which may be detected in the future with the relevant space or laboratory plasma experiments with nonuniform background existing
Nanoparticle Solutions for Printed Electronics
2013-09-19
techniques. Besides photovoltaic modules and low resolution transistor arrays, specific targeted applications originally include optical, thermal...PET film. Besides sensors and photovoltaic cells , other components which were printed included diodes (as the base system for solar cells and as...to the development of the first new type of transistor functionality in 65 years. Project Overview Printed electronics is an emerging
Taylor, R. D.; Delos, J. B.
1982-01-01
A general theory is developed of electron detachment in slow collisions of negative ions with atoms. This theory, which follows earlier ideas of Fano and of Demkov, is based on a semiclassical close-coupling framework. The assumptions involved are stated precisely. In general, they consist of: (i) semiclassical description of the nuclear motion; (ii) diabatic representation of electronic states, with a discrete state crossing a continuum; (iii) neglect of continuum-continuum couplings, (iv) linear or quadratic time-dependence of the energy gap between discrete and continuum states. With such assumptions, the Schrodinger equation is reduced to a nondenumerably infinite set of coupled equations. The solution to these equations is the main topic of this paper. It is shown that the solution depends on just two functions, a coupling function G(E) and an energy-gap function Δ(t). A simple model for the coupling function is given. With reasonable assumptions about the energy gap Δ(t), the coupled equations can be solved. The final result of this paper is a formula for the S-matrix, which contains all probabilities and phases associated with the collision.
Dromion solutions for an electron acoustic wave and its application ...
Indian Academy of Sciences (India)
journal of. Nov. & Dec. 2000 physics pp. 693–698. Dromion solutions for an electron acoustic wave and its application to space observations. S S GHOSH£, A ... out a systematic reductive perturbation analysis in two dimensions of the model two fluid .... For a more quantitative understanding of the shape and finer features.
Stationary Electron Atomic Model
Pressler, David E.
1998-04-01
I will present a novel theory concerning the position and nature of the electron inside the atom. This new concept is consistant with present experimental evidence and adheres strictly to the valence-shell electron-pair repulsion (VSEPR) model presently used in chemistry for predicting the shapes of molecules and ions. In addition, I will discuss the atomic model concept as being a true harmonic oscillator, periodic motion at resonant frequency which produces radiation at discrete frequencies or line spectra is possible because the electron is under the action of two restoring forces, electrostatic attraction and superconducting respulsion of the electron's magnetic field by the nucleus.
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential
Maeda, Kiminori; Lodge, Matthew T J; Harmer, Jeffrey; Freed, Jack H; Edwards, Peter P
2012-06-06
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T(1)) and spin-spin (T(2)) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multiexponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1-10) × 10(-12) s over a temperature range 230-290 K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a time scale of ∼10(-13) s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great
Equilibrium and nonequilibrium solvation and solute electronic structure
International Nuclear Information System (INIS)
Kim, H.J.; Hynes, J.T.
1990-01-01
When a molecular solute is immersed in a polar and polarizable solvent, the electronic wave function of the solute system is altered compared to its vacuum value; the solute electronic structure is thus solvent-dependent. Further, the wave function will be altered depending upon whether the polarization of the solvent is or is not in equilibrium with the solute charge distribution. More precisely, while the solvent electronic polarization should be in equilibrium with the solute electronic wave function, the much more sluggish solvent orientational polarization need not be. We call this last situation non-equilibrium solvation. We outline a nonlinear Schroedinger equation approach to these issues
Energy Technology Data Exchange (ETDEWEB)
Setoguchi, T.; Manchu, Y.; Katsumata, M. [Toshiba Corp., Tokyo (Japan)
2000-04-01
Toshiba provides a range of information technology (IT) solutions called SmartEC Solution, which includes business-to-business electronic commerce systems and services based on international standards and industrial know-how, especially our electronic data interchange (EDI) know-how as a manufacturer. These IT solutions are supplied as services covering strategy planning, system integration, and application service provider based on five types of business-to-business electronic commerce. (author)
Organic electronic devices with multiple solution-processed layers
Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.
2015-08-04
A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.
Boltzmann-Electron Model in Aleph.
Energy Technology Data Exchange (ETDEWEB)
Hughes, Thomas Patrick; Hooper, Russell
2014-11-01
We apply the Boltzmann-electron model in the electrostatic, particle-in-cell, finite- element code Aleph to a plasma sheath. By assuming a Boltzmann energy distribution for the electrons, the model eliminates the need to resolve the electron plasma fre- quency, and avoids the numerical "grid instability" that can cause unphysical heating of electrons. This allows much larger timesteps to be used than with kinetic electrons. Ions are treated with the standard PIC algorithm. The Boltzmann-electron model re- quires solution of a nonlinear Poisson equation, for which we use an iterative Newton solver (NOX) from the Trilinos Project. Results for the spatial variation of density and voltage in the plasma sheath agree well with an analytic model
SOFTWARE SOLUTIONS FOR ARDL MODELS
Directory of Open Access Journals (Sweden)
Nicolae-Marius JULA
2015-07-01
Full Text Available VAR type models can be used only for stationary time series. Causality analyses through econometric models need that series to have the same integrated order. Usually, when constraining the series to comply these restrictions (e.g. by differentiating, economic interpretation of the outcomes may become difficult. Recent solution for mitigating these problems is the use of ARDL (autoregressive distributed lag models. We present implementation in E-Views of these models and we test the impact of exchange rate on consumer price index.
Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H
2014-11-20
Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.
On the Solution of the Continuity Equation for Precipitating Electrons in Solar Flares
Emslie, A. Gordon; Holman, Gordon D.; Litvinenko, Yuri E.
2014-01-01
Electrons accelerated in solar flares are injected into the surrounding plasma, where they are subjected to the influence of collisional (Coulomb) energy losses. Their evolution is modeled by a partial differential equation describing continuity of electron number. In a recent paper, Dobranskis & Zharkova claim to have found an "updated exact analytical solution" to this continuity equation. Their solution contains an additional term that drives an exponential decrease in electron density with depth, leading them to assert that the well-known solution derived by Brown, Syrovatskii & Shmeleva, and many others is invalid. We show that the solution of Dobranskis & Zharkova results from a fundamental error in the application of the method of characteristics and is hence incorrect. Further, their comparison of the "new" analytical solution with numerical solutions of the Fokker-Planck equation fails to lend support to their result.We conclude that Dobranskis & Zharkova's solution of the universally accepted and well-established continuity equation is incorrect, and that their criticism of the correct solution is unfounded. We also demonstrate the formal equivalence of the approaches of Syrovatskii & Shmeleva and Brown, with particular reference to the evolution of the electron flux and number density (both differential in energy) in a collisional thick target. We strongly urge use of these long-established, correct solutions in future works.
Treating limbs with electrons: creative solutions to technical problems
International Nuclear Information System (INIS)
Hornby, C.
1993-01-01
The treatment of superficial lesions on limbs involving large areas of skin has long presented a challenge to radiation therapists. In the 1990's the use of electrons provides a good selection of field sizes and beam penetrations. However, the rapidly varying contours of limbs as well as their mobility, continues to necessitate solutions to the problems of accurate field definition, homogeneous dose in particularly at beam junctions and, simple but effective patient stabilization. This paper offers several examples of creative solutions to these problems. 8 refs., 17 figs
Study of solute segregation at interfaces using Auger electron spectroscopy
International Nuclear Information System (INIS)
White, C.L.
1984-01-01
Interfacial segregation, often confined to within a few atomic distances of the interface, can strongly influence the processing and properties of metals and ceramics. The thinness of such solute-enriched regions can cause them to be particularly suitable for study using surface sensitive microanalytical techniques such as Auger electron spectroscopy (AES). The application of AES to studies of interfacial segregation in metals and ceramics is briefly reviewed, and several examples are presented. 43 references, 14 figures
Cosolvent approach for solution-processable electronic thin films.
Lin, Zhaoyang; He, Qiyuan; Yin, Anxiang; Xu, Yuxi; Wang, Chen; Ding, Mengning; Cheng, Hung-Chieh; Papandrea, Benjamin; Huang, Yu; Duan, Xiangfeng
2015-04-28
Low-temperature solution-processable electronic materials are of considerable interest for large-area, low-cost electronics, thermoelectrics, and photovoltaics. Using a soluble precursor and suitable solvent to formulate a semiconductor ink is essential for large-area fabrication of semiconductor thin films. To date, it has been shown that hydrazine can be used as a versatile solvent to process a wide range of inorganic semiconductors. However, hydrazine is highly toxic and not suitable for large-scale manufacturing. Here we report a binary mixed solvent of amine and thiol for effective dispersion and dissolution of a large number of inorganic semiconductors including Cu2S, Cu2Se, In2S3, In2Se3, CdS, SnSe, and others. The mixed solvent is significantly less toxic and safer than hydrazine, while at the same time offering the comparable capability of formulating diverse semiconductor ink with a concentration as high as >200 mg/mL. We further show that such ink material can be readily processed into high-performance semiconducting thin films (Cu2S and Cu2Se) with the highest room-temperature conductivity among solution-based materials. Furthermore, we show that complex semiconductor alloys with tunable band gaps, such as CuIn(S(x)Se(1-x))2 (0 ≤ x ≤ 1), can also be readily prepared by simply mixing Cu2S, Cu2Se, In2S3, and In2Se3 ink solutions in a proper ratio. Our study outlines a general strategy for the formulation of inorganic semiconductor ink for low-temperature processing of large-area electronic thin films on diverse substrates and can greatly impact diverse areas including flexible electronics, thermoelectrics, and photovoltaics.
Electronic prescribing in ambulatory practice: promises, pitfalls, and potential solutions.
Papshev, D; Peterson, A M
2001-07-01
To examine advantages of and obstacles to electronic prescribing in the ambulatory care environment. MEDLINE and International Pharmaceutical Abstract searches were conducted for the period from January 1980 to September 2000. Key words were electronic prescribing, computerized physician order entry, prior authorization, drug utilization review, and consumer satisfaction. In September 2000, a public search engine (www.google.com) was used to find additional technical information. In addition, pertinent articles were cross-referenced to identify other resources. Articles, symposia proceedings, and organizational position statements published in the United States on electronic prescribing and automation in healthcare are cited. Electronic prescribing can eliminate the time gap between point of care and point of service, reduce medication errors, improve quality of care, and increase patient satisfaction. Considerable funding requirements, segmentation of healthcare markets, lack of technology standardization, providers' resistance to change, and regulatory indecisiveness create boundaries to the widespread use of automated prescribing. The potential solutions include establishing a standardizing warehouse or a router and gaining stakeholder support in implementation of the technology. Electronic prescribing can provide immense benefits to healthcare providers, patients, and managed care. Resolution of several obstacles that limit feasibility of this technology will determine its future.
Theoretical modelling of actinide spectra in solution
International Nuclear Information System (INIS)
Danilo, Cecile
2009-01-01
The framework of this PhD is the interpretation of Nuclear Magnetic Relaxation Dispersion experiments performed on solvated U 4+ , NpO 2 + and PuO 2 2+ , which all have a f 2 configuration. Unexpectedly the two actinyl ions have a much higher relaxivity than U 4+ ,. One possible explanation is that the electronic relaxation rate is faster for Uranium(IV) than for the actinyl ions. We address this problem by exploring the electronic spectrum of the three compounds in gas phase and in solution with a two-step SOCI (Spin-Orbit Configuration-Interaction) method. The influence of electron correlation (treated in the first step) and spin-orbit relaxation effects (considered in the second step) has been discussed thoroughly. Solvent effects have been investigated as well. Another issue that has been questioned is the accuracy of Density Functional Theory for the study of actinide species. This matter has been discussed by comparing its performance to wave-function based correlated methods. The chemical problem chosen was the water exchange in [UO 2 2+ (H 2 O) 5 ]. We looked at the associative and at the dissociative mechanisms using a model with one additional water in the second hydration sphere. The last part of the thesis dealt with the spectroscopy of coordinated Uranyl(V). Absorption spectrum of Uranyl(V) with various ligands has been recorded. The first sharp absorption bands in the Near-Infrared region were assigned to the Uranium centered 5f-5f transitions, but uncertainties remained for the assignment of transitions observed in the Visible region. We computed the spectra of naked UO 2 + and [UO 2 (CO 3 ) 3 ] 5- to elucidate the spectral changes induced by the carbonate ligands. (author) [fr
Efficient Solution of the Electronic Eigenvalue Problem Using Wavepacket Propagation.
Neville, Simon P; Schuurman, Michael S
2018-02-15
We report how imaginary time wavepacket propagation may be used to efficiently calculate the lowest-lying eigenstates of the electronic Hamiltonian. This approach, known as the relaxation method in the quantum dynamics community, represents a fundamentally different approach to the solution of the electronic eigenvalue problem in comparison to traditional iterative subspace diagonalization schemes such as the Davidson and Lanczos methods. In order to render the relaxation method computationally competitive with existing iterative subspace methods, an extended short iterative Lanczos wavepacket propagation scheme is proposed and implemented. In the examples presented here, we show that by using an efficient wavepacket propagation algorithm the relaxation method is, at worst, as computationally expensive as the commonly used block Davidson-Liu algorithm, and in certain cases, significantly less so.
Modeling Incoherent Electron Cloud Effects
International Nuclear Information System (INIS)
Vay, Jean-Luc; Benedetto, E.; Fischer, W.; Franchetti, G.; Ohmi, K.; Schulte, D.; Sonnad, K.; Tomas, R.; Vay, J.-L.; Zimmermann, F.; Rumolo, G.; Pivi, M.; Raubenheimer, T.
2007-01-01
Incoherent electron effects could seriously limit the beam lifetime in proton or ion storage rings, such as LHC, SPS, or RHIC, or blow up the vertical emittance of positron beams, e.g., at the B factories or in linear-collider damping rings. Different approaches to modeling these effects each have their own merits and drawbacks. We describe several simulation codes which simplify the descriptions of the beam-electron interaction and of the accelerator structure in various different ways, and present results for a toy model of the SPS. In addition, we present evidence that for positron beams the interplay of incoherent electron-cloud effects and synchrotron radiation can lead to a significant increase in vertical equilibrium emittance. The magnitude of a few incoherent e+e- scattering processes is also estimated. Options for future code development are reviewed
Electronic structures of Ascaris trypsin inhibitor in solution
Zheng, Haoping
2003-11-01
The electronic structures of Ascaris trypsin inhibitor in solution are obtained by the first-principles, all-electron, ab initio calculation using the self-consistent cluster-embedding (SCCE) method. The inhibitor, made up of 62 amino acid residues with 912 atoms, has two three-dimensional solution structures: 1ata and 1atb. The calculated ground-state energy of structure 1atb is lower than that of structure 1ata by 6.12 eV. The active sites are determined and explained: only structure 1atb has a N terminal at residue ARG+31. This shows that the structure 1atb is the stable and active form of the inhibitor, which is in agreement with the experimental results. The calculation reveals that some parts of the inhibitor can be easily changed while the inhibitor’s biological activity may be kept. This kind of information may be helpful in fighting viruses such as AIDS, SARS, and flu, since these viruses have higher variability. The calculation offers an independent theoretical estimate of the precision of structure determination.
Pseudoclassical fermionic model and classical solutions
International Nuclear Information System (INIS)
Smailagic, A.
1981-08-01
We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)
Dose measurement of fast electrons with a modified Fricke solution
International Nuclear Information System (INIS)
Nemec, H.W.; Roth, J.; Luethy, H.
1975-01-01
A combination of two different modifications indicated in the literature about the ferrosulfate dosimetry is given. This permits a dose measurement which shows compared to the usual Fricke dosimetry above all following advantages: dose specification related to water; displacement of the absorption maximum in the perceptible spectral sphere; increase of the sensibility and lower influence of pollutions. The molar coefficient of extinction of the modified solution has been determined from 60 Co gamma irradiation and is epsilonsub(m) = 1.46 x 10 4 l x Mol -1 x cm -1 . The increase of extinction which has been measured with this method after the irradiation with 18 MeV electrons occurs linearly within the studied region to 1,200 rd at least, the G-value is 15.5. The indicated method renders possible a relative simple calibration of the ionization chambers used in the practice. (orig.) [de
The quantum Rabi model: solution and dynamics
International Nuclear Information System (INIS)
Xie, Qiongtao; Zhong, Honghua; Lee, Chaohong; Batchelor, Murray T
2017-01-01
This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given. (topical review)
Applied Integer Programming Modeling and Solution
Chen, Der-San; Dang, Yu
2011-01-01
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and
Aqueous Solution Vessel Thermal Model Development II
Energy Technology Data Exchange (ETDEWEB)
Buechler, Cynthia Eileen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-10-28
The work presented in this report is a continuation of the work described in the May 2015 report, “Aqueous Solution Vessel Thermal Model Development”. This computational fluid dynamics (CFD) model aims to predict the temperature and bubble volume fraction in an aqueous solution of uranium. These values affect the reactivity of the fissile solution, so it is important to be able to calculate them and determine their effects on the reaction. Part A of this report describes some of the parameter comparisons performed on the CFD model using Fluent. Part B describes the coupling of the Fluent model with a Monte-Carlo N-Particle (MCNP) neutron transport model. The fuel tank geometry is the same as it was in the May 2015 report, annular with a thickness-to-height ratio of 0.16. An accelerator-driven neutron source provides the excitation for the reaction, and internal and external water cooling channels remove the heat. The model used in this work incorporates the Eulerian multiphase model with lift, wall lubrication, turbulent dispersion and turbulence interaction. The buoyancy-driven flow is modeled using the Boussinesq approximation, and the flow turbulence is determined using the k-ω Shear-Stress-Transport (SST) model. The dispersed turbulence multiphase model is employed to capture the multiphase turbulence effects.
Integrated secure solution for electronic healthcare records sharing
Yao, Yehong; Zhang, Chenghao; Sun, Jianyong; Jin, Jin; Zhang, Jianguo
2007-03-01
The EHR is a secure, real-time, point-of-care, patient-centric information resource for healthcare providers. Many countries and regional districts have set long-term goals to build EHRs, and most of EHRs are usually built based on the integration of different information systems with different information models and platforms. A number of hospitals in Shanghai are also piloting the development of an EHR solution based on IHE XDS/XDS-I profiles with a service-oriented architecture (SOA). The first phase of the project targets the Diagnostic Imaging domain and allows seamless sharing of images and reports across the multiple hospitals. To develop EHRs for regional coordinated healthcare, some factors should be considered in designing architecture, one of which is security issue. In this paper, we present some approaches and policies to improve and strengthen the security among the different hospitals' nodes, which are compliant with the security requirements defined by IHE IT Infrastructure (ITI) Technical Framework. Our security solution includes four components: Time Sync System (TSS), Digital Signature Manage System (DSMS), Data Exchange Control Component (DECC) and Single Sign-On (SSO) System. We give a design method and implementation strategy of these security components, and then evaluate the performance and overheads of the security services or features by integrating the security components into an image-based EHR system.
Smooth solutions for the dyadic model
International Nuclear Information System (INIS)
Barbato, David; Morandin, Francesco; Romito, Marco
2011-01-01
We consider the dyadic model, which is a toy model to test issues of well-posedness and blow-up for the Navier–Stokes and Euler equations. We prove well-posedness of positive solutions of the viscous problem in the relevant scaling range which corresponds to Navier–Stokes. Likewise we prove well-posedness for the inviscid problem (in a suitable regularity class) when the parameter corresponds to the strongest transport effect of the nonlinearity
A deterministic model of electron transport for electron probe microanalysis
Bünger, J.; Richter, S.; Torrilhon, M.
2018-01-01
Within the last decades significant improvements in the spatial resolution of electron probe microanalysis (EPMA) were obtained by instrumental enhancements. In contrast, the quantification procedures essentially remained unchanged. As the classical procedures assume either homogeneity or a multi-layered structure of the material, they limit the spatial resolution of EPMA. The possibilities of improving the spatial resolution through more sophisticated quantification procedures are therefore almost untouched. We investigate a new analytical model (M 1-model) for the quantification procedure based on fast and accurate modelling of electron-X-ray-matter interactions in complex materials using a deterministic approach to solve the electron transport equations. We outline the derivation of the model from the Boltzmann equation for electron transport using the method of moments with a minimum entropy closure and present first numerical results for three different test cases (homogeneous, thin film and interface). Taking Monte Carlo as a reference, the results for the three test cases show that the M 1-model is able to reproduce the electron dynamics in EPMA applications very well. Compared to classical analytical models like XPP and PAP, the M 1-model is more accurate and far more flexible, which indicates the potential of deterministic models of electron transport to further increase the spatial resolution of EPMA.
International Nuclear Information System (INIS)
Noda, Shoji; Ohta, Yasunari; Yoshida, Hiroshi
1979-01-01
The reactions of electrons injected by field emission into solutions have been investigated. Free radicals generated by the dissociative electron attachment to chlorinated solutes in benzene solutions were detected by the spin trapping-ESR method, using pentamethylnitrosobenzene as a spin trapping agent. Nondissociative electron attachment to styrene caused by the field emission was also evidenced by detecting the α-methylbenzyl radical generated secondarily from the styrene radical anion. The electrons field-emitted into the solutions are captured almost quantitatively by the electron scavenging solutes. The field emission method has been found to be useful for generating authentically free radicals and for studying the anionic reaction induced by electrons without interference of countercations and of any reaction intermediates from solvent molecules. As an example of the chemical utilization of the field emission technique, the ESR parameters of the spin adducts of several hydrocarbon radicals have been collected by this technique. (author)
Ruthenium speciation in model nuclear fuel process solutions
International Nuclear Information System (INIS)
Koster, Anne L.; May, Iain; Sharrad, Clint A.; Wright, Des; Owens, Ivan F.; Charnock, John M.; Hennig, Christoph
2004-01-01
Ru speciation is being investigated systematically from models of high level waste solutions right through to the calcination process and the vitrified glass product. The characterisation of these species is complicated due to the fact that a wide range of ruthenium nitrosyl/nitrite/nitrate complexes can be present in nitric acid waste solutions. The general formula for these complexes is RuNO(NO 3 ) x (NO 2 ) y (OH) z (H 2 O) 5-x-y-z +3-x-y-z . A range of different techniques has been used for the characterisation of these species in solution, including electron absorption spectroscopy, vibrational spectroscopy, multi-nuclear magnetic resonance spectroscopy and X-ray absorption spectroscopy. (authors)
Coarse-Grained Modeling of Polyelectrolyte Solutions
Denton, Alan R.; May, Sylvio
2014-03-01
Ionic mixtures, such as electrolyte and polyelectrolyte solutions, have attracted much attention recently for their rich and challenging combination of electrostatic and non-electrostatic interparticle forces and their practical importance, from battery technologies to biological systems. Hydration of ions in aqueous solutions is known to entail ion-specific effects, including variable solubility of organic molecules, as manifested in the classic Hofmeister series for salting-in and salting-out of proteins. The physical mechanism by which the solvent (water) mediates effective interactions between ions, however, is still poorly understood. Starting from a microscopic model of a polyelectrolyte solution, we apply a perturbation theory to derive a coarse-grained model of ions interacting through both long-range electrostatic and short-range solvent-induced pair potentials. Taking these effective interactions as input to molecular dynamics simulations, we calculate structural and thermodynamic properties of aqueous ionic solutions. This work was supported by the National Science Foundation under Grant No. DMR-1106331.
Modeling of power electronic systems with EMTP
Tam, Kwa-Sur; Dravid, Narayan V.
1989-01-01
In view of the potential impact of power electronics on power systems, there is need for a computer modeling/analysis tool to perform simulation studies on power systems with power electronic components as well as to educate engineering students about such systems. The modeling of the major power electronic components of the NASA Space Station Freedom Electric Power System is described along with ElectroMagnetic Transients Program (EMTP) and it is demonstrated that EMTP can serve as a very useful tool for teaching, design, analysis, and research in the area of power systems with power electronic components. EMTP modeling of power electronic circuits is described and simulation results are presented.
Analytical local electron-electron interaction model potentials for atoms
International Nuclear Information System (INIS)
Neugebauer, Johannes; Reiher, Markus; Hinze, Juergen
2002-01-01
Analytical local potentials for modeling the electron-electron interaction in an atom reduce significantly the computational effort in electronic structure calculations. The development of such potentials has a long history, but some promising ideas have not yet been taken into account for further improvements. We determine a local electron-electron interaction potential akin to those suggested by Green et al. [Phys. Rev. 184, 1 (1969)], which are widely used in atom-ion scattering calculations, electron-capture processes, and electronic structure calculations. Generalized Yukawa-type model potentials are introduced. This leads, however, to shell-dependent local potentials, because the origin behavior of such potentials is different for different shells as has been explicated analytically [J. Neugebauer, M. Reiher, and J. Hinze, Phys. Rev. A 65, 032518 (2002)]. It is found that the parameters that characterize these local potentials can be interpolated and extrapolated reliably for different nuclear charges and different numbers of electrons. The analytical behavior of the corresponding localized Hartree-Fock potentials at the origin and at long distances is utilized in order to reduce the number of fit parameters. It turns out that the shell-dependent form of Green's potential, which we also derive, yields results of comparable accuracy using only one shell-dependent parameter
Modeling ion sensing in molecular electronics
Chen, Caroline J.; Smeu, Manuel; Ratner, Mark A.
2014-02-01
We examine the ability of molecules to sense ions by measuring the change in molecular conductance in the presence of such charged species. The detection of protons (H+), alkali metal cations (M+), calcium ions (Ca2+), and hydronium ions (H3O+) is considered. Density functional theory (DFT) is used within the Keldysh non-equilibrium Green's function framework (NEGF) to model electron transport properties of quinolinedithiol (QDT, C9H7NS2), bridging Al electrodes. The geometry of the transport region is relaxed with DFT. The transport properties of the device are modeled with NEGF-DFT to determine if this device can distinguish among the M+ + QDT species containing monovalent cations, where M+ = H+, Li+, Na+, or K+. Because of the asymmetry of QDT in between the two electrodes, both positive and negative biases are considered. The electron transmission function and conductance properties are simulated for electrode biases in the range from -0.5 V to 0.5 V at increments of 0.1 V. Scattering state analysis is used to determine the molecular orbitals that are the main contributors to the peaks in the transmission function near the Fermi level of the electrodes, and current-voltage relationships are obtained. The results show that QDT can be used as a proton detector by measuring transport through it and can conceivably act as a pH sensor in solutions. In addition, QDT may be able to distinguish among different monovalent species. This work suggests an approach to design modern molecular electronic conductance sensors with high sensitivity and specificity using well-established quantum chemistry.
International Nuclear Information System (INIS)
Mori, Toshifumi; Nakano, Katsuhiro; Kato, Shigeki
2010-01-01
The minimum energy conical intersection (MECI) optimization method with taking account of the dynamic electron correlation effect [T. Mori and S. Kato, Chem. Phys. Lett. 476, 97 (2009)] is extended to locate the MECI of nonequilibrium free energy surfaces in solution. A multistate electronic perturbation theory is introduced into the nonequilibrium free energy formula, which is defined as a function of solute and solvation coordinates. The analytical free energy gradient and interstate coupling vectors are derived, and are applied to locate MECIs in solution. The present method is applied to study the cis-trans photoisomerization reaction of a protonated Schiff base molecule (PSB3) in methanol (MeOH) solution. It is found that the effect of dynamic electron correlation largely lowers the energy of S 1 state. We also show that the solvation effect strongly stabilizes the MECI obtained by twisting the terminal C=N bond to become accessible in MeOH solution, whereas the conical intersection is found to be unstable in gas phase. The present study indicates that both electron correlation and solvation effects are important in the photoisomerization reaction of PSB3. The effect of counterion is also examined, and seems to be rather small in solution. The structures of free energy surfaces around MECIs are also discussed.
Energy Technology Data Exchange (ETDEWEB)
Ross, A.B.
1975-06-01
A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.
An evaporation model of multicomponent solution drops
Sartori, Silvana; Liñán, Amable; Lasheras, Juan C.
2010-11-01
Solutions of polymers are widely used in the pharmaceutical industry as tablets coatings. These allow controlling the rate at which the drug is delivered, taste or appearance. The coating is performed by spraying and drying the tablets at moderate temperatures. The wetting of the coating solution on the pill's surface depends on the droplet Webber and Re numbers, angle of impact and on the rheological properties of the droplet. We present a model for the evaporation of multicomponent solutions droplets in a hot air environment with temperatures substantially lower than the boiling temperature of the solvent. As the liquid vaporizes from the surface the fluid in the drop increases in concentration, until reaching its saturation point. After saturation, precipitation occurs uniformly within the drop. As the surface regresses, a compacting front formed by the precipitate at its maximum packing density advances into the drop, while the solute continues precipitating uniformly. This porous shell grows fast due to the double effect of surface regression and precipitation. The evaporation rate is determined by the rates at which heat is transported to the droplet surface and at which liquid vapor diffuses away from it. When the drop is fully compacted, the evaporation is drastically reduced.
2014-09-01
The Affordable Care Act (ACA) is driving the evolution of reimbursement from a fee-for-service model to an outcomes-based system. Accountable care organizations (ACOs) are 1 component of this evolution, and 1 of their charges is to reduce hospital readmission rates for key diagnoses such as congestive heart failure (CHF) and other cardiovascular comorbidities. Lack of patient follow-up and adherence are 2 major causes of readmission. Providing strong medication management is 1 of the common factors in successful readmission programs. We discuss here how electronic solutions might strengthen these medication management programs. To explore the key issues and strategies that affect the use of electronic medication reconciliation processes and to identify the role the Academy of Managed Care Pharmacy (AMCP) can play in spearheading the adoption of electronic solutions. This was a descriptive analysis of the medication reconciliation process and the factors that promote or limit the application of electronic solutions to medication reconciliation and transitions of care processes. AMCP convened a panel of managed care, hospital, community, ACO, and medication therapy management pharmacists; technology vendors; and other health care stakeholders with an expertise or interest in transitions of care. In the last few years, there has been considerable uptake of electronic solutions to the admission medication reconciliation process, largely due to increasing penetration of vendors using sophisticated medication history tools. The current electronic solutions to the admission medication reconciliation record are remarkably similar in content. Some pilots for electronic solutions to discharge medication reconciliation are emerging. The focus group recommended specific programs AMCP can pursue to increase the adoption of electronic solutions for medication reconciliation. One important aspect to address is developing a business case that documents the return on investment
Ali, Rustam; Saha, Asit; Chatterjee, Prasanta
2017-12-01
Analytical electron acoustic solitary wave (EASW) solution is investigated in the presence of periodic force for an unmagnetized plasma consisting of cold electron fluid, superthermal hot electrons, and stationary ions. Employing the reductive perturbation technique, the forced Korteg-de Vries (KdV) equation is derived for electron acoustic waves. For the first time, an analytical solution for EASWs is derived in the presence of periodic force. The effects of the ratio between hot electron and cold electron number densities at equilibrium (α), spectral index (κ), speed of the traveling wave (M), strength (f0), and frequency (ω) of the periodic force are studied on the analytical solution of EASWs. It is observed that the parameters α, κ, M, f0, and ω affect significantly the structures of the electron acoustic solitary waves. The results may have relevance in laboratory plasmas as well as in space plasma environments.
Electron pairing in dilute liquid metal-metal halide solutions
Energy Technology Data Exchange (ETDEWEB)
Selloni, A.; Car, R.; Parrinello, M.; Carnevali, P.
1987-09-10
Spin density functional theory is used to describe the interaction between solvated electrons in KCl in the high dilution limit. In agreement with recent calculations based on the path integral method our results for antiparallel spin predict a strong tendency to form localized bielectronic complexes. At variance with numerical path integral, our method can efficiently treat the case of parallel spins. For this case we find that electrons repel each other and localize into separate F-center-like states.
Energy Technology Data Exchange (ETDEWEB)
Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, Roman [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakho [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George [Argonne National Lab. (ANL), Argonne, IL (United States)
2014-10-01
Argonne is assisting SHINE Medical Technologies in developing SHINE, a system for producing fission-product ^{99}Mo using a D/T-accelerator to produce fission in a non-critical target solution of aqueous uranyl sulfate. We have developed an experimental setup for studying thermal-hydraulics and bubble formation in the uranyl sulfate solution to simulate conditions expected in the SHINE target solution during irradiation. A direct electron beam from the linac accelerator will be used to irradiate a 20 L solution (sector of the solution vessel). Because the solution will undergo radiolytic decomposition, we will be able to study bubble formation and dynamics and effects of convection and temperature on bubble behavior. These experiments will serve as a verification/ validation tool for the thermal-hydraulic model. Utilization of the direct electron beam for irradiation allows homogeneous heating of a large solution volume and simplifies observation of the bubble dynamics simultaneously with thermal-hydraulic data collection, which will complement data collected during operation of the miniSHINE experiment. Irradiation will be conducted using a 30-40 MeV electron beam from the high-power linac accelerator. The total electron-beam power will be 20 kW, which will yield a power density on the order of 1 kW/L. The solution volume will be cooled on the front and back surfaces and central tube to mimic the geometry of the proposed SHINE solution vessel. Also, multiple thermocouples will be inserted into the solution vessel to map thermal profiles. The experimental design is now complete, and installation and testing are in progress.
A model for electron/ion recombination in ionization chambers
International Nuclear Information System (INIS)
Sailor, W.C.
1988-05-01
The recombination of free electrons and positive ions along charged particle tracks in gases has been modeled using electron tranport equations, which assume homogeneous distribution in the vicinity of the tracks. The equations include space charge terms, which have been negelected in previous models. A formula for the electron yield as a function of detector applied potential is obtained from a perturbation solution valid when the ratio of the Debye length to the charge column radius is larger then unity. When this ratio is very large, the formula reduces to that of previous models. Pulse height measurements in a 3 He ionization chamber indicate 2% to 30% losses to recombination which vary with applied field, particle type, and energy. Using reasonable values for the electron transport coefficients, the calculated loss of signal to recommendation is generally in agreement with experiment, but the variation with applied bias is stronger in the experiment
Reliability Issues and Solutions in Flexible Electronics Under Mechanical Fatigue
Yi, Seol-Min; Choi, In-Suk; Kim, Byoung-Joon; Joo, Young-Chang
2018-03-01
Flexible devices are of significant interest due to their potential expansion of the application of smart devices into various fields, such as energy harvesting, biological applications and consumer electronics. Due to the mechanically dynamic operations of flexible electronics, their mechanical reliability must be thoroughly investigated to understand their failure mechanisms and lifetimes. Reliability issue caused by bending fatigue, one of the typical operational limitations of flexible electronics, has been studied using various test methodologies; however, electromechanical evaluations which are essential to assess the reliability of electronic devices for flexible applications had not been investigated because the testing method was not established. By employing the in situ bending fatigue test, we has studied the failure mechanism for various conditions and parameters, such as bending strain, fatigue area, film thickness, and lateral dimensions. Moreover, various methods for improving the bending reliability have been developed based on the failure mechanism. Nanostructures such as holes, pores, wires and composites of nanoparticles and nanotubes have been suggested for better reliability. Flexible devices were also investigated to find the potential failures initiated by complex structures under bending fatigue strain. In this review, the recent advances in test methodology, mechanism studies, and practical applications are introduced. Additionally, perspectives including the future advance to stretchable electronics are discussed based on the current achievements in research.
International Nuclear Information System (INIS)
Helin, Mika; Jiang, Qinghong; Ketamo, Hanna; Hakansson, Markus; Spehar, Anna-Maria; Kulmala, Sakari; Ala-Kleme, Timo
2005-01-01
Hot electrons can be injected from conductor/insulator/electrolyte (C/I/E) junctions into an aqueous electrolyte solution by cathodic pulse-polarization of the electrode. Injected hot electrons induce electrogenerated chemiluminescence of various luminophores including coumarins in fully aqueous solutions. This is based on the tunnel emission of hot electrons into aqueous electrolyte solution, which can result in the generation of hydrated electrons as reducing mediators. These tunnel-emitted electrons allow also the production of highly oxidizing radicals from added precursors. This work shows that coumarin derivatives are suitable candidates as ECL labels for bioaffinity assays or other analytical applications in which detection is based on the ECL of pulse-polarized C/I/E tunnel-emission electrodes in fully aqueous solutions. The mechanisms of the ECL of coumarins are discussed and the analytical applicability of the ECL of three coumarin derivatives is studied
International Nuclear Information System (INIS)
Pellizzari, Fabien
2005-01-01
The aim of this work was the study of the influence of different parameters by electron beam irradiation on the decomposition of phenol in aqueous solution. A simulation based on a simplified mechanism emphasized the importance of the oxygenation of the solutions in the removal of phenol by ionisation. A model of the reactor used was proposed from the study of the influence of the beam energy on the decomposition of phenol. Penetration depths of the electrons were determined. Phenol degradation was found to increase with the dose rate. The fraction of the dose into several passages under the electron beam improved the abatement of the phenol. The reoxygenation of the solutions between each passage and the kinetic expressions of irradiation could explain this effect. As expected, the first by-products identified were originated from the reaction of phenol with hydroxyl radicals. [fr
Controlling front-end electronics boards using commercial solutions
Beneyton, R; Jost, B; Schmeling, S
2002-01-01
LHCb is a dedicated B-physics experiment under construction at CERN's large hadron collider (LHC) accelerator. This paper will describe the novel approach LHCb is taking toward controlling and monitoring of electronics boards. Instead of using the bus in a crate to exercise control over the boards, we use credit-card sized personal computers (CCPCs) connected via Ethernet to cheap control PCs. The CCPCs will provide a simple parallel, I2C, and JTAG buses toward the electronics board. Each board will be equipped with a CCPC and, hence, will be completely independently controlled. The advantages of this scheme versus the traditional bus-based scheme will be described. Also, the integration of the controls of the electronics boards into a commercial supervisory control and data acquisition (SCADA) system will be shown. (5 refs).
Dromion solutions for an electron acoustic wave and its application ...
Indian Academy of Sciences (India)
plasma physics while a great deal of work has been done with one dimensional structures like solitons, these novel two dimensional dromion solutions have received limited atten- tion [7]. Our present work is motivated by some recent satellite observations [8] of wave structures in the polar cap boundary layers where we ...
Sign of the electron exchange coupling in random radical encounter pairs in solution
International Nuclear Information System (INIS)
Thurnauer, M.C.; Chiu, T.M.; Trifunac, A.D.
1985-01-01
An important parameter in the study of reacting radical systems is the electron exchange interaction, J. The properties of interest are the sign and magnitude of J, and its functional dependence on distance between radicals. One source of information about J is from understanding the Chemically Induced Dynamic Electron Polarization (CIDEP) which is observed in the EPR spectra of reactive radical systems. For radicals reacting in solution to form new covalent bonds, it has generally been found that J O. It is suggested that F-pairs react at a separation greater than that at which spin correlated (geminate) pairs of the same radicals are formed, so that the intervening solvent molecules become involved in the exchange interaction giving rise to J>O via some sort of superexchange process. This is an interesting proposition since superexchange via solvent molecules may play a role in rates of long-distance electron transfer reactions and in the electron transfer reactions of photosynthesis. However, the model suggested runs contrary to all F-air radicals are produced. In order to clarify this important point, the authors present here a definitive study in which we examine several systems of radgenerated independently (exclusive F-pairs) by pulsed laser photolysis and pulsed radiolicals generatedysis in aqueous, alcoholic and hydrocarbon solvents
Exact solutions of the dirac equation for an electron in magnetic field with shape invariant method
International Nuclear Information System (INIS)
Setare, M.R.; Hatami, O.
2008-01-01
Based on the shape invariance property we obtain exact solutions of the Virac equation for an electron moving in the presence of a certain varying magnetic Geld, then we also show its non-relativistic limit. (authors)
Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution
Energy Technology Data Exchange (ETDEWEB)
Choi, Jong-il [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Hee-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Kwang-Won [Department of Orthopaedic Surgery, Eulji University School of Medicine, Daejeon 302-799 (Korea, Republic of); Chung, Young-Jin [Department of Food and Nutrition, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Byun, Myung-Woo [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of); Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup 580-185 (Korea, Republic of)], E-mail: sjwlee@kaeri.re.kr
2008-12-15
In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 deg. C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.
Accuracy of three electronic apex locators in the presence of different irrigating solutions
Carvalho, Ana Laura Pion; Moura-Netto, Cacio; Moura, Abilio Albuquerque Maranhão de; Marques, Márcia Martins; Davidowicz, Harry
2010-01-01
The present study compared the accuracy of three electronic apex locators (EALs) - Elements Diagnostic®, Root ZX® and Apex DSP® - in the presence of different irrigating solutions (0.9% saline solution and 1% sodium hypochlorite). The electronic measurements were carried out by three examiners, using twenty extracted human permanent maxillary central incisors. A size 10 K file was introduced into the root canals until reaching the 0.0 mark, and was subsequently retracted to the 1.0 mark. The ...
Investigation of structural features of aqueous salt solutions by means of electronic spectroscopy
International Nuclear Information System (INIS)
Lyashchenko, A.K.; Borina, A.F.
1985-01-01
Electronic spectroscopy and structural-geometric analysis have been used in studying ionic interactions in aqueous solutions of Co(NO 3 ) 2 , CoSO 4 , CoCl 2 , and NiSO 4 . The processes influencing the structural environment of the cations in solution and the character of the electronic spectra of Co(II) and Ni(II) have been distinguished: replacement of ligands in the first coordination sphere of the transition-metal ion, change in mobility of the particles in the medium, and change in the structural matrix on the solution upon going from one concentration region to another. A small change in the structure of bulk water in the solutions of these salts has been demonstrated. For Co(NO 3 ) 2 solutions, the limit of existence of a water-like structure of the solution has been defined
Selective Recovery Of Copper From Solutions After Bioleaching Electronic Waste
Directory of Open Access Journals (Sweden)
Willner Joanna
2015-06-01
Full Text Available Research on selective extraction of copper from solution after bioleaching grounded printed circuit boards (PCBs using LIX 860N-IC were conducted. The effect of LIX 860N-IC concentration, phase ratio and influence of initial pH value of aqueous phase on the extraction of copper and iron was examined. It was found that the extraction rate of copper increases with the LIX 860N-IC concentration. Best results of Cu extraction (98 % were achieved with extractant concentration of 5 % and pH 1.9. Higher pH value of aqueous phase (pH=2.4 is conducive to the simultaneous effect of Fe co-extraction.
Solute transport modelling with the variable temporally dependent ...
Indian Academy of Sciences (India)
Pintu Das
2018-02-07
Feb 7, 2018 ... In this present study, analytical and numerical solutions are obtained for solute transport modelling in homogeneous ..... Clay (0.40). Analytical solution. Numerical solution. Figure 3. Comparison of concentration distribution for sinu- soidal velocity pattern for boundary condition c0. 2 1 ю sec wt р. Ю.
Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
Wang, Sheng; Liu, Wenbin; Guo, Zhengguang; Wang, Weiming
2013-01-01
We investigate the traveling wave solutions in a reaction-diffusion epidemic model. The existence of the wave solutions is derived through monotone iteration of a pair of classical upper and lower solutions. The traveling wave solutions are shown to be unique and strictly monotonic. Furthermore, we determine the critical minimal wave speed.
Electron transfer reactions to probe the electrode/solution interface
Energy Technology Data Exchange (ETDEWEB)
Capitanio, F.; Guerrini, E.; Colombo, A.; Trasatti, S. [Milan Univ., Milan (Italy). Dept. of Physical Chemistry and Electrochemistry
2008-07-01
The reactions that occur at the interface between an electrode and an electrolyte were examined with particular reference to the interaction of different electrode surfaces with redox couples. A semi-integration or convolution technique was used to study the kinetics of electron transfer on different electrode materials with different hydrophilic behaviour, such as Boron-Doped-Diamond (BDD), Au and Pt. Standard reversible redox couples were also investigated, including (Fe3+/2+, Fe(CN)63-/4-, Ru(NH3)63+/2+, Co(NH3)63+/2+, Ir4+/3+, V4+/5+ and V3+/2+). The proposed method proved to be simple, straightforward and reliable since the obtained kinetic information was in good agreement with data in the literature. It was concluded that the kinetics of the electrode transfer reactions depend on the chemical nature of the redox couple and electrode material. The method should be further extended to irreversible couples and other electrode materials such as mixed oxide electrodes. 3 refs., 2 figs.
Modeling mini-orange electron spectrometers
International Nuclear Information System (INIS)
Canzian da Silva, Nelson; Dietzsch, Olacio
1994-01-01
A method for calculating the transmission of mini-orange electron spectrometers is presented. The method makes use of the analytical solution for the magnetic field of a plane magnet in the calculation of the spectrometer spatial field distribution by superimposing the fields of the several magnets that compose the system. Electron trajectories through the spectrometer are integrated numerically in a Monte Carlo calculation and the transmission of the spectrometer as a function of the electron energy is evaluated. A six-magnet mini-orange spectrometer was built and its transmission functions for several distances from source to detector were measured and compared to the calculations. The overall agreement is found to be good. The method is quite general and can be applied to the design of systems composed of plane magnets, predicting their performance before assembling them. ((orig.))
Kulasiri, Don
2002-01-01
Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...
International Nuclear Information System (INIS)
Rosen, S.P.; Gelb, J.M.
1989-01-01
This paper considers the scattering of solar neutrinos by electrons as a means for distinguishing between different MSW solutions of the solar neutrino problem. In terms of the ratio R between the observed cross-section and that for pure electron-type neutrinos, some correlation between the value of R and each solution is found. A value of R ≤ 1/3 implies that the adiabatic solution is correct, while values between 1/3 and 3/5 are consistent with the large angle solution. A value close to 1/2 is also consistent with the non-adiabatic solution, and a value less than (1/6 - 1/7) implies oscillations into sterile neutrinos
Periodic Solutions for a Delayed Population Model on Time Scales
Kejun Zhuang; Zhaohui Wen
2010-01-01
This paper deals with a delayed single population model on time scales. With the assistance of coincidence degree theory, sufficient conditions for existence of periodic solutions are obtained. Furthermore, the better estimations for bounds of periodic solutions are established.
Multidisciplinary Modelling Tools for Power Electronic Circuits
DEFF Research Database (Denmark)
Bahman, Amir Sajjad
package, e.g. power module, DFR approach meets trade-offs in electrical, thermal and mechanical design of the device. Today, virtual prototyping of power electronic circuits using advanced simulation tools is becoming attractive due to cost/time saving in building potential designs. With simulations......This thesis presents multidisciplinary modelling techniques in a Design For Reliability (DFR) approach for power electronic circuits. With increasing penetration of renewable energy systems, the demand for reliable power conversion systems is becoming critical. Since a large part of electricity...... is processed through power electronics, highly efficient, sustainable, reliable and cost-effective power electronic devices are needed. Reliability of a product is defined as the ability to perform within its predefined functions under given conditions in a specific time. Because power electronic devices...
Classical and Weak Solutions for Two Models in Mathematical Finance
Gyulov, Tihomir B.; Valkov, Radoslav L.
