WorldWideScience

Sample records for model solar water

  1. Simulation programs for ph.D. study of analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The design of solar domestic hot water (DHW) systems is a complex process, due to characteristics inherent in the solar heating technology. Recently, computer simulation has become a widely used technique to improve the understanding of the thermal processes in such systems. One of the main objects of the Ph.D. study of `Analysis, Modelling and optimum Design of Solar Domestic Hot Water Systems` is to develop and verify programs for carrying out the simulation and evaluation of the dynamic performance of solar DHW systems. During this study, simulation programs for hot water distribution networks and for certain types of solar DHW systems were developed. (au)

  2. Dynamic Modeling, Control, and Analysis of a Solar Water Pumping System for Libya

    Directory of Open Access Journals (Sweden)

    Muamer M. Shebani

    2017-01-01

    Full Text Available In recent years, one of the suitable solar photovoltaic (PV applications is a water pumping system. The simplest solar PV pumping system consists of PV array, DC-DC converter, DC motor, and water pump. In this paper, water pumping system sizing for Libya is evaluated based on a daily demand using HOMER software, and dynamic modeling of a solar PV water pumping system using a Permanent Magnet DC (PMDC motor is presented in Matlab/Simulink environment. The system performance with maximum power point tracking (MPPT based on Fractional Open Circuit Voltage (FOCV is evaluated with and without a battery storage system. In some applications, a rated voltage is needed to connect a PMDC motor to a PV array through a DC-DC converter and in other applications the input voltage can vary. The evaluation of the system is based on the performance during a change in solar irradiation. Using Matlab/Simulink, simulation results are assessed to see the efficiency of the system when it is operating at a specific speed or at the MPPT. The results show that an improvement in the system efficiency can be achieved when the PMDC motor is running at a specific speed rather than at the peak PV power point.

  3. Water vapor measurements at ALOMAR over a solar cycle compared with model calculations by LIMA

    Science.gov (United States)

    Hartogh, P.; Sonnemann, G. R.; Grygalashvyly, M.; Song, Li; Berger, U.; Lübken, F.-J.

    2010-01-01

    Microwave water vapor measurements between 40 and 80 km altitude over a solar cycle (1996-2006) were carried out in high latitudes at Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) (69.29°N, 16.03°E), Norway. Some smaller gaps and three interruptions of monitoring in the winters 1996/1997 and 2005/2006 and from spring 2001 to spring 2002 occurred during this period. The observations show a distinct year-to-year variability not directly related to solar Lyman-α radiation. In winter the water vapor mixing ratios in the upper domain were anticorrelated to the solar activity, whereas in summer, minima occurred in the years after the solar maximum in 2000/2001. In winter, sudden stratospheric warmings (SSWs) modulated the water vapor mixing ratios. Within the stratopause region a middle atmospheric water vapor maximum was observed, which results from the methane oxidation and is a regular feature there. The altitude of the maximum increased by approximately 5 km as summer approached. The largest mixing ratios were monitored in autumn. During the summer season a secondary water vapor maximum also occurred above 65 km most pronounced in late summer. The solar Lyman-α radiation impacts the water vapor mixing ratio particularly in winter above 65 km. In summer the correlation is positive below 70 km. The correlation is also positive in the lower mesosphere/stratopause region in winter due to the action of sudden stratospheric warmings, which occur more frequently under the condition of high solar activity and the enhancing the humidity. A strong day-to-day variability connected with planetary wave activity was found throughout the entire year. Model calculations by means of Leibniz-Institute Middle Atmosphere model (LIMA) reflect the essential patterns of the water vapor variation, but the results also show differences from the observations, indicating that exchange processes between the troposphere and stratosphere not modeled by LIMA could have

  4. Factors from the transtheoretical model differentiating between solar water disinfection (SODIS) user groups.

    Science.gov (United States)

    Kraemer, Silvie M; Mosler, Hans-Joachim

    2011-01-01

    Solar water disinfection (SODIS) is a sustainable household water treatment technique that could prevent millions of deaths caused by diarrhoea. The behaviour change process necessary to move from drinking raw water to drinking SODIS is analysed with the Transtheoretical Model of Change (TTM). User groups and psychological factors that differentiate between types of users are identified. Results of a 1.5 year longitudinal study in Zimbabwe reveal distinguishing factors between groups, from which it can be deduced that they drive the development of user groups. Implications are drawn for campaigns with the aim of bringing all user types to a regular use.

  5. Calibrating an optimal condition model for solar water disinfection in peri-urban household water treatment in Kampala, Uganda.

    Science.gov (United States)

    Okurut, Kenan; Wozei, Eleanor; Kulabako, Robinah; Nabasirye, Lillian; Kinobe, Joel

    2013-03-01

    In low income settlements where the quality of drinking water is highly contaminated due to poor hygienic practices at community and household levels, there is need for appropriate, simple, affordable and environmentally sustainable household water treatment technology. Solar water disinfection (SODIS) that utilizes both the thermal and ultra-violet effect of solar radiation to disinfect water can be used to treat small quantities of water at household level to improve its bacteriological quality for drinking purposes. This study investigated the efficacy of the SODIS treatment method in Uganda and determined the optimal condition for effective disinfection. Results of raw water samples from the study area showed deterioration in bacteriological quality of water moved from source to the household; from 3 to 36 cfu/100 mL for tap water and 75 to 126 cfu/100 mL for spring water, using thermotolerant coliforms (TTCs) as indicator microorganisms. SODIS experiments showed over 99.9% inactivation of TTCs in 6 h of exposure, with a threshold temperature of 39.5 ± 0.7°C at about 12:00 noon, in the sun during a clear sunny day. A mathematical optimal condition model for effective disinfection has been calibrated to predict the decline of the number of viable microorganisms over time.

  6. Solar water disinfection

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R. [Universal Recycled Water Systems, Orlando, FL (United States); Collier, R. [Enerscope, Inc., Merritt Island, FL (United States)

    1996-11-01

    Non-potable drinking water is a major problem for much of the world`s population. It has been estimated that from 15 to 20 million children under the age of 5 die from diarrheal conditions brought on by infected drinking water every year. This is equivalent to a fully-loaded DC-10 crashing every ten minutes of every day, 365 days a year. Heat is one of the most effective methods of disinfecting drinking water. Using conventional means of heating water (heating on an open-flamed stove) results in an extremely energy-intensive process. The main obstacle is that for areas of the world where potable water is a problem, fuel supplies are either too expensive, not available, or the source of devastating environmental problems (deforestation). The apparatus described is a solar-powered water disinfection device that can overcome most if not all of the barriers that presently limit technological solutions to drinking water problems. It uses a parabolic trough solar concentrator with a receiver tube that is also a counterflow heat exchanger. The system is totally self-contained utilizing a photovoltaic-powered water pump, and a standard automotive thermostat for water flow control. The system is designed for simplicity, reliability and the incorporation of technology readily accessible in most areas of the world. Experiments at the Florida Solar Energy Center have demonstrated up to 2,500 liters of safe drinking water per day with 28 square meters of solar concentrator.

  7. Analysis, modeling and optimum design of solar domestic hot water systems

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qin

    1998-12-31

    The object of this study was dynamic modeling, simulation and optimum design of solar DHW (domestic hot water) systems, with respect to different whether conditions, and accurate dynamic behaviour of the heat load. Special attention was paid to systems with thermosyphon and drain-back design. The solar radiation in Beijing (China) and in Denmark are analyzed both by theoretical calculations and the analysis of long-term measurements. Based on the weather data from the Beijing Meteorological Station during the period of 1981-1993, a Beijing Test Reference Year has been formulated by means of statistical analysis. A brief introduction about the Danish Test Reference Year and the Design Reference Year is also presented. In order to investigate the heat loss as a part of the total heat load, dynamic models for distribution networks have been developed, and simulations have been carried out for typically designed distribution networks of the circulation type. The influence of operation parameters such as the tank outlet temperature, the hot-water load and the load pattern, on the heat loss from the distribution networks in presented. It was found that the tank outlet temperature has a significant influence on the heat loss from a circulation type of distribution network, while the hot-water load and the load pattern have no obvious effect. Dynamic models of drain-back tanks, both as a separated tank and combined with a mantle tank, have been developed and presented. Models of the other basic components commonly used in solar DHW systems, such as flat-plate collectors, connection pipes, storage tanks with a heat exchanger spiral, and controllers, are also described. (LN) 66 refs.

  8. A Groundwater Model to Assess Water Resource Impacts at the Imperial East Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); O' Connor, Ben L. [Argonne National Lab. (ANL), Argonne, IL (United States); Tompson, Andrew F.B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support the utility-scale solar energy development at the Imperial East Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM) solar energy program.

  9. A Groundwater Model to Assess Water Resource Impacts at the Brenda Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Chris [Argonne National Lab. (ANL), Argonne, IL (United States); Bowen, Esther E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-12-01

    The purpose of this study is to develop a groundwater flow model to examine the influence of potential groundwater withdrawal to support utility-scale solar energy development at the Brenda Solar Energy Zone (SEZ), as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program.

  10. Numerical model of simulation for solar collector of water heating; Modelo de simulaco numerica para colector solar de aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Silva, A. C. G. C.; Dutra, J. C. C.; Henriquez, J. R.; Michalewicz, J. S.

    2008-07-01

    Before being installed a solar heater, It must be tested, numerical or experimentally to get his characteristic equation, which is the efficiency curve, plotted as a function on the temperature of entry and solar incident radiation on the collector. In this work was developed a tool for numerical simulation of heating water flat-plate solar collectors. This tool has been developed from a mathematical model which is composed of a system of equations. In the model are included equations of balance energy for the collector, equation of the first law, the law of cooling equation of Newton, convective heat transfer coefficient correlations, equations for calculating the solar incident radiation, and one equation that calculates of the water flow due to the siphon effect. The solution of the equations system was obtained by the multidimensional version of the Newton-Raphson method. the model was validated with experimental data from literature. The results shows, that it is a very interesting tool to simulate efficiency curve of the solar collector. (Author)

  11. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  12. Analysis, Modeling and Optimum Design of Solar Domestic Hot Water Systems

    DEFF Research Database (Denmark)

    Qin, Lin

    1999-01-01

    model of distribution network is developed and simulations are carried out for typical designed circulation type of distribution networks. For dynamic simulation of thermosyphon and drain-back solar DHW systems, thermosyphon loop model and drain-back tank model are put forward. Based on the simulations......, several recommendations are given for optimum design of such types of systems....

  13. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    Science.gov (United States)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  14. Entrance Effects in Solar Hot Water Stores

    DEFF Research Database (Denmark)

    Shah, Louise Jivan; Furbo, Simon

    2003-01-01

    A theoretical and experimental analysis of water jets entering a solar storage tank is performed. CFD calculations of three inlet designs with different inlet flow rates were carried out to illustrate the varying behaviour of the thermal conditions in a solar store. The results showed the impact...... of the inlet design on the flow patterns in the tank and thus how the energy quality in a hot water tank is reduced with a poor inlet design. The numerical investigations were followed by experiments. A test solar store, similar to the store investigated by numerical modelling was constructed with cylindrical...

  15. Solar based water treatment technologies

    International Nuclear Information System (INIS)

    Ahmad, I.; Hyder, M.J.

    2000-01-01

    In developing countries, the quality of drinking water is so poor that reports of 80% diseases from water-related causes is no surprise (Tebbet, 90). Frequently, there are reports in press of outbreak of epidemics in cities due to the unhygienic drinking-water. The state of affairs in the rural areas can be well imagined, where majority of the people live with no piped water. This paper describes the solar-based methods of removing organic pollutants from waste-water (also called Advanced Oxidation Technologies) and solar desalination. Experimental results of a simple solar water-sterilization technique have been discussed, along with suggestions to enhance the performance of this technique. (author)

  16. Performances of solar water pumping station with solar tracker

    International Nuclear Information System (INIS)

    Buniatyan, V.V.; Vardanyan, A.A.

    2011-01-01

    For the solar water pumping stations ? solar tracking system with phototransistor is developed. On the basis of the experimental investigations the utility and efficiency of the PV water pumping station with solar tracker under different conditions of varying solar radiation in Armenia is shown

  17. Modeling of solar polygeneration plant

    Science.gov (United States)

    Leiva, Roberto; Escobar, Rodrigo; Cardemil, José

    2017-06-01

    In this work, a exergoeconomic analysis of the joint production of electricity, fresh water, cooling and process heat for a simulated concentrated solar power (CSP) based on parabolic trough collector (PTC) with thermal energy storage (TES) and backup energy system (BS), a multi-effect distillation (MED) module, a refrigeration absorption module, and process heat module is carried out. Polygeneration plant is simulated in northern Chile in Crucero with a yearly total DNI of 3,389 kWh/m2/year. The methodology includes designing and modeling a polygeneration plant and applying exergoeconomic evaluations and calculating levelized cost. Solar polygeneration plant is simulated hourly, in a typical meteorological year, for different solar multiple and hour of storage. This study reveals that the total exergy cost rate of products (sum of exergy cost rate of electricity, water, cooling and heat process) is an alternative method to optimize a solar polygeneration plant.

  18. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.

    Science.gov (United States)

    Walczak, Karl; Chen, Yikai; Karp, Christoph; Beeman, Jeffrey W; Shaner, Matthew; Spurgeon, Joshua; Sharp, Ian D; Amashukeli, Xenia; West, William; Jin, Jian; Lewis, Nathan S; Xiang, Chengxiang

    2015-02-01

    A fully integrated solar-driven water-splitting system comprised of WO3 /FTO/p(+) n Si as the photoanode, Pt/TiO2 /Ti/n(+) p Si as the photocathode, and Nafion as the membrane separator, was simulated, assembled, operated in 1.0 M HClO4 , and evaluated for performance and safety characteristics under dual side illumination. A multi-physics model that accounted for the performance of the photoabsorbers and electrocatalysts, ion transport in the solution electrolyte, and gaseous product crossover was first used to define the optimal geometric design space for the system. The photoelectrodes and the membrane separators were then interconnected in a louvered design system configuration, for which the light-absorbing area and the solution-transport pathways were simultaneously optimized. The performance of the photocathode and the photoanode were separately evaluated in a traditional three-electrode photoelectrochemical cell configuration. The photocathode and photoanode were then assembled back-to-back in a tandem configuration to provide sufficient photovoltage to sustain solar-driven unassisted water-splitting. The current-voltage characteristics of the photoelectrodes showed that the low photocurrent density of the photoanode limited the overall solar-to-hydrogen (STH) conversion efficiency due to the large band gap of WO3 . A hydrogen-production rate of 0.17 mL hr(-1) and a STH conversion efficiency of 0.24 % was observed in a full cell configuration for >20 h with minimal product crossover in the fully operational, intrinsically safe, solar-driven water-splitting system. The solar-to-hydrogen conversion efficiency, ηSTH , calculated using the multiphysics numerical simulation was in excellent agreement with the experimental behavior of the system. The value of ηSTH was entirely limited by the performance of the photoelectrochemical assemblies employed in this study. The louvered design provides a robust platform for implementation of various types of

  19. Modified mathematical model for evaluating the performance of water-in-glass evacuated tube solar collector considering tube shading effect

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Khalil, A.; Elsayed, S.S.; Alatyar, A.M.

    2015-01-01

    The aim of this paper is to introduce a procedure for simulating the absorbed solar radiation and heat transfer process in water-in-glass evacuated tube solar collectors. The procedure is developed to calculate the daily utilized solar energy and outlet collector temperature for different tilt angles, collector azimuth angles and geometric parameters without requirement for any experimental factor determination. Total absorbed solar radiation is evaluated by integrating the flat-plate solar collector performance equations over the tube circumference taking into account the shading of the adjacent tubes and variance of transmissivity–absorptivity product with the incidence angle of radiation. The heat transfer into the collector fluid is evaluated by subtracting the heat loss from the total absorbed solar radiation. Comparison between calculated and measured tank temperature shows a good agreement between them under different heating loads. Performance of solar collector at different tilt angles, collector Azimuth angles, tubes spacing and collector mass flow rate is investigated theoretically. In Egypt (30° Latitude angle), the results show that 10°, 30° and 45° are the optimum solar collector tilt angles during the summer, vernal and autumnal equinox and winter operation respectively. Also, the utilized solar energy increases about 2.8% when the mass flow rate increases 100%, and the solar collector with south-facing has the best performance except for vertical tube solar collector. The simulation results also show that solar collector with wide tube spacing reduce the shading effect and hence increase the absorbed radiation. The final tank temperature as a function of collector's mass flow rate for three different days; 21 March, 21 June and 21 December is also investigated. The total incidence radiation, absorbed solar radiation and utilized heat per tube are presented for the three optimum tilt angles 10°, 30° and 45°. Efficiency curve of water

  20. Solar power water distillation unit

    Science.gov (United States)

    Hameed, Kamran; Muzammil Khan, Muhammad; Shahrukh Ateeq, Ijlal; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-06-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  1. Solar power water distillation unit

    International Nuclear Information System (INIS)

    Hameed, Kamran; Khan, Muhammad Muzammil; Ateeq, Ijlal Shahrukh; Omair, Syed Muhammad; Ahmer, Muhammad; Wajid, Abdul

    2013-01-01

    Clean drinking water is the basic necessity for every human being, but about 1.1 billion people in the world lacked proper drinking water. There are many different types of water purification processes such as filtration, reverse osmosis, ultraviolet radiation, carbon absorption, but the most reliable processes are distillation and boiling. Water purification, such as distillation, is especially important in regions where water resources or tap water is not suitable for ingesting without boiling or chemical treatment. In design project It treats the water by combining different methods such as Filtration, Distillation and a technique called concentrated solar power (CSP). Distillation is literally the method seen in nature, whereby: the sun heats the water on the earth's surface, the water is turned into a vapor (evaporation) and rises, leaving contaminants behind, to form clouds. As the upper atmosphere drops in temperature the vapors cool and convert back to water to form water. In this project distillation is achieved by using a parabolic mirror which boils water at high temperature. Filtration is done by sand filter and carbon filter. First sand filter catches the sand particles and the carbon filter which has granules of active carbon is used to remove odor dissolved gases from water. This is the Pre-treatment of water. The filtered water is then collected in a water container at a focus of parabolic mirror where distillation process is done. Another important feature of designed project is the solar tracking of a parabolic mirror which increases the efficiency of a parabolic mirror [1],[2].

  2. A High Rated Solar Water Distillation Unit for Solar Homes

    Directory of Open Access Journals (Sweden)

    Abhishek Saxena

    2016-01-01

    Full Text Available India is presently focusing on complete utilization of solar energy and saving fossil fuels, which are limited. Various solar energy systems like solar cookers, solar water heaters, solar lanterns, solar PV lights, and solar lamps are continuously availing by the people of India at a low cost and on good subsidies. Apart from this, India is a solar energy promising country with a good number of solar homes (carrying solar energy systems in its various locations. The present paper focuses on a unique combination of solar dish cooker (SDC and solar water heater (SWH to produce distilled water with a high distillate and a high daily productivity. The procedure has been discussed on the basis of experimental testing to produce distilled water by combining an evacuated type SWH and a SDC. Experimentation has been carried out in MIT, Moradabad (longitude, 28.83°N, and latitude, 78.78°E by developing the same experimental setup on behalf of solar homes. The daily productivity of distilled water was found around 3.66 litres per day in full sunshine hours for an approximated pH value of 7.7 and a ppm value of 21. The payback period (PBP has been estimated around 1.16 years of the present system.

  3. The origin of inner Solar System water.

    Science.gov (United States)

    Alexander, Conel M O'D

    2017-05-28

    Of the potential volatile sources for the terrestrial planets, the CI and CM carbonaceous chondrites are closest to the planets' bulk H and N isotopic compositions. For the Earth, the addition of approximately 2-4 wt% of CI/CM material to a volatile-depleted proto-Earth can explain the abundances of many of the most volatile elements, although some solar-like material is also required. Two dynamical models of terrestrial planet formation predict that the carbonaceous chondrites formed either in the asteroid belt ('classical' model) or in the outer Solar System (5-15 AU in the Grand Tack model). To test these models, at present the H isotopes of water are the most promising indicators of formation location because they should have become increasingly D-rich with distance from the Sun. The estimated initial H isotopic compositions of water accreted by the CI, CM, CR and Tagish Lake carbonaceous chondrites were much more D-poor than measured outer Solar System objects. A similar pattern is seen for N isotopes. The D-poor compositions reflect incomplete re-equilibration with H 2 in the inner Solar System, which is also consistent with the O isotopes of chondritic water. On balance, it seems that the carbonaceous chondrites and their water did not form very far out in the disc, almost certainly not beyond the orbit of Saturn when its moons formed (approx. 3-7 AU in the Grand Tack model) and possibly close to where they are found today.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  4. Impact of Water Use by Utility-Scale Solar on Groundwater Resources of the Chuckwalla Basin, CA: Final Modeling Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaopeng [Pennsylvania State Univ., University Park, PA (United States). Civil and Environmental Engineering; Fang, Kuai [US Forest Services, Mt. Baker-Snoqualmie, WA (United States); Ludwig, Noel [S Forest Services, Mt. Baker-Snoqualmie, WA (United States); Godfrey, Peter [Bureau of Land Management, WY (United States). Wyoming State Office; Doughty, Christine A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth and Environmental Sciences

    2017-06-01

    The DOE and BLM identified 285,000 acres of desert land in the Chuckwalla valley in the western U.S., for solar energy development. In addition to several approved solar projects, a pumped storage project was recently proposed to pump nearly 8000 acre-ft-yr of groundwater to store and stabilize solar energy output. This study aims at providing estimates of the amount of naturally-occurring recharge, and to estimate the impact of the pumping on the water table. To better provide the locations and intensity of natural recharge, this study employs an integrated, physically-based hydrologic model, PAWS+CLM, to calculate recharge. Then, the simulated recharge is used in a parameter estimation package to calibrate spatially-distributed K field. This design is to incorporate all available observational data, including soil moisture monitoring stations, groundwater head, and estimates of groundwater conductivity, to constrain the modeling. To address the uncertainty of the soil parameters, an ensemble of simulations are conducted, and the resulting recharges are either rejected or accepted based on calibrated groundwater head and local variation of the K field. The results indicate that the natural total inflow to the study domain is between 7107 and 12,772 afy. During the initial-fill phase of pumped storage project, the total outflow exceeds the upper bound estimate of the inflow. If the initial-fill is annualized to 20 years, the average pumping is more than the lower bound of inflows. The results indicate after adding the pumped storage project, the system will nearing, if not exceeding, its maximum renewable pumping capacity. The accepted recharges lead to a drawdown range of 24 to 45 ft for an assumed specific yield of 0.05. However, the drawdown is sensitive to this parameter, whereas there is insufficient data to adequately constrain this parameter.

  5. A modeling approach to estimate the solar disinfection of viral indicator organisms in waste stabilization ponds and surface waters.

    Science.gov (United States)

    Kohn, Tamar; Mattle, Michael J; Minella, Marco; Vione, Davide

    2016-01-01

    Sunlight is known to be a pertinent factor governing the infectivity of waterborne viruses in the environment. Sunlight inactivates viruses via endogenous inactivation (promoted by absorption of solar light in the UVB range by the virus) and exogenous processes (promoted by adsorption of sunlight by external chromophores, which subsequently generate inactivating reactive species). The extent of inactivation is still difficult to predict, as it depends on multiple parameters including virus characteristics, solution composition, season and geographical location. In this work, we adapted a model typically used to estimate the photodegradation of organic pollutants, APEX, to explore the fate of two commonly used surrogates of human viruses (coliphages MS2 and ϕX174) in waste stabilization pond and natural surface water. Based on experimental data obtained in previous work, we modeled virus inactivation as a function of water depth and composition, as well as season and latitude, and we apportioned the contributions of the different inactivation processes to total inactivation. Model results showed that ϕX174 is inactivated more readily than MS2, except at latitudes >60°. ϕX174 inactivation varies greatly with both season (20-fold) and latitude (10-fold between 0 and 60°), and is dominated by endogenous inactivation under all solution conditions considered. In contrast, exogenous processes contribute significantly to MS2 inactivation. Because exogenous inactivation can be promoted by longer wavelengths, which are less affected by changes in season and latitude, MS2 exhibits smaller fluctuations in inactivation throughout the year (10-fold) and across the globe (3-fold between 0 and 60°) compared to ϕX174. While a full model validation is currently not possible due to the lack of sufficient field data, our estimated inactivation rates corresponded well to those reported in field studies. Overall, this study constitutes a step toward estimating microbial water

  6. Basics of Solar Heating & Hot Water Systems.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    In presenting the basics of solar heating and hot water systems, this publication is organized from the general to the specific. It begins by presenting functional and operational descriptions of solar heating and domestic hot water systems, outlining the basic concepts and terminology. This is followed by a description of solar energy utilization…

  7. Attenuation of Visible Solar Radiation in the Upper Water Column: A Model Based on IOPs

    National Research Council Canada - National Science Library

    Lee, ZhongPing; Du, KePing; Arnone, Robert; Liew, SooChin; Penta, Bradley

    2005-01-01

    .... Currently, KPAR is estimated based on chlorophyll concentration ([C]) from ocean color. This kind of approach works well for waters where all optical properties can be adequately described by values of [C...

  8. Smart solar tanks for small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Andersen, Elsa; Knudsen, Søren

    2005-01-01

    Investigation of small SDHW systems based on smart solar tanks are presented. The domestic water in a smart solar tank can be heated both by solar collectors and by means of an auxiliary energy supply system. The auxiliary energy supply system – in this study electric heating elements – heats up...... systems, based on differently designed smart solar tanks and a traditional SDHW system were investigated by means of laboratory experiments and theoretical calculations. The investigations showed that the yearly thermal performance of SDHW systems with smart solar tanks is 5-35% higher than the thermal...... performance of traditional SDHW systems. Estimates indicate that the performance/cost ratio can be improved by up to 25% by using a smart solar tank instead of a traditional tank when the backup energy system is electric heating elements. Further, smart solar tanks are suitable for unknown, variable, large...

  9. Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide.

    Science.gov (United States)

    Pardeshi, S K; Patil, A B

    2009-04-15

    Photocatalytic degradation (PCD) of resorcinol a potent endocrine disrupting chemical in aqueous medium was investigated by ZnO under sunlight irradiation in a batch photoreactor. The influence of various parameters such as photocatalyst amount, initial concentration of resorcinol and pH was examined for maximum PCD of resorcinol. A considerable influence of pH upon the chemical oxygen demand (COD) disappearance was observed. In general, neutral or basic pH is favorable for COD removal of resorcinol. PCD intermediates were identified using FTIR and GC/MS. Two of the initial oxidation intermediates detected were 1,2,4-trihydroxy-benzene and 1,2,3-trihydroxy-benzene. FTIR studies revealed 1,2,4-trihydroxy-benzene as the major PCD intermediate. A working photodegradation mechanism is also suggested for PCD of resorcinol. This work envisages the great potential that sunlight mediated photocatalysis has in the removal of resorcinol from waste water.

  10. Modelling solar-like oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Eggenberger, P; Miglio, A [Institut d' Astrophysique et de Geophysique de l' Universite de Liege, 17 Allee du 6 Aout, B-4000 Liege (Belgium); Carrier, F [Institute of Astronomy, University of Leuven, Celestijnenlaan 200 D, B-3001 Leuven (Belgium); Mathis, S [CEA/DSM/DAPNIA/Service d' Astrophysique, CEA/Saclay, AIM-Unite Mixte de Recherche CEA-CNRS-Universite Paris VII, UMR 7158, 91191 Gif-sur-Yvette Cedex (France)], E-mail: eggenberger@Qastro.ulg.ac.be

    2008-10-15

    The computation of models of stars for which solar-like oscillations have been observed is discussed. After a brief intoduction on the observations of solar-like oscillations, the modelling of isolated stars and of stars belonging to a binary system is presented with specific examples of recent theoretical calibrations. Finally the input physics introduced in stellar evolution codes for the computation of solar-type stars is discussed with a peculiar emphasis on the modelling of rotation for these stars.

  11. Solar Energy for Space Heating & Hot Water.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    This pamphlet reviews the direct transfer of solar energy into heat, particularly for the purpose of providing space and hot water heating needs. Owners of buildings and homes are provided with a basic understanding of solar heating and hot water systems: what they are, how they perform, the energy savings possible, and the cost factors involved.…

  12. OUT Success Stories: Solar Hot Water Technology

    Energy Technology Data Exchange (ETDEWEB)

    Clyne, R.

    2000-08-31

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  13. OUT Success Stories: Solar Hot Water Technology

    Science.gov (United States)

    Clyne, R.

    2000-08-01

    Solar hot water technology was made great strides in the past two decades. Every home, commercial building, and industrial facility requires hot water. DOE has helped to develop reliable and durable solar hot water systems. For industrial applications, the growth potential lies in large-scale systems, using flat-plate and trough-type collectors. Flat-plate collectors are commonly used in residential hot water systems and can be integrated into the architectural design of the building.

  14. Intracellular mechanisms of solar water disinfection

    Science.gov (United States)

    Castro-Alférez, María; Polo-López, María Inmaculada; Fernández-Ibáñez, Pilar

    2016-12-01

    Solar water disinfection (SODIS) is a zero-cost intervention measure to disinfect drinking water in areas of poor access to improved water sources, used by more than 6 million people in the world. The bactericidal action of solar radiation in water has been widely proven, nevertheless the causes for this remain still unclear. Scientific literature points out that generation of reactive oxygen species (ROS) inside microorganisms promoted by solar light absorption is the main reason. For the first time, this work reports on the experimental measurement of accumulated intracellular ROS in E. coli during solar irradiation. For this experimental achievement, a modified protocol based on the fluorescent probe dichlorodihydrofluorescein diacetate (DCFH-DA), widely used for oxidative stress in eukaryotic cells, has been tested and validated for E. coli. Our results demonstrate that ROS and their accumulated oxidative damages at intracellular level are key in solar water disinfection.

  15. Prototype solar domestic hot water systems

    Science.gov (United States)

    1978-01-01

    Construction of a double wall heat exchanger using soft copper tube coiled around a hot water storage tank was completed and preliminary tests were conducted. Solar transport water to tank potable water heat exchange tests were performed with a specially constructed test stand. Work was done to improve the component hardware and system design for the solar water heater. The installation of both a direct feed system and a double wall heat exchanger system provided experience and site data to enable informative decisions to be made as the solar market expands into areas where freeze protection is required.

  16. About the standard solar model

    International Nuclear Information System (INIS)

    Cahen, S.

    1986-07-01

    A discussion of the still controversial solar helium content is presented, based on a comparison of recent standard solar models. Our last model yields an helium mass fraction ∼0.276, 6.4 SNU on 37 Cl and 126 SNU on 71 Ga

  17. Collective solar hot water: best practices

    International Nuclear Information System (INIS)

    Beutin, Philippe; Grouzard, Patrice; Coroller, Francoise

    2005-10-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a collection of good practices concerning the selection and installation of collective solar water heating systems in France. A first note presents the Garantie de Resultats solaires (GRS - Guarantee of Solar Results), a kind of certification that gives a long term guarantee of the annual solar energy produced quantity as a function of the hot water consumption. An overview of the collective solar market is given, followed by informations on the financial incentives for feasibility studies and installations, the technical design and optimization of a collective solar project, its economic assessment, etc. Numerous examples of collective of solar heating operations in collective buildings are presented, in various regions of France, in the east (Alsace), the center (Auvergne, Ile de France (Paris region)), and the south (Languedoc-Roussillon, Midi-Pyrennes, PACA), giving technical data, financing, partnerships, etc

  18. Water purification using solar radiation in Nigeria

    International Nuclear Information System (INIS)

    Udounwa, A.E.; Osuji, R.U.

    2005-12-01

    In developing countries, lack of safe and reliable drinking water constitutes a major problem. Contaminated water is the major cause of most water borne diseases like diarrhoea. Disinfection of water is accomplished by a number of different physical - chemical treatments including boiling, application of chlorine and filtration techniques. Solar energy, which is universally available, can also be used effectively in this process, that is, to deactivate the micro-organisms present in this contaminated water thereby improving its microbiological quality. This treatment process is called solar water disinfection. This paper therefore appraises the extent to which research work has been done as regards purification of water using solar radiation in Nigeria vis-a-vis outside the country. It is hoped that it will serve as a wake-up-call for Nigerians especially those in remote areas with no treated pipe borne water supply. The problems and prospects of this technology as well as the policy implications are presented. (author)

  19. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM)

    OpenAIRE

    Miqdam T. Chaichan; Hussein A. Kazem

    2015-01-01

    This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temp...