2011-12-01
We study two mathematical models, arising in financial mathematics. These models are one-dimensional analogues of the famous Black-Scholes equation on finite interval. The main difficulty is the degeneration at the both ends of the space interval. First, classical solutions are studied. Positivity and convexity properties of the solutions are discussed. Variational formulation in weighted Sobolev spaces is introduced and existence and uniqueness of the weak solution is proved. Maximum principle for weak solution is discussed.
Electronic Properties of Functional Biomolecules at Metal/Aqueous Solution Interfaces
DEFF Research Database (Denmark)
Zhang, Jingdong; Chi, Qijin; Kuznetsov, A.M.
2002-01-01
in electronic properties and stochastic single-molecule features and can be probed by new methods which approach the single-molecule level. Olle of these is in situ scanning tunneling microscopy (STM) in which single-molecule electronic properties directly in aqueous solution are probed. In situ STM combined...... single-molecule interfacial electron transfer (ET) steps. Theories of electrochemical ET and in situ STM of redox molecules as well as specific cases are addressed. Two-step in situ STM represents different molecular mechanisms and even new ET phenomena, related to coherent many-electron transfer...
Electron transfer across anodic films formed on tin in carbonate-bicarbonate buffer solution
Energy Technology Data Exchange (ETDEWEB)
Gervasi, C.A. [Universidad Nacional de La Plata (Argentina). Facultad de Ciencias Exactas; Universidad Nacional de La Plata (Argentina). Facultad de Ingenieria; Folquer, M.E. [Universidad Nacional de Tucaman (Argentina). Inst. de Quimica Fisica; Vallejo, A.E. [Universidad Nacional de La Plata (Argentina). Facultad de Ingenieria; Alvarez, P.E. [Universidad Nacional de Tucaman (Argentina). Inst. de Fisica
2005-01-15
Impedance and steady-state data were recorded in order to study the kinetics of electron transfer between passive tin electrodes and an electrolytic solution containing the K{sub 3}Fe(CN){sub 6}-K{sub 4}Fe(CN){sub 6} redox couple. Film thickness plays a key role in determining the type of electronic conduction of these oxide covered electrodes. Electron exchange with the oxide takes place with participation of the conduction band in the semiconducting film. A mechanism involving direct electron tunneling through the space charge barrier is the most suitable to interpret the experimental evidence. (Author)
Optimisation-Based Solution Methods for Set Partitioning Models
DEFF Research Database (Denmark)
Rasmussen, Matias Sevel
The scheduling of crew, i.e. the construction of work schedules for crew members, is often not a trivial task, but a complex puzzle. The task is complicated by rules, restrictions, and preferences. Therefore, manual solutions as well as solutions from standard software packages are not always su......_cient with respect to solution quality and solution time. Enhancement of the overall solution quality as well as the solution time can be of vital importance to many organisations. The _elds of operations research and mathematical optimisation deal with mathematical modelling of di_cult scheduling problems (among...... other topics). The _elds also deal with the development of sophisticated solution methods for these mathematical models. This thesis describes the set partitioning model which has been widely used for modelling crew scheduling problems. Integer properties for the set partitioning model are shown...
Electron-Ionic Model of Ball Lightening
Fedosin, Sergey G.; Kim, Anatolii S.
2001-01-01
The model of ball lightning is presented where outside electron envelope is kept by inside volume of positive charges. The moving of electron in outside envelope is a reason of strong magnetic field, which controls the state of hot ionized air inside of ball lightning. The conditions of origins of ball lightning are investigated and the values of parameters for ball lightning of maximum power are calculated.
International Nuclear Information System (INIS)
Figueroa, C.; Brizuela, H.; Heluani, S. P.
2014-01-01
The backscattering coefficient is a magnitude whose measurement is fundamental for the characterization of materials with techniques that make use of particle beams and particularly when performing microanalysis. In this work, we report the results of an analytic method to calculate the backscattering and absorption coefficients of electrons in similar conditions to those of electron probe microanalysis. Starting on a five level states ladder model in 3D, we deduced a set of integro-differential coupled equations of the coefficients with a method know as invariant embedding. By means of a procedure proposed by authors, called method of convergence, two types of approximate solutions for the set of equations, namely complete and simple solutions, can be obtained. Although the simple solutions were initially proposed as auxiliary forms to solve higher rank equations, they turned out to be also useful for the estimation of the aforementioned coefficients. In previous reports, we have presented results obtained with the complete solutions. In this paper, we present results obtained with the simple solutions of the coefficients, which exhibit a good degree of fit with the experimental data. Both the model and the calculation method presented here can be generalized to other techniques that make use of different sorts of particle beams
Teaching Chemistry with Electron Density Models
Shusterman, Gwendolyn P.; Shusterman, Alan J.
1997-07-01
Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.
Exact diagonalization library for quantum electron models
Iskakov, Sergei; Danilov, Michael
2018-04-01
We present an exact diagonalization C++ template library (EDLib) for solving quantum electron models, including the single-band finite Hubbard cluster and the multi-orbital impurity Anderson model. The observables that can be computed using EDLib are single particle Green's functions and spin-spin correlation functions. This code provides three different types of Hamiltonian matrix storage that can be chosen based on the model.
Rapid imaging of mycoplasma in solution using Atmospheric Scanning Electron Microscopy (ASEM)
Energy Technology Data Exchange (ETDEWEB)
Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Manaka, Sachie [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan); Nakane, Daisuke [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Nishiyama, Hidetoshi; Suga, Mitsuo [Advanced Technology Division, JEOL Ltd., Akishima, Tokyo 196-8558 (Japan); Nishizaka, Takayuki [Department of Physics, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588 (Japan); Miyata, Makoto [Department of Biology, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585 (Japan); Maruyama, Yuusuke [Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 (Japan)
2012-01-27
Highlights: Black-Right-Pointing-Pointer Mycoplasma mobile was observed in buffer with the Atmospheric Scanning Electron Microscope. Black-Right-Pointing-Pointer Characteristic protein localizations were visualized using immuno-labeling. Black-Right-Pointing-Pointer M. mobile attached to sialic acid on the SiN film surface within minutes. Black-Right-Pointing-Pointer Cells were observed at low concentrations. Black-Right-Pointing-Pointer ASEM should promote study and early-stage diagnosis of mycoplasma. -- Abstract: Mycoplasma is a genus of bacterial pathogen that causes disease in vertebrates. In humans, the species Mycoplasma pneumoniae causes 15% or more of community-acquired pneumonia. Because this bacterium is tiny, corresponding in size to a large virus, diagnosis using optical microscopy is not easy. In current methods, chest X-rays are usually the first action, followed by serology, PCR amplification, and/or culture, but all of these are particularly difficult at an early stage of the disease. Using Mycoplasma mobile as a model species, we directly observed mycoplasma in buffer with the newly developed Atmospheric Scanning Electron Microscope (ASEM). This microscope features an open sample dish with a pressure-resistant thin film window in its base, through which the SEM beam scans samples in solution, from below. Because of its 2-3 {mu}m-deep scanning capability, it can observe the whole internal structure of mycoplasma cells stained with metal solutions. Characteristic protein localizations were visualized using immuno-labeling. Cells were observed at low concentrations, because suspended cells concentrate in the observable zone by attaching to sialic acid on the silicon nitride (SiN) film surface within minutes. These results suggest the applicability of the ASEM for the study of mycoplasmas as well as for early-stage mycoplasma infection diagnosis.
Periodic solutions of nonautonomous differential systems modeling obesity population
International Nuclear Information System (INIS)
Arenas, Abraham J.; Gonzalez-Parra, Gilberto; Jodar, Lucas
2009-01-01
In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.
Periodic solutions of nonautonomous differential systems modeling obesity population
Energy Technology Data Exchange (ETDEWEB)
Arenas, Abraham J. [Departamento de Matematicas y Estadistica, Universidad de Cordoba Monteria (Colombia)], E-mail: aarenas@sinu.unicordoba.edu.co; Gonzalez-Parra, Gilberto [Departamento de Calculo, Universidad de los Andes, Merida (Venezuela, Bolivarian Republic of)], E-mail: gcarlos@ula.ve; Jodar, Lucas [Instituto de Matematica Multidisciplinar, Universidad Politecnica de Valencia Edificio 8G, 2o, 46022 Valencia (Spain)], E-mail: ljodar@imm.upv.es
2009-10-30
In this paper we study the periodic behaviour of the solutions of a nonautonomous model for obesity population. The mathematical model represented by a nonautonomous system of nonlinear ordinary differential equations is used to model the dynamics of obese populations. Numerical simulations suggest periodic behaviour of subpopulations solutions. Sufficient conditions which guarantee the existence of a periodic positive solution are obtained using a continuation theorem based on coincidence degree theory.
Travelling wave solutions to nonlinear physical models by means of ...
Indian Academy of Sciences (India)
On the other hand, considerable attention has been given to problem of finding spe- cial types of analytic solutions to understand biological, physical and chemical phenomena modelled by NPDEs. Among the possible solutions, certain solutions may depend only on a single combination of variables such as travelling wave ...
General classical solutions in the noncommutative CPN-1 model
International Nuclear Information System (INIS)
Foda, O.; Jack, I.; Jones, D.R.T.
2002-01-01
We give an explicit construction of general classical solutions for the noncommutative CP N-1 model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied
One-electron diatomics in momentum space. II. Second and third iterated LCAO solutions
Energy Technology Data Exchange (ETDEWEB)
Koga, T.; Kawa-ai, R.
1986-05-15
Recurrence formulas are derived for the iterative LCAO solution of the one-electron two-center Schroedinger equation in the Fock representation. The results are applied to the second and third iterated LCAO solutions of the H/sup +//sub 2/ system at various internuclear distances R. For 0< or =R< or =20 (a.u.), the maximum errors in the electronic energy are reduced to 2.7% (second iterated) and 1.6% (third iterated), which should be compared with the previous errors of 28.2% (zeroth iterated) and 4.7% (first iterated).
One-electron diatomics in momentum space. II. Second and third iterated LCAO solutions
International Nuclear Information System (INIS)
Koga, T.; Kawa-ai, R.
1986-01-01
Recurrence formulas are derived for the iterative LCAO solution of the one-electron two-center Schroedinger equation in the Fock representation. The results are applied to the second and third iterated LCAO solutions of the H + 2 system at various internuclear distances R. For 0< or =R< or =20 (a.u.), the maximum errors in the electronic energy are reduced to 2.7% (second iterated) and 1.6% (third iterated), which should be compared with the previous errors of 28.2% (zeroth iterated) and 4.7% (first iterated)
Local radiolytic effectiveness of Auger electrons of iodine-125 in benzene-iodine solutions
International Nuclear Information System (INIS)
Uenak, P.; Uenak, T.
1987-01-01
High radiotoxicity of iodine-125 has been mainly attributed to the local radiolytic effects of Auger electrons on biological systems. In the present study, experimental and theoretical results are compared. The agreement between the experimental and theoretical results explains that the energy absorption of iodine aggregates has an important role in the radiolytic effectiveness of Auger electrons and iodine-125 in benzene-iodine solutions. (author) 18 refs.; 3 figs
General solution of the Dirac equation for quasi-two-dimensional electrons
Energy Technology Data Exchange (ETDEWEB)
Eremko, Alexander, E-mail: eremko@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Brizhik, Larissa, E-mail: brizhik@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); Loktev, Vadim, E-mail: vloktev@bitp.kiev.ua [Bogolyubov Institute for Theoretical Physics, Metrologichna Str., 14-b, Kyiv, 03680 (Ukraine); National Technical University of Ukraine “KPI”, Peremohy av., 37, Kyiv, 03056 (Ukraine)
2016-06-15
The general solution of the Dirac equation for quasi-two-dimensional electrons confined in an asymmetric quantum well, is found. The energy spectrum of such a system is exactly calculated using special unitary operator and is shown to depend on the electron spin polarization. This solution contains free parameters, whose variation continuously transforms one known particular solution into another. As an example, two different cases are considered in detail: electron in a deep and in a strongly asymmetric shallow quantum well. The effective mass renormalized by relativistic corrections and Bychkov–Rashba coefficients are analytically obtained for both cases. It is demonstrated that the general solution transforms to the particular solutions, found previously (Eremko et al., 2015) with the use of spin invariants. The general solution allows to establish conditions at which a specific (accompanied or non-accompanied by Rashba splitting) spin state can be realized. These results can prompt the ways to control the spin degree of freedom via the synthesis of spintronic heterostructures with the required properties.
Hajrahimi, Nafiseh; Dehaghani, Sayed Mehdi Hejazi; Hajrahimi, Nargess; Sarmadi, Sima
2014-01-01
Implementing information technology in the best possible way can bring many advantages such as applying electronic services and facilitating tasks. Therefore, assessment of service providing systems is a way to improve the quality and elevate these systems including e-commerce, e-government, e-banking, and e-learning. This study was aimed to evaluate the electronic services in the website of Isfahan University of Medical Sciences in order to propose solutions to improve them. Furthermore, we aim to rank the solutions based on the factors that enhance the quality of electronic services by using analytic hierarchy process (AHP) method. Non-parametric test was used to assess the quality of electronic services. The assessment of propositions was based on Aqual model and they were prioritized using AHP approach. The AHP approach was used because it directly applies experts' deductions in the model, and lead to more objective results in the analysis and prioritizing the risks. After evaluating the quality of the electronic services, a multi-criteria decision making frame-work was used to prioritize the proposed solutions. Non-parametric tests and AHP approach using Expert Choice software. The results showed that students were satisfied in most of the indicators. Only a few indicators received low satisfaction from students including, design attractiveness, the amount of explanation and details of information, honesty and responsiveness of authorities, and the role of e-services in the user's relationship with university. After interviewing with Information and Communications Technology (ICT) experts at the university, measurement criteria, and solutions to improve the quality were collected. The best solutions were selected by EC software. According to the results, the solution "controlling and improving the process in handling users complaints" is of the utmost importance and authorities have to have it on the website and place great importance on updating this process
Multi-cut solutions in Chern-Simons matrix models
Morita, Takeshi; Sugiyama, Kento
2018-04-01
We elaborate the Chern-Simons (CS) matrix models at large N. The saddle point equations of these matrix models have a curious structure which cannot be seen in the ordinary one matrix models. Thanks to this structure, an infinite number of multi-cut solutions exist in the CS matrix models. Particularly we exactly derive the two-cut solutions at finite 't Hooft coupling in the pure CS matrix model. In the ABJM matrix model, we argue that some of multi-cut solutions might be interpreted as a condensation of the D2-brane instantons.
Numerical Solution of the Electron Transport Equation in the Upper Atmosphere
Energy Technology Data Exchange (ETDEWEB)
Woods, Mark Christopher [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Holmes, Mark [Rensselaer Polytechnic Inst., Troy, NY (United States); Sailor, William C [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
A new approach for solving the electron transport equation in the upper atmosphere is derived. The problem is a very stiff boundary value problem, and to obtain an accurate numerical solution, matrix factorizations are used to decouple the fast and slow modes. A stable finite difference method is applied to each mode. This solver is applied to a simplifieed problem for which an exact solution exists using various versions of the boundary conditions that might arise in a natural auroral display. The numerical and exact solutions are found to agree with each other to at least two significant digits.
Stability of core–shell nanowires in selected model solutions
Energy Technology Data Exchange (ETDEWEB)
Kalska-Szostko, B., E-mail: kalska@uwb.edu.pl; Wykowska, U.; Basa, A.; Zambrzycka, E.
2015-03-30
Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.
Stability of core–shell nanowires in selected model solutions
International Nuclear Information System (INIS)
Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.
2015-01-01
Highlights: • Stability of the core–shell nanowires in environmental solutions were tested. • The most and the least aggressive solutions were determined. • The influence of different solutions on magnetic nanowires core was found out. - Abstract: This paper presents the studies of stability of magnetic core–shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods
Mathematical model I. Electron and quantum mechanics
Directory of Open Access Journals (Sweden)
Nitin Ramchandra Gadre
2011-03-01
Full Text Available The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is ‘difficult’ to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.
Mathematical model I. Electron and quantum mechanics
Gadre, Nitin Ramchandra
2011-03-01
The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like electron which make it obey postulates of modern theories. As it is `difficult' to find structure of electron experimentally, we make a mathematical attempt. For a classical approach, we require well defined systems and we have studied a system with two charged particles, proton and electron in a hydrogen atom. An attempt has been made to give a model to describe electron as seen by the proton. We then discuss how the model can satisfy the requirements of the three modern theories in a classical manner. The paper discusses basic aspects of relativity and electrodynamics. However the focus of the paper is on quantum mechanics.
Radiation-produced electron migration along 5-bromouracil-substituted DNA in cells and in solutions
International Nuclear Information System (INIS)
Beach, C.M.
1981-01-01
Results of work by other investigators support the theory of charge migration in DNA. Charge transfer between nucleotides and electron and energy migration in solid state DNA have been detected, but no previous experiments have demonstrated charge migration in aqueous solutions of DNA or in DNA inside an E. coli cell. Such experiments were performed by substituting different amounts of 5-bromouracil (BU) for thymine in E. coli DNA and assaying for the amount of bromide given off from the reaction of bromouracil with hydrated electrons produced by ionizing radiation to form uracil-5-yl radicals and free bromide. By varying the amount of BU incorporated in the DNA, the average distance between the BU bases was varied, and because the number of BU/electron reactions was monitored by the amount of bromide released, the maximum average electron migration distance along the BU-DNA was estimated. Hydrated electrons, e/sub aq/, were shown to react with BU in BU-DNA with the resultant release of bromide with G(-BR - ) = 0.519 +- 0.062. OH radicals were half as reactive as e/sub aq/ toward producing bromide from BU-DNA. O 2 , which has been shown to transfer charge to BU in aqueous solution, did not transfer charge to BU-DNA. The CO 2 radical was shown to cause the release of bromide from BU-DNA at least as effectively as e/sub aq/. Charge migration was demonstrated, and the maximum average electron migration distance in aqueous solutions of BU-DNA was measured to be 8 to 10 base distances (assuming only intrastrand migration). Only 11% to 16% of the electrons produced attacked BU-DNA in aqueous solution, and only 1% resulted in bromide release from BU-DNA inside E. coli. Charge migration was demonstrated in BU-DNA inside E. coli., and the maximum average migration distance was measured to be 5 to 6 base distances
Nonperturbative Time Dependent Solution of a Simple Ionization Model
Costin, Ovidiu; Costin, Rodica D.; Lebowitz, Joel L.
2018-02-01
We present a non-perturbative solution of the Schrödinger equation {iψ_t(t,x)=-ψ_{xx}(t,x)-2(1 +α sinω t) δ(x)ψ(t,x)} , written in units in which \\hbar=2m=1, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of α, ω, t for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large t and small α the energy distribution has sharp peaks at energies which are multiples of ω, corresponding to photon capture. We obtain small α expansions that converge for all t, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.
Accuracy of three electronic apex locators in the presence of different irrigating solutions
Directory of Open Access Journals (Sweden)
Ana Laura Pion Carvalho
2010-12-01
Full Text Available The present study compared the accuracy of three electronic apex locators (EALs - Elements Diagnostic®, Root ZX® and Apex DSP® - in the presence of different irrigating solutions (0.9% saline solution and 1% sodium hypochlorite. The electronic measurements were carried out by three examiners, using twenty extracted human permanent maxillary central incisors. A size 10 K file was introduced into the root canals until reaching the 0.0 mark, and was subsequently retracted to the 1.0 mark. The gold standard (GS measurement was obtained by combining visual and radiographic methods, and was set 1 mm short of the apical foramen. Electronic length values closer to the GS (± 0.5 mm were considered as accurate measures. Intraclass correlation coefficients (ICCs were used to verify inter-examiner agreement. The comparison among the EALs was performed using the McNemar and Kruskal-Wallis tests (p 0.05, independent of the irrigating solutions used. The measurements taken with these two EALs were more accurate than those taken with Apex DSP®, regardless of the irrigating solution used (p < 0.05. It was concluded that Elements Diagnostic® and Root ZX® apex locators are able to locate the cementum-dentine junction more precisely than Apex DSP®. The presence of irrigating solutions does not interfere with the performance of the EALs.
Shoub, E. C.
1977-01-01
The problem of calculating the steady-state free-electron energy distribution in a hydrogen gas is considered in order to study departures of that distribution from a Maxwellian at sufficiently low degrees of ionization. A model kinetic equation is formulated and solved analytically for the one-particle electron distribution function in a steady-state partially ionized hydrogen gas, and it is shown that the formal solution can be accurately approximated by using the WKB method. The solutions obtained indicate that the high-energy tail of the distribution is susceptible to distortion by imbalanced inelastic collisions for ionization fractions not exceeding about 0.1 and that such departures from a Maxwellian can lead to significant changes in the collisional excitation and ionization rates of ground-state hydrogen atoms. Expressions for the electron-hydrogen collision rates are derived which explicitly display their dependence on the hydrogen departure coefficients. The results are applied in order to compare self-consistent predictions with those based on the a priori assumption of a Maxwellian distribution for models of the thermal ionization equilibrium of hydrogen in the optically thin limit, spectral-line formation by a gas consisting of two-level atoms, and radiative transfer in finite slabs by a gas of four-level hydrogen atoms.
Magnetic Electron Filtering by Fluid Models for the PEGASES Thruster
Leray, Gary; Chabert, Pascal; Lichtenberg, Allan; Lieberman, Michael
2009-10-01
The PEGASES thruster produces thrust by creating positive and negative ions, which are then accelerated. To accelerate both type of ions, electrons need to be filtered, which is achieved by applying a static magnetic field strong enough to magnetize the electrons but not the ions. A 1D fluid model with three species (electrons, positive and negative ions) and an analytical model are proposed to understand this process for an oxygen plasma with p = 10 mTorr and B0 = 300 G [1]. The resulting ion-ion plasma formation in the transverse direction (perpendicular to the magnetic field) is demonstrated. It is shown that an additional electron/positive ion loss term is required. The solutions are evaluated for two main parameters: the ionizing fraction at the plasma center (x = 0), ne0/ng, and the electronegativity ratio at the center, α0=nn0/ne0. The effect of geometry and magnetic field amplitude are also discussed. [4pt] [1] Leray G, Chabert P, Lichtenberg A J and Lieberman M A, J. Phys. D: Appl. Phys., Plasma Modelling Cluster issue, to appear (2009)
International Nuclear Information System (INIS)
Paul, Jhimli; Rawat, K.P.; Sarma, K.S.S.; Sabharwal, S.
2011-01-01
The decoloration and degradation of aqueous solution of the reactive azo dye viz. Reactive Red-120 (RR-120) was carried out by electron beam irradiation. The change in decoloration percentage, removal of chemical oxygen demand (COD) and total organic carbon (TOC), solution pH and five-day biochemical oxygen demand (BOD 5 ) were investigated with respect to the applied dose. However, the concentration of the dye in the solution showed a great influence on all these observables. During the radiolysis process, it was found that the decoloration of dye was caused by the destruction of the chromophore group of the dye molecule, whereas COD and TOC removal were depended on the extent of mineralization of the dye. The decrease in pH during the radiolysis process indicated the fragmentation of the large dye molecule into smaller organic components mostly like smaller organic acids. The BOD 5 /COD ratio of the unirradiated dye solution was in the range of 0.1-0.2, which could be classified as non-biodegradable wastewater. However, the BOD 5 /COD ratio increased upon irradiation and it indicated the transformation of non-biodegradable dye solution into biodegradable solution. This study showed that electron beam irradiation could be a promising method for treatment of textile wastewater containing RR-120 dye.
Energy Technology Data Exchange (ETDEWEB)
Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Gromov, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Makarashvili, Vakhtang [Argonne National Lab. (ANL), Argonne, IL (United States); Heltemes, Thad [Argonne National Lab. (ANL), Argonne, IL (United States); Sun, Zaijing [Argonne National Lab. (ANL), Argonne, IL (United States); Wardle, Kent E. [Argonne National Lab. (ANL), Argonne, IL (United States); Bailey, James [Argonne National Lab. (ANL), Argonne, IL (United States); Stepinski, Dominique [Argonne National Lab. (ANL), Argonne, IL (United States); Jerden, James [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-01-30
In support of the development of accelerator-driven production of fission product Mo-99 as proposed by SHINE Medical Technologies, a 35 MeV electron linac was used to irradiate depleted-uranium (DU) uranyl sulfate dissolved in pH 1 sulfuric acid at average power densities of 6 kW, 12 kW, and 15 kW. During these irradiations, gas bubbles were generated in the solution due to the radiolytic decomposition of water molecules in the solution. Multiple video cameras were used to record the behavior of bubble generation and transport in the solution. Seven six-channel thermocouples were used to record temperature gradients in the solution from self-heating. Measurements of hydrogen and oxygen concentrations in a helium sweep gas were recorded by a gas chromatograph to estimate production rates during irradiation. These data are being used to validate a computational fluid dynamics (CFD) model of the experiment that includes multiphase flow and a custom bubble injection model for the solution region.
A quasilinear model for solute transport under unsaturated flow
International Nuclear Information System (INIS)
Houseworth, J.E.; Leem, J.
2009-01-01
We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.
Solutions of ward's modified chiral model
International Nuclear Information System (INIS)
Ioannidou, T.; Zakrzewski, W.J.
1997-01-01
We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields
Modelling environmental dynamics. Advances in goematic solutions
Energy Technology Data Exchange (ETDEWEB)
Paegelow, Martin [Toulouse-2 Univ., 31 (France). GEODE UMR 5602 CNRS; Camacho Olmedo, Maria Teresa (eds.) [Granada Univ (Spain). Dpto. de Analisis Geografico Regional y Geografia Fisica
2008-07-01
Modelling environmental dynamics is critical to understanding and predicting the evolution of the environment in response to the large number of influences including urbanisation, climate change and deforestation. Simulation and modelling provide support for decision making in environmental management. The first chapter introduces terminology and provides an overview of methodological modelling approaches which may be applied to environmental and complex dynamics. Based on this introduction this book illustrates various models applied to a large variety of themes: deforestation in tropical regions, fire risk, natural reforestation in European mountains, agriculture, biodiversity, urbanism, climate change and land management for decision support, etc. These case studies, provided by a large international spectrum of researchers and presented in a uniform structure, focus particularly on methods and model validation so that this book is not only aimed at researchers and graduates but also at professionals. (orig.)
The WITCH Model. Structure, Baseline, Solutions.
Energy Technology Data Exchange (ETDEWEB)
Bosetti, V.; Massetti, E.; Tavoni, M.
2007-07-01
WITCH - World Induced Technical Change Hybrid - is a regionally disaggregated hard link hybrid global model with a neoclassical optimal growth structure (top down) and an energy input detail (bottom up). The model endogenously accounts for technological change, both through learning curves affecting prices of new vintages of capital and through R and D investments. The model features the main economic and environmental policies in each world region as the outcome of a dynamic game. WITCH belongs to the class of Integrated Assessment Models as it possesses a climate module that feeds climate changes back into the economy. In this paper we provide a thorough discussion of the model structure and baseline projections. We report detailed information on the evolution of energy demand, technology and CO2 emissions. Finally, we explicitly quantifiy the role of free riding in determining the emissions scenarios. (auth)
Models of fast-electron penetration
International Nuclear Information System (INIS)
Perry, D.J.; Raisis, S.K.
1994-01-01
We introduce multiple scattering models of charged-particle penetration which are based on the previous analyses of Yang and Perry. Our development removes the main limitations of the Fermi-Eyges approach while retaining its considerable potential as a theory which is useful for applied work. We illustrate key predictions with sample calculations that are of particular interest in therapeutic applications, 5-20 MeV electrons incident on water. 8 refs., 5 figs
Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution
Faber, Hendrik
2017-04-28
Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.
Regularity of solutions of a phase field model
Amler, Thomas
2013-01-01
Phase field models are widely-used for modelling phase transition processes such as solidification, freezing or CO2 sequestration. In this paper, a phase field model proposed by G. Caginalp is considered. The existence and uniqueness of solutions are proved in the case of nonsmooth initial data. Continuity of solutions with respect to time is established. In particular, it is shown that the governing initial boundary value problem can be considered as a dynamical system. © 2013 International Press.
Directory of Open Access Journals (Sweden)
Popeangã Vasile Nicolae
2010-07-01
Full Text Available European Union enlargement, the existence of new needs and demands, requires the development of innovation and quality of public administration, which means improving public services in the global economy as a requirement of competitiveness. The European Union hopes to achieve the major objectives in what concerns the electronic government by 2010; actions necessary to achieve them are adopting solutions based on information and communication technologies in the Romanian public administration, aimed at developing modern public services. This paper presents some best experiences of e-governance in Romania and the results of e-governance in Gorj County, and the degree of implementation and use by citizens.
Global Solution of Atmospheric Circulation Models with Humidity Effect
Luo, Hong
2014-01-01
The atmospheric circulation models are deduced from the very complex atmospheric circulation models based on the actual background and meteorological data. The models are able to show features of atmospheric circulation and are easy to be studied. It is proved that existence of global solutions to atmospheric circulation models with the use of the $T$-weakly continuous operator.
Analytic solution of a five-direction radiation transport model
International Nuclear Information System (INIS)
Cramer, S.N.
1988-01-01
In order to test certain spatial and angular dependent Monte Carlo biasing techniques, a one-dimensional, one energy, two-media, five-direction radiation transport model has been devised for which an analytic solution exists. Although this solution is too long to be conveniently expressed in an explicit form, it can be easily evaluated on the smallest of computers. This solution is discussed in this paper. 1 ref
Solutions manual to accompany finite mathematics models and applications
Morris, Carla C
2015-01-01
A solutions manual to accompany Finite Mathematics: Models and Applications In order to emphasize the main concepts of each chapter, Finite Mathematics: Models and Applications features plentiful pedagogical elements throughout such as special exercises, end notes, hints, select solutions, biographies of key mathematicians, boxed key principles, a glossary of important terms and topics, and an overview of use of technology. The book encourages the modeling of linear programs and their solutions and uses common computer software programs such as LINDO. In addition to extensive chapters on pr
Ontological modeling of electronic health information exchange.
McMurray, J; Zhu, L; McKillop, I; Chen, H
2015-08-01
Investments of resources to purposively improve the movement of information between health system providers are currently made with imperfect information. No inventories of system-level electronic health information flows currently exist, nor do measures of inter-organizational electronic information exchange. Using Protégé 4, an open-source OWL Web ontology language editor and knowledge-based framework, we formalized a model that decomposes inter-organizational electronic health information flow into derivative concepts such as diversity, breadth, volume, structure, standardization and connectivity. The ontology was populated with data from a regional health system and the flows were measured. Individual instance's properties were inferred from their class associations as determined by their data and object property rules. It was also possible to visualize interoperability activity for regional analysis and planning purposes. A property called Impact was created from the total number of patients or clients that a health entity in the region served in a year, and the total number of health service providers or organizations with whom it exchanged information in support of clinical decision-making, diagnosis or treatment. Identifying providers with a high Impact but low Interoperability score could assist planners and policy-makers to optimize technology investments intended to electronically share patient information across the continuum of care. Finally, we demonstrated how linked ontologies were used to identify logical inconsistencies in self-reported data for the study. Copyright © 2015 Elsevier Inc. All rights reserved.
Solutions of the Dirac-Fock Equations and the Energy of the Electron-Positron Field
Huber, M
2005-01-01
We consider atoms with closed shells, i.e., the electron number $N$ is $2,\\ 8,\\ 10,...$, and weak electron-electron interaction. Then there exists a unique solution $\\gamma$ of the Dirac-Fock equations $[D_{g,\\alpha}^{(\\gamma)},\\gamma]=0$ with the additional property that $\\gamma$ is the orthogonal projector onto the first $N$ positive eigenvalues of the Dirac-Fock operator $D_{g,\\alpha}^{(\\gamma)}$. Moreover, $\\gamma$ minimizes the energy of the relativistic electron-positron field in Hartree-Fock approximation, if the splitting of $\\gH:=L^2(\\rz^3)\\otimes \\cz^4$ into electron and positron subspace, is chosen self-consistently, i.e., the projection onto the electron-subspace is given by the positive spectral projection of $D_{g,\\alpha}^{(\\gamma)}$. For fixed electron-nucleus coupling constant $g:=\\alpha Z$ we give quantitative estimates on the maximal value of the fine structure constant $\\alpha$ for which the existence can be guaranteed.
Electronic structure of trypsin inhibitor from squash seeds in aqueous solution
Zheng, Haoping
2000-10-01
The electronic structure of the trypsin inhibitor from seeds of the squash Cucurbita maxima (CMTI-I) in aqueous solution is obtained by ab initio, all-electron, full-potential calculations using the self-consistent cluster-embedding (SCCE) method. The reactive site of the inhibitor is explained theoretically, which is in agreement with the experimental results. It is shown that the coordinates of oxygen atoms in the inhibitor, determined by nuclear magnetic resonance and combination of distance geometry and dynamical simulated annealing, are systematically less accurate than that of other kinds of heavy atoms.
Anisotropic static solutions in modelling highly compact bodies
Indian Academy of Sciences (India)
Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ...
Solute transport modelling with the variable temporally dependent ...
Indian Academy of Sciences (India)
Pintu Das
2018-02-07
Feb 7, 2018 ... Abstract. In this present study, analytical and numerical solutions are obtained for solute transport modelling in homogeneous semi-infinite porous medium. The dispersion coefficient is assumed to be initial dispersion and velocity is assumed to be temporally dependent with initial seepage velocity. Also ...
Modeling solutions to Tanzania's physician workforce challenge
Directory of Open Access Journals (Sweden)
Alex J. Goodell
2016-06-01
Full Text Available Background: There is a great need for physicians in Tanzania. In 2012, there were approximately 0.31 physicians per 10,000 individuals nationwide, with a lower ratio in the rural areas, where the majority of the population resides. In response, universities across Tanzania have greatly increased the enrollment of medical students. Yet evidence suggests high attrition of medical graduates to other professions and emigration from rural areas where they are most needed. Objective: To estimate the future number of physicians practicing in Tanzania and the potential impact of interventions to improve retention, we built a model that tracks medical students from enrollment through clinical practice, from 1990 to 2025. Design: We designed a Markov process with 92 potential states capturing the movement of 25,000 medical students and physicians from medical training through employment. Work possibilities included clinical practice (divided into rural or urban, public or private, non-clinical work, and emigration. We populated and calibrated the model using a national 2005/2006 physician mapping survey, as well as graduation records, graduate tracking surveys, and other available data. Results: The model projects massive losses to clinical practice between 2016 and 2025, especially in rural areas. Approximately 56% of all medical school students enrolled between 2011 and 2020 will not be practicing medicine in Tanzania in 2025. Even with these losses, the model forecasts an increase in the physician-to-population ratio to 1.4 per 10,000 by 2025. Increasing the absorption of recent graduates into the public sector and/or developing a rural training track would ameliorate physician attrition in the most underserved areas. Conclusions: Tanzania is making significant investments in the training of physicians. Without linking these doctors to employment and ensuring their retention, the majority of this investment in medical education will be jeopardized.
Radiolysis ob benzene, toluene and phenol aqueous solutions utilizing high energy electron beam
International Nuclear Information System (INIS)
Gonzalez Vanderhaghen, D.E.
1998-01-01
In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 μA). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water
Directory of Open Access Journals (Sweden)
Sérgio Roberto da Silva
2016-06-01
Full Text Available Colombia has been one of the first countries to introduce electronic billing process on a voluntary basis, from a traditional to a digital version. In this context, the article analyzes the electronic billing process implemented in Colombia and the advantages. Methodological research is applied, qualitative, descriptive and documentary; where the regulatory framework and the conceptualization of the model is identified; the process of adoption of electronic billing is analyzed, and finally the advantages and disadvantages of its implementation is analyzed. The findings indicate that the model applied in Colombia to issue an electronic billing in sending and receiving process, is not complex, but it requires a small adequate infrastructure and trained personnel to reach all sectors, especially the micro and business which is the largest business network in the country.
Modeling Complex Chemical Systems: Problems and Solutions
van Dijk, Jan
2016-09-01
Non-equilibrium plasmas in complex gas mixtures are at the heart of numerous contemporary technologies. They typically contain dozens to hundreds of species, involved in hundreds to thousands of reactions. Chemists and physicists have always been interested in what are now called chemical reduction techniques (CRT's). The idea of such CRT's is that they reduce the number of species that need to be considered explicitly without compromising the validity of the model. This is usually achieved on the basis of an analysis of the reaction time scales of the system under study, which identifies species that are in partial equilibrium after a given time span. The first such CRT that has been widely used in plasma physics was developed in the 1960's and resulted in the concept of effective ionization and recombination rates. It was later generalized to systems in which multiple levels are effected by transport. In recent years there has been a renewed interest in tools for chemical reduction and reaction pathway analysis. An example of the latter is the PumpKin tool. Another trend is that techniques that have previously been developed in other fields of science are adapted as to be able to handle the plasma state of matter. Examples are the Intrinsic Low Dimension Manifold (ILDM) method and its derivatives, which originate from combustion engineering, and the general-purpose Principle Component Analysis (PCA) technique. In this contribution we will provide an overview of the most common reduction techniques, then critically assess the pros and cons of the methods that have gained most popularity in recent years. Examples will be provided for plasmas in argon and carbon dioxide.
Model based design of electronic throttle control
Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.
2017-11-01
With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more
Elwakil, S. A.; Abulwafa, E. M.; El-Shewy, E. K.; Abd-El-Hamid, H. M.
2011-11-01
A theoretical investigation has been made for electron acoustic waves propagating in a system of unmagnetized collisionless plasma consists of a cold electron fluid and ions with two different temperatures in which the hot ions obey the non-thermal distribution. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude electrostatic waves. It is found that the presence of the energetic population of non-thermal hot ions δ, initial normalized equilibrium density of low temperature ions μ and the ratio of temperatures of low temperature ions to high temperature ions β do not only significantly modify the basic properties of solitary structure, but also change the polarity of the solitary profiles. At the critical hot ions density, the KdV equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified KdV equation. In the vicinity of the critical hot ions density, neither KdV nor modified KdV equation is appropriate for describing the electron acoustic waves. Therefore, a further modified KdV equation is derived. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the various KdV-type equations, is used here. Numerical studies have been reveals different solutions e.g., bell-shaped solitary pulses, singular solitary "blowup" solutions, Jacobi elliptic doubly periodic wave, Weierstrass elliptic doubly periodic type solutions, in addition to explosive pulses. The results of the present investigation may be applicable to some plasma environments, such as Earth's magnetotail region.
A pulse radiolysis study of the electron reaction with DNA in aqueous solution and ice
International Nuclear Information System (INIS)
Verberne, J.B.
1981-01-01
Research is described into some aspects of the interaction of ionizing radiation with DNA, the main emphasis being on the indirect effect where the radiation causes the formation of intermediates in the surrounding medium which then interact with the DNA. Experiments are described which have been carried out to examine the dependence of the reaction rate constant on ionic strength and counterion charge. They show that for double stranded DNA (dsDNA) the reaction rate constant increases with ionic strength. To see whether quantitative agreement can be obtained between the observations and a physical interpretation the author combines a model for reaction kinetics and a refined model for the electrostatic potential into one to obtain a theoretical rate constant for reaction with a cylindrical polyelectrolyte. Optical absorption spectra of the electron adducts of ss- and dsDNA are shown to exist and they differ significantly from the spectra of the H and OH adducts. The spectra of the electron adducts of the nucleotides have been measured. Experiments are also described devoted to the precursor of the hydrated electron: the thermalized, dry electron. Although from a radiation chemical point of view the experiments yielded a lot of information (a direct observation of the dry electron, the kinetics of electron localization, the role of ice defects in the solvation process, etc.), they proved also that the dry electron does not react with DNA in an ice matrix. (Auth.)
Solutions of matrix models in the DIII generator ensemble
Roussel, Harold
1994-01-01
In this paper we solve two matrix models, using standard and new techniques. The two models are represented by special form of antisymmetric matrices and are classified in the DIII generator ensemble. It is shown that, in the double scaling limit, their free energy has the same behavior as previous models describing oriented and unoriented surfaces. We also found an additional solution for the first model.
Stability of core-shell nanowires in selected model solutions
Kalska-Szostko, B.; Wykowska, U.; Basa, A.; Zambrzycka, E.
2015-03-01
This paper presents the studies of stability of magnetic core-shell nanowires prepared by electrochemical deposition from an acidic solution containing iron in the core and modified surface layer. The obtained nanowires were tested according to their durability in distilled water, 0.01 M citric acid, 0.9% NaCl, and commercial white wine (12% alcohol). The proposed solutions were chosen in such a way as to mimic food related environment due to a possible application of nanowires as additives to, for example, packages. After 1, 2 and 3 weeks wetting in the solutions, nanoparticles were tested by Infrared Spectroscopy, Atomic Absorption Spectroscopy, Transmission Electron Microscopy and X-ray diffraction methods.
An asymptotic solution to a passive biped walker model
Yudaev, Sergey A.; Rachinskii, Dmitrii; Sobolev, Vladimir A.
2017-02-01
We consider a simple model of a passive dynamic biped robot walker with point feet and legs without knee. The model is a switched system, which includes an inverted double pendulum. Robot’s gait and its stability depend on parameters such as the slope of the ramp, the length of robot’s legs, and the mass distribution along the legs. We present an asymptotic solution of the model. The first correction to the zero order approximation is shown to agree with the numerical solution for a limited parameter range.
Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations
DEFF Research Database (Denmark)
Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing
2007-01-01
Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...
Modeling of CO2 absorber using an AMP solution
DEFF Research Database (Denmark)
Gabrielsen, Jostein; Michelsen, Michael Locht; Stenby, Erling Halfdan
2006-01-01
Abstract: An explicit model for carbon dioxide (CO2) solubility in an aqueous solution of 2-amino-2-methyl-1-propanol (AMP) has been proposed and an expression for the heat of absorption of CO2 has been developed as a function of loading and temperature. A rate-based steady-state model for CO2...
A GROOVE Solution for the BPMN to BPEL Model Transformation
de Mol, M.J.; Zimakova, M.V.
In this paper we present a solution of a model transformation between two standard languages for business process modeling BPMN and BPEL, using the GROOVE tool set. GROOVE is a tool for graph transformations that uses directed, edge labelled simple graphs and the SPO approach [Ren04]. Given a graph
Optical signal response pf the alanine gel solution for photons and electrons clinical beams
International Nuclear Information System (INIS)
Silva, Cleber Feijo; Campos, Leticia Lucente
2009-01-01
Alanine gel dosimeter is a new gel material developed at IPEN that presents significant improvement on previous alanine systems developed by Costa (1994). The measure technique is based on the transformation of ferrous ions (Fe 2+ ) in ferric ions (Fe 3+ ) after irradiation. The DL-Alanine (C 3 H 7 NO 2 ) is an aminoacid tissue equivalent that improves the production of ferric ions in the solution. This work aims to study the comparison of optical signal response of the alanine gel solution for photons and electrons clinical beams. It was observed that the calibration factor can be considered independent of quality of the radiation for photons and electrons clinical beams. Therefore, it can be used the same calibration factor for evaluating the absorbed dose in photons and electrons fields in the energy of 6 MeV. Alanine Gel Dosimeter presents good performance and can be useful as alternative dosimeter in the radiotherapy area using MRI technique for 3D dose distribution evaluation. (author)
Large time periodic solutions to coupled chemotaxis-fluid models
Jin, Chunhua
2017-12-01
In this paper, we deal with the time periodic problem to coupled chemotaxis-fluid models. We prove the existence of large time periodic strong solutions for the full chemotaxis-Navier-Stokes system in spatial dimension N=2, and the existence of large time periodic strong solutions for the chemotaxis-Stokes system in spatial dimension N=3. On the basis of these, the regularity of the solutions can be further improved. More precisely speaking, if the time periodic source g and the potential force \
A Mesoscopic Model for Protein-Protein Interactions in Solution
Lund, Mikael; Jönsson, Bo
2003-01-01
Protein self-association may be detrimental in biological systems, but can be utilized in a controlled fashion for protein crystallization. It is hence of considerable interest to understand how factors like solution conditions prevent or promote aggregation. Here we present a computational model describing interactions between protein molecules in solution. The calculations are based on a molecular description capturing the detailed structure of the protein molecule using x-ray or nuclear ma...
Jacobian elliptic wave solutions in an anharmonic molecular crystal model
International Nuclear Information System (INIS)
Teh, C.G.R.; Lee, B.S.; Koo, W.K.
1997-07-01
Explicit Jacobian elliptic wave solutions are found in the anharmonic molecular crystal model for both the continuum limit and discrete modes. This class of wave solutions include the famous pulse-like and kink-like solitary modes. We would also like to report on the existence of some highly discrete staggered solitary wave modes not found in the continuum limit. (author). 9 refs, 1 fig
International Nuclear Information System (INIS)
Guedes, S.M.L.; Vasconcellos, M.B.A.
1986-01-01
The radiolysis of tetracycline hydrochloride dissolved in aerated alkaline aqueous solutions containing 0.1, 0.5 and 1M NaOH at 77 K, followed by ESR is reported. The rate constants for the reactions between the electron and physical or chemical traps which are present in these solutions are calculated. The reactivity of electrons that are formed in the radiolysis of water decreases in the following proportions: physical traps: chemical traps: molecules of water (4.8x10sup(14) : 6.5x10sup(8) : 1.0). The electrons react preferentially with the solute instead of the solvent. (author)
Dynamic rheology behavior of electron beam-irradiated cellulose pulp/NMMO solution
International Nuclear Information System (INIS)
Zhou Ruimin; Deng Bangjun; Hao Xufeng; Zhou Fei; Wu Xinfeng; Chen Yongkang
2008-01-01
The rheological behavior of irradiated cellulose pulp solution by electron beam was investigated. Storage modulus G', loss modulus G'', the dependence of complex viscosity η* and frequency ω of cellulose solutions were measured by DSR-200 Rheometer (Rheometrics co., USA). The molecular weight of irradiated cellulose was measured via the intrinsic viscosity measurement using an Ubbelohde capillary viscometer. The crystalline structure was studied by FTIR Spectroscopy. The results congruously showed that the molecular weight of pulp cellulose decrease and the molecular weight distribution of cellulose become narrow with increase in the irradiation dose. Moreover, the crystalline structure of the cellulose was destroyed, the force of the snarl between the cellulose molecules weakens and the accessibility of pulp spinning is improved. The study supplies some useful data for spinnability of irradiated cellulose and technical data to the filature industry
The X-ray electronic spectra of TiC-NbC solid solution
International Nuclear Information System (INIS)
Cherkashenko, V.M.; Ezhov, A.V.; Nazarova, S.Z.; Kurmaev, Eh.Z.; Nojmann, M.