  20. Water Impacts of High Solar PV Electricity Penetration

    Energy Technology Data Exchange (ETDEWEB)

    Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Cohen, Stuart [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-09-01

    This analysis provides a detailed national and regional description of the water-related impacts and constraints of high solar electricity penetration scenarios in the U.S. in 2030 and 2050. A modified version of the Regional Energy Deployment System (ReEDS) model that incorporates water resource availability and costs as a constraint in each of its 134 Balancing Area (BA) regions was utilized to explore national and regional differences in water use impacts and solar deployment locations under different solar energy cost and water availability scenarios (Macknick et al. 2015). Water resource availability and cost data are from recently completed research at Sandia National Laboratories (Tidwell et al. 2013a). Scenarios analyzed include two business-as-usual solar energy cost cases, one with and one without considering available water resources, and four solar energy cost cases that meet the SunShot cost goals (i.e., $1/watt for utility-scale PV systems), with varying levels of water availability restrictions. This analysis provides insight into the role solar energy technologies have in the broader electricity sector under scenarios of water constraints.

  1. Large Bandgap Semiconductors for Solar Water Splitting

    DEFF Research Database (Denmark)

    Malizia, Mauro

    Photoelectrochemical water splitting represents an eco-friendly technology that could enable the production of hydrogen using water as reactant and solar energy as primary energy source. The exploitation of solar energy for the production of hydrogen would help modern society to reduce the reliance...... (bismuth vanadate) was investigated in view of combining this 2.4 eV large bandgap semiconductor with a Si back-illuminated photocathode. A device obtained by mechanical stacking of BiVO4 photoanode and standard Si photocathode performs non-assisted water splitting under illumination with Solar......-to-Hydrogen efficiency lower than 0.5%. In addition, BiVO4 was synthesized on the back-side of a Si back-illuminated photocathode to produce a preliminary monolithic solar water splitting device.The Faradaic efficiency of different types of catalysts for the electrochemical production of hydrogen or oxygen was evaluated...

  2. Basic principles of solar water heating

    CSIR Research Space (South Africa)

    Page-Shipp, RJ

    1980-09-10

    Full Text Available This article correctly reflects the principles of Solar Water Heating as they pertain to South African conditions. However, it was written in 1980 and the global energy situation has changed considerably. Furthermore, modern commercial units...

  3. Integrated solar water-heater and solar water cooler performance during winter time

    International Nuclear Information System (INIS)

    Shaikh, N.U.; Siddiqui, M.A

    2012-01-01

    Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

  4. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  5. A mathematical procedure to estimate solar absorptance of shallow water ponds

    International Nuclear Information System (INIS)

    Wu Hongbo; Tang Runsheng; Li Zhimin; Zhong Hao

    2009-01-01

    In this article, a mathematical procedure is developed for estimating solar absorption of shallow water ponds with different pond floor based on the fact that the solar radiation trapped inside the water layer undergoes multiplicative reflection and absorption and on that the solar absorption of water is selective. Theoretical model indicates that the solar absorption of a water pond is related to the reflectivity of the pond floor, the solar spectrum and the water depth. To validate the mathematical model, a concrete water pond measuring 3 x 3 x 0.24 m was constructed. Experimental results indicate that solar reflectivity calculated based on the mathematical model proposed in this work were in good agreement with those measured. For water ponds with a water-permeable floor, such as concrete floor, theoretical calculations of the solar absorptance of a water pond should be done based on the reflectivity of full wet floor, whereas for water ponds with a non-water-permeable floor, theoretical calculations should be done based on the fact that solar reflection on the floor is neither perfect specular reflection nor prefect isotropic diffuse reflection. Results of numerical calculation show that theoretical calculations of solar absorption of a water pond by dividing solar spectrum into six bands were pretty agreement with those by dividing solar spectrum into 20 bands.

  6. Optimum systems design with random input and output applied to solar water heating

    Science.gov (United States)

    Abdel-Malek, L. L.

    1980-03-01

    Solar water heating systems are evaluated. Models were developed to estimate the percentage of energy supplied from the Sun to a household. Since solar water heating systems have random input and output queueing theory, birth and death processes were the major tools in developing the models of evaluation. Microeconomics methods help in determining the optimum size of the solar water heating system design parameters, i.e., the water tank volume and the collector area.

  7. Optimization of solar water heating systems through water replenishment

    International Nuclear Information System (INIS)

    Kulkarni, Govind N.; Kedare, Shireesh B.; Bandyopadhyay, Santanu

    2009-01-01

    In a typical solar water heating system, cold water is replenished into the storage tank as soon as the load is served. However, it is possible to determine the water replenishment profile (i.e., the quantity of the cold makeup water to be supplied to the storage tank over a day) that optimizes the overall system. In this paper, the effect of water replenishment on the system sizing is studied and a novel strategy for water replenishment is proposed to improve the design and performance of solar water heating systems. Based on an analytical technique, an approximate water replenishment profile is proposed to size a solar water heating system near-optimally. The problem is analyzed using a methodology called design space approach. Design space of a solar water heating system identifies all possible and feasible designs on a collector area vs. storage volume diagram. For illustration of the proposed methodology, an example problem is solved. It is observed that the annualized system cost can be reduced by 13.7%. For the cost-optimal system configuration, a reduction of 12.7% in the collector area and 10.2% reduction in the storage volume are observed. The proposed methodology is particularly important and advantageous for large commercial and industrial solar water heating systems

  8. Solar Water Heating System for Biodiesel Production

    Science.gov (United States)

    Syaifurrahman; Usman, A. Gani; Rinjani, Rakasiwi

    2018-02-01

    Nowadays, electricity become very expensive thing in some remote areas. Energy from solar panels give the solution as renewable energy that is environment friendly. West Borneo is located on the equator where the sun shines for almost 10-15 hours/day. Solar water heating system which is includes storage tank and solar collections becomes a cost-effective way to generate the energy. Solar panel heat water is delivered to water in storage tank. Hot water is used as hot fluid in biodiesel jacked reactor. The purposes of this research are to design Solar Water Heating System for Biodiesel Production and measure the rate of heat-transfer water in storage tank. This test has done for 6 days, every day from 8.30 am until 2.30 pm. Storage tank and collection are made from stainless steel and polystyrene a well-insulated. The results show that the heater can be reach at 50ºC for ±2.5 hours and the maximum temperature is 62ºC where the average of light intensity is 1280 lux.

  9. Solar water heating technical support. Technical report for November 1997--April 1998 and final report

    Energy Technology Data Exchange (ETDEWEB)

    Huggins, J.

    1998-10-01

    This progress report covers the time period November 1, 1997 through April 30, 1998, and also summarizes the project as the final report. The topics of the report include certification of solar collectors for water heating systems, modeling and testing of solar collectors and gas water heater backup systems, ratings of collectors for specific climates, and solar pool heating systems.

  10. Modelling of Box Type Solar Cooker Performance in a Tropical ...

    African Journals Online (AJOL)

    Thermal performance model of box type solar cooker with loaded water is presented. The model was developed using the method of Funk to estimate cooking power in terms of climatic and design parameters for box type solar cooker in a tropical environment. Coefficients for each term used in the model were determined ...

  11. Potential for solar water heating in Zimbabwe

    NARCIS (Netherlands)

    Batidzirai, B.|info:eu-repo/dai/nl/341355909; Lysen, E.H.|info:eu-repo/dai/nl/071394923; van Egmond, S.; van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526

    2009-01-01

    This paper discusses the economic, social and environmental benefits from using solar water heating (SWH) in Zimbabwe. By comparing different water heating technology usage in three sectors over a 25-year period, the potential of SWH is demonstrated in alleviating energy and economic problems that

  12. Solar Water Splitting Using Semiconductor Photocatalyst Powders

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-01

    Solar energy conversion is essential to address the gap between energy production and increasing demand. Large scale energy generation from solar energy can only be achieved through equally large scale collection of the solar spectrum. Overall water splitting using heterogeneous photocatalysts with a single semiconductor enables the direct generation of H from photoreactors and is one of the most economical technologies for large-scale production of solar fuels. Efficient photocatalyst materials are essential to make this process feasible for future technologies. To achieve efficient photocatalysis for overall water splitting, all of the parameters involved at different time scales should be improved because the overall efficiency is obtained by the multiplication of all these fundamental efficiencies. Accumulation of knowledge ranging from solid-state physics to electrochemistry and a multidisciplinary approach to conduct various measurements are inevitable to be able to understand photocatalysis fully and to improve its efficiency.

  13. Economics of residential solar hot water heating systems in Malaysia

    International Nuclear Information System (INIS)

    Abdulmula, Ahmed Mohamed Omer; Sopian, Kamaruzzaman; Haj Othman, Mohd Yosof

    2006-01-01

    Malaysia has favorable climatic conditions for the development of solar energy due to the abundant sunshine and is considered good for harnessing energy from the sun. This is because solar hot water can represent the large energy consumer in Malaysian households but, because of the high initial cost of Solar Water Heating Systems (SWHSs) and easily to install and relatively inexpensive to purchase electric water heaters, many Malyaysian families are still using Electric Water Heaters to hot their water needs. This paper is presented the comparing of techno-economic feasibility of some models of SWHS from Malaysian's market with the Electric Water Heaters )EWH) by study the annual cost of operation for both systems. The result shows that the annual cost of the electrical water heater becomes greater than than the annual cost of the SWHS for all models in long-team run so it is advantageous for the family to use the solar water heater, at least after 4 years. In addition with installation SWHS the families can get long-term economical benefits, environment friendly and also can doing its part to reduce this country's dependence on foreign oil that is price increase day after day.(Author)

  14. The Character of the Solar Wind, Surface Interactions, and Water

    Science.gov (United States)

    Farrell, William M.

    2011-01-01

    We discuss the key characteristics of the proton-rich solar wind and describe how it may interact with the lunar surface. We suggest that solar wind can be both a source and loss of water/OH related volatiles, and review models showing both possibilities. Energy from the Sun in the form of radiation and solar wind plasma are in constant interaction with the lunar surface. As such, there is a solar-lunar energy connection, where solar energy and matter are continually bombarding the lunar surface, acting at the largest scale to erode the surface at 0.2 Angstroms per year via ion sputtering [1]. Figure 1 illustrates this dynamically Sun-Moon system.

  15. Solar photovoltaic water pumping for remote locations

    International Nuclear Information System (INIS)

    Meah, Kala; Fletcher, Steven; Ula, Sadrul

    2008-01-01

    Many parts of the world as well as the western US are rural in nature and consequently do not have electrical distribution lines in many parts of villages, farms, and ranches. Distribution line extension costs can run from USD 10,000 to USD 16,000/km, thereby making availability of electricity to small water pumping projects economically unattractive. But, ground water and sunlight are available, which make solar photovoltaic (SPV) powered water pumping more cost effective in these areas' small scale applications. Many western states including Wyoming are passing through the sixth year of drought with the consequent shortages of water for many applications. The Wyoming State Climatologist is predicting a possible 5-10 years of drought. Drought impacts the surface water right away, while it takes much longer to impact the underground aquifers. To mitigate the effect on the livestock and wildlife, Wyoming Governor Dave Freudenthal initiated a solar water pumping initiative in cooperation with the University of Wyoming, County Conservation Districts, Rural Electric Cooperatives, and ranching organizations. Solar water pumping has several advantages over traditional systems; for example, diesel or propane engines require not only expensive fuels, they also create noise and air pollution in many remote pristine areas. Solar systems are environment friendly, low maintenance, and have no fuel cost. In this paper the design, installation, site selection, and performance monitoring of the solar system for small-scale remote water pumping will be presented. This paper also presents technical, environmental, and economic benefits of the SPV water pumping system compared to stand alone generator and electric utility. (author)

  16. Solar system for domestic hot water and space heating

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, W. [Arbeitsgemeinschaf Erneubare Energie, Gleisdorf (Austria)

    1997-12-31

    The solar thermal markets, different types of solar systems for hot water and space heating, the dimensioning and the components of solar heating systems, the properties of the systems are reviewed in this presentation

  17. Water jacket for solid particle solar receiver

    Energy Technology Data Exchange (ETDEWEB)

    Wasyluk, David T.

    2018-03-20

    A solar receiver includes: water jacket panels each having a light-receiving side and a back side with a watertight sealed plenum defined in-between; light apertures passing through the watertight sealed plenums to receive light from the light-receiving sides of the water jacket panels; a heat transfer medium gap defined between the back sides of the water jacket panels and a cylindrical back plate; and light channeling tubes optically coupled with the light apertures and extending into the heat transfer medium gap. In some embodiments ends of the light apertures at the light receiving side of the water jacket panel are welded together to define at least a portion of the light-receiving side. A cylindrical solar receiver may be constructed using a plurality of such water jacket panels arranged with their light-receiving sides facing outward.

  18. Considering Planetary Constraints and Dynamic Screening in Solar Evolution Modeling

    Science.gov (United States)

    Wood, Suzannah R.; Mussack, Katie; Guzik, Joyce A.

    2018-01-01

    The ‘faint early sun problem’ remains unsolved. This problem consists of the apparent contradiction between the standard solar model prediction of lower luminosity (70% of current luminosity) and the observations of liquid water on early Earth and Mars. The presence of liquid water on early Earth and Mars should not be neglected and should be used as a constraint for solar evolution modeling. In addition, modifications to standard solar models are needed to address the discrepancy with solar structure inferred from helioseismology given the latest solar abundance determinations. Here, we will utilize the three different solar abundances: GN93 (Grevesse & Noels, 1993), AGS05 (Asplund et al., 2005), AGSS09 (Asplund et al., 2009). Here, we propose an early mass loss model with an initial solar mass between 1.07 and 1.15 solar masses and an exponentially decreasing mass-loss rate to meet conditions in the early solar system (Wood et al, submitted). Additionally, we investigate the effects of dynamic screening and the new OPLIB opacities from Los Alamos (Colgan et al., 2016). We show the effects of these modifications to the standard solar evolution models on the interior structure, neutrino fluxes, sound speed, p-mode frequencies, convection zone depth, and envelope helium and element abundance of the model sun at the present day.

  19. Energy Primer: Solar, Water, Wind, and Biofuels.

    Science.gov (United States)

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  20. Solar water heating in the hotel industry

    Energy Technology Data Exchange (ETDEWEB)

    Urbanek, A.

    1981-01-01

    There is an increasing number of hotels, pensions, guest-houses and boarding-houses whose owners attempt to lower their energy cost - especially for water heating in summer - by installing solar systems. The article presents some examples of buildings in West Germany.

  1. The Viability of Solar Energy for Domestic Water Heating in ...

    African Journals Online (AJOL)

    Investigation of the possible use of solar energy for domestic water heating is conducted for seven representative Ethiopian cities. In this study, the transient performance of the system is computed using a numerical heat transfer model of a flat-plate collector from the input of average annual climatic data and collector ...

  2. Solar Water Heating with Low-Cost Plastic Systems (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Newly developed solar water heating technology can help Federal agencies cost effectively meet the EISA requirements for solar water heating in new construction and major renovations. This document provides design considerations, application, economics, and maintenance information and resources.

  3. Solar Hot Water for an Industrial Laundry--Fresno, California

    Science.gov (United States)

    1982-01-01

    Final report describes an integrated wastewater-heat recovery system and solar preheating system to supply part of hot-water requirements of an industrial laundry. Large retrofit solar-water-heating system uses lightweight collectors.

  4. Modeling a Shallow Solar Dynamo

    Science.gov (United States)

    Schatten, Kenneth H.

    2009-03-01

    Photospheric ephemeral regions (EPRs) cover the Sun like a magnetic carpet. From this, we update the Babcock - Leighton solar dynamo. Rather than sunspot fields appearing in the photosphere de novo from eruptions originating in the deep interior, we consider that sunspots form directly in the photosphere by a rapid accumulation of like-sign field from EPRs. This would only occur during special circumstances: locations and times when the temperature structure is highly superadiabatic and contains a large subsurface horizontal magnetic field (only present in the Sun’s lower latitudes). When these conditions are met, superadiabatic percolation occurs, wherein an inflow and downflow of gas scours the surface of EPRs to form active regions. When these conditions are not met, magnetic elements undergo normal percolation, wherein magnetic elements move about the photosphere in Brownian-type motions. Cellular automata (CA) models are developed that allow these processes to be calculated and thereby both small-scale and large-scale models of magnetic motions can be obtained. The small-scale model is compared with active region development and Hinode observations. The large-scale CA model offers a solar dynamo, which suggests that fields from decaying bipolar magnetic regions (BMRs) drift on the photosphere driven by subsurface magnetic forces. These models are related to observations and are shown to support Waldmeier’s findings of an inverse relationship between solar cycle length and cycle size. Evidence for significant amounts of deep magnetic activity could disprove the model presented here, but recent helioseismic observations of “butterfly patterns” at depth are likely just a reflection of surface activity. Their existence seems to support the contention made here that the field and flow separate, allowing cool, relatively field-free downdrafts to descend with little field into the nether worlds of the solar interior. There they heat by compression to form a

  5. Numerical study of a water distillation system using solar energy

    International Nuclear Information System (INIS)

    Zarzoum, K.; Zhani, K.; Bacha, H. Ben

    2016-01-01

    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results

  6. Numerical study of a water distillation system using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Zarzoum, K.; Zhani, K. [Sfax University, (Turkey); Bacha, H. Ben [Prince Sattam Bin Abdulaziz University, Alkharj (Saudi Arabia)

    2016-02-15

    This paper tackles an optimization approach in order to boost the fresh water production of a new design of a solar still which is located at Sfax engineering national school in Tunisia. This optimization approach is based upon the above mentioned design's improvement by coupling the conventional solar still into at a condenser, solar air and water collector and humidifier. This new concept of a distiller solar still using humidification- dehumidification processes (HD) is exploited for the desalination purpose. As a result of this work, the humidification- dehumidification processes have an essential effect in improving the solar still performance. Performance has been predicted theoretically in terms of water and inner glass cover temperatures, the inlet temperature of air and water of the new concept of distiller on water condensation rate and fresh water production. A general model based on heat and mass transfers in each component of the unit has been developed in steady dynamic regime. The developed model is used, simulating the HD system, to investigate the influence of the meteorological and operating parameters on the system productivity. The obtained set of ordinary differential equations has been converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to simulate the HD system in order to investigate the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions. The obtained results were compared with those of other studies and the comparison gives a good validity of the present results.

  7. Models of Solar Irradiance Variations: Current Status

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Models of Solar Irradiance Variations: Current Status. Natalie A. ... Regular monitoring of solar irradiance has been carried out since 1978 to show that solar total and spectral irradiance varies at different time scales. Whereas ... Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany.

  8. Water solar distiller productivity enhancement using concentrating solar water heater and phase change material (PCM

    Directory of Open Access Journals (Sweden)

    Miqdam T. Chaichan

    2015-03-01

    Full Text Available This paper investigates usage of thermal energy storage extracted from concentrating solar heater for water distillation. Paraffin wax selected as a suitable phase change material, and it was used for storing thermal energy in two different insulated treasurers. The paraffin wax is receiving hot water from concentrating solar dish. This solar energy stored in PCM as latent heat energy. Solar energy stored in a day time with a large quantity, and some heat retrieved for later use. Water’s temperature measured in a definite interval of time. Four cases were studied: using water as storage material with and without solar tracker. Also, PCM was as thermal storage material with and without solar tracker.The system working time was increased to about 5 h with sun tracker by concentrating dish and adding PCM to the system. The system concentrating efficiency, heating efficiency, and system productivity, has increased by about 64.07%, 112.87%, and 307.54%, respectively. The system working time increased to 3 h when PCM added without sun tracker. Also, the system concentrating efficiency increased by about 50.47%, and the system heating efficiency increased by about 41.63%. Moreover, the system productivity increased by about 180%.

  9. Flat plate solar collector for water pre-heating using concentrated solar power (CSP)

    Science.gov (United States)

    Peris, Leonard Sunny; Shekh, Md. Al Amin; Sarker, Imran

    2017-12-01

    Numerous attempt and experimental conduction on different methods to harness energy from renewable sources are being conducted. This study is a contribution to the purpose of harnessing solar energy as a renewable source by using flat plate solar collector medium to preheat water. Basic theory of solar radiation and heat convection in water (working fluid) has been combined with heat conduction process by using copper tubes and aluminum absorber plate in a closed conduit, covered with a glazed through glass medium. By this experimental conduction, a temperature elevation of 35°C in 10 minutes duration which is of 61.58% efficiency range (maximum) has been achieved. The obtained data and experimental findings are validated with the theoretical formulation and an experimental demonstration model. A cost effective and simple form of heat energy extraction method for space heating/power generation has been thoroughly discussed with possible industrial implementation possibilities. Under-developed and developing countries can take this work as an illustration for renewable energy utilization for sustainable energy prospect. Also a full structure based data to derive concentrated solar energy in any geographical location of Bangladesh has been outlined in this study. These research findings can contribute to a large extent for setting up any solar based power plant in Bangladesh irrespective of its installation type.

  10. Solar water heating system for a lunar base

    Science.gov (United States)

    Somers, Richard E.; Haynes, R. Daniel

    1992-01-01

    An investigation of the feasibility of using a solar water heater for a lunar base is described. During the investigation, computer codes were developed to model the lunar base configuration, lunar orbit, and heating systems. Numerous collector geometries, orientation variations, and system options were identified and analyzed. The results indicate that the recommended solar water heater could provide 88 percent of the design load and would not require changes in the overall lunar base design. The system would give a 'safe-haven' water heating capability and use only 7 percent to 10 percent as much electricity as an electric heating system. As a result, a fixed position photovoltaic array can be reduced by 21 sq m.

  11. Modeling solar radiation at the Earth's surface recent advances

    CERN Document Server

    Badescu, Viorel

    2008-01-01

    Solar radiation data is important for a wide range of applications, e.g. in engineering, agriculture, health sector, and in many fields of the natural sciences. A few examples showing the diversity of applications may include: architecture and building design e.g. air conditioning and cooling systems; solar heating system design and use; solar power generation; weather and climate prediction models; evaporation and irrigation; calculation of water requirements for crops; monitoring plant growth and disease control; skin cancer research. Solar radiation data must be provided in a variety of f

  12. Purification Of Water From Nsukka Water Pond Using Solar Still.

    Directory of Open Access Journals (Sweden)

    Ugwuoke E.C

    2015-08-01

    Full Text Available Abstract This work presents the analysis of a solar water distillation system. There is important need for good drinking water in the world today due to harmful effect of water borne diseases. Most water from rivers ponds seas are either salty or brackish and require purification before drinking. The water used in this work is collected from pond at Nsukka Urban and the experiment was performed at University of Nigeria Nsukka. Twenty litres of water was used for the experiment and 4 litres was obtained as the maximum volume after 10 days .The average temperature recorded during the experiment was 29C. The chemical and physical properties of the distillate correspond to world Health Organization Standard.

  13. Polarization optics of the Brewster's dark patch visible on water surfaces versus solar height and sky conditions: theory, computer modeling, photography, and painting.

    Science.gov (United States)

    Takács, Péter; Barta, András; Pye, David; Horváth, Gábor

    2017-10-20

    When the sun is near the horizon, a circular band with approximately vertically polarized skylight is formed at 90° from the sun, and this skylight is only weakly reflected from the region of the water surface around the Brewster's angle (53° from the nadir). Thus, at low solar heights under a clear sky, an extended dark patch is visible on the water surface when one looks toward the north or south quarter perpendicular to the solar vertical. In this work, we study the radiance distribution of this so-called Brewster's dark patch (BDP) in still water as functions of the solar height and sky conditions. We calculate the pattern of reflectivity R of a water surface for a clear sky and obtain from this idealized situation the shape of the BDP. From three full-sky polarimetric pictures taken about a clear, a partly cloudy, and an overcast sky, we determine the R pattern and compose from that synthetic color pictures showing how the radiance distribution of skylight reflected at the water surface and the BDPs would look under these sky conditions. We also present photographs taken without a linearly polarizing filter about the BDP. Finally, we show a 19th century painting on which a river is seen with a dark region of the water surface, which can be interpreted as an artistic illustration of the BDP.

  14. Modeling and verification of hemispherical solar still using ANSYS CFD

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Hitesh N. [KSV University, Gujarat Power Engineering and Research Institute, Mehsana (India); Shah, P.K. [Silver Oak College of Engineering and Technology, Ahmedabad, Gujarat (India)

    2013-07-01

    In every efficient solar still design, water temperature, vapor temperature and distillate output, and difference between water temperature and inner glass cover temperatures are very important. Here, two dimensional three phase model of hemispherical solar still is made for evaporation as well as condensation process in ANSYS CFD. Simulation results like water temperature, vapor temperature, distillate output compared with actual experimental results of climate conditions of Mehsana (latitude of 23° 59’ and longitude of 72° 38) of hemispherical solar still. Water temperature and distillate output were good agreement with actual experimental results. Study shows that ANSYS-CFD is very powerful as well as efficient tool for design, comparison purpose of hemispherical solar still.

  15. Modeled and Empirical Approaches for Retrieving Columnar Water Vapor from Solar Transmittance Measurements in the 0.72, 0.82, and 0.94 Micrometer Absorption Bands

    Science.gov (United States)

    Ingold, T.; Schmid, B.; Maetzler, C.; Demoulin, P.; Kaempfer, N.

    2000-01-01

    A Sun photometer (18 channels between 300 and 1024 nm) has been used for measuring the columnar content of atmospheric water vapor (CWV) by solar transmittance measurements in absorption bands with channels centered at 719, 817, and 946 nm. The observable is the band-weighted transmittance function defined by the spectral absorption of water vapor and the spectral features of solar irradiance and system response. The transmittance function is approximated by a three-parameter model. Its parameters are determined from MODTRAN and LBLRTM simulations or empirical approaches using CWV data of a dual-channel microwave radiometer (MWR) or a Fourier transform spectrometer (FTS). Data acquired over a 2-year period during 1996-1998 at two different sites in Switzerland, Bern (560 m above sea level (asl)) and Jungfraujoch (3580 m asl) were compared to MWR, radiosonde (RS), and FTS retrievals. At the low-altitude station with an average CWV amount of 15 mm the LBLRTM approach (based on recently corrected line intensities) leads to negligible biases at 719 and 946 nm if compared to an average of MWR, RS, and GPS retrievals. However, at 817 nm an overestimate of 2.7 to 4.3 mm (18-29%) remains. At the high-altitude station with an average CWV amount of 1.4 mm the LBLRTM approaches overestimate the CWV by 1.0, 1.4. and 0.1 mm (58, 76, and 3%) at 719, 817, and 946 nm, compared to the ITS instrument. At the low-altitude station, CWV estimates, based on empirical approaches, agree with the MWR within 0.4 mm (2.5% of the mean); at the high-altitude site with a factor of 10 less water vapor the agreement of the sun photometers (SPM) with the ITS is 0.0 to 0.2 mm (1 to 9% of the mean CWV there). Sensitivity analyses show that for the conditions met at the two stations with CWV ranging from 0.2 to 30 mm, the retrieval errors are smallest if the 946 nm channel is used.

  16. Packaged solar water heating technology: twenty years of progress

    International Nuclear Information System (INIS)

    Morrison, Graham; Wood, Byard

    2000-01-01

    The world market for packaged solar water heaters is reviewed, and descriptions are given of the different types of solar domestic water heaters (SDWH), design concepts for packaged SDWH, thermosyphon SDWH, evacuated insulation and excavated tube collectors, seasonally biased solar collectors, heat pump water heaters, and photovoltaic water heaters. The consumer market value for SDWHs is explained, and the results of a survey of solar water heating are summarised covering advantages, perceived disadvantages, the relative importance of purchase decision factors, experience with system components, and the most frequent maintenance problems. The durability, reliability, and performance of SDWHs are discussed

  17. Control and Modelling of Seawater Desalination Using Solar Technology

    Energy Technology Data Exchange (ETDEWEB)

    Roca, L.; Yebra, L. J.; Berenguel, M.; Alarcon, D. C.

    2006-07-01

    Desalination plants play a fundamental role in fighting the shortage of fresh water in places with plentiful seawater resources. This paper briefly describes a solar desalination system designed, erected and operated in the AQUASOL project at the Plataforma Solar de Almeria (PSA), consisting basically of a CPC (Compound Parabolic Concentrator) solar collector field, two water storage tanks, a multi-effect distillation plant (MED) and a Double Effect Absorption Heat Pump (DEAHP). These subsystems have been modeled to estimate system behaviour and develop control techniques for maintaining optimal operating conditions. (Author)

  18. Models of Solar Irradiance Variations: Current Status

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... Whereas variations on time scales of minutes to hours are due to solar oscillations and granulation, variations on longer time scales are driven by the evolution of the solar surface magnetic field. Here the most recent advances in modelling of solar irradiance variations on time scales longer than a day are ...

  19. Modeling and simulation of photovoltaic solar panel

    International Nuclear Information System (INIS)

    Belarbi, M.; Haddouche, K.; Midoun, A.

    2006-01-01

    In this article, we present a new approach for estimating the model parameters of a photovoltaic solar panel according to the irradiance and temperature. The parameters of the one diode model are given from the knowledge of three operating points: short-circuit, open circuit, and maximum power. In the first step, the adopted approach concerns the resolution of the system of equations constituting the three operating points to write all the model parameters according to series resistance. Secondly, we make an iterative resolution at the optimal operating point by using the Newton-Raphson method to calculate the series resistance value as well as the model parameters. Once the panel model is identified, we consider other equations for taking into account the irradiance and temperature effect. The simulation results show the convergence speed of the model parameters and the possibility of visualizing the electrical behaviour of the panel according to the irradiance and temperature. Let us note that a sensitivity of the algorithm at the optimal operating point was observed owing to the fact that a small variation of the optimal voltage value leads to a very great variation of the identified parameters values. With the identified model, we can develop algorithms of maximum power point tracking, and make simulations of a solar water pumping system.(Author)

  20. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  1. Development of Solar Drying Model for Selected Cambodian Fish Species

    Directory of Open Access Journals (Sweden)

    Anna Hubackova

    2014-01-01

    Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  2. Solar water heaters in China: A new day dawning

    International Nuclear Information System (INIS)

    Han Jingyi; Mol, Arthur P.J.; Lu, Yonglong

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively affluent province, as a case study area to assess the performance of solar water heater utilization in China. The study will focus on institutional setting, economic and technological performance, energy performance, and environmental and social impact. Results show that China has greatly increased solar water heater utilization, which has brought China great economic, environmental and social benefits. However, China is confronted with malfeasant market competition, technical flaws in solar water heater products and social conflict concerning solar water heater installation. For further development of the solar water heater, China should clarify the compulsory installation policy and include solar water heaters into the current 'Home Appliances Going to the Countryside' project; most of the widely used vacuum tube products should be replaced by flat plate products, and the technology improvement should focus on anti-freezing and water saving; the resources of solar water heater market should be consolidated and most of the OEM manufacturers should evolve to ODM and OBM enterprises.

  3. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Directory of Open Access Journals (Sweden)

    Gaaliche Nessreen

    2017-01-01

    Full Text Available Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH and its efficiency, was developed. Modeling through a numerical

  4. An investigation of the Performance of a Conical Solar Water Heater in the Kingdom of Bahrain

    Science.gov (United States)

    Gaaliche, Nessreen; Ayhan, Teoman; Fathallah, Raouf

    2017-11-01

    Domestic water heater corresponds to 25% of the house energy consumption and can play an important role to reduce energy house expenses. Solar energy offers a preferred renewable energy resource because of its economic and environmental advantages. It is considered the best alternative to reduce domestic water heater energy consumption cost. Converting solar energy into heat can be considered among the simplest used systems. Solar thermal conversion is more efficient than solar electrical direct conversion method. Solar water heater systems are particularly easy to use and to repair. The integrated conical solar collector water heater (ICSCWH) is so far the easiest among water heating systems. The ICSCWH converts directly and efficiently the solar flux into heat. In order to expand the utilization of ICSCWH systems, many design modifications have been examined and analyzed. This study provides an experimental investigation and mathematical simulation of an ICSCWH system equipped with a glass cover resulting in the increase of the maximum absorption. Integrating the cone-shaped heat collector with an aluminum spiral pipe flow system may enhance the efficiency of the proposed system. In order to maximize the solar radiation of the system, the solar water heater has been designed in a conical shape, which removes the need to change its orientation toward the sun to receive the maximum sun radiation during the day. In this system, the heating of water has been obtained using the spiral pipe flow without the use of the solar cells and mirrors in order to reduce the total cost. The storage water tank of this system is coupled with a conical solar collector. Based on the above design, the solar water heater has been fabricated and tested. In addition, an analytical modeling approach aiming to predict the flow rate within the conical integrated collector storage solar water heater (ICSSWH) and its efficiency, was developed. Modeling through a numerical simulation approach

  5. Understanding the Ecological Adoption of Solar Water Heaters Among Customers of Island Economies

    Directory of Open Access Journals (Sweden)

    Pudaruth Sharmila

    2017-04-01

    Full Text Available This paper explores the major factors impacting upon the ecological adoption of solar water heaters in Mauritius. The paper applies data reduction technique by using exploratory factor analysis on a sample of 228 respondents and condenses a set of 32 attributes into a list of 8 comprehensible factors impacting upon the sustained adoption of solar water heater in Mauritius. Multiple regression analysis was also conducted to investigate upon the most predictive factor influencing the adoption of solar water heaters in Mauritius. The empirical estimates of the regression analysis have also depicted that the most determining factor pertaining to the ‘government incentives for solar water heaters’ impacts upon the adoption of solar water heaters. These results can be related to sustainable adoption of green energy whereby targeted incentive mechanisms can be formulated with the aim to accelerate and cascade solar energy adoption in emerging economies. A novel conceptual model was also proposed in this paper, whereby, ecological stakeholders in the sustainable arena could use the model as a reference to pave the way to encourage adoption of solar water heating energy. This research represents a different way of understanding ecological customers by developing an expanding on an original scale development for the survey on the ecological adoption of solar water heaters.

  6. Performance Improvement of Solar Water Stills by Using Reflectors

    Directory of Open Access Journals (Sweden)

    Humphrey Hamusonde Maambo

    2016-09-01

    Full Text Available The lack of safe and clean drinking water sources is one of the problems faced in most rural communities in Zambia. Water in these communities is mostly obtained from shallow wells and rivers. However, this water might be potentially contaminated with harmful substances such as pathogenic bacteria and therefore, unsafe for drinking. Solar water distillation represents an important alternative to palliate problems of fresh water shortages. Solar water stills can be used to eliminate harmful substances from contaminated water by treating it using free solar energy before it can be consumed. Therefore, there is a need to improve solar still performance to produce a greater quantity of safe drinking water. One possible method to improve performance is through adding reflectors to solar stills. Reflectors improve performance by increasing the quantity of distillate by about 22.3 % at a water depth of 15 mm and about 2 9% at a water depth of 10 mm when compared to the distillate produced from a still without reflectors. The water produced using solar stills with reflectors was tested and adhered to World Health Organization (WHO drinking water standards. This implies that solar distillation with reflectors could be adopted at a larger scale to produce safer drinking water at a reduced cost.

  7. INFORMATION SUPPLY FOR SOLAR THERMAL SYSTEMS MATHEMATICAL MODELING

    Directory of Open Access Journals (Sweden)

    Kitaytseva Elena Khalilovna

    2017-07-01

    Full Text Available Solar thermal system are its constituent elements with their connection between each other, thermal processes within them and also input/output data. The conjunction of external and internal factors determines the efficiency of solar thermal system. No excess heat as well as its deficiency displays us high level efficiency of system. The initial data for modeling of solar thermal systems functioning are dissimilar. Parameters of system’s equipment are constant. Solar radiation amount and water consumption are variable data. The more close initial data to reality, the more definite simulated result is. The main problem is in unpredictability of water consumption by the reason of daily regime and requirement of each user. In this way user is the most instable element of the system. In this study the input data for mathematical modeling of solar thermal systems was analyzed. The climatic databases and standard specifications of hot water demand were also analyzed. The operability estimation method for solar thermal systems with variable input data was offered. The extent of suitability of any solar thermal system can be defined by certain characteristic. The value of this characteristic displays energy accumulation process.

  8. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.

    2015-01-01

    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  9. Utilization of solar thermal energy in the mining industry: applied case solar thermal systems for hot water heating - Mining camps

    Energy Technology Data Exchange (ETDEWEB)

    Vasquez Mena, Horacio [Portal Sustentable and Enerficaz (Chile)

    2010-07-01

    The paper gives an overview of how solar thermal energy can be used in the mining industry. This is done through a case study of solar thermal systems (STS) for hot water heating in mining camps in Chile. Solar thermal energy has various applications, such as heating and air conditioning. Solar radiation between 600 to 800w/m2 only can be used for solar thermal systems. Solar collectors can be of two types, flat plate or vacuum tube. Various techniques can be used to model solar thermal systems: Transol, RET screen, T-sol, Static model and F-chart. Chile has the great advantage of being one of the countries with the highest levels of solar radiation. Technical data for the solar collector and the heat pump used for the study are given. The collector performance was evaluated throughout the year and the actual results achieved were compared with those projected. The paper concludes that STS are a good source of renewable energy. They are efficient, cheap, and they have a small carbon footprint.

  10. Probabilistic Solar Energetic Particle Models

    Science.gov (United States)

    Adams, James H., Jr.; Dietrich, William F.; Xapsos, Michael A.

    2011-01-01

    To plan and design safe and reliable space missions, it is necessary to take into account the effects of the space radiation environment. This is done by setting the goal of achieving safety and reliability with some desired level of confidence. To achieve this goal, a worst-case space radiation environment at the required confidence level must be obtained. Planning and designing then proceeds, taking into account the effects of this worst-case environment. The result will be a mission that is reliable against the effects of the space radiation environment at the desired confidence level. In this paper we will describe progress toward developing a model that provides worst-case space radiation environments at user-specified confidence levels. We will present a model for worst-case event-integrated solar proton environments that provide the worst-case differential proton spectrum. This model is based on data from IMP-8 and GOES spacecraft that provide a data base extending from 1974 to the present. We will discuss extending this work to create worst-case models for peak flux and mission-integrated fluence for protons. We will also describe plans for similar models for helium and heavier ions.

  11. Renewable Water: Direct Contact Membrane Distillation Coupled With Solar Ponds

    Science.gov (United States)

    Suarez, F. I.; Tyler, S. W.; Childress, A. E.

    2010-12-01

    The exponential population growth and the accelerated increase in the standard of living have increased significantly the global consumption of two precious resources: water and energy. These resources are intrinsically linked and are required to allow a high quality of human life. With sufficient energy, water may be harvested from aquifers, treated for potable reuse, or desalinated from brackish and seawater supplies. Even though the costs of desalination have declined significantly, traditional desalination systems still require large quantities of energy, typically from fossil fuels that will not allow these systems to produce water in a sustainable way. Recent advances in direct contact membrane distillation can take advantage of low-quality or renewable heat to desalinate brackish water, seawater or wastewater. Direct contact membrane distillation operates at low pressures and can use small temperature differences between the feed and permeate water to achieve a significant freshwater production. Therefore, a much broader selection of energy sources can be considered to drive thermal desalination. A promising method for providing renewable source of heat for direct contact membrane distillation is a solar pond, which is an artificially stratified water body that captures solar radiation and stores it as thermal energy at the bottom of the pond. In this work, a direct contact membrane distillation/solar pond coupled system is modeled and tested using a laboratory-scale system. Freshwater production rates on the order of 2 L day-1 per m2 of solar pond (1 L hr-1 per m2 of membrane area) can easily be achieved with minimal operating costs and under low pressures. While these rates are modest, they are six times larger than those produced by other solar pond-powered desalination systems - and they are likely to be increased if heat losses in the laboratory-scale system are reduced. Even more, this system operates at much lower costs than traditional desalination

  12. Models for efficient integration of solar energy

    DEFF Research Database (Denmark)

    Bacher, Peder

    the available flexibility in the system. In the present thesis methods related to operation of solar energy systems and for optimal energy use in buildings are presented. Two approaches for forecasting of solar power based on numerical weather predictions (NWPs) are presented, they are applied to forecast...... the power output from PV and solar thermal collector systems. The first approach is based on a developed statistical clear-sky model, which is used for estimating the clear-sky output solely based on observations of the output. This enables local effects such as shading from trees to be taken into account....... The second approach to solar power forecasting is based on conditional parametric modelling. It is well suited for forecasting of solar thermal power, since is it can be make non-linear in the inputs. The approach is also extended to a probabilistic solar power forecasting model. The statistical clear...

  13. CFD Modeling and Experimental Validation of a Solar Still

    Directory of Open Access Journals (Sweden)

    Mahmood Tahir

    2017-01-01

    Full Text Available Earth is the densest planet of the solar system with total area of 510.072 million square Km. Over 71.68% of this area is covered with water leaving a scant area of 28.32% for human to inhabit. The fresh water accounts for only 2.5% of the total volume and the rest is the brackish water. Presently, the world is facing chief problem of lack of potable water. This issue can be addressed by converting brackish water into potable through a solar distillation process and solar still is specially assigned for this purpose. Efficiency of a solar still explicitly depends on its design parameters, such as wall material, chamber depth, width and slope of the zcondensing surface. This study was aimed at investigating the solar still parameters using CFD modeling and experimental validation. The simulation data of ANSYS-FLUENT was compared with actual experimental data. A close agreement among the simulated and experimental results was seen in the presented work. It reveals that ANSYS-FLUENT is a potent tool to analyse the efficiency of the new designs of the solar distillation systems.

  14. A revisited standard solar model

    International Nuclear Information System (INIS)

    Casse, M.; Cahen, S.; Doom, C.

    1985-09-01

    Recent models of the Sun, including our own, based on canonical physics and featuring modern reaction rates and radiative opacities are presented. They lead to a presolar helium abundance of approximately 0.28 by mass, at variance with the value of 0.25 proposed by Bahcall et al. (1982, 1985), but in better agreement with the value found in the Orion nebula. Most models predict a neutrino counting rate greater than 6 SNU in the chlorine-argon detector, which is at least 3 times higher than the observed rate. The primordial helium abundance derived from the solar one, on the basis of recent models of helium production from the birth of the Galaxy to the birth of the sun, Ysub(P) approximately 0.26, is significantly higher than the value inferred from observations of extragalactic metal-poor nebulae (Y approximately 0.23). This indicates that the stellar production of helium is probably underestimated by the models considered

  15. Disinfection of contaminated water by using solar irradiation.

    Science.gov (United States)

    Caslake, Laurie F; Connolly, Daniel J; Menon, Vilas; Duncanson, Catriona M; Rojas, Ricardo; Tavakoli, Javad

    2004-02-01

    Contaminated water causes an estimated 6 to 60 billion cases of gastrointestinal illness annually. The majority of these cases occur in rural areas of developing nations where the water supply remains polluted and adequate sanitation is unavailable. A portable, low-cost, and low-maintenance solar unit to disinfect unpotable water has been designed and tested. The solar disinfection unit was tested with both river water and partially processed water from two wastewater treatment plants. In less than 30 min in midday sunlight, the unit eradicated more than 4 log10 U (99.99%) of bacteria contained in highly contaminated water samples. The solar disinfection unit has been field tested by Centro Panamericano de Ingenieria Sanitaria y Ciencias del Ambiente in Lima, Peru. At moderate light intensity, the solar disinfection unit was capable of reducing the bacterial load in a controlled contaminated water sample by 4 log10 U and disinfected approximately 1 liter of water in 30 min.

  16. Solar heating of the produced water of petroleum; Aquecimento solar da agua produzida de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Rogerio Pitanga; Chiavone-Filho, Osvaldo; Bezerra, Magna A. Santos; Melo, Josette Lourdes Sousa de; Oliveira, Jackson Araujo de; Ramos, Rafael E. Moura [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Schuhli, Juliana Bregenski; Andrade, Vivian Tavares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In this work, experimental data of solar heating for common water and saline solution were measured. The solar heater is formed by a flat-plane collector and a thermal reservoir ('boiler'). The objective is to quantify the variation of fluids' temperature, and correlate it to environment variables, especially solar irradiation. Thereby, it is possible to estimate the solar heating of produced water of petroleum. The solar heater is part of a system of treatment of produced water, and its function is to pre-heat the fluid that enters into the solar distiller, increasing the productivity of distilled water. A saline solution that represents produced water was used in the experiments, using sodium chloride (1000 ppm). The experimental data demonstrates that the solar heater is capable to heat the fluid to temperatures close to 70 deg C, reaching temperatures close to 50 deg C even during cloudy days with low solar radiation. Furthermore, the solar collector energy system provides a higher rate of heating and trough of the thermal reservoir the temperature can remain longer. These are important aspects to the integration with solar distillation. (author)

  17. Design of a Solar Water Heating System for Kuti Hall, University of ...

    African Journals Online (AJOL)

    Monthly average daily irradiance in plane of solar collector and Cold water temperature calculated from weather data collated to determine heating load. Mathematical model was developed based on heat transfer, thermal and optical and energy performance of collector. The absorber plate area, dimensions of solar ...

  18. Novel configurations of solar distillation system for potable water production

    Science.gov (United States)

    Riahi, A.; Yusof, K. W.; Sapari, N.; Singh, B. S.; Hashim, A. M.

    2013-06-01

    More and more surface water are polluted with toxic chemicals. Alternatively brackish and saline water are used as feed water to water treatment plants. Expensive desalination process via reverse osmosis or distillation is used in the plants. Thus, this conventional desalination is not suitable for low and medium income countries. A cheaper method is by solar distillation. However the rate of water production by this method is generally considered low. This research attempts to enhance water production of solar distillation by optimizing solar capture, evaporation and condensation processes. Solar radiation data was captured in several days in Perak, Malaysia. Three kinds of experiments were done by fabricating triangular solar distillation systems. First type was conventional solar still, second type was combined with 50 Watt solar photovoltaic panel and 40 Watt Dc heater, while third type was integrated with 12 Volt Solar battery and 40 Watt Dc heater. The present investigation showed that the productivity of second and third systems were 150% and 480% of the conventional still type, respectively. The finding of this research can be expected to have wide application in water supply particularly in areas where fresh surface water is limited.

  19. Towards Highly Efficient Bias-Free Solar Water Splitting

    NARCIS (Netherlands)

    Abdi, F.F.

    2013-01-01

    Solar water splitting has attracted significant attention due to its potential of converting solar to chemical energy. It uses semiconductor to convert sunlight into electron-hole pairs, which then split water into hydrogen and oxygen. The hydrogen can be used as a renewable fuel, or it can serve as

  20. Plasmonic nanoparticle-semiconductor composites for efficient solar water splitting

    NARCIS (Netherlands)

    Valenti, M.; Jonsson, M.P.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A.

    2016-01-01

    Photoelectrochemical (PEC) water splitting is a promising technology that uses light absorbing semiconductors to convert solar energy directly into a chemical fuel (i.e., hydrogen). PEC water splitting has the potential to become a key technology in achieving a sustainable society, if high solar

  1. South Africa. Fertile ground for solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Oirere, Shem

    2012-07-01

    The national solar water heating plan, launched by South Africa's state power utility Eskom, seems to be making good progress with the power generator saying at least 215,000 solar water heater (SWH) systems had been installed by February this year. (orig.)

  2. Effect of pumping head on solar water pumping system

    International Nuclear Information System (INIS)

    Benghanem, M.; Daffallah, K.O.; Alamri, S.N.; Joraid, A.A.

    2014-01-01

    Highlights: • Pumping head affect the performances of PV water pumping systems. • The best system efficiency has been obtained for a deep head. • System efficiency increases with decreasing pumping head during low solar radiation. • System efficiency increases with increasing solar radiation. • Increasing PV array size increases flow rate and system efficiency. - Abstract: The photovoltaic water pumping systems (PVWPS) is considered as one of the most promising areas in photovoltaic applications. The aim of this work is to determine the effect of pumping head on PVWPS using the optimum PV array configuration, adequate to supply a DC Helical pump with an optimum energy amount, under the outdoor conditions of Madinah site. Four different pumping head have been tested (50 m, 60 m, 70 m and 80 m). The tests have been carried for a different heads, under sunny daylight hours, in a real well at a farm in Madinah site. The best system efficiency has been obtained for the head of 80 m which is recommended for SQF submersible pump for a deep head. Also, the flow rate Q depends basically on two factors: the pumping head H and the global solar irradiation Hg. The model developed should be able to predict the flow rate Q for any head chosen with a best accuracy

  3. Solar water heating in Lebanon: Current status and future prospects

    International Nuclear Information System (INIS)

    Houri, Ahmad

    2006-01-01

    The use of solar thermal collectors is an economic alternative for water heating in Lebanon. More than 100,000m 2 of collector area has been installed while the market can accommodate more than 1.5 million m 2 . The domestic sector, which is a main energy-consuming sector, stands to benefit the most from the implementation of such systems. Despite the lack of encouraging legislation, the solar thermal market has been continuously growing over the past decade. Both local manufacturers and importers have been active in the field. In addition, advanced forced circulation and collective systems are being used in large establishments, individual house and apartment buildings. Internationally funded demonstration projects using collective systems have been implemented in recent years with promising results. Simplified initial estimates indicate a payback period of 4-5 years while advanced mathematical models (RETScreen) indicate that the most advanced evacuated tube technology has a payback period of less than 9 years at current market prices. With decreasing cost per square meter of installed collectors, payback periods are expected to rapidly decrease. Regulatory support and tax breaks, if implemented, will have a positive effect on the market. The current increases in diesel prices are increasing demand on solar thermal water heaters. [Author

  4. Improving the yield of fresh water in conventional solar still using low cost energy storage material

    International Nuclear Information System (INIS)

    Harris Samuel, D.G.; Nagarajan, P.K.; Sathyamurthy, Ravishankar; El-Agouz, S.A.; Kannan, E.

    2016-01-01

    Highlights: • Yield of fresh water from conventional solar still is improved by salt heat energy storage. • Experiments are conducted to analyze the performance. • Payback period of present model with salt heat energy storage is 4 months. - Abstract: As there is a larger need for drinking water, expensive methodologies are employed in order to get portable drinking water. This work aims at improving the yield of freshwater from a conventional solar still using the different low-cost energy storage material. Theoretical and experimental studies are carried out to analyze the performance of a single slope solar still. From this study, it is observed that the yield of freshwater from the solar still with spherical ball salt storage achieves the maximum yield of 3.7 kg/m 2 as compared to a conventional single slope solar still with sponge and without any storage material as 2.7 and 2.2 kg/m 2 respectively. The deviations between theoretical and experimental values for with spherical ball salt storage, with sponge and conventional solar still are found as 16.1%, 9.7% and 4.0% respectively. Payback period of the present solar still is found as 4.3 months as it is quicker than other conventional single slope solar still. Finally, single slope solar still with spherical ball heat storage gives low cost of water.

  5. Modeling the Photocatalytic Mineralization in Water of Commercial Formulation of Estrogens 17-β Estradiol (E2 and Nomegestrol Acetate in Contraceptive Pills in a Solar Powered Compound Parabolic Collector

    Directory of Open Access Journals (Sweden)

    José Colina-Márquez

    2015-07-01

    Full Text Available Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC was used to remove commercial estradiol formulations (17-β estradiol and nomegestrol acetate from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC. In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25 and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir–Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM.

  6. Regional Climate Variability Under Model Simulations of Solar Geoengineering

    Science.gov (United States)

    Dagon, Katherine; Schrag, Daniel P.

    2017-11-01

    Solar geoengineering has been shown in modeling studies to successfully mitigate global mean surface temperature changes from greenhouse warming. Changes in land surface hydrology are complicated by the direct effect of carbon dioxide (CO2) on vegetation, which alters the flux of water from the land surface to the atmosphere. Here we investigate changes in boreal summer climate variability under solar geoengineering using multiple ensembles of model simulations. We find that spatially uniform solar geoengineering creates a strong meridional gradient in the Northern Hemisphere temperature response, with less consistent patterns in precipitation, evapotranspiration, and soil moisture. Using regional summertime temperature and precipitation results across 31-member ensembles, we show a decrease in the frequency of heat waves and consecutive dry days under solar geoengineering relative to a high-CO2 world. However in some regions solar geoengineering of this amount does not completely reduce summer heat extremes relative to present day climate. In western Russia and Siberia, an increase in heat waves is connected to a decrease in surface soil moisture that favors persistent high temperatures. Heat waves decrease in the central United States and the Sahel, while the hydrologic response increases terrestrial water storage. Regional changes in soil moisture exhibit trends over time as the model adjusts to solar geoengineering, particularly in Siberia and the Sahel, leading to robust shifts in climate variance. These results suggest potential benefits and complications of large-scale uniform climate intervention schemes.

  7. Solar water heating in apartment buildings - Fundamentals for decision-making on concepts for solar hot-water generation; Solare Wassererwaermung in Mehrfamilienhaeusern - Schlussbericht - Entscheidungsgrundlagen fuer solare Warmwasseraufbereitungskonzepte

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A; Fotsch, P.; Ruf, N. [Basler und Hofmann AG, Ingenieure und Planer, Zuerich (Switzerland)

    2005-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study that looked at various concepts for solar hot-water generation, with the aim of providing an overview of the various systems available to prospective housing investors and builders. Decision-making aids help decision makers adopt a systematic approach to selecting a solar hot-water system appropriate to their needs. Four typical situations are covered - hot water and heating per building, hot water per building and central heating for several buildings, central hot water and heating for several buildings, hot water per apartment and heating per building. The criteria used to judge the various options are discussed. Other topics covered include legionella, scaling-up of boilers and protection against overheating.

  8. Design package for solar domestic hot water system

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    Information used to evaluate the initial design of the Elcam, Inc., Solar Domestic Hot Water System is presented. Included are such items as the system performance specification, detailed design drawings and other information. Elcam, Inc., has developed two solar heated prototype hot water systems and two heat exchangers. The hot water systems consist of the following subsystems: collector, storage, control, transport, auxiliary energy, and government-furnished Site Data Acquisition. The two systems are installed at Tempe, Arizona, and San Diego, California.

  9. Solar model uncertainties, MSW analysis, and future solar neutrino experiments

    International Nuclear Information System (INIS)

    Hata, N.; Langacker, P.

    1994-01-01

    Various theoretical uncertainties in the standard solar model and in the Mikheyev-Smirnov-Wolfenstein (MSW) analysis are discussed. It is shown that two methods give consistent estimations of the solar neutrino flux uncertainties: (a) a simple parametrization of the uncertainties using the core temperature and the ncuelar production cross sections; (b) the Monte Carlo method of Bahcall and Ulrich. In the MSW analysis, we emphasize proper treatments of correlations of theoretical uncertainties between flux components and between different detectors, the Earth effect, and multiple solutions in a combined χ 2 procedure. In particular the large-angle solution of the combined observation is allowed at 95% C.L. only when the theoretical uncertainties are included. If their correlations were ignored, the region would be overestimated. The MSW solutions for various standard and nonstandard solar models are also shown. The MSW predictions of the global solutions for the future solar neutrino experiments are given, emphasizing the measurement of the energy spectrum and the day-night effect in Sudbury Neutrino Observatory and Super-Kamiokande to distinguish the two solutions

  10. Solar warming systems of water installed in Colombia. Photovoltaic solar systems installed in the Country

    International Nuclear Information System (INIS)

    Rodriguez P, F.

    1995-01-01

    Between the systems that operate as of solar energy, the solar collectors to heat water have had wide use and application in the Country. Basically, a solar collector is constituted by: Box, thermal insulator, ducts and transparent roof. Generally, the used materials are the following: As thermal insulator: Polyurethane or glass fiber; as absorbent plate: Copper or aluminum, painting in dull black or selective surfaces; for the ducts: Generally it is used copper pipeline; and for the cover: Common glass or temperate glass

  11. Economic feasibility of solar water and space heating.

    Science.gov (United States)

    Bezdek, R H; Hirshberg, A S; Babcock, W H

    1979-03-23

    The economic feasibility in 1977 and 1978 of solar water and combined water and space heating is analyzed for single-family detached residences and multi-family apartment buildings in four representative U.S. cities: Boston, Massachusetts; Washington, D.C.; Grand Junction, Colorado; and Los Angeles, California. Three economic decision criteria are utilized: payback period, years to recovery of down payment, and years to net positive cash flow. The cost competitiveness of the solar systems compared to heating systems based on electricity, fuel oil, and natural gas is then discussed for each city, and the impact of the federal tax credit for solar energy systems is assessed. It is found that even without federal incentives some solar water and space heating systems are competitive. Enactment of the solar tax credit, however, greatly enhances their competitiveness. The implications of these findings for government tax and energy pricing policies are discussed.

  12. Simple Continuous-Flow Device for Combined Solar Thermal Pasteurization and Solar Disinfection for Water Sterilization

    Directory of Open Access Journals (Sweden)

    Anthony Amsberry

    2015-02-01

    Full Text Available A collection unit and reflective concentrators were used to thermally preheat water to at least 70 °C for thermal pasteurization prior to a solar disinfection stage. The device is offered as a novel combined cycle to be used for either solar thermal pasteurization, during seasonalpeaks in solar irradiation, or as a solar preheat for UV solar disinfection which would occur in a flow-through solar disinfection trough. Inexpensive materials were used in order to simulate in field functionality and applicability to rural regions with low solar input. Solar incidence at Oregon State University, with latitude 45.5°, was recorded during trials conducted during May 1 to June 10 for the purpose of directly scaling the water treatment volumetric flowrate of the device for any future tests in other locations. This scaling by solar irradiation makes this dataset useful for other locations with higher or lower solar input and needing more or less treated water. The simple gravity-fed continuous system presented in this article makes use of a large cold water reservoir, a shell-and-tube heat exchanger, and a solar collector. The system, operating at flowrates of 100-150 mL/min is able to reach outlet temperatures of 74°C.  The system is projected to produce 55 L of purified water daily when operating on a sunny day with peak UV radiation above 700 W/m2. System cost was $55 with an added optional $15 for the shell-and-tube heat exchanger.

  13. Experimental investigation on a semi-circular trough-absorber solar still with baffles for fresh water production

    International Nuclear Information System (INIS)

    Sathyamurthy, Ravishankar; Nagarajan, P.K.; El-Agouz, S.A.; Jaiganesh, V.; Sathish Khanna, P.

    2015-01-01

    Highlights: • Experiments are carried out to analyze the performance. • Baffles are placed in the absorber to increase the residence time of water with solar intensity. • Yield of fresh water from present solar still is 16.66% more than a conventional solar still. • Payback period of the present model is quicker. - Abstract: The main objective of this research is to increase the contact time of water in the basin to enhance yield of fresh water by using a semicircular absorber solar still with baffles. An experimental as well as theoretical investigation is carried out. The productivity and efficiency of present still are analyzed with the influence of the number baffles and the water flow rate. A good agreement between the experimental and theoretical results is observed. The results indicate that, the daily yield of present solar still is higher than that for conventional still approximately by 16.66%. The outlet water temperature present solar still is high subsequently, it can be coupled with multi-state of solar stills to increase productivity. Therefore, the present solar still can be sufficiently extended for other continuous solar desalination systems. Economic analysis concluded that, the payback period of the present model solar still is quicker while comparing it with other solar still

  14. Measurement of atmospheric precipitable water using a solar radiometer. [water vapor absorption effects

    Science.gov (United States)

    Pitts, D. E.; Dillinger, A. E.; Mcallum, W. E.

    1974-01-01

    A technique is described and tested that allows the determination of atmospheric precipitable water from two measurements of solar intensity: one in a water-vapor absorption band and another in a nearby spectral region unaffected by water vapor.

  15. Solar-Powered Desalination: A Modelling and Experimental Study

    Science.gov (United States)

    Leblanc, Jimmy; Andrews, John

    2007-10-01

    Water shortage is becoming one of the major problems worldwide. As such, desalination technologies have been implemented to meet growing demands for fresh water. Among the desalination technologies, thermal desalination, including multi stage flash (MSF) and multi effect evaporation (MEE), is the current leading desalination process. Reverse osmosis (RO) is also being increasingly used. Despite technological improvements, thermal desalination and reverse osmosis continue to be intensive fossil-fuel consumers and contribute to increased levels of greenhouse gases. As energy costs rise, thermal desalination by solar energy and/or low cost waste heat is likely to become increasingly attractive. As part of a project investigating the productive use of saline land and the development of sustainable desalination systems, the feasibility of producing potable water from seawater or brackish water using desalination systems powered by renewable energy in the form of low-temperature solar-thermal sources has been studied. A salinity-gradient solar pond and an evacuated tube solar collector system have been used as heat sources. Solar ponds combine solar energy collection with long-term storage and can provide reliable thermal energy at temperature ranges from 50 to 90 °C. A visual basic computer model of the different multi-stage flash desalination processes coupled with a salinity-gradient solar pond was developed to determine which process is preferable in regards to performance and greenhouse impact. The governing mathematical equations are derived from mass balances, heat energy balances, and heat transfer characteristics. Using the results from the modelling, a small-scale solar-powered desalination system, capable of producing up to 500 litres of fresh water per day, was designed and manufactured. This single-stage flash system consists of two main units: the heat supply and storage system and the flash desalination unit. Two different condenser heat exchanger

  16. Modelling and verification of single slope solar still using ANSYS-CFX

    Energy Technology Data Exchange (ETDEWEB)

    Panchal, Hitesh N. [Research Scholar, Kadi Sarvavishwavidyalaya University, Gandhinagar (India); Shah, P.K. [Principal, Silver Oak College of Engineering and Technology, Ahmedabad (India)

    2011-07-01

    Solar distillation method is an easy, small scale and cost effective technique for providing safe water. It requires an energy input as heat and the solar radiation can be source of energy. Solar still is a device which uses process of solar distillation. Here, a two phase, three dimensional model was made for evaporation as well as condensation process in solar still by using ANSYS CFX method to simulate the present model. Simulation results of solar still compared with actual experiment data of single basin solar still at climate conditions of Mehsana (23{sup o}12' N, 72{sup o}30'). There is a good agreement with experimental results and simulation results of distillate output, water temperature and heat transfer coefficients. Overall study shows the ANSYS CFX is a powerful tool for diagnostic as well as analysis of solar still.

  17. Dynamic Modeling of the Solar Field in Parabolic Trough Solar Power Plants

    Directory of Open Access Journals (Sweden)

    Lourdes A. Barcia

    2015-11-01

    Full Text Available Parabolic trough solar power plants use a thermal fluid to transfer thermal energy from solar radiation to a water-steam Rankine cycle in order to drive a turbine that, coupled to an electrical generator, produces electricity. These plants have a heat transfer fluid (HTF system with the necessary elements to transform solar radiation into heat and to transfer that thermal energy to the water-steam exchangers. In order to get the best possible performance in the Rankine cycle and, hence, in the thermal plant, it is necessary that the thermal fluid reach its maximum temperature when leaving the solar field (SF. Also, it is mandatory that the thermal fluid does not exceed the maximum operating temperature of the HTF, above which it degrades. It must be noted that the optimal temperature of the thermal fluid is difficult to obtain, since solar radiation can change abruptly from one moment to another. The aim of this document is to provide a model of an HTF system that can be used to optimize the control of the temperature of the fluid without interfering with the normal operation of the plant. The results obtained with this model will be contrasted with those obtained in a real plant.

  18. Fabrication and characterization of a slanting-type solar water ...

    African Journals Online (AJOL)

    The system includes four major components; a wooden basin of surface area 0.16 m2, an absorber surface, a slanting glass roof and a condensate channel. Very cheap locally available materials were used to fabricate the solar still. The solar still produced an average of 0.09 m3 of distilled water per day, and this study was ...

  19. Solar water heaters in China: A new day dawning

    NARCIS (Netherlands)

    Han, Jingyi; Mol, A.P.J.; Lu, Y.