2001-01-01
X-ray photoelectronic spectra of inner levels and valency lands in TiC-NbC solid solutions were studied. Results of combining TiL α -, NbL β2.15 -, CK α - X-ray emission spectra and photoelectronic spectra of valency bands in one energy scale in reference to the Fermi level were analyzed. It is shown that a change in crystal lattice parameters, as well as charge redistribution between titanium and niobium atoms, produce a strong effect on electronic structure formation in the mixed carbides mentioned [ru
Marek, A; Blum, V; Johanni, R; Havu, V; Lang, B; Auckenthaler, T; Heinecke, A; Bungartz, H-J; Lederer, H
2014-05-28
Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overcome. In many cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs is needed, so that iterative solution strategies that focus only on a few eigenvalues become ineffective. Likewise, it is not always desirable or practical to circumvent the eigenvalue solution entirely. We here review some current developments regarding dense eigenvalue solvers and then focus on the Eigenvalue soLvers for Petascale Applications (ELPA) library, which facilitates the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for dense matrices that have real-valued and complex-valued matrix entries, respectively, on parallel computer platforms. ELPA addresses standard as well as generalized eigenvalue problems, relying on the well documented matrix layout of the Scalable Linear Algebra PACKage (ScaLAPACK) library but replacing all actual parallel solution steps with subroutines of its own. For these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines and proprietary libraries that implement the ScaLAPACK interface (e.g. Intel's MKL). The most time-critical step is the reduction of the matrix to tridiagonal form and the corresponding backtransformation of the eigenvectors. ELPA offers both a one-step tridiagonalization (successive Householder transformations) and a two-step transformation that is more efficient especially towards larger matrices and larger numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-OpenMPI implementation available as well. Scalability beyond 10,000 CPU cores for problem
A molecular-thermodynamic model for polyelectrolyte solutions
Energy Technology Data Exchange (ETDEWEB)
Jiang, J.; Liu, H.; Hu, Y. [Thermodynamics Research Laboratory, East China University of Science and Technology, Shanghai 200237 (China); Prausnitz, J.M. [Department of Chemical Engineering, University of California, Berkeley, and Chemical Sciences Division, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)
1998-01-01
Polyelectrolyte solutions are modeled as freely tangent-jointed, charged hard-sphere chains and corresponding counterions in a continuum medium with permitivity {var_epsilon}. By adopting the sticky-point model, the Helmholtz function for polyelectrolyte solutions is derived through the r-particle cavity-correlation function (CCF) for chains of sticky, charged hard spheres. The r-CCF is approximated by a product of effective nearest-neighbor two-particle CCFs; these are determined from the hypernetted-chain and mean-spherical closures (HNC/MSA) inside and outside the hard core, respectively, for the integral equation theory for electrolytes. The colligative properties are given as explicit functions of a scaling parameter {Gamma} that can be estimated by a simple iteration procedure. Osmotic pressures, osmotic coefficients, and activity coefficients are calculated for model solutions with various chain lengths. They are in good agreement with molecular simulation and experimental results. {copyright} {ital 1998 American Institute of Physics.}
Kleinerman, O; Parra-Vasquez, A Nicholas G; Green, M J; Behabtu, N; Schmidt, J; Kesselman, E; Young, C C; Cohen, Y; Pasquali, M; Talmon, Y
2015-07-01
Cryogenic electron microscopy (cryo-EM) is a powerful tool for imaging liquid and semiliquid systems. While cryogenic transmission electron microscopy (cryo-TEM) is a standard technique in many fields, cryogenic scanning electron microscopy (cryo-SEM) is still not that widely used and is far less developed. The vast majority of systems under investigation by cryo-EM involve either water or organic components. In this paper, we introduce the use of novel cryo-TEM and cryo-SEM specimen preparation and imaging methodologies, suitable for highly acidic and very reactive systems. Both preserve the native nanostructure in the system, while not harming the expensive equipment or the user. We present examples of direct imaging of single-walled, multiwalled carbon nanotubes and graphene, dissolved in chlorosulfonic acid and oleum. Moreover, we demonstrate the ability of these new cryo-TEM and cryo-SEM methodologies to follow phase transitions in carbon nanotube (CNT)/superacid systems, starting from dilute solutions up to the concentrated nematic liquid-crystalline CNT phases, used as the 'dope' for all-carbon-fibre spinning. Originally developed for direct imaging of CNTs and graphene dissolution and self-assembly in superacids, these methodologies can be implemented for a variety of highly acidic systems, paving a way for a new field of nonaqueous cryogenic electron microscopy. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Fares, H.; Piovella, N.; Robb, G. R. M.
2018-01-01
We study the spontaneous emission in high-gain free-electron lasers operating in the quantum regime and its detrimental effect on coherent emission. A quantum model describing the coherent and spontaneous emission in free electron lasers has been recently proposed and investigated [G. R. M. Robb and R. Bonifacio, Phys. Plasmas 19, 073101 (2012)]. The model is based on a Wigner distribution describing the electron beam dynamics, coupled to Maxwell equations for the emitted radiation field. Here, we rephrase the model in a more rigorous way, considering a discrete Wigner distribution defined for a periodic space coordinate for which the electron momentum is discrete. From its numerical solution, we find good agreement with the approximate continuous model. In the quantum regime of the free-electron laser, we obtain a simple density matrix equation for two momentum states, where the role of the spontaneous emission has a clear interpretation in terms of coherence decay and population transfer.
Global solution for a chemotactic haptotactic model of cancer invasion
Tao, Youshan; Wang, Mingjun
2008-10-01
This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.
Modeling electron transport in the presence of electric and magnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Fan, Wesley C.; Drumm, Clifton Russell; Pautz, Shawn D.; Turner, C. David
2013-09-01
This report describes the theoretical background on modeling electron transport in the presence of electric and magnetic fields by incorporating the effects of the Lorentz force on electron motion into the Boltzmann transport equation. Electromagnetic fields alter the electron energy and trajectory continuously, and these effects can be characterized mathematically by differential operators in terms of electron energy and direction. Numerical solution techniques, based on the discrete-ordinates and finite-element methods, are developed and implemented in an existing radiation transport code, SCEPTRE.
Using a matter wave model to study the structure of the electron inside an atom
Chang, Donald
In Bohr's atomic model, the atom was conceptually modeled as a miniature solar system. With the development of the Schrödinger equation, the wave function of the electron inside an atom becomes much better known. But the electron is still regarded as a pointed object; according to the Copenhagen Interpretation, the wave function is thought to describe only the probability of finding the electron. Such an interpretation, however, has raised some conceptual questions. For example, how can a point-like electron form a chemical bond between neighboring atoms? In an attempt to overcome this difficulty, we use a matter wave theory to model the structure of an electron inside the atom. This model is inspired by noticing the similarity between a free electron and a photon; both particles behave like a corpuscular object as well as a physical wave. Thus, we hypothesize that, like the photon, an electron is an excitation wave of a real physical field. Based on this hypothesis, we have derived a basic wave equation for the free electron. We show that, in the presence of an electrical potential, this basic wave equation can lead to the Schrödinger equation. This work implies that the solution of the Schrödinger equation actually represents the physical waves of the electron. Thus, the electron inside the atom should behave more like a topologically distributive wave than a pointed object. In this presentation, we will discuss the advantages and limitations of this model.
Model Order Reduction for Electronic Circuits:
DEFF Research Database (Denmark)
Hjorth, Poul G.; Shontz, Suzanne
Electronic circuits are ubiquitous; they are used in numerous industries including: the semiconductor, communication, robotics, auto, and music industries (among many others). As products become more and more complicated, their electronic circuits also grow in size and complexity. This increased...
Modeling Electronic Properties of Complex Oxides
Krishnaswamy, Karthik
Complex oxides are a class of materials that have recently emerged as potential candidates for electronic applications owing to their interesting electronic properties. The goal of this dissertation is to develop a fundamental understanding of these electronic properties using a combination of first-principles approaches based on density functional theory (DFT), and Schrodinger-Poisson (SP) simulation (Abstract shortened by ProQuest.
International Nuclear Information System (INIS)
Maksimov, S K; Maksimov, K S
2011-01-01
It is suggested possible approaches to the comprehensive solution of the problem of structural-morphological control in mass production of nanoparticles only by the use of advanced methods of scanning electron microscopy.
On the Computation of Secondary Electron Emission Models
Clerc, Sebastien; Dennison, JR; Hoffmann, Ryan; Abbott, Jonathon
2006-01-01
Secondary electron emission is a critical contributor to the charge particle current balance in spacecraft charging. Spacecraft charging simulation codes use a parameterized expression for the secondary electron (SE) yield delta(Eo) as a function of the incident electron energy Eo. Simple three-step physics models of the electron penetration, transport, and emission from a solid are typically expressed in terms of the incident electron penetration depth at normal incidence R(Eo) and the mean ...
A Model for Teaching Electronic Commerce Students
Directory of Open Access Journals (Sweden)
Howard C. Woodard
2002-10-01
Full Text Available The teaching of information technology in an ever-changing world at universities presents a challenge. Are courses taught as concepts, while ignoring hands-on courses, leaving the hands-on classes to the technical colleges or trade schools? Does this produce the best employees for industry or give students the knowledge and skills necessary to function in a high-tech world? At GeorgiaCollege & StateUniversity (GC&SU a model was developed that combines both concepts and practical hands-on skill to meet this challenge. Using this model, a program was developed that consists of classroom lecture of concepts as well as practical hands-on exercises for mastering the knowledge and developing the skills necessary to succeed in the high-tech world of electronic commerce. The students become productive day one of a new job assignment. This solves the problem of students having the "book knowledge" but not knowing how to apply what has been learned.
Directory of Open Access Journals (Sweden)
Mohammad hasan Ehrampoosh
2017-05-01
Full Text Available Background: Humic acids (HAs have adverse effects on the environment; therefore, they should be removed from the water and wastewater. The aim of this study was to evaluate the efficiency of the electron beam irradiation for removal of humic acid from aqueous solutions. Methods: Humic acid was purchased from Sigma-Aldrich Company. After preparation of stock solution in alkaline condition, different concentrations of humic acid (10, 25 and 50 mg were prepared. Study has done at pH= 8 and in different dose rates of 1, 3, 6, 9 and 15 kGy. Then initial absorption of samples was measured at 254 nm using UV-Visible spectrophotometer before and after the irradiation. Excel and SPSS Ver. 18 were used for analyzing the data and drawing graphs. Results: The results of this study showed that by increasing adsorbed dose from 1 to 15 kGy, the efficiency of HA removal increased and by increasing humic acid concentration from 10 to 50 mg/L, the removal efficiency of humic acid decreased. The results of the kinetic study showed that irradiation of humic acid followed pseudo second-order reaction. Conclusion: It can be concluded that electron beam irradiation can be a useful technology for the treatment of environmental samples contaminated by humic acid.
Directory of Open Access Journals (Sweden)
Yuanzhao Wu
2017-08-01
Full Text Available The present study is primarily designed to develop an environmentally-benign approach for the recovery of precious metals, especially gold, from the ever increasingly-discarded electronic wastes (e-waste. By coupling the metal reduction process with an increase in the intrinsic oxidation state of the aniline polymers, and the subsequent re-protonation and reduction of the intrinsically oxidized polymer to the protonated emeraldine (EM salt, polyaniline (PANi films and polyaniline coated cotton fibers are able to recover metallic gold from acid/halide leaching solutions of electronic wastes spontaneously and sustainably. The current technique, which does not require the use of extensive extracting reagents or external energy input, can recover as much as 90% of gold from the leaching acidic solutions. The regeneration of polyaniline after gold recovery, as confirmed by the X-ray photoelectron spectroscopy measurements, promises the continuous operation using the current approach. The as-recovered elemental gold can be further concentrated and purified by incineration in air.
Energy Technology Data Exchange (ETDEWEB)
Parent, Lucas R. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Bakalis, Evangelos [Dipartimento; Ramírez-Hernández, Abelardo [Materials; Institute; Kammeyer, Jacquelin K. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Park, Chiwoo [Department; de Pablo, Juan [Materials; Institute; Zerbetto, Francesco [Dipartimento; Patterson, Joseph P. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States; Laboratory; Gianneschi, Nathan C. [Department; amp, Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
2017-11-16
Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.
Model of electron capture in low-temperature glasses
International Nuclear Information System (INIS)
Bartczak, W.M.; Swiatla, D.; Kroh, J.
1983-01-01
The new model of electron capture by a statistical variety of traps in glassy matrices is proposed. The electron capture is interpreted as the radiationless transition (assisted by multiphonon emission) of the mobile electron to the localized state in the trap. The conception of 'unfair' and 'fair' traps is introduced. The 'unfair' trap captures the mobile electron by the shallow excited state. In contrast, the 'fair' trap captures the electron by the ground state. The model calculations of the statistical distributions of the occupied electron traps are presented and discussed with respect to experimental results. (author)
Stability of subsystem solutions in agent-based models
Perc, Matjaž
2018-01-01
The fact that relatively simple entities, such as particles or neurons, or even ants or bees or humans, give rise to fascinatingly complex behaviour when interacting in large numbers is the hallmark of complex systems science. Agent-based models are frequently employed for modelling and obtaining a predictive understanding of complex systems. Since the sheer number of equations that describe the behaviour of an entire agent-based model often makes it impossible to solve such models exactly, Monte Carlo simulation methods must be used for the analysis. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among agents that describe systems in biology, sociology or the humanities often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. This begets the question: when can we be certain that an observed simulation outcome of an agent-based model is actually stable and valid in the large system-size limit? The latter is key for the correct determination of phase transitions between different stable solutions, and for the understanding of the underlying microscopic processes that led to these phase transitions. We show that a satisfactory answer can only be obtained by means of a complete stability analysis of subsystem solutions. A subsystem solution can be formed by any subset of all possible agent states. The winner between two subsystem solutions can be determined by the average moving direction of the invasion front that separates them, yet it is crucial that the competing subsystem solutions are characterised by a proper composition and spatiotemporal structure before the competition starts. We use the spatial public goods game with diverse tolerance as an example, but the approach has relevance for a wide variety of agent-based models.
ADVAN-style analytical solutions for common pharmacokinetic models.
Abuhelwa, Ahmad Y; Foster, David J R; Upton, Richard N
2015-01-01
The analytical solutions to compartmental pharmacokinetic models are well known, but have not been presented in a form that easily allows for complex dosing regimen and changes in covariate/parameter values that may occur at discrete times within and/or between dosing intervals. Laplace transforms were used to derive ADVAN-style analytical solutions for 1, 2, and 3 compartment pharmacokinetic linear models of intravenous and first-order absorption drug administration. The equations calculate the change in drug amounts in each compartment of the model over a time interval (t; t = t2 - t1) accounting for any dose or covariate events acting in the time interval. The equations were coded in the R language and used to simulate the time-course of drug amounts in each compartment of the systems. The equations were validated against commercial software [NONMEM (Beal, Sheiner, Boeckmann, & Bauer, 2009)] output to assess their capability to handle both complex dosage regimens and the effect of changes in covariate/parameter values that may occur at discrete times within or between dosing intervals. For all tested pharmacokinetic models, the time-course of drug amounts using the ADVAN-style analytical solutions were identical to NONMEM outputs to at least four significant figures, confirming the validity of the presented equations. To our knowledge, this paper presents the ADVAN-style equations for common pharmacokinetic models in the literature for the first time. The presented ADVAN-style equations overcome obstacles to implementing the classical analytical solutions in software, and have speed advantages over solutions using differential equation solvers. The equations presented in this paper fill a gap in the pharmacokinetic literature, and it is expected that these equations will facilitate the investigation of useful open-source software for modelling pharmacokinetic data. Copyright © 2015 Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Hirano, Kazumi; Kinoshita, Takaaki [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Uemura, Takeshi [Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Motohashi, Hozumi [Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Watanabe, Yohei; Ebihara, Tatsuhiko [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Nishiyama, Hidetoshi [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Sato, Mari [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Suga, Mitsuo [JEOL Ltd., 1-2 Musashino 3-chome, Akishima, Tokyo 196-8558 (Japan); Maruyama, Yuusuke; Tsuji, Noriko M. [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan); Yamamoto, Masayuki [Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575 (Japan); Nishihara, Shoko, E-mail: shoko@soka.ac.jp [Laboratory of Cell Biology, Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577 (Japan); Sato, Chikara, E-mail: ti-sato@aist.go.jp [Biomedical Research Institute, National Institute of Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8566 (Japan)
2014-08-01
Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM.
International Nuclear Information System (INIS)
Hirano, Kazumi; Kinoshita, Takaaki; Uemura, Takeshi; Motohashi, Hozumi; Watanabe, Yohei; Ebihara, Tatsuhiko; Nishiyama, Hidetoshi; Sato, Mari; Suga, Mitsuo; Maruyama, Yuusuke; Tsuji, Noriko M.; Yamamoto, Masayuki; Nishihara, Shoko; Sato, Chikara
2014-01-01
Correlative light-electron microscopy of cells in a natural environment of aqueous liquid facilitates high-throughput observation of protein complex formation. ASEM allows the inverted SEM to observe the wet sample from below, while an optical microscope observes it from above quasi-simultaneously. The disposable ASEM dish with a silicon nitride (SiN) film window can be coated variously to realize the primary-culture of substrate-sensitive cells in a few milliliters of culture medium in a stable incubator environment. Neuron differentiation, neural networking, proplatelet-formation and phagocytosis were captured by optical or fluorescence microscopy, and imaged at high resolution by gold-labeled immuno-ASEM with/without metal staining. Fas expression on the cell surface was visualized, correlated to the spatial distribution of F-actin. Axonal partitioning was studied using primary-culture neurons, and presynaptic induction by GluRδ2-N-terminus-linked fluorescent magnetic beads was correlated to the presynaptic-marker Bassoon. Further, megakaryocytes secreting proplatelets were captured, and P-selectins with adherence activity were localized to some of the granules present by immuno-ASEM. The phagocytosis of lactic acid bacteria by dendritic cells was also imaged. Based on these studies, ASEM correlative microscopy promises to allow the study of various mesoscopic-scale dynamics in the near future. - Highlights: • In situ correlative light electron microscopy of samples in open solution by ASEM. • Primary cultures for in-solution CLEM by developing SiN-film coating methods • First visualization of fluorescent magnetic beads in aqueous solution by CLEM. • Presynaptic induction of neurons by GluRδ2-N-terminus-coated beads studied by CLEM. • Axonal partitioning, bacterial phagocytosis, platelet formation imaged by CLEM
Pole solution in six dimensions as a dimensional reduction model
Ichinose, Shoichi
2002-01-01
A solution with the pole configuration in six dimensions is analyzed. It is a dimensional reduction model of Randall-Sundrum type. The soliton configuration is induced by the bulk Higgs mechanism. The boundary condition is systematically solved up to the 6th order. The Riemann curvature is finite everywhere.
LED-based Photometric Stereo: Modeling, Calibration and Numerical Solutions
DEFF Research Database (Denmark)
Quéau, Yvain; Durix, Bastien; Wu, Tao
2018-01-01
We conduct a thorough study of photometric stereo under nearby point light source illumination, from modeling to numerical solution, through calibration. In the classical formulation of photometric stereo, the luminous fluxes are assumed to be directional, which is very difficult to achieve in pr...
Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering
DEFF Research Database (Denmark)
Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng
2007-01-01
Interactive dynamic influence diagrams (I-DIDs) offer a transparent and semantically clear representation for the sequential decision-making problem over multiple time steps in the presence of other interacting agents. Solving I-DIDs exactly involves knowing the solutions of possible models...
Stationary solutions of multicomponent chiral and gauge models
International Nuclear Information System (INIS)
Chudnovsky, D.V.; Chudnovsky, G.V.
1979-01-01
The authors examine stationary solutions of completely integrable systems in (x, t) dimensions having infinitely many components. Among the cases under investigation are: (1) the infinite-component non-linear Schroedinger equation; (2) infinite component CPsup(Ω) or SU(N) sigma-models; (3) general gauge and chiral completely integrable systems. (Auth.)
Interpolation solution of the single-impurity Anderson model
International Nuclear Information System (INIS)
Kuzemsky, A.L.
1990-10-01
The dynamical properties of the single-impurity Anderson model (SIAM) is studied using a novel Irreducible Green's Function method (IGF). The new solution for one-particle GF interpolating between the strong and weak correlation limits is obtained. The unified concept of relevant mean-field renormalizations is indispensable for strong correlation limit. (author). 21 refs
Analysis and modeling of alkali halide aqueous solutions
DEFF Research Database (Denmark)
Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won
2016-01-01
on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...
Foam for Enhanced Oil Recovery : Modeling and Analytical Solutions
Ashoori, E.
2012-01-01
Foam increases sweep in miscible- and immiscible-gas enhanced oil recovery by decreasing the mobility of gas enormously. This thesis is concerned with the simulations and analytical solutions for foam flow for the purpose of modeling foam EOR in a reservoir. For the ultimate goal of upscaling our
Small-scale engagement model with arrivals: analytical solutions
International Nuclear Information System (INIS)
Engi, D.
1977-04-01
This report presents an analytical model of small-scale battles. The specific impetus for this effort was provided by a need to characterize hypothetical battles between guards at a nuclear facility and their potential adversaries. The solution procedure can be used to find measures of a number of critical parameters; for example, the win probabilities and the expected duration of the battle. Numerical solutions are obtainable if the total number of individual combatants on the opposing sides is less than 10. For smaller force size battles, with one or two combatants on each side, symbolic solutions can be found. The symbolic solutions express the output parameters abstractly in terms of symbolic representations of the input parameters while the numerical solutions are expressed as numerical values. The input parameters are derived from the probability distributions of the attrition and arrival processes. The solution procedure reduces to solving sets of linear equations that have been constructed from the input parameters. The approach presented in this report does not address the problems associated with measuring the inputs. Rather, this report attempts to establish a relatively simple structure within which small-scale battles can be studied
Analytic solution of the Starobinsky model for inflation
Energy Technology Data Exchange (ETDEWEB)
Paliathanasis, Andronikos [Universidad Austral de Chile, Instituto de Ciencias Fisicas y Matematicas, Valdivia (Chile); Durban University of Technology, Institute of Systems Science, Durban (South Africa)
2017-07-15
We prove that the field equations of the Starobinsky model for inflation in a Friedmann-Lemaitre-Robertson-Walker metric constitute an integrable system. The analytical solution in terms of a Painleve series for the Starobinsky model is presented for the case of zero and nonzero spatial curvature. In both cases the leading-order term describes the radiation era provided by the corresponding higher-order theory. (orig.)
Research on lightning stroke model and characteristics of electronic transformer
Directory of Open Access Journals (Sweden)
Li Mu
2018-01-01
Full Text Available In order to improve the reliability of power supply, a large number of electronic voltage and current transformers are used in digital substations. In this paper, the mathematical model of the electronic transformer is analyzed firstly, and its circuit model is given. According to the difference of working characteristics between voltage transformer and current transformer, the circuit model of voltage type electronic transformer and current type electronic transformer is given respectively. By analyzing their broadband transmission characteristics, the accuracy of the model is verified, and their lightning analysis models are obtained.
The “2T” ion-electron semi-analytic shock solution for code-comparison with xRAGE: A report for FY16
Energy Technology Data Exchange (ETDEWEB)
Ferguson, Jim Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-10-05
This report documents an effort to generate the semi-analytic "2T" ion-electron shock solution developed in the paper by Masser, Wohlbier, and Lowrie, and the initial attempts to understand how to use this solution as a code-verification tool for one of LANL's ASC codes, xRAGE. Most of the work so far has gone into generating the semi-analytic solution. Considerable effort will go into understanding how to write the xRAGE input deck that both matches the boundary conditions imposed by the solution, and also what physics models must be implemented within the semi-analytic solution itself to match the model assumptions inherit within xRAGE. Therefore, most of this report focuses on deriving the equations for the semi-analytic 1D-planar time-independent "2T" ion-electron shock solution, and is written in a style that is intended to provide clear guidance for anyone writing their own solver.
Solution-based deposition of ceramic thin films for electronic applications
Yu, Shijun
With the requirement of a low-temperature process which is compatible with flexible electronics, solution-based processes for ceramic thin films have received substantial attention in recent years. In this study, two different variations of solution processing were explored. Liquid phase deposition (LPD) was used to prepare for F-doped SiO2 and F-doped SnO2, and hydrothermal processing was used to prepare ZnO thin films consisting of vertically aligned nanorods. F-doped SiO2 thin films were developed from supersaturated hydrofluorosilicic acid (H2SiF6) solution with the addition of boric acid (H3BO3). The microstructure dependence of LPD SiO2 films on solution parameters and deposition temperature was systematically investigated. The dielectric constant is lower than that of thermal SiO2, resulting from the fluorine doping. The remarkably low dielectric constant, relatively low leakage current and fairly high elastic modulus make these low temperature processed LPD SiO2 films very promising for an interlayer dielectric for flexible substrates. Using the same LPD method, smooth SnO2 films were deposited on both silicon and glass substrates at 60 ºC through supersaturated solutions of SnF 2 with a concentration range from 10 mM to 40 mM. They consist of nanoscale crystallites and the degree of crystallinity increase with annealing temperature. A hydrothermal process was employed to deposit ZnO films for energy harvesting devices. A polymer mask was patterned on top of a zinc acetate seed layer to generate a regular array of open holes (200 nm in diameter) using a nanoimprint. Vertically aligned ZnO nanorod arrays were grown on these open holes that expose the seed layer. The morphology and microstrucutre of the nanorods were studied according to chemical composition of the solution. Equimolar reduce of the concentration of ZnAc and HMTA results in decrease in nanorod diameter, as well as in length. The nanorods become thinner and slightly better aligned with
Modeling electronic structure and transport properties of graphene with resonant scattering centers
Yuan, Shengjun; De Raedt, Hans; Katsnelson, Mikhail I.
2010-01-01
We present a detailed numerical study of the electronic properties of single-layer graphene with resonant (hydrogen) impurities and vacancies within a framework of noninteracting tight-binding model on a honeycomb lattice. The algorithms are based on the numerical solution of the time-dependent
Cosmic-ray electrons in the closed-galaxy model
International Nuclear Information System (INIS)
Badhwar, G.D.; Stephens, S.A.
1976-01-01
We have examined the consequences of the ''closed galaxy'' cosmic-ray confinement model of Rasmussen and Peters with regard to the electron component of cosmic rays. It is found that the predictions of this model are inconsistent with the observed intensity and charge composition of electrons. The model is also inconsistent with the galactic radio emission
Loyd, Jody; Gregory, Don; Gaskin, Jessica
2016-01-01
/Fourier series hybrid approach. The presentation will give background remarks about the MSFC mini Lunar SEM concept and electron optics modeling, followed by a description of the alternate field modeling techniques that were tried, along with their incorporation into a ray-trace simulation. Next, the validation of this simulation against commercially available software will be discussed using an example lens as a test case. Then, the efficacy of aberration assessment using direct ray-tracing will be demonstrated, using this same validation case. The discussion will include practical error checks of the field solution. Finally, the ray-trace assessment of the MSFC mini Lunar SEM concept will be shown and discussed. The authors believe this presentation will be of general interest to practitioners of modeling and simulation, as well as those with a general optics background. Because electron optics and photon optics share many basic concepts (e.g., lenses, images, aberrations, etc.), the appeal of this presentation need not be restricted to just those interested in charged particle optics.
Modeling Blazar Spectra by Solving an Electron Transport Equation
Lewis, Tiffany; Finke, Justin; Becker, Peter A.
2018-01-01
Blazars are luminous active galaxies across the entire electromagnetic spectrum, but the spectral formation mechanisms, especially the particle acceleration, in these sources are not well understood. We develop a new theoretical model for simulating blazar spectra using a self-consistent electron number distribution. Specifically, we solve the particle transport equation considering shock acceleration, adiabatic expansion, stochastic acceleration due to MHD waves, Bohm diffusive particle escape, synchrotron radiation, and Compton radiation, where we implement the full Compton cross-section for seed photons from the accretion disk, the dust torus, and 26 individual broad lines. We used a modified Runge-Kutta method to solve the 2nd order equation, including development of a new mathematical method for normalizing stiff steady-state ordinary differential equations. We show that our self-consistent, transport-based blazar model can qualitatively fit the IR through Fermi g-ray data for 3C 279, with a single-zone, leptonic configuration. We use the solution for the electron distribution to calculate multi-wavelength SED spectra for 3C 279. We calculate the particle and magnetic field energy densities, which suggest that the emitting region is not always in equipartition (a common assumption), but sometimes matter dominated. The stratified broad line region (based on ratios in quasar reverberation mapping, and thus adding no free parameters) improves our estimate of the location of the emitting region, increasing it by ~5x. Our model provides a novel view into the physics at play in blazar jets, especially the relative strength of the shock and stochastic acceleration, where our model is well suited to distinguish between these processes, and we find that the latter tends to dominate.
Numerical solution of dynamic equilibrium models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
2013-01-01
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations...... of the retarded type. We apply the Waveform Relaxation algorithm, i.e., we provide a guess of the policy function and solve the resulting system of (deterministic) ordinary differential equations by standard techniques. For parametric restrictions, analytical solutions to the stochastic growth model and a novel...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....
Travelling Wave Solutions in Multigroup Age-Structured Epidemic Models
Ducrot, Arnaut; Magal, Pierre; Ruan, Shigui
2010-01-01
Age-structured epidemic models have been used to describe either the age of individuals or the age of infection of certain diseases and to determine how these characteristics affect the outcomes and consequences of epidemiological processes. Most results on age-structured epidemic models focus on the existence, uniqueness, and convergence to disease equilibria of solutions. In this paper we investigate the existence of travelling wave solutions in a deterministic age-structured model describing the circulation of a disease within a population of multigroups. Individuals of each group are able to move with a random walk which is modelled by the classical Fickian diffusion and are classified into two subclasses, susceptible and infective. A susceptible individual in a given group can be crisscross infected by direct contact with infective individuals of possibly any group. This process of transmission can depend upon the age of the disease of infected individuals. The goal of this paper is to provide sufficient conditions that ensure the existence of travelling wave solutions for the age-structured epidemic model. The case of two population groups is numerically investigated which applies to the crisscross transmission of feline immunodeficiency virus (FIV) and some sexual transmission diseases.
Mesoscale modeling of solute precipitation and radiation damage
Energy Technology Data Exchange (ETDEWEB)
Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Ke, Huibin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Univ. of Wisconsin, Madison, WI (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulation and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.
The electronic-commerce-oriented virtual merchandise model
Fang, Xiaocui; Lu, Dongming
2004-03-01
Electronic commerce has been the trend of commerce activities. Providing with Virtual Reality interface, electronic commerce has better expressing capacity and interaction means. But most of the applications of virtual reality technology in EC, 3D model is only the appearance description of merchandises. There is almost no information concerned with commerce information and interaction information. This resulted in disjunction of virtual model and commerce information. So we present Electronic Commerce oriented Virtual Merchandise Model (ECVMM), which combined a model with commerce information, interaction information and figure information of virtual merchandise. ECVMM with abundant information provides better support to information obtainment and communication in electronic commerce.
Lessons on electronic decoherence in molecules from exact modeling
Hu, Wenxiang; Gu, Bing; Franco, Ignacio
2018-04-01
Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.
Niskanen, Johannes; Arul Murugan, N; Rinkevicius, Zilvinas; Vahtras, Olav; Li, Cui; Monti, Susanna; Carravetta, Vincenzo; Agren, Hans
2013-01-07
We report hybrid density functional theory-molecular mechanics (DFT/MM) calculations performed for glycine in water solution at different pH values. In this paper, we discuss several aspects of the quantum mechanics-molecular mechanics (QM/MM) simulations where the dynamics and spectral binding energy shifts are computed sequentially, and where the latter are evaluated over a set of configurations generated by molecular or Car-Parrinello dynamics simulations. In the used model, core ionization takes place in glycine as a quantum mechanical (QM) system modeled with DFT, and the solution is described with expedient force fields in a large molecular mechanical (MM) volume of water molecules. The contribution to the core electronic binding energy from all interactions within and between the two (DFT and MM) parts is accounted for, except charge transfer and dispersion. While the obtained results were found to be in qualitative agreement with experiment, their precision must be qualified with respect to the problem of counter ions, charge transfer and optimal division of QM and MM parts of the system. Results are compared to those of a recent study [Ottoson et al., J. Am. Chem. Soc., 2011, 133, 3120].
Data mining with SPSS modeler theory, exercises and solutions
Wendler, Tilo
2016-01-01
Introducing the IBM SPSS Modeler, this book guides readers through data mining processes and presents relevant statistical methods. There is a special focus on step-by-step tutorials and well-documented examples that help demystify complex mathematical algorithms and computer programs. The variety of exercises and solutions as well as an accompanying website with data sets and SPSS Modeler streams are particularly valuable. While intended for students, the simplicity of the Modeler makes the book useful for anyone wishing to learn about basic and more advanced data mining, and put this knowledge into practice.
Energy Technology Data Exchange (ETDEWEB)
Berger, R. L., E-mail: berger5@llnl.gov; Cohen, B. I. [Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551 (United States); Brunner, S., E-mail: stephan.brunner@epfl.ch [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland); Banks, J. W. [Department of Mathematical Sciences, Rensselaer Polytechnic Institute, AE 301, 110 8th Street, Troy, New York 12180 (United States); Winjum, B. J. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States)
2015-05-15
Kinetic simulations of two-dimensional finite-amplitude electron plasma waves are performed in a one-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and wavenumber k{sub y}, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are compared with numerical and analytical solutions to a two-dimensional nonlinear Schrödinger model [H. A. Rose and L. Yin, Phys. Plasmas 15, 042311 (2008)] and to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] generalized to two dimensions.
Security Attacks and Solutions in Electronic Health (E-health) Systems.
Zeadally, Sherali; Isaac, Jesús Téllez; Baig, Zubair
2016-12-01
For centuries, healthcare has been a basic service provided by many governments to their citizens. Over the past few decades, we have witnessed a significant transformation in the quality of healthcare services provided by healthcare organizations and professionals. Recent advances have led to the emergence of Electronic Health (E-health), largely made possible by the massive deployment and adoption of information and communication technologies (ICTs). However, cybercriminals and attackers are exploiting vulnerabilities associated primarily with ICTs, causing data breaches of patients' confidential digital health information records. Here, we review recent security attacks reported for E-healthcare and discuss the solutions proposed to mitigate them. We also identify security challenges that must be addressed by E-health system designers and implementers in the future, to respond to threats that could arise as E-health systems become integrated with technologies such as cloud computing, the Internet of Things, and smart cities.
Directory of Open Access Journals (Sweden)
Fabrício Bertini Pasquot Polido
2017-05-01
Full Text Available http://dx.doi.org/10.5007/2177-7055.2017v38n75p157 The article explores some issues regarding the interface between international electronic contracts and private international law. Today, thanks to the internet, crossborder commercial transactions, previously unthinkable, become possible. However, as to the inherent specificities of the internet, contracts having connecting factors offer bring questions related to determination of law applicable or even validity issues, among others. Unlike the extensive regulatory agenda furthered by the United Nations Commission on International Trade Law on the subject, Brazil needs to assess existing initiatives and designing the necessary solutions for ensuring legal certainty in this field.
Irradiation with benzene, toluene and phenol electron beams in aqueous solution
International Nuclear Information System (INIS)
Santoyo O, E.L.; Lopez V, H.; Vazquez A, O.; Lizama S, B.E.; Garcia F, M.
1998-01-01
It is described a methodology for waste water treatment which is simulated doing a benzene-toluene-phenol mixture in aqueous solution. Three different concentrations of them ones were used which were irradiated with electron beams coming from a Pelletron Accelerator carrying out the degradation effect of these compounds in CO 2 and H 2 O. By mean of gas chromatography the analytical determinations were realized finding that in lower concentration of benzene and toluene performances of degradation higher than 95 % were obtained, but higher concentrations (100 ppm) the performance diminishes at 89 %, while for phenol in higher concentrations its degradation is over 60 % and in lower concentrations the degradation is under 80 %. The results are obtained with a constant irradiation time of 12 seconds and neutral pH. (Author
Directory of Open Access Journals (Sweden)
Yakup Ustun
2013-01-01
Full Text Available The effects of three dissolving agents on the accuracy of an electronic apex locator- (EAL- integrated endodontic handpiece during retreatment procedures were evaluated. The true lengths (TLs of 56 extracted incisor teeth were determined visually. Twenty teeth were filled with gutta-percha and a resin-based sealer (group A, 20 with gutta-percha and a zinc oxide/eugenol-based sealer (group B, and 16 roots were used as the control group (group C. All roots were prepared to TL. Guttasolv, Resosolv, and Endosolv E were used as the dissolving solutions. Two evaluations of the handpiece were performed: the apical accuracy during the auto reverse function (ARL and the apex locator function (EL alone. The ARL function of the handpiece gave acceptable results. There were significant differences between the EL mode measurements and the TL (P<0.05. In these comparisons, Tri Auto ZX EL mode measurements were significantly shorter than those of the TL.
Akiel, R D; Stepanov, V; Takahashi, S
2017-06-01
Nanodiamond (ND) is an attractive class of nanomaterial for fluorescent labeling, magnetic sensing of biological molecules, and targeted drug delivery. Many of those applications require tethering of target biological molecules on the ND surface. Even though many approaches have been developed to attach macromolecules to the ND surface, it remains challenging to characterize dynamics of tethered molecule. Here, we show high-frequency electron paramagnetic resonance (HF EPR) spectroscopy of nitroxide-functionalized NDs. Nitroxide radical is a commonly used spin label to investigate dynamics of biological molecules. In the investigation, we developed a sample holder to overcome water absorption of HF microwave. Then, we demonstrated HF EPR spectroscopy of nitroxide-functionalized NDs in aqueous solution and showed clear spectral distinction of ND and nitroxide EPR signals. Moreover, through EPR spectral analysis, we investigate dynamics of nitroxide radicals on the ND surface. The demonstration sheds light on the use of HF EPR spectroscopy to investigate biological molecule-functionalized nanoparticles.
Lactose and sucrose aqueous solutions for high-dose dosimetry with 10-MeV electron beam irradiation
International Nuclear Information System (INIS)
Amraei, R.; Kheirkhah, M.; Raisali, G.
2012-01-01
In the present study, dosimetric characterisation of aqueous solutions of lactose and sucrose was analysed by UV spectrometry following irradiation using 10-MeV electron beam at doses between 0.5 and 10.5 kGy. As a dosimetric index, absorbance is selected at 256 and 264 nm for lactose and sucrose aqueous solutions, respectively. The intensity of absorbance for irradiated solutions depends on the pre-irradiation concentration of lactose and sucrose. The post-irradiation stability of both solutions was investigated at room temperature for a measurement period of 22 d. (authors)
Implantable electronics: emerging design issues and an ultra light-weight security solution.
Narasimhan, Seetharam; Wang, Xinmu; Bhunia, Swarup
2010-01-01
Implantable systems that monitor biological signals require increasingly complex digital signal processing (DSP) electronics for real-time in-situ analysis and compression of the recorded signals. While it is well-known that such signal processing hardware needs to be implemented under tight area and power constraints, new design requirements emerge with their increasing complexity. Use of nanoscale technology shows tremendous benefits in implementing these advanced circuits due to dramatic improvement in integration density and power dissipation per operation. However, it also brings in new challenges such as reliability and large idle power (due to higher leakage current). Besides, programmability of the device as well as security of the recorded information are rapidly becoming major design considerations of such systems. In this paper, we analyze the emerging issues associated with the design of the DSP unit in an implantable system. Next, we propose a novel ultra light-weight solution to address the information security issue. Unlike the conventional information security approaches like data encryption, which come at large area and power overhead and hence are not amenable for resource-constrained implantable systems, we propose a multilevel key-based scrambling algorithm, which exploits the nature of the biological signal to effectively obfuscate it. Analysis of the proposed algorithm in the context of neural signal processing and its hardware implementation shows that we can achieve high level of security with ∼ 13X lower power and ∼ 5X lower area overhead than conventional cryptographic solutions.
Electronic spectra of plutonium ions in nitric acid and in lithium nitrate solutions
International Nuclear Information System (INIS)
Mekhail, F.M.
1987-01-01
The absorption spectra of plutonium ions in nitric acid have been described. There is a characteristic change in the absorption spectra of Pu v in lithium nitrate solutions. In 2 M-lithium nitrate a new peak at 969 nm and high absorption at 1200 nm are noticed. A decrease in the absorption by about 20% and the appearance of a new shoulder at 1120 nm in 6 M-lithium nitrate are found. There is no change in the spectrum in 4 M-lithium nitrate. The absorption spectra of plutonium ions in the spectral range 200 - 400 nm are interesting. All plutonium ions have an intense band in the region 250 - 260 nm as well as a less intense and rather diffuse band at 320 - 330 nm in lithium nitrate solutions the sharp band at 250 - 260 nm has disappeared. This suggests that this band is very sensitive to the environmental field. The band is probably produced by 5 F q → 5 f q-1 6 d transition as well as electron transfer. It is believed that the spectrum of Pu V at pH 6.5 represents the hydrolysis product Pu O 2 (O H). 9 fig., 4 tab
VHDL Model of Electronic-Lock System
Directory of Open Access Journals (Sweden)
J. Noga
2000-04-01
Full Text Available The paper describes the design of an electronic-lock system which wascompleted as part of the Basic VHDL course in the Department of Controland Measurement Faculty of Electrical Engineering and Informatics,Technical University of Ostrava, Czech Republic in co-operation withthe Department if Electronic Engineering, University of Hull, GreatBritain in the frame of TEMPUS project no. S_JEP/09468-95.
International Nuclear Information System (INIS)
Horne, R.A.; Courant, R.A.; Johnson, D.S.
1965-01-01
TheFe ll -Fe III electron-exchange reaction and certain long-range biological redox reactions involve the transfer of electrons by a Grotthuss-type mechanism over water bridges. The Grotthuss mechanism is also responsible for the anomalously great electrical conductivity of acidic aqueous solutions. At ordinary pressures the rate-determining step of the Grotthuss mechanism is the rotation of H 2 O, or possibly H 3 O+, and not the actual proton flip itself. The Grotthuss mechanism is confined to the ''free'' rotatable monomeric water between the Frank-Wen clusters in liquid water and avoids areas of relative order. The concentration dependence of protonic conduction can be represented by an equation based upon a cube root of concentration extrapolation and containing Arrhenius terms in which the activation energies are those for the rotation of and the formation of ''holes'' in the solvent water. Thus chemical energy and/or electrical energy can be transmitted rapidly over relatively great distances by the Grotthuss mechanism. Such processes are involved in a variety of phenomena of biological significance, examples being muscular contraction and the chemistry of the respiratory pigments. (author) [fr
He, Lin; Liu, Fei-Fei; Zhao, Mengyao; Qi, Zhen; Sun, Xuefei; Afzal, Muhammad Zaheer; Sun, Xiaomin; Li, Yanhui; Hao, Jingcheng; Wang, Shuguang
2018-04-01
Understanding the interactions between graphene nanomaterials (GNMs) and antibiotics in aqueous solution is critical to both the engineering applications of GNMs and the assessment of their potential impact on the fate and transport of antibiotics in the aquatic environment. In this study, adsorption of one common antibiotic, tetracycline, by graphene oxide (GO) and reduced graphene oxide (RGO) was examined with multi-walled carbon nanotubes (MWCNTs) and graphite as comparison. The results showed that the tetracycline adsorption capacity by the four selected carbonaceous materials on the unit mass basis followed an order of GO>RGO>MWCNTs>graphite. Upon normalization by surface area, graphite, RGO and MWCNTs had almost the same high tetracycline adsorption affinity while GO exhibited the lowest. We proposed π-electron-property dependent interaction mechanisms to explain the observed different adsorption behaviors. Density functional theory (DFT) calculations suggested that the oxygen-containing functional groups on GO surface reduced its π-electron-donating ability, and thus decreased the π-based interactions between tetracycline and GO surface. Comparison of adsorption efficiency at different pH indicated that electrostatic interaction also played an important role in tetracycline-GO interactions. Site energy analysis confirmed a highly heterogeneous distribution of the binding sites and strong tetracycline binding affinity of GO surface. Copyright © 2017. Published by Elsevier B.V.
Solution-focused therapy. Counseling model for busy family physicians.
Greenberg, G.; Ganshorn, K.; Danilkewich, A.
2001-01-01
OBJECTIVE: To provide family doctors in busy office practices with a model for counseling compatible with patient-centred medicine, including the techniques, strategies, and questions necessary for implementation. QUALITY OF EVIDENCE: The MEDLINE database was searched from 1984 to 1999 using the terms psychotherapy in family practice, brief therapy in family practice, solution-focused therapy, and brief psychotherapy. A total of 170 relevant articles were identified; 75 abstracts were retriev...
Numerical solution of a model for a superconductor field problem
International Nuclear Information System (INIS)
Alsop, L.E.; Goodman, A.S.; Gustavson, F.G.; Miranker, W.L.
1979-01-01
A model of a magnetic field problem occurring in connection with Josephson junction devices is derived, and numerical solutions are obtained. The model is of mathematical interest, because the magnetic vector potential satisfies inhomogeneous Helmholtz equations in part of the region, i.e., the superconductors, and the Laplace equation elsewhere. Moreover, the inhomogeneities are the guage constants for the potential, which are different for each superconductor, and their magnitudes are proportional to the currents flowing in the superconductors. These constants are directly related to the self and mutual inductances of the superconducting elements in the device. The numerical solution is obtained by the iterative use of a fast Poisson solver. Chebyshev acceleration is used to reduce the number of iterations required to obtain a solution. A typical problem involves solving 100,000 simultaneous equations, which the algorithm used with this model does in 20 iterations, requiring three minutes of CPU time on an IBM VM/370/168. Excellent agreement is obtained between calculated and observed values for the inductances
A kinetic model for runaway electrons in the ionosphere
Directory of Open Access Journals (Sweden)
G. Garcia
2006-09-01
Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.
A kinetic model for runaway electrons in the ionosphere
Directory of Open Access Journals (Sweden)
G. Garcia
2006-09-01
Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m^{2}. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.
FTL Quantum Models of the Photon and the Electron
International Nuclear Information System (INIS)
Gauthier, Richard F.
2007-01-01
A photon is modeled by an uncharged superluminal quantum moving at 1.414c along an open 45-degree helical trajectory with radius R = λ/2π (where λ is the helical pitch or wavelength). A mostly superluminal spatial model of an electron is composed of a charged pointlike quantum circulating at an extremely high frequency ( 2.5 x 1020 hz) in a closed, double-looped hehcal trajectory whose helical pitch is one Compton wavelength h/mc. The quantum has energy and momentum but not rest mass, so its speed is not limited by c. sThe quantum's speed is superluminal 57% of the time and subluminal 43% of the time, passing through c twice in each trajectory cycle. The quantum's maximum speed in the electron's rest frame is 2.515c and its minimum speed is .707c. The electron model's helical trajectory parameters are selected to produce the electron's spin (ℎ/2π)/2 and approximate (without small QED corrections) magnetic moment e(ℎ/2π)/2m (the Bohr magneton μB) as well as its Dirac equation-related 'jittery motion' angular frequency 2mc2/(ℎ/2π), amplitude (ℎ/2π)/2mc and internal speed c. The two possible helicities of the electron model correspond to the electron and the positron. With these models, an electron is like a closed circulating photon. The electron's inertia is proposed to be related to the electron model's circulating internal Compton momentum mc. The internal superluminalily of the photon model, the internal superluminahty/subluminality of the electron model, and the proposed approach to the electron's inertia as ''momentum at rest'' within the electron, could be relevant to possible mechanisms of superluminal communication and transportation
Asymptotically exact solution of a local copper-oxide model
International Nuclear Information System (INIS)
Zhang Guangming; Yu Lu.
1994-03-01
We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig
Exact solutions for the spin tune for model storage rings
Mane, S R
2002-01-01
We present exact analytical expressions for the spin tune for arbitrary values of the orbital action for several storage ring models. The models we treat contain Siberian Snakes, the use of which is essential to preserve the polarization of beams in high-energy proton storage rings. Our solutions contain some novel features. We also prove a previously conjectured claim about the behavior of spin tuneshifts in rings with multiple Snakes. The conjecture is based on numerical simulations, but our proof is analytical, and also nonperturbative.
Bessel collocation approach for approximate solutions of Hantavirus infection model
Directory of Open Access Journals (Sweden)
Suayip Yuzbasi
2017-11-01
Full Text Available In this study, a collocation method is introduced to find the approximate solutions of Hantavirus infection model which is a system of nonlinear ordinary differential equations. The method is based on the Bessel functions of the first kind, matrix operations and collocation points. This method converts Hantavirus infection model into a matrix equation in terms of the Bessel functions of first kind, matrix operations and collocation points. The matrix equation corresponds to a system of nonlinear equations with the unknown Bessel coefficients. The reliability and efficiency of the suggested scheme are demonstrated by numerical applications and all numerical calculations have been done by using a program written in Maple.
Asymptotic solutions of diffusion models for risk reserves
Directory of Open Access Journals (Sweden)
S. Shao
2003-01-01
Full Text Available We study a family of diffusion models for risk reserves which account for the investment income earned and for the inflation experienced on claim amounts. After we defined the process of the conditional probability of ruin over finite time and imposed the appropriate boundary conditions, classical results from the theory of diffusion processes turn the stochastic differential equation to a special class of initial and boundary value problems defined by a linear diffusion equation. Armed with asymptotic analysis and perturbation theory, we obtain the asymptotic solutions of the diffusion models (possibly degenerate governing the conditional probability of ruin over a finite time in terms of interest rate.
Spectroscopic properties of vitamin E models in solution
Oliveira, L. B. A.; Colherinhas, G.; Fonseca, T. L.; Castro, M. A.
2015-05-01
We investigate the first absorption band and the 13C and 17O magnetic shieldings of vitamin E models in chloroform and in water using the S-MC/QM methodology in combination with the TD-DFT and GIAO approaches. The results show that the solvent effects on these spectroscopic properties are small but a proper description of the solvent shift for 17O magnetic shielding of the hydroxyl group in water requires the use of explicit solute-solvent hydrogen bonds. In addition, the effect of the replacement of hydrogen atoms by methyl groups in the vitamin E models only affects magnetic shieldings.
Microfluidic model experiments on the injectability of monoclonal antibody solutions
Duchene, Charles; Filipe, Vasco; Nakach, Mostafa; Huille, Sylvain; Lindner, Anke
2017-11-01
Autoinjection devices that allow patients to self-administer medicine are becoming used more frequently; however, this advance comes with an increased need for precision in the injection process. The rare occurrence of protein aggregates in solutions of monoclonal antibodies constitutes a threat to the reliability of such devices. Here we study the flow of protein solutions containing aggregates in microfluidic model systems, mimicking injection devices, to gain fundamental understanding of the catastrophic clogging of constrictions of given size. We form aggregates by mechanically shaking or heating antibody solutions and then inject these solutions into microfluidic channels with varying types of constrictions. Geometrical clogging occurs when aggregates reach the size of the constriction and can in some cases be undone by increasing the applied pressure. We perform systematic experiments varying the relative aggregate size and the flow rate or applied pressure. The mechanical deformation of aggregates during their passage through constrictions is investigated to gain a better understanding of the clogging and unclogging mechanisms.
Warsta, L.; Karvonen, T.
2017-12-01
There are currently 25 shooting and training areas in Finland managed by The Finnish Defence Forces (FDF), where military activities can cause contamination of open waters and groundwater reservoirs. In the YMPYRÄ project, a computer software framework is being developed that combines existing open environmental data and proprietary information collected by FDF with computational models to investigate current and prevent future environmental problems. A data centric philosophy is followed in the development of the system, i.e. the models are updated and extended to handle available data from different areas. The results generated by the models are summarized as easily understandable flow and risk maps that can be opened in GIS programs and used in environmental assessments by experts. Substances investigated with the system include explosives and metals such as lead, and both surface and groundwater dominated areas can be simulated. The YMPYRÄ framework is composed of a three dimensional soil and groundwater flow model, several solute transport models and an uncertainty assessment system. Solute transport models in the framework include particle based, stream tube and finite volume based approaches. The models can be used to simulate solute dissolution from source area, transport in the unsaturated layers to groundwater and finally migration in groundwater to water extraction wells and springs. The models can be used to simulate advection, dispersion, equilibrium adsorption on soil particles, solubility and dissolution from solute phase and dendritic solute decay chains. Correct numerical solutions were confirmed by comparing results to analytical 1D and 2D solutions and by comparing the numerical solutions to each other. The particle based and stream tube type solute transport models were useful as they could complement the traditional finite volume based approach which in certain circumstances produced numerical dispersion due to piecewise solution of the
Winter, Bernd; Weber, Ramona; Hertel, Ingolf V; Faubel, Manfred; Jungwirth, Pavel; Brown, Eric C; Bradforth, Stephen E
2005-05-18
Photoelectron spectroscopy combined with the liquid microjet technique enables the direct probing of the electronic structure of aqueous solutions. We report measured and calculated lowest vertical electron binding energies of aqueous alkali cations and halide anions. In some cases, ejection from deeper electronic levels of the solute could be observed. Electron binding energies of a given aqueous ion are found to be independent of the counterion and the salt concentration. The experimental results are complemented by ab initio calculations, at the MP2 and CCSD(T) level, of the ionization energies of these prototype ions in the aqueous phase. The solvent effect was accounted for in the electronic structure calculations in two ways. An explicit inclusion of discrete water molecules using a set of snapshots from an equilibrium classical molecular dynamics simulations and a fractional charge representation of solvent molecules give good results for halide ions. The electron binding energies of alkali cations computed with this approach tend to be overestimated. On the other hand, the polarizable continuum model, which strictly provides adiabatic binding energies, performs well for the alkali cations but fails for the halides. Photon energies in the experiment were in the EUV region (typically 100 eV) for which the technique is probing the top layers of the liquid sample. Hence, the reported energies of aqueous ions are closely connected with both structures and chemical reactivity at the liquid interface, for example, in atmospheric aerosol particles, as well as fundamental bulk solvation properties.
Molecular modeling and multiscaling issues for electronic material applications
Iwamoto, Nancy; Yuen, Matthew; Fan, Haibo
Volume 1 : Molecular Modeling and Multiscaling Issues for Electronic Material Applications provides a snapshot on the progression of molecular modeling in the electronics industry and how molecular modeling is currently being used to understand material performance to solve relevant issues in this field. This book is intended to introduce the reader to the evolving role of molecular modeling, especially seen through the eyes of the IEEE community involved in material modeling for electronic applications. Part I presents the role that quantum mechanics can play in performance prediction, such as properties dependent upon electronic structure, but also shows examples how molecular models may be used in performance diagnostics, especially when chemistry is part of the performance issue. Part II gives examples of large-scale atomistic methods in material failure and shows several examples of transitioning between grain boundary simulations (on the atomistic level)and large-scale models including an example ...
Transition towards Sustainable Solutions: Product, Service, Technology, and Business Model
Directory of Open Access Journals (Sweden)
Mina Nasiri
2018-01-01
Full Text Available Nowadays, the horse industry can be considered as an important industry in European countries and has a major role in agricultural industry throughout the world. Although today the diversity of the horse-related companies provides new markets and business opportunities, there are also some sustainable issues which needs to be addressed. Therefore, this study contributes to this research gap by reviewing the concept of sustainability and existing approaches to find sustainable solutions for companies. These sustainable approaches can be applied to products, services and technologies as well as business models, such as the product-service-system (PSS, circular economy (CE and industrial symbiosis (IS. Although there seems to be a growing understanding of sustainable approaches and their role in sustainable development, there is a lack of research at the empirical level regarding the types of sustainability approaches (i.e., technologies, services, products and business models that evolve in specific industries. The empirical data in this research have been collected from a cross-section of Finnish horse industry operators to determine how willing companies are to exploit approaches to sustainable solutions, as well as what the existing sustainable solutions are in this industry. The response rate of this study is approximately 24 percent, including 139 received valid responses among the sample of 580 operators.
Orbital Models and Electronic Structure Theory
DEFF Research Database (Denmark)
Linderberg, Jan
2012-01-01
This tribute to the work by Carl Johan Ballhausen focuses on the emergence of quantitative means for the study of the electronic properties of complexes and molecules. Development, refinement and application of the orbital picture elucidated electric and magnetic features of ranges of molecules w...
Understanding the Interaction between Low-Energy Electrons and DNA Nucleotides in Aqueous Solution.
McAllister, Maeve; Smyth, Maeve; Gu, Bin; Tribello, Gareth A; Kohanoff, Jorge
2015-08-06
Reactions that can damage DNA have been simulated using a combination of molecular dynamics and density functional theory. In particular, the damage caused by the attachment of a low energy electron to the nucleobase. Simulations of anionic single nucleotides of DNA in an aqueous environment that was modeled explicitly have been performed. This has allowed us to examine the role played by the water molecules that surround the DNA in radiation damage mechanisms. Our simulations show that hydrogen bonding and protonation of the nucleotide by the water can have a significant effect on the barriers to strand breaking reactions. Furthermore, these effects are not the same for all four of the bases.
The electronic absorption spectra of pyridine azides, solvent-solute interaction
Abu-Eittah, Rafie H.; Khedr, Mahmoud K.
2009-01-01
The electronic absorption spectra of: 2-, 3-, and 4-azidopyridines have been investigated in a wide variety of polar and non-polar solvents. According to Onsager model, the studied spectra indicate that the orientation polarization of solvent dipoles affects the electronic spectrum much stronger than the induction polarization of solvent dipoles. The effect of solvent dipole moment predominates that of solvent refractive index in determining the values of band maxima of an electronic spectrum. The spectra of azidopyridines differ basically from these of pyridine or mono-substituted pyridine. Results at hand indicate that the azide group perturbs the pyridine ring in the case of 3-azidopyridine much more than it does in the case of 2-azidopyridine. This result agrees with the predictions of the resonance theory. Although the equilibrium ⇌ azide tetrazole is well known, yet the observed spectra prove that such an equilibrium does not exist at the studied conditions. The spectra of the studied azidopyridines are characterized by the existence of overlapping transitions. Gaussian analysis is used to obtain nice, resolved spectra. All the observed bands correspond to π → π* transitions, n → π* may be overlapped with the stronger π → π* ones.
ELVIS: Multi-Electrolyte Aqueous Activity Model for Geothermal Solutions
Hingerl, F. F.; Wagner, T.; Driesner, T.; Kulik, D. A.; Kosakowski, G.
2011-12-01
High temperature, pressure, and fluid salinities render geochemical modeling of fluid-rock interactions in Enhanced Geothermal Systems a demanding task. Accurate prediction of fluid-mineral equilibria strongly depends on the availability of thermodynamic data and activity models. Typically, the Pitzer activity model is applied for geothermal fluids. A drawback of this model is the large number of parameters required to account for temperature and pressure dependencies, which significantly reduces computational efficiency of reactive transport simulations. In addition, most available parameterizations are valid only at vapor-saturated conditions. As an alternative we implemented the EUNIQUAC local composition model [2] that needs substantially fewer fitting parameters. However, the current EUNIQUAC model design does not include provision for high temperature (>150°C) applications and lacks a formulation for pressure dependence. Therefore, its application to geothermal conditions requires a re-formulation and re-fitting of the model. We developed a new tool termed GEMSFIT that allows generic fitting of activity models (for aqueous electrolyte and non-electrolyte solutions) and equations of state implemented in our geochemical equilibrium solver GEM-Selektor (http://gems.web.psi.ch). GEMSFIT combines a PostgreSQL database for storing and managing the datasets of experimental measurements and interaction parameters, the parallelized genetic algorithm toolbox of MATLAB° for the parameter fitting, and an interface to the numerical kernel of GEM-Selektor to access activity models and perform chemical equilibrium calculations. Benchmarking of the partly re-parameterized EUNIQUAC model against Pitzer revealed that the former is less accurate, which can result in incorrect predictions of mineral precipitation/dissolution. Consequently, we modified the EUNIQUAC model and concurrently introduced a pressure dependence to be able to fit experimental data over wide ranges of
International Nuclear Information System (INIS)
Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas
2005-01-01
Photoinduced electron transfer (ET) reactions between anthraquinone derivatives and aromatic amines have been investigated in sodium dodecyl sulphate (SDS) micellar solutions. Significant static quenching of the quinone fluorescence due to high amine concentration in the micellar phase has been observed in steady-state measurements. The bimolecular rate constants for the dynamic quenching in the present systems k q TR , as estimated from the time-resolved measurements, have been correlated with the free energy changes ΔG 0 for the ET reactions. Interestingly it is seen that the k q TR vs ΔG 0 plot displays an inversion behavior with maximum k q TR at around 0.7 eV, a trend similar to that predicted in Marcus ET theory. Like the present results, Marcus inversion in the k q TR values was also observed earlier in coumarin-amine systems in SDS and TX-100 micellar solutions, with maximum k q TR at around the same exergonicity. These results thus suggest that Marcus inversion in bimolecular ET reaction is a general phenomenon in micellar media. Present observations have been rationalized on the basis of the two-dimensional ET (2DET) theory, which seems to be more suitable for micellar ET reactions than the conventional ET theory. For the quinone-amine systems, it is interestingly seen that k q TR vs ΔG 0 plot is somewhat wider in comparison to that of the coumarin-amine systems, even though the maxima in the k q TR vs ΔG 0 plots appear at almost similar exergonicity for both the acceptor-donor systems. These observations have been rationalized on the basis of the differences in the reaction windows along the solvation axis, as envisaged within the framework of the 2DET theory, and arise due to the differences in the locations of the quinones and coumarin dyes in the micellar phase
Hajrahimi, Nafiseh; Dehaghani, Sayed Mehdi Hejazi; Hajrahimi, Nargess; Sarmadi, Sima
2014-01-01
Context: Implementing information technology in the best possible way can bring many advantages such as applying electronic services and facilitating tasks. Therefore, assessment of service providing systems is a way to improve the quality and elevate these systems including e-commerce, e-government, e-banking, and e-learning. Aims: This study was aimed to evaluate the electronic services in the website of Isfahan University of Medical Sciences in order to propose solutions to improve them. F...
DEM Solutions Develops Answers to Modeling Lunar Dust and Regolith
Dunn, Carol Anne; Calle, Carlos; LaRoche, Richard D.
2010-01-01
With the proposed return to the Moon, scientists like NASA-KSC's Dr. Calle are concerned for a number of reasons. We will be staying longer on the planet's surface, future missions may include dust-raising activities, such as excavation and handling of lunar soil and rock, and we will be sending robotic instruments to do much of the work for us. Understanding more about the chemical and physical properties of lunar dust, how dust particles interact with each other and with equipment surfaces and the role of static electricity build-up on dust particles in the low-humidity lunar environment is imperative to the development of technologies for removing and preventing dust accumulation, and successfully handling lunar regolith. Dr. Calle is currently working on the problems of the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces, particularly to those of Mars and the Moon, and is heavily involved in developing instrumentation for future planetary missions. With this end in view, the NASA Kennedy Space Center's Innovative Partnerships Program Office partnered with OEM Solutions, Inc. OEM Solutions is a global leader in particle dynamics simulation software, providing custom solutions for use in tackling tough design and process problems related to bulk solids handling. Customers in industries such as pharmaceutical, chemical, mineral, and materials processing as well as oil and gas production, agricultural and construction, and geo-technical engineering use OEM Solutions' EDEM(TradeMark) software to improve the design and operation of their equipment while reducing development costs, time-to-market and operational risk. EDEM is the world's first general-purpose computer-aided engineering (CAE) tool to use state-of-the-art discrete element modeling technology for the simulation and analysis of particle handling and manufacturing operations. With EDEM you'can quickly and easily create a parameterized model of your granular solids
Ground-water solute transport modeling using a three-dimensional scaled model
International Nuclear Information System (INIS)
Crider, S.S.
1987-01-01
Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport
Electronic Warfare in Army Models - A Survey.
1980-08-01
CCM) PROVING GROUND TENIAS SAMJAM EIEM SPREAD SPECTRUM US ARMY ELECTRONIC FOREIGN SCIENCE & OFFICE OF MISSILE WARFARE LAB (EWL) TECHNOLOGY CENTER...IPAR MULTIRADAR SPREAD SPECTRUM ECMFUZ IRSS OTOALOC TAC ZINGERS EIEM ITF PATCOM TAM EOCM SIM FAC MGM-H4D RFSS TENIAS GTSF MG(-H4H ROLJAM ZAP I HMSM MSL...USAFAS TRASANA USAPAS TCF ASD WPAFU TENIAS ______ ___ ECAC _________ WAR EAGLE _________CATRADA WARRANT am________ 3DBDM ZAP 1 ____________ MEW EWL ZAP 2
Reliability Modeling of Critical Electronic Devices.
1983-05-01
Electronics, Vol. QE-15, No. 1, up January 1979, pp. 11-13. 15. Newman, D.H. and Ritchie, S., Degradation Pnenomena in Gallium Aluminium Arsenide Stripe...8217RESERVOIR COLD CATHODE TRAP FIGURE 7.2-1: HELIUM-CADMIUM LASER TUBE Principle design considerations relating to the lifetime of the device include (Ref 1): o...available in two basic design types. The contact design is either screw machined or stamped and formed. The screw machined contacts are close entry
Mathematical model I. Electron and quantum mechanics
Nitin Ramchandra Gadre
2011-01-01
The basic particle electron obeys various theories like electrodynamics, quantum mechanics and special relativity. Particle under different experimental conditions behaves differently, allowing us to observe different characteristics which become basis for these theories. In this paper, we have made an attempt to suggest a classical picture by studying the requirements of these three modern theories. The basic presumption is: There must be certain structural characteristics in a particle like...
Electronic learning and constructivism: a model for nursing education.
Kala, Sasikarn; Isaramalai, Sang-Arun; Pohthong, Amnart
2010-01-01
Nurse educators are challenged to teach nursing students to become competent professionals, who have both in-depth knowledge and decision-making skills. The use of electronic learning methods has been found to facilitate the teaching-learning process in nursing education. Although learning theories are acknowledged as useful guides to design strategies and activities of learning, integration of these theories into technology-based courses appears limited. Constructivism is a theoretical paradigm that could prove to be effective in guiding the design of electronic learning experiences for the purpose of providing positive outcomes, such as the acquisition of knowledge and decision-making skills. Therefore, the purposes of this paper are to: describe electronic learning, present a brief overview of what is known about the outcomes of electronic learning, discuss constructivism theory, present a model for electronic learning using constructivism, and describe educators' roles emphasizing the utilization of the model in developing electronic learning experiences in nursing education.
Power Electronic Packaging Design, Assembly Process, Reliability and Modeling
Liu, Yong
2012-01-01
Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can d...
An integrated radar model solution for mission level performance and cost trades
Hodge, John; Duncan, Kerron; Zimmerman, Madeline; Drupp, Rob; Manno, Mike; Barrett, Donald; Smith, Amelia
2017-05-01
A fully integrated Mission-Level Radar model is in development as part of a multi-year effort under the Northrop Grumman Mission Systems (NGMS) sector's Model Based Engineering (MBE) initiative to digitally interconnect and unify previously separate performance and cost models. In 2016, an NGMS internal research and development (IR and D) funded multidisciplinary team integrated radio frequency (RF), power, control, size, weight, thermal, and cost models together using a commercial-off-the-shelf software, ModelCenter, for an Active Electronically Scanned Array (AESA) radar system. Each represented model was digitally connected with standard interfaces and unified to allow end-to-end mission system optimization and trade studies. The radar model was then linked to the Air Force's own mission modeling framework (AFSIM). The team first had to identify the necessary models, and with the aid of subject matter experts (SMEs) understand and document the inputs, outputs, and behaviors of the component models. This agile development process and collaboration enabled rapid integration of disparate models and the validation of their combined system performance. This MBE framework will allow NGMS to design systems more efficiently and affordably, optimize architectures, and provide increased value to the customer. The model integrates detailed component models that validate cost and performance at the physics level with high-level models that provide visualization of a platform mission. This connectivity of component to mission models allows hardware and software design solutions to be better optimized to meet mission needs, creating cost-optimal solutions for the customer, while reducing design cycle time through risk mitigation and early validation of design decisions.
International Nuclear Information System (INIS)
Cho, Eun Ae; Kwon, Hyuk Sang; Beranrd, Frederic
2003-01-01
The electronic properties of the passive film formed on Fe-20Cr ferritic stainless steel in pH 8.5 buffer solution containing 0.05 M EDTA (ethylene diammine tetraacetic acid) were examined by the photocurrent measurements and Mott-Schottky analysis for the film. XPS depth profile for the film demonstrated that Cr content in the outermost layer of the passive film was higher in the solution with EDTA than that in the solution without EDTA, due to selective dissolution of Fe by EDTA. In the solution with EDTA, the passive film showed characteristics of an amorphous or highly disordered n-type semiconductor. The band gap energies of the passive film are estimated to be ∼ 3.0 eV, irrespective of film formation potential from 0 to 700 mV SCE and of presence of EDTA. However, the donor density of the passive film formed in the solution with EDTA is much higher than that formed in the solution without EDTA, due to an increase in oxygen vacancy resulted from the dissolution of Fe-oxide in the outermost layer of the passive film. These results support the proposed model that the passive film formed on Fe-20Cr in pH 8.5 buffer solution mainly consists of Cr-substituted γ-Fe 2 O 3
Siqveland, Elisabeth S; Kilen, Elin; Ludvigsen, Ann-Elisabeth; Henriksen, Bjørnar; Brossamain, Thomas; Gudlaugsson, Gunnar; Teodorsen, A; Fensli, Rune Werner
2016-01-01
This report studies the way forward for how a telemedicine solution can be integrated for exchange of data with an existing Electronic Health Record (EHR) system. The solution used an example for this report is based on a telemedicine solution for COPD patients (Chronic Obstructive Pulmonary Disease) developed in the project “Collaborative Point-of-Care Services Agder: Follow-up of COPD patients as part of the United4Health EU Project», with financial support from the Research Council of Norw...
Modeling radical edge-site reactions of biochar in CO2/water solution under ultrasonic treatment
Zubatiuk, Tetiana; Sajjadi, Baharak; Hill, Glake; Leszczynska, Danuta; Chen, Wei-Yin; Leszczynski, Jerzy
2017-12-01
We report results of theoretical evaluation of the mechanisms of possible radical reactions on the edge-site of biochar with CO2,SUP>·-, OH ˙ , and H ˙ in irradiated aqueous solution. The computational studies were performed for model poly aromatic systems. Obtained mechanisms reflect one of the routes of the oxygen loss accompanied by increase of hydrogen content, as observed in photochemical experiment. The reaction of CO2·- with the edge site of biochar mainly leads to reduced rather than oxidized products. The mechanism of CO2 capturing is mapped by different routes of one-electron reduction and radical addition to the aromatic ring.
Exact solutions in a model of vertical gas migration
Energy Technology Data Exchange (ETDEWEB)
Silin, Dmitriy B.; Patzek, Tad W.; Benson, Sally M.
2006-06-27
This work is motivated by the growing interest in injectingcarbon dioxide into deep geological formations as a means of avoidingatmospheric emissions of carbon dioxide and consequent global warming.One of the key questions regarding the feasibility of this technology isthe potential rate of leakage out of the primary storage formation. Weseek exact solutions in a model of gas flow driven by a combination ofbuoyancy, viscous and capillary forces. Different combinations of theseforces and characteristic length scales of the processes lead todifferent time scaling and different types of solutions. In the case of athin, tight seal, where the impact of gravity is negligible relative tocapillary and viscous forces, a Ryzhik-type solution implies square-rootof time scaling of plume propagation velocity. In the general case, a gasplume has two stable zones, which can be described by travelling-wavesolutions. The theoretical maximum of the velocity of plume migrationprovides a conservative estimate for the time of vertical migration.Although the top of the plume has low gas saturation, it propagates witha velocity close to the theoretical maximum. The bottom of the plumeflows significantly more slowly at a higher gas saturation. Due to localheterogeneities, the plume can break into parts. Individual plumes alsocan coalesce and from larger plumes. The analytical results are appliedto studying carbon dioxide flow caused by leaks from deep geologicalformations used for CO2 storage. The results are also applicable formodeling flow of natural gas leaking from seasonal gas storage, or formodeling of secondary hydrocarbon migration.
Mathematical Model of Suspension Filtration and Its Analytical Solution
Directory of Open Access Journals (Sweden)
Normahmad Ravshanov
2013-01-01
Full Text Available The work develops advanced mathematical model and computing algorithm to analyze, predict and identify the basic parameters of filter units and their variation ranges. Numerical analytic solution of liquid ionized mixtures filtration was got on their basis. Computing experiments results are presented in graphics form. Calculation results analysis enables to determine the optimum performance of filter units, used for liquid ionized mixtures filtration, food preparation, drug production and water purification. Selection of the most suitable parameters contributes to the improvement of economic and technological efficiency of production and filter units working efficiency.
Nonzero solutions of nonlinear integral equations modeling infectious disease
Energy Technology Data Exchange (ETDEWEB)
Williams, L.R. (Indiana Univ., South Bend); Leggett, R.W.
1982-01-01
Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral equation, x(t) = ..integral../sup t//sub t-tau/f(s,x(s))ds, are given in terms of simple product and product integral inequalities. The equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the rhinovirus viruses) if x(t) is the proportion of infectives at time t and f(t,x(t)) is the proportion of new infectives per unit time.
Wu, Han; Zhou, Liyan; Yan, Shancheng; Song, Haizeng; Shi, Yi
2018-01-01
Quantum dot devices have been viewed as one of solutions for the next step in the development of integrated circuit. Two-dimensional (2D) layered semiconductors such as tin sulfide (SnS) and tin disulfide (SnS2) are promising materials for fabricating quantum dots (QDs) devices. However, the challenges in the synthesis of QDs with pure phases severely limit applications in such fields. In this work, uniform SnS and SnS2 QDs were synthesized via a convenient and facile ultrasonic method. TEM and AFM images confirmed the morphology of the SnS and SnS2 QDs. The optical characteristics of the QDs were obtained via UV-vis absorption and Raman spectroscopy. Finally, volt-current measurements of devices fabricated using the SnS and SnS2 QDs were carried out. Our results demonstrate the potential of SnS and SnS2 QDs for optical and electronic applications.
Keller, Brent D; Ferralis, Nicola; Grossman, Jeffrey C
2016-05-11
Disordered carbon materials, both amorphous and with long-range order, have been used in a variety of applications, from conductive additives and contact materials to transistors and photovoltaics. Here we show a flexible solution-based method of preparing thin films with tunable electrical properties from suspensions of ball-milled coals following centrifugation. The as-prepared films retain the rich carbon chemistry of the starting coals with conductivities ranging over orders of magnitude, and thermal treatment of the resulting films further tunes the electrical conductivity in excess of 7 orders of magnitude. Optical absorption measurements demonstrate tunable optical gaps from 0 to 1.8 eV. Through low-temperature conductivity measurements and Raman spectroscopy, we demonstrate that variable range hopping controls the electrical properties in as-prepared and thermally treated films and that annealing increases the sp(2) content, localization length, and disorder. The measured hopping energies demonstrate electronic properties similar to amorphous carbon materials and reduced graphene oxide. Finally, Joule heating devices were fabricated from coal-based films, and temperatures as high as 285 °C with excellent stability were achieved.
Study On The Electro-Refining Of Tin In Acid Solution From Electronic Waste
Directory of Open Access Journals (Sweden)
Son Seong Ho
2015-06-01
Full Text Available The tin metal could be retractable from wasted tin scrap, sludge, and wasted electroplated solution hydrometallurgical treatment, and purification process. In order to be used as resource of electronic devices, the retracted crude metal should be purified to the extent of higher than 99.9%. In this study, tin electro-refining process was performed to purify the casted tin crude metal at various experimental conditions: at the current density of 3, 5A/dm2, and in various electrolytes such as hydrochloric acid, sulfuric acid and methansulfonic acid. Additional experiment was conducted using Rotating Disk Electrode (RDE in order to investigate the rate determining step of tin electro-refining process. The current efficiency, 65.6%, was achievable at the condition of current density, 5A/dm2, and in the electrolyte of Hydrochloric acid. During tin electro-refining process, impurity dissolved from tin crude metal into the electrolyte was analyzed using Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES, and the result showed the concentration of impurity metal gradually increased. Quantitative analysis on casted tin crude metal showed that it consists of tin with 93.9 wt.% and several impurity metals of Ag, Bi, Pb, Cu, and etc. After tin electro-refining process, the purity of tin increased up to 99.985 wt.%.
International Nuclear Information System (INIS)
Parkins, R.N.
1985-04-01
Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)
International Nuclear Information System (INIS)
Hashimoto, S.; Miyata, T.; Suzuki, N.; Kawakami, W.
1979-01-01
A study on the decoloration and degradation of a commercial anthraquinone dye (Acid Blue 40) was carried out by electron-beam irradiation. Experiments were done in a flow system using a five-stage, dual-tube bubbling column reactor. The oxygen contents of the gas bubbled into the inner tubes of the columns were varied from 0 to 100%. The inlet dye concentration, the solution feed rate and the dose rate were also varied from 50 to 100 ppm, 1.5 to 101/min and 0.1 to 0.15 Mrad/s, respectively. The degree of decoloration and degradation of aromatic rings increased with the oxygen content and became close to those for pure oxygen bubbling system at about 25% of oxygen content. The amount of degraded aromatic rings was proportional to that of consumed oxygen. The rate expression of the decoloration and degradation of the dye and the oxygen consumption were derived according to a reaction scheme. (author)
Finite-bias electronic transport of molecules in a water solution
Rungger, Ivan
2010-06-04
The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.
Energy Technology Data Exchange (ETDEWEB)
Alves, L.L.; Gousset, G.; Ferreira, C.M. [Centro de Electrodinamica, Instituto Superior Tecnico, 1096 Lisboa Codex (Portugal)]|[Laboratoire de Physique des Gaz et des Plasmas, Universite de Paris-Sud, 91405 Orsay Cedex (France)
1997-01-01
In this paper we develop a {ital self-contained formulation} to solve the steady-state spatially inhomogeneous electron Boltzmann equation (EBE) in a plasma positive column, taking into account the spatial gradient and the space-charge field terms. The problem is solved in cylindrical geometry using the classical two-term approximation, with appropriate boundary conditions for the electron velocity distribution function, especially at the tube wall. A condition for the microscopic radial flux of electrons at the wall is deduced, and a detailed analysis of some limiting situations is carried out. The present formulation is {ital self-contained} in the sense that the electron particle balance equation is exactly satisfied, that is, the ionization rate exactly compensates for the electron loss rate to the wall. This condition yields a relationship between the applied maintaining field and the gas pressure, termed the {ital discharge characteristic}, which is obtained as an {ital eigenvalue solution} to the problem. By solving the EBE we directly obtain the isotropic and the anisotropic components of the electron distribution function (EDF), from which we deduce the radial distributions of all relevant macroscopic quantities: electron density, electron transport parameters and rate coefficients for excitation and ionization, and electron power transfer. The results show that the values of these quantities across the discharge are lower than those calculated for a homogeneous situation, due to the loss of electrons to the wall. The solutions for the EDF reveal that, for sufficiently low maintaining fields, the radial anisotropy at some radial positions can be negative, that is, directed toward the discharge axis, for energies above a {ital collisional barrier} around the inelastic thresholds. However, at the wall, the radial anisotropy always points to the wall, due to the strong electron drain occuring in this region. (Abstract Truncated)
Survival of Lactobacillus plantarum in model solutions and fruit juices.
Nualkaekul, Sawaminee; Charalampopoulos, Dimitris
2011-03-30
The aim of the work was to study the survival of Lactobacillus plantarum NCIMB 8826 in model solutions and develop a mathematical model describing its dependence on pH, citric acid and ascorbic acid. A Central Composite Design (CCD) was developed studying each of the three factors at five levels within the following ranges, i.e., pH (3.0-4.2), citric acid (6-40 g/L), and ascorbic acid (100-1000 mg/L). In total, 17 experimental runs were carried out. The initial cell concentration in the model solutions was approximately 1 × 10(8)CFU/mL; the solutions were stored at 4°C for 6 weeks. Analysis of variance (ANOVA) of the stepwise regression demonstrated that a second order polynomial model fits well the data. The results demonstrated that high pH and citric acid concentration enhanced cell survival; one the other hand, ascorbic acid did not have an effect. Cell survival during storage was also investigated in various types of juices, including orange, grapefruit, blackcurrant, pineapple, pomegranate, cranberry and lemon juice. The model predicted well the cell survival in orange, blackcurrant and pineapple, however it failed to predict cell survival in grapefruit and pomegranate, indicating the influence of additional factors, besides pH and citric acid, on cell survival. Very good cell survival (less than 0.4 log decrease) was observed after 6 weeks of storage in orange, blackcurrant and pineapple juice, all of which had a pH of about 3.8. Cell survival in cranberry and pomegranate decreased very quickly, whereas in the case of lemon juice, the cell concentration decreased approximately 1.1 logs after 6 weeks of storage, albeit the fact that lemon juice had the lowest pH (pH~2.5) among all the juices tested. Taking into account the results from the compositional analysis of the juices and the model, it was deduced that in certain juices, other compounds seemed to protect the cells during storage; these were likely to be proteins and dietary fibre In contrast, in
Electronic Business Development as a Sustainable Competitive Advantage Model
Directory of Open Access Journals (Sweden)
Narimantas Kazimieras Paliulis
2012-07-01
Full Text Available The paper examines the practical usefulness of information technologies in business reviewing electronic business concepts provided in science literature and also the newest tendencies of electronic business development. The paper offers a review of various authors works on e-strategies and IT influence on companies’ functionality. An analysis of disadvantages in various electronic business development models is provided. On the basis of analyses done on the theory of electronic business development and on disadvantages of e-business models, the main aspects of e-business development as sustainable competitive advantage are identified. A fully – formed model of electronic business development as sustainable competitive advantage is presented. Conclusions are provided.Article in Lithuanian
Relativistic electron influence on sanitary-model microorganisms and antibiotics in model samples
International Nuclear Information System (INIS)
Antipov, V.S.; Berezhna, I.V.; Kovpik, O.F.; Babych, E.M.; Voliansky, Yu.L.; Sklar, N.I.
2004-01-01
A series of the investigations of the electron beam influence on sanitary-model test cultures and antibiotics in model solutions has been carried out. For each of the test objects, the authors have found the boundary doses of the absorbed radiation. The higher doses cause the sharp increase in the bactericidal influence, which becomes complete. The sanitary-bactericidal indices of the water samples remain sable during 6 days. The samples of antibiotics in various concentrations (from 100 UA) have been irradiated. It is proved that the substratum processing by the beam (in the regimes 30 kGy) causes diminution and complete neutralization of the antibacterial activity in all probes of the samples
Advanced techniques in reliability model representation and solution
Palumbo, Daniel L.; Nicol, David M.
1992-01-01
The current tendency of flight control system designs is towards increased integration of applications and increased distribution of computational elements. The reliability analysis of such systems is difficult because subsystem interactions are increasingly interdependent. Researchers at NASA Langley Research Center have been working for several years to extend the capability of Markov modeling techniques to address these problems. This effort has been focused in the areas of increased model abstraction and increased computational capability. The reliability model generator (RMG) is a software tool that uses as input a graphical object-oriented block diagram of the system. RMG uses a failure-effects algorithm to produce the reliability model from the graphical description. The ASSURE software tool is a parallel processing program that uses the semi-Markov unreliability range evaluator (SURE) solution technique and the abstract semi-Markov specification interface to the SURE tool (ASSIST) modeling language. A failure modes-effects simulation is used by ASSURE. These tools were used to analyze a significant portion of a complex flight control system. The successful combination of the power of graphical representation, automated model generation, and parallel computation leads to the conclusion that distributed fault-tolerant system architectures can now be analyzed.
A Unified Model of Secondary Electron Cascades in Diamond
Energy Technology Data Exchange (ETDEWEB)
Ziaja, B; London, R A; Hajdu, J
2004-10-13
In this paper we present a detailed and unified theoretical treatment of secondary electron cascades that follow the absorption of an X-ray photon. A Monte Carlo model has been constructed that treats in detail the evolution of electron cascades induced by photoelectrons and by Auger electrons following inner shell ionizations. Detailed calculations are presented for cascades initiated by electron energies between 0.1-10 keV. The present paper expands our earlier work by extending the primary energy range, by improving the treatment of secondary electrons, especially at low electron energies, by including ionization by holes, and by taking into account their coupling to the crystal lattice. The calculations describe the three-dimensional evolution of the electron cloud, and monitor the equivalent instantaneous temperature of the free-electron gas as the system cools. The dissipation of the impact energy proceeds predominantly through the production of secondary electrons whose energies are comparable to the binding energies of the valence (40-50 eV) and of the core electrons (300 eV). The electron cloud generated by a 10 keV electron is strongly anisotropic in the early phases of the cascade (t {le} 1 fs). At later times, the sample is dominated by low energy electrons, and these are scattered more isotropically by atoms in the sample. Our results for the total late time number of secondary electrons agree with available experimental data, and show that the emission of secondary electrons approaches saturation within about 100 fs, following the primary impact.
New two-fluid (localized + band electron) model for manganites
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. New two-fluid (localized + band electron) model for manganites. ( With HR Krishnamurthy,GV Pai,SR Hassan,V Shenoy,. Key ideas: T Gupta ….) Two types of eg electronic states arise in doped manganites (due to strong JT coupling, strong U, filling conditions, …):.
Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses
Abramovitz, A.
2011-01-01
This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…
Problem Resolution through Electronic Mail: A Five-Step Model.
Grandgenett, Neal; Grandgenett, Don
2001-01-01
Discusses the use of electronic mail within the general resolution and management of administrative problems and emphasizes the need for careful attention to problem definition and clarity of language. Presents a research-based five-step model for the effective use of electronic mail based on experiences at the University of Nebraska at Omaha.…
Directory of Open Access Journals (Sweden)
Juan Soto
2006-09-01
Full Text Available An electronic tongue for the qualitative analysis of aqueous solutions of salts hasbeen developed. The following set of electrodes was used: RuO2, Ag, and Cu in thick-filmtechnology and Au, Pb, Zn and Ni as small bars of the corresponding metal. The response ofthe designed Ã¢Â€Âœelectronic tongueÃ¢Â€Â was tested on a family of samples containing pure salt andcomplex mixtures. The electrodes were used as potentiometric un-specific sensors and thee.m.f. of each electrode in contact with a certain aqueous solution was used as input signalfor a PCA analysis. The study showed that the set of electrodes were capable to discriminatebetween aqueous solutions of salts basically by their different content in anions and cations(the anions SO42-, Cl-, PO4H2-, CO3H-, NO3- and cations Na+ and K+ were studied. In orderto better analyze the basis for the discrimination power shown by the electronic tongue, aquantitative analysis was also envisaged. A fair estimation of the concentrations of thedifferent ions in the solutions studied appeared to be possible using this electronic tonguedesign.Keywords:
Micera, G.; And Others
1984-01-01
Background, procedures, and results are provided for an experiment which examines, through electron spin resonance spectroscopy, complex species formed by cupric and 2,6-dihydroxybenzoate ions in aqueous solutions. The experiment is illustrative of several aspects of inorganic and coordination chemistry, including the identification of species…
Hare, Patrick M.; Crespo-Hernández, Carlos E.; Kohler, Bern
2006-01-01
The femtosecond transient absorption technique was used to study the relaxation of excited electronic states created by absorption of 267-nm light in all of the naturally occurring pyrimidine DNA and RNA bases in aqueous solution. The results reveal a surprising bifurcation of the initial excited-state population in
Fast Proton Titration Scheme for Multiscale Modeling of Protein Solutions.
Teixeira, Andre Azevedo Reis; Lund, Mikael; da Silva, Fernando Luís Barroso
2010-10-12
Proton exchange between titratable amino acid residues and the surrounding solution gives rise to exciting electric processes in proteins. We present a proton titration scheme for studying acid-base equilibria in Metropolis Monte Carlo simulations where salt is treated at the Debye-Hückel level. The method, rooted in the Kirkwood model of impenetrable spheres, is applied on the three milk proteins α-lactalbumin, β-lactoglobulin, and lactoferrin, for which we investigate the net-charge, molecular dipole moment, and charge capacitance. Over a wide range of pH and salt conditions, excellent agreement is found with more elaborate simulations where salt is explicitly included. The implicit salt scheme is orders of magnitude faster than the explicit analog and allows for transparent interpretation of physical mechanisms. It is shown how the method can be expanded to multiscale modeling of aqueous salt solutions of many biomolecules with nonstatic charge distributions. Important examples are protein-protein aggregation, protein-polyelectrolyte complexation, and protein-membrane association.
An Electronic Tongue Designed to Detect Ammonium Nitrate in Aqueous Solutions
Directory of Open Access Journals (Sweden)
Inmaculada Campos
2013-10-01
Full Text Available An electronic tongue has been developed to monitor the presence of ammonium nitrate in water. It is based on pulse voltammetry and consists of an array of eight working electrodes (Au; Pt; Rh; Ir; Cu; Co; Ag and Ni encapsulated in a stainless steel cylinder. In a first step the electrochemical response of the different electrodes was studied in the presence of ammonium nitrate in water in order to further design the wave form used in the voltammetric tongue. The response of the electronic tongue was then tested in the presence of a set of 15 common inorganic salts; i.e.; NH4NO3; MgSO4; NH4Cl; NaCl; Na2CO3; (NH42SO4; MgCl2; Na3PO4; K2SO4; K2CO3; CaCl2; NaH2PO4; KCl; NaNO3; K2HPO4. A PCA plot showed a fairly good discrimination between ammonium nitrate and the remaining salts studied. In addition Fuzzy Art map analyses determined that the best classification was obtained using the Pt; Co; Cu and Ni electrodes. Moreover; PLS regression allowed the creation of a model to correlate the voltammetric response of the electrodes with concentrations of ammonium nitrate in the presence of potential interferents such as ammonium chloride and sodium nitrate.
Comparison of the modeling solutions with the hydrogen discharge data
International Nuclear Information System (INIS)
Hiskes, J.R.
1992-01-01
With the availability of experimental values for H 2 vibrational population distributions up to v=8 and measured distributions up to v=5 with simultaneous measurements of the H - concentration, it has become possible to test some features of the full-spectrum model of H - generation. The application of the code developed by Gorse et al. to these discharges by the groups at both Bari and at the Ecole Polytechnique has extended the vibrational distribution calculation to include also the H - concentration. Comparing the vibrational population calculated by these two groups at the higher levels, where the onset of H - production occurs, one finds populations for the υ=5 level that are a factor of eight to ten larger than the experimental values. Since these workers have omitted the role of the H 3 + ions known to be present in the discharge, the inclusion of the appropriate S-V process should increase the population discrepancies another factor of two or three. This excess population poses something of a dilemma: Since the Bari code simultaneously reproduces the observed H - concentration but overestimates the vibrational population by a large factor, the standard model of vibrational excitation followed by dissociative attachment is open to question. If measured rather than calculated distributions were used in the H - calculation, the calculated H - concentration would presumably be an order-of-magnitude smaller than the observed value. The measured population distributions taken against the background of the modelling solutions would seem to imply alternate sources of H - production other than dissociative attachment. To examine this problem, we have generated new modelling solutions for comparison with the data of Eenshuistra et al
DEFF Research Database (Denmark)
Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær
2000-01-01
A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...
DEFF Research Database (Denmark)
Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær
2000-01-01
those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute...... concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped...
Electronic Modeling and Design for Extreme Temperatures Project
National Aeronautics and Space Administration — We are developing CAD tools, models and methodologies for electronics design for circuit operation in extreme environments with focus on very low temperatures...
Electronic field emission models beyond the Fowler-Nordheim one
Lepetit, Bruno
2017-12-01
We propose several quantum mechanical models to describe electronic field emission from first principles. These models allow us to correlate quantitatively the electronic emission current with the electrode surface details at the atomic scale. They all rely on electronic potential energy surfaces obtained from three dimensional density functional theory calculations. They differ by the various quantum mechanical methods (exact or perturbative, time dependent or time independent), which are used to describe tunneling through the electronic potential energy barrier. Comparison of these models between them and with the standard Fowler-Nordheim one in the context of one dimensional tunneling allows us to assess the impact on the accuracy of the computed current of the approximations made in each model. Among these methods, the time dependent perturbative one provides a well-balanced trade-off between accuracy and computational cost.
Cifuentes, Maribel; Davis, Melinda; Fernald, Doug; Gunn, Rose; Dickinson, Perry; Cohen, Deborah J
2015-01-01
This article describes the electronic health record (EHR)-related experiences of practices striving to integrate behavioral health and primary care using tailored, evidenced-based strategies from 2012 to 2014; and the challenges, workarounds and initial health information technology (HIT) solutions that emerged during implementation. This was an observational, cross-case comparative study of 11 diverse practices, including 8 primary care clinics and 3 community mental health centers focused on the implementation of integrated care. Practice characteristics (eg, practice ownership, federal designation, geographic area, provider composition, EHR system, and patient panel characteristics) were collected using a practice information survey and analyzed to report descriptive information. A multidisciplinary team used a grounded theory approach to analyze program documents, field notes from practice observation visits, online diaries, and semistructured interviews. Eight primary care practices used a single EHR and 3 practices used 2 different EHRs, 1 to document behavioral health and 1 to document primary care information. Practices experienced common challenges with their EHRs' capabilities to 1) document and track relevant behavioral health and physical health information, 2) support communication and coordination of care among integrated teams, and 3) exchange information with tablet devices and other EHRs. Practices developed workarounds in response to these challenges: double documentation and duplicate data entry, scanning and transporting documents, reliance on patient or clinician recall for inaccessible EHR information, and use of freestanding tracking systems. As practices gained experience with integration, they began to move beyond workarounds to more permanent HIT solutions ranging in complexity from customized EHR templates, EHR upgrades, and unified EHRs. Integrating behavioral health and primary care further burdens EHRs. Vendors, in cooperation with
Modelling and implementing electronic health records in Denmark
DEFF Research Database (Denmark)
Bernstein, Knut; Rasmussen, Morten Bruun; Vingtoft, Søren
2003-01-01
The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development.......The Danish Health IT strategy points out that integration between electronic health records (EHR) systems has a high priority. This paper reporst reports new tendencies in modelling and integration platforms globally and how this is reflected in the natinal development....
Energy Technology Data Exchange (ETDEWEB)
Mazzoleni, F.; Ottaviani, M.F.; Romanelli, M.; Martini, G.