    2010-01-01

    Solar thermal utilization, especially the application of solar water heater technology, has developed rapidly in China in recent decades. Manufacturing and marketing developments have been especially strong in provinces such as Zhejiang, Shandong and Jiangsu. This paper takes Zhejiang, a relatively

  20. Solar High Temperature Water-Splitting Cycle with Quantum Boost

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robin [SAIC; Davenport, Roger [SAIC; Talbot, Jan [UCSD; Herz, Richard [UCSD; Genders, David [Electrosynthesis Co.; Symons, Peter [Electrosynthesis Co.; Brown, Lloyd [TChemE

    2014-04-25

    A sulfur family chemical cycle having ammonia as the working fluid and reagent was developed as a cost-effective and efficient hydrogen production technology based on a solar thermochemical water-splitting cycle. The sulfur ammonia (SA) cycle is a renewable and sustainable process that is unique in that it is an all-fluid cycle (i.e., with no solids handling). It uses a moderate temperature solar plant with the solar receiver operating at 800°C. All electricity needed is generated internally from recovered heat. The plant would operate continuously with low cost storage and it is a good potential solar thermochemical hydrogen production cycle for reaching the DOE cost goals. Two approaches were considered for the hydrogen production step of the SA cycle: (1) photocatalytic, and (2) electrolytic oxidation of ammonium sulfite to ammonium sulfate in aqueous solutions. Also, two sub-cycles were evaluated for the oxygen evolution side of the SA cycle: (1) zinc sulfate/zinc oxide, and (2) potassium sulfate/potassium pyrosulfate. The laboratory testing and optimization of all the process steps for each version of the SA cycle were proven in the laboratory or have been fully demonstrated by others, but further optimization is still possible and needed. The solar configuration evolved to a 50 MW(thermal) central receiver system with a North heliostat field, a cavity receiver, and NaCl molten salt storage to allow continuous operation. The H2A economic model was used to optimize and trade-off SA cycle configurations. Parametric studies of chemical plant performance have indicated process efficiencies of ~20%. Although the current process efficiency is technically acceptable, an increased efficiency is needed if the DOE cost targets are to be reached. There are two interrelated areas in which there is the potential for significant efficiency improvements: electrolysis cell voltage and excessive water vaporization. Methods to significantly reduce water evaporation are

  1. Creating a Comprehensive Solar Water Heating Deployment Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Focus Marketing Services

    1999-08-18

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry.

  2. Creating a Comprehensive Solar Water Heating Deployment Strategy

    International Nuclear Information System (INIS)

    Focus Marketing Services

    1999-01-01

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry

  3. The ancient heritage of water ice in the solar system.

    Science.gov (United States)

    Cleeves, L Ilsedore; Bergin, Edwin A; Alexander, Conel M O'D; Du, Fujun; Graninger, Dawn; Öberg, Karin I; Harries, Tim J

    2014-09-26

    Identifying the source of Earth's water is central to understanding the origins of life-fostering environments and to assessing the prevalence of such environments in space. Water throughout the solar system exhibits deuterium-to-hydrogen enrichments, a fossil relic of low-temperature, ion-derived chemistry within either (i) the parent molecular cloud or (ii) the solar nebula protoplanetary disk. Using a comprehensive treatment of disk ionization, we find that ion-driven deuterium pathways are inefficient, which curtails the disk's deuterated water formation and its viability as the sole source for the solar system's water. This finding implies that, if the solar system's formation was typical, abundant interstellar ices are available to all nascent planetary systems. Copyright © 2014, American Association for the Advancement of Science.

  4. New Home Buyer Solar Water Heater Trade-Off Study

    International Nuclear Information System (INIS)

    Symmetrics Marketing Corporation

    1999-01-01

    This report details the results of a research conducted in 1998 and 1999 and outlines a marketing deployment plan designed for businesses interested in marketing solar water heaters in the new home industry

  5. Solar photocatalysis - a possible step in drinking water treatment

    International Nuclear Information System (INIS)

    Ljubas, Davor

    2005-01-01

    Possibility of the use of solar radiation for reduction of Natural Organic Matter (NOM) content in natural lake water, as a source for drinking water preparation, was the topic of this research. Solar radiation alone does not have enough energy for sufficient degradation of NOM, but in combination with heterogeneous photocatalyst-titanium dioxide (TiO 2 ), with or without other chemicals, the degradation potential could increase. In specific geographical conditions in Republic of Croatia, e.g. Adriatic islands or Dalmatia, solar radiation could be used for photocatalytic degradation of natural organic matter (NOM) in surface waters and therewith lighten the process of preparing them to the potable water. Specific quality of the geographical locality appears in fact that it is a very attractive tourist destination, especially in period June-September. In this period the drinking water demand is the biggest and, fortunately, the intensity of the solar radiation, too. So, there is a proportion between the drinking water demand and solar radiation available for the use in drinking water treatment. A number of tests with lake water exposed to solar radiation in non-concentrating reactors were performed and photodegradation of NOM for various combinations of doses and crystal forms of TiO 2 with H 2 O 2 was studied. Irradiation intensity was estimated from global solar radiation measurements. The best performance for the NOM degradation had combination of 1 g/L TiO 2 both anatase and rutile+solar radiation+H 2 O 2 , but - economically - it was not the best combination. An estimation of the biodegradation potential of dissolved organic matter after the photocatalytic step is given, too

  6. Solar space and water heating system installed at Charlottesville, Virginia

    Science.gov (United States)

    1980-01-01

    The solar energy system located at David C. Wilson Neuropsychiatric Hospital, Charlottesville, Virginia, is described. The solar energy system consists of 88 single glazed, Sunworks 'Solector' copper base plate collector modules, hot water coils in the hot air ducts, a Domestic Hot Water (DHW) preheat tank, a 3,000 gallon concrete urethane insulated storage tank and other miscellaneous components. Extracts from the site files, specifications, drawings, installation, operation and maintenance instructions are included.

  7. Tantalum-based semiconductors for solar water splitting.

    Science.gov (United States)

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  8. Relative spectral absorption of solar radiation by water vapor and cloud droplets

    Science.gov (United States)

    Davies, R.; Ridgway, W. L.

    1983-01-01

    A moderate (20/cm) spectral resolution model which accounts for both the highly variable spectral transmission of solar radiation through water vapor within and above cloud, as well as the more slowly varying features of absorption and anisotropic multiple scattering by the cloud droplets, is presented. Results from this model as applied to the case of a typical 1 km thick stratus cloud in a standard atmosphere, with cloud top altitude of 2 km and overhead sun, are discussed, showing the relative importance of water vapor above the cloud, water vapor within the cloud, and cloud droplets on the spectral absorption of solar radiation.

  9. Hot water from the sun: a consumer guide to solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    McPherson, Beth

    2005-02-15

    The following topics are discussed: how solar water heaters work, making good use of the sun, estimating costs and savings, choosing the right dealer/installer, choosing the right system, warranties and contracts, getting a good installation, and living with your solar energy system. The appendices discuss system performance and durability, and provide sources of additional information on solar energy and its applications. (MHR)

  10. Energy efficiency of a solar domestic hot water system

    Science.gov (United States)

    Zukowski, Miroslaw

    2017-11-01

    The solar domestic hot water (SDHW) system located on the campus of Bialystok University of Technology is the object of the research described in the current paper. The solar thermal system is composed of 35 flat plate collectors, 21 evacuated tube collectors and eight hot water tanks with the capacity of 1 m3 of each. Solar facility is equipped with hardware for automatic data collection. Additionally, the weather station located on the roof of the building provides measurements of basic parameters of ambient air and solar radiation. The main objective of Regional Operational Program was the assessment of the effectiveness of this solar energy technology in the climatic conditions of the north-eastern Poland. Energy efficiency of SDHW system was defined in this research as the ratio between the useful heat energy supplied to the domestic hot water system and solar energy incident on the surface of solar panels. Heat loss from water storage tanks, and from the pipe network to the surrounding air, as well as the electrical energy consumed by the pumps have been included in the calculations. The paper presents the detailed results and conclusions obtained from this energy analysis.

  11. NEW MODEL FOR SOLAR RADIATION ESTIMATION FROM ...

    African Journals Online (AJOL)

    Air temperature of monthly mean minimum temperature, maximum temperature and relative humidity obtained from Nigerian Meteorological Agency (NIMET) were used as inputs to the ANFIS model and monthly mean global solar radiation was used as out of the model. Statistical evaluation of the model was done based on ...

  12. Theoretical simulation of small scale psychometric solar water desalination system in semi-arid region

    International Nuclear Information System (INIS)

    Shatat, Mahmoud; Omer, Siddig; Gillott, Mark; Riffat, Saffa

    2013-01-01

    Many countries around the world suffer from water scarcity. This is especially true in remote and semi-arid regions in the Middle East and North Africa (MENA) where per capita water supplies decline as populations increase. This paper presents the results of a theoretical simulation of an affordable small scale solar water desalination plant using the psychometric humidification and dehumidification process coupled with an evacuated tube solar collector with an area of about 2 m 2 . A mathematical model was developed to describe the system's operation. Then a computer program using Simulink Matlab software was developed to provide the governing equations for the theoretical calculations of the humidification and dehumidification processes. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. After the experimental calibration of the mathematical model, a model simulating solar radiation under the climatic conditions in the Middle East region proved that the performance of the system could be improved to produce a considerably higher amount of fresh water, namely up to 17.5 kg/m 2 day. This work suggests that utilizing the concept of humidification and dehumidification, a compact water desalination unit coupled with solar collectors would significantly increase the potable water supply in remote area. It could be a unique solution of water shortages in such areas. -- Highlights: • An affordable small scale desalination system is proposed. • A mathematical model of the desalination system is developed and programmed using Matlab Simulink. • The model describes the psychometric process based on humidification and dehumidification. • The model is used in optimal selection of elements and operating conditions for solar desalination system. • The use of solar water desalination contributes significantly to reducing global warming

  13. Numerical and experimental investigation of thermosyphon solar water heater

    International Nuclear Information System (INIS)

    Zelzouli, Khaled; Guizani, Amenallah; Kerkeni, Chakib

    2014-01-01

    Highlights: • We studied a thermosyphon solar water heater composed of high-performance components. • A differential equations solution technique is investigated. • The influences of the collector and storage losses on the system performance were examined. • The storage losses have more influence on the long-term performance. - Abstract: A glassed flat plate collector with selective black chrome coated absorber and a low wall conductance horizontal storage are combined in order to set up a high performance thermosyphon system. Each component is tested separately before testing the complete system in spring days. During the test period, effect of different inlet water temperatures on the collector performance is studied and results have shown that the collector can reach a high efficiency and high outlet water temperature even for elevated inlet water temperatures. Subsequently, long term system performance is estimated by using a developed numerical model. The proposed model, accurate and gave a good agreement with experimental results, allowed to describe the heat transfer in the storage. It has shown also that the long-term performances are strongly influenced by losses from the storage than losses from the collector

  14. 24 CFR 200.950 - Building product standards and certification program for solar water heating system.

    Science.gov (United States)

    2010-04-01

    ... certification program for solar water heating system. 200.950 Section 200.950 Housing and Urban Development... solar water heating system. (a) Applicable standards. (1) All solar water heating systems shall be...) Document OG-300-93, Operating Guidelines and Minimum Standards for Certifying Solar Water Heating Systems...

  15. Algal Turf Scrubbers: Cleaning Water While Capturing Solar Energy

    International Nuclear Information System (INIS)

    Adey, W.

    2009-01-01

    Algal Turfs and Algal Turf Scrubbers (ATS) Algal Turfs are bio diverse communities of unicellular to filamentous algae of all major algal phyla. Algal Turf Scrubbers (ATS) are bioengineered ecosystems dominated by algal turfs. They clean water to very high quality, and remove CO 2 from the atmosphere by capturing solar energy at rates 10 times that of agriculture and 50 times that of forestry. ATS was invented at the Smithsonian Institution, by scientist, Walter Adey in the 1980s as a tool for controlling water quality in highly diverse model ecosystems. The technology received extensive R and D for aqua cultural, municipal, and industrial water cleaning by Dr. Adey, using venture capital, through the 1990s. Later, Hydro Mentia, Inc., of Ocala, Florida, engineered ATS to landscape scale of 20-50 Mgpd (it is important to note that this is a modular system, capable of expanding to any size.) A 2005 independent study of ATS, by the South Florida Water Management District and the IFAS Institute of the University of Florida, certified ATS as 5-100 times more cost efficient at removing nutrients from Everglades canal waters than the next competitor, the STA, a managed marsh system. ATS and STA were the final contestants in a 15-year study of nine technologies, and ATS was the only technology that created a use able byproduct.

  16. Parameterization models for solar radiation and solar technology applications

    International Nuclear Information System (INIS)

    Khalil, Samy A.

    2008-01-01

    Solar radiation is very important for the evaluation and wide use of solar renewable energy systems. The development of calibration procedures for broadband solar radiation photometric instrumentation and the improvement of broadband solar radiation measurement accuracy have been done. An improved diffuse sky reference and photometric calibration and characterization software for outdoor pyranometer calibrations are outlined. Parameterizations for direct beam, total hemispherical and diffuse sky radiation and solar radiation technology are briefly reviewed. The uncertainties for various broadband solar radiations of solar energy and atmospheric effects are discussed. The varying responsivities of solar radiation with meteorological, statistical and climatological parameters and possibility atmospheric conditions was examined

  17. Experimental investigation of stepped solar still with continuous water circulation

    International Nuclear Information System (INIS)

    El-Agouz, S.A.

    2014-01-01

    Highlights: • Comparison between modified stepped and conventional solar still was carried out. • Effect of storage tank and cotton absorber on productivity was investigated. • Efficiency for modified stepped still is higher than conventional still by 20%. • The day and night efficiency increases by 5% and 3.5% for salt and sea water. - Abstract: This paper presents a modification of stepped solar still with continuous water circulation using a storage tank for sea and salt water. Total dissolved solids (TDS) of seawater and salt water before desalination is 57,100 and 2370 mg/l. A comparison study between modified stepped and conventional solar still was carried out to evaluate the developed desalination system performance under the same climate conditions. The effect of installing a storage tank and cotton black absorber for modified stepped solar still on the distillate productivity was investigated. The results indicate that, the productivity of the modified stepped still is higher than that for conventional still approximately by 43% and 48% for sea and salt water with black absorber respectively, while 53% and 47% of sea and salt water, respectively with cotton absorber. Also, the daily efficiency for modified stepped still is higher than that for conventional still approximately by 20%. The maximum efficiency of modified stepped still is occurring at a feed water flow rate of 1 LPM for sea water and 3 LPM for salt water. Total dissolved solids (TDS) of seawater and salt water after desalination is 41, and 27 mg/l

  18. Solar-assisted gas-energy water-heating feasibility for apartments

    Science.gov (United States)

    Davis, E. S.

    1975-01-01

    Studies of residential energy use, solar-energy technology for buildings, and the requirements for implementing technology in the housing industry led to a project to develop a solar water heater for apartments. A design study for a specific apartment was used to establish a solar water-heater cost model which is based on plumbing contractor bids and manufacturer estimates. The cost model was used to size the system to minimize the annualized cost of hot water. The annualized cost of solar-assisted gas-energy water heating is found to be less expensive than electric water heating but more expensive than gas water heating. The feasibility of a natural gas utility supplying the auxiliary fuel is evaluated. It is estimated that gas-utilizing companies will find it profitable to offer solar water heating as part of a total energy service option or on a lease basis when the price of new base-load supplies of natural gas reaches $2.50-$3.00 per million Btu.

  19. Study of an improved integrated collector-storage solar water heater combined with the photovoltaic cells

    International Nuclear Information System (INIS)

    Ziapour, Behrooz M.; Palideh, Vahid; Mohammadnia, Ali

    2014-01-01

    Highlights: • Simulation of an enhanced ICSSWH system combined with PV panel was conducted. • The present model dose not uses any photovoltaic driven water pump. • High packing factor and tank water mass are caused to high PVT system efficiency. • Larger area of the collector is resulted to lower total PVT system efficiency. - Abstract: A photovoltaic–thermal (PVT) module is a combination of a photovoltaic (PV) panel and a thermal collector for co-generation of heat and electricity. An integrated collector-storage solar water heater (ICSSWH) system, due to its simple and compact structure, offers a promising approach for the solar water heating in the varied climates. The combination of the ICSSWH system with a PV solar system has not been reported. In this paper, simulation of an enhanced ICSSWH system combined with the PV panel has been conducted. The proposed design acts passive. Therefore, it does not use any photovoltaic driven water pump to maintain a flow of water inside the collector. The effects of the solar cell packing factor, the tank water mass and the collector area on the performance of the present PVT system have been investigated. The simulation results showed that the high solar cell packing factor and the tank water mass are caused to the high total PVT system efficiency. Also, larger area of the collector is resulted to lower total PVT system efficiency

  20. Pasteurization of naturally contaminated water with solar energy.

    Science.gov (United States)

    Ciochetti, D A; Metcalf, R H

    1984-02-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 62.8 degrees C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65 degrees C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested.

  1. Validation, Optimization and Simulation of a Solar Thermoelectric Generator Model

    Science.gov (United States)

    Madkhali, Hadi Ali; Hamil, Ali; Lee, HoSung

    2017-12-01

    This study explores thermoelectrics as a viable option for small-scale solar thermal applications. Thermoelectric technology is based on the Seebeck effect, which states that a voltage is induced when a temperature gradient is applied to the junctions of two differing materials. This research proposes to analyze, validate, simulate, and optimize a prototype solar thermoelectric generator (STEG) model in order to increase efficiency. The intent is to further develop STEGs as a viable and productive energy source that limits pollution and reduces the cost of energy production. An empirical study (Kraemer et al. in Nat Mater 10:532, 2011) on the solar thermoelectric generator reported a high efficiency performance of 4.6%. The system had a vacuum glass enclosure, a flat panel (absorber), thermoelectric generator and water circulation for the cold side. The theoretical and numerical approach of this current study validated the experimental results from Kraemer's study to a high degree. The numerical simulation process utilizes a two-stage approach in ANSYS software for Fluent and Thermal-Electric Systems. The solar load model technique uses solar radiation under AM 1.5G conditions in Fluent. This analytical model applies Dr. Ho Sung Lee's theory of optimal design to improve the performance of the STEG system by using dimensionless parameters. Applying this theory, using two cover glasses and radiation shields, the STEG model can achieve a highest efficiency of 7%.

  2. Solar radiation for sea-water desalination and electric power generation via vacuum solar collectors

    International Nuclear Information System (INIS)

    Mottinelli, L.; Reali, M.; El-Nashar, A.M.; Giusiano, F.; Vigotti, R.

    1996-01-01

    The present report concerns the energetic potential of vacuum solar which are rather versatile and efficient devices for converting solar energy into thermal energy. Two main energetic applications have been analysed: the first one for a solar sea water desalination plant which has been operated in Abu Dhabi for the past ten years, the other for a conceptual solar thermoelectric-power plant having a fair thermodynamic efficiency (15-20%). A simple technology for the manufacture of vacuum solar collectors in a standard mechanical shop is being developed in collaboration between ENEL Sp A (DSR-CRIS, Milano) and WED (Abu Dhabi). Such technology should have an important economy-saving potential per se and would also make repair and substitution operations simple enough for the actual operators of the vacuum solar collector system without any need of external assistance. The technic-operative-economical features of the Abu Dhabi solar desalination plant suggest that the use novel simplified vacuum solar collectors could have a considerable technic economical potential. The analysis of the conceptual solar thermo-electric-power plant focuses on its general layout and singles out key technological issues which ought to be addressed in an overall feasibility study. 5 figs., 3 tabs

  3. Parametric studies of an active solar water heating system with ...

    Indian Academy of Sciences (India)

    generated from fossil fuels (Hitam 1999). Solar radiation in Malaysia, ... It means that, 150 L of water per day per family should be enough for hot water consumption in Malaysia. (Zahedi et al 2007). ... thermore, the average daily consumption of electricity per household of five people was assumed to be approximately 15 ...

  4. Performance of solar photovoltaic array fed water pumping system ...

    African Journals Online (AJOL)

    DR OKE

    This paper discusses the design and performance analysis of a solar photovoltaic (SPV) array fed water pumping system utilizing a special class of highly rugged machine with simple drive system called switched reluctance motor (SRM) drive. The proposed method of water pumping system also provides the cost effective ...

  5. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplishing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' problem of science.

  6. Recent developments in solar H 2 generation from water splitting

    Indian Academy of Sciences (India)

    Assistance of metal nanostructures and quantum dots to semiconductors attains vital importance as they are exuberant visible light harvesters and charge carrier amplifiers. Benevolent use of quantum dots in solar water splitting and photoelectrochemical water splitting provides scope to revolutionize the quantum efficiency ...

  7. Two different sources of water for the early solar nebula.

    Science.gov (United States)

    Kupper, Stefan; Tornow, Carmen; Gast, Philipp

    2012-06-01

    Water is essential for life. This is a trivial fact but has profound implications since the forming of life on the early Earth required water. The sources of water and the related amount of delivery depend not only on the conditions on the early Earth itself but also on the evolutionary history of the solar system. Thus we ask where and when water formed in the solar nebula-the precursor of the solar system. In this paper we explore the chemical mechanics for water formation and its expected abundance. This is achieved by studying the parental cloud core of the solar nebula and its gravitational collapse. We have identified two different sources of water for the region of Earth's accretion. The first being the sublimation of the icy mantles of dust grains formed in the parental cloud. The second source is located in the inner region of the collapsing cloud core - the so-called hot corino with a temperature of several hundred Kelvin. There, water is produced efficiently in the gas phase by reactions between neutral molecules. Additionally, we analyse the dependence of the production of water on the initial abundance ratio between carbon and oxygen.

  8. Recent developments in solar H2 generation from water splitting

    Indian Academy of Sciences (India)

    Abstract. Hydrogen production from water and sunlight through photocatalysis could become one of the channels, in the not-so-distant future, to meet a part of ever growing energy demands. However, accomplish- ing solar water splitting through semiconductor particulate photocatalysis seems to be the 'Holy Grail' prob-.

  9. Verification of high-speed solar wind stream forecasts using operational solar wind models

    DEFF Research Database (Denmark)

    Reiss, Martin A.; Temmer, Manuela; Veronig, Astrid M.

    2016-01-01

    and the background solar wind conditions. We found that both solar wind models are capable of predicting the large-scale features of the observed solar wind speed (root-mean-square error, RMSE ≈100 km/s) but tend to either overestimate (ESWF) or underestimate (WSA) the number of high-speed solar wind streams (threat...

  10. Optimization of hybrid system (wind-solar energy) for pumping water ...

    African Journals Online (AJOL)

    This paper presents an optimization method for a hybrid (wind-solar) autonomous system designed for pumping water. This method is based on mathematical models demonstrated for the analysis and control of the performance of the various components of the hybrid system. These models provide an estimate of ...

  11. Solar hot water space heating system. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, T

    1979-08-13

    A retrofit solar heating system was installed on Madison Hall at Jordan College, Cedar Springs, Michigan. The system provides heating and domestic water preheating for a campus dormitory. Freeze protection is provided by a draindown system. The building and solar system, construction progress, and design changes are described. Included in appendices are: condensate trap design, structural analysis, pictures of installation, operating instructions, maintenance instructions, and as-built drawings. (MHR)

  12. Preliminary design package for solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, Val; Aspinwall, David B.

    1977-12-01

    The information necessary to evaluate the preliminary design of the Solar Engineering and Manufacturing Company's (SEMCO) solar hot water system is presented. This package includes technical information, schematics, drawings and brochures. This system, being developed by SEMCO, consists of the following subsystems: collector, storage, transport, control, auxiliary energy, and Government-furnished site data acquisition. The two units being manufactured will be installed at Loxahatchee, Florida, and Macon, Georgia.

  13. Water recovery in a concentrated solar power plant

    Science.gov (United States)

    Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun

    2016-05-01

    For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane

  14. Electric solar wind sail mass budget model

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2013-02-01

    Full Text Available The electric solar wind sail (E-sail is a new type of propellantless propulsion system for Solar System transportation, which uses the natural solar wind to produce spacecraft propulsion. The E-sail consists of thin centrifugally stretched tethers that are kept charged by an onboard electron gun and, as such, experience Coulomb drag through the high-speed solar wind plasma stream. This paper discusses a mass breakdown and a performance model for an E-sail spacecraft that hosts a mission-specific payload of prescribed mass. In particular, the model is able to estimate the total spacecraft mass and its propulsive acceleration as a function of various design parameters such as the number of tethers and their length. A number of subsystem masses are calculated assuming existing or near-term E-sail technology. In light of the obtained performance estimates, an E-sail represents a promising propulsion system for a variety of transportation needs in the Solar System.

  15. Design data brochure: solar hot water system

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This Design Data Brochure is general in nature. The intent is to provide a preliminary, not too technical, approach to a subject that can be technically demanding. The example used for the design calculation has been for a single-family residence housing a family of four in a nonspecific geographical area. Drain-down freeze protection is used with the flat plate collectors. Drawing and specifications for the solar collectors, valves, pump, and flow regulators are included.

  16. Mathematical model of concentrating solar cooker

    OpenAIRE

    Avilés, Mauricio González; Avilés, José Juan González

    2013-01-01

    The main purpose of this work is to obtain a mathematical model consistent with the thermal behavior of concentrating solar cookers, such as Jorhejpataranskua. We also want to simulate different conditions respect to the parameters involved of several materials for its construction and efficiency. The model is expressed in terms of a coupled nonlinear system of differential equations which are solved using Mathematica 8. The results obtained by our model are compared with measurements of sola...

  17. Solar hot water systems for the southeastern United States: principles and construction of breadbox water heaters

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-02-01

    The use of solar energy to provide hot water is among the easier solar technologies for homeowners to utilize. In the Southeastern United States, because of the mild climate and abundant sunshine, solar energy can be harnessed to provide a household's hot water needs during the non-freezing weather period mid-April and mid-October. This workbook contains detailed plans for building breadbox solar water heaters that can provide up to 65% of your hot water needs during warm weather. If fuel costs continue to rise, the annual savings obtained from a solar water heater will grow dramatically. The designs in this workbook use readily available materials and the construction costs are low. Although these designs may not be as efficient as some commercially available systems, most of a household's hot water needs can be met with them. The description of the breadbox water heater and other types of solar systems will help you make an informed decision between constructing a solar water heater or purchasing one. This workbook is intended for use in the southeastern United States and the designs may not be suitable for use in colder climates.

  18. Estimation of daily flow rate of photovoltaic water pumping systems using solar radiation data

    Science.gov (United States)

    Benghanem, M.; Daffallah, K. O.; Almohammedi, A.

    2018-03-01

    This paper presents a simple model which allows us to contribute in the studies of photovoltaic (PV) water pumping systems sizing. The nonlinear relation between water flow rate and solar power has been obtained experimentally in a first step and then used for performance prediction. The model proposed enables us to simulate the water flow rate using solar radiation data for different heads (50 m, 60 m, 70 m and 80 m) and for 8S × 3P PV array configuration. The experimental data are obtained with our pumping test facility located at Madinah site (Saudi Arabia). The performances are calculated using the measured solar radiation data of different locations in Saudi Arabia. Knowing the solar radiation data, we have estimated with a good precision the water flow rate Q in five locations (Al-Jouf, Solar Village, AL-Ahsa, Madinah and Gizan) in Saudi Arabia. The flow rate Q increases with the increase of pump power for different heads following the nonlinear model proposed.

  19. Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    The Final Report of the Solar Hot Water System located at the Red Star Industrial Laundry, 3333 Sabre Avenue, Fresno, California, is presented. The system was designed as an integrated wastewater heat recovery and solar preheating system to supply a part of the hot water requirements. It was estimated that the natural gas demand for hot water heating could be reduced by 56 percent (44 percent heat reclamation and 12 percent solar). The system consists of a 16,500 gallon tube-and-shell wastewater heat recovery subsystem combined with a pass-through 6,528 square foot flat plate Ying Manufacturing Company Model SP4120 solar collector subsystem, a 12,500 gallon fiber glass water storage tank subsystem, pumps, heat exchangers, controls, and associated plumbing. The design output of the solar subsystem is approximately 2.6 x 10/sup 9/ Btu/year. Auxiliary energy is provided by a gas fired low pressure boiler servicing a 4,000 gallon service tank. This project is part of the US Department of Energy's Solar Demonstration Program with DOE sharing $184,841 of the $260,693 construction cost. The system was turned on in July 1977, and acceptance tests completed in September 1977. The demonstration period for this project ends September 2, 1982.

  20. Photocatalytic Enhancement for Solar Disinfection of Water: A Review

    Directory of Open Access Journals (Sweden)

    J. Anthony Byrne

    2011-01-01

    Full Text Available It is estimated that 884 million people lack access to improved water supplies. Many more are forced to rely on supplies that are microbiologically unsafe, resulting in a higher risk of waterborne diseases, including typhoid, hepatitis, polio, and cholera. Due to poor sanitation and lack of clean drinking water, there are around 4 billion cases of diarrhea each year resulting in 2.2 million deaths, most of these are children under five. While conventional interventions to improve water supplies are effective, there is increasing interest in household-based interventions to produce safe drinking water at an affordable cost for developing regions. Solar disinfection (SODIS is a simple and low cost technique used to disinfect drinking water, where water is placed in transparent containers and exposed to sunlight for 6 hours. There are a number of parameters which affect the efficacy of SODIS, including the solar irradiance, the quality of the water, and the nature of the contamination. One approach to SODIS enhancement is the use of semiconductor photocatalysis to produce highly reactive species that can destroy organic pollutants and inactivate water pathogens. This paper presents a critical review concerning semiconductor photocatalysis as a potential enhancement technology for solar disinfection of water.

  1. Probabilistic Solar Forecasting Using Quantile Regression Models

    Directory of Open Access Journals (Sweden)

    Philippe Lauret

    2017-10-01

    Full Text Available In this work, we assess the performance of three probabilistic models for intra-day solar forecasting. More precisely, a linear quantile regression method is used to build three models for generating 1 h–6 h-ahead probabilistic forecasts. Our approach is applied to forecasting solar irradiance at a site experiencing highly variable sky conditions using the historical ground observations of solar irradiance as endogenous inputs and day-ahead forecasts as exogenous inputs. Day-ahead irradiance forecasts are obtained from the Integrated Forecast System (IFS, a Numerical Weather Prediction (NWP model maintained by the European Center for Medium-Range Weather Forecast (ECMWF. Several metrics, mainly originated from the weather forecasting community, are used to evaluate the performance of the probabilistic forecasts. The results demonstrated that the NWP exogenous inputs improve the quality of the intra-day probabilistic forecasts. The analysis considered two locations with very dissimilar solar variability. Comparison between the two locations highlighted that the statistical performance of the probabilistic models depends on the local sky conditions.

  2. Potential of Using Solar Energy for Drinking Water Treatment Plant

    Science.gov (United States)

    Bukhary, S. S.; Batista, J.; Ahmad, S.

    2016-12-01

    Where water is essential to energy generation, energy usage is integral to life cycle processes of water extraction, treatment, distribution and disposal. Increasing population, climate change and greenhouse gas production challenges the water industry for energy conservation of the various water-related operations as well as limiting the associated carbon emissions. One of the ways to accomplish this is by incorporating renewable energy into the water sector. Treatment of drinking water, an important part of water life cycle processes, is vital for the health of any community. This study explores the feasibility of using solar energy for a drinking water treatment plant (DWTP) with the long-term goal of energy independence and sustainability. A 10 MGD groundwater DWTP in southwestern US was selected, using the treatment processes of coagulation, filtration and chlorination. Energy consumption in units of kWh/day and kWh/MG for each unit process was separately determined using industry accepted design criteria. Associated carbon emissions were evaluated in units of CO2 eq/MG. Based on the energy consumption and the existing real estate holdings, the DWTP was sized for distributed solar. Results showed that overall the motors used to operate the pumps including the groundwater intake pumps were the largest consumers of energy. Enough land was available around DWTP to deploy distributed solar. Results also showed that solar photovoltaics could potentially be used to meet the energy demands of the selected DWTP, but warrant the use of a large storage capacity, and thus increased costs. Carbon emissions related to solar based design were negligible compared to the original case. For future, this study can be used to analyze unit processes of other DWTP based on energy consumption, as well as for incorporating sustainability into the DWTP design.

  3. Low-Cost Solar Water Heating Research and Development Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hudon, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Maguire, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2012-08-01

    The market environment for solar water heating technology has changed substantially with the successful introduction of heat pump water heaters (HPWHs). The addition of this energy-efficient technology to the market increases direct competition with solar water heaters (SWHs) for available energy savings. It is therefore essential to understand which segment of the market is best suited for HPWHs and focus the development of innovative, low-cost SWHs in the market segment where the largest opportunities exist. To evaluate cost and performance tradeoffs between high performance hot water heating systems, annual energy simulations were run using the program, TRNSYS, and analysis was performed to compare the energy savings associated with HPWH and SWH technologies to conventional methods of water heating.

  4. A passive solar water heating system for vineyard frost protection

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M. [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey BT37 0QB (Ireland); Skates, H. [Environmental Engineering Research Centre, School of Planning, Architecture and Civil Engineering, Queen' s University, Belfast BT9 5AG (Ireland)

    2009-03-15

    The threat of frost during spring time (after 'bud burst') is an ever present danger to the vineyard owner. To minimise the risk, in addition to good site selection and vineyard management, a number of active frost protection systems are available. Most active methods of frost protection are costly in monetary terms and can also have a detrimental effect on the environment. This work presents the design and performance of a passive solar water heating quilt system under real vineyard operating conditions. Two vineyard sites were selected, and the solar water heating quilt design was evaluated over a three-month period. Detailed measurements of the temperature below and above the soil surface, levels of incident solar radiation and the wind direction and speed were recorded. Field study results indicate that the quilts can improve the solar collection and heat retention of the soil, resulting in increased temperatures during frost events of up to 1 C in air space immediately adjacent to the solar quilts when compared to conditions off the protected area. In addition, the time period during which the frost remains a danger to the vine is also reduced. When heat collection, storage and extraction rates are investigated, simplified calculations indicate that the solar quilt can improve collection by 38.5% over bare soil, resulting in the release of 32% more heat. Extrapolated to vineyard coverage, this could result in an extra 3500 MJ of heat per hectare per (typical frost event condition) day. (author)

  5. Analysis of a solar collector field water flow network

    Science.gov (United States)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  6. Energy behavior of solar hot water systems under different conditions

    International Nuclear Information System (INIS)

    Fuentes Lombá, Osmanys; Torres Ten, Alonso; Arzuaga Machado, Yusnel; Hernández, Massipe J. Raúl; Cueva Gonzales, Wagner

    2017-01-01

    By means of numerical simulations in TRNSYS v14 the influence of the solar absorption area of a system for heating water with solar energy, composed by a flat solar collector and a tank thermo-accumulator, on its energy efficiency. For the study, the solar collectors EDWARDS, ISOFOTÓN 1, ISOFOTÓN 2, MADE, ROLDAN and IBERSOLAR of absorption area 2, 1,9, 1,88, 2, 1,9 and 2,3 m2 respectively were chosen. For each collector, the energy performance was simulated for one year, setting 200 L for the accumulation volume and 50 °C for the intake temperature. Despite the different characteristics of each collector, their behavior is quite similar showing a very mature technology. (author)

  7. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  8. Study Design And Realization Of Solar Water Heater

    International Nuclear Information System (INIS)

    Lounis, M.; Boudjemaa, F.; Akil, S. Kouider

    2011-01-01

    Solar is one of the most easily exploitable energy, it is moreover inexhaustible. His applications are many and are varied. The heating of the domestic water is one of the most immediate, simplest and also of most widespread exploitation of the solar energy. Algeria, from its geographical situation, it deposits one of the largest high sun surface expositions in the world. The exposition duration of the almost territory exceeds 2000 hours annually and can reach the 3900 hours (high plateaus and Sahara). By knowing the daily energy received by 1 m 2 of a horizontal surface of the solar thermal panel is nearly around 1700 KWh/m 2 a year in the north and 2263 KWh/m 2 a year in the south of the country, we release the most important and strategic place of the solar technologies in the present and in the future for Algeria. This work consists to study, conceive and manufacture solar water heating with the available local materials so, this type of the energy will be profitable for all, particularly the poor countries. If we consider the illumination duration of the panel around 6 hours a day, the water heat panel manufactured in our laboratory produce an equivalent energy of 11.615 KWh a day so, 4239 KWh a year. These values of energy can be easily increased with performing the panel manufacture.

  9. Solar Advisor Model User Guide for Version 2.0

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, P.; Blair, N.; Mehos, M.; Christensen, C.; Janzou, S.; Cameron, C.

    2008-08-01

    The Solar Advisor Model (SAM) provides a consistent framework for analyzing and comparing power system costs and performance across the range of solar technologies and markets, from photovoltaic systems for residential and commercial markets to concentrating solar power and large photovoltaic systems for utility markets. This manual describes Version 2.0 of the software, which can model photovoltaic and concentrating solar power technologies for electric applications for several markets. The current version of the Solar Advisor Model does not model solar heating and lighting technologies.

  10. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-01-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage. PMID:27796309

  11. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%

    Science.gov (United States)

    Jia, Jieyang; Seitz, Linsey C.; Benck, Jesse D.; Huo, Yijie; Chen, Yusi; Ng, Jia Wei Desmond; Bilir, Taner; Harris, James S.; Jaramillo, Thomas F.

    2016-10-01

    Hydrogen production via electrochemical water splitting is a promising approach for storing solar energy. For this technology to be economically competitive, it is critical to develop water splitting systems with high solar-to-hydrogen (STH) efficiencies. Here we report a photovoltaic-electrolysis system with the highest STH efficiency for any water splitting technology to date, to the best of our knowledge. Our system consists of two polymer electrolyte membrane electrolysers in series with one InGaP/GaAs/GaInNAsSb triple-junction solar cell, which produces a large-enough voltage to drive both electrolysers with no additional energy input. The solar concentration is adjusted such that the maximum power point of the photovoltaic is well matched to the operating capacity of the electrolysers to optimize the system efficiency. The system achieves a 48-h average STH efficiency of 30%. These results demonstrate the potential of photovoltaic-electrolysis systems for cost-effective solar energy storage.

  12. ANALYSIS AND MODELING OF SOLAR EVAPORATOR-COLLECTOR

    Directory of Open Access Journals (Sweden)

    Zakaria Mohd. Amin

    2015-11-01

    Full Text Available Solar energy is considered a sustainable resource that poses little to no harmful effects on the environment. The performance of a solar system depends to a great extent on the collector used for the conversion of solar radiant energy to thermal energy. A solar evaporator-collector (SEC is basically an unglazed flat plate collector where refrigerants, such as R134a is used as the working fluid. As the operating temperature of the SEC is very low, it utilizes both solar irradiation and ambient energy leading to a much higher efficiency than the conventional collectors. This capability of SECs to utilize ambient energy also enables the system to operate at night. This type of collector can be locally made and is relatively much cheaper than the conventional collector.   At the National University of Singapore, the evaporator-collector was integrated to a heat pump and the performance was investigated for several thermal applications: (i water heating, (ii drying and (iii desalination. A 2-dimensional transient mathematical model of this system was developed and validated by experimental data. The present study provides a comprehensive study of performance. KEYWORDS: heat pump; evaporator-collector.

  13. Renewable water: Direct contact membrane distillation coupled with solar ponds

    International Nuclear Information System (INIS)

    Suárez, Francisco; Ruskowitz, Jeffrey A.; Tyler, Scott W.; Childress, Amy E.

    2015-01-01

    Highlights: • Experimental investigation of direct contact membrane distillation driven by solar ponds. • The DCMD/SGSP system treats ∼6 times the water flow treated by an AGMD/SGSP system. • Half of the energy extracted from the SGSP was used to transport water across the membrane. • Reducing heat losses through the DCMD/SGSP system would yield higher water fluxes. - Abstract: Desalination powered by renewable energy sources is an attractive solution to address the worldwide water-shortage problem without contributing significant to greenhouse gas emissions. A promising system for renewable energy desalination is the utilization of low-temperature direct contact membrane distillation (DCMD) driven by a thermal solar energy system, such as a salt-gradient solar pond (SGSP). This investigation presents the first experimental study of fresh water production in a coupled DCMD/SGSP system. The objectives of this work are to determine the experimental fresh water production rates and the energetic requirements of the different components of the system. From the laboratory results, it was found that the coupled DCMD/SGSP system treats approximately six times the water flow treated by a similar system that consisted of an air–gap membrane distillation unit driven by an SGSP. In terms of the energetic requirements, approximately 70% of the heat extracted from the SGSP was utilized to drive thermal desalination and the rest was lost in different locations of the system. In the membrane module, only half of the useful heat was actually used to transport water across the membrane and the remainder was lost by conduction in the membrane. It was also found that by reducing heat losses throughout the system would yield higher water fluxes, pointing out the need to improve the efficiency throughout the DCMD/SGSP coupled system. Therefore, further investigation of membrane properties, insulation of the system, or optimal design of the solar pond must be addressed in

  14. Retrofitting Domestic Hot Water Heaters for Solar Water Heating Systems in Single-Family Houses in a Cold Climate: A Theoretical Analysis

    Directory of Open Access Journals (Sweden)

    Björn Karlsson

    2012-10-01

    Full Text Available One of the biggest obstacles to economic profitability of solar water heating systems is the investment cost. Retrofitting existing domestic hot water heaters when a new solar hot water system is installed can reduce both the installation and material costs. In this study, retrofitting existing water heaters for solar water heating systems in Swedish single-family houses was theoretically investigated using the TRNSYS software. Four simulation models using forced circulation flow with different system configurations and control strategies were simulated and analysed in the study. A comparison with a standard solar thermal system was also presented based on the annual solar fraction. The simulation results indicate that the retrofitting configuration achieving the highest annual performance consists of a system where the existing tank is used as storage for the solar heat and a smaller tank with a heater is added in series to make sure that the required outlet temperature can be met. An external heat exchanger is used between the collector circuit and the existing tank. For this retrofitted system an annual solar fraction of 50.5% was achieved. A conventional solar thermal system using a standard solar tank achieves a comparable performance for the same total storage volume, collector area and reference conditions.

  15. Solar hot water system installed at Day's Lodge, Atlanta, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    The solar energy hot water system installed in the Days Inns of America, Inc., Day's Lodge I-85 and Shallowford Road, NE Atlanta, Georgia is described. This system is one of eleven systems planned under this grant and was designed to provide for 81% of the total hot water demand. There are two separate systems, each serving one building of the lodge (total of 65 suites). The entire system contains only potable city water. The 1024 square feet of Grumman Sunstream Model 332 liquid flat plate collectors and the outside piping drains whenever the collector plates approach freezing or when power is interrupted. Solar heated water from the two above ground cement lined steel tanks (1000 gallon tank) is drawn into the electric domestic hot water (DHW) tanks as hot water is drawn. Electric resistance units in the DHW tanks top off the solar heated water, if needed, to reach thermostat setting. Operation of this system was begun in August, 1979. The solar components were partly funded ($18,042 of $36,084 cost) by the Department of Energy.

  16. design and experimental study of a solar system for heating water ...

    African Journals Online (AJOL)

    M. Ghodbane, B. Boumeddane, N. Said

    2016-09-01

    Sep 1, 2016 ... Keywords: Solar energy; design, linear Fresnel reflector; thermal efficiency; solar water-heater. .... three techniques to get hot water using solar energy; these techniques are photovoltaic arrays, solar dynamic ...... [22] Energy minister of Algeria, Potentiels National des Énergies Renouvelables, Web site:.

  17. Federal technology alert. Parabolic-trough solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    Parabolic-trough solar water heating is a well-proven renewable energy technology with considerable potential for application at Federal facilities. For the US, parabolic-trough water-heating systems are most cost effective in the Southwest where direct solar radiation is high. Jails, hospitals, barracks, and other facilities that consistently use large volumes of hot water are particularly good candidates, as are facilities with central plants for district heating. As with any renewable energy or energy efficiency technology requiring significant initial capital investment, the primary condition that will make a parabolic-trough system economically viable is if it is replacing expensive conventional water heating. In combination with absorption cooling systems, parabolic-trough collectors can also be used for air-conditioning. Industrial Solar Technology (IST) of Golden, Colorado, is the sole current manufacturer of parabolic-trough solar water heating systems. IST has an Indefinite Delivery/Indefinite Quantity (IDIQ) contract with the Federal Energy Management Program (FEMP) of the US Department of Energy (DOE) to finance and install parabolic-trough solar water heating on an Energy Savings Performance Contract (ESPC) basis for any Federal facility that requests it and for which it proves viable. For an ESPC project, the facility does not pay for design, capital equipment, or installation. Instead, it pays only for guaranteed energy savings. Preparing and implementing delivery or task orders against the IDIQ is much simpler than the standard procurement process. This Federal Technology Alert (FTA) of the New Technology Demonstration Program is one of a series of guides to renewable energy and new energy-efficient technologies.

  18. A solar water system acting as the building materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Li [School of Architecture, Tianjin Univ., TJ (China); Wang Yiping; Ren Jianbo [School of Chemical Engineering and Tech., Tianjin Univ., TJ (China); Kong Jianguo [Tianjin Cuipinghu Science Park, TJ (China)

    2008-07-01

    A new type of solar water system in the form of building material is designed, and applied to an office building in Meijiang eco-district located in Tianjin City, China. In this project, 60m{sup 2} wall type and 30m{sup 2} solar roof collectors are used to supply hot water directly and also to be an evaporator for an auxiliary heat pump with a power of 4.5kW. The energy rejected by the condenser contributes to load requirements through a refrigerant (R22)-to-water heat exchanger immersed in a 3m{sup 3} hot water storage tank. Experimental results show that, the daily-averaged collector efficiency ranged from 40 to 50% and form 60% to 70% in winter and summer, respectively. (orig.)

  19. Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model)

    Science.gov (United States)

    2017-09-01

    ARL-TR-8155 ● SEP 2017 US Army Research Laboratory Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model... Energy Research, Volume 5 (Solar Radiation Flux Model) by Clayton Walker and Gail Vaucher Computational and Information Sciences Directorate, ARL...2017 June 28 4. TITLE AND SUBTITLE Atmospheric Renewable Energy Research, Volume 5 (Solar Radiation Flux Model) 5a. CONTRACT NUMBER ROTC Internship

  20. Solar PV energy for water pumping system

    International Nuclear Information System (INIS)

    Mahar, F.

    1997-01-01

    The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

  1. Solar Water Heater Systems for Building Trades Class.

    Science.gov (United States)

    Ryan, Milton; And Others

    This teaching unit serves as a guide for the installation of active solar water heating systems. It contains a project designed for use with secondary level students of a building trades class. Students typically would meet 2 to 3 hours per day and would be able to complete the activity within a 1-week time period. Objectives of this unit include:…

  2. Parametric studies of an active solar water heating system with ...

    Indian Academy of Sciences (India)

    Abstract. This study simulated active photovoltaic thermal solar collectors (PV/T) for hot water production using TRNSYS. The PV/T collectors consist of the amor- phous, monocrystalline and polycrystalline. The long-term performances for the glazed and unglazed PV/T collectors were also evaluated. In this simulation, the.

  3. Livestock water pumping with wind and solar power

    Science.gov (United States)

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  4. Solar Energy in China: Development Trends for Solar Water Heaters and Photovoltaics in the Urban Environment

    Science.gov (United States)

    Wallace, William; Wang, Zhongying

    2006-01-01

    China is the world's largest market for solar water heating systems, installing 13 million square meters of new systems in 2004, mostly in large cities. Municipal authorities, however, are sensitive to quality and visual impact issues created by this technology deployment. Therefore, there is currently a trend toward developing building integrated…

  5. Modelling total solar irradiance using a flux transport model

    Science.gov (United States)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2014-05-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1700.

  6. Water heating solar system for popular houses; Sistema solar de aquecimento de agua para residencias populares

    Energy Technology Data Exchange (ETDEWEB)

    Mogawer, Tamer; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis], e-mail: teofilo@feg.unesp.br

    2004-07-01

    In this paper we present a case study for the design of a low cost solar heating system for a popular residence in an isolated rural community in the state of Rio Grande do Norte. This scaling can be extended to several rural communities that are in the same situation in Brazil as well as the wider use of solar power between the low-income people who do not have the benefits of electricity in their homes or want to have a lower cost of electricity. In this context, there are very interesting alternatives, among which is the replacement of electric heating bath water by heating by solar energy. According to several sources the electric shower, as it is now simple and extremely cheap, is the villain of the national electrical system. It is used in peak hours of consumption, something like 10% of electric generating capacity installed in Brazil, forcing many industries to switch off the machines because of the high cost of electricity during this period. Using the heating by solar energy, we can reduce consumption of electric shower and also increase the use of clean energy in popular homes and in isolated rural communities. This paper will address the use of solar energy with the basic purpose of heating water for bathing in popular residences and in isolated rural areas, using low cost systems, built with easily materials that is found in any area of the country. (author)

  7. Propagation of solar disturbances - Theories and models

    Science.gov (United States)

    Wu, S. T.

    1983-01-01

    Recent theoretical developments and construction of several models for the propagation of solar disturbances from the sun and their continuation throughout heliospheric space are discussed. Emphasis centers on physical mechanisms as well as mathematical techniques (i.e., analytical and numerical methods). This outline will lead to a discussion of the state-of-the-art of theoretically based modeling efforts in this area. It is shown that the fundamental theory for the study of propagation of disturbances in heliospheric space is centered around the self-consistent analysis of wave and mass motion within the context of magnetohydrodynamics in which the small scale structures will be modified by kinetic effects. Finally, brief mention is made of some interesting problems for which attention is needed for advancement of the understanding of the physics of large scale propagation of solar disturbances in heliospheric space.

  8. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  9. Decentralized water purification using solar thermal energy

    NARCIS (Netherlands)

    Bhardwaj, R.

    2016-01-01

    Provision of clean drinking water to poor can prevent a large number of deaths and illnesses amongst children around the world. In 2010, about 0.75 million child deaths were caused due to diarrhea, and a further 22.5 million years of life were lost due to ill-health, disability or early death caused

  10. An overview of water disinfection in developing countries and the potential for solar thermal water pasteurization

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Thomas, K.E.

    1998-01-01

    This study originated within the Solar Buildings Program at the U.S. Department of Energy. Its goal is to assess the potential for solar thermal water disinfection in developing countries. In order to assess solar thermal potential, the alternatives must be clearly understood and compared. The objectives of the study are to: (a) characterize the developing world disinfection needs and market; (b) identify competing technologies, both traditional and emerging; (c) analyze and characterize solar thermal pasteurization; (d) compare technologies on cost-effectiveness and appropriateness; and (e) identify research opportunities. Natural consequences of the study beyond these objectives include a broad knowledge of water disinfection problems and technologies, introduction of solar thermal pasteurization technologies to a broad audience, and general identification of disinfection opportunities for renewable technologies.

  11. Comparative Modeling of a Parabolic Trough Collectors Solar Power Plant with MARS Models

    Directory of Open Access Journals (Sweden)

    Jose Ramón Rogada

    2017-12-01

    Full Text Available Power plants producing energy through solar fields use a heat transfer fluid that lends itself to be influenced and changed by different variables. In solar power plants, a heat transfer fluid (HTF is used to transfer the thermal energy of solar radiation through parabolic collectors to a water vapor Rankine cycle. In this way, a turbine is driven that produces electricity when coupled to an electric generator. These plants have a heat transfer system that converts the solar radiation into heat through a HTF, and transfers that thermal energy to the water vapor heat exchangers. The best possible performance in the Rankine cycle, and therefore in the thermal plant, is obtained when the HTF reaches its maximum temperature when leaving the solar field (SF. In addition, it is necessary that the HTF does not exceed its own maximum operating temperature, above which it degrades. The optimum temperature of the HTF is difficult to obtain, since the working conditions of the plant can change abruptly from moment to moment. Guaranteeing that this HTF operates at its optimal temperature to produce electricity through a Rankine cycle is a priority. The oil flowing through the solar field has the disadvantage of having a thermal limit. Therefore, this research focuses on trying to make sure that this fluid comes out of the solar field with the highest possible temperature. Modeling using data mining is revealed as an important tool for forecasting the performance of this kind of power plant. The purpose of this document is to provide a model that can be used to optimize the temperature control of the fluid without interfering with the normal operation of the plant. The results obtained with this model should be necessarily contrasted with those obtained in a real plant. Initially, we compare the PID (proportional–integral–derivative models used in previous studies for the optimization of this type of plant with modeling using the multivariate adaptive

  12. Solar radiation practical modeling for renewable energy applications

    CERN Document Server

    Myers, Daryl Ronald

    2013-01-01

    Written by a leading scientist with over 35 years of experience working at the National Renewable Energy Laboratory (NREL), Solar Radiation: Practical Modeling for Renewable Energy Applications brings together the most widely used, easily implemented concepts and models for estimating broadband and spectral solar radiation data. The author addresses various technical and practical questions about the accuracy of solar radiation measurements and modeling. While the focus is on engineering models and results, the book does review the fundamentals of solar radiation modeling and solar radiation m

  13. Solar energy conversion by photocatalytic overall water splitting

    KAUST Repository

    Takanabe, Kazuhiro

    2015-07-04

    Summary: Solar energy is abundant and renewable energy: however, extensive conversion of the solar energy can only be achieved by large-scale collection of solar flux. The technology that satisfies this requirement must be as simple as possible to reduce capital cost. Overall water splitting (OWS) by powder-form photocatalysts directly produces H2 as a chemical energy in a single reactor, which does not require any complicated parabolic mirrors and electronic devices. Because of its simplicity and low capital cost, it has tremendous potential to become the major technology of solar energy conversion. To achieve the OWS efficiently, the development of efficient photocatalysts is mandatory. The OWS hotocatalysis involves the electrocatalys is for both water reduction and oxidation on the surafce of photocatalysts, which is driven by particular semiconductors that absorb photons to generate excited carriers. Such photocatalysts must be designed to maximize the charge separation efficiency at the catalyst-semiconductor and semiconductor-electrolyte interface. In addition the low-overpotential electrocatalyts towards water redox reactions should be insensitive to the back-reaction of the produced H2 and O2 that produces H2O. In this presentation, some recent progress on the topic of the OWS in our group will be discussed.

  14. Solar water heating for aquaculture : optimizing design for sustainability

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, M.; Thwaites, J. [Taylor Munro Energy Systems Inc., Delta, BC (Canada)

    2003-08-01

    This paper presents the results of a solar water heating project at Redfish Ranch, the first Tilapia tropical fish farm in British Columbia. The fish are raised in land-based tanks, eliminating the risk of contamination of local ecosystems. As a tropical species, they requires warm water. Natural gas or propane boilers are typically used to maintain tank temperatures at 26 to 28 degrees C. Redfish Ranch uses solar energy to add heat to the fish tanks, thereby reducing fossil-fuel combustion and greenhouse gas emissions. This unique building-integrated solar system is improving the environmental status of of this progressive industrial operation by offsetting fossil-fuel consumption. The system was relatively low cost, although substantial changes had to be made to the roof of the main building. The building-integrated design of the solar water heating system has reduced operating costs, generated local employment, and shows promise of future activity. As such, it satisfies the main criteria for sustainability. 7 refs.

  15. Solar Hot Water System Matter in Turkey (Mersin Case

    Directory of Open Access Journals (Sweden)

    Müjgan ŞEREFHANOĞLU SÖZEN

    2010-01-01

    Full Text Available When the effects of sustainability on the construction sector have been taken into consideration, solar active systems on buildings emerge as an important design issue in the context of renewal energy usage. Solar hot water systems such as those widely used in Turkey are inefficient and have a negative effect on a building’s aesthetic and the urban view in general because of the poor quality of installation. Natural circulated open loop systems are commonly used, particularly in the south of Turkey, as they are highly economical and require no regulation to install. Solar hot water systems tend to be clustered together on the roofs, causing visual pollution, and this situation arises largely because are not considered part of the architectural design. It is therefore important to consider the negative effects of such systems in the form of treatment studies. This study aims to determine the positive effects that will be gained by the renovation of solar hot water systems in Mersin, a city in the southern region of Turkey.

  16. Physiological water model development

    Science.gov (United States)

    Doty, Susan

    1993-01-01

    The water of the human body can be categorized as existing in two main compartments: intracellular water and extracellular water. The intracellular water consists of all the water within the cells and constitutes over half of the total body water. Since red blood cells are surrounded by plasma, and all other cells are surrounded by interstitial fluid, the intracellular compartment has been subdivided to represent these two cell types. The extracellular water, which includes all of the fluid outside of the cells, can be further subdivided into compartments which represent the interstitial fluid, circulating blood plasma, lymph, and transcellular water. The interstitial fluid surrounds cells outside of the vascular system whereas plasma is contained within the blood vessels. Avascular tissues such as dense connective tissue and cartilage contain interstitial water which slowly equilibrates with tracers used to determine extracellular fluid volume. For this reason, additional compartments are sometimes used to represent these avascular tissues. The average size of each compartment, in terms of percent body weight, has been determined for adult males and females. These compartments and the forces which cause flow between them are presented. The kidneys, a main compartment, receive about 25 percent of the cardiac output and filters out a fluid similar to plasma. The composition of this filtered fluid changes as it flows through the kidney tubules since compounds are continually being secreted and reabsorbed. Through this mechanism, the kidneys eliminate wastes while conserving body water, electrolytes, and metabolites. Since sodium accounts for over 90 percent of the cations in the extracellular fluid, and the number of cations is balanced by the number of anions, considering the renal handling sodium and water only should sufficiently describe the relationship between the plasma compartment and kidneys. A kidney function model is presented which has been adapted from a

  17. Drinking water treatment in solar reactors with immobilized photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sichel, C.; Fernandez, P.; Blanco, J.; Lorenz, K.

    2005-07-01

    This work has been performed at the Plataforma Solar de Almeria. As in our daily consumption of any other good, it is important to take an interest in sustainable treatment methods for purifying a vital water supply. Primary water treatment has no need for energy consuming techniques as any suspended particles can usually be removed by sand traps and sedimentation basin. Organic matter and biodegradable chemical contaminants ca be decomposed by activated sludge plants, bacteria beds, or in the case of highly organically loaded sewage by methanisation.In the recent years, another photocatalysts a photo sensitizer has been used in desinfection experiments. Ruthenium appears to have good potential for inactivation of bacteria in chelating coordination compounds. The SOLWATER project attempts to provide remote areas of such developing countries as Mexico, Peru and Argentina with drinking water disinfected by solar photocatalysis with immobilized TiO2 and Ru(II). (Author)

  18. Doping-Promoted Solar Water Oxidation on Hematite Photoanodes

    Directory of Open Access Journals (Sweden)

    Yuchao Zhang

    2016-07-01

    Full Text Available As one of the most promising materials for solar water oxidation, hematite has attracted intense research interest for four decades. Despite their desirable optical band gap, stability and other attractive features, there are great challenges for the implementation of hematite-based photoelectrochemical cells. In particular, the extremely low electron mobility leads to severe energy loss by electron hole recombination. Elemental doping, i.e., replacing lattice iron with foreign atoms, has been shown to be a practical solution. Here we review the significant progresses in metal and non-metal element doping-promoted hematite solar water oxidation, focusing on the role of dopants in adjusting carrier density, charge collection efficiency and surface water oxidation kinetics. The advantages and salient features of the different doping categories are compared and discussed.

  19. Water heating solar system using collector with polycarbonate absorber surface

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Luiz Guilherme Meira de; Sodre, Dilton; Cavalcanti, Eduardo Jose Cidade; Souza, Luiz Guilherme Vieira Meira de; Mendes, Jose Ubiragi de Lima [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)], e-mails: lguilherme@dem.ufrn.br, diltonsodre@ifba.edu.br, ubiragi@ct.ufrn.br

    2010-07-01

    It is presented s solar collector to be used in a heating water for bath system, whose main characteristics are low cost and easy fabrication and assembly processes. The collector absorber surface consists of a polycarbonate plate with an area of 1.5 m{sup 2}. The water inlet and outlet are made of PVC 50mm, and were coupled to a 6mm thick polycarbonate plate using fiberglass resin. A 200 liters thermal reservoir will be used. This reservoir is also alternative. The absorber heating system works under thermo-siphon regimen. Thermal parameters will be evaluated to prove the feasibility of the studied solar heating system to obtain bath water for a four people family. (author)

  20. Roadmap on solar water splitting: current status and future prospects

    Science.gov (United States)

    Chu, Sheng; Li, Wei; Yan, Yanfa; Hamann, Thomas; Shih, Ishiang; Wang, Dunwei; Mi, Zetian

    2017-09-01

    Artificial photosynthesis via solar water splitting provides a promising approach to storing solar energy in the form of hydrogen on a global scale. However, an efficient and cost-effective solar hydrogen production system that can compete with traditional methods using fossil fuels is yet to be developed. A photoelectrochemical (PEC) tandem cell consisting of a p-type photocathode and an n-type photoanode, with the photovoltage provided by the two photoelectrodes, is an attractive route to achieve highly efficient unassisted water splitting at a low cost. In this article, we provide an overview of recent developments of semiconductor materials, including metal oxides, nitrides, chalcogenides, Si, III-V compounds and organics, either as photocathodes or photoanodes for water reduction and oxidation, respectively. In addition, recent efforts in constructing a PEC tandem system for unassisted water splitting are outlined. The importance of developing a single-photon photocathode and photoanode that can deliver high photocurrent in the low bias region for efficient PEC tandem system is highlighted. Finally, we discuss the future development of photoelectrode materials, and viable solutions to realize highly efficient PEC water splitting device for practical applications.

  1. Establishing Solar Water Disinfection as a water treatment method at ...

    African Journals Online (AJOL)

    1.1 billion People worldwide do not have access to safe drinking water and therefore are exposed to a high risk for diarrhoeal diseases. As a consequence, about 6,000 children die each day of dehydration due to diarrhoea. Adequate water treatment methods and safe storage of drinking water, combined with hygiene ...

  2. Computer-Aided Design, Modeling and Simulation of a New Solar Still Design

    Directory of Open Access Journals (Sweden)

    Jeremy (Zheng Li

    2011-01-01

    Full Text Available The clean and pure drinking water is important in today's life but current water sources are usually brackish with bacteria that cannot be used for drinking. About 78% of water available in the sea is salty, 21% of water is brackish, and only 1% of water is fresh. Distillation is one of the feasible processes applied to water purification, and it requires the energy inputs, such as solar radiation. Water is evaporated in this distillation process and water vapor can be separated and condensed to pure water. Now, with the change from conventional fuels to renewable and environment friendly fuels sources, the modern technology allows to use the abundant energy from the sun. It is better to use solar energy to process the water desalination since it is more economical than the use of conventional energies. The main focus of this paper is applying computer-aided modeling and simulation to design a less complex solar water distillation system. The prototype of this solar still system is also built to verify its feasibility, functionality, and reliability. The computational simulation and prototype testing show the reliability and proper functionality of this solar water distillation system.

  3. Dynamic model of an autonomous solar absorption refrigerator

    International Nuclear Information System (INIS)

    Ali Fellah; Tahar Khir; Ammar Ben Brahim

    2009-01-01

    The performance analysis of a solar absorption refrigerator operating in an autonomous way is investigated. The water/LiBr machine satisfies the air-conditioning needs along the day. The refrigerator performances were simulated regarding a dynamic model. For the solar driven absorption machines, two applications could be distinguished. The sun provides the thermal part of the useful energy. In this case, it is necessary to use additional energy as the electric one to activate the pumps, the fans and the control system. On the other hand, the sun provides all the necessary energy. Here, both photovoltaic cells and thermal concentrators should be used. The simulation in dynamic regime of the cycle requires the knowledge of the geometric characteristics of every component as the exchange areas and the internal volumes. Real characteristics of a refrigerator available at the applied thermodynamic research unit (ATRU) at the engineers' national school of Gabes are notified. The development of the thermal and matter balances in every component of the cycle has permitted to simulate in dynamic regime the performances of a solar absorption refrigerator operating with the water/LiBr couple for air-conditioning needs. The developed model could be used to perform intermittent refrigeration cycle autonomously driven. (author)

  4. Solar hot-water generation and heating - Kombi-Kompakt+

    International Nuclear Information System (INIS)

    Haller, M.; Vogelsanger, P.

    2005-01-01

    This final report for the Swiss Federal Office of Energy (SFOE) describes new testing facilities at the Institute for Solar Technology in Rapperswil, Switzerland, that allow the testing of solar systems the whole year through. The systems tested feature the combined generation of heat for hot water storage vessels and heat for space heating. The test method used, the Concise Cycle Test (CCT) is described. The results of tests made on a large number of systems demonstrate that it is especially important to have a test system that allows the solar market to be protected from unsatisfactory systems. Good co-operation with manufactures is noted. As the test method includes tests with secondary energy sources such as oil or gas, certain problems in this area were discovered and corrected. Further tests are to be made with systems using biomass as a secondary source of heat

  5. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites.