1988-04-07
Electron spin resonance spectroscopy was used to investigate the localization and the motion of neutral, negative, and positive nitroxides (Tempol, Tempydo/sup -/, and TempTMA/sup +/, respectively) solvated by partially and completely deuteriated ethanol in X-type zeolite. At room temperature, Tempol and Tempydo/sup -/ were almost free to move inside the intracrystalline liquid, whereas a fraction of TempTMA/sup +/ was adsorbed on specific adsorption sites of the faujasite cavity. The analysis of the correlation times for the motion indicated that fast- and slow-motion conditions were verified as a function of temperature for each radical with transition temperatures between the two domains that depended on the presence of the support, thus indicating appreciable surface effects on the probe dynamics. The observed differences in the (A/sub N/) coupling constants were discussed in terms of surface change and changes in molecular properties. The hydrogen-bond influence was also discussed.
Directory of Open Access Journals (Sweden)
Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.
2004-11-01
Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.
Development of solution-gated graphene transistor model for biosensors
Karimi, Hediyeh; Yusof, Rubiyah; Rahmani, Rasoul; Hosseinpour, Hoda; Ahmadi, Mohammad T.
2014-02-01
The distinctive properties of graphene, characterized by its high carrier mobility and biocompatibility, have stimulated extreme scientific interest as a promising nanomaterial for future nanoelectronic applications. In particular, graphene-based transistors have been developed rapidly and are considered as an option for DNA sensing applications. Recent findings in the field of DNA biosensors have led to a renewed interest in the identification of genetic risk factors associated with complex human diseases for diagnosis of cancers or hereditary diseases. In this paper, an analytical model of graphene-based solution gated field effect transistors (SGFET) is proposed to constitute an important step towards development of DNA biosensors with high sensitivity and selectivity. Inspired by this fact, a novel strategy for a DNA sensor model with capability of single-nucleotide polymorphism detection is proposed and extensively explained. First of all, graphene-based DNA sensor model is optimized using particle swarm optimization algorithm. Based on the sensing mechanism of DNA sensors, detective parameters ( I ds and V gmin) are suggested to facilitate the decision making process. Finally, the behaviour of graphene-based SGFET is predicted in the presence of single-nucleotide polymorphism with an accuracy of more than 98% which guarantees the reliability of the optimized model for any application of the graphene-based DNA sensor. It is expected to achieve the rapid, quick and economical detection of DNA hybridization which could speed up the realization of the next generation of the homecare sensor system.
International Nuclear Information System (INIS)
Anderson, R.F.; Patel, K.B.
1991-01-01
The reactions of the aquated electron (e aq - ) with intercalators of high reduction potential (nitracrine and related basic nitroacridines) has been investigated by pulse radiolysis in the presence of DNA in aqueous solution. Under conditions where the majority of the e aq - species react initially with DNA bases (high DNA:drug ratios) a slower subsequent electron transfer to the intercalator was observed. The rate of this intra-complex transfer, expressed as DNA base pairs traversed per second, was in the range (1.2-3.1) x 10 5 base pairs s -1 and increased in order of the one-electron reduction potentials of the DNA-bound intercalators. No transfer was seen to the much less electron affinic des-nitro analogue of the nitroacridines. Only a small proportion of the initial DNA base radicals (≤50%) underwent this intra-complex electron transfer. Even for the most efficient electron trap, nitracrine, the apparent mean electron migration distance was only three base pairs. A slow secondary reduction of nitroacridines [(0.08-5.0) x 10 4 base pairs s -1 ] was also observed with a proportion of the essentially immobile . OH-induced DNA radicals. This secondary reaction may well serve as a measure of the mobility of the DNa-bound intercalators. This study therefore implies a lack of extensive migration of DNA-associated electrons in aqueous solution, although it does not exclude the possibility that more mobile electrons produced by direct ionization of DNA might migrate over large distances. (author)
Staszewska, G.
1981-06-01
A new approach to the solution of coupled equations involved in electron-ion and electron-atom scattering problems is proposed. This method is a combination of iteration and variation procedures. The main advantage of this method is that exchange terms can be calculated in a direct and straightforward manner. The method is based on the Lippmann-Schwinger equation and does not require trial functions satisfying appropriate boundary conditions. Using the Volterra formulation one can find the solution on an interval determined by the range of the exchange potential and the long-range potential terms can be taken into account by a projection procedure giving the asymptotic value of the reactance matrix. The method is tested on the case of electron-hydrogen atom scattering in the 1s-2s and 1s-2s-2p approximation. We have adapted the method proposed originally by Rayski to obtain solutions of coupled equations involved in electron-ion and electron-atom scattering. As mentioned in section 1 the construction of the method secures an automatic fulfilment of the boundary conditions. It allows an easy calculation of the exchange potential as well as an estimation of the introduced approximation. It gives also a possibility of detecting any spurious convergence. Moreover, it is important that this formalism can be applied in the case of normalized as well as unnormalized initial integral equations. This fact is of special importance in the case of long-range interactions. When the method is used for unnormalized (Volterra) equations it allows application of a very convenient projection procedure for treating the long-range terms in the direct potential. Electron-hydrogen atom collisions are investigated as a numerical illustration of the method. In the 1s-2s approximation the normalized equations were solved, while in the 1s-2s-2p approximation the solution was obtained with the help of Volterra equations and the long-range terms of the direct potential were taken into account
A potential model for sodium chloride solutions based on the TIP4P/2005 water model
Benavides, A. L.; Portillo, M. A.; Chamorro, V. C.; Espinosa, J. R.; Abascal, J. L. F.; Vega, C.
2017-09-01
Despite considerable efforts over more than two decades, our knowledge of the interactions in electrolyte solutions is not yet satisfactory. Not even one of the most simple and important aqueous solutions, NaCl(aq), escapes this assertion. A requisite for the development of a force field for any water solution is the availability of a good model for water. Despite the fact that TIP4P/2005 seems to fulfill the requirement, little work has been devoted to build a force field based on TIP4P/2005. In this work, we try to fill this gap for NaCl(aq). After unsuccessful attempts to produce accurate predictions for a wide range of properties using unity ionic charges, we decided to follow recent suggestions indicating that the charges should be scaled in the ionic solution. In this way, we have been able to develop a satisfactory non-polarizable force field for NaCl(aq). We evaluate a number of thermodynamic properties of the solution (equation of state, maximum in density, enthalpies of solution, activity coefficients, radial distribution functions, solubility, surface tension, diffusion coefficients, and viscosity). Overall the results for the solution are very good. An important achievement of our model is that it also accounts for the dynamical properties of the solution, a test for which the force fields so far proposed failed. The same is true for the solubility and for the maximum in density where the model describes the experimental results almost quantitatively. The price to pay is that the model is not so good at describing NaCl in the solid phase, although the results for several properties (density and melting temperature) are still acceptable. We conclude that the scaling of the charges improves the overall description of NaCl aqueous solutions when the polarization is not included.
Ribeiro, Raphael F; Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G
2009-09-08
Although continuum solvation models have now been shown to provide good quantitative accuracy for calculating free energies of solvation, questions remain about the accuracy of the perturbed solute electron densities and properties computed from them. Here we examine those questions by applying the SM8, SM8AD, SMD, and IEF-PCM continuum solvation models in combination with the M06-L density functional to compute the (14)N magnetic resonance nuclear shieldings of CH3CN, CH3NO2, CH3NCS, and CH3ONO2 in multiple solvents, and we analyze the dependence of the chemical shifts on solvent dielectric constant. We examine the dependence of the computed chemical shifts on the definition of the molecular cavity (both united-atom models and models based on superposed individual atomic spheres) and three kinds of treatments of the electrostatics, namely the generalized Born approximation with the Coulomb field approximation, the generalized Born model with asymmetric descreening, and models based on approximate numerical solution schemes for the nonhomogeneous Poisson equation. Our most systematic analyses are based on the computation of relative (14)N chemical shifts in a series of solvents, and we compare calculated shielding constants relative to those in CCl4 for various solvation models and density functionals. While differences in the overall results are found to be reasonably small for different solvation models and functionals, the SMx models SM8, and SM8AD, using the same cavity definitions (which for these models means the same atomic radii) as those employed for the calculation of free energies of solvation, exhibit the best agreement with experiment for every functional tested. This suggests that in addition to predicting accurate free energies of solvation, the SM8 and SM8AD generalized Born models also describe the solute polarization in a manner reasonably consistent with experimental (14)N nuclear magnetic resonance spectroscopy. Models based on the
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Vanderhaghen, D.E
1998-12-31
In a search for solutions to environmental pollution problems, radiolysis has proved to be an innovative technique for the removal of organic chemical pollutants in aqueous solution. Radiolysis has shown many advantages over many other techniques, as highly reactive species formed in water by ionizing radiation oxidize organic pollutants breaking down organic molecules to final simple products by oxidation to carbon dioxide and water in a complete oxidation. Our work consisted in doing some experiments in radiolysis with simulated polluted water to help us understand this technique and also develop, in a near future, a project for large scale water treatment. Our project includes the application of a Pelletron type Mexican made Electron Accelerator, which will affirm its capability and usefulness in performing investigation in this field of study. Experiments consisted in treating benzene, toluene and phenol aqueous solutions with an Electron Beam (0.48-0.55 MeV; 24 {mu}A). Two concentrations were used for each compound: 5 and 20 ppm (mg/l) for benzene and toluene; 10 and 50 ppm for phenol. Solutions were prepared with pure, mineral free water and two different p H (5.9), in order to study the effect of concentration and p H on removal efficiency, but avoiding the interference of radical scavengers. Results obtained coincide with the ones reported by Cooper, Nickelsen and Kurucz; highly efficient removal was achieved for benzene (>99.8%), toluene (>98.0%) and phenol (>88%). There was no visible important effect of p H on radiolysis efficiency for benzene nor toluene, phenol however, showed lower removal efficiency in acidic conditions. Concentration of aqueous solutions, nevertheless, did show an important effect at low doses for phenol. Results obtained reveal the importance of this technique in water pollution control and water remedial as expressed by Cooper, Nickelsen and Kurucz, who have studied radiolysis of organic compounds and apply this technique in water
Bonding and Molecular Geometry without Orbitals- The Electron Domain Model
Gillespie, Ronald J.; Spencer, James N.; Moog, Richard S.
1996-07-01
An alternative to the conventional valence bond approach to bonding and geometry-the electron domain model-is presented. This approach avoids some of the problems with the standard approach and presents fewer difficulties for the student, while still providing a physical basis for the VSEPR model and a link to the valence bond model. The electron domain model also emphasizes the importance of the Pauli principle in understanding the chemical bond and molecular geometry. A letter from Derek W. Smith in our April 2000 issue addresses the above.
Numerical Solution of a Model Equation of Price Formation
Chernogorova, T.; Vulkov, L.
2009-10-01
The paper [2] is devoted to the effect of reconciling the classical Black-Sholes theory of option pricing and hedging with various phenomena observed in the markets such as the influence of trading and hedging on the dynamics of an asset. Here we will discuss the numerical solution of initial boundary-value problems to a model equation of the theory. The lack of regularity in the solution as a result from Dirac delta coefficient reduces the accuracy in the numerical computations. First, we apply the finite volume method to discretize the differential problem. Second, we implement a technique of local regularization introduced by A-K. Tornberg and B. Engquist [7] for handling this equation. We derived the numerical regularization process into two steps: the Dirac delta function is regularized and then the regularized differential equation is discretized by difference schemes. Using the discrete maximum principle a priori bounds are obtained for the difference equations that imply stability and convergence of difference schemes for the problem under consideration. Numerical experiments are discussed.
Angulo, Gonzalo; Jedrak, Jakub; Ochab-Marcinek, Anna; Pasitsuparoad, Pakorn; Radzewicz, Czesław; Wnuk, Paweł; Rosspeintner, Arnulf
2017-06-28
The dynamics of unimolecular photo-triggered reactions can be strongly affected by the surrounding medium for which a large number of theoretical descriptions have been used in the past. An accurate description of these reactions requires knowing the potential energy surface and the friction felt by the reactants. Most of these theories start from the Langevin equation to derive the dynamics, but there are few examples comparing it with experiments. Here we explore the applicability of a Generalized Langevin Equation (GLE) with an arbitrary potential and a non-Markovian friction. To this end, we have performed broadband fluorescence measurements with sub-picosecond time resolution of a covalently linked organic electron donor-acceptor system in solvents of changing viscosity and dielectric permittivity. In order to establish the free energy surface (FES) of the reaction, we resort to stationary electronic spectroscopy. On the other hand, the dynamics of a non-reacting substance, Coumarin 153, provide the calibrating tool for the non-Markovian friction over the FES, which is assumed to be solute independent. A simpler and computationally faster approach uses the Generalized Smoluchowski Equation (GSE), which can be derived from the GLE for pure harmonic potentials. Both approaches reproduce the measurements in most of the solvents reasonably well. At long times, some differences arise from the errors inherited from the analysis of the stationary solvatochromism and at short times from the excess excitation energy. However, whenever the dynamics become slow, the GSE shows larger deviations than the GLE, the results of which always agree qualitatively with the measured dynamics, regardless of the solvent viscosity or dielectric properties. The method applied here can be used to predict the dynamics of any other reacting system, given the FES parameters and solvent dynamics are provided. Thus no fitting parameters enter the GLE simulations, within the applicability
Accounting of inter-electron correlations in the model of mobile electron shells
International Nuclear Information System (INIS)
Panov, Yu.D.; Moskvin, A.S.
2000-01-01
One studied the basic peculiar features of the model for mobile electron shells for multielectron atom or cluster. One offered a variation technique to take account of the electron correlations where the coordinates of the centre of single-particle atomic orbital served as variation parameters. It enables to interpret dramatically variation of electron density distribution under anisotropic external effect in terms of the limited initial basis. One studied specific correlated states that might make correlation contribution into the orbital current. Paper presents generalization of the typical MO-LCAO pattern with the limited set of single particle functions enabling to take account of additional multipole-multipole interactions in the cluster [ru
Developing a model for application of electronic banking based on electronic trust
Directory of Open Access Journals (Sweden)
Amir Hooshang Nazarpoori
2014-05-01
Full Text Available This study develops a model for application of electronic banking based on electronic trust among costumers of Day bank in KhoramAbad city. A sample of 150 people was selected based on stratified random sampling. Questionnaires were used for the investigation. Results indicate that technology-based factors, user-based factors, and trust had negative relationships with perceived risk types including financial, functional, personal, and private. Moreover, trust including trust in system and trust in bank had a positive relationship with tendency to use and real application of electronic banking.
Task Flow Modeling in Electronic Business Environments
Directory of Open Access Journals (Sweden)
2007-01-01
Full Text Available In recent years, internet based commerce has developed as a new paradigm. Many factors such as "at home delivery", easy ordering, and usually lower prices contributed to the success of the e-commerce. However, more recently, companies realized that one of the major factors in having a successful internet based business is the design of a user interface that is in concordance with the users' expectations, which includes both functionality and user friendly features. The func-tionality feature of an e-business interface is one of the most important elements when discussing about a specific internet based business. In our paper, we present methods to model task flows for e-business interfaces. We strengthen our study with the design modeling of a practical scenario that may appear in an on-line commercial environment.
A Model for an Electronic Information Marketplace
Directory of Open Access Journals (Sweden)
Wei Ge
2005-11-01
Full Text Available As the information content on the Internet increases, the task of locating desired information and assessing its quality becomes increasingly difficult. This development causes users to be more willing to pay for information that is focused on specific issues, verifiable, and available upon request. Thus, the nature of the Internet opens up the opportunity for information trading. In this context, the Internet cannot only be used to close the transaction, but also to deliver the product - desired information - to the user. Early attempts to implement such business models have fallen short of expectations. In this paper, we discuss the limitations of such practices and present a modified business model for information trading, which uses a reverse auction approach together with a multiple-buyer price discovery process
Miyazako, Hiroki; Ishihara, Kazuhiko; Mabuchi, Kunihiko; Hoshino, Takayuki
2016-06-01
A method for in situ controlling the detachment and deposition of organic molecules such as sugars and biocompatible polymers in aqueous solutions by electron-beam (EB) scan is proposed and evaluated. It was demonstrated that EB irradiation could detach 2-methacryloyloxyethyl phosphorylcholine (MPC) polymers from a silicon nitride membrane. Moreover, organic molecules such as cationic polymers and sugars could be deposited on the membrane by EB irradiation. Spatial distributions of scattered electrons were numerically simulated, and acceleration voltage dependences of the detachment and deposition phenomena were experimentally measured. The simulations and experimental results suggest that the detachment of MPC polymers is mainly due to electrical effects of primary electrons, and that the deposition of organic molecules is mainly due to chemical reactions induced by primary electrons. In view of these findings, the proposed method can be applied to in situ and nanoscale patterning such as the fabrication of cell scaffolds.
Classical solutions for the super symmetric Grassmannian sigma models in two dimensions, (2)
International Nuclear Information System (INIS)
Fujii, K.; Sasaki, R.
1983-11-01
Classical solutions of the supersymmetric Grassmannian sigma models in two euclidean dimensions are investigated. In the equations of motion of the supersymmetric model we interpret the classical fermion solutions as ordinary c-number fields. A quite general class of solutions is constructed explicitly and elementarily in an analogous way with the pure bosonic Grassmannian sigma models and the linearized supersymmetric Dirac equations. (author)
Roh, Jeongkyun; Kim, Hyeok; Park, Myeongjin; Kwak, Jeonghun; Lee, Changhee
2017-10-01
Interface engineering for the improved injection properties of all-solution-processed n-type organic field-effect transistors (OFETs) arising from the use of an inkjet-printed ZnO electron injection layer were demonstrated. The characteristics of ZnO in terms of electron injection and transport were investigated, and then we employed ZnO as the electron injection layer via inkjet-printing during the fabrication of all-solution-processed, n-type OFETs. With the inkjet-printed ZnO electron injection layer, the devices exhibited approximately five-fold increased mobility (0.0058 cm2/V s to 0.030 cm2/V s), more than two-fold increased charge concentration (2.76 × 1011 cm-2 to 6.86 × 1011 cm-2), and two orders of magnitude reduced device resistance (120 MΩ cm to 3 MΩ cm). Moreover, n-type polymer form smoother film with ZnO implying denser packing of polymer, which results in higher mobility.
Electron correlations in narrow energy bands: modified polar model approach
Directory of Open Access Journals (Sweden)
L. Didukh
2008-09-01
Full Text Available The electron correlations in narrow energy bands are examined within the framework of the modified form of polar model. This model permits to analyze the effect of strong Coulomb correlation, inter-atomic exchange and correlated hopping of electrons and explain some peculiarities of the properties of narrow-band materials, namely the metal-insulator transition with an increase of temperature, nonlinear concentration dependence of Curie temperature and peculiarities of transport properties of electronic subsystem. Using a variant of generalized Hartree-Fock approximation, the single-electron Green's function and quasi-particle energy spectrum of the model are calculated. Metal-insulator transition with the change of temperature is investigated in a system with correlated hopping. Processes of ferromagnetic ordering stabilization in the system with various forms of electronic DOS are studied. The static conductivity and effective spin-dependent masses of current carriers are calculated as a function of electron concentration at various DOS forms. The correlated hopping is shown to cause the electron-hole asymmetry of transport and ferromagnetic properties of narrow band materials.
a Procedural Solution to Model Roman Masonry Structures
Cappellini, V.; Saleri, R.; Stefani, C.; Nony, N.; De Luca, L.
2013-07-01
The paper will describe a new approach based on the development of a procedural modelling methodology for archaeological data representation. This is a custom-designed solution based on the recognition of the rules belonging to the construction methods used in roman times. We have conceived a tool for 3D reconstruction of masonry structures starting from photogrammetric surveying. Our protocol considers different steps. Firstly we have focused on the classification of opus based on the basic interconnections that can lead to a descriptive system used for their unequivocal identification and design. Secondly, we have chosen an automatic, accurate, flexible and open-source photogrammetric pipeline named Pastis Apero Micmac - PAM, developed by IGN (Paris). We have employed it to generate ortho-images from non-oriented images, using a user-friendly interface implemented by CNRS Marseille (France). Thirdly, the masonry elements are created in parametric and interactive way, and finally they are adapted to the photogrammetric data. The presented application, currently under construction, is developed with an open source programming language called Processing, useful for visual, animated or static, 2D or 3D, interactive creations. Using this computer language, a Java environment has been developed. Therefore, even if the procedural modelling reveals an accuracy level inferior to the one obtained by manual modelling (brick by brick), this method can be useful when taking into account the static evaluation on buildings (requiring quantitative aspects) and metric measures for restoration purposes.
Numerical solution of High-kappa model of superconductivity
Energy Technology Data Exchange (ETDEWEB)
Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)
1996-12-31
We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.
International Nuclear Information System (INIS)
Silva, Cleber F.
2011-01-01
The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent traditionally used as standard dosimetric material in EPR dosimetry. Recently, it has been studied to be applied in gel dosimetry, considering that the addition of Alanine in the Fricke gel solution improves the production of ferric ions radiation induced. The spectrophotometric evaluation technique can be used comparing the two spectrum wavelengths bands: 457 nm band that corresponds to ferrous ions and 588 nm band that corresponds to ferric ions concentration to evaluate the dosimetric properties of this material. The performance of the Alanine gel solution developed at IPEN has been firstly studied using the spectrophotometric technique aiming to apply this material to 3D clinical doses evaluations using MRI technique. In this work, the optical and the energy dependent response of this solution submitted to clinical photons and electrons beams were studied. Different batches of gel solutions were prepared and maintained at low temperature during 12 h to solidification. Before irradiation, the samples were maintained during 1 h at room temperature. The photons and electrons irradiations were carried out using a Varian 2100C Medical Linear Accelerator of the Radiotherapy Department of the Hospital das Clinicas of the University of Sao Paulo with absorbed doses between 1 and 40 Gy; radiation field of 10 x 10 cm 2 ; photon energies of 6 MeV and 15 MeV; and electron with energies between 6 and 15 MeV. The obtained results indicate that signal response dependence for clinical photons and electrons beams, to the same doses, for Alanine gel dosimeter is better than 3.6 % (1σ), and the energy dependence response, to the same doses, is better 3% (1σ) for both beams. These results indicate that the same calibration factor can be used and the optical response is energy independent in the studied dose range and clinical photons and electrons beams energies. (author)
Analysis of electronic models for solar cells including energy resolved defect densities
Energy Technology Data Exchange (ETDEWEB)
Glitzky, Annegret
2010-07-01
We introduce an electronic model for solar cells including energy resolved defect densities. The resulting drift-diffusion model corresponds to a generalized van Roosbroeck system with additional source terms coupled with ODEs containing space and energy as parameters for all defect densities. The system has to be considered in heterostructures and with mixed boundary conditions from device simulation. We give a weak formulation of the problem. If the boundary data and the sources are compatible with thermodynamic equilibrium the free energy along solutions decays monotonously. In other cases it may be increasing, but we estimate its growth. We establish boundedness and uniqueness results and prove the existence of a weak solution. This is done by considering a regularized problem, showing its solvability and the boundedness of its solutions independent of the regularization level. (orig.)
Directory of Open Access Journals (Sweden)
Mohamad Javad Kamali
2015-01-01
Full Text Available Thermodynamic modeling of surface tension of different electrolyte systems in presence of gas phase is studied. Using the solid-liquid equilibrium, Langmuir gas-solid adsorption, and ENRTL activity coefficient model, the surface tension of electrolyte solutions is calculated. The new model has two adjustable parameters which could be determined by fitting the experimental surface tension of binary aqueous electrolyte solution in single temperature. Then the values of surface tension for other temperatures in binary and ternary system of aqueous electrolyte solution are predicted. The average absolute deviations for calculation of surface tension of binary and mixed electrolyte systems by new model are 1.98 and 1.70%, respectively.
Physical Property Modeling of Concentrated Cesium Eluate Solutions, Part I - Derivation of Models
Energy Technology Data Exchange (ETDEWEB)
Choi, A.S.; Pierce, R. A.; Edwards, T. B.; Calloway, T. B.
2005-09-15
Major analytes projected to be present in the Hanford Waste Treatment Plant cesium ion-exchange eluate solutions were identified from the available analytical data collected during radioactive bench-scale runs, and a test matrix of cesium eluate solutions was designed within the bounding concentrations of those analytes. A computer model simulating the semi-batch evaporation of cesium eluate solutions was run in conjunction with a multi-electrolyte aqueous system database to calculate the physical properties of each test matrix solution concentrated to the target endpoints of 80% and 100% saturation. The calculated physical properties were analyzed statistically and fitted into mathematical expressions for the bulk solubility, density, viscosity, heat capacity and volume reduction factor as a function of temperature and concentration of each major analyte in the eluate feed. The R{sup 2} of the resulting physical property models ranged from 0.89 to 0.99.
Modelling Difficulties and Their Overcoming Strategies in the Solution of a Modelling Problem
Dede, Ayse Tekin
2016-01-01
The purpose of the study is to reveal the elementary mathematics student teachers' difficulties encountered in the solution of a modelling problem, the strategies to overcome those difficulties and whether the strategies worked or not. Nineteen student teachers solved the modelling problem in their four or five-person groups, and the video records…
New analytical solutions for nonlinear physical models of the ...
Indian Academy of Sciences (India)
2016-10-18
expansion method is implemented to find exact solutions of ... and can be used as an alternative for finding exact solutions of nonlinear equations in mathematical physics. A ... engineering, such as, solid mechanics, plasma physics,.
solveME: fast and reliable solution of nonlinear ME models
DEFF Research Database (Denmark)
Yang, Laurence; Ma, Ding; Ebrahim, Ali
2016-01-01
Background: Genome-scale models of metabolism and macromolecular expression (ME) significantly expand the scope and predictive capabilities of constraint-based modeling. ME models present considerable computational challenges: they are much (>30 times) larger than corresponding metabolic reconstr...... methods will accelerate the wide-spread adoption of ME models for researchers in these fields. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1240-1) contains supplementary material, which is available to authorized users.......Background: Genome-scale models of metabolism and macromolecular expression (ME) significantly expand the scope and predictive capabilities of constraint-based modeling. ME models present considerable computational challenges: they are much (>30 times) larger than corresponding metabolic...... reconstructions (M models), are multiscale, and growth maximization is a nonlinear programming (NLP) problem, mainly due to macromolecule dilution constraints. Results: Here, we address these computational challenges. We develop a fast and numerically reliable solution method for growth maximization in ME models...
Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y
2016-11-01
Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Classical Antiferromagnetism in Kinetically Frustrated Electronic Models
Sposetti, C. N.; Bravo, B.; Trumper, A. E.; Gazza, C. J.; Manuel, L. O.
2014-05-01
We study, by means of the density matrix renormalization group, the infinite U Hubbard model—with one hole doped away from half filling—in triangular and square lattices with frustrated hoppings, which invalidate Nagaoka's theorem. We find that these kinetically frustrated models have antiferromagnetic ground states with classical local magnetization in the thermodynamic limit. We identify the mechanism of this kinetic antiferromagnetism with the release of the kinetic energy frustration, as the hole moves in the established antiferromagnetic background. This release can occur in two different ways: by a nontrivial spin Berry phase acquired by the hole, or by the effective vanishing of the hopping amplitude along the frustrating loops.
Prediction Model for Relativistic Electrons at Geostationary Orbit
Khazanov, George V.; Lyatsky, Wladislaw
2008-01-01
We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.
Electrons in crossed laser and magnetic fields: an exactly soluble model in QED
International Nuclear Information System (INIS)
Davidovich, L.; Rochlin, H.
1983-06-01
The interaction of an electron with a static and uniform magnetic field B sup(→), in the presence of the quantized electromagnetic field, is studied by means of an exactly soluble model, which allows the study of the line shape of the scattered radiation in the resonance region, with spontaneous emission effects taken into account. The model also allows an exact renormalization procedure, after which the calculated spectrum remains finite, in the point-electron limit. In particular it is found, in this limit finite expressions for the linewidth and the energy shift of the scattered radiation, as functions of B. Explicit expressions for the electron and field operators are also found, and the correspondence of these results with classical solutions is discussed. (Author) [pt
Self-similar solution for coupled thermal electromagnetic model ...
African Journals Online (AJOL)
An investigation into the existence and uniqueness solution of self-similar solution for the coupled Maxwell and Pennes Bio-heat equations have been done. Criteria for existence and uniqueness of self-similar solution are revealed in the consequent theorems. Journal of the Nigerian Association of Mathematical Physics ...
Energy Technology Data Exchange (ETDEWEB)
Audette-Stuart, Marilyne [Atomic Energy of Canada Limited, CANDU Life Sciences Center, Chalk River Laboratories, Chalk River Ont., K0J 1J0 (Canada); Houee-Levin, Chantal [Laboratoire de Chimie Physique, UMR-8000 CNRS-Universite Paris XI, Centre Universitaire, F-91405 Orsay Cedex (France)]. E-mail: chantal.houee-levin@lcp.u-psud.fr; Potier, Michel [Service de genetique medicale, Hopital Sainte-Justine, Universite de Montreal, Montreal Que., H3 T 1C5 (Canada)
2005-02-01
Irradiation of proteins in diluted liquid aqueous solutions produces cleavages and polymerizations of the peptidic chains. In frozen solutions, fragmentation is observed but polymerization products are absent. Loss of activity occurs in both cases. In the solid state, yields of fragmentation do not vary with the quantity of water. The use of scavengers indicates that hydroxyl radical does not contribute significantly to fragmentation and to inactivation in the solid state. Electrons within the water molecules closely associated with the protein are involved in the processes leading to protein fragmentation.
International Nuclear Information System (INIS)
Chen Duan; Wei Guowei
2010-01-01
The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano-scale. By optimization of the energy functional, we derive consistently coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano-transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano-electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence
Theoretical model of fast electron emission from surfaces
Energy Technology Data Exchange (ETDEWEB)
Reinhold, C.; Burgdoerfer, J. [Univ. of Tennessee, Knoxville, TN (United States)]|[Oak Ridge National Laboratory, TN (United States)
1993-05-01
Electron emission in glancing-angle ion-surface collisions has become a focus of ion-surface interactions. Electron spectra can provide detailed information on the above surface neutralization dynamics of multiply charged ions, the electronic structure of the surface (surface density of states), and the long-ranged image interactions near the surface. Recent experiments have found that the convoy peak, well known from ion-atom and ion-solid collisions, is dramatically altered. The peak is broadened and shifted in energy which has been attributed to dynamical image interactions. We present a microscopic model for the emission of fast electrons in glancing-angle surface collisions. A classical trajectory Monte Carlo approach is utilized to calculate the evolution of electrons in the presence of their self image, the projectile Coulomb field and the image potential induced by the projectile. The excitation of collective surface modes is also incorporated.
Modeling the customer in electronic commerce.
Helander, M G; Khalid, H M
2000-12-01
This paper reviews interface design of web pages for e-commerce. Different tasks in e-commerce are contrasted. A systems model is used to illustrate the information flow between three subsystems in e-commerce: store environment, customer, and web technology. A customer makes several decisions: to enter the store, to navigate, to purchase, to pay, and to keep the merchandize. This artificial environment must be designed so that it can support customer decision-making. To retain customers it must be pleasing and fun, and create a task with natural flow. Customers have different needs, competence and motivation, which affect decision-making. It may therefore be important to customize the design of the e-store environment. Future ergonomics research will have to investigate perceptual aspects, such as presentation of merchandize, and cognitive issues, such as product search and navigation, as well as decision making while considering various economic parameters. Five theories on e-commerce research are presented.
A New Perspective for Modeling Power Electronics Converters : Complementarity Framework
Vasca, Francesco; Iannelli, Luigi; Camlibel, M. Kanat; Frasca, Roberto
2009-01-01
The switching behavior of power converters with "ideal" electronic devices (EDs) makes it difficult to define a switched model that describes the dynamics of the converter in all possible operating conditions, i.e., a "complete" model. Indeed, simplifying assumptions on the sequences of modes are
Test of theoretical models for ultrafast heterogeneous electron ...
Indian Academy of Sciences (India)
Administrator
with the predictions of different theoretical models for light-induced ultrafast heterogeneous electron transfer (HET). ... theory model based on molecular dynamics simulations for the vibrational modes were also considered. Based on the known vibrational .... Pseudo 3D map of a 2PPE measurement with. Pe' achored via the ...
Modeling paraxial wave propagation in free-electron laser oscillators
Karssenberg, J.G.; van der Slot, Petrus J.M.; Volokhine, I.; Verschuur, Jeroen W.J.; Boller, Klaus J.
2006-01-01
Modeling free-electron laser (FEL) oscillators requires calculation of both the light-beam interaction within the undulator and the light propagation outside the undulator. We have developed a paraxial optical propagation code that can be combined with various existing models of gain media, for
Spin delocalization phase transition in a correlated electrons model
International Nuclear Information System (INIS)
Huerta, L.
1990-11-01
In a simplified one-site model for correlated electrons systems we show the existence of a phase transition corresponding to spin delocalization. The system becomes a solvable model and zero-dimensional functional techniques are used. (author). 7 refs, 3 figs
MODEL OF ELECTRON CLOUD INSTABILITY IN FERMILAB RECYCLER
Energy Technology Data Exchange (ETDEWEB)
Antipov, Sergey A. [Chicago U.; Burov, A. [Fermilab; Nagaitsev, S. [Fermilab
2016-10-04
An electron cloud instability might limit the intensity in the Fermilab Recycler after the PIP-II upgrade. A multibunch instability typically develops in the horizontal plane within a hundred turns and, in certain conditions, leads to beam loss. Recent studies have indicated that the instability is caused by an electron cloud, trapped in the Recycler index dipole magnets. We developed an analytical model of an electron cloud driven instability with the electrons trapped in combined function dipoles. The resulting instability growth rate of about 30 revolutions is consistent with experimental observations and qualitatively agrees with the simulation in the PEI code. The model allows an estimation of the instability rate for the future intensity upgrades.
Modelling hot electron generation in short pulse target heating experiments
Directory of Open Access Journals (Sweden)
Sircombe N.J.
2013-11-01
Full Text Available Target heating experiments planned for the Orion laser facility, and electron beam driven fast ignition schemes, rely on the interaction of a short pulse high intensity laser with dense material to generate a flux of energetic electrons. It is essential that the characteristics of this electron source are well known in order to inform transport models in radiation hydrodynamics codes and allow effective evaluation of experimental results and forward modelling of future campaigns. We present results obtained with the particle in cell (PIC code EPOCH for realistic target and laser parameters, including first and second harmonic light. The hot electron distributions are characterised and their implications for onward transport and target heating are considered with the aid of the Monte-Carlo transport code THOR.
Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems
Gonzalez-Garcia, Carlos; Pleite, Jorge
2013-01-01
The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means...
Modeling electron fractionalization with unconventional Fock spaces
Cobanera, Emilio
2017-08-01
It is shown that certain fractionally-charged quasiparticles can be modeled on D-dimensional lattices in terms of unconventional yet simple Fock algebras of creation and annihilation operators. These unconventional Fock algebras are derived from the usual fermionic algebra by taking roots (the square root, cubic root, etc) of the usual fermionic creation and annihilation operators. If the fermions carry non-Abelian charges, then this approach fractionalizes the Abelian charges only. In particular, the mth-root of a spinful fermion carries charge e/m and spin 1/2. Just like taking a root of a complex number, taking a root of a fermion yields a mildly non-unique result. As a consequence, there are several possible choices of quantum exchange statistics for fermion-root quasiparticles. These choices are tied to the dimensionality D=1,2,3,\\ldots of the lattice by basic physical considerations. One particular family of fermion-root quasiparticles is directly connected to the parafermion zero-energy modes expected to emerge in certain mesoscopic devices involving fractional quantum Hall states. Hence, as an application of potential mesoscopic interest, I investigate numerically the hybridization of Majorana and parafermion zero-energy edge modes caused by fractionalizing but charge-conserving tunneling.
Malakpoor, K.; Kaasschieter, E.F.; Huyghe, J.M.
2007-01-01
Abstract: The swelling and shrinkage of biological tissues are modelled by a four-component mixture theory [J.M. Huyghe and J.D. Janssen, Int. J. Engng. Sci. 35 (1997) 793-802; K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous
Ionospheric topside models compared with experimental electron density profiles
Directory of Open Access Journals (Sweden)
S. M. Radicella
2005-06-01
Full Text Available Recently an increasing number of topside electron density profiles has been made available to the scientific community on the Internet. These data are important for ionospheric modeling purposes, since the experimental information on the electron density above the ionosphere maximum of ionization is very scarce. The present work compares NeQuick and IRI models with the topside electron density profiles available in the databases of the ISIS2, IK19 and Cosmos 1809 satellites. Experimental electron content from the F2 peak up to satellite height and electron densities at fixed heights above the peak have been compared under a wide range of different conditions. The analysis performed points out the behavior of the models and the improvements needed to be assessed to have a better reproduction of the experimental results. NeQuick topside is a modified Epstein layer, with thickness parameter determined by an empirical relation. It appears that its performance is strongly affected by this parameter, indicating the need for improvements of its formulation. IRI topside is based on Booker's approach to consider two parts with constant height gradients. It appears that this formulation leads to an overestimation of the electron density in the upper part of the profiles, and overestimation of TEC.
A ballistic transport model for electronic excitation following particle impact
Hanke, S.; Heuser, C.; Weidtmann, B.; Wucher, A.
2018-01-01
We present a ballistic model for the transport of electronic excitation energy induced by keV particle bombardment onto a solid surface. Starting from a free electron gas model, the Boltzmann transport equation (BTE) is employed to follow the evolution of the temporal and spatial distribution function f (r → , k → , t) describing the occupation probability of an electronic state k → at position r → and time t. Three different initializations of the distribution function are considered: i) a thermal distribution function with a locally and temporally elevated electron temperature, ii) a peak excitation at a specific energy above the Fermi level with a quasi-isotropic distribution in k-space and iii) an anisotropic peak excitation with k-vectors oriented in a specific transport direction. While the first initialization resembles a distribution function which may, for instance, result from electronic friction of moving atoms within an ion induced collision cascade, the peak excitation can in principle result from an autoionization process after excitation in close binary collisions. By numerically solving the BTE, we study the electronic energy exchange along a one dimensional transport direction to obtain a time and space resolved excitation energy distribution function, which is then analyzed in view of general transport characteristics of the chosen model system.
Proposals for the solution of the phase problem in electron microscopy
International Nuclear Information System (INIS)
Toorn, P. van.
1979-01-01
This thesis discusses the phase problem in electron microscopy, i.e. the determination of the unknown complex wave function in the image plane or in the exit pupil from the measured intensity distributions in both planes. The calculation of the wave function is the first problem to be solved for the determination of the object structure from electron micrographs. (Auth.)
Biosorption of chromium (VI) from aqueous solutions and ANN modelling.
Nag, Soma; Mondal, Abhijit; Bar, Nirjhar; Das, Sudip Kumar
2017-08-01
The use of sustainable, green and biodegradable natural wastes for Cr(VI) detoxification from the contaminated wastewater is considered as a challenging issue. The present research is aimed to assess the effectiveness of seven different natural biomaterials, such as jackfruit leaf, mango leaf, onion peel, garlic peel, bamboo leaf, acid treated rubber leaf and coconut shell powder, for Cr(VI) eradication from aqueous solution by biosorption process. Characterizations were conducted using SEM, BET and FTIR spectroscopy. The effects of operating parameters, viz., pH, initial Cr(VI) ion concentration, adsorbent dosages, contact time and temperature on metal removal efficiency, were studied. The biosorption mechanism was described by the pseudo-second-order model and Langmuir isotherm model. The biosorption process was exothermic, spontaneous and chemical (except garlic peel) in nature. The sequence of adsorption capacity was mango leaf > jackfruit leaf > acid treated rubber leaf > onion peel > bamboo leaf > garlic peel > coconut shell with maximum Langmuir adsorption capacity of 35.7 mg g -1 for mango leaf. The treated effluent can be reused. Desorption study suggested effective reuse of the adsorbents up to three cycles, and safe disposal method of the used adsorbents suggested biodegradability and sustainability of the process by reapplication of the spent adsorbent and ultimately leading towards zero wastages. The performances of the adsorbents were verified with wastewater from electroplating industry. The scale-up study reported for industrial applications. ANN modelling using multilayer perception with gradient descent (GD) and Levenberg-Marquart (LM) algorithm had been successfully used for prediction of Cr(VI) removal efficiency. The study explores the undiscovered potential of the natural waste materials for sustainable existence of small and medium sector industries, especially in the third world countries by protecting the environment by eco-innovation.
Computational model for simulation small testing launcher, technical solution
Chelaru, Teodor-Viorel; Cristian, Barbu; Chelaru, Adrian
2014-12-01
The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project "Suborbital Launcher for Testing" (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle
Magy: Time dependent, multifrequency, self-consistent code for modeling electron beam devices
International Nuclear Information System (INIS)
Botton, M.; Antonsen, T.M.; Levush, B.
1997-01-01
A new MAGY code is being developed for three dimensional modeling of electron beam devices. The code includes a time dependent multifrequency description of the electromagnetic fields and a self consistent analysis of the electrons. The equations of motion are solved with the electromagnetic fields as driving forces and the resulting trajectories are used as current sources for the fields. The calculations of the electromagnetic fields are based on the waveguide modal representation, which allows the solution of relatively small number of coupled one dimensional partial differential equations for the amplitudes of the modes, instead of the full solution of Maxwell close-quote s equations. Moreover, the basic time scale for updating the electromagnetic fields is the cavity fill time and not the high frequency of the fields. In MAGY, the coupling among the various modes is determined by the waveguide non-uniformity, finite conductivity of the walls, and the sources due to the electron beam. The equations of motion of the electrons are solved assuming that all the electrons traverse the cavity in less than the cavity fill time. Therefore, at each time step, a set of trajectories are calculated with the high frequency and other external fields as the driving forces. The code includes a verity of diagnostics for both electromagnetic fields and particles trajectories. It is simple to operate and requires modest computing resources, thus expected to serve as a design tool. copyright 1997 American Institute of Physics
Field modeling and ray-tracing of a miniature scanning electron microscope beam column.
Loyd, Jody S; Gregory, Don A; Gaskin, Jessica A
2017-08-01
A miniature scanning electron microscope (SEM) focusing column design is introduced and its potential performance assessed through an estimation of parameters that affect the probe radius, to include source size, spherical and chromatic aberration, diffraction and space charge broadening. The focusing column, a critical component of any SEM capable of operating on the lunar surface, was developed by the NASA Marshall Space Flight Center and Advanced Research Systems. The ray-trace analysis presented uses a model of the electrostatic field (within the focusing column) that is first calculated using the boundary element method (BEM). This method provides flexibility in modeling the complex electrode shapes of practical electron lens systems. A Fourier series solution of the lens field is then derived within a cylindrical domain whose boundary potential is provided by the BEM. Used in this way, the Fourier series solution is an accuracy enhancement to the BEM solution, allowing sufficient precision to assess geometric aberrations through direct ray-tracing. Two modes of operation with distinct lens field solutions are described. © The Author 2017. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Hao Yu
2016-12-01
Full Text Available Today, the increased public concern about sustainable development and more stringent environmental regulations have become important driving forces for value recovery from end-of-life and end-of use products through reverse logistics. Waste electrical and electronic equipment (WEEE contains both valuable components that need to be recycled and hazardous substances that have to be properly treated or disposed of, so the design of a reverse logistics system for sustainable treatment of WEEE is of paramount importance. This paper presents a stochastic mixed integer programming model for designing and planning a generic multi-source, multi-echelon, capacitated, and sustainable reverse logistics network for WEEE management under uncertainty. The model takes into account both economic efficiency and environmental impacts in decision-making, and the environmental impacts are evaluated in terms of carbon emissions. A multi-criteria two-stage scenario-based solution method is employed and further developed in this study for generating the optimal solution for the stochastic optimization problem. The proposed model and solution method are validated through a numerical experiment and sensitivity analyses presented later in this paper, and an analysis of the results is also given to provide a deep managerial insight into the application of the proposed stochastic optimization model.
Cosmological solutions in multidimensional model with multiple exponential potential
International Nuclear Information System (INIS)
Ivashchuk, Vladimir D.; Melnikov, Vitaly N.; Selivanov, Alexey B.
2003-01-01
A family of cosmological solutions with (n+1) Ricci-flat spaces in the theory with several scalar fields and multiple exponential potential is obtained when coupling vectors in exponents obey certain relations. Two subclasses of solutions with power-law and exponential behaviour of scale factors are singled out. It is proved that power-law solutions may take place only when coupling vectors are linearly independent and exponential dependence occurs for linearly dependent set of coupling vectors. A subfamily of solutions with accelerated expansion is singled out. A generalized isotropization behaviours of certain classes of general solutions are found. In quantum case exact solutions to Wheeler-DeWitt equation are obtained and special 'ground state' wave functions are considered. (author)
Understanding quantum measurement from the solution of dynamical models
International Nuclear Information System (INIS)
Allahverdyan, Armen E.; Balian, Roger; Nieuwenhuizen, Theo M.
2013-01-01
The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D -hat (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D -hat (t f ) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D -hat (t f ) has the form expected for ideal measurements, it only describes a large set of runs. Individual runs are
Understanding quantum measurement from the solution of dynamical models
Energy Technology Data Exchange (ETDEWEB)
Allahverdyan, Armen E. [Laboratoire de Physique Statistique et Systèmes Complexes, ISMANS, 44 Av. Bartholdi, 72000 Le Mans (France); Balian, Roger [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Nieuwenhuizen, Theo M., E-mail: T.M.Nieuwenhuizen@uva.nl [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States)
2013-04-15
The quantum measurement problem, to wit, understanding why a unique outcome is obtained in each individual experiment, is currently tackled by solving models. After an introduction we review the many dynamical models proposed over the years for elucidating quantum measurements. The approaches range from standard quantum theory, relying for instance on quantum statistical mechanics or on decoherence, to quantum–classical methods, to consistent histories and to modifications of the theory. Next, a flexible and rather realistic quantum model is introduced, describing the measurement of the z-component of a spin through interaction with a magnetic memory simulated by a Curie–Weiss magnet, including N≫1 spins weakly coupled to a phonon bath. Initially prepared in a metastable paramagnetic state, it may transit to its up or down ferromagnetic state, triggered by its coupling with the tested spin, so that its magnetization acts as a pointer. A detailed solution of the dynamical equations is worked out, exhibiting several time scales. Conditions on the parameters of the model are found, which ensure that the process satisfies all the features of ideal measurements. Various imperfections of the measurement are discussed, as well as attempts of incompatible measurements. The first steps consist in the solution of the Hamiltonian dynamics for the spin-apparatus density matrix D{sup -hat} (t). Its off-diagonal blocks in a basis selected by the spin–pointer coupling, rapidly decay owing to the many degrees of freedom of the pointer. Recurrences are ruled out either by some randomness of that coupling, or by the interaction with the bath. On a longer time scale, the trend towards equilibrium of the magnet produces a final state D{sup -hat} (t{sub f}) that involves correlations between the system and the indications of the pointer, thus ensuring registration. Although D{sup -hat} (t{sub f}) has the form expected for ideal measurements, it only describes a large set of
SU-F-R-10: Selecting the Optimal Solution for Multi-Objective Radiomics Model
International Nuclear Information System (INIS)
Zhou, Z; Folkert, M; Wang, J
2016-01-01
Purpose: To develop an evidential reasoning approach for selecting the optimal solution from a Pareto solution set obtained by a multi-objective radiomics model for predicting distant failure in lung SBRT. Methods: In the multi-objective radiomics model, both sensitivity and specificity are considered as the objective functions simultaneously. A Pareto solution set with many feasible solutions will be resulted from the multi-objective optimization. In this work, an optimal solution Selection methodology for Multi-Objective radiomics Learning model using the Evidential Reasoning approach (SMOLER) was proposed to select the optimal solution from the Pareto solution set. The proposed SMOLER method used the evidential reasoning approach to calculate the utility of each solution based on pre-set optimal solution selection rules. The solution with the highest utility was chosen as the optimal solution. In SMOLER, an optimal learning model coupled with clonal selection algorithm was used to optimize model parameters. In this study, PET, CT image features and clinical parameters were utilized for predicting distant failure in lung SBRT. Results: Total 126 solution sets were generated by adjusting predictive model parameters. Each Pareto set contains 100 feasible solutions. The solution selected by SMOLER within each Pareto set was compared to the manually selected optimal solution. Five-cross-validation was used to evaluate the optimal solution selection accuracy of SMOLER. The selection accuracies for five folds were 80.00%, 69.23%, 84.00%, 84.00%, 80.00%, respectively. Conclusion: An optimal solution selection methodology for multi-objective radiomics learning model using the evidential reasoning approach (SMOLER) was proposed. Experimental results show that the optimal solution can be found in approximately 80% cases.