    Science.gov (United States)

    Sarafian, Adam R; Hauri, Erik H; McCubbin, Francis M; Lapen, Thomas J; Berger, Eve L; Nielsen, Sune G; Marschall, Horst R; Gaetani, Glenn A; Righter, Kevin; Sarafian, Emily

    2017-05-28

    Inner Solar System bodies are depleted in volatile elements relative to chondrite meteorites, yet the source(s) and mechanism(s) of volatile-element depletion and/or enrichment are poorly constrained. The timing, mechanisms and quantities of volatile elements present in the early inner Solar System have vast implications for diverse processes, from planetary differentiation to the emergence of life. We report major, trace and volatile-element contents of a glass bead derived from the D'Orbigny angrite, the hydrogen isotopic composition of this glass bead and that of coexisting olivine and silicophosphates, and the 207 Pb- 206 Pb age of the silicophosphates, 4568 ± 20 Ma. We use volatile saturation models to demonstrate that the angrite parent body must have been a major body in the early inner Solar System. We further show via mixing calculations that all inner Solar System bodies accreted volatile elements with carbonaceous chondrite H and N isotope signatures extremely early in Solar System history. Only a small portion (if any) of comets and gaseous nebular H species contributed to the volatile content of the inner Solar System bodies.This article is part of the themed issue 'The origin, history and role of water in the evolution of the inner Solar System'. © 2017 The Author(s).

  6. Application of solar energy to the supply of hot water for textile dyeing. Final report, CDRL/PA 10

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-09-01

    The design plan for a solar process hot water system for a textile dye beck at Riegel Textile Corporation's LaFrance, South Carolina, facilities is presented. The solar system consists of 396 GE model TC 100 evacuated tube collector modules arranged in a ground mounted array with a total collector area of 6680 square feet. The system includes an 8000-gallon hot water storage tank. Systems analyses, specification sheets, performance data, and an economic evaluation of the proposed system are presented. (WHK)

  7. Cold water inlet in solar tanks - valuation

    DEFF Research Database (Denmark)

    Andersen, Elsa

    1999-01-01

    The aim of the project is to make a proposal for how to value a storage tank with a poor design of the cold water inlet. Based on measurements and calculations a number of curves, which are valid for this valuation, are worked out. Based on a simple test with a uniform heated storage tank the ratio...... between the energy tapped in one storage volume and the energy content in the tank before the tapping is measured. Afterwards the mixing factor, corresponding to the measured ratio, can be determined. It is proposed that the mixing factor is taken into consideration when the governmental subsidy for SDHW...

  8. Solar heating and domestic hot water system installed at Kansas City, Fire Stations, Kansas City, Missouri

    Science.gov (United States)

    1980-07-01

    The solar system was designed to provide 47 percent of the space heating, 8,800 square feet area and 75 percent of the domestic hot water (DHW) load. The solar system consists of 2,808 square feet of Solaron, model 2001, air, flat plate collector subsystem, a concrete box storage subsystem which contains 1,428 cubic feet of 0.5 inch diameter pebbles weighing 71.5 tons, a DHW preheat tank, blowers, pumps, heat exchangers, air ducting, controls and associated plumbing. Two 120 gallon electric DHW heaters supply domestic hot water which is preheated by the solar system. Auxiliary space heating is provided by three electric heat pumps with electric resistance heaters and four 30 kilowatt electric unit heaters. There are six modes of system operation.

  9. Seasonal storage of solar heat. Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Rubino, A. [Delft University of Technology, Department Process and Energy, Delft (Netherlands); De Boer, R. [Energy research Center of the Netherlands, PO Box 1, NL-1755 ZG Petten (Netherlands)

    2012-05-15

    The aim of this work is to illustrate the formulation and implementation of a thermo-chemical reactor model for seasonal storage of solar heat under development at the Energy Research Center of the Netherlands, in such a way to give information about the design of the planned lab-reactor upscale. The implementation of the model has been carried out by using the commercial software COMSOL Multiphysics, which enabled to solve the proposed system of partial differential and algebraic equations, both in space and time.

  10. A hybrid desalination system using humidification-dehumidification and solar stills integrated with evacuated solar water heater

    International Nuclear Information System (INIS)

    Sharshir, S.W.; Peng, Guilong; Yang, Nuo; Eltawil, Mohamed A.; Ali, Mohamed Kamal Ahmed; Kabeel, A.E.

    2016-01-01

    Highlights: • Evacuated solar water heater integrated with humidification-dehumidification system. • Reuse of warm water drained from humidification-dehumidification to feed solar stills. • The thermal performance of hybrid system is increased by 50% and maximum yield is 63.3 kg/day. • The estimated price of the freshwater produced from the hybrid system is $0.034/L. - Abstract: This paper offers a hybrid solar desalination system comprising a humidification-dehumidification and four solar stills. The developed hybrid desalination system reuses the drain warm water from humidification-dehumidification to feed solar stills to stop the massive warm water loss during desalination. Reusing the drain warm water increases the gain output ratio of the system by 50% and also increased the efficiency of single solar still to about 90%. Furthermore, the production of a single solar still as a part of the hybrid system was more than that of the conventional one by approximately 200%. The daily water production of the conventional one, single solar still, four solar still, humidification- dehumidification and hybrid system were 3.2, 10.5, 42, 24.3 and 66.3 kg/day, respectively. Furthermore, the cost per unit liter of distillate from conventional one, humidification- dehumidification and hybrid system were around $0.049, $0.058 and $0.034, respectively.

  11. Solar heating and hot water system installed at office building, One Solar Place, Dallas, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This document is the Final Report of the Solar Energy System Installed at the First Solar Heated Office Building, One Solar Place, Dallas, Texas. The Solar System was designed to provide 87 percent of the space heating needs, 100 percent of the potable hot water needs and is sized for future absorption cooling. The collection subsystem consists of 28 Solargenics, series 76, flat plate collectors with a total area of 1596 square feet. The solar loop circulates an ethylene glycol-water solution through the collectors into a hot water system heat exchanger. The hot water storage subsystem consists of a heat exchanger, two 2300 gallon concrete hot water storage tanks with built in heat exchangers and a back-up electric boiler. The domestic hot water subsystem sends hot water to the 10,200 square feet floor area office building hot water fixtures. The building cold water system provides make-up to the solar loop, the heating loop, and the hot water concrete storage tanks. The design, construction, cost analysis, operation and maintenance of the solar system are described. The system became operational July 11, 1979.

  12. Likely near-term solar-thermal water splitting technologies

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C.; Weimer, A.W. [University of Colorado, Boulder, CO (United States). Engineering Center

    2004-12-01

    Thermodynamic and materials considerations were made for some two- and three-step thermochemical cycles to split water using solar-thermal processing. The direct thermolysis of water to produce H{sub 2} using solar-thermal processing is unlikely in the near term due to ultra-high-temperature requirements exceeding 3000 K and the need to separate H{sub 2} from O{sub 2} at these temperatures. However, several lower temperature (<2500 K) thermochemical cycles including ZnO/Zn, Mn{sub 2}O{sub 3}/MnO, substituted iron oxide, and the sulfur-iodine route (S-I) provide an opportunity for high-temperature solar-thermal development. Although zirconia-based materials are well suited for metal oxide routes in terms of chemical compatibility at these temperatures, thermal shock issues are a major concern for solar-thermal applications. Hence, efforts need to be directed towards methods for designing reactors to eliminate thermal shock (ZrO{sub 2} based) or that use graphite (very compatible in terms of temperature and thermal shock) with designs that prevent contact of chemical species with graphite materials at high temperatures. Fluid-wall reactor configurations where inert gases provide a blanket to protect the graphite wall appear promising in this regard, but their use will impact process efficiency. For the case of S-I up to 1800 K, silicon carbide appears to be a suitable material for the high-temperature H{sub 2}SO{sub 4} dissociation. There is a need for a significant amount of work to be done in the area of high-temperature solar-thermal reactor engineering to develop thermochemical water splitting processes. (author)

  13. The Development of a Roof Integrated Solar Hot Water System

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, David F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energy Infrastructure and DER Dept.; Moss, Timothy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Solar Technologies Dept.; Palomino, G. Ernest [Salt River Project (SRP), Tempe, AZ (United States)

    2006-09-01

    The Salt River Project (SRP), in conjunction with Sandia National Laboratories (SNL) and Energy Laboratories, Inc. (ELI), collaborated to develop, test, and evaluate an advanced solar water-heating product for new homes. SRP and SNL collaborated under a Department of Energy Cooperative Research and Development Agreement (CRADA), with ELI as SRP's industry partner. The project has resulted in the design and development of the Roof Integrated Thermal Siphon (RITH) system, an innovative product that features complete roof integration, a storage tank in the back of the collector and below the roofline, easy installation by homebuilders, and a low installed cost. SRP's market research guided the design, and the laboratory tests conducted at SNL provided information used to refine the design of field test units and indicated that the RITH concept is viable. ELI provided design and construction expertise and is currently configured to manufacture the units. This final report for the project provides all of the pertinent and available materials connected to the project including market research studies, the design features and development of the system, and the testing and evaluation conducted at SNL and at a model home test site in Phoenix, Arizona.

  14. Material cycling solar system modeled ecosystem; Seitaikei wo model to shita busshitsu junkangata solar system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M. [Hachinohe Institute of Technology, Aomori (Japan)

    1996-10-27

    It is proposed to establish an integrated system close to a natural ecosystem for an industrial complex, taking that in Hachinohe City, Aomori Pref. as the conceptual site. It is a system in which materials are recycled by solar energy and industrial waste heat for a complex food industry. The conceptual site, although blessed with various marine products, are sometimes attacked by cold weather. Waste heat from a 250,000kW power plant, if transported by EHD heat pipes to the site, could provide roughly 400 times the heat required for production of agricultural and marine products, such as cabbages and fish meat. The waste heat, coupled with solar energy, should solve the problems resulting from hot waste water, if they could be utilized for the industrial purposes. The food industrial site that produces agricultural and marine products is considered to be suited as the center of the solar industrial complex incorporating farms. 5 refs., 3 figs.

  15. Detailed Physical Trough Model for NREL's Solar Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, M. J.; Blair, N.; Dobos, A.

    2010-10-01

    Solar Advisor Model (SAM) is a free software package made available by the National Renewable Energy Laboratory (NREL), Sandia National Laboratory, and the US Department of Energy. SAM contains hourly system performance and economic models for concentrating solar power (CSP) systems, photovoltaic, solar hot-water, and generic fuel-use technologies. Versions of SAM prior to 2010 included only the parabolic trough model based on Excelergy. This model uses top-level empirical performance curves to characterize plant behavior, and thus is limited in predictive capability for new technologies or component configurations. To address this and other functionality challenges, a new trough model; derived from physical first principles was commissioned to supplement the Excelergy-based empirical model. This new 'physical model' approaches the task of characterizing the performance of the whole parabolic trough plant by replacing empirical curve-fit relationships with more detailed calculations where practical. The resulting model matches the annual performance of the SAM empirical model (which has been previously verified with plant data) while maintaining run-times compatible with parametric analysis, adding additional flexibility in modeled system configurations, and providing more detailed performance calculations in the solar field, power block, piping, and storage subsystems.

  16. Modelling and experimental validation of thin layer indirect solar drying of mango slices

    Energy Technology Data Exchange (ETDEWEB)

    Dissa, A.O.; Bathiebo, J.; Kam, S.; Koulidiati, J. [Laboratoire de Physique et de Chimie de l' Environnement (LPCE), Unite de Formation et de Recherche en Sciences Exactes et Appliquee (UFR/SEA), Universite de Ouagadougou, Avenue Charles de Gaulle, BP 7021 Kadiogo (Burkina Faso); Savadogo, P.W. [Laboratoire Sol Eau Plante, Institut de l' Environnement et de Recherches Agricoles, 01 BP 476, Ouagadougou (Burkina Faso); Desmorieux, H. [Laboratoire d' Automatisme et de Genie des Procedes (LAGEP), UCBL1-CNRS UMR 5007-CPE Lyon, Bat.308G, 43 bd du 11 Nov. 1918 Villeurbanne, Universite Claude Bernard Lyon1, Lyon (France)

    2009-04-15

    The thin layer solar drying of mango slices of 8 mm thick was simulated and experimented using a solar dryer designed and constructed in laboratory. Under meteorological conditions of harvest period of mangoes, the results showed that 3 'typical days' of drying were necessary to reach the range of preservation water contents. During these 3 days of solar drying, 50%, 40% and 5% of unbound water were eliminated, respectively, at the first, second and the third day. The final water content obtained was about 16 {+-} 1.33% d.b. (13.79% w.b.). This final water content and the corresponding water activity (0.6 {+-} 0.02) were in accordance with previous work. The drying rates with correction for shrinkage and the critical water content were experimentally determined. The critical water content was close to 70% of the initial water content and the drying rates were reduced almost at 6% of their maximum value at night. The thin layer drying model made it possible to simulate suitably the solar drying kinetics of mango slices with a correlation coefficient of r{sup 2} = 0.990. This study thus contributed to the setting of solar drying time of mango and to the establishment of solar drying rates' curves of this fruit. (author)

  17. An overview of the development of solar water heater industry in China

    International Nuclear Information System (INIS)

    Runqing, Hu; Peijun, Sun; Zhongying, Wang

    2012-01-01

    This article introduce the development of China solar water heater industry .Gives an overview of stages, market, manufacturing, application and testing about China solar water heater industry. Show the market data from 1998 to 2009. Analyze the experiences and features about the industry. The article also introduces the policy for solar hot water industry in China. These policies have accelerated the development of industry in which the main two incentive policies have the greatest influence on solar water heater industry. First one is the policy of mandatory installation of solar water heater implemented since 2007 by some local governments at provincial and municipal levels. Second is the subsidy policy for solar water heaters in the household appliances going to the countryside scheme implemented since 2009. At last the article gives the reason why China solar water heater industry have so rapid growth. From technology research, industrialization, prices and policy environment gives analysis. - Highlights: ► We compared International and China market about solar thermal products. ► The reason for rapid development of China solar water heater is explained. ► The experience of China solar water heater industry would give reference to other develop country. ► “Meet the demands of customer” is the main driver for the solar water heater industry development. ► The policy framework about China solar thermal industry was introduced. The industry achieved commercial operation without subsidy.

  18. Photoelectrochemical solar water splitting: From basic principles to advanced devices

    Directory of Open Access Journals (Sweden)

    Bandar Y.Alfaifi

    2018-02-01

    Full Text Available Photoelectrochemical water splitting (PEC offers a promising path for sustainable generation of hydrogen fuel. However, improving solar fuel water splitting efficiency facing tremendous challenges, due to the energy loss related to fast recombination of the photogenerated charge carriers, electrode degradation, as well as limited light harvesting. This review focuses on the brief introduction of basic fundamental of PEC water splitting and the concept of various types of water splitting approaches. Numerous engineering strategies for the investgating of the higher efficiency of the PEC, including charge separation, light harvesting, and co-catalysts doping, have been discussed. Moreover, recent remarkable progress and developments for PEC water splitting with some promising materials are discussed. Recent advanced applications of PEC are also reviewed. Finally, the review concludes with a summary and future outlook of this hot field.

  19. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  20. Use of solar energy for disinfection of polluted water

    Directory of Open Access Journals (Sweden)

    Y. Jamil

    2009-05-01

    Full Text Available Polluted water is causing serious health problems especially in the rural areas of Pakistan. People have limited access to safe water supply and many diseases like diarrhea and gastrointestinal diseases are transmitted by consumption of polluted water. We have investigated the potential of using solar energy to pasteurize water. Low cost indigenously available materials have been utilized to design and fabricate a solar box type pasteurizer having a capacity of three liters. The performance study of the pasteurizer was performed during the month of May 2008. The designed pasteurizer maintained water temperature in the range of60 oC to 70 oC continuously for more than an hour which is enough for deactivation of coliform bacteria. The maximum water temperature on a clear sunny day was found to be 67 oC, corresponding to an ambient temperature of40 oC. With the pasteurizer facing south, a very little repositioning was required. The low cost and operational simplicity of the pasteurizer make it affordable and usable. It is more useful in rural areas where other sources of energy like electricity and gas are not easily available

  1. Solar or UVA-Visible Photocatalytic Ozonation of Water Contaminants.

    Science.gov (United States)

    Beltrán, Fernando J; Rey, Ana

    2017-07-14

    An incipient advanced oxidation process, solar photocatalytic ozonation (SPO), is reviewed in this paper with the aim of clarifying the importance of this process as a more sustainable water technology to remove priority or emerging contaminants from water. The synergism between ozonation and photocatalytic oxidation is well known to increase the oxidation rate of water contaminants, but this has mainly been studied in photocatalytic ozonation systems with lamps of different radiation wavelength, especially of ultraviolet nature (UVC, UVB, UVA). Nowadays, process sustainability is critical in environmental technologies including water treatment and reuse; the application of SPO systems falls into this category, and contributes to saving energy and water. In this review, we summarized works published on photocatalytic ozonation where the radiation source is the Sun or simulated solar light, specifically, lamps emitting radiation to cover the UVA and visible light spectra. The main aspects of the review include photoreactors used and radiation sources applied, synthesis and characterization of catalysts applied, influence of main process variables (ozone, catalyst, and pollutant concentrations, light intensity), type of water, biodegradability and ecotoxicity, mechanism and kinetics, and finally catalyst activity and stability.

  2. Carbon nanoparticles for solar disinfection of water.

    Science.gov (United States)

    Maddigpu, Pratap Reddy; Sawant, Bhairavi; Wanjari, Snehal; Goel, M D; Vione, Davide; Dhodapkar, Rita S; Rayalu, S

    2018-02-05

    The present manuscript deals with the application of carbon nano particles (CNP) and chitosan (CHIT) in the form of CHIT-CNP composite for the disinfection of water. The CHIT-CNP composite was prepared by the solution casting method and characterized by TEM, XRD and elemental analysis. In the present investigation we study the disinfection efficiency towards E. coli bacteria of both CNP and CHIT-CNP, under sunlight (SODIS) in identical experimental conditions. Both CNP and CHIT-CNP enhanced disinfection as compared to SODIS alone, and comparable performance was achieved when the same dose of CNP in the two materials was applied. However, the CHIT-CNP composite is in the form of a fabric and it is easier to use and handle as compared to the CNP powder, especially in rural and resource-constrained areas. Moreover the SODIS-CHIT-CNP setup, when used in a compound parabolic collector (CPC) reactor showed high bactericidal efficiency compared to SODIS alone, which is promising for practical applications. The disinfection potential of the CNP powder was compared with that of the well-known material TiO 2 Degussa P25 (DP 25 ): DP 25 gave 6-log kill of bacteria in 180min, whereas CNP produced 6-log kill in 150min. Copyright © 2017. Published by Elsevier B.V.

  3. Astrobiology: Water and Life in the Solar System and beyond

    Directory of Open Access Journals (Sweden)

    Jorge Alberto Quillfeldt

    2010-03-01

    Full Text Available After some methodological considerations and a brief historical background (SETI, we describe the three main impulses to the present discipline of exo / astrobiology - extremophyles, the discovery of exoplanets, and the data gathered by several unmanned probes in the solar system. An overview of recent findings concerning the presence of frozen or liquid water in our planetary system is presented, and the main trends for the following years, summarized.

  4. Why Do People Stop Treating Contaminated Drinking Water with Solar Water Disinfection (SODIS)?

    Science.gov (United States)

    Tamas, Andrea; Mosler, Hans-Joachim

    2011-01-01

    Solar Water Disinfection (SODIS) is a simple method designed to treat microbiologically contaminated drinking water at household level. This article characterizes relapse behavior in comparison with continued SODIS use after a 7-month nonpromotion period. In addition, different subtypes among relapsers and continuers were assumed to diverge mainly…

  5. Revisions to the SRCC Rating Process for Solar Water Heaters: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Huggins, J.; Long, S.; Thornton, J.

    2012-06-01

    In the United States, annual performance ratings for solar water heaters are computed with component-based simulation models driven by typical meteorological year weather and specified water draw. Changes in the process are being implemented to enhance credibility through increased transparency and accuracy. Changes to the process include using a graphical rather than text-based model-building tool, performing analytical tests on all components and systems, checking energy balances on every component, loop, and system at every time step, comparing the results to detect outliers and potential errors, and documenting the modeling process in detail. Examples of changes in ratings are shown, along with analytical and comparative testing results.

  6. Photoelectrochemical devices for solar water splitting - materials and challenges.

    Science.gov (United States)

    Jiang, Chaoran; Moniz, Savio J A; Wang, Aiqin; Zhang, Tao; Tang, Junwang

    2017-07-31

    It is widely accepted within the community that to achieve a sustainable society with an energy mix primarily based on solar energy we need an efficient strategy to convert and store sunlight into chemical fuels. A photoelectrochemical (PEC) device would therefore play a key role in offering the possibility of carbon-neutral solar fuel production through artificial photosynthesis. The past five years have seen a surge in the development of promising semiconductor materials. In addition, low-cost earth-abundant co-catalysts are ubiquitous in their employment in water splitting cells due to the sluggish kinetics of the oxygen evolution reaction (OER). This review commences with a fundamental understanding of semiconductor properties and charge transfer processes in a PEC device. We then describe various configurations of PEC devices, including single light-absorber cells and multi light-absorber devices (PEC, PV-PEC and PV/electrolyser tandem cell). Recent progress on both photoelectrode materials (light absorbers) and electrocatalysts is summarized, and important factors which dominate photoelectrode performance, including light absorption, charge separation and transport, surface chemical reaction rate and the stability of the photoanode, are discussed. Controlling semiconductor properties is the primary concern in developing materials for solar water splitting. Accordingly, strategies to address the challenges for materials development in this area, such as the adoption of smart architectures, innovative device configuration design, co-catalyst loading, and surface protection layer deposition, are outlined throughout the text, to deliver a highly efficient and stable PEC device for water splitting.

  7. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides.

    Science.gov (United States)

    Li, Jie; Li, Hao; Zhan, Guangming; Zhang, Lizhi

    2017-01-17

    Hydrogen and ammonia are the chemical molecules that are vital to Earth's energy, environmental, and biological processes. Hydrogen with renewable, carbon-free, and high combustion-enthalpy hallmarks lays the foundation of next-generation energy source, while ammonia furnishes the building blocks of fertilizers and proteins to sustain the lives of plants and organisms. Such merits fascinate worldwide scientists in developing viable strategies to produce hydrogen and ammonia. Currently, at the forefronts of hydrogen and ammonia syntheses are solar water splitting and nitrogen fixation, because they go beyond the high temperature and pressure requirements of methane stream reforming and Haber-Bosch reaction, respectively, as the commercialized hydrogen and ammonia production routes, and inherit the natural photosynthesis virtues that are green and sustainable and operate at room temperature and atmospheric pressure. The key to propelling such photochemical reactions lies in searching photocatalysts that enable water splitting into hydrogen and nitrogen fixation to make ammonia efficiently. Although the past 40 years have witnessed significant breakthroughs using the most widely studied TiO 2 , SrTiO 3 , (Ga 1-x Zn x )(N 1-x O x ), CdS, and g-C 3 N 4 for solar chemical synthesis, two crucial yet still unsolved issues challenge their further progress toward robust solar water splitting and nitrogen fixation, including the inefficient steering of electron transportation from the bulk to the surface and the difficulty of activating the N≡N triple bond of N 2 . This Account details our endeavors that leverage layered bismuth oxyhalides as photocatalysts for efficient solar water splitting and nitrogen fixation, with a focus on addressing the above two problems. We first demonstrate that the layered structures of bismuth oxyhalides can stimulate an internal electric field (IEF) that is capable of efficiently separating electrons and holes after their formation and of

  8. A solar assisted heat-pump dryer and water heater

    International Nuclear Information System (INIS)

    Hawlader, M.N.A.; Chou, S.K.; Jahangeer, K.A.; Rahman, S.M.A.

    2006-01-01

    Growing concern about the depletion of conventional energy resources has provided impetus for considerable research and development in the area of alternative energy sources. A solar assisted heat pump dryer and water heater found to be one of the solutions while exploring for alternative energy sources. The heat pump system is used for drying and water heating applications with the major share of the energy derived from the sun and the ambient. The solar assisted heat pump dryer and water heater has been designed, fabricated and tested. The performance of the system has been investigated under the meteorological conditions of Singapore. The system consists of a variable speed reciprocating compressor, evaporator-collector, storage tank, air cooled condenser, auxiliary heater, blower, dryer, dehumidifier, and air collector. The drying medium used is air and the drying chamber is configured to carry out batch drying of good grains. A water tank connected in series with the air cooled condenser delivers hot water for domestic applications. The water tank also ensures complete condensation of the refrigerant vapour. A simulation program is developed using Fortran language to evaluate the performance of the system and the influence of different variables. The performance indices considered to evaluate the performance of the system are: Solar Fraction (SF), Coefficient of Performance (COP) and Specific Moisture Extraction Rate (SMER). A COP value of 7.5 for a compressor speed of 1800 rpm was observed. Maximum collector efficiencies of 0.86 and 0.81 have been found for evaporator-collector and air collector, respectively. A value of the SMER of 0.79 has been obtained for a load of 20 kg and a compressor speed of 1200 rpm

  9. Model validation studies of solar systems, Phase III. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, L.J.; Winn, C.B.

    1978-12-01

    Results obtained from a validation study of the TRNSYS, SIMSHAC, and SOLCOST solar system simulation and design are presented. Also included are comparisons between the FCHART and SOLCOST solar system design programs and some changes that were made to the SOLCOST program. Finally, results obtained from the analysis of several solar radiation models are presented. Separate abstracts were prepared for ten papers.

  10. Elementary Students' Mental Models of the Solar System

    Science.gov (United States)

    Calderon-Canales, Elena; Flores-Camacho, Fernando; Gallegos-Cazares, Leticia

    2013-01-01

    This research project aimed to identify and analyze Mexican primary school students' ideas about the components of the solar system. In particular, this study focused on conceptions of the solar system and representations of the dynamics of the solar system based on the functional and structural models that students make in school. Using a…

  11. Investigating the real situation of Greek solar water heating market

    International Nuclear Information System (INIS)

    Kaldellis, J.K.; Kavadias, K.A.; Spyropoulos, G.

    2005-01-01

    Solar thermal applications have been acknowledged among the leading alternative solutions endeavouring to face the uncontrollable oil price variations, the gradual depletion of fossil fuel reserves and the chain environmental consequences caused by its excessive usage. Almost 30 years after the initial emergence of the commercial domestic solar water heating system (DSWHS) in the European market, the corresponding technology is qualified as quite mature. On top of this, the European Commission expects that 100,000,000 m 2 of solar collectors are to be installed in Europe by the year 2010 to facilitate durable and environment-friendly heat. In this context, the Greek DSWHSs market is highly developed worldwide, having a great experience in this major energy market segment. The present study is devoted to an extensive evaluation of the local DSWHSs market, including a discerning analysis of its time variation, taking seriously into account the corresponding annual replacement rate. Accordingly, the crucial techno-economic reasons, limiting the DSWHSs penetration in the local heat production market, are summarized and elaborated. Subsequently, the national policy measures - aiming to support the DSWHSs in the course of time - are cited, in comparison with those applied in other European countries. Next, the financial attractiveness of a DSWHS for Greek citizens is examined in the local socio-economic environment. The present work is integrated by reciting the prospects and mustering certain proposals that, if applied, could stimulate the local market. As a general comment, the outlook for penetration of new DSWHSs in the local market is rather grim, as the current techno-economic situation of solar heat cannot compete with oil and natural gas heat production, unless the remarkable social and environmental benefits of solar energy are seriously considered. Hence, the Greek State lacks stimulus to further DSWHSs installations, being strongly in support of the imported

  12. Solar heating and hot water system installed at Arlington Raquetball Club, Arlington, Virginia

    Science.gov (United States)

    1981-01-01

    A solar space and water heating system is described. The solar energy system consists of 2,520 sq. ft. of flat plate solar collectors and a 4,000 gallon solar storage tank. The transfer medium in the forced closed loop is a nontoxic antifreeze solution (50 percent water, 50 percent propylene glycol). The service hot water system consists of a preheat coil (60 ft. of 1 1/4 in copper tubing) located in the upper third of the solar storage tank and a recirculation loop between the preheat coil and the existing electric water heaters. The space heating system consists of two separate water to air heat exchangers located in the ducts of the existing space heating/cooling systems. The heating water is supplied from the solar storage tank. Extracts from site files, specification references for solar modifications to existing building heating and hot water systems, and installation, operation and maintenance instructions are included.

  13. Solar Water Heating with Low-Cost Plastic Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    Federal buildings consumed over 392,000 billion Btu of site delivered energy for buildings during FY 2007 at a total cost of $6.5 billion. Earlier data indicate that about 10% of this is used to heat water.[2] Targeting energy consumption in Federal buildings, the Energy Independence and Security Act of 2007 (EISA) requires new Federal buildings and major renovations to meet 30% of their hot water demand with solar energy, provided it is cost-effective over the life of the system. In October 2009, President Obama expanded the energy reduction and performance requirements of EISA and its subsequent regulations with his Executive Order 13514.

  14. Modeling and analysis of solar distributed generation

    Science.gov (United States)

    Ortiz Rivera, Eduardo Ivan

    Recent changes in the global economy are creating a big impact in our daily life. The price of oil is increasing and the number of reserves are less every day. Also, dramatic demographic changes are impacting the viability of the electric infrastructure and ultimately the economic future of the industry. These are some of the reasons that many countries are looking for alternative energy to produce electric energy. The most common form of green energy in our daily life is solar energy. To convert solar energy into electrical energy is required solar panels, dc-dc converters, power control, sensors, and inverters. In this work, a photovoltaic module, PVM, model using the electrical characteristics provided by the manufacturer data sheet is presented for power system applications. Experimental results from testing are showed, verifying the proposed PVM model. Also in this work, three maximum power point tracker, MPPT, algorithms would be presented to obtain the maximum power from a PVM. The first MPPT algorithm is a method based on the Rolle's and Lagrange's Theorems and can provide at least an approximate answer to a family of transcendental functions that cannot be solved using differential calculus. The second MPPT algorithm is based on the approximation of the proposed PVM model using fractional polynomials where the shape, boundary conditions and performance of the proposed PVM model are satisfied. The third MPPT algorithm is based in the determination of the optimal duty cycle for a dc-dc converter and the previous knowledge of the load or load matching conditions. Also, four algorithms to calculate the effective irradiance level and temperature over a photovoltaic module are presented in this work. The main reasons to develop these algorithms are for monitoring climate conditions, the elimination of temperature and solar irradiance sensors, reductions in cost for a photovoltaic inverter system, and development of new algorithms to be integrated with maximum

  15. Building America Case Study: Addressing Multifamily Piping Losses with Solar Hot Water, Davis, California

    Energy Technology Data Exchange (ETDEWEB)

    2016-12-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  16. Using Solar Hot Water to Address Piping Heat Losses in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, David [Alliance for Residential Building Innovation, Davis, CA (United States); Seitzler, Matt [Alliance for Residential Building Innovation, Davis, CA (United States); Backman, Christine [Alliance for Residential Building Innovation, Davis, CA (United States); Weitzel, Elizabeth [Alliance for Residential Building Innovation, Davis, CA (United States)

    2015-10-01

    Solar thermal water heating is most cost effective when applied to multifamily buildings and some states offer incentives or other inducements to install them. However, typical solar water heating designs do not allow the solar generated heat to be applied to recirculation losses, only to reduce the amount of gas or electric energy needed for hot water that is delivered to the fixtures. For good reasons, hot water that is recirculated through the building is returned to the water heater, not to the solar storage tank. The project described in this report investigated the effectiveness of using automatic valves to divert water that is normally returned through the recirculation piping to the gas or electric water heater instead to the solar storage tank. The valves can be controlled so that the flow is only diverted when the returning water is cooler than the water in the solar storage tank.

  17. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkanshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Resources Co. Ltd., Shizuoka (Japan)

    1996-10-27

    For the purpose of satisfying demands for qualitative improvement on tapwater temperature and pressure, an indirect-type solar water heater using solar cells, in which a closed type hot water storage tank connected directly to the water supply is integrated with a solar collector, was examined for its characteristics and performance. The heat collecting medium is a water solution of polypropylene glycol, which circulates through the solar collector pump, cistern, solar collector, and heat exchanger (hot water storage tank). The results of the test are summarized below. When comparison is made between the two solar collector pump control methods, the solar cells direct connection method and the differential thermo method utilizing temperature difference between the solar collector and the hot water storage tank, they are alike in collecting heat on clear days, but on cloudy days the latter collects 5% more than the former. In winter, when the heat exchanger heat transfer area is 0.4m{sup 2} large, a further increase in the area improves but a little the heat collecting efficiency. An increase in the medium flow rate and temperature, or in the Reynolds number, enhances the heat collecting efficiency. 13 figs., 6 tabs.

  18. Methodology for estimation of potential for solar water heating in a target area

    International Nuclear Information System (INIS)

    Pillai, Indu R.; Banerjee, Rangan

    2007-01-01

    Proper estimation of potential of any renewable energy technology is essential for planning and promotion of the technology. The methods reported in literature for estimation of potential of solar water heating in a target area are aggregate in nature. A methodology for potential estimation (technical, economic and market potential) of solar water heating in a target area is proposed in this paper. This methodology links the micro-level factors and macro-level market effects affecting the diffusion or adoption of solar water heating systems. Different sectors with end uses of low temperature hot water are considered for potential estimation. Potential is estimated at each end use point by simulation using TRNSYS taking micro-level factors. The methodology is illustrated for a synthetic area in India with an area of 2 sq. km and population of 10,000. The end use sectors considered are residential, hospitals, nursing homes and hotels. The estimated technical potential and market potential are 1700 m 2 and 350 m 2 of collector area, respectively. The annual energy savings for the technical potential in the area is estimated as 110 kW h/capita and 0.55 million-kW h/sq. km. area, with an annual average peak saving of 1 MW. The annual savings is 650-kW h per m 2 of collector area and accounts for approximately 3% of the total electricity consumption of the target area. Some of the salient features of the model are the factors considered for potential estimation; estimation of electrical usage pattern for typical day, amount of electricity savings and savings during the peak load. The framework is general and enables accurate estimation of potential of solar water heating for a city, block. Energy planners and policy makers can use this framework for tracking and promotion of diffusion of solar water heating systems. (author)

  19. Role of Solar Water Heating in Multifamily Zero Energy Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Williamson, James [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2016-04-08

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: 1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads; 2) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes; 3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating; and 4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support from the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  20. Building America Case Study: Solar Water Heating in Multifamily Buildings

    Energy Technology Data Exchange (ETDEWEB)

    R. Aldrich and J. Williamson

    2016-05-01

    Solar domestic hot water (SDHW) systems have been installed on buildings for decades, but because of relatively high costs they have not achieved significant market penetration in most of the country. As more buildings move towards zero net energy consumption, however, many designers and developers are looking more closely at SDHW. In multifamily buildings especially, SDHW may be more practical for several reasons: (1) When designing for zero net energy consumption, solar water heating may be part of the lowest cost approach to meet water heating loads. (2.) Because of better scale, SDHW systems in multifamily buildings cost significantly less per dwelling than in single-family homes. (3) Many low-load buildings are moving away from fossil fuels entirely. SDHW savings are substantially greater when displacing electric resistance water heating. (4) In addition to federal tax incentives, some states have substantial financial incentives that dramatically reduce the costs (or increase the benefits) of SDHW systems in multifamily buildings. With support form the U.S. DOE Building America program, the Consortium for Advanced Residential Buildings (CARB) worked with a developer in western Massachusetts to evaluate a SDHW system on a 12-unit apartment building. Olive Street Development completed construction in spring of 2014, and CARB has been monitoring performance of the water heating systems since May 2014.

  1. P50/P90 Analysis for Solar Energy Systems Using the System Advisor Model: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, A. P.; Gilman, P.; Kasberg, M.

    2012-06-01

    To secure competitive financing for a solar energy generation project, the economic risk associated with interannual solar resource variability must be quantified. One way to quantify this risk is to calculate exceedance probabilities representing the amount of energy expected to be produced by a plant. Many years of solar radiation and metereological data are required to determine these values, often called P50 or P90 values for the level of certainty they represent. This paper describes the two methods implemented in the National Renewable Energy Laboratory's System Advisor Model (SAM) to calculate P50 and P90 exceedance probabilities for solar energy projects. The methodology and supporting data sets are applicable to photovoltaic, solar water heating, and concentrating solar power (CSP) systems.

  2. Predictive Control Applied to a Solar Desalination Plant Connected to a Greenhouse with Daily Variation of Irrigation Water Demand

    Directory of Open Access Journals (Sweden)

    Lidia Roca

    2016-03-01

    Full Text Available The water deficit in the Mediterranean area is a known matter severely affecting agriculture. One way to avoid the aquifers’ exploitation is to supply water to crops by using thermal desalination processes. Moreover, in order to guarantee long-term sustainability, the required thermal energy for the desalination process can be provided by solar energy. This paper shows simulations for a case study in which a solar multi-effect distillation plant produces water for irrigation purposes. Detailed models of the involved systems are the base of a predictive controller to operate the desalination plant and fulfil the water demanded by the crops.

  3. Equatorial Magnetohydrodynamic Shallow Water Waves in the Solar Tachocline

    Science.gov (United States)

    Zaqarashvili, Teimuraz

    2018-03-01

    The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes ±20°–40°, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90–100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1–2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.

  4. A comparison of diesel, biodiesel and solar PV-based water pumping systems in the context of rural Nepal

    DEFF Research Database (Denmark)

    Parajuli, Ranjan; Pokharel, Govind Raj; Østergaard, Poul Alberg

    2014-01-01

    using petro-diesel, jatropha-based biodiesel and solar photovoltaic pumps. The technical system design consists of system sizing of prime mover (engine, solar panel and pumps) and estimation of reservoir capacity, which are based on the annual aggregate water demand modelling. With these investigations...... area, the levelised cost of pumping 1 L of water is higher than that of a solar pump and even higher when compared with diesel, if the seed yield per plant is less than 2 kg and without subsidy on the investment cost of cultivation and processing. With the productivity of 2.5 kg/plant, a biodiesel......-based system is more attractive than that of the diesel-based pump, but still remains more expensive than that of solar pump. From the technical perspective (reliability and easiness in operation) and economic evaluation of the technical alternatives, solar pumping system is found to be the most viable...

  5. Use of solar energy in the treatment of water contaminated with phenol by photochemical processes

    Directory of Open Access Journals (Sweden)

    K. R. B. Nogueira

    2008-12-01

    Full Text Available The solar driven photo-Fenton process for treating water containing phenol as a contaminant has been evaluated by means of pilot-scale experiments with a parabolic trough solar reactor (PTR. The effects of Fe(II (0.04-1.0 mmol L-1, H2O2 (7-270 mmol L-1, initial phenol concentration (100 and 500 mg C L-1, solar radiation, and operation mode (batch and fed-batch on the process efficiency were investigated. More than 90% of the dissolved organic carbon (DOC was removed within 3 hours of irradiation or less, a performance equivalent to that of artificially-irradiated reactors, indicating that solar light can be used either as an effective complementary or as an alternative source of photons for the photo-Fenton degradation process. A non-linear multivariable model based on a neural network was fit to the experimental results of batch-mode experiments in order to evaluate the relative importance of the process variables considered on the DOC removal over the reaction time. This included solar radiation, which is not a controlled variable. The observed behavior of the system in batch-mode was compared with fed-batch experiments carried out under similar conditions. The main contribution of the study consists of the results from experiments under different conditions and the discussion of the system behavior. Both constitute important information for the design and scale-up of solar radiation-based photodegradation processes.

  6. Mathematical model of heat-mass exchange processes in a flat solar collector SUN 1

    Directory of Open Access Journals (Sweden)

    Tunik Aleksandr Aleksandrovich

    2016-01-01

    Full Text Available In a flat solar collector SUN 1 The active development of environmental friendly energy sources alternative to HPPs is currently of great importance in the world. Such alternative energy sources are: water, ground, sun, wind, biofuel, etc. If we have a look at the atlas of solar energy resources on the territory of Russia, we can make a conclusion, that in many regions of our country solar activity level allows using solar collector. Though the analysis of different models of solar collector showed, that most of them are ineffective in the regions with cold climate, though the solar activity of these regions is of a great level. In this regard, a mathematical model of heat-mass exchange processes in flat solar collectors is introduced in this article. The model was a basis for the development of a new solar collector, named SUN 1, which has an original heating tubes form. This form allows heat transfer medium to be under the influence of solar energy for a longer time and consequently to warm to a higher temperature, increasing the warming rapidity.

  7. Passive Solar Driven Water Treatment of Contaminated Water Resources

    OpenAIRE

    Ahmed, Mubasher

    2016-01-01

    Master's thesis in Environmental technology Freshwater, being vital for mankind survival, has become a very serious concern for the public especially living in countries with limited water, energy and economic resources. Freshwater generation is an energy-intensive task particularly when fossil based fuels are required as energy source. However, environmental concerns and high energy costs have called for the alternative and renewable sources of energy like wind, hy...

  8. Evaluation of Solar Photosensitised River Water Treatment in the Caribbean

    Directory of Open Access Journals (Sweden)

    K. Tota-Maharaj

    2013-01-01

    Full Text Available An economical supply of hygienic potable water is one of the most pressing public health issues facing developing countries in the Caribbean region today. This project investigates the performance of a novel solar photochemical reactor for disinfecting river water. The prototype photochemical reactor was designed, constructed, and tested for the microbiological degradation of faecal coliform present in River Water. The experiments evaluated the efficacy of two photosensitive dyes (malachite green and methylene blue as agents for detoxification with concentrations ranging from 0.5 to 3.0 mg/L. The photochemical reactor operated in a single-pass mode and compared the disinfection rates with direct photolysis. The photosensitizers showed a high efficacy rate using natural sunlight with microbial reduction ranging from 97 to 99% for concentrations as low as 0.5 mg/L of dye. The sensitizers were found to be photobleaching and were very effective at lower concentrations (0.01. Post-solar disinfection included the use of a coconut fiber filter which polished the water removing residual dye concentrations and bacterial contaminants.

  9. Solar-Based Fuzzy Intelligent Water Sprinkle System

    Directory of Open Access Journals (Sweden)

    Riza Muhida

    2012-03-01

    Full Text Available A solar-based intelligent water sprinkler system project that has been developed to ensure the effectiveness in watering the plant is improved by making the system automated. The control system consists of an electrical capacitance soil moisture sensor installed into the ground which is interfaced to a controller unit of Motorola 68HC11 Handy board microcontroller. The microcontroller was programmed based on the decision rules made using fuzzy logic approach on when to water the lawn. The whole system is powered up by the solar energy which is then interfaced to a particular type of irrigation timer for plant fertilizing schedule and rain detector through a simple design of rain dual-collector tipping bucket. The controller unit automatically disrupted voltage signals sent to the control valves whenever irrigation was not needed. Using this system we combined the logic implementation in the area of irrigation and weather sensing equipment, and more efficient water delivery can be made possible. 

  10. Solar Cogeneration of Electricity and Hot Water at DoD Installations

    Science.gov (United States)

    2014-06-01

    be designed to provide a minimum of 30% of the facility’s hot water demand by solar water heating. Waste heat harvesting , integrated co-generation...water demand by solar water heating. Waste heat harvesting , integrated co-generation systems, or a combination thereof may be used in lieu of solar...field operations team are summarized below for the demonstration installations. Port Hueneme • Early morning fog and cloud cover at Port Hueneme

  11. Efficiencies and Physical Principles of Various Solar Energy Conversion Processes Leading to the Photolysis of Water

    Energy Technology Data Exchange (ETDEWEB)

    Bergene, T.

    1995-12-31

    In the application of solar energy, hydrogen is likely to be used as an energy carrier and a storage medium. Production of molecular hydrogen and oxygen from water requires energy input, which may come from solar energy in various ways. This thesis begins with a literature survey of the different conversion processes and the efficiencies, which is an introduction to a series of enclosed papers. These papers are: (1) Trapping of Minority Charge Carriers at Irradiated Semiconductor/Electrolyte Heterojunctions, (2) Model Calculations on Flat-Plate Solar Heat Collector With Integrated Solar Cells, and (3) Efficiencies and Physical Principles of Photolysis of Water By Microalgae. In the papers, The qualitative features of the ``illumination-current``-characteristic curve are deduced. The hypothesis is that trapping originates in some specific cases because of confinement, which leads to charge injections into energy states above that corresponding to the band edge. The quantitative features of certain hybrid photovoltaic/thermal configuration are deduced. An analysis of the theoretical and realizable efficiencies of the photolysis of water by micro algae is given. 151 refs., 18 figs., 1 table

  12. A framework for investigating the interactions between climate, dust, solar power generation and water desalination processes in Desert Climate

    Science.gov (United States)

    Siam, M. S.; Alqatari, S.; Ibrahim, H. D.; AlAloula, R. A.; Alrished, M.; AlSaati, A.; Eltahir, E. A. B.

    2016-12-01

    Increasing water demand in Saudi Arabia due to rapid population growth has forced the rapid expansion of seawater desalination plants in order to meet both current and future freshwater needs. Saudi Arabia has a huge potential for solar energy, hence, solar-powered desalination plants provide an opportunity to sustainably address the freshwater demand in the kingdom without relying on fossil fuels energy. However, the desert climate of Saudi Arabia and limited access to the open ocean imposes several challenges to the expansion and sustainability of solar-powered desalination plants. For example, the frequent and intense dust storms that occur in the region can degrade solar panels and significantly reduce their efficiency. Moreover, the high salinity Arabian Gulf is both the source of feedwater and sink of hypersaline discharge (brine) for many plants in the east of the Kingdom, and the brine may alter the salinity, temperature and movement of the water thereby reducing the quality of the feedwater to the desalination plants. Here, we propose a framework to investigate the different interactions between climate, dust, solar power generation and seawater desalination in order to identify optimal parameters such as locations of solar panels and seawater intake for sustainable implementation of solar-powered desalination plants. This framework integrates several numerical models including regional climate, hydrodynamics, Photovoltaics (PV) and Photovoltaic-Reverse Osmosis (PV-RO) models that are used to investigate these interactions for a solar-powered desalination plant at AlKhafji on the Northeastern coast of Saudi Arabia.

  13. Analysis of a solar water thermosyphon system; Analise do aquecimento solar de agua por sistema a termosifao

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Abner Barzola

    1992-07-01

    A design methodology and to perform the simulation of flat plate solar collectors coupled with a water storage tank and operating by natural convection circulation is presented. For a given site the incident solar radiation on a tilted and previously oriented surface is determined from solar astronomy and the dally average of the monthly data of the horizontal total solar radiation. Huancayo situated in Peru (at 12.05 deg S, long. 76.18 deg W, altitude 3,312 m), is chosen as the site to be installed the solar water system, as a mean to improve the peasant's standard of life. An optimum tilt angle for a north oriented collector surface is obtained in order to have a maximum solar capture during the water. The theoretical methodology use here is based upon the ONG's paper (1976), and in attrition is considered the hot water drainage due to the dally consumption. For the sake of comparison, the calculated flowrate values are confronted with the experimental data obtained by FERNANDEZ, for a same site location (Rio de Janeiro) and are used identical dimensions for the water thermosyphon heater. Finally, the economic feasibility of the solar water system is demonstrated when it is compared with the usual immersion electric resistance boiler. For the Peruvian conditions the more adequate solar water system for a rural or domestic usage is a 1.4 m{sup 2} area solar collector (6 parallel, 15,875 mm copper tubes), 100 l capacity for the water storage tank, 33.5 mm for the connecting tubes, being of 300 mm. The height between the collector top and the bottom of the tank. (author)

  14. Optimization and modeling of a photovoltaic solar integrated system by neural networks

    International Nuclear Information System (INIS)

    Ashhab, Moh'd Sami S.

    2008-01-01

    A photovoltaic solar integrated system is modeled with artificial neural networks (ANN's). Data relevant to the system performance was collected on April, 4th 1993 and every 15 min during the day. This input-output data is used to train the ANN. The ANN approximates the data well and therefore can be relied on in predicting the system performance, namely, system efficiencies. The solar system consists of a solar trainer which contains a photovoltaic panel, a DC centrifugal pump, flat plate collectors, storage tank, a flowmeter for measuring the water mass flow rate, pipes, pyranometer for measuring the solar intensity, thermocouples for measuring various system temperatures and wind speed meter. The complex method constrained optimization is applied to the solar system ANN model to find the operating conditions of the system that will produce the maximum system efficiencies. This information will be very hard to obtain by just looking at the available historical input-output data

  15. Solar Radiation Model for Development and Control of Solar Energy Sources

    Directory of Open Access Journals (Sweden)

    Dominykas Vasarevičius

    2016-06-01

    Full Text Available The model of solar radiation, which takes into account direct, diffused and reflected components of solar energy, has been presented. Model is associated with geographical coordinates and local time of every day of the year. It is shown that using analytic equations for modelling the direct component, it is possible to adopt it for embedded systems with low computational power and use in solar tracking applications. Reflected and diffused components are especially useful in determining the performance of photovoltaic modules in certain location and surroundings. The statistical method for cloud layer simulation based on local meteorological data is offered. The presented method can’t be used for prediction of weather conditions but it provides patterns of solar radiation in time comparable to those measured with pyranometer. Cloud layer simulation together with total solar radiation model is a useful tool for development and analysis of maximum power point tracking controllers for PV modules.

  16. Assessing solar energy and water use efficiencies in winter wheat

    Science.gov (United States)

    Asrar, G.; Hipps, L. E.; Kanemasu, E. T.

    1982-01-01

    The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

  17. Solar spectral irradiance variability in cycle 24: observations and models

    Science.gov (United States)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  18. Solar spectral irradiance variability in cycle 24: observations and models

    Directory of Open Access Journals (Sweden)

    Marchenko Sergey V.

    2016-01-01

    Full Text Available Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI, we characterize both short-term (solar rotation and long-term (solar cycle changes of the solar spectral irradiance (SSI between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2 and Solar Radiation and Climate Experiment (SORCE instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2 and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S models.

  19. A parameterization for the absorption of solar radiation by water vapor in the earth's atmosphere

    Science.gov (United States)

    Wang, W.-C.

    1976-01-01

    A parameterization for the absorption of solar radiation as a function of the amount of water vapor in the earth's atmosphere is obtained. Absorption computations are based on the Goody band model and the near-infrared absorption band data of Ludwig et al. A two-parameter Curtis-Godson approximation is used to treat the inhomogeneous atmosphere. Heating rates based on a frequently used one-parameter pressure-scaling approximation are also discussed and compared with the present parameterization.

  20. Thermal analysis and performance optimization of a solar hot water plant with economic evaluation

    KAUST Repository

    Kim, Youngdeuk

    2012-05-01

    The main objective of this study is to optimize the long-term performance of an existing active-indirect solar hot water plant (SHWP), which supplies hot water at 65 °C for use in a flight kitchen, using a micro genetic algorithm in conjunction with a relatively detailed model of each component in the plant and solar radiation model based on the measured data. The performance of SHWP at Changi International Airport Services (CIASs), Singapore, is studied for better payback period using the monthly average hourly diffuse and beam radiations and ambient temperature data. The data input for solar radiation model is obtained from the Singapore Meteorological Service (SMS), and these data have been compared with long-term average data of NASA (surface meteorology and solar energy or SSE). The comparison shows a good agreement between the predicted and measured hourly-averaged, horizontal global radiation. The SHWP at CIAS, which comprises 1200m 2 of evacuated-tube collectors, 50m 3 water storage tanks and a gas-fired auxiliary boiler, is first analyzed using a baseline configuration, i.e., (i) the local solar insolation input, (ii) a coolant flow rate through the headers of collector based on ASHRAE standards, (iii) a thermal load demand pattern amounting to 100m 3/day, and (iv) the augmentation of water temperature by auxiliary when the supply temperature from solar tank drops below the set point. A comparison between the baseline configuration and the measured performance of CIAS plant gives reasonably good validation of the simulation code. Optimization is further carried out for the following parameters, namely; (i) total collector area of the plant, (ii) storage volume, and (iii) three daily thermal demands. These studies are performed for both the CIAS plant and a slightly modified plant where the hot water supply to the load is adjusted constant at times when the water temperature from tank may exceed the set temperature. It is found that the latter

  1. Water disinfection with solar radiation; Desinfeccion del agua con radiacion solar

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Alejandra; Cortes, Juana E; Rodriguez, Miriam; Mundo, Alfredo; Vazquez, Sandra [Instituto Mexicano de Tecnologia del Agua, Jiutepec, Morelos (Mexico); Estrada, Claudio A [Centro de Investigacion en Energia, Temixco, Morelos (Mexico)

    2000-07-01

    Water disinfection by exposure to solar radiation is a low cost and easy application option to rural communities. The treatment of water can be done using plastic bags or plastic bottles of two litters setting on a reflective material. The efficient of the plastic bottles is lower than the one plastic bags, but the plastic bottles have a much better control of the treated water avoiding its recontamination. In order to increase the efficiency of disinfection using plastic bottles, two solar concentrators, using flat mirrors, were designed and built. Effluent water from a treatment plant of residual waters was used for the testing. Several comparison were carried out taking into account the position of the concentrators, the transparency of the bottles and the bags. The results show that using the concentrator that adjust its position to the sun every hour, a 100% disinfection is obtained in 4 hours of direct exposure to the sun rays in a sunny day. The period of time can be reduced up to 2 hours, if instead using transparent bottles, the bottles are black painted at their bottom half. With these results, the basis to design a cheap concentrator of easy construction to be used in rural communities have been settle. [Spanish] La desinfeccion del agua por exposicion a la luz solar fotodesinfeccion es una opcion de bajo costo y facil aplicacion para las comunidades rurales. El tratamiento puede llevarse a cabo utilizando bolsas o botellas de plastico transparente de dos litros de capacidad colocadas sobre un material reflejante. Las botellas son menos eficientes que las bolsas, pero permiten un mejor control del agua tratada evitando su recontaminacion. Para aumentar la eficiencia de la desinfeccion utilizando las botellas, se disenaron y construyeron dos concentradores solares de espejos planos que permitieron disminuir el tiempo de exposicion requerido cuando se utilizan estas. Para las pruebas de desinfeccion se utilizo agua del efluente de una planta de tratamiento

  2. Thermal performance analysis of a direct-expansion solar-assisted heat pump water heater

    International Nuclear Information System (INIS)

    Kong, X.Q.; Zhang, D.; Li, Y.; Yang, Q.M.

    2011-01-01

    A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m 2 , an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system. -- Highlights: ► A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described. ► A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. ► The numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. ► Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. ► The effect of various parameters has been analyzed on the thermal performance of the system.

  3. Lotic Water Hydrodynamic Model

    Energy Technology Data Exchange (ETDEWEB)

    Judi, David Ryan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tasseff, Byron Alexander [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-23

    Water-related natural disasters, for example, floods and droughts, are among the most frequent and costly natural hazards, both socially and economically. Many of these floods are a result of excess rainfall collecting in streams and rivers, and subsequently overtopping banks and flowing overland into urban environments. Floods can cause physical damage to critical infrastructure and present health risks through the spread of waterborne diseases. Los Alamos National Laboratory (LANL) has developed Lotic, a state-of-the-art surface water hydrodynamic model, to simulate propagation of flood waves originating from a variety of events. Lotic is a two-dimensional (2D) flood model that has been used primarily for simulations in which overland water flows are characterized by movement in two dimensions, such as flood waves expected from rainfall-runoff events, storm surge, and tsunamis. In 2013, LANL developers enhanced Lotic through several development efforts. These developments included enhancements to the 2D simulation engine, including numerical formulation, computational efficiency developments, and visualization. Stakeholders can use simulation results to estimate infrastructure damage and cascading consequences within other sets of infrastructure, as well as to inform the development of flood mitigation strategies.

  4. Photoanodic Hybrid Semiconductor–Molecular Heterojunction for Solar Water Oxidation

    KAUST Repository

    Joya, Khurram Saleem

    2015-06-29

    Inorganic photo-responsive semiconducting materials have been employed in photoelectrochemical(PEC) water oxidation devicesin pursuit of solar to fuel conversion.[1]The reaction kinetics in semiconductors is limited by poor contact at the interfaces, and charge transfer is impeded by surface defects and the grain boundaries.[2]It has shown that successful surface functionalization of the photo-responsive semiconducting materials with co-catalysts can maximize the charge separation, hole delivery and its effective consumption, and enhances the efficiency and performane of the PEC based water oxidation assembly.[3]We present here unique modification of photoanodic hematite (α-Fe2O3) and bismuth vanadate (BiVO4) with molecular co-catalysts for enhanced photoelectrochemical water oxidation (Figure 1). These hybrid inorganic–organometallic heterojunctions manifest impressive cathodic shifts in the onset potentials, and the photocurrent densities have been enhanced by > 90% at all potentials relative to uncatalyzed α-Fe2O3 or BiVO4, and other catalyst-semiconductor based heterojunctions.This is a novel development in the solar to fuel conversion field, and is crucially important for designing a tandem device where light interfere very little with the catalyst layer on top of semiconducting light absorber.

  5. Solar Coronal Jets: Observations, Theory, and Modeling

    Science.gov (United States)

    Raouafi, N. E.; Patsourakos, S.; Pariat, E.; Young, P. R.; Sterling, A.; Savcheva, A.; Shimojo, M.; Moreno-Insertis, F.; Devore, C. R.; Archontis, V.; hide

    2016-01-01

    Chromospheric and coronal jets represent important manifestations of ubiquitous solar transients, which may be the source of signicant mass and energy input to the upper solar atmosphere and the solar wind. While the energy involved in a jet-like event is smaller than that of nominal solar ares and Coronal Mass Ejections (CMEs), jets share many common properties with these major phenomena, in particular, the explosive magnetically driven dynamics. Studies of jets could, therefore, provide critical insight for understanding the larger, more complex drivers of the solar activity. On the other side of the size-spectrum, the study of jets could also supply important clues on the physics of transients closeor at the limit of the current spatial resolution such as spicules. Furthermore, jet phenomena may hint to basic process for heating the corona and accelerating the solar wind; consequently their study gives us the opportunity to attack a broadrange of solar-heliospheric problems.

  6. SELCO: A model for solar rural electrification in India

    Science.gov (United States)

    Hande, H. Harish

    1999-11-01

    The following thesis presents the concept of a Rural Energy Service Company in India, known as SELCO. The model is being set up as a sustainable proposition for the implementation of solar photovoltaics as a viable alternative to provide reliable home lighting in the rural areas of India. The SELCO approach has already achieved noteworthy social and commercial results. Institutional, policy and operational problems have long plagued the rural electrification programs in India, resulting in thousands of villages without access to electricity. SELCO is a solar energy service company operating in Southern India since 1995, focusing on the enormous untapped market for home lighting where thousands of households have no access to electricity and severe power shortages face those already connected to the electric grid. The Company has installed nearly 2,000 solar home lighting systems. From a modest two employees company in 1995, it has grown to 35 in 1997 and from one office to eight. The hypothesis to be tested in this study is that in rural India, in a market not subsidized by the government, a solar service company with available loans from local banks and cooperatives and with sales, installation, and maintenance personnel in the villages can be successful in introducing photovoltaic systems to provide basic amenities such as lighting and water pumping for the improvement of the quality of life, public health, and the environment. The initial success of SELCO lends considerable evidence to the acceptance of the hypothesis. To accomplish its mission, SELCO works with commercial, retail, and rural development banks with large rural branch networks to stimulate loans to SELCO's customers based on a standard set of attractive financing terms. SELCO through its successful model has convinced the policy makers that a way to increase rural families' access to consumer financing for solar home lighting systems is through the existing financial network available in the

  7. Combined Active and Passive Solar Space Heating and Solar Hot Water Systems for an Elementary School in Boise, Idaho.

    Science.gov (United States)

    Smull, Neil A.; Armstrong, Gerald L.

    1979-01-01

    Amity Elementary School in Boise, Idaho, features a solar space heating and domestic hot water system along with an earth covering to accommodate the passive aspects of energy conservation. (Author/MLF)

  8. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  9. Analysis of a Hybrid PV/Thermal Solar-Assisted Heat Pump System for Sports Center Water Heating Application

    OpenAIRE

    Bai, Y.; Chow, T. T.; Ménézo, C.; Dupeyrat, P.

    2012-01-01

    International audience; The application of solar energy provides an alternative way to replace the primary source of energy, especially for large-scale installations. Heat pump technology is also an effective means to reduce the consumption of fossil fuels. This paper presents a practical case study of combined hybrid PV/T solar assisted heat pump (SAHP) system for sports center hot water production. The initial design procedure was first presented. The entire system was then modeled with the...

  10. Ground water lifting in the remote and arid areas of Egypt using solar photovoltaic pumps

    International Nuclear Information System (INIS)

    Younes, M.A.

    2006-01-01

    An experimental study has been carried out at Mechanical and Electrical Research Institute, Qenater (300 N, 310 E), Egypt on a 2000 WP solar photovoltaic (PV) water pump. The main objective is to investigate the feasibility of utilizing solar energy in ground water lifting. A solar PV pumping system has been constructed as a prototype for a large-scale photovoltaic project in south of Egypt. Solar potential at the remote and arid areas of Egypt is discussed. Installation and operation factors as a function of environmental conditions are presented. Performance of the water pump has been evaluated. The water discharge and system efficiency has been estimated and presented. The changes in water discharge and system efficiency with change in solar radiation has been measured and presented. Preliminary results show that there is a huge potential and real-ability for solar PV submersible water pumping in the remote and arid areas of Egypt

  11. Evaluation of solar irradiance models for climate studies

    Science.gov (United States)

    Ball, William; Yeo, Kok-Leng; Krivova, Natalie; Solanki, Sami; Unruh, Yvonne; Morrill, Jeff

    2015-04-01

    Instruments on satellites have been observing both Total Solar Irradiance (TSI) and Spectral Solar Irradiance (SSI), mainly in the ultraviolet (UV), since 1978. Models were developed to reproduce the observed variability and to compute the variability at wavelengths that were not observed or had an uncertainty too high to determine an accurate rotational or solar cycle variability. However, various models and measurements show different solar cycle SSI variability that lead to different modelled responses of ozone and temperature in the stratosphere, mainly due to the different UV variability in each model, and the global energy balance. The NRLSSI and SATIRE-S models are the most comprehensive reconstructions of solar irradiance variability for the period from 1978 to the present day. But while NRLSSI and SATIRE-S show similar solar cycle variability below 250 nm, between 250 and 400 nm SATIRE-S typically displays 50% larger variability, which is however, still significantly less then suggested by recent SORCE data. Due to large uncertainties and inconsistencies in some observational datasets, it is difficult to determine in a simple way which model is likely to be closer to the true solar variability. We review solar irradiance variability measurements and modelling and employ new analysis that sheds light on the causes of the discrepancies between the two models and with the observations.

  12. Mathematical and computational modeling simulation of solar drying Systems

    Science.gov (United States)

    Mathematical modeling of solar drying systems has the primary aim of predicting the required drying time for a given commodity, dryer type, and environment. Both fundamental (Fickian diffusion) and semi-empirical drying models have been applied to the solar drying of a variety of agricultural commo...