International Nuclear Information System (INIS)
Dale, Stephen G.; Johnson, Erin R.
2015-01-01
Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed
Energy Technology Data Exchange (ETDEWEB)
Dale, Stephen G., E-mail: sdale@ucmerced.edu [Chemistry and Chemical Biology, School of Natural Sciences, University of California, Merced, 5200 North Lake Road, Merced, California 95343 (United States); Johnson, Erin R., E-mail: erin.johnson@dal.ca [Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia B3H 4R2 (Canada)
2015-11-14
Exploration of the solvated electron phenomena using density-functional theory (DFT) generally results in prediction of a localised electron within an induced solvent cavity. However, it is well known that DFT favours highly delocalised charges, rendering the localisation of a solvated electron unexpected. We explore the origins of this counterintuitive behaviour using a model Kevan-structure system. When a polarisable-continuum solvent model is included, it forces electron localisation by introducing a strong energetic bias that favours integer charges. This results in the formation of a large energetic barrier for charge-hopping and can cause the self-consistent field to become trapped in local minima thus converging to stable solutions that are higher in energy than the ground electronic state. Finally, since the bias towards integer charges is caused by the polarisable continuum, these findings will also apply to other classical polarisation corrections, as in combined quantum mechanics and molecular mechanics (QM/MM) methods. The implications for systems beyond the solvated electron, including cationic DNA bases, are discussed.
Robust and efficient solution procedures for association models
DEFF Research Database (Denmark)
Michelsen, Michael Locht
2006-01-01
Equations of state that incorporate the Wertheim association expression are more difficult to apply than conventional pressure explicit equations, because the association term is implicit and requires solution for an internal set of composition variables. In this work, we analyze the convergence ...... behavior of different solution methods and demonstrate how a simple and efficient, yet globally convergent, procedure for the solution of the equation of state can be formulated....
Directory of Open Access Journals (Sweden)
Roman Cherniha
2016-06-01
Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.
DEFF Research Database (Denmark)
Rong, Li; Elhadidi, B; Khalifa, H E
2011-01-01
In order to model and predict ammonia emissions from animal houses, it is important to determine the concentration on the emission surface correctly. In the current literature, Henry’s law is usually used to model the mass transfer through the gas–liquid surface (e.g. manure or aqueous solution)....
Regional 4-D modeling of the ionospheric electron density
Schmidt, M.; Bilitza, D.; Shum, C. K.; Zeilhofer, C.
2008-08-01
The knowledge of the electron density is the key point in correcting ionospheric delays of electromagnetic measurements and in studying the ionosphere. During the last decade GNSS, in particular GPS, has become a promising tool for monitoring the total electron content (TEC), i.e., the integral of the electron density along the ray-path between the transmitting satellite and the receiver. Hence, geometry-free GNSS measurements provide informations on the electron density, which is basically a four-dimensional function depending on spatial position and time. In addition, these GNSS measurements can be combined with other available data including nadir, over-ocean TEC observations from dual-frequency radar altimetry (T/P, JASON, ENVISAT), and TECs from GPS-LEO occultation systems (e.g., FORMOSAT-3/COSMIC, CHAMP) with heterogeneous sampling and accuracy. In this paper, we present different multi-dimensional approaches for modeling spatio-temporal variations of the ionospheric electron density. To be more specific, we split the target function into a reference part, computed from the International Reference Ionosphere (IRI), and an unknown correction term. Due to the localizing feature of B-spline functions we apply tensor-product spline expansions to model the correction term in a certain multi-dimensional region either completely or partly. Furthermore, the multi-resolution representation derived from wavelet analysis allows monitoring the ionosphere at different resolutions levels. For demonstration we apply three approaches to electron density data over South America.
Status of the Galileo interim radiation electron model
Garrett, H. B.; Jun, I.; Ratliff, J. M.; Evans, R. W.; Clough, G. A.; McEntire, R. W.
2003-04-01
Measurements of the high energy, omni-directional electron environment by the Galileo spacecraft Energetic Particle Detector (EPD) were used to develop a new model of Jupiter's trapped electron radiation in the jovian equatorial plane for the range 8 to 16 Jupiter radii (1 jovian radius = 71,400 km). 10-minute averages of these data formed an extensive database of observations of the jovian radiation belts between Jupiter orbit insertion (JOI) in 1995 and 2002. These data were then averaged to provide a differential flux spectrum at 0.174, 0.304, 0.527, 1.5, 2.0, 11.0, and 31 MeV in the jovian equatorial plane as a function of radial distance. This omni-directional, equatorial model was combined with the original Divine model of jovian electron radiation to yield estimates of the out-of-plane radiation environment. That model, referred to here as the Galileo Interim Radiation Electron (or GIRE) model, was then used to calculate the Europa mission dose for an average and a 1-sigma worst-case situation. The prediction of the GIRE model is about a factor of 2 lower than the Divine model estimate over the range of 100 to 1000 mils (2.54 to 25.4 mm) of aluminum shielding, but exceeds the Divine model by about 50% for thicker shielding. The model, the steps leading to its creation, and relevant issues and concerns are discussed. While work remains to be done, the GIRE model clearly represents a significant step forward in the study of the jovian radiation environment, and it is a useful and valuable tool for estimating that environment for future space missions.
Solution of the Fokker-Planck equation for axially-channeled relativistic electrons
International Nuclear Information System (INIS)
Muralev, V.A.; Telegin, V.I.
1981-01-01
A method of the two dimensional kinetic equation of the Fokker-Planck type for axially-channeled electrons is proposed. This equation has been obtained recently by Beloshitsky and Kumakhov to describe the diffusion of channeling negative particles over the transverse energy and angular momentum. The results of computation of the dechanneling function of 1 GeV electrons in tungsten are presented. (author)
Travelling wave solutions to nonlinear physical models by means of ...
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
New analytical solutions for nonlinear physical models of the ...
Indian Academy of Sciences (India)
2016-10-18
Oct 18, 2016 ... Abstract. In this article, a variety of solitary wave solutions are found for some nonlinear equations. In math- ematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study ...
Calcite growth kinetics: Modeling the effect of solution stoichiometry
Wolthers, M.; Nehrke, G.; Gustafsson, J.P.; Van Cappellen, P.
2012-01-01
Until recently the influence of solution stoichiometry on calcite crystal growth kinetics has attracted little attention, despite the fact that in most aqueous environments calcite precipitates from non-stoichiometric solution. In order to account for the dependence of the calcite crystal growth
New analytical solutions for nonlinear physical models of the ...
Indian Academy of Sciences (India)
In mathematical physics, we studied two complex systems, the Maccari system and the coupled Higgs field equation. We construct sufficient exact solutions for nonlinear evolution equations. To study travelling wave solutions, we used a fractional complex transform to convert the particular partial differential equation of ...
Travelling wave solutions to nonlinear physical models by means
Indian Academy of Sciences (India)
This paper presents the ﬁrst integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established ﬁrst integrals, exact solutions are successfully ...
Fu, Boyi
2015-04-01
The electron deficiency and trans planar conformation of bithiazole is potentially beneficial for the electron transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2’-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2V-1s-1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole transport characteristics. This inversion of charge carrier transport characteristics confirms the significant potential for bithiazole in the development of electron transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polymer solubility, particularly in non-halogenated, more environmentally compatible solvents. PDBTz cast from a range of non-halogenated solvents exhibited film morphologies and field-effect electron mobility similar to those cast from halogenated solvents.
Segment-based Eyring-Wilson viscosity model for polymer solutions
International Nuclear Information System (INIS)
Sadeghi, Rahmat
2005-01-01
A theory-based model is presented for correlating viscosity of polymer solutions and is based on the segment-based Eyring mixture viscosity model as well as the segment-based Wilson model for describing deviations from ideality. The model has been applied to several polymer solutions and the results show that it is reliable both for correlation and prediction of the viscosity of polymer solutions at different molar masses and temperature of the polymer
Modelling and simulation of beam formation in electron guns
International Nuclear Information System (INIS)
Sabchevski, S.; Barbarich, I.
1996-01-01
This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.)
Modelling and simulation of beam formation in electron guns
Energy Technology Data Exchange (ETDEWEB)
Sabchevski, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Mladenov, G. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. po Elektronika; Titov, A. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation); Barbarich, I. [St. Petersburg State Electrotechnical University, St. Petersburg (Russian Federation)
1996-11-01
This paper describes a new PC version of the software package GUN-EBT for computer simulation of beam formation in rotationally symmetric electron guns with thermionic cathodes. It is based on a self-consistent physical model which takes into account the beam space charge and the initial velocity effects. The theoretical framework used for both the formulation of the model and for the interpretation of the results of numerical experiments is the formalism of the charged particle dynamics in phase space. This enables not only a trajectory analysis (ray tracing) but also a phase-space analysis of beams to be performed. The package can be used as an effective tool for computer aided design and optimization of electron guns in various electron-optical systems. The operation of the package is illustrated with a typical example. (orig.).
Self-consistent multidimensional electron kinetic model for inductively coupled plasma sources
Dai, Fa Foster
Inductively coupled plasma (ICP) sources have received increasing interest in microelectronics fabrication and lighting industry. In 2-D configuration space (r, z) and 2-D velocity domain (νθ,νz), a self- consistent electron kinetic analytic model is developed for various ICP sources. The electromagnetic (EM) model is established based on modal analysis, while the kinetic analysis gives the perturbed Maxwellian distribution of electrons by solving Boltzmann-Vlasov equation. The self- consistent algorithm combines the EM model and the kinetic analysis by updating their results consistently until the solution converges. The closed-form solutions in the analytical model provide rigorous and fast computing for the EM fields and the electron kinetic behavior. The kinetic analysis shows that the RF energy in an ICP source is extracted by a collisionless dissipation mechanism, if the electron thermovelocity is close to the RF phase velocities. A criterion for collisionless damping is thus given based on the analytic solutions. To achieve uniformly distributed plasma for plasma processing, we propose a novel discharge structure with both planar and vertical coil excitations. The theoretical results demonstrate improved uniformity for the excited azimuthal E-field in the chamber. Non-monotonic spatial decay in electric field and space current distributions was recently observed in weakly- collisional plasmas. The anomalous skin effect is found to be responsible for this phenomenon. The proposed model successfully models the non-monotonic spatial decay effect and achieves good agreements with the measurements for different applied RF powers. The proposed analytical model is compared with other theoretical models and different experimental measurements. The developed model is also applied to two kinds of ICP discharges used for electrodeless light sources. One structure uses a vertical internal coil antenna to excite plasmas and another has a metal shield to prevent the
Structural model of the 50S subunit of E.Coli ribosomes from solution scattering
International Nuclear Information System (INIS)
Svergun, D.I.; Koch, M.H.J.; Pedersen, J.S.; Serdyuk, I.N.
1994-01-01
The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50S ribosomal subunit of Escherichia coli in solution is described. The X-ray data from contrast variation with sucrose are analyzed in terms of the basic scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins. From these curves models of the shape of the 50S and its RNA-rich core are evaluated and positioned so that their difference produces a scattering curve which is in good agreement with the scattering from the protein moiety. Basing on this preliminary model, the X-ray and neutron contrast variation data of the 50S subunit in aqueous solutions are interpreted in the frame of the advanced two-phase model described by the shapes of the 50S subunit and its RNA-rich core taking into account density fluctuations inside the RNA and the protein moiety. The shape of the envelope of the 50S subunit and of the RNA-rich core are evaluated with a resolution of about 40A. The shape of the envelope is in good agreement with the models of the 50S subunit obtained from electron microscopy on isolated particles. The shape of the RNA-rich core correlates well with the model of the entire particle determined by the image reconstruction from ordered sheets indicating that the latter model which is based on the subjective contouring of density maps is heavily biased towards the RNA
Expansion of thermodynamic model of solute permeation through reverse osmosis membrane
International Nuclear Information System (INIS)
Nishimaki, Kenzo; Koyama, Akio
1994-01-01
Many studies have been performed on permeation mechanism of solute and solvent in membrane separation process like reverse osmosis or ultrafiltration, and several models of solute/solvent permeation through membrane are proposed. Among these models, Kedem and Katchalsky, based on the theory of thermodynamics of irreversible processes, formulated the one-solute permeation process in their mathematical model, which treats membrane as a black box, not giving consideration to membrane structure and to interaction between membrane material and permeates, viz. solute and solvent. According to this theory, the driving force of solute/solvent permeation through membrane is the difference of their chemical potential between both sides of membrane, and the linear phenomenological equation is applied to describing the relation between driving force and flux of solute/solvent. This equation can be applied to the irreversible process only when the process is almost in equilibrium. This condition is supposed to be satisfied in the solute/solvent permeation process through compact membrane with fine pores like reverse osmosis membrane. When reverse osmosis is applied to treatment process for liquid waste, which usually contains a lot of solutes as contaminants, we can not predict the behavior of contaminants by the above one-solute process model. In the case of multi-solutes permeation process for liquid waste, the number of parameter in thermodynamic model increases rapidly with the number of solute, because of coupling phenomenon among solutes. In this study, we expanded the above thermodynamic model to multi-solute process applying operational calculus to the differential equations which describe the irreversible process of the system, and expressed concisely solute concentration vector as a matrix product. In this way, we predict the behavior of solutes in multi-solutes process, using values of parameters obtained in two-solutes process. (author)
Toward a generic model of trust for electronic commerce
Tan, YH; Thoen, W
2000-01-01
The authors present a generic model of trust for electronic commerce consisting of two basic components, party trust and control trust, based on the concept that trust in a transaction with another party combines trust in the other parry and trust in the control mechanisms that ensure the successful
Technical Communicator: A New Model for the Electronic Resources Librarian?
Hulseberg, Anna
2016-01-01
This article explores whether technical communicator is a useful model for electronic resources (ER) librarians. The fields of ER librarianship and technical communication (TC) originated and continue to develop in relation to evolving technologies. A review of the literature reveals four common themes for ER librarianship and TC. While the…
Fuse Modeling for Reliability Study of Power Electronic Circuits
DEFF Research Database (Denmark)
Bahman, Amir Sajjad; Iannuzzo, Francesco; Blaabjerg, Frede
2017-01-01
This paper describes a comprehensive modeling approach on reliability of fuses used in power electronic circuits. When fuses are subjected to current pulses, cyclic temperature stress is introduced to the fuse element and will wear out the component. Furthermore, the fuse may be used in a large v...
Classical model of the Dirac electron in curved space
International Nuclear Information System (INIS)
Barut, A.O.; Pavsic, M.
1987-01-01
The action for the classical model of the electron exhibiting Zitterbewegung is generalized to curved space by introducing a spin connection. The dynamical equations and the symplectic structure are given for several different choices of the variables. In particular, we obtain the equation of motion for spin and compare it with the Papapetrou equation. (author)
Modeling of magnetic components for power electronic converters
Hranov, Tsveti; Hinov, Nikolay
2017-12-01
The paper presents the modelling of magnetic components, used in the power electronic devices. Non-linear inductor and transformer are presented. During the design stage are taken into account that the converters are operated with non-sinusoidal currents and voltages. The models are realized in the MATLAB environment and their verification is done using computer simulations. The advantages of these models against the existing models are that relations between the parameters are formalized and this way the computational procedure is significantly faster. This is important in the cases when the quasi-steady-state regime in devices comes significantly slower and the investigations are requiring long simulation times.
Thermochromic behavior of vanadium(IV) alkoxides in solution: a molecular modeling approach
International Nuclear Information System (INIS)
Freitas, Alexandre C. de; Westrup, Katia C. M.; Nunes, Giovana G.; Gulin, Denis J.; Haiduke, Roberto L. A.; Soares, Jaisa F.; Sa, Eduardo L. de
2010-01-01
The thermochromic behavior exhibited by vanadium(IV) alkoxides, [V 2 (mu-OPr i ) 2 (OPr i ) 6 ] and [V 2 (m-ONep) 2 (ONep) 6 ], OPr i = isopropoxide and ONep = neopentoxide, was studied by molecular modeling using DFT, TDDFT and INDO/S methods. The vibrational and electronic spectra calculated for [V 2 (mu-OPr i ) 2 (OPr i ) 6 ] were very similar to the experimental data registered for crystalline samples of the complex and for its solutions at low temperature ( 315 K) were compatible with those calculated for the monomeric form, [V(OPr i ) 4 ]. These results consistently point to a monomer/dimer equilibrium as an explanation for the solution thermochromism of {V(OPr i )-4} n . In spite of the structural similarity between [V 2 (mu-ONep) 2 (ONep) 6 ] and [V 2 (mu-OPr i ) 2 (OPr i ) 6 ] in the solid state, the thermochromic behavior of the former could not be explained by the same model, and the possibility of tetranuclear aggregation at low temperatures was also investigated. (author)
Random geometry model in criticality calculations of solutions containing Raschig rings
International Nuclear Information System (INIS)
Teng, S.P.; Lindstrom, D.G.
1979-01-01
The criticality constants of fissile solutions containing borated Raschig rings are evaluated using the Monte Carlo code KENO IV with various geometry models. In addition to those used by other investigators, a new geometry model, the random geometry model, is presented to simulate the system of randomly oriented Raschig rings in solution. A technique to obtain the material thickness distribution functions of solution and rings for use in the random geometry model is also presented. Comparison between the experimental data and the calculated results using Monte Carlo method with various geometry models indicates that the random geometry model is a reasonable alternative to models previously used in describing the system of Raschig-ring-filled solution. The random geometry model also provides a solution to the problem of describing an array containing Raschig-ring-filled tanks that is not available to techniques using other models
Electron flux models for different energies at geostationary orbit
Boynton, R. J.; Balikhin, M. A.; Sibeck, D. G.; Walker, S. N.; Billings, S. A.; Ganushkina, N.
2016-10-01
Forecast models were derived for energetic electrons at all energy ranges sampled by the third-generation Geostationary Operational Environmental Satellites (GOES). These models were based on Multi-Input Single-Output Nonlinear Autoregressive Moving Average with Exogenous inputs methodologies. The model inputs include the solar wind velocity, density and pressure, the fraction of time that the interplanetary magnetic field (IMF) was southward, the IMF contribution of a solar wind-magnetosphere coupling function proposed by Boynton et al. (2011b), and the Dst index. As such, this study has deduced five new 1 h resolution models for the low-energy electrons measured by GOES (30-50 keV, 50-100 keV, 100-200 keV, 200-350 keV, and 350-600 keV) and extended the existing >800 keV and >2 MeV Geostationary Earth Orbit electron fluxes models to forecast at a 1 h resolution. All of these models were shown to provide accurate forecasts, with prediction efficiencies ranging between 66.9% and 82.3%.
Patel, Bijal B.; Diao, Ying
2018-01-01
Organic semiconducting small molecules and polymers provide a rich phase space for investigating the fundamentals of molecular and hierarchical assembly. Stemming from weak intermolecular interactions, their assembly sensitively depends on processing conditions, which in turn drastically modulate their electronic properties. Much work has gone into molecular design strategies that maximize intermolecular interactions and encourage close packing. Less understood, however, is the non-equilibrium assembly that occurs during the fabrication process (especially solution coating and printing) which is critical to determining thin film morphology across length scales. This encompasses polymorphism and molecular packing at molecular scale, assembly of π-bonding aggregates at the tens of nanometers scale, and the formation of domains at the micron-millimeter device scale. Here, we discuss three phenomena ubiquitous in solution processing of organic electronic thin films: the confinement effect, fluid flows, and interfacial assembly and the role they play in directing assembly. This review focuses on the mechanistic understanding of how assembly outcomes couple closely to the solution processing environment, supported by salient examples from the recent literature.
Plasmoid solutions of the Hahm–Kulsrud–Taylor equilibrium model
Energy Technology Data Exchange (ETDEWEB)
Dewar, R. L. [Plasma Research Laboratory, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia and Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561 (Japan); Bhattacharjee, A.; Kulsrud, R. M. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Wright, A. M. [The Australian National University, Canberra ACT 0200 (Australia)
2013-08-15
The Hahm–Kulsrud (HK) [T. S. Hahm and R. M. Kulsrud, Phys. Fluids 28, 2412 (1985)] solutions for a magnetically sheared plasma slab driven by a resonant periodic boundary perturbation illustrate fully shielded (current sheet) and fully reconnected (magnetic island) responses. On the global scale, reconnection involves solving a magnetohydrodynamic (MHD) equilibrium problem. In systems with a continuous symmetry, such MHD equilibria are typically found by solving the Grad–Shafranov equation, and in slab geometry the elliptic operator in this equation is the 2-D Laplacian. Thus, assuming appropriate pressure and poloidal current profiles, a conformal mapping method can be used to transform one solution into another with different boundary conditions, giving a continuous sequence of solutions in the form of partially reconnected magnetic islands (plasmoids) separated by Syrovatsky current sheets. The two HK solutions appear as special cases.
The use of electron beam for solution of some ecological problems in pulp and paper industry
International Nuclear Information System (INIS)
Auslender, V.L.; Ryazantsev, A.A.; Spiridonov, G.A.
2002-01-01
In the report, results of research on possibility of using a beam of accelerated electrons for a decrease of exhaust in an environment of detrimental smelling nasty substances generated during sulfate cellulose-paper production are presented. The two methods of radiation usage are described: with a direct action of beam on detrimental substances containing gas or water on a so-called 'tailing' of production process and at the beginning of production with influence of electron beam on wood chips before the boiling process
Exact solutions to a nonlinear dispersive model with variable coefficients
International Nuclear Information System (INIS)
Yin Jun; Lai Shaoyong; Qing Yin
2009-01-01
A mathematical technique based on an auxiliary differential equation and the symbolic computation system Maple is employed to investigate a prototypical and nonlinear K(n, n) equation with variable coefficients. The exact solutions to the equation are constructed analytically under various circumstances. It is shown that the variable coefficients and the exponent appearing in the equation determine the quantitative change in the physical structures of the solutions.
Mathematical modeling of fluid and solute transport in peritoneal dialysis
Waniewski, Jacek
2001-01-01
Optimization of peritoneal dialysis schedule and dialysis fluid composition needs, among others, methods for quantitative assessment of fluid and solute transport. Furthermore, an integrative quantitative description of physiological processes within the tissue, which contribute to the net transfer of fluid and solutes, is necessary for interpretation of the data and for predictions of the outcome of possible intervention into the peritoneal transport system. The current pro...
Directory of Open Access Journals (Sweden)
O.Ya.Farenyuk
2006-01-01
Full Text Available The pseudospin-electron model with tunneling splitting of levels is considered. Generalization of dynamic mean-field method for systems with correlated hopping was applied to the investigation of the model. Electron spectra, electron concentrations, average values of pseudospins and grand canonical potential were calculated within the alloy-analogy approximation. Electron spectrum and dependencies of the electron concentrations on chemical potential were obtained. It was shown that in the alloy-analogy approximation, the model possesses the first order phase transition to ferromagnetic state with the change of chemical potential and the second order phase transition with the change of temperature.
Modeling and Control of a teletruck using electronic load sensing
DEFF Research Database (Denmark)
Hansen, Rico Hjerm; Iversen, Asger Malte; Jensen, Mads Schmidt
2010-01-01
components and the potential of increased dynamic performance and efficiency, this paper investigates how HLS can be replaced with electronic control, i.e. Electronic Load Sensing (ELS). The investigation is performed by taking a specific application, a teletruck, and replace the HLS control with ELS. To aid...... the controller design for the ELS system, a complete model of the teletruck’s articulated arm and fluid power system is developed. To show the feasibility, a preliminary control structure for the ELS system is developed. The controller is tested on the machine, validating that features such as pump pressure...
Transformer Model in Wide Frequency Bandwidth for Power Electronics Systems
Directory of Open Access Journals (Sweden)
Carlos Gonzalez-Garcia
2013-01-01
Full Text Available The development of the smart grids leads to new challenges on the power electronics equipment and power transformers. The use of power electronic transformer presents several advantages, but new problems related with the application of high frequency voltage and current components come across. Thus, an accurate knowledge of the transformer behavior in a wide frequency range is mandatory. A novel modeling procedure to relate the transformer physical behavior and its frequency response by means of electrical parameters is presented. Its usability is demonstrated by an example where a power transformer is used as filter and voltage reducer in an AC-DC-AC converter.
ELECTRON AVALANCHE MODEL OF DIELECTRIC-VACUUM SURFACE BREAKDOWN
Energy Technology Data Exchange (ETDEWEB)
Lauer, E J
2007-02-21
The model assumes that an 'initiating event' results in positive ions on the surface near the anode and reverses the direction of the normal component of electric field so that electrons in vacuum are attracted to the dielectric locally. A sequence of surface electron avalanches progresses in steps from the anode to the cathode. For 200 kV across 1 cm, the spacing of avalanches is predicted to be about 13 microns. The time for avalanches to step from the anode to the cathode is predicted to be about a ns.
Proposals for the solution of the phase problem in electron microscopy
Toorn, Peter van
1979-01-01
In this thesis we discuss the phase problem in electron microscopy, i.e. the determination of the unknown complex wave function in the image plane or in the exit pupil from the measured intensity distributions in both planes. The calculation of the wave function is the first problem to be solved for
DEFF Research Database (Denmark)
Guelbenzu, Gonzalo; Miao, Wang; Ben-Itzhak, Yaniv
2017-01-01
We present two hybrid fabrics integrating optical and electronic switches with SDN, and a novel approach improving the scaling of fast optical switches. C-Share reroute flows through optical switches increasing network performance. E-WDM exploits the optical switch transparency by emulating...
The Development Model Electronic Commerce of Regional Agriculture
Kang, Jun; Cai, Lecai; Li, Hongchan
With the developing of the agricultural information, it is inevitable trend of the development of agricultural electronic commercial affairs. On the basis of existing study on the development application model of e-commerce, combined with the character of the agricultural information, compared with the developing model from the theory and reality, a new development model electronic commerce of regional agriculture base on the government is put up, and such key issues as problems of the security applications, payment mode, sharing mechanisms, and legal protection are analyzed, etc. The among coordination mechanism of the region is discussed on, it is significance for regulating the development of agricultural e-commerce and promoting the regional economical development.
Energy Technology Data Exchange (ETDEWEB)
Batool, Nazia; Jahangir, R. [Theoretical Plasma Physics Group, Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan); National Center of Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); Masood, W. [National Center of Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan); COMSATS Institute of Information Technology, Islamabad (Pakistan); Siddiq, M. [National Center of Physics (NCP), Quaid-i-Azam University Campus, Islamabad (Pakistan)
2016-08-15
In the present investigation, cylindrical Kadomstev-Petviashvili (CKP) equation is derived in pair-ion-electron plasmas to study the propagation and interaction of two solitons. Using a novel gauge transformation, two soliton solutions of CKP equation are found analytically by using Hirota's method and to the best of our knowledge have been used in plasma physics for the first time. Interestingly, it is observed that unlike the planar Kadomstev-Petviashvili (KP) equation, the CKP equation admits horseshoe-like solitary structures. Another non-trivial feature of CKP solitary solution is that the interaction parameter gets modified by the plasma parameters contrary to the one obtained for Korteweg–de Vries equation. The importance of the present investigation to understand the formation and interaction of solitons in laboratory produced pair plasmas is also highlighted.
Creamer, Neil J; Baxter-Plant, Victoria S; Henderson, John; Potter, M; Macaskie, Lynne E
2006-09-01
Biomass of Desulfovibrio desulfuricans was used to recover Au(III) as Au(0) from test solutions and from waste electronic scrap leachate. Au(0) was precipitated extracellularly by a different mechanism from the biodeposition of Pd(0). The presence of Cu(2+) ( approximately 2000 mg/l) in the leachate inhibited the hydrogenase-mediated removal of Pd(II) but pre-palladisation of the cells in the absence of added Cu(2+) facilitated removal of Pd(II) from the leachate and more than 95% of the Pd(II) was removed autocatalytically from a test solution supplemented with Cu(II) and Pd(II). Metal recovery was demonstrated in a gas-lift electrobioreactor with electrochemically generated hydrogen, followed by precipitation of recovered metal under gravity. A 3-stage bioseparation process for the recovery of Au(III), Pd(II) and Cu(II) is proposed.
Positive global solutions for a general model of size-dependent population dynamics
Kato, Nobuyuki
2000-01-01
We study size-structured population models of general type which have the growth rate depending on the size and time. The local existence and uniqueness of the solution have been shown by Kato and Torikata (1997). Here, we discuss the positivity of the solution and global existence as well as $L^\\infty$ solutions.
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1985-01-01
Two new classes of spatially homogeneous cosmological solutions of Einstein-Maxwell equations are obtained by considering a class of exact perturbations of the static Bertotti-Robinson (BR) model. The BR solution is shown to be unstable under these perturbations, being perturbed into exact cosmological solutions with perfect fluid (equations of state p = lambda rho, O [pt
General classical solutions in the noncommutative CP{sup N-1} model
Energy Technology Data Exchange (ETDEWEB)
Foda, O.; Jack, I.; Jones, D.R.T
2002-10-31
We give an explicit construction of general classical solutions for the noncommutative CP{sup N-1} model in two dimensions, showing that they correspond to integer values for the action and topological charge. We also give explicit solutions for the Dirac equation in the background of these general solutions and show that the index theorem is satisfied.
Electronic structure of PrBa2Cu3O7 within LSDA+U: Different self-consistent solutions
Directory of Open Access Journals (Sweden)
M R Mohammadizadeh
2009-08-01
Full Text Available Based on the density functional theory and using the full-potential linearized augmented-plane-waves method the electronic structure of PrBa2Cu3O7 (Pr123 system was calculated. The rotationally invariant local spin density approximation plus Hubbard parameter U was employed for Pr(4f orbitals. One self-consistent solution more stable than the previous solution, which has been proposed by Liechtenstein and Mazin (LM, was found. In contrast to the LM solution, it can explain the results of the 17O NMR spectroscopy study of nonsuperconducting Pr123 samples. This new solution favors the suggestion that the pure Pr123 samples should be intrinsically superconductor and metal similar to the other RBa2Cu3O7 (R=Y or a rare earth element samples. The imperfections cause the superconducting holes are transferred to the nonsuperconducting hole states around the high-symmetry (π/a, π/b, kz line in the Brillouin zone and so, superconductivity is suppressed in the conventional samples. It predicts that the superconducting 2pσ holes in the O2 sites of nonsuperconducting Pr123 samples should be depleted and the ones in the O3 sites should be almost unchanged .
Modeling power electronics and interfacing energy conversion systems
Simões, Marcelo Godoy
2017-01-01
Discusses the application of mathematical and engineering tools for modeling, simulation and control oriented for energy systems, power electronics and renewable energy. This book builds on the background knowledge of electrical circuits, control of dc/dc converters and inverters, energy conversion and power electronics. The book shows readers how to apply computational methods for multi-domain simulation of energy systems and power electronics engineering problems. Each chapter has a brief introduction on the theoretical background, a description of the problems to be solved, and objectives to be achieved. Block diagrams, electrical circuits, mathematical analysis or computer code are covered. Each chapter concludes with discussions on what should be learned, suggestions for further studies and even some experimental work.
Directory of Open Access Journals (Sweden)
Chuan Lai
2015-01-01
Full Text Available The fabricated macroporous silicon with a porosity of 26.33% corrosion in NaOH solution was systemically investigated by open circuit potential measurements, linear polarization measurements, potentiodynamic polarization measurements, and scanning electron microscopy, respectively. Results show that the potential open circuit and linear polarization resistance decreases with the NaOH concentration increasing. The corrosion potential shifts significantly to more negative potentials and corrosion current density increases with NaOH concentration increasing. Adding ethanol to 1.0 M NaOH can lead to the linear polarization resistance decrease, corrosion potentials shift in the positive direction, and corrosion current density increase. In addition, the scanning electron microscopy images demonstrate that the macroporous silicon samples are seriously damaged by 1.0 M NaOH and 1.0 M NaOH/EtOH (30%.
EL-Kalaawy, O. H.
2018-02-01
We consider the nonlinear propagation of non-planar (cylindrical and spherical) ion-acoustic (IA) envelope solitary waves in an unmagnetized plasma consisting of electron-positron-ion-dust plasma with two-electron temperature distributions in the context of the non-extensive statistics. The basic set of fluid equations is reduced to the modified nonlinear Schrödinger (MNLS) equation in cylindrical and spherical geometry by using the reductive perturbation method (RPM). It is found that the nature of the modulational instabilities would be significantly modified due to the effects of the non-extensive and other plasma parameters as well as cylindrical and spherical geometry. Conservation laws of the MNLS equation are obtained by Lie symmetry and multiplier method. A new exact solution (envelope bright soliton) is obtained by the extended homogeneous balance method. Finally, we study the results of this article.
Beliatis, Michail J; Gandhi, Keyur K; Rozanski, Lynn J; Rhodes, Rhys; McCafferty, Liam; Alenezi, Mohammad R; Alshammari, Abdullah S; Mills, Christopher A; Jayawardena, K D G Imalka; Henley, Simon J; Silva, S Ravi P
2014-04-02
Solution processed core-shell nano-structures of metal oxide-reduced graphene oxide (RGO) are used as improved electron transport layers (ETL), leading to an enhancement in photocurrent charge transport in PCDTBT:PC70 BM for both single cell and module photovoltaic devices. As a result, the power conversion efficiency for the devices with RGO-metal oxides for ETL increases 8% in single cells and 20% in module devices. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
V. M. Nichiporchuk
2012-12-01
Full Text Available A review of several solutions for comfortable work in systems with a large number of short transactions has been produced in the work. Several common cluster design schemes of providing data identity between the nodes have been analyzed as well as several load balancing schemes. As a result, a simulation cluster has been designed and installed in respect to the formalized in the work requirements such as scalability, load balancing and replication support.
Resonance scattering and low-temperature electron mobility in HgTe-based gapless solid solutions
International Nuclear Information System (INIS)
Raikh, M.Eh.; Ehfros, A.L.
1986-01-01
Low-temperature electron mobility in a gapless semiconductor conditioned by electron resonance scattering on neutral acceptors, the levels of which are located in narrow vicinity near the Fermi level, is calculated. Mobility turns to be inverse proportional to density of acceptor states at the Fermi level. If donor concentration is rather high, then presence of a Coulomb gap at the Fermi level in the density of acceptor states conditioned by long-range character of Coulomb interaction should be taken into account for calculation of mobility. The Fermi level is placed in the tail of the acceptor state density at rather low donor concentration, and the Coulomb gap is absent at the Fermi level. A case of high acceptor concentration, when the acceptor states are delocalized at the Fermi level, is also considered
Freundlich, Robert E; Freundlich, Katherine L; Drolet, Brian C
2017-11-25
Electronic communication is a topic that applies broadly to the professional activities of every physician and the pager has been the gold standard of communication for decades. We believe that this is a dated technology that is holding clinicians back from better, more efficient alternatives, particularly smartphones. In this manuscript, we examine the paradoxical reliance on pagers in academic medicine, at a time when the use of smartphones and text messaging is the subject of intense scrutiny with respect to its standing under the Health Insurance Portability and Accountability Act (HIPAA). We provide previously unreported data regarding the electronic communication practices of academic medical centers in the United States, which we obtained through a survey of Designated Institutional Officials. These data highlight both the controversy around text messaging and HIPAA and a puzzling widespread reliance on pagers as an alternative.
Ganguly, Moumita; Chakraborty, Aniruddha
2017-10-01
A diffusion theory for intramolecular reactions of polymer chain in dilute solution is formulated. We give a detailed analytical expression for calculation of rate of polymer looping in solution. The physical problem of looping can be modeled mathematically with the use of a Smoluchowski-like equation with a Dirac delta function sink of finite strength. The solution of this equation is expressed in terms of Laplace Transform of the Green's function for end-to-end motion of the polymer in absence of the sink. We have defined two different rate constants, the long term rate constant and the average rate constant. The average rate constant and long term rate constant varies with several parameters such as length of the polymer (N), bond length (b) and the relaxation time τR. The long term rate constant is independent of the initial probability distribution.
Czech Academy of Sciences Publication Activity Database
Monni, R.; Auböck, G.; Kinschel, D.; Aziz-Lange, K. M.; Gray, H. B.; Vlček, Antonín; Chergui, M.
2017-01-01
Roč. 683, SEP 2017 (2017), s. 112-120 ISSN 0009-2614 R&D Projects: GA MŠk LD14129; GA ČR GA17-01137S Grant - others:COST(XE) CM1201 Institutional support: RVO:61388955 Keywords : vibrational energy * electronic energy * diplatinum complexes Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.815, year: 2016
Czech Academy of Sciences Publication Activity Database
Monni, R.; Auböck, G.; Kinschel, D.; Aziz-Lange, K. M.; Gray, H. B.; Vlček, Antonín; Chergui, M.
2017-01-01
Roč. 683, SEP 2017 (2017), s. 112-120 ISSN 0009-2614 R&D Projects: GA MŠk LD14129; GA ČR GA17-01137S Grant - others: COST (XE) CM1201 Institutional support: RVO:61388955 Keywords : vibrational energy * electronic energy * diplatinum complexes Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 1.815, year: 2016
Successive addition of electrons to sodium quinizarin-2- and -6-sulphonate in aqueous solution
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Tulsi; Land, E.J.; Swallow, A.J.; Guyan, P.M.; Bruce, J.M.
1988-08-01
Absorption characteristics of the semiquinone free radicals formed by one-electron reduction of quinizarin 2- and 6-sulphonates (Q2S and Q6S, respectively) have been studied. Second-order rate constants have been determined for the reactions of esub(aq)/sup -/, CO/sub 2/ anion radical, H radical and O/sub 2/ anion radical with the two quinones and also for the reaction of the semiquinones with O/sub 2/ and with themselves. They vary with pH in accordance with the pKsub(a) values of the parent and the semiquinone. The radicals are stable within the pH range 5-11. The stability constant is highest at pH 8.5, viz. ca. 1.45 for Q2S and 0.95 for Q6S. The one-electron reduction potentials of the semiquinones and the two electron reduction potentials of the quinones are calculated. The variation of these quantities with pH has been related to pKsub(a) values for the relevant species. Properties of the radiolytically prepared fully reduced Q2S and Q6S are reported. Their acid forms are stable to oxygen. Adjustment to alkaline pH results in a loss of the sulphonate group from fully reduced Q2S but not from fully reduced Q6S. Reasons are given.
Directory of Open Access Journals (Sweden)
Monier-Vinard Eric
2013-01-01
Full Text Available The recent Printed Wiring Board embedding technology is an attractive packaging alternative that allows a very high degree of miniaturization by stacking multiple layers of embedded chips. This disruptive technology will further increase the thermal management challenges by concentrating heat dissipation at the heart of the organic substrate structure. In order to allow the electronic designer to early analyze the limits of the power dissipation, depending on the embedded chip location inside the board, as well as the thermal interactions with other buried chips or surface mounted electronic components, an analytical thermal modelling approach was established. The presented work describes the comparison of the analytical model results with the numerical models of various embedded chips configurations. The thermal behaviour predictions of the analytical model, found to be within ±10% of relative error, demonstrate its relevance for modelling high density electronic board. Besides the approach promotes a practical solution to study the potential gain to conduct a part of heat flow from the components towards a set of localized cooled board pads.
Thermodynamic modeling of iodine and selenium retention in solutions with high salinity
International Nuclear Information System (INIS)
Hagemann, Sven; Moog, Helge C.; Herbert, Horst-Juergen; Erich, Agathe
2012-04-01
The report on iodine and selenium retention in saline solutions includes the following chapters: (1) Introduction and scope of the work. (2) Actual status of knowledge. (3) Experimental and numerical models. (4) Thermodynamic properties of selenite and hydrogen selenite in solutions of oceanic salts. (5) Thermodynamic properties of selenate in solutions of oceanic salts. (6) Thermodynamic properties of iodide in solutions of oceanic salts. (7) Experimental studies on the retention of iodine and selenium in selected sorbents. (8) Summary and conclusions.
Power electronic converters modeling and control with case studies
Bacha, Seddik; Bratcu, Antoneta Iuliana
2014-01-01
Modern power electronic converters are involved in a very broad spectrum of applications: switched-mode power supplies, electrical-machine-motion-control, active power filters, distributed power generation, flexible AC transmission systems, renewable energy conversion systems and vehicular technology, among them. Power Electronics Converters Modeling and Control teaches the reader how to analyze and model the behavior of converters and so to improve their design and control. Dealing with a set of confirmed algorithms specifically developed for use with power converters, this text is in two parts: models and control methods. The first is a detailed exposition of the most usual power converter models: · switched and averaged models; · small/large-signal models; and · time/frequency models. The second focuses on three groups of control methods: · linear control approaches normally associated with power converters; · resonant controllers b...
Investigating conceptual models for physical property couplings in solid solution models of cement
International Nuclear Information System (INIS)
Benbow, Steven; Watson, Claire; Savage, David
2005-11-01
The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste
Investigating conceptual models for physical property couplings in solid solution models of cement
Energy Technology Data Exchange (ETDEWEB)
Benbow, Steven; Watson, Claire; Savage, David [Quintesssa Ltd., Henley-on-Thames (United Kingdom)
2005-11-15
The long-term behaviour of cementitious engineered barriers is an important process to consider when modelling the migration of radionuclides from a geological repository for nuclear waste. The modelling of cement is complicated by the fact that the cement is dominated by the behaviour of calcium silicate hydrate (CSH) gel which is a complex solid exhibiting incongruent dissolution behaviour. In this report, we have demonstrated the implementation of a solid-solution CSH gel model within a geochemical transport modelling framework using the Raiden computer code to investigate cement/concrete-groundwater interactions. The modelling conducted here shows that it is possible to couple various conceptual models for the evolution of physical properties of concrete with a solid solution model for cement degradation in a fully coupled geochemical transport model to describe the interaction of cement/concrete engineered barriers with groundwater. The results show that changes to the conceptual models and flow rates can give rise to very different evolutions. Most simulations were carried out at a reduced 'experimental' scale rather than full repository scale. The work has shown the possibility to investigate also the changing physical properties of degrading cement. To further develop the model more emphasis is needed on kinetics and the detailed development of a nearly clogged pore space. Modelling of the full repository scale could be another way forward to understand the behaviour of degrading concrete. A general conclusion is that the combined effects of chemical evolution and physical degradation should be analysed in performance assessments of cementitious repositories. Moreover, the project results will be used as one basis in coming reviews of SKB's safety assessments of repositories for spent fuel and low-and intermediate level waste.
Modeling and multidimensional optimization of a tapered free electron laser
Directory of Open Access Journals (Sweden)
Y. Jiao
2012-05-01
Full Text Available Energy extraction efficiency of a free electron laser (FEL can be greatly increased using a tapered undulator and self-seeding. However, the extraction rate is limited by various effects that eventually lead to saturation of the peak intensity and power. To better understand these effects, we develop a model extending the Kroll-Morton-Rosenbluth, one-dimensional theory to include the physics of diffraction, optical guiding, and radially resolved particle trapping. The predictions of the model agree well with that of the GENESIS single-frequency numerical simulations. In particular, we discuss the evolution of the electron-radiation interaction along the tapered undulator and show that the decreasing of refractive guiding is the major cause of the efficiency reduction, particle detrapping, and then saturation of the radiation power. With this understanding, we develop a multidimensional optimization scheme based on GENESIS simulations to increase the energy extraction efficiency via an improved taper profile and variation in electron beam radius. We present optimization results for hard x-ray tapered FELs, and the dependence of the maximum extractable radiation power on various parameters of the initial electron beam, radiation field, and the undulator system. We also study the effect of the sideband growth in a tapered FEL. Such growth induces increased particle detrapping and thus decreased refractive guiding that together strongly limit the overall energy extraction efficiency.
Advanced electron crystallography through model-based imaging
Van Aert, Sandra; De Backer, Annick; Martinez, Gerardo T.; den Dekker, Arnold J.; Van Dyck, Dirk; Bals, Sara; Van Tendeloo, Gustaaf
2016-01-01
The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy. PMID:26870383
Advanced electron crystallography through model-based imaging
Directory of Open Access Journals (Sweden)
Sandra Van Aert
2016-01-01
Full Text Available The increasing need for precise determination of the atomic arrangement of non-periodic structures in materials design and the control of nanostructures explains the growing interest in quantitative transmission electron microscopy. The aim is to extract precise and accurate numbers for unknown structure parameters including atomic positions, chemical concentrations and atomic numbers. For this purpose, statistical parameter estimation theory has been shown to provide reliable results. In this theory, observations are considered purely as data planes, from which structure parameters have to be determined using a parametric model describing the images. As such, the positions of atom columns can be measured with a precision of the order of a few picometres, even though the resolution of the electron microscope is still one or two orders of magnitude larger. Moreover, small differences in average atomic number, which cannot be distinguished visually, can be quantified using high-angle annular dark-field scanning transmission electron microscopy images. In addition, this theory allows one to measure compositional changes at interfaces, to count atoms with single-atom sensitivity, and to reconstruct atomic structures in three dimensions. This feature article brings the reader up to date, summarizing the underlying theory and highlighting some of the recent applications of quantitative model-based transmisson electron microscopy.
The Lunar Internal Structure Model: Problems and Solutions
Nefedyev, Yuri; Gusev, Alexander; Petrova, Natalia; Varaksina, Natalia
decomposition of gravitational field of the Moon of members up to 165th order with a high degree of accuracy. Judging from the given data, the distinctive feature of the Moon’s gravitational field is that harmonics of the third and even the fourth order are comparable with harmonics of the second order, except for member J2. General conclusion: according to recent data, the true figure of the Moon is much more complex than a three-axis ellipsoid. Gravitational field and dynamic figure of the multilayered Moon: One of the main goals of selenodesy is the study of a dynamic figure of the Moon which determines distribution of the mass within the Moon’s body. A dynamic figure is shaped by the inertia ellipsoid set by values of resultant moments of inertia of the Moon A, B, C and their orientation in space. Selenoid satellites (SS) open new and most perspective opportunities in the study of gravitational field and the Moon’s figure. SSs “Moon 10”, “Apollo”, “Clementine”, “Lunar Prospector” trajectory tracking data processing has allowed for identification of coefficients in decomposition of gravitational field of the Moon of members up to 165th order with a high degree of accuracy. Judging from the given data, the distinctive feature of the Moon’s gravitational field is that harmonics of the third and even the fourth order are comparable with harmonics of the second order. Difference from zero of c-coefficients proves asymmetry of gravitational fields on the visible and invisible sides of the Moon. As a first attempt at solving the problem, the report presents the survey of internal structure of the Moon, tabulated values of geophysical parameters and geophysical profile of the Moon, including liquid lunar core, analytical solution of Clairaut’s equation for the two-layer model of the Moon; mathematical and bifurcational analysis of solution based on physically justified task options; original debugged software in VBA programming language for computer
International Nuclear Information System (INIS)
Song Meirong; Song Junling; Ning Aimin; Cui Baoan; Cui Shumin; Zhou Yaobing; An Wankai; Dong Xuesong; Zhang Gege
2010-01-01
The aim of this study was to determine the feasibility of using silica sol to carry a hydrophobic drug in aqueous solution. Enrofloxacin, which was selected as the model drug because it is a broad-spectrum antibiotic drug with poor solubility in water, was adsorbed onto silica sol in aqueous solution during cooling from 60 deg. C to room temperature. The drug-loaded silica sol was characterized by transmission electron microscopy, Fourier transform infrared spectrum, thermal gravimetric analysis and ultraviolet-visible light spectroscopy. The results showed that enrofloxacin was adsorbed by silica sol without degradation at a loading of 15.23 wt.%. In contrast to the rapid release from pure enrofloxacin, the drug-loaded silica sol showed a slower release over a longer time. Kinetics analysis suggested the drug release from silica sol was mainly a diffusion-controlled process. Therefore, silica sol can be used to carry a hydrophobic drug in aqueous solution for controlled drug delivery.
Electronic Model of a Ferroelectric Field Effect Transistor
MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)
2001-01-01
A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.
Delaney, Declan T.; O’Hare, Gregory M. P.
2016-01-01
No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks. PMID:27916929
Delaney, Declan T; O'Hare, Gregory M P
2016-12-01
No single network solution for Internet of Things (IoT) networks can provide the required level of Quality of Service (QoS) for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.
A Framework to Implement IoT Network Performance Modelling Techniques for Network Solution Selection
Directory of Open Access Journals (Sweden)
Declan T. Delaney
2016-12-01
Full Text Available No single network solution for Internet of Things (IoT networks can provide the required level of Quality of Service (QoS for all applications in all environments. This leads to an increasing number of solutions created to fit particular scenarios. Given the increasing number and complexity of solutions available, it becomes difficult for an application developer to choose the solution which is best suited for an application. This article introduces a framework which autonomously chooses the best solution for the application given the current deployed environment. The framework utilises a performance model to predict the expected performance of a particular solution in a given environment. The framework can then choose an apt solution for the application from a set of available solutions. This article presents the framework with a set of models built using data collected from simulation. The modelling technique can determine with up to 85% accuracy the solution which performs the best for a particular performance metric given a set of solutions. The article highlights the fractured and disjointed practice currently in place for examining and comparing communication solutions and aims to open a discussion on harmonising testing procedures so that different solutions can be directly compared and offers a framework to achieve this within IoT networks.
Walker, R. D., Jr.
1973-01-01
Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.
Modelling of flame temperature of solution combustion synthesis of ...
Indian Academy of Sciences (India)
Hydroxyapatite (HAp), an important bio-ceramic was successfully synthesized by combustion in the aqueous system containing calcium nitrate-di-ammonium hydrogen orthophosphate-urea. The combustion flame temperature of solution combustion reaction depends on various process parameters, and it plays a significant ...
Some exact solutions of magnetized viscous model in string ...
Indian Academy of Sciences (India)
Abstract. In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk ...
Some exact solutions of magnetized viscous model in string ...
Indian Academy of Sciences (India)
In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous ...
New analytical solutions for nonlinear physical models of the ...
Indian Academy of Sciences (India)
A comparative study with the other methods gives validity to the technique and shows that the method providesadditional solutions. Graphical representations along with the numerical data reinforce the efficacy of the procedure used. The specified idea is very effective, pragmatic for partial differential equations of fractional ...
Rosenbaum, J. S.
1971-01-01
Systems of ordinary differential equations in which the magnitudes of the eigenvalues (or time constants) vary greatly are commonly called stiff. Such systems of equations arise in nuclear reactor kinetics, the flow of chemically reacting gas, dynamics, control theory, circuit analysis and other fields. The research reported develops an A-stable numerical integration technique for solving stiff systems of ordinary differential equations. The method, which is called the generalized trapezoidal rule, is a modification of the trapezoidal rule. However, the method is computationally more efficient than the trapezoidal rule when the solution of the almost-discontinuous segments is being calculated.
Rocha, Frederico AE; Lourenço, Nuno CC; Horta, Nuno CG
2013-01-01
This book applies to the scientific area of electronic design automation (EDA) and addresses the automatic sizing of analog integrated circuits (ICs). Particularly, this book presents an approach to enhance a state-of-the-art layout-aware circuit-level optimizer (GENOM-POF), by embedding statistical knowledge from an automatically generated gradient model into the multi-objective multi-constraint optimization kernel based on the NSGA-II algorithm. The results showed allow the designer to explore the different trade-offs of the solution space, both through the achieved device sizes, or the resp
Quantum entanglement in two-electron atomic models
Energy Technology Data Exchange (ETDEWEB)
Manzano, D; Plastino, A R; Dehesa, J S [Instituto Carlos I de Fisica Teorica y Computacional, Universidad de Granada, Granada E-18071 (Spain); Koga, T, E-mail: arplastino@ugr.e [Applied Chemistry Research Unit, Graduate School of Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan)
2010-07-09
We explore the main entanglement properties exhibited by the eigenfunctions of two exactly soluble two-electron models, the Crandall atom and the Hooke atom, and compare them with the entanglement features of helium-like systems. We compute the amount of entanglement associated with the wavefunctions corresponding to the fundamental and first few excited states of these models. We investigate the dependence of the entanglement on the parameters of the models and on the quantum numbers of the eigenstates. It is found that the amount of entanglement of the system tends to increase with energy in both models. In addition, we study the entanglement of a few states of helium-like systems, which we compute using high-quality Kinoshita-like eigenfunctions. The dependence of the entanglement of helium-like atoms on the nuclear charge and on energy is found to be consistent with the trends observed in the previous two model systems.
Volkmann, Niels
2012-02-01
A complete understanding of complex dynamic cellular processes such as cell migration or cell adhesion requires the integration of atomic level structural information into the larger cellular context. While direct atomic-level information at the cellular level remains inaccessible, electron microscopy, electron tomography and their associated computational image processing approaches have now matured to a point where sub-cellular structures can be imaged in three dimensions at the nanometer scale. Atomic-resolution information obtained by other means can be combined with this data to obtain three-dimensional models of large macromolecular assemblies in their cellular context. This article summarizes some recent advances in this field. Copyright © 2011 Elsevier Ltd. All rights reserved.
Use of mathematical modelling in electron beam processing: A guidebook
International Nuclear Information System (INIS)
2010-01-01
The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron
Transverse Momentum Distributions of Electron in Simulated QED Model
Kaur, Navdeep; Dahiya, Harleen
2018-05-01
In the present work, we have studied the transverse momentum distributions (TMDs) for the electron in simulated QED model. We have used the overlap representation of light-front wave functions where the spin-1/2 relativistic composite system consists of spin-1/2 fermion and spin-1 vector boson. The results have been obtained for T-even TMDs in transverse momentum plane for fixed value of longitudinal momentum fraction x.
Modeling Electronic Circular Dichroism within the Polarizable Embedding Approach
DEFF Research Database (Denmark)
Nørby, Morten S; Olsen, Jógvan Magnus Haugaard; Steinmann, Casper
2017-01-01
We present a systematic investigation of the key components needed to model single chromophore electronic circular dichroism (ECD) within the polarizable embedding (PE) approach. By relying on accurate forms of the embedding potential, where especially the inclusion of local field effects...... are in focus, we show that qualitative agreement between rotatory strength parameters calculated by full quantum mechanical calculations and the more efficient embedding calculations can be obtained. An important aspect in the computation of reliable absorption parameters is the need for conformational...
Optical spectra and electronic structure of actinide ions in compounds and in solution
International Nuclear Information System (INIS)
Carnall, W.T.; Crosswhite, H.M.
1985-08-01
This report provides a summary of theoretical and experimental studies of actinide spectra in condensed phases. Much of the work was accomplished at Argonne National Laboratory, but references to related investigations by others are included. Spectroscopic studies of the trivlent actinides are emphasized, as is the use of energy level parameters, evaluated from experimental data, to investigate systematic trends in electronic structure and other properties. Some reference is made to correlations with atomic spectra, as well as with spectra of the (II), (IV), and higher valence states. 207 refs., 39 figs., 38 tabs
A model for hypermedia learning environments based on electronic books
Directory of Open Access Journals (Sweden)
Ignacio Aedo
1997-12-01
Full Text Available Current hypermedia learning environments do not have a common development basis. Their designers have often used ad-hoc solutions to solve the learning problems they have encountered. However, hypermedia technology can take advantage of employing a theoretical scheme - a model - which takes into account various kinds of learning activities, and solves some of the problems associated with its use in the learning process. The model can provide designers with the tools for creating a hypermedia learning system, by allowing the elements and functions involved in the definition of a specific application to be formally represented.
Kumara, Loku Singgappulige Rosantha; Sakata, Osami; Kobayashi, Hirokazu; Song, Chulho; Kohara, Shinji; Ina, Toshiaki; Yoshimoto, Toshiki; Yoshioka, Satoru; Matsumura, Syo; Kitagawa, Hiroshi
2017-11-06
Bimetallic Pd 1-x Pt x solid-solution nanoparticles (NPs) display charging/discharging of hydrogen gas, which has relevance for fuel cell technologies; however, the constituent elements are immiscible in the bulk phase. We examined these material systems using high-energy synchrotron X-ray diffraction, X-ray absorption fine structure and hard X-ray photoelectron spectroscopy techniques. Recent studies have demonstrated the hydrogen storage properties and catalytic activities of Pd-Pt alloys; however, comprehensive details of their structural and electronic functionality at the atomic scale have yet to be reported. Three-dimensional atomic-scale structure results obtained from the pair distribution function (PDF) and reverse Monte Carlo (RMC) methods suggest the formation of a highly disordered structure with a high cavity-volume-fraction for low-Pt content NPs. The NP conduction band features, as extracted from X-ray absorption near-edge spectra at the Pd and Pt L III -edge, suggest that the Pd conduction band is filled by Pt valence electrons. This behaviour is consistent with observations of the hydrogen storage capacity of these NPs. The broadening of the valence band width and the down-shift of the d-band centre away from the Fermi level upon Pt substitution also provided evidence for enhanced stability of the hydride (ΔH) features of the Pd 1-x Pt x solid-solution NPs with a Pt content of 8-21 atomic percent.
International Nuclear Information System (INIS)
Koulkes-Pujo, A.M.; Le Marechal, J.F.; Le Motais, B.; Folcher, G.
1985-01-01
The reduction of UCl 4 and its mixtures with different olefins (stilbene, St, diphenylethylene, DPE, acenaphtylene, Ac or with diphenylacetylene (DPA) was studied by pulse radiolysis of tetrahydrofuran (THF) solutions. U(III) was formed by U(IV) reaction either with the solvated electrons created by THF radiolysis or with the transitory anions St - and DPA - . In the latter case, the reaction proceeds via a first step leading to [St-U(IV)] - or [DPA-U(IV)] - . In the case of DPE - the first species, [DPE-U(IV)] - , does not lead to U(III) but is destroyed by THF(H) + giving DPE(H). and U(IV). Ac - does not react with U(IV). A mechanistic scheme of this electron attachment is discussed as well as its implication in catalytic hydrogenation of olefins in LiAlH 4 -UCl 4 solutions. It is concluded that the catalytic effect observed is rather the result of a hydride transfer from a uranium transient compound to the alkenes. 22 references, 8 figures, 1 table
Energy Technology Data Exchange (ETDEWEB)
Santoyo O, E.L.; Lopez V, H.; Vazquez A, O.; Lizama S, B.E.; Garcia F, M. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)
1998-07-01
It is described a methodology for waste water treatment which is simulated doing a benzene-toluene-phenol mixture in aqueous solution. Three different concentrations of them ones were used which were irradiated with electron beams coming from a Pelletron Accelerator carrying out the degradation effect of these compounds in CO{sub 2} and H{sub 2}O. By mean of gas chromatography the analytical determinations were realized finding that in lower concentration of benzene and toluene performances of degradation higher than 95 % were obtained, but higher concentrations (100 ppm) the performance diminishes at 89 %, while for phenol in higher concentrations its degradation is over 60 % and in lower concentrations the degradation is under 80 %. The results are obtained with a constant irradiation time of 12 seconds and neutral pH. (Author.
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Ahmad, Bashir
2017-09-01
In this paper, we investigate two stochastic SIR epidemic models with higher order perturbation. For the nonautonomous periodic case of the model, by using Has'minskii's theory of periodic solution, we show that the system has at least one nontrivial positive T-periodic solution. For the system disturbed by both the white noise and telephone noise, we establish sufficient conditions for positive recurrence and the existence of ergodic stationary distribution of the positive solution.
Non-LTE modeling with non-thermal electrons
Le, Hai; Scott, Howard
2017-10-01
We present a computational tool to simulate self-consistently the time evolution of the non-LTE kinetics and the electron energy distribution function (EEDF). The standard collisional-radiative rate equations for the atomic states are solved together with a Boltzmann-Fokker-Planck (BFP) equation for the EEDF. Both elastic and inelastic processes as well as radiative transitions are included. The EEDF is discretized on a non-uniform grid in energy space, and the numerical solution of the BFP equation is based on a set of recently developed algorithms. Several numerical examples are presented to demonstrate the capability of the code. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Asymptotic Solution of a Model for Bilayer Organic Diodes and Solar Cells
Richardson, Giles
2012-11-15
Organic diodes and solar cells are constructed by placing together two organic semiconducting materials with dissimilar electron affinities and ionization potentials. The electrical behavior of such devices has been successfully modeled numerically using conventional drift diffusion together with recombination (which is usually assumed to be bimolecular) and thermal generation. Here a particular model is considered and the dark current-voltage curve and the spatial structure of the solution across the device is extracted analytically using asymptotic methods. We concentrate on the case of Shockley-Read-Hall recombination but note the extension to other recombination mechanisms. We find that there are three regimes of behavior, dependent on the total current. For small currents-i.e., at reverse bias or moderate forward bias-the structure of the solution is independent of the total current. For large currents-i.e., at strong forward bias-the current varies linearly with the voltage and is primarily controlled by drift of charges in the organic layers. There is then a narrow range of currents where the behavior undergoes a transition between the two regimes. The magnitude of the parameter that quantifies the interfacial recombination rate is critical in determining where the transition occurs. The extension of the theory to organic solar cells generating current under illumination is discussed as is the analogous current-voltage curves derived where the photo current is small. Finally, by comparing the analytic results to real experimental data, we show how the model parameters can be extracted from the shape of current-voltage curves measured in the dark. © 2012 Society for Industrial and Applied Mathematics.
A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics
Directory of Open Access Journals (Sweden)
Jie Yang
2013-02-01
Full Text Available Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.
A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics
Yang, Jie
2013-01-01
Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006
International Nuclear Information System (INIS)
Renard, S.
2013-01-01
This work deals with the impact of atmospheric neutrons on complex electronic components such as built-in memories or processors. The first part describes the radiation environment, the neutron-matter interaction and the consequences on electronic devices, and presents the commonly used experimental simulations and the testing methods. The potential of laser beam for testing is highlighted. The second chapter presents the development of a testing platform for various types of memories (MRAM and SDRAM). The equipment and the dedicated software are described. A testing platform for processor is also presented. The third chapter is dedicated to the presentation of a 4 Mbit bulk-type SRAM memory and of its testing involving a laser beam equipment. Several results show the presence of error clusters that may endangered the memory as a whole. These error clusters are due to the architecture of the internal addressing scheme of the memory. The simulation of these error clusters must be improved in order to define an optimized strategy of hardening
International Nuclear Information System (INIS)
Anashin, V; Protopopov, G; Balashov, S; Gaidash, S; Sergeecheva, N
2013-01-01
A dose rate data on different spacecrafts at circular orbit ∼20000km were obtained, also a comparison between the flight data and space models was made and anomalous perturbations of ionizing radiation of spacecrafts was traced. These abnormal disturbances are correlated with GOES data and with International Space Station data, and also with ground based measurements of neutron monitors. One of the elements of industrial system of monitoring is a local ground forecast station, which provides forecasts of geophysical conditions, including the forecast of the proton increase, geomagnetic forecasts, forecasts of relativistic electrons, and produces an alert signal when protons and electrons increase.
Connection between the Affine and conformal Affine Toda models and their Hirota's solution
International Nuclear Information System (INIS)
Constantinidis, C.P.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.
1992-01-01
It is shown that the Affine Toda models (AT) constitute a gauge fixed version of the Conformal Affine Toda model (CAT). This result enables one to map every solution of the AT models into an infinite number of solutions of the corresponding CAT models, each one associated to a point of the orbit of the conformal group. The Hirota's τ-function are introduced and soliton solutions for the AT and CAT models associated to SL (r+1) and SP (r) are constructed. (author)
Modeling of the atomic and electronic structures of interfaces
International Nuclear Information System (INIS)
Sutton, A.P.
1988-01-01
Recent tight binding and Car-Parrinello simulations of grain boundaries in semiconductors are reviewed. A critique is given of some models of embrittlement that are based on electronic structure considerations. The structural unit model of grain boundary structure is critically assessed using some results for mixed tilt and twist grain boundaries. A new method of characterizing interfacial structure in terms of bond angle distribution functions is described. A new formulation of thermodynamic properties of interfaces is presented which focusses on the local atomic environment. Effective, temperature dependent N-body atomic interactions are derived for studying grain boundary structure at elevated temperature
Computational electronics semiclassical and quantum device modeling and simulation
Vasileska, Dragica; Klimeck, Gerhard
2010-01-01
Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of
Local martingale and pathwise solutions for an abstract fluids model
Debussche, Arnaud; Glatt-Holtz, Nathan; Temam, Roger
2011-07-01
We establish the existence and uniqueness of both local martingale and local pathwise solutions of an abstract nonlinear stochastic evolution system. The primary application of this abstract framework is to infer the local existence of strong, pathwise solutions to the 3D primitive equations of the oceans and atmosphere forced by a nonlinear multiplicative white noise. Instead of developing our results, specifically for the 3D primitive equations we choose to develop them in a slightly abstract framework which covers many related forms of these equations (atmosphere, oceans, coupled atmosphere-ocean, on the sphere, on the β-plane approximation etc. and the incompressible Navier-Stokes equations). In applications, all the details are given for the β-plane approximation of the equations of the ocean.
Solutions of several coupled discrete models in terms of Lamé ...
Indian Academy of Sciences (India)
Vol. 78, No. 2. — journal of. February 2012 physics pp. 187–213. Solutions of several coupled discrete models in terms of Lamé polynomials of order one and two ... paper is to carry out a similar study for a number of coupled discrete field theory models. ..... For the solution (23), un,vn satisfy the boundary condition.
New methods For Modeling Transport Of Water And Solutes In Soils
DEFF Research Database (Denmark)
Møldrup, Per
Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil s...
Steel corrosion resistance in model solutions and reinforced mortar containing wastes
Koleva, D.A.; Van Breugel, K.
2012-01-01
This work reports on the corrosion resistance of steel in alkaline model solutions and in cement-based materials (mortar). The model solutions and the mortar specimens were Ordinary Portland Cement (OPC) based. Further, hereby discussed is the implementation of an eco-friendly approach of waste
Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model
Lou, Yuan; Tao, Youshan; Winkler, Michael
2017-05-01
In this paper we study the Shigesada-Kawasaki-Teramoto model for two competing species with triangular cross-diffusion. We determine explicit parameter ranges within which the model exclusively possesses constant steady state solutions.
Presheath/sheath model with secondary electron emission from two parallel walls
International Nuclear Information System (INIS)
Ahedo, E.
2002-01-01
A macroscopic model of the interaction of a plasma with two parallel, electron-emitting walls is presented. Zero Debye-length and total thermalization of the secondary electron emission (SEE) are assumed. The SEE is treated as a free beam within each thin, collisionless sheath, but as part of a single electron population within the presheath. Plasma models with three and two species result in sheath and presheath, respectively. The ion flow at the presheath/sheath transition is sonic, and the sound speed there determines the relation between the temperature of the confined electron populations in sheath and presheath. For the general case of a plasma flowing axially between two annular walls the complete dimensionless solution depends on five parameters. Potential drops in the presheath can be larger than in the sheaths, mainly when charge-saturation is reached in the sheath or for a large effective ion friction in the presheath. The losses of plasma current to the walls are determined totally by the presheath problem, whereas the sheath problem and wall material determine the energy lost by impacting particle. Energy losses change drastically from zero SEE to a SEE yield about 100% when the charge-saturated regime is reached
The Empowerment of Plasma Modeling by Fundamental Electron Scattering Data
Kushner, Mark J.
2015-09-01
Modeling of low temperature plasmas addresses at least 3 goals - investigation of fundamental processes, analysis and optimization of current technologies, and prediction of performance of as yet unbuilt systems for new applications. The former modeling may be performed on somewhat idealized systems in simple gases, while the latter will likely address geometrically and electromagnetically intricate systems with complex gas mixtures, and now gases in contact with liquids. The variety of fundamental electron and ion scattering data (FSD) required for these activities increases from the former to the latter, while the accuracy required of that data probably decreases. In each case, the fidelity, depth and impact of the modeling depends on the availability of FSD. Modeling is, in fact, empowered by the availability and robustness of FSD. In this talk, examples of the impact of and requirements for FSD in plasma modeling will be discussed from each of these three perspectives using results from multidimensional and global models. The fundamental studies will focus on modeling of inductively coupled plasmas sustained in Ar/Cl2 where the electron scattering from feed gases and their fragments ultimately determine gas temperatures. Examples of the optimization of current technologies will focus on modeling of remote plasma etching of Si and Si3N4 in Ar/NF3/N2/O2 mixtures. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids Work was supported by the US Dept. of Energy (DE-SC0001939), National Science Foundation (CHE-124752), and the Semiconductor Research Corp.
Multi-scale modelling of uranyl chloride solutions
Energy Technology Data Exchange (ETDEWEB)
Nguyen, Thanh-Nghi; Duvail, Magali, E-mail: magali.duvail@icsm.fr; Villard, Arnaud; Dufrêche, Jean-François, E-mail: jean-francois.dufreche@univ-montp2.fr [Institut de Chimie Séparative de Marcoule (ICSM), UMR 5257, CEA-CNRS-Université Montpellier 2-ENSCM, Site de Marcoule, Bâtiment 426, BP 17171, F-30207 Bagnols-sur-Cèze Cedex (France); Molina, John Jairo [Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto 606-8103 (Japan); Guilbaud, Philippe [CEA/DEN/DRCP/SMCS/LILA, Marcoule, F-30207 Bagnols-sur-Cèze Cedex (France)
2015-01-14
Classical molecular dynamics simulations with explicit polarization have been successfully used to determine the structural and thermodynamic properties of binary aqueous solutions of uranyl chloride (UO{sub 2}Cl{sub 2}). Concentrated aqueous solutions of uranyl chloride have been studied to determine the hydration properties and the ion-ion interactions. The bond distances and the coordination number of the hydrated uranyl are in good agreement with available experimental data. Two stable positions of chloride in the second hydration shell of uranyl have been identified. The UO{sub 2}{sup 2+}-Cl{sup −} association constants have also been calculated using a multi-scale approach. First, the ion-ion potential averaged over the solvent configurations at infinite dilution (McMillan-Mayer potential) was calculated to establish the dissociation/association processes of UO{sub 2}{sup 2+}-Cl{sup −} ion pairs in aqueous solution. Then, the association constant was calculated from this potential. The value we obtained for the association constant is in good agreement with the experimental result (K{sub UO{sub 2Cl{sup +}}} = 1.48 l mol{sup −1}), but the resulting activity coefficient appears to be too low at molar concentration.
Directory of Open Access Journals (Sweden)
Qianni Zhang
2018-01-01
Full Text Available The aqueous-based Zn-ammine complex solutions represent one of the most promising routes to obtain the ZnO electron transport layer (ETL at a low temperature in inverted organic solar cells (OSCs. However, to dope the ZnO film processed from the Zn-ammine complex solutions is difficult since the introduction of metal ions into the Zn-ammine complex is a nontrivial process as ammonium hydroxide tends to precipitate metal salts due to acid-base neutralization reactions. In this paper, we investigate the inverted OSCs with Al-doped-ZnO ETL made by immersion of metallic Al into the Zn-ammine precursor solution. The effects of ZnO layer with different immersion time of Al on film properties and solar cell performance have been studied. The results show that, with the Al-doped-ZnO ETL, an improvement of the device performance could be obtained compared with the device with the un-doped ZnO ETL. The improved device performance is attributed to the enhancement of charge carrier mobility leading to a decreased charge carrier recombination and improved charge collection efficiency. The fabricated thin film transistors with the same ZnO or AZO films confirm the improved electrical characteristics of the Al doped ZnO film.
Teo, Mei Ying; Kim, Nara; Kee, Seyoung; Kim, Bong Seong; Kim, Geunjin; Hong, Soonil; Jung, Suhyun; Lee, Kwanghee
2017-01-11
Stretchable conductive materials have received great attention owing to their potential for realizing next-generation stretchable electronics. However, the simultaneous achievement of excellent mechanical stretchability and high electrical conductivity as well as cost-effective fabrication has been a significant challenge. Here, we report a highly stretchable and highly conducting polymer that was obtained by incorporating an ionic liquid. When 1-ethyl-3-methylimidazolium tetracyanoborate (EMIM TCB) was added to an aqueous conducting polymer solution of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), it was found that EMIM TCB acts not only as a secondary dopant but also as a plasticizer for PEDOT:PSS, resulting in a high conductivity of >1000 S cm -1 with stable performance at tensile strains up to 50% and even up to 180% in combination with the prestrained substrate technique. Consequently, by exploiting the additional benefits of high transparency and solution-processability of PEDOT:PSS, we were able to fabricate a highly stretchable, semitransparent, and wholly solution-processed alternating current electroluminescent device with unimpaired performance at 50% strain by using PEDOT:PSS/EMIM TCB composite films as both bottom and top electrodes.
The EGS4 Code System: Solution of Gamma-ray and Electron Transport Problems
Nelson, W. R.; Namito, Yoshihito
1990-03-01
In this paper we present an overview of the EGS4 Code System -- a general purpose package for the Monte Carlo simulation of the transport of electrons and photons. During the last 10-15 years EGS has been widely used to design accelerators and detectors for high-energy physics. More recently the code has been found to be of tremendous use in medical radiation physics and dosimetry. The problem-solving capabilities of EGS4 will be demonstrated by means of a variety of practical examples. To facilitate this review, we will take advantage of a new add-on package, called SHOWGRAF, to display particle trajectories in complicated geometries. These are shown as 2-D laser pictures in the written paper and as photographic slides of a 3-D high-resolution color monitor during the oral presentation. 11 refs., 15 figs.
Ab initio electronic structure calculations of solid, solution-processed metallotetrabenzoporphyrins
Shea, Patrick B.; Kanicki, Jerzy
2012-04-01
An ab initio study of the electronic structures of solid metallotetrabenzoporphyrins (MTBPs) utilized in organic transistors and photovoltaics is presented. Band structures, densities of states, and orbitals are calculated for H2, Cu, Ni, and Zn core substitutions of the unit cell of solid TBP, as deposited via soluble precursors that are thermally annealed to produce polycrystalline, semiconducting thin-films. While the unit cells of the studied MTBPs are nearly isomorphous, substitution of the core atoms alters the structure of the bands around the energy bandgap and the composition of the densities of states. Cu and Ni core substitutions introduce nearly dispersionless energy bands near the valence and conduction band edges, respectively, that form acceptor or deep generation/recombination states.
Directory of Open Access Journals (Sweden)
MT Ghaneian
2015-05-01
Results: Based on the results, changes in pH had little effect on the Humic acid removal efficiency. The average, with increasing of pH from 4 to 10, the removal efficiency of humic acid from 72.59% to 73.36% increased, respectively. The results showed that increasing of the dose from 1 to 15 kGy, humic acid removal efficiency increases. Based on results by increasing of persulfate concentration, the removal efficiency increased so that with increasing of concentration of potassium persulfate from 0.1 to 0.5 mmol/100cc, removal efficiency from 69.43% to 83.82% was increased. Kinetic experiments showed that the decomposition of humic acid by electron beam radiation followed the second-order kinetic. Conclusion: The data from this study showed that the aqueous solution containing acid Humic is decomposed effectively by electron beams irradiation. Addition of potassium persulfate can be have significant improvements in removal efficiency of humic acid in the presence of electron beam.
Modeling hydrate formation conditions in the presence of electrolytes and polar inhibitor solutions
International Nuclear Information System (INIS)
Osfouri, Shahriar; Azin, Reza; Gholami, Reza; Izadpanah, Amir Abbas
2015-01-01
Highlights: • A new predictive model is proposed for prediction of hydrate formation pressures. • A new local composition model was used to evaluate water activity in the presence of electrolyte. • MEG, DEG and TEG were used to test ability of the proposed model in the presence of polar inhibitors. • Cage occupancies by methane for the small cage were higher than carbon dioxide for gas mixtures. • The proposed model gives better match with experimental data in mixed electrolyte solutions. - Abstract: In this paper, a new predictive model is proposed for prediction of gas hydrate formation conditions in the presence of single and mixed electrolytes and solutions containing both electrolyte and a polar inhibitor such as monoethylene glycol (MEG), diethylene glycol (DEG) and triethylene glycol (TEG). The proposed model is based on the γ–φ approach, which uses modified Patel–Teja equation of state (VPT EOS) for characterizing the vapor phase, the solid solution theory by van der Waals and Platteeuw for modeling the hydrate phase, the non-electrolyte NRTL-NRF local composition model and Pitzer–Debye–Huckel equation as short-range and long-range contributions to calculate water activity in single electrolyte solutions. Also, the Margules equation was used to determine the activity of water in solutions containing polar inhibitor (glycols). The model predictions are in acceptable agreement with experimental data. For single electrolyte solutions, the model predictions are similar to available models, while for mixtures of electrolytes and mixtures of electrolytes and inhibitors, the proposed model gives significantly better predictions. In addition, the absolute average deviation of hydrate formation pressures (AADP) for 144 experimental data in solutions containing single electrolyte is 5.86% and for 190 experimental data in mixed electrolytes solutions is 5.23%. Furthermore, the proposed model has an AADP of 14.13%, 5.82% and 5.28% in solutions
Stochastic forward and inverse groundwater flow and solute transport modeling
Janssen, G.M.C.M.
2008-01-01
Keywords: calibration, inverse modeling, stochastic modeling, nonlinear biodegradation, stochastic-convective, advective-dispersive, travel time, network design, non-Gaussian distribution, multimodal distribution, representers
This thesis offers three new approaches that contribute
Models for Surface Roughness Scattering of Electrons in a 2DEG
International Nuclear Information System (INIS)
Yarar, Z.
2004-01-01
In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for different auto-correlation tions and potential forms. Gaussian, exponentiaI and lorentsian auto-correlation tions are used to represent surface roughness. Both an infinitely deep triangular potential model and the potential that is found from the numerical solution of Poisson Shrodinger equations self consistently are used as the potential that holds 2DEG at the hetero Interface. Using the wave functions appropriate for the potentials just mentioned and the auto-correlation functions indicated above, the scattering rates due to surface roughness are calculated. The calculations were repeated when the effect of screening is also included for the case of triangular potential
Exact solution of generalized Schulz-Shastry type models
International Nuclear Information System (INIS)
Osterloh, Andreas; Amico, Luigi; Eckern, Ulrich
2000-01-01
A class of integrable one-dimensional models presented by Shastry and Schulz is consequently extended to the whole class of one-dimensional Hubbard- or XXZ-type models with correlated gauge-like hopping. A complete characterization concerning solvability by coordinate Bethe ansatz of this class of models is found
Toward a Mesoscale Model for the Dynamics of Polymer Solutions
Energy Technology Data Exchange (ETDEWEB)
Miller, G H; Trebotich, D
2006-10-02
To model entire microfluidic systems containing solvated polymers we argue that it is necessary to have a numerical stability constraint governed only by the advective CFL condition. Advancements in the treatment of Kramers bead-rod polymer models are presented to enable tightly-coupled fluid-particle algorithms in the context of system-level modeling.
Does a peer model's task proficiency influence children's solution choice and innovation?
Wood, Lara A; Kendal, Rachel L; Flynn, Emma G
2015-11-01
The current study investigated whether 4- to 6-year-old children's task solution choice was influenced by the past proficiency of familiar peer models and the children's personal prior task experience. Peer past proficiency was established through behavioral assessments of interactions with novel tasks alongside peer and teacher predictions of each child's proficiency. Based on these assessments, one peer model with high past proficiency and one age-, sex-, dominance-, and popularity-matched peer model with lower past proficiency were trained to remove a capsule using alternative solutions from a three-solution artificial fruit task. Video demonstrations of the models were shown to children after they had either a personal successful interaction or no interaction with the task. In general, there was not a strong bias toward the high past-proficiency model, perhaps due to a motivation to acquire multiple methods and the salience of other transmission biases. However, there was some evidence of a model-based past-proficiency bias; when the high past-proficiency peer matched the participants' original solution, there was increased use of that solution, whereas if the high past-proficiency peer demonstrated an alternative solution, there was increased use of the alternative social solution and novel solutions. Thus, model proficiency influenced innovation. Copyright © 2015 Elsevier Inc. All rights reserved.
Fujita, Yasutaka; Doi, Kazuhisa; Harada, Daisuke; Kamikawa, Shuji
2010-04-01
Intraoperative bleeding often obscures the surgical field and may cause neurological damage. The irrigation fluids used during surgery might affect physiological hemostasis because they modulate the extracellular fluid composition of the bleeding area directly. The authors therefore investigated the influence of irrigation fluid on hemostasis in a mouse brain surface bleeding model. The cerebral cortices of ddY strain mice were exposed under irrigation with normal saline, lactated Ringer (LR) solution, or artificial CSF (ACF-95). To investigate the influence of electrolytes, calcium, potassium, or both were also added to the saline. After 10 minutes of irrigation at 100 ml/hour, sequential photographs of the surgical area were taken with a microscope, and the number of bleeding points was counted visually. Irrigation and counting were performed in a masked manner. There were significantly more bleeding points after irrigation with normal saline than with ACF-95; LR solution had a similar effect on physiological hemostasis as ACF-95. Saline augmented with calcium or potassium and calcium was superior to normal saline in terms of hemostasis. The authors demonstrated that the irrigation fluid used in neurosurgery affects bleeding at the surgical site. To avoid surgical site bleeding, ACF-95 and LR solution should be used as irrigation fluids instead of normal saline. The calcium and potassium content of irrigation solutions seems to be important in hemostasis.
New analytical solution for pyle-popovich's peritoneal dialysis model
Energy Technology Data Exchange (ETDEWEB)
Hamada, Hiroyuki; Sakiyama, Ryoichi; Okamoto, Masahiro; Tojo, Kakuji [Kyushi Institute of Technology, Fukuoka (Japan); Yamashita, Akihiro [Shonan Institute of Technology, Kanagwa (Japan)
1999-08-01
Continuous Ambulatory Peritoneal Dialysis (CAPD) is one of the standard treatments for kidney disease patients. A washing solution, called dialysate, is put into the peritoneal cavity to remove waste products and excess amounts of water in CAPD. The dialysate is exchanged four to five times a day by the patient. However, it is not easy to prescribe CAPD therapy, which may have precluded popularization of CAPD therapy. Popovich et al. constructed a mathematical model (P-P model) that applies to the prescription of the treatment schedule. It requires, however, a number of iterative calculations to obtain a exact numerical solution because the model is a set of nonlinear simultaneous ordinary differential equations. In this paper, the authors derived a new approximated analytical solution by employing a time-discrete technique, assuming all the parameters to be constant within each piecewise period of time for the P-P model. We have also described an algorithm of a numerical calculation with the new solution for clinical use with another analytical solution (Vonesh's solution). The new analytical solution consists of a forward solution (FW solution). The new analytical solution consists of a forward solution (FW solution), that is the solution for the plasma and dialysate concentrations from t{sub i} to t{sub i+1}(t{sub i}
The elastic solid solution model for minerals at high pressures and temperatures
Myhill, R.
2018-02-01
Non-ideality in mineral solid solutions affects their elastic and thermodynamic properties, their thermobaric stability, and the equilibrium phase relations in multiphase assemblages. At a given composition and state of order, non-ideality in minerals is typically modelled via excesses in Gibbs free energy which are either constant or linear with respect to pressure and temperature. This approach has been extremely successful when modelling near-ideal solutions. However, when the lattice parameters of the solution endmembers differ significantly, extrapolations of thermodynamic properties to high pressures using these models may result in significant errors. In this paper, I investigate the effect of parameterising solution models in terms of the Helmholtz free energy, treating volume (or lattice parameters) rather than pressure as an independent variable. This approach has been previously applied to models of order-disorder, but the implications for the thermodynamics and elasticity of solid solutions have not been fully explored. Solid solution models based on the Helmholtz free energy are intuitive at a microscopic level, as they automatically include the energetic contribution from elastic deformation of the endmember lattices. A chemical contribution must also be included in such models, which arises from atomic exchange within the solution. Derivations are provided for the thermodynamic properties of n-endmember solutions. Examples of the use of the elastic model are presented for the alkali halides, pyroxene, garnet, and bridgmanite solid solutions. Elastic theory provides insights into the microscopic origins of non-ideality in a range of solutions, and can make accurate predictions of excess enthalpies, entropies, and volumes as a function of volume and temperature. In solutions where experimental data are sparse or contradictory, the Helmholtz free energy approach can be used to assess the magnitude of excess properties and their variation as a function
Ziegler, Erik; Chellappa, Sarah L; Gaggioni, Giulia; Ly, Julien Q M; Vandewalle, Gilles; André, Elodie; Geuzaine, Christophe; Phillips, Christophe
2014-12-01
We present a finite element modeling (FEM) implementation for solving the forward problem in electroencephalography (EEG). The solution is based on Helmholtz's principle of reciprocity which allows for dramatically reduced computational time when constructing the leadfield matrix. The approach was validated using a 4-shell spherical model and shown to perform comparably with two current state-of-the-art alternatives (OpenMEEG for boundary element modeling and SimBio for finite element modeling). We applied the method to real human brain MRI data and created a model with five tissue types: white matter, gray matter, cerebrospinal fluid, skull, and scalp. By calculating conductivity tensors from diffusion-weighted MR images, we also demonstrate one of the main benefits of FEM: the ability to include anisotropic conductivities within the head model. Root-mean square deviation between the standard leadfield and the leadfield including white-matter anisotropy showed that ignoring the directional conductivity of white matter fiber tracts leads to orientation-specific errors in the forward model. Realistic head models are necessary for precise source localization in individuals. Our approach is fast, accurate, open-source and freely available online. Copyright © 2014 Elsevier Inc. All rights reserved.
Modeling Radiation Belt Electron Dynamics with the DREAM3D Diffusion Model
Energy Technology Data Exchange (ETDEWEB)
Tu, Weichao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cunningham, Gregory S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chen, Yue [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henderson, Michael G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Morley, Steven K. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reeves, Geoffrey D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Blake, Bernard J. [The Aerospace Corporation, El Segundo, CA (United States); Baker, Daniel N. [Lab. for Atmospheric and Space Physics, Boulder, CO (United States); Spence, Harlan [Univ. of New Hampshire, Durham, NH (United States)
2014-02-14
The simulation results from our 3D diffusion model on the CRRES era suggest; our model captures the general variations of radiation belt electrons, including the dropouts and the enhancements; the overestimations inside the plasmapause can be improved by increasing the PA diffusion from hiss waves; and that better D_{LL} and wave models are required.
Electronic Commerce Success Model: A Search for Multiple Criteria
Directory of Open Access Journals (Sweden)
Didi Achjari
2004-01-01
Full Text Available The current study attempts to develop and examine framework of e-commerce success. In order to obtain comprehensive and robust measures, the framework accomodates key factors that are identified in the literature concerning the success of electronic commerce. The structural model comprises of four exogenous variables (Internal Driver, Internal Impediment, External Driver and Exgternal Impediment and one endogenous variable (Electornic Commerce Success eith 24 observed variables. The study that was administered within large Australian companies using questionaire survey concluded that benefits for both internal organization and external parties from the use of e-commerce were the main factor tro predict perceived and/or expected success of electronic commerce.
Ackleh, Azmy S; Chellamuthu, Vinodh K; Ito, Kazufumi
2015-04-01
We study a quasilinear hierarchically size-structured population model presented in [4]. In this model the growth, mortality and reproduction rates are assumed to depend on a function of the population density. In [4] we showed that solutions to this model can become singular (measure-valued) in finite time even if all the individual parameters are smooth. Therefore, in this paper we develop a first order finite difference scheme to compute these measure-valued solutions. Convergence analysis for this method is provided. We also develop a high resolution second order scheme to compute the measure-valued solution of the model and perform a comparative study between the two schemes.
Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model
International Nuclear Information System (INIS)
Chen, Aiyong; Zhu, Wenjing; Qiao, Zhijun; Huang, Wentao
2014-01-01
In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained
Mehl, S.; Hill, M.C.
2001-01-01
Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.
Directory of Open Access Journals (Sweden)
Yang Shi
2016-01-01
Full Text Available Considering the security of both the customers’ hosts and the eShops’ servers, we introduce the idea of a key-insulated undetachable digital signature, enabling mobile agents to generate undetachable digital signatures on remote hosts with the key-insulated property of the original signer’s signing key. From the theoretical perspective, we provide the formal definition and security notion of a key-insulated undetachable digital signature. From the practical perspective, we propose a concrete scheme to secure mobile agents in electronic commerce. The scheme is mainly focused on protecting the signing key from leakage and preventing the misuse of the signature algorithm on malicious servers. Agents do not carry the signing key when they generate digital signatures on behalf of the original signer, so the key is protected on remote servers. Furthermore, if a hacker gains the signing key of the original signer, the hacker is still unable to forge a signature for any time period other than the key being accessed. In addition, the encrypted function is combined with the original signer’s requirement to prevent the misuse of signing algorithm. The scheme is constructed on gap Diffie–Hellman groups with provable security, and the performance testing indicates that the scheme is efficient.
International Nuclear Information System (INIS)
Rodriguez, Barbara D. do Amaral; Vilhena, Marco Tullio
2009-01-01
Questions regarding accuracy and efficiency of deterministic transport methods are still on our mind today, even with modern supercomputers. The most versatile and widely used deterministic methods are the P N approximation, the S N method (discrete ordinates method) and their variants. In the discrete ordinates (S N ) formulations of the transport equation, it is assumed that the linearized Boltzmann equation only holds for a set of distinct numerical values of the direction-of-motion variables. In this work, looking forward to confirm the capabilities of deterministic methods in obtaining accurate results, we present a general overview of deterministic methods to solve the Boltzmann transport equation for neutral and charged particles. First, we describe a review in the Laplace transform technique applied to S N two dimensional transport equation in a rectangular domain considering Compton scattering. Next, we solved the Fokker-Planck (FP) equation, an alternative approach for the Boltzmann transport equation, assuming a monoenergetic electron beam in a rectangular domain. The main idea relies on applying the P N approximation, a recent advance in the class of deterministic methods, in the angular variable, to the two dimensional Fokker-Planck equation and then applying the Laplace Transform in the spatial x-variable. Numerical results are given to illustrate the accuracy of deterministic methods presented. (author)
International Nuclear Information System (INIS)
Luthi, Berengere
2017-01-01
In order to improve our understanding of alloy plasticity, it is important to describe at the atomic scale the dislocation-solute interactions and their effect on the dislocation mobility. This work focuses on the body-centered cubic (BCC) transition metals in presence of interstitial solute atoms, in particular the Fe-C system. Using Density Functional Theory (DFT) calculations, the core structure of the screw dislocation of Burgers vector b=1/2<111> was investigated in iron in presence of boron, carbon, nitrogen and oxygen solute atoms, and in BCC metals from group 5 (V, Nb, Ta) and 6 (Mo, W) in presence of carbon solutes. A core reconstruction is evidenced in iron and group 6 metals, along with a strong attractive dislocation-solute interaction energy: the dislocation goes from easy to hard configuration where the solute atoms are at the center of trigonal prisms along the dislocation line. A different behavior is observed in group 5 metals, for which the most stable configuration for the carbon atom is an octahedral site in the vicinity of the dislocation, without any core reconstruction. This group tendency is linked to the structure of mono-carbides. Consequences of the strongly attractive dislocation-solute interactions in Fe(C) were then investigated. First the equilibrium segregation close to the dislocation core was studied using a mean-field model and Monte Carlo simulations. Over a wide temperature range, from 200 to 700 K, a strong segregation is predicted with every other prismatic site occupied by a carbon atom. Then, the mobility of the dislocation in presence of carbon atoms was investigated by modeling the double-kink mechanism with DFT, in relation with experimental data obtained with transmission electron microscopy. The activation energy obtained for this atomic scale mechanism is in good agreement with experimental values for the dynamic strain aging. (author) [fr
Analysis and synthesis of solutions for the agglomeration process modeling
Babuk, V. A.; Dolotkazin, I. N.; Nizyaev, A. A.
2013-03-01
The present work is devoted development of model of agglomerating process for propellants based on ammonium perchlorate (AP), ammonium dinitramide (ADN), HMX, inactive binder, and nanoaluminum. Generalization of experimental data, development of physical picture of agglomeration for listed propellants, development and analysis of mathematical models are carried out. Synthesis of models of various phenomena taking place at agglomeration implementation allows predicting of size and quantity, chemical composition, structure of forming agglomerates and its fraction in set of condensed combustion products. It became possible in many respects due to development of new model of agglomerating particle evolution on the surface of burning propellant. Obtained results correspond to available experimental data. It is supposed that analogical method based on analysis of mathematical models of particular phenomena and their synthesis will allow implementing of the agglomerating process modeling for other types of metalized solid propellants.
Tu, Weichao; Cunningham, G. S.; Chen, Y.; Henderson, M. G.; Camporeale, E.; Reeves, G. D.
2013-10-01
a response to the Geospace Environment Modeling (GEM) "Global Radiation Belt Modeling Challenge," a 3D diffusion model is used to simulate the radiation belt electron dynamics during two intervals of the Combined Release and Radiation Effects Satellite (CRRES) mission, 15 August to 15 October 1990 and 1 February to 31 July 1991. The 3D diffusion model, developed as part of the Dynamic Radiation Environment Assimilation Model (DREAM) project, includes radial, pitch angle, and momentum diffusion and mixed pitch angle-momentum diffusion, which are driven by dynamic wave databases from the statistical CRRES wave data, including plasmaspheric hiss, lower-band, and upper-band chorus. By comparing the DREAM3D model outputs to the CRRES electron phase space density (PSD) data, we find that, with a data-driven boundary condition at Lmax = 5.5, the electron enhancements can generally be explained by radial diffusion, though additional local heating from chorus waves is required. Because the PSD reductions are included in the boundary condition at Lmax = 5.5, our model captures the fast electron dropouts over a large L range, producing better model performance compared to previous published results. Plasmaspheric hiss produces electron losses inside the plasmasphere, but the model still sometimes overestimates the PSD there. Test simulations using reduced radial diffusion coefficients or increased pitch angle diffusion coefficients inside the plasmasphere suggest that better wave models and more realistic radial diffusion coefficients, both inside and outside the plasmasphere, are needed to improve the model performance. Statistically, the results show that, with the data-driven outer boundary condition, including radial diffusion and plasmaspheric hiss is sufficient to model the electrons during geomagnetically quiet times, but to best capture the radiation belt variations during active times, pitch angle and momentum diffusion from chorus waves are required.
Electron reactions in model liquids and biological systems
International Nuclear Information System (INIS)
Bakale, G.; Gregg, E.C.
1982-01-01
Progress is reported in the following studies: (1) Field-dependent electron attachment; (2) Dependence of electron attachment rate on electron-acceptor dipole moment; (3) Electron attachment in i-octane/TMS mixtures; (4) Electron attachment/detachment equilibria; (5) Electron attachment to reversed micelles; (6) Electron attachment to chemical carcinogens; (7) Radiation-induced bacterial mutagenesis; and (8) Bacterial mutagenicity of nitrobenzene derivatives. 14 references
Modelling of electron transport and of sawtooth activity in tokamaks
Energy Technology Data Exchange (ETDEWEB)
Angioni, C
2001-10-01
Transport phenomena in tokamak plasmas strongly limit the particle and energy confinement and represent a crucial obstacle to controlled thermonuclear fusion. Within the vast framework of transport studies, three topics have been tackled in the present thesis: first, the computation of neoclassical transport coefficients for general axisymmetric equilibria and arbitrary collisionality regime; second, the analysis of the electron temperature behaviour and transport modelling of plasma discharges in the Tokamak a configuration Variable (TCV); third, the modelling and simulation of the sawtooth activity with different plasma heating conditions. The work dedicated to neoclassical theory has been undertaken in order to first analytically identify a set of equations suited for implementation in existing Fokker-Planck codes. Modifications of these codes enabled us to compute the neoclassical transport coefficients considering different realistic magnetic equilibrium configurations and covering a large range of variation of three key parameters: aspect ratio, collisionality, and effective charge number. A comparison of the numerical results with an analytical limit has permitted the identification of two expressions for the trapped particle fraction, capable of encapsulating the geometrical effects and thus enabling each transport coefficient to be fitted with a single analytical function. This has allowed us to provide simple analytical formulae for all the neoclassical transport coefficients valid for arbitrary aspect ratio and collisionality in general realistic geometry. This work is particularly useful for a correct evaluation of the neoclassical contribution in tokamak scenarios with large bootstrap cur- rent fraction, or improved confinement regimes with low anomalous transport and for the determination of the plasma current density profile, since the plasma conductivity is usually assumed neoclassical. These results have been included in the plasma transport code
Unique Challenges for Modeling Defect Dynamics in Concentrated Solid-Solution Alloys
Zhao, Shijun; Weber, William J.; Zhang, Yanwen
2017-11-01
Recently developed concentrated solid solution alloys (CSAs) are shown to have improved performance under irradiation that depends strongly on the number of alloying elements, alloying species, and their concentrations. In contrast to conventional dilute alloys, CSAs are composed of multiple principal elements situated randomly in a simple crystalline lattice. As a result, the intrinsic disorder has a profound influence on energy dissipation pathways and defect evolution when these CSAs are subjected to energetic particle irradiation. Extraordinary irradiation resistance, including suppression of void formation by two orders of magnitude at an elevated temperature, has been achieved with increasing compositional complexity in CSAs. Unfortunately, the loss of translational invariance associated with the intrinsic chemical disorder poses great challenges to theoretical modeling at the electronic and atomic levels. Based on recent computer simulation results for a set of novel Ni-containing, face-centered cubic CSAs, we review theoretical modeling progress in handling disorder in CSAs and underscore the impact of disorder on defect dynamics. We emphasize in particular the unique challenges associated with the description of defect dynamics in CSAs.
International Nuclear Information System (INIS)
Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas
2004-01-01
Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (ΔG 0 ) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-ΔG 0 ) of ∼0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (V el ) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor-acceptor separation in the micellar ET reactions is substantially larger than for the donor-acceptor contact distance. Comparison of the V el values in the micellar solution and in the donor
Kumbhakar, Manoj; Nath, Sukhendu; Mukherjee, Tulsi; Pal, Haridas
2004-02-01
Photoinduced electron transfer (ET) between coumarin dyes and aromatic amines has been investigated in Triton-X-100 micellar solutions and the results have been compared with those observed earlier in homogeneous medium. Significant static quenching of the coumarin fluorescence due to the presence of high concentration of amines around the coumarin fluorophore in the micelles has been observed in steady-state fluorescence studies. Time-resolved studies with nanosecond resolutions mostly show the dynamic part of the quenching for the excited coumarin dyes by the amine quenchers. A correlation of the quenching rate constants, estimated from the time-resolved measurements, with the free energy changes (ΔG0) of the ET reactions shows the typical bell shaped curve as predicted by Marcus outer-sphere ET theory. The inversion in the ET rates for the present systems occurs at an exergonicity (-ΔG0) of ~0.7-0.8 eV, which is unusually low considering the polarity of the Palisade layer of the micelles where the reactants reside. Present results have been rationalized on the basis of the two dimensional ET model assuming that the solvent relaxation in micellar media is much slower than the rate of the ET process. Detailed analysis of the experimental data shows that the diffusional model of the bimolecular quenching kinetics is not applicable for the ET reactions in the micellar solutions. In the present systems, the reactions can be better visualized as equivalent to intramolecular electron transfer processes, with statistical distribution of the donors and acceptors in the micelles. A low electron coupling (Vel) parameter is estimated from the correlation of the experimentally observed and the theoretically calculated ET rates, which indicates that the average donor-acceptor separation in the micellar ET reactions is substantially larger than for the donor-acceptor contact distance. Comparison of the Vel values in the micellar solution and in the donor-acceptor close
Kupchishin, A. I.; Niyazov, M. N.; Taipova, B. G.; Voronova, N. A.; Khodarina, N. N.
2018-01-01
Complex experimental studies on the effect of electron irradiation on the deposition rate of active sludge in aqueous systems by the optical method have been carried out. The obtained dependences of density (ρ) on time (t) are of the same nature for different radiation sources. The experimental curves of the dependence of the active sludge density on time are satisfactorily described by an exponential model.
Interoperability for electronic ID
Zygadlo, Zuzanna
2009-01-01
Electronic Business, including eBanking, eCommerce and eGovernmental services, is today based on a large variety of security solutions, comprising electronic IDs provided by a broad community of Public Key Infrastructure (PKI) vendors. Significant differences in implementations of those solutions introduce a problem of lack of interoperability in electronic business, which have not yet been resolved by standardization and interoperability initiatives based on existing PKI trust models. It i...
Approximate Solutions of Interactive Dynamic Influence Diagrams Using Model Clustering
DEFF Research Database (Denmark)
Zeng, Yifeng; Doshi, Prashant; Qiongyu, Cheng
2007-01-01
of the other agents, which increase exponentially with the number of time steps. We present a method of solving I-DIDs approximately by limiting the number of other agents' candidate models at each time step to a constant. We do this by clustering the models and selecting a representative set from the clusters...
Theoretical bases of modeling decision-marketing solutions
Grigoruk Pavel Mikhaylovych
2012-01-01
The paper deals with issues related with theoretical aspects of modelling of marketing decision making process. According to system approach marketing decision making process is seen as a set of related subprocesses. Provided an opportunity to use the economic and mathematical modelling at each stage of the decision making process.
The PRIME model: a management solution in academic medicine
African Journals Online (AJOL)
pandemic and tuberculosis. Emphasis has shifted from hospital-based care to primary health care adding another dimension to the management strategy of academic institutions. A management model, the PRIME model, was developed that is simple, flex- ible, allows for individuality, integration and efficiency and should ...
International Nuclear Information System (INIS)
Feibelman, P.J.
1984-01-01
An accurate and efficient method is described for the evaluation of electrostatic contributions in LCAO electronic structure calculations. The charge density rho(r) is decomposed into rho/sup( 1 )(r), a component whose rapid variation near any nucleus reproduces that of rho(r) to a very good approximation, and a remainder density deltarho(r)equivalentrho(r)-rho/sup( 1 )(r), which is thereby guaranteed to be slowly varying in space. The power of the decomposition resides in the fact that rho/sup( 1 )(r) can be expressed exactly as a sum of one-center densities, without the use of any fit procedure. Because rho/sup( 1 )(r) is a sum of one-center multipolar densities, the Hartree potential is a function with a simple one-dimensional integral representation, and its matrix elements can be obtained by performing one-dimensional integrals over it. Since deltarho(r) is spatially slowly varying, the Hartree potential to which it corresponds and the matrix elements of this potential can accurately be evaluated on a relatively coarse coordinate space mesh, using fast Fourier transforms. The method is illustrated via molecular structure calculations for N 2 and NH 3 . The calculations are accurate to a few percent when the required integrals over deltarho(r) and deltaV(r) are performed on a mesh of spacing 0.4 a.u. The N--N bond length and stretch frequency are found to equal 2.10 a.u. and 2.3 x 10 3 cm -1 , respectively. The equilibrium N--H bond length and H--N--H angle are calculated to be 1.93 a.u. and 105 0 , respectively, while the NH 3 inversion barrier turns out to equal 0.25 eV. These results are in good agreement with earlier calculations
Modelling the exposure induced by a criticality excursion in solution
International Nuclear Information System (INIS)
Kerouanton, David; Delgovea, Laure; Castaniera, Eric; Raimondia, Nicolas
2008-01-01
During a criticality accident, significant exposure is generated by 4 radiation origins: radiation directly induced by fissions (prompt neutrons and gamma), gamma radiations induced by (n, γ) reactions in crossed materials (capture gamma) and gamma radiations emitted by fission products. Due to boiling of the solution, a fraction of fissions products is airborne and is deposited in the ventilation shafts. 5.10 18 fissions are considered in a dissolution tank containing uranyl nitrate by using the deterministic ATTILA radiation transport code. Instantaneous radiations rates are evaluated as a function of the distance and compared with data available in the literature. Dose rates induced behind various shielding materials such as concrete, steel or glass are assessed. In all cases, relative contributions of prompt or capture radiations is detailed. (author)
Modeling of Solute transport in a fractured rock zone at KURT
International Nuclear Information System (INIS)
Park, Chung Kyun; Lee, Jae Kwang; Baik, Min Hoon; Jeong, Jong Tae
2010-01-01
A solute transport model has developed to simulate migration of tracers which has tested in KURT. KAERI built an underground research laboratory so called KURT, which stands for Korea Underground Research Tunnel. Dipole tests has performed with some nonradioactive conservative tracers in a fractured zone which having a single fracture at KURT. The objectives of this study are not only developing a migration model of solutes for in-situ open environments but also validating the model by comparing and estimating experimental results
Electron/muon specific two Higgs doublet model
Energy Technology Data Exchange (ETDEWEB)
Kajiyama, Yuji, E-mail: kajiyama-yuuji@akita-pref.ed.jp [Akita Highschool, Tegata-Nakadai 1, Akita, 010-0851 (Japan); Okada, Hiroshi, E-mail: hokada@kias.re.kr [School of Physics, KIAS, Seoul 130-722 (Korea, Republic of); Yagyu, Kei, E-mail: keiyagyu@ncu.edu.tw [Department of Physics, National Central University, Chungli, 32001, Taiwan, ROC (China)
2014-10-15
We discuss two Higgs doublet models with a softly-broken discrete S{sub 3} symmetry, where the mass matrix for charged-leptons is predicted as the diagonal form in the weak eigenbasis of lepton fields. Similarly to an introduction of Z{sub 2} symmetry, the tree level flavor changing neutral current can be forbidden by imposing the S{sub 3} symmetry to the model. Under the S{sub 3} symmetry, there are four types of Yukawa interactions depending on the S{sub 3} charge assignment to right-handed fermions. We find that extra Higgs bosons can be muon and electron specific in one of four types of the Yukawa interaction. This property does not appear in any other two Higgs doublet models with a softly-broken Z{sub 2} symmetry. We discuss the phenomenology of the muon and electron specific Higgs bosons at the Large Hadron Collider; namely we evaluate allowed parameter regions from the current Higgs boson search data and discovery potential of such a Higgs boson at the 14 TeV run.
A-π-D-π-A Electron-Donating Small Molecules for Solution-Processed Organic Solar Cells: A Review.
Wang, Zhen; Zhu, Lingyun; Shuai, Zhigang; Wei, Zhixiang
2017-11-01
Organic solar cells based on semiconducting polymers and small molecules have attracted considerable attention in the last two decades. Moreover, the power conversion efficiencies for solution-processed solar cells containing A-π-D-π-A-type small molecules and fullerenes have reached 11%. However, the method for designing high-performance, photovoltaic small molecules still remains unclear. In this review, recent studies on A-π-D-π-A electron-donating small molecules for organic solar cells are introduced. Moreover, the relationships between molecular properties and device performances are summarized, from which inspiration for the future design of high performance organic solar cells may be obtained. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of Three-Layer Simulation Model for Freezing Process of Food Solution Systems
Kaminishi, Koji; Araki, Tetsuya; Shirakashi, Ryo; Ueno, Shigeaki; Sagara, Yasuyuki
A numerical model has been developed for simulating freezing phenomena of food solution systems. The cell model was simplified to apply to food solution systems, incorporating with the existence of 3 parts such as unfrozen, frozen and moving boundary layers. Moreover, the moving rate of freezing front model was also introduced and calculated by using the variable space network method proposed by Murray and Landis (1957). To demonstrate the validity of the model, it was applied to the freezing processes of coffee solutions. Since the model required the phase diagram of the material to be frozen, the initial freezing temperatures of 1-55 % coffee solutions were measured by the DSC method. The effective thermal conductivity for coffee solutions was determined as a function of temperature and solute concentration by using the Maxwell - Eucken model. One-dimensional freezing process of 10 % coffee solution was simulated based on its phase diagram and thermo-physical properties. The results were good agreement with the experimental data and then showed that the model could accurately describe the change in the location of the freezing front and the distributions of temperature as well as ice fraction during a freezing process.
Improved numerical solutions for chaotic-cancer-model
Directory of Open Access Journals (Sweden)
Muhammad Yasir
2017-01-01
Full Text Available In biological sciences, dynamical system of cancer model is well known due to its sensitivity and chaoticity. Present work provides detailed computational study of cancer model by counterbalancing its sensitive dependency on initial conditions and parameter values. Cancer chaotic model is discretized into a system of nonlinear equations that are solved using the well-known Successive-Over-Relaxation (SOR method with a proven convergence. This technique enables to solve large systems and provides more accurate approximation which is illustrated through tables, time history maps and phase portraits with detailed analysis.
A Local Composition Model for Paraffinic Solid Solutions
DEFF Research Database (Denmark)
Coutinho, A.P. João; Knudsen, Kim; Andersen, Simon Ivar
1996-01-01
The description of the solid-phase non-ideality remains the main obstacle in modelling the solid-liquid equilibrium of hydrocarbons. A theoretical model, based on the local composition concept, is developed for the orthorhombic phase of n-alkanes and tested against experimental data for binary sy...... systems. It is shown that it can adequately predict the experimental phase behaviour of paraffinic mixtures. This work extends the applicability of local composition models to the solid phase. Copyright (C) 1996 Elsevier Science Ltd....
The electronic disability record: purpose, parameters, and model use case.
Tulu, Bengisu; Horan, Thomas A
2009-01-01
The active engagement of consumers is an important factor in achieving widespread success of health information systems. The disability community represents a major segment of the healthcare arena, with more than 50 million Americans experiencing some form of disability. In keeping with the "consumer-driven" approach to e-health systems, this paper considers the distinctive aspects of electronic and personal health record use by this segment of society. Drawing upon the information shared during two national policy forums on this topic, the authors present the concept of Electronic Disability Records (EDR). The authors outline the purpose and parameters of such records, with specific attention to its ability to organize health and financial data in a manner that can be used to expedite the disability determination process. In doing so, the authors discuss its interaction with Electronic Health Records (EHR) and Personal Health Records (PHR). The authors then draw upon these general parameters to outline a model use case for disability determination and discuss related implications for disability health management. The paper further reports on the subsequent considerations of these and related deliberations by the American Health Information Community (AHIC).
Linear regression crash prediction models : issues and proposed solutions.
2010-05-01
The paper develops a linear regression model approach that can be applied to : crash data to predict vehicle crashes. The proposed approach involves novice data aggregation : to satisfy linear regression assumptions; namely error structure normality ...
Probabilistic Compositional Models: solution of an equivalence problem
Czech Academy of Sciences Publication Activity Database
Kratochvíl, Václav
2013-01-01
Roč. 54, č. 5 (2013), s. 590-601 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : Probabilistic model * Compositional model * Independence * Equivalence Subject RIV: BA - General Mathematics Impact factor: 1.977, year: 2013 http://library.utia.cas.cz/separaty/2013/MTR/kratochvil-0391079.pdf
Beljonne, David
2011-02-08
We report on the recent progress achieved in modeling the electronic processes that take place at interfaces between π-conjugated materials in organic opto-electronic devices. First, we provide a critical overview of the current computational techniques used to assess the morphology of organic: organic heterojunctions; we highlight the compromises that are necessary to handle large systems and multiple time scales while preserving the atomistic details required for subsequent computations of the electronic and optical properties. We then review some recent theoretical advances in describing the ground-state electronic structure at heterojunctions between donor and acceptor materials and highlight the role played by charge-transfer and long-range polarization effects. Finally, we discuss the modeling of the excited-state electronic structure at organic:organic interfaces, which is a key aspect in the understanding of the dynamics of photoinduced electron-transfer processes. © 2010 American Chemical Society.
Empirical agent-based modelling challenges and solutions
Barreteau, Olivier
2014-01-01
This instructional book showcases techniques to parameterise human agents in empirical agent-based models (ABM). In doing so, it provides a timely overview of key ABM methodologies and the most innovative approaches through a variety of empirical applications. It features cutting-edge research from leading academics and practitioners, and will provide a guide for characterising and parameterising human agents in empirical ABM. In order to facilitate learning, this text shares the valuable experiences of other modellers in particular modelling situations. Very little has been published in the area of empirical ABM, and this contributed volume will appeal to graduate-level students and researchers studying simulation modeling in economics, sociology, ecology, and trans-disciplinary studies, such as topics related to sustainability. In a similar vein to the instruction found in a cookbook, this text provides the empirical modeller with a set of 'recipes' ready to be implemented. Agent-based modeling (AB...
Analytic solution for a static black hole in the RSII model
Energy Technology Data Exchange (ETDEWEB)
Dai Dechang [Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500 (United States); Stojkovic, Dejan, E-mail: ds77@buffalo.edu [Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500 (United States)
2011-10-19
We present here a static solution for a large black hole (whose horizon radius is larger than the AdS radius) located on the brane in RSII model. According to some arguments based on the AdS/CFT conjecture, a solution for the black hole located on the brane in RSII model must encode quantum gravitational effects and therefore cannot be static. We demonstrated that a static solution can be found if the bulk is not empty. The stress energy tensor of the matter distribution in the bulk for the solution we found is physical (i.e. it is non-singular with the energy density and pressure not violating any energy conditions). The scale of the solution is given by a parameter 'a'. For large values of the parameter 'a' we have a limit of an almost empty AdS bulk. It is interesting that the solution cannot be transformed into the Schwarzschild-like form and does not reduce to the Schwarzschild solution on the brane. We also present two other related static solutions. At the end, we discuss why the numerical methods failed so far in finding static solutions in this context, including the solutions we found analytically here.
Experimental study and new three-dimensional kinetic modeling of foamy solution-gas drive processes.
Sun, Xiaofei; Zhang, Yanyu; Wang, Shilin; Song, Zhaoyao; Li, Peng; Wang, Changfa
2018-03-12
Foamy solution-gas drive processes in heavy oil reservoirs are very complex. The influence of some microscopic factors on this process is not fully understood due to limitations of traditional depletion tests. This study aims to investigate foamy solution-gas drive by experiments and simulations. First, the effects of the pressure depletion rate on critical gas saturation and foamy solution-gas drive processes were investigated by laboratory experiments. Second, a new three-dimensional foamy oil model that captures many important characteristics of foamy solution-gas drive, such as non-equilibrium behavior, gas evolution kinetics, and the effect of viscous forces on gas mobility, was developed. Last, the effects of some important parameters on foamy solution-gas drive were systematically investigated,and a model application was conducted in a typical foamy oil reservoir. The results indicate that the new model is capble of simulating many of the unusual behaviors observed in foamy solution-gas drive on a laboratory and field scales. High oil recoveries were obtained with a high oil viscosity, high depletion rate, long sandpack, and low solution gas-oil ratio. Foamy solution-gas drive processes are sensitive to the depletion rate, length, and critical gas saturation. The oil viscosity, solution GOR and diffusion coefficient are not sensitive factors.
A residue level protein-protein interaction model in electrolyte solutions
Song, Xueyu
2014-03-01
The osmotic second virial coefficients B2 are directly related to the solubility of protein molecules in electrolyte solutions and can be useful to narrow down the search parameter space of protein crystallization conditions. Using a residue level model of protein-protein interaction in electrolyte solutions B2 of bovine pancreatic trypsin inhibitor and lysozyme in various solution conditions such as salt concentration, pH and temperature are calculated using an extended Fast Multipole Methods in combination with the boundary element formulation. Overall, the calculated B2 are well correlated with the experimental observations for various solution conditions. In combination with our previous work on the binding affinity calculations of protein complexes it is demonstrated that our residue level model can be used as a reliable model to describe protein-protein interaction in solutions.
Konovalov, Dmitry A.; Cocks, Daniel G.; White, Ronald D.
2017-10-01
The velocity distribution function and transport coefficients for charged particles in weakly ionized plasmas are calculated via a multi-term solution of Boltzmann's equation and benchmarked using a Monte-Carlo simulation. A unified framework for the solution of the original full Boltzmann's equation is presented which is valid for ions and electrons, avoiding any recourse to approximate forms of the collision operator in various limiting mass ratio cases. This direct method using Lebedev quadratures over the velocity and scattering angles avoids the need to represent the ion mass dependence in the collision operator through an expansion in terms of the charged particle to neutral mass ratio. For the two-temperature Burnett function method considered in this study, this amounts to avoiding the need for the complex Talmi-transformation methods and associated mass-ratio expansions. More generally, we highlight the deficiencies in the two-temperature Burnett function method for heavy ions at high electric fields to calculate the ion velocity distribution function, even though the transport coefficients have converged. Contribution to the Topical Issue "Physics of Ionized Gases (SPIG 2016)", edited by Goran Poparic, Bratislav Obradovic, Dragana Maric and Aleksandar Milosavljevic.
Kiah, M L Mat; Nabi, Mohamed S; Zaidan, B B; Zaidan, A A
2013-10-01
This study aims to provide security solutions for implementing electronic medical records (EMRs). E-Health organizations could utilize the proposed method and implement recommended solutions in medical/health systems. Majority of the required security features of EMRs were noted. The methods used were tested against each of these security features. In implementing the system, the combination that satisfied all of the security features of EMRs was selected. Secure implementation and management of EMRs facilitate the safeguarding of the confidentiality, integrity, and availability of e-health organization systems. Health practitioners, patients, and visitors can use the information system facilities safely and with confidence anytime and anywhere. After critically reviewing security and data transmission methods, a new hybrid method was proposed to be implemented on EMR systems. This method will enhance the robustness, security, and integration of EMR systems. The hybrid of simple object access protocol/extensible markup language (XML) with advanced encryption standard and secure hash algorithm version 1 has achieved the security requirements of an EMR system with the capability of integrating with other systems through the design of XML messages.
International Nuclear Information System (INIS)
Silva, Cleber Feijo
2009-01-01
Alanine Gel Dosimeter is a new gel material developed at IPEN that presents significant improvement on Alanine system developed by Costa. The DL-Alanine (C 3 H 7 NO 2 ) is an amino acid tissue equivalent that improves the production of ferric ions in the solution. This work aims to analyse the main dosimetric characteristics this new gel material for future application to measure dose distribution. The performance of Alanine gel solution was evaluated to gamma, photons, electrons and thermal neutrons radiations using the spectrophotometry technique. According to the obtained results for the different studied radiation types, the reproducibility intra-batches and inter-batches is better than 4% and 5%, respectively. The dose response presents a linear behavior in the studied dose range. The response dependence as a function of dose rate and incident energy is better 2% and 3%, respectively. The lower detectable dose is 0.1 Gy. The obtained results indicate that the Alanine gel dosimeter presents good performance and can be useful as an alternative dosimeter in the radiotherapy area, using MRI technique for tridimensional dose distribution evaluation. (author)
Gómez-Aguilar, J. F.
2018-03-01
In this paper, we analyze an alcoholism model which involves the impact of Twitter via Liouville-Caputo and Atangana-Baleanu-Caputo fractional derivatives with constant- and variable-order. Two fractional mathematical models are considered, with and without delay. Special solutions using an iterative scheme via Laplace and Sumudu transform were obtained. We studied the uniqueness and existence of the solutions employing the fixed point postulate. The generalized model with variable-order was solved numerically via the Adams method and the Adams-Bashforth-Moulton scheme. Stability and convergence of the numerical solutions were presented in details. Numerical examples of the approximate solutions are provided to show that the numerical methods are computationally efficient. Therefore, by including both the fractional derivatives and finite time delays in the alcoholism model studied, we believe that we have established a more complete and more realistic indicator of alcoholism model and affect the spread of the drinking.
Leij, Feike J; Bradford, Scott A
2009-11-20
The transport of solutes and colloids in porous media is influenced by a variety of physical and chemical nonequilibrium processes. A combined physical-chemical nonequilibrium (PCNE) model was therefore used to describe general mass transport. The model partitions the pore space into "mobile" and "immobile" flow regions with first-order mass transfer between these two regions (i.e, "physical" nonequilibrium or PNE). Partitioning between the aqueous and solid phases can either proceed as an equilibrium or a first-order process (i.e, "chemical" nonequilibrium or CNE) for both the mobile and immobile regions. An analytical solution for the PCNE model is obtained using iterated Laplace transforms. This solution complements earlier semi-analytical and numerical approaches to model solute transport with the PCNE model. The impact of selected model parameters on solute breakthrough curves is illustrated. As is well known, nonequilibrium results in earlier solute breakthrough with increased tailing. The PCNE model allows greater flexibility to describe this trend; for example, a closer resemblance between solute input and effluent pulse. Expressions for moments and transfer functions are presented to facilitate the analytical use of the PCNE model. Contours of mean breakthrough time, variance, and spread of the colloid breakthrough curves as a function of PNE and CNE parameters demonstrate the utility of a model that accounts for both physical and chemical nonequilibrium processes. The model is applied to describe representative colloid breakthrough curves in Ottawa sands reported by Bradford et al. (2002). An equilibrium model provided a good description of breakthrough curves for the bromide tracer but could not adequately describe the colloid data. A considerably better description was provide by the simple CNE model but the best description, especially for the larger 3.2-microm colloids, was provided by the PCNE model.
Theory, Solution Methods, and Implementation of the HERMES Model
Energy Technology Data Exchange (ETDEWEB)
Reaugh, John E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); White, Bradley W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Curtis, John P. [Atomic Weapons Establishment (AWE), Reading, Berkshire (United Kingdom); Univ. College London (UCL), Gower Street, London (United Kingdom); Springer, H. Keo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2017-07-13
The HERMES (high explosive response to mechanical stimulus) model was developed over the past decade to enable computer simulation of the mechanical and subsequent energetic response of explosives and propellants to mechanical insults such as impacts, perforations, drops, and falls. The model is embedded in computer simulation programs that solve the non-linear, large deformation equations of compressible solid and fluid flow in space and time. It is implemented as a user-defined model, which returns the updated stress tensor and composition that result from the simulation supplied strain tensor change. Although it is multi-phase, in that gas and solid species are present, it is single-velocity, in that the gas does not flow through the porous solid. More than 70 time-dependent variables are made available for additional analyses and plotting. The model encompasses a broad range of possible responses: mechanical damage with no energetic response, and a continuous spectrum of degrees of violence including delayed and prompt detonation. This paper describes the basic workings of the model.
New integrable models and analytical solutions in f (R ) cosmology with an ideal gas
Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos
2018-01-01
In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.
Path integrals and the solution of the Schwinger model in curved space-time
Energy Technology Data Exchange (ETDEWEB)
Barcelos-Neto, J.; Das, A.
1986-04-15
We use the path-integral formalism to derive the solution of the Schwinger model in curved space-time. We show that the nature of flat--space-time solutions persists even in the presence of a background gravitational field.
Relationships between Visual Static Models and Students' Written Solutions to Fraction Tasks
Anderson-Pence, Katie L.; Moyer-Packenham, Patricia S.; Westenskow, Arla; Shumway, Jessica; Jordan, Kerry
2014-01-01
The purpose of this study was to deconstruct the relationship between visual static models and students' written solutions to fraction problems using a large sample of students' solutions. Participants in the study included 162 third-grade and 209 fourth-grade students from 17 different classrooms. Students' written responses to open-ended tasks…
Decay estimate of global solutions to the generalized double dispersion model in Morrey spaces
Wang, Yu-Zhu; Gu, Liuxin; Wang, Yinxia
2017-08-01
In this paper, we investigate the initial value problem for the generalized double dispersion model in Morrey spaces. Based on the decay properties of the solution operator in Morrey spaces, global existence and decay estimates of solutions are proved by Banach fixed point theorem.
A nonlinear model for surface segregation and solute trapping during planar film growth
International Nuclear Information System (INIS)
Han, Xiaoying; Spencer, Brian J.
2007-01-01
Surface segregation and solute trapping during planar film growth is one of the important issues in molecular beam epitaxy, yet the study on surface composition has been largely restricted to experimental work. This paper introduces some mathematical models of surface composition during planar film growth. Analytical solutions are obtained for the surface composition during growth
Concepts and dimensionality in modeling unsaturated water flow and solute transport
Dam, van J.C.; Rooij, de G.H.; Heinen, M.; Stagnitti, F.
2004-01-01
Many environmental studies require accurate simulation of waterand solute fluxes in the unsaturated zone. This paper evaluatesone- and multi-dimensional approaches for soil water flow as wellas different spreading mechanisms to model solute behavior atdifferent scales. For quantification of soil
Model-based fuzzy control solutions for a laboratory Antilock Braking System
DEFF Research Database (Denmark)
Precup, Radu-Emil; Spataru, Sergiu; Rǎdac, Mircea-Bogdan
2010-01-01
This paper gives two original model-based fuzzy control solutions dedicated to the longitudinal slip control of Antilock Braking System laboratory equipment. The parallel distributed compensation leads to linear matrix inequalities which guarantee the global stability of the fuzzy control systems....... Real-time experimental results validate the new fuzzy control solutions....
Queueing-theoretic solution methods for models of parallel and distributed systems
O.J. Boxma (Onno); G.M. Koole (Ger); Z. Liu
1994-01-01
textabstractThis paper aims to give an overview of solution methods for the performance analysis of parallel and distributed systems. After a brief review of some important general solution methods, we discuss key models of parallel and distributed systems, and optimization issues, from the
International Nuclear Information System (INIS)
Pusateri, Elise N.; Morris, Heidi E.; Nelson, Eric M.; Ji, Wei
2015-01-01
Electromagnetic pulse (EMP) events produce low-energy conduction electrons from Compton electron or photoelectron ionizations with air. It is important to understand how conduction electrons interact with air in order to accurately predict EMP evolution and propagation. An electron swarm model can be used to monitor the time evolution of conduction electrons in an environment characterized by electric field and pressure. Here a swarm model is developed that is based on the coupled ordinary differential equations (ODEs) described by Higgins et al. (1973), hereinafter HLO. The ODEs characterize the swarm electric field, electron temperature, electron number density, and drift velocity. Important swarm parameters, the momentum transfer collision frequency, energy transfer collision frequency, and ionization rate, are calculated and compared to the previously reported fitted functions given in HLO. These swarm parameters are found using BOLSIG+, a two term Boltzmann solver developed by Hagelaar and Pitchford (2005), which utilizes updated cross sections from the LXcat website created by Pancheshnyi et al. (2012). We validate the swarm model by comparing to experimental effective ionization coefficient data in Dutton (1975) and drift velocity data in Ruiz-Vargas et al. (2010). In addition, we report on electron equilibrium temperatures and times for a uniform electric field of 1 StatV/cm for atmospheric heights from 0 to 40 km. We show that the equilibrium temperature and time are sensitive to the modifications in the collision frequencies and ionization rate based on the updated electron interaction cross sections
Effect of PLISSIT Model on Solution of Sexual Problems
Directory of Open Access Journals (Sweden)
Esra Uslu
2016-03-01
Full Text Available This systematic review study aims to determine the effect of PLISSIT model (permission, limited information, special suggestions, intensive therapy in the care of individuals having sexual problems. Two of the studies included in the systematic review have been carried out in Iran and one of them in Turkey. These studies were limited to the patients with stoma and women having sexual problems. Results presented that care via PLISSIT model improves the sexual functions and reduces sexual stress, increases the sexual desire, sexual arousal, lubrication, orgasm, sexual satisfaction and frequency of sexual activity. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(1: 52-63
Challenges and potential solutions for European coastal ocean modelling
She, Jun; Stanev, Emil
2017-04-01
Coastal operational oceanography is a science and technological platform to integrate and transform the outcomes in marine monitoring, new knowledge generation and innovative technologies into operational information products and services in the coastal ocean. It has been identified as one of the four research priorities by EuroGOOS (She et al. 2016). Coastal modelling plays a central role in such an integration and transformation. A next generation coastal ocean forecasting system should have following features: i) being able to fully exploit benefits from future observations, ii) generate meaningful products in finer scales e.g., sub-mesoscale and in estuary-coast-sea continuum, iii) efficient parallel computing and model grid structure, iv) provide high quality forecasts as forcing to NWP and coastal climate models, v) resolving correctly inter-basin and inter-sub-basin water exchange, vi) resolving synoptic variability and predictability in marine ecosystems, e.g., for algae bloom, vi) being able to address critical and relevant issues in coastal applications, e.g., marine spatial planning, maritime safety, marine pollution protection, disaster prevention, offshore wind energy, climate change adaptation and mitigation, ICZM (integrated coastal zone management), the WFD (Water Framework Directive), and the MSFD (Marine Strategy Framework Directive), especially on habitat, eutrophication, and hydrographic condition descriptors. This presentation will address above challenges, identify limits of current models and propose correspondent research needed. The proposed roadmap will address an integrated monitoring-modelling approach and developing Unified European Coastal Ocean Models. In the coming years, a few new developments in European Sea observations can expected, e.g., more near real time delivering on profile observations made by research vessels, more shallow water Argo floats and bio-Argo floats deployed, much more high resolution sea level data from SWOT
Reliable modeling of the electronic spectra of realistic uranium complexes
Tecmer, Paweł; Govind, Niranjan; Kowalski, Karol; de Jong, Wibe A.; Visscher, Lucas
2013-07-01
We present an EOMCCSD (equation of motion coupled cluster with singles and doubles) study of excited states of the small [UO2]2+ and [UO2]+ model systems as well as the larger UVIO2(saldien) complex. In addition, the triples contribution within the EOMCCSDT and CR-EOMCCSD(T) (completely renormalized EOMCCSD with non-iterative triples) approaches for the [UO2]2+ and [UO2]+ systems as well as the active-space variant of the CR-EOMCCSD(T) method—CR-EOMCCSd(t)—for the UVIO2(saldien) molecule are investigated. The coupled cluster data were employed as benchmark to choose the "best" appropriate exchange-correlation functional for subsequent time-dependent density functional (TD-DFT) studies on the transition energies for closed-shell species. Furthermore, the influence of the saldien ligands on the electronic structure and excitation energies of the [UO2]+ molecule is discussed. The electronic excitations as well as their oscillator dipole strengths modeled with TD-DFT approach using the CAM-B3LYP exchange-correlation functional for the [UVO2(saldien)]- with explicit inclusion of two dimethyl sulfoxide molecules are in good agreement with the experimental data of Takao et al. [Inorg. Chem. 49, 2349 (2010), 10.1021/ic902225f].
African wildlife and people : finding solutions where equilibrium models fail
Poshiwa, X.
2013-01-01
Grazing systems, covering about half of the terrestrial surface, tend to be either equilibrial or non-equilibrial in nature, largely depending on the environmental stochasticity.The equilibrium model perspective stresses the importance of biotic feedbacks between herbivores and
Water and Aqueous Solutions: Simple Non-Speculative Model Approach
Czech Academy of Sciences Publication Activity Database
Nezbeda, Ivo; Jirsák, Jan
2011-01-01
Roč. 13, č. 44 (2011), s. 19689-19703 ISSN 1463-9076 R&D Projects: GA AV ČR IAA400720802; GA AV ČR IAA200760905 Institutional research plan: CEZ:AV0Z40720504 Keywords : molecular modeling of water * separation * perturbation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011
Stochastic models of solute transport in highly heterogeneous geologic media
Energy Technology Data Exchange (ETDEWEB)
Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.
2009-09-15
A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.
Infrastructure Suitability Assessment Modeling for Cloud Computing Solutions
2011-09-01
Figure 5. Citrix HDX components/architecture. After [40]. ...........................................17 Figure 6. NComputing UXP deployment...a proprietary, purpose built protocol utilized for VDI ( Citrix ®) IaaS Infrastructure as a Service (cloud service model) IANA Internet Assigned...The open source project Xen, strongly supported by Citrix and other IT enterpris- es, maintains the Xen hypervisor, targeted at the enterprise level
Solutions of two-mode Jaynes–Cummings models
Indian Academy of Sciences (India)
Cummings models. SUDHA SINGH1,∗ and ASHALATA SINHA2. 1University Department of Physics, Ranchi University, Ranchi 834 008, India ... been analysed when one of the field modes is prepared initially in a coherent state while the other ...
Non-perturbative solution of metastable scalar models
Czech Academy of Sciences Publication Activity Database
Šauli, Vladimír
2003-01-01
Roč. 36, - (2003), s. 8703-8722 ISSN 0022-3727 R&D Projects: GA ČR GA202/03/0210 Institutional research plan: CEZ:AV0Z1048901 Keywords : scalar models Subject RIV: BE - Theoretical Physics http://arxiv.org/abs/hep-ph/0211221
Molecular Thermodynamic Modeling of Fluctuation Solution Theory Properties
DEFF Research Database (Denmark)
O’Connell, John P.; Abildskov, Jens
2013-01-01
for densities and gas solubilities, including ionic liquids and complex mixtures such as coal liquids. The approach is especially useful in systems with strong nonidealities. This chapter describes successful application of such modeling to a wide variety of systems treated over several decades and suggests how...
A Landau fluid model for dissipative trapped electron modes
International Nuclear Information System (INIS)
Hedrick, C.L.; Leboeuf, J.N.; Sidikman, K.L.
1995-09-01
A Landau fluid model for dissipative trapped electron modes is developed which focuses on an improved description of the ion dynamics. The model is simple enough to allow nonlinear calculations with many harmonics for the times necessary to reach saturation. The model is motivated by a discussion that starts with the gyro-kinetic equation and emphasizes the importance of simultaneously including particular features of magnetic drift resonance, shear, and Landau effects. To ensure that these features are simultaneously incorporated in a Landau fluid model with only two evolution equations, a new approach to determining the closure coefficients is employed. The effect of this technique is to reduce the matching of fluid and kinetic responses to a single variable, rather than two, and to allow focusing on essential features of the fluctuations in question, rather than features that are only important for other types of fluctuations. Radially resolved nonlinear calculations of this model, advanced in time to reach saturation, are presented to partially illustrate its intended use. These calculations have a large number of poloidal and toroidal harmonics to represent the nonlinear dynamics in a converged steady state which includes cascading of energy to both short and long wavelengths
MODELS AND SOLUTIONS FOR THE IMPLEMENTATION OF DISTRIBUTED SYSTEMS
Directory of Open Access Journals (Sweden)
Tarca Naiana
2011-07-01
Full Text Available Software applications may have different degrees of complexity depending on the problems they try to solve and can integrate very complex elements that bring together functionality that sometimes are competing or conflicting. We can take for example a mobile communications system. Functionalities of such a system are difficult to understand, and they add to the non-functional requirements such as the use in practice, performance, cost, durability and security. The transition from local computer networks to cover large networks that allow millions of machines around the world at speeds exceeding one gigabit per second allowed universal access to data and design of applications that require simultaneous use of computing power of several interconnected systems. The result of these technologies has enabled the evolution from centralized to distributed systems that connect a large number of computers. To enable the exploitation of the advantages of distributed systems one had developed software and communications tools that have enabled the implementation of distributed processing of complex solutions. The objective of this document is to present all the hardware, software and communication tools, closely related to the possibility of their application in integrated social and economic level as a result of globalization and the evolution of e-society. These objectives and national priorities are based on current needs and realities of Romanian society, while being consistent with the requirements of Romania's European orientation towards the knowledge society, strengthening the information society, the target goal representing the accomplishment of e-Romania, with its strategic e-government component. Achieving this objective repositions Romania and gives an advantage for sustainable growth, positive international image, rapid convergence in Europe, inclusion and strengthening areas of high competence, in line with Europe 2020, launched by the
International Nuclear Information System (INIS)
Sadeghi, Rahmat
2005-01-01
The polymer Wilson model and the polymer NRTL model have been extended for the representation of the excess enthalpy of multicomponent polymer solutions. Applicability of obtained equations in the correlation of the excess enthalpies of polymer solutions has been examined. It is found that the both models are suitable models in representing the published excess enthalpy data for the tested polymer solutions
Modeling the interaction of high power ion or electron beams with solid target materials
International Nuclear Information System (INIS)
Hassanein, A.M.
1983-11-01
Intense energy deposition on first wall materials and other components as a result of plasma disruptions in magnetic fusion devices are expected to cause melting and vaporization of these materials. The exact amount of vaporization losses and melt layer thickness are very important to fusion reactor design and lifetime. Experiments using ion or electron beams to simulate the disruption effects have different environments than the actual disruption conditions in fusion reactors. A model has been developed to accurately simulate the beam-target interactions so that the results from such experiments can be meaningful and useful to reactor design. This model includes a two dimensional solution of the heat conduction equation with moving boundaries. It is found that the vaporization and melting of the sample strongly depends on the characteristics of the beam spatial distribution, beam diameter, and on the power-time variation of the beam
Energy Technology Data Exchange (ETDEWEB)
Brunner, S., E-mail: stephan.brunner@epfl.ch; Hausammann, L. [Centre de Recherches en Physique des Plasmas, Association Euratom-Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, CRPP-PPB, CH-1015 Lausanne (Switzerland); Berger, R. L., E-mail: berger5@llnl.gov; Cohen, B. I. [Lawrence Livermore National Laboratory, University of California, P.O. Box 808, Livermore, California 94551 (United States); Valeo, E. J. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543-0451 (United States)
2014-10-15
Kinetic Vlasov simulations of one-dimensional finite amplitude Electron Plasma Waves are performed in a multi-wavelength long system. A systematic study of the most unstable linear sideband mode, in particular its growth rate γ and quasi- wavenumber δk, is carried out by scanning the amplitude and wavenumber of the initial wave. Simulation results are successfully compared against numerical and analytical solutions to the reduced model by Kruer et al. [Phys. Rev. Lett. 23, 838 (1969)] for the Trapped Particle Instability (TPI). A model recently suggested by Dodin et al. [Phys. Rev. Lett. 110, 215006 (2013)], which in addition to the TPI accounts for the so-called Negative Mass Instability because of a more detailed representation of the trapped particle dynamics, is also studied and compared with simulations.
Effects of tunnelling and asymmetry for system-bath models of electron transfer
Mattiat, Johann; Richardson, Jeremy O.
2018-03-01
We apply the newly derived nonadiabatic golden-rule instanton theory to asymmetric models describing electron-transfer in solution. The models go beyond the usual spin-boson description and have anharmonic free-energy surfaces with different values for the reactant and product reorganization energies. The instanton method gives an excellent description of the behaviour of the rate constant with respect to asymmetry for the whole range studied. We derive a general formula for an asymmetric version of the Marcus theory based on the classical limit of the instanton and find that this gives significant corrections to the standard Marcus theory. A scheme is given to compute this rate based only on equilibrium simulations. We also compare the rate constants obtained by the instanton method with its classical limit to study the effect of tunnelling and other quantum nuclear effects. These quantum effects can increase the rate constant by orders of magnitude.
MODEL 9975 SHIPPING PACKAGE FABRICATION PROBLEMS AND SOLUTIONS
Energy Technology Data Exchange (ETDEWEB)
May, C; Allen Smith, A
2008-05-07
The Model 9975 Shipping Package is the latest in a series (9965, 9968, etc.) of radioactive material shipping packages that have been the mainstay for shipping radioactive materials for several years. The double containment vessels are relatively simple designs using pipe and pipe cap in conjunction with the Chalfont closure to provide a leak-tight vessel. The fabrication appears simple in nature, but the history of fabrication tells us there are pitfalls in the different fabrication methods and sequences. This paper will review the problems that have arisen during fabrication and precautions that should be taken to meet specifications and tolerances. The problems and precautions can also be applied to the Models 9977 and 9978 Shipping Packages.
International Nuclear Information System (INIS)
Qian Tianwei; Chen Fanrong
2003-01-01
The influence of solution chemical action in groundwater on solute migration has attracted increasing public attention, especially adsorption action occurring on surface of solid phase and liquid phase, which has play a great role in solute migration. There are various interpretations on adsorption mechanism, in which surface complexion is one of successful hypothesis. This paper first establishes a geochemical model based on surface complexion and then coupled it with traditional advection-dispersion model to constitute a solute migration model, which can deal with surface complexion action. The simulated results fit very well with those obtained by the precursors, as compared with a published famous example, which indicates that the model set up by this paper is successful. (authors)