  13. Validated TRNSYS Model for Solar Assisted Space Heating System

    International Nuclear Information System (INIS)

    Abdalla, Nedal

    2014-01-01

    The present study involves a validated TRNSYS model for solar assisted space heating system as applied to a residential building in Jordan using new detailed radiation models of the TRNSYS 17.1 and geometric building model Trnsys3d for the Google SketchUp 3D drawing program. The annual heating load for a building (Solar House) which is located at the Royal ScientiFIc Society (RS5) in Jordan is estimated under climatological conditions of Amman. The aim of this Paper is to compare measured thermal performance of the Solar House with that modeled using TRNSYS. The results showed that the annual measured space heating load for the building was 6,188 kWh while the heati.ng load for the modeled building was 6,391 kWh. Moreover, the measured solar fraction for the solar system was 50% while the modeled solar fraction was 55%. A comparison of modeled and measured data resulted in percentage mean absolute errors for solar energy for space heating, auxiliary heating and solar fraction of 13%, 7% and 10%, respectively. The validated model will be useful for long-term performance simulation under different weather and operating conditions.(author)

  14. Modeling Emerging Solar Cell Materials and Devices

    Science.gov (United States)

    Thongprong, Non

    Organic photovoltaics (OPVs) and perovskite solar cells are emerging classes of solar cell that are promising for clean energy alternatives to fossil fuels. Understanding fundamental physics of these materials is crucial for improving their energy conversion efficiencies and promoting them to practical applications. Current density-voltage (JV) curves; which are important indicators of OPV efficiency, have direct connections to many fundamental properties of solar cells. They can be described by the Shockley diode equation, resulting in fitting parameters; series and parallel resistance (Rs and Rp), diode saturation current ( J0) and ideality factor (n). However, the Shockley equation was developed specifically for inorganic p-n junction diodes, so it lacks physical meanings when it is applied to OPVs. Hence, the puRposes of this work are to understand the fundamental physics of OPVs and to develop new diode equations in the same form as the Shockley equation that are based on OPV physics. We develop a numerical drift-diffusion simulation model to study bilayer OPVs, which will be called the drift-diffusion for bilayer interface (DD-BI) model. The model solves Poisson, drift-diffusion and current-continuity equations self-consistently for charge densities and potential profiles of a bilayer device with an organic heterojunction interface described by the GWWF model. We also derive new diode equations that have JV curves consistent with the DD-BI model and thus will be called self-consistent diode (SCD) equations. Using the DD-BI and the SCD model allows us to understand working principles of bilayer OPVs and physical definitions of the Shockley parameters. Due to low carrier mobilities in OPVs, space charge accumulation is common especially near the interface and electrodes. Hence, quasi-Fermi levels (i.e. chemical potentials), which depend on charge densities, are modified around the interface, resulting in a splitting of quasi-Fermi levels that works as a driving

  15. The influence of the solar radiation model on the calcutated solar radiation from a horizontal surface to a tilted surface

    DEFF Research Database (Denmark)

    Andersen, Elsa; Lund, Hans; Furbo, Simon

    2004-01-01

    in the calculation. The weather data are measured at the solar radiation measurement station, SMS at the Department of Civil Engineering at the Technical University of Denmark. In this study the weather data are combined with solar collector calculations based on solar collector test carried out at Solar Energy...... Center, SEC, Denmark. With measured solar radiation on horizontal and the different solar radiation processing models the total radiation is calculated on differently tilted and oriented surfaces and compared with the measured solar radiation on the different surfaces. Further, the impact on the yearly......Measured solar radiation data are most commonly available as total solar radiation on a horizontal surface. When using solar radiation measured on horizontal to calculate the solar radiation on tilted surfaces and thereby the thermal performance of different applications such as buildings and solar...

  16. Empirical modeling of solar radiation exergy for Turkey

    International Nuclear Information System (INIS)

    Arslanoglu, Nurullah

    2016-01-01

    Highlights: • Solar radiation exergy is an important parameter in solar energy applications. • Empirical models are developed for estimate solar radiation exergy for Turkey. • The accuracy of the models is evaluated on the basis of statistical indicators. • The new models can be used to predict global solar radiation exergy. - Abstract: In this study, three different empirical models are developed to predict the monthly average daily global solar radiation exergy on a horizontal surface for some provinces in different regions of Turkey by using meteorological data from Turkish State Meteorological Services. To indicate the performance of the models, the following statistical test methods are used: the coefficient of determination (R 2 ), mean bias error (MBE), mean absolute bias error (MABE), mean percent error (MPE), mean absolute percent error (MAPE), root mean square error (RMSE) and the t-statistic method (t sta ). By the improved empirical models in this paper do not need exergy-to-energy ratio (ψ) and monthly average daily global solar radiation to calculate solar radiation exergy. Consequently, the average exergy-to-energy ratio (ψ) for all provinces are found to be 0.93 for Turkey. The highest and lowest monthly average daily values of solar radiation exergy are obtained at 23.4 MJ/m 2 day in June and 4 MJ/m 2 day in December, respectively. The empirical models providing the best results here can be reliably used to predict solar radiation exergy in Turkey and in other locations with similar climatic conditions in the world. The predictions of solar radiation exergy from regression models could enable the scientists to design the solar-energy systems precisely.

  17. Acceptability of solar disinfection of drinking water treatment in Kathmandu Valley, Nepal.

    Science.gov (United States)

    Rainey, Rochelle C; Harding, Anna K

    2005-10-01

    This research examines the acceptability of solar disinfection of drinking water (SODIS) in a village in Kathmandu Valley, Nepal, using constructs from the Health Belief Model as a framework to identify local understandings of water, sanitation and health issues. There has been no published research on the acceptability of SODIS in household testing in Nepal. Understanding the context of water and water purity in Nepalese villages is essential to identify culturally appropriate interventions to improve the quality of drinking water and health. Forty households from the village census list were randomly selected and the senior woman in each household was asked to participate. Baseline data on water sources and behaviors were collected in March 2002, followed by training in SODIS. Follow-up data were collected in June and July 2002. Only 9% of households routinely adopted SODIS. Participants mentioned the benefit of treating water to reduce stomach ailments, but this did not outweigh the perceived barriers of heavy domestic and agricultural workloads, other cultural barriers, uncertainty about the necessity of treating the water, and lack of knowledge that untreated drinking water causes diarrhea. Strategies for developing safe water systems must include public health education about waterborne diseases, source water protection, and a motivational component to achieve implementation and sustained use. In addition, other options for disinfecting water should be provided, given the women's work constraints and low level of formal education.

  18. Solar Water Splitting: Photocatalyst Materials Discovery and Systems Development

    Energy Technology Data Exchange (ETDEWEB)

    McNulty, Thomas F.

    2008-05-02

    Hydrogen promises to be an attractive transportation fuel in the post-fossil fuel era. Relatively abundant and clean burning (water being the principal byproduct), hydrogen offers the potential to significantly reduce greenhouse gas emissions. However, there are significant technical barriers that require solutions before hydrogen can be implemented in large scale. These are: · Sources (e.g. hydrocarbon, water) · Transportation · Storage Each of the aforementioned barriers carries with it important considerations. First, would a hydrocarbon-based hydrogen source be of any benefit compared to conventional fossil fuels? Second, will a system based on centralized generation and distribution be viable? Finally, methods of on-board storage, whether they are liquefaction, adsorption, or intercalation, are far from optimized. The scope of this program is limited to hydrogen generation, specifically generation using solarinitiated water electrolysis. Though concept of making hydrogen using water and sunlight may sound somewhat far-fetched, in reality the concept is very real. Since the discovery of solar-generated hydrogen, termed photoelectrochemical hydrogen, nearly 30 years ago by Fujishima and Honda, significant advances in both fundamental understanding and technological capability have been made. Using solar radiation to generate hydrogen in a fashion akin to using solar to generate electricity offers many advantages. First, hydrogen can be generated at the point of use, reducing the importance of transportation. Second, using water as the hydrogen source eliminates greenhouse gas evolution and the consequences that come with it. Finally, because the process uses very little electricity (pumps and compressors predominantly), the quantity of chemical fuel produced far exceeds the amount of electricity consumed. Consequently, there is some level of truth to the notion that photoelectrochemically-derived hydrogen offers the potential to nearly eliminate greenhouse

  19. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  20. Subsidy programs on diffusion of solar water heaters: Taiwan's experience

    International Nuclear Information System (INIS)

    Chang, Keh-Chin; Lin, Wei-Min; Lee, Tsong-Sheng; Chung, Kung-Ming

    2011-01-01

    Financial incentives are essentially one of the key factors influencing diffusion of solar water heaters in many countries. Two subsidy programs were initiated by the government of Taiwan in 1986 (1986-1991) and 2000 (2000-present), respectively. Those long-term national programs are considered to be the driving force on local market expansion. In 2008, the regional subsidy programs for solar water heaters were announced by Kaohsiung city and Kiemen county, which resulted in the growth in sales. A revised subsidy was also initiated by the government of Taiwan in 2009. The subsidy is 50% more. However, the tremendous enlargement of market size with a high-level ratio of subsidy over total installation cost might result in a negative impact on a sustainable SWH industry and long-term development of the local market, which is associated with system design and post-installation service. This paper aims to address the relative efficiency and pitfalls of those national and regional programs. - Research Highlights: → The direct subsidy has been the driving force on market expansion in Taiwan. → Higher subsidy would certainly increase the total number of systems installed. → A high-level subsidy results in a negative impact on users or a sustainable industry.

  1. DETAILED MODELLING OF CHARGING BEHAVIOUR OF SMART SOLAR TANKS

    DEFF Research Database (Denmark)

    Fan, Jianhua; Andersen, Elsa; Furbo, Simon

    2010-01-01

    The charging behaviour of smart solar tanks for solar combisystems for one-family houses is investigated with detailed Computational Fluid Dynamics (CFD) modelling and Particle Image Velocimetry (PIV) measurements. The smart solar tank can be charged with a variable auxiliary volume fitted to the...... by the mesh densities, the distribution of computational cells, the physical model and time steps used in the simulations. The findings of the investigations will be used as guidance for creation of CFD models for optimal design of smart solar tanks.......The charging behaviour of smart solar tanks for solar combisystems for one-family houses is investigated with detailed Computational Fluid Dynamics (CFD) modelling and Particle Image Velocimetry (PIV) measurements. The smart solar tank can be charged with a variable auxiliary volume fitted...... to the expected future energy demand. Therefore the heat loss from the tank is decreased and the thermal performance of the solar heating system is increased compared to a traditional system with a fixed auxiliary volume. The solar tank can be charged either by an electric heating element situated in the tank...

  2. Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water.

    Science.gov (United States)

    Gómez-Couso, Hipólito; Fontán-Sainz, María; McGuigan, Kevin G; Ares-Mazás, Elvira

    2009-10-01

    The solar disinfection (SODIS) technique is a highly effective process that makes use of solar energy to inactivate pathogenic microorganisms in drinking water in developing countries. The pathogenic protozoan parasite Cryptosporidium parvum is often found in surface waters and is associated with waterborne outbreaks of cryptosporidiosis. In the present study, a complete multi-factorial mathematical model was used to investigate the combined effects of the intensity of solar radiation (200, 600 and 900W/m(2) in the 320nm to 10microm range), water turbidity (5, 100 and 300 NTU) and exposure time (4, 8 and 12h) on the viability and infectivity of C. parvum oocysts during simulated SODIS procedures at a constant temperature of 30 degrees C. All three factors had significant effects (p or =600W/m(2) and times of exposure between 8 and 12h were required to reduce the oocyst infectivity in water samples with different degrees of turbidity.

  3. design and experimental study of a solar system for heating water ...

    African Journals Online (AJOL)

    M. Ghodbane, B. Boumeddane, N. Said

    2016-09-01

    Sep 1, 2016 ... This work presents a design and an experimental study of a linear Fresnel reflector solar with trapezoidal cavity. ... concentrator in the solar fields allocated to the domestics and industrial water-heaters. Keywords: ...... integrated photovoltaic panels, Journal of Solar Energy Engineering, Transactions of the ...

  4. WATER DIVERSION MODEL

    Energy Technology Data Exchange (ETDEWEB)

    J.B. Case

    1999-12-21

    The distribution of seepage in the proposed repository will be highly variable due in part to variations in the spatial distribution of percolations. The performance of the drip shield and the backfill system may divert the water flux around the waste packages to the invert. Diversion will occur along the drift surface, within the backfill, at the drip shield, and at the Waste Package (WP) surface, even after the drip shield and WP have been breached by corrosion. The purpose and objective of this Analysis and Modeling Report (AMR) are to develop a conceptual model and constitutive properties for bounding the volume and rate of seepage water that flows around the drip shield (CRWMS M&O 1999c). This analysis model is to be compatible with the selected repository conceptual design (Wilkins and Heath, 1999) and will be used to evaluate the performance of the Engineered Barrier System (EBS), and to provide input to the EBS Water Distribution and Removal Model. This model supports the Engineered Barrier System (EBS) postclosure performance assessment for the Site Recommendation (SR). This document characterizes the hydrological constitutive properties of the backfill and invert materials (Section 6.2) and a third material that represents a mixture of the two. These include the Overton Sand which is selected as a backfill (Section 5.2), crushed tuff which is selected as the invert (Section 5.1), and a combined material (Sections 5.9 and 5.10) which has retention and hydraulic conductivity properties intermediate to the selected materials for the backfill and the invert. The properties include the grain size distribution, the dry bulk density and porosity, the moisture retention, the intrinsic permeability, the relative permeability, and the material thermal properties. The van Genuchten relationships with curve fit parameters are used to define the basic retention relationship of moisture potential to volumetric moisture content, and the basic relationship of unsaturated

  5. WATER DIVERSION MODEL

    International Nuclear Information System (INIS)

    J.B. Case

    1999-01-01

    The distribution of seepage in the proposed repository will be highly variable due in part to variations in the spatial distribution of percolations. The performance of the drip shield and the backfill system may divert the water flux around the waste packages to the invert. Diversion will occur along the drift surface, within the backfill, at the drip shield, and at the Waste Package (WP) surface, even after the drip shield and WP have been breached by corrosion. The purpose and objective of this Analysis and Modeling Report (AMR) are to develop a conceptual model and constitutive properties for bounding the volume and rate of seepage water that flows around the drip shield (CRWMS MandO 1999c). This analysis model is to be compatible with the selected repository conceptual design (Wilkins and Heath, 1999) and will be used to evaluate the performance of the Engineered Barrier System (EBS), and to provide input to the EBS Water Distribution and Removal Model. This model supports the Engineered Barrier System (EBS) postclosure performance assessment for the Site Recommendation (SR). This document characterizes the hydrological constitutive properties of the backfill and invert materials (Section 6.2) and a third material that represents a mixture of the two. These include the Overton Sand which is selected as a backfill (Section 5.2), crushed tuff which is selected as the invert (Section 5.1), and a combined material (Sections 5.9 and 5.10) which has retention and hydraulic conductivity properties intermediate to the selected materials for the backfill and the invert. The properties include the grain size distribution, the dry bulk density and porosity, the moisture retention, the intrinsic permeability, the relative permeability, and the material thermal properties. The van Genuchten relationships with curve fit parameters are used to define the basic retention relationship of moisture potential to volumetric moisture content, and the basic relationship of

  6. Experimental Investigation on a Thermal Model for a Basin Solar Still with an External Reflector

    Directory of Open Access Journals (Sweden)

    Masoud Afrand

    2016-12-01

    Full Text Available In this study, a thermal model for estimating the efficiency of a basin solar still with an external reflector was introduced using the energy balance equations of different parts of the solar still. Then, in order to verify the precision and accuracy of this model, a basin solar still with an external reflector was constructed and some experiments were performed. The hourly temperature values for different places of the still and amount of distilled water were calculated using the thermal model and compared with experimental measurements. Comparisons show that the thermal model of the still is in good agreement with the experimental results. Therefore, it can be concluded that the introduced thermal model can be used reliably to estimate the amount of distilled water and efficiency of the basin solar still with an external reflector. Results also revealed that the efficiency of the solar still is low in the early hours, while it was enhanced 44% in the afternoon. Furthermore, it was concluded that the accumulated distilled water is 4600 mL/day and 4300 mL/day for theoretical and experimental examinations, respectively.

  7. Solar Desalination System Model for Sizing of Photovoltaic Reverse Osmosis (PVRO)

    KAUST Repository

    Habib, Abdulelah

    2015-06-28

    The focus of this paper is to optimize the solar energy utilization in the water desalination process. Due to variable nature of solar energy, new system design is needed to address this challenge. Here, reverse osmosis units, as the electrical loads, are considered as an ON/OFF units to track these solar energy variations. Reverse osmosis units are different in sizes and numbers. Various combinations of reverse osmosis units in size and capacity provide different water desalination system performances. To assess each scenario of reverse osmosis units, the total capital cost and operation and maintenance (O&M) cost are considered. The implemented optimization algorithm search all of the possible scenarios to find the best solution. This paper deploys the solar irradiance data which is provided from west coast (Red Sea) of Saudi Arabia for model construction and optimization algorithm implementation.

  8. Finite element modelling and simulation of free convection heat transfer in solar oven

    Energy Technology Data Exchange (ETDEWEB)

    Sobamowo, M.G.; Ogunmola, B.Y.; Ayerin A.M. [Department of Mechanical Engineering, University of Lagos, Akoka, Lagos (Nigeria)

    2013-07-01

    The use of solar energy for baking, heating or drying represents a sustainable way of solar energy applications with negligible negative effects. Solar oven is an alternative to conventional oven that rely heavily on coal and wood or Electric oven that uses the power from the National grid of which the end users have little or no control. Since the Solar oven uses no fuel and it costs nothing to run, it uses are widely promoted especially in situations where minimum fuel consumption or fire risks are considered highly important. As useful as the Solar Oven proved, it major setback in the area of applications has been its future sustainability. For the use of Solar Oven/Cookers to be sustained in the future, the design and development of solar oven must rely on sound analytical tools. Therefore, this work focused on the design and development of the solar oven. To test the performance of the Small Solar Oven a 5000cm3 beaker of water was put into the Oven and the temperature of the water was found to reach 810C after about 3hrs under an average ambient temperature of 300C. On no load test, the oven reached a maximum temperature of 112oC in 6hrs. In order to carry out the parametric studies and improve the performance of the Solar Oven, Mathematical models were developed and solved by using Characteristics-Based Split (CBS) Finite Element Method. The Model results were compared with the Experimental results and a good agreement was found between the two results.

  9. Water and Volatiles in the Outer Solar System

    Science.gov (United States)

    Grasset, O.; Castillo-Rogez, J.; Guillot, T.; Fletcher, L. N.; Tosi, F.

    2017-10-01

    Space exploration and ground-based observations have provided outstanding evidence of the diversity and the complexity of the outer solar system. This work presents our current understanding of the nature and distribution of water and water-rich materials from the water snow line to the Kuiper Belt. This synthesis is timely, since a thorough exploration of at least one object in each region of the outer solar system has now been achieved. Next steps, starting with the Juno mission now in orbit around Jupiter, will be more focused on understanding the processes at work than on describing the general characteristics of each giant planet systems. This review is organized in three parts. First, the nature and the distribution of water and volatiles in giant and intermediary planets are described from their inner core to their outer envelopes. A special focus is given to Jupiter and Saturn, which are much better understood than the two ice giants (Uranus and Neptune) thanks to the Galileo and Cassini missions. Second, the icy moons will be discussed. Space missions and ground-based observations have revealed the variety of icy surfaces in the outer system. While Europa, Enceladus, and maybe Titan present past or even active tectonic and volcanic activities, many other moons have been dead worlds for more than 3 billion years. Ice compositions found at these bodies are also complex and it is now commonly admitted that icy surfaces are never composed of pure ices. A detailed review of the distribution of non-ice materials on the surfaces and in the tenuous atmospheres of the moons is proposed, followed by a more focused discussion on the nature and the characteristics of the liquid layers trapped below the cold icy crusts that have been suggested in the icy Galilean moons, and in Enceladus, Dione, and Titan at Saturn. Finally, the recent observations collected by Dawn at Ceres and New Horizons at Pluto, as well as the state of knowledge of other transneptunian objects

  10. Conserving water in and applying solar power to haemodialysis: 'green dialysis' through wiser resource utilization.

    Science.gov (United States)

    Agar, John W M

    2010-06-01

    Natural resources are under worldwide pressure, water and sustainable energy being the paramount issues. Haemodialysis, a water-voracious and energy-hungry healthcare procedure, thoughtlessly wastes water and leaves a heavy carbon footprint. In our service, 100 000 L/week of previously discarded reverse osmosis reject water--water which satisfies all World Health Organisation criteria for potable (drinking) water--no longer drains to waste but is captured for reuse. Reject water from the hospital-based dialysis unit provides autoclave steam for instrument sterilization, ward toilet flushing, janitor stations and garden maintenance. Satellite centre reject water is tanker-trucked to community sporting fields, schools and aged-care gardens. Home-based nocturnal dialysis patient reuse reject water for home domestic utilities, gardens and animal watering. Although these and other potential water reuse practices should be mandated through legislation for all dialysis services, this is yet to occur. In addition, we now are piloting the use of solar power for the reverse osmosis plant and the dialysis machines in our home dialysis training service. If previously attempted, these have yet to be reported. After measuring the power requirements of both dialytic processes and modelling the projected costs, a programme has begun to solar power all dialysis-related equipment in a three-station home haemodialysis training unit. Income-generation with the national electricity grid via a grid-share and reimbursement arrangement predicts a revenue stream back to the dialysis service. Dialysis services must no longer ignore the non-medical aspects of their programmes but plan, trial, implement and embrace 'green dialysis' resource management practices.

  11. A numerical calculation of outward propagation of solar disturbances. [solar atmospheric model with shock wave propagation

    Science.gov (United States)

    Wu, S. T.

    1974-01-01

    The responses of the solar atmosphere due to an outward propagation shock are examined by employing the Lax-Wendroff method to solve the set of nonlinear partial differential equations in the model of the solar atmosphere. It is found that this theoretical model can be used to explain the solar phenomena of surge and spray. A criterion to discriminate the surge and spray is established and detailed information concerning the density, velocity, and temperature distribution with respect to the height and time is presented. The complete computer program is also included.

  12. Simple solar systems for heating, hot water and cooking in high altitude regions with high solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, C.; Schwarzer, K. [Solar-Inst., Juelich (Germany); Kleine-Hering, H. [Ecoandina, Salta (Argentina)

    2004-07-01

    In connection with a BMBF research project (FKZ 17104.01), a new system has been developed to provide solar heating and hot water. The system is designed to be used in areas with high solar radiation and low ambient temperatures, conditions which occur typically in high altitude regions. The main considerations in developing this system were robust technology, low cost and easy maintenance. To ensure robustness, air is used as the heat transfer medium. Air has the advantage of a low thermal capacity and enables the system to be immediately ready for use, and does not have the disadvantages of water at temperatures below the freezing point. The units were installed in two public buildings in the Argentinean Altiplano at an altitude of 3600 m, as part of a BMZ (Ministry for Cooperation) project. The local partner in the project was Ecoandina. Because of the high level of direct solar insolation in this area, concentrating solar cookers for families and institutions have a very high acceptance. As part of the BMZ project, four community cookers with Fixed-Focus reflectors (Scheffler reflectors) each with 3 kW power were installed. Further installations included solar hot water systems, drip irrigation systems with solar pumps and parabolic cookers for families. One of the villages equipped with these units is now to receive an award for being the first Solar Village in Argentina. (orig.)

  13. Feasibility of active solar water heating systems with evacuated tube collector at different operational water temperatures

    International Nuclear Information System (INIS)

    Mazarrón, Fernando R.; Porras-Prieto, Carlos Javier; García, José Luis; Benavente, Rosa María

    2016-01-01

    Highlights: • Analysis of the feasibility of an active solar water-heating system. • Profitability decreases as the required water temperature increases. • The number of collectors that maximizes profitability depends on the required temperature. • Investment in a properly sized system generates savings between 23% and 15%. • Fuel consumption can be reduced by 70%. - Abstract: With rapid advancements in society, higher water temperatures are needed in a number of applications. The demand for hot water presents a great variability with water required at different temperatures. In this study, the design, installation, and evaluation of a solar water heating system with evacuated tube collector and active circulation has been carried out. The main objective is to analyze how the required tank water temperature affects the useful energy that the system is capable of delivering, and consequently its profitability. The results show how the energy that is collected and delivered to the tank decreases with increasing the required temperature due to a lower performance of the collector and losses in the pipes. The annual system efficiency reaches average values of 66%, 64%, 61%, 56%, and 55% for required temperatures of 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C. As a result, profitability decreases as temperature increases. The useful energy, and therefore the profitability, will decrease if the demand is not distributed throughout the day or focused on the end of the day. The system’s profitability was determined in two cases: considering maximum profitability of the system, assuming 100% utilization of useful energy (scenario 1); assuming a particular demand, considering that on many days all the useful energy the system can supply is not used (scenario 2). The analysis shows that through proper sizing of the system, optimizing the number of solar collectors, the investment in the solar system can be profitable with similar profitability values in the two

  14. Solar Deployment System (SolarDS) Model: Documentation and Sample Results

    Energy Technology Data Exchange (ETDEWEB)

    Denholm, P.; Drury, E.; Margolis, R.

    2009-09-01

    The Solar Deployment System (SolarDS) model is a bottom-up, market penetration model that simulates the potential adoption of photovoltaics (PV) on residential and commercial rooftops in the continental United States through 2030. NREL developed SolarDS to examine the market competitiveness of PV based on regional solar resources, capital costs, electricity prices, utility rate structures, and federal and local incentives. The model uses the projected financial performance of PV systems to simulate PV adoption for building types and regions then aggregates adoption to state and national levels. The main components of SolarDS include a PV performance simulator, a PV annual revenue calculator, a PV financial performance calculator, a PV market share calculator, and a regional aggregator. The model simulates a variety of installed PV capacity for a range of user-specified input parameters. PV market penetration levels from 15 to 193 GW by 2030 were simulated in preliminary model runs. SolarDS results are primarily driven by three model assumptions: (1) future PV cost reductions, (2) the maximum PV market share assumed for systems with given financial performance, and (3) PV financing parameters and policy-driven assumptions, such as the possible future cost of carbon emissions.

  15. Experimental and Numerical Analysis of Modelling of Solar Shading

    DEFF Research Database (Denmark)

    Winther, Frederik Vildbrad; Liu, Mingzhe; Heiselberg, Per

    2017-01-01

    The use of solar shading in future low energy office buildings is essential for minimizing energy consumption for building services, while maintaining thermal conditions. Implementing solar shading technologies in energy calculations and thermal building simulation programs is essential in order...... to demonstrate the effect of adaptive solar shading. In order to document the benefits of the shading technology, the description of the shading device in the thermal building simulation software must be described at a reasonably accurate level, related to the specific solar shading device. This research...... presents different approaches for modeling solar shading devices, demonstrating the level of accuracy in relation to measurement conducted in a full-scale façade test facility at Aalborg University. The research bridges the gap between increased complexity of solar shading technologies and the use...

  16. Final report : testing and evaluation for solar hot water reliability.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico, Albuquerque, NM); He, Hongbo (University of New Mexico, Albuquerque, NM); Menicucci, David F. (Building Specialists, Inc., Albuquerque, NM); Mammoli, Andrea A. (University of New Mexico, Albuquerque, NM); Burch, Jay (National Renewable Energy Laboratory, Golden CO)

    2011-07-01

    Solar hot water (SHW) systems are being installed by the thousands. Tax credits and utility rebate programs are spurring this burgeoning market. However, the reliability of these systems is virtually unknown. Recent work by Sandia National Laboratories (SNL) has shown that few data exist to quantify the mean time to failure of these systems. However, there is keen interest in developing new techniques to measure SHW reliability, particularly among utilities that use ratepayer money to pay the rebates. This document reports on an effort to develop and test new, simplified techniques to directly measure the state of health of fielded SHW systems. One approach was developed by the National Renewable Energy Laboratory (NREL) and is based on the idea that the performance of the solar storage tank can reliably indicate the operational status of the SHW systems. Another approach, developed by the University of New Mexico (UNM), uses adaptive resonance theory, a type of neural network, to detect and predict failures. This method uses the same sensors that are normally used to control the SHW system. The NREL method uses two additional temperature sensors on the solar tank. The theories, development, application, and testing of both methods are described in the report. Testing was performed on the SHW Reliability Testbed at UNM, a highly instrumented SHW system developed jointly by SNL and UNM. The two methods were tested against a number of simulated failures. The results show that both methods show promise for inclusion in conventional SHW controllers, giving them advanced capability in detecting and predicting component failures.

  17. An auto-calibration procedure for empirical solar radiation models

    NARCIS (Netherlands)

    Bojanowski, J.S.; Donatelli, Marcello; Skidmore, A.K.; Vrieling, A.

    2013-01-01

    Solar radiation data are an important input for estimating evapotranspiration and modelling crop growth. Direct measurement of solar radiation is now carried out in most European countries, but the network of measuring stations is too sparse for reliable interpolation of measured values. Instead of

  18. Effects of solar collecting area and water flow rate on the performance of a sand bed solar collector

    International Nuclear Information System (INIS)

    Maganhar, A.L.; Memon, A.H.; Panhwar, M.I.

    2005-01-01

    The often discussed renewable sources of energy have been great interest to energy researchers and planners for quite some time. The primary of renewing all sources of energy is the sun. There have been two main problems not yet fully resolved. One is the large scale production of energy and other is the cost factor. In the present study, the cost factor is under consideration. In this regard a non-conventional solar collector using indigenous material (pit sand) as solar absorber is designed and manufactured. This paper presents the results of an investigation of the effect of solar collecting area and water flow rate on the performance of a pit sand bed solar collector especially in terms of rise in water temperature. Three pit sand solar collectors of area 1m/sup 2/ each were connected in series to enhance the collecting area and the system was tested for different flow rates. Experimental results proved that there was increase in water temperature with increase in solar collecting area an decreases in water temperature with increase in flow rate. (author)

  19. Hydrogen production by thermochemical cycles of water splitting coupled to a solar energy source

    International Nuclear Information System (INIS)

    Charvin, P.

    2007-11-01

    The aim of this work is to identify, to test and to estimate new thermochemical cycles able to efficiently produce hydrogen from concentrated solar energy. In fact, the aim is to propose a hydrogen production way presenting a global energetic yield similar to electrolysis, that is to say 20-25%, electrolysis being at the present time the most advanced current process for a clean hydrogen production from water. After a first chapter dealing with the past and present researches on thermochemical cycles, the first step of this study has consisted on a selection of a limited number of thermochemical cycles able to produce great quantities of hydrogen from concentrated solar energy. It has consisted in particular on a review of the thermochemical cycles present in literature, on a first selection from argued criteria, and on an exergetic and thermodynamic analysis of the retained cycles for a first estimation of their potential. The second step of this study deals with the experimental study of all the chemical reactions occurring in the retained cycles. Two different oxides cycles have been particularly chosen and the aims are to demonstrate the feasibility of the reactions, to identify the optimal experimental conditions, to estimate and optimize the kinetics and the chemical yields. The following part of this work deals with the design, the modeling and the test of a solar reactor. A CFD modeling of a high temperature reactor of cavity type allows to identify the main heat losses of the reactor and to optimize the geometry of the cavity. A dynamic modeling of the reactor gives data on its behaviour in transient regime and under a real solar flux. The results of the preliminary experimental results are presented. The last part of this study deals with a process analysis of the thermochemical cycles from the results of the experimental study (experimental conditions, yields...). The matter and energy balances are established in order to estimate the global energetic

  20. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara Denise.; Zemlick, Katie M.; Macknick, Jordan

    2013-07-01

    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  1. Solar disinfection of water for low income communities; Desinfeccao solar de agua para comunidades de baixa renda

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Lorna Falcao

    2010-03-15

    The use of solar energy for water disinfection, and is accessible to disadvantaged communities because of its low cost, has the advantage of using disposable materials such as bottles of polyethylene terephthalate (PET). We present a study that used two methods of disinfection: the methodology proposed by the project Solar Water Disinfection (SODIS), which consisted of water disinfection by solar radiation and temperature and the methodology which the temperature of the water for disinfection. In both, we seek to eliminate microorganisms that cause serious diseases such as dysentery, typhoid, cholera, etc. Water samples were collected in the community of Bass, where the population has low income and the incidence of waterborne diseases is high. The experiments were divided into two stages. In step 1 we studied the feasibility of disinfection and in step 2 the feasibility of the pilot plant to obtain adequate levels of disinfection temperatures desired. The results showed the efficiency of the disinfection process, reaching an average of 80 to 100% death of microorganisms, but regrowth was observed in some samples. Finally on the good results of stage 1, is designed and built and tested in an experimental pilot plant, which has shown to be feasible to promote water disinfection through the use of solar energy. The water after treatment is in accordance with the limits established by Brazilian legislation for clean water, maintaining a positive performance for the disinfection and acceptable levels of bacterial regrowth. (author)

  2. Solar radiation modeling and measurements for renewable energy applications: data and model quality

    International Nuclear Information System (INIS)

    Myers, Daryl R.

    2005-01-01

    Measurement and modeling of broadband and spectral terrestrial solar radiation is important for the evaluation and deployment of solar renewable energy systems. We discuss recent developments in the calibration of broadband solar radiometric instrumentation and improving broadband solar radiation measurement accuracy. An improved diffuse sky reference and radiometer calibration and characterization software for outdoor pyranometer calibrations are outlined. Several broadband solar radiation model approaches, including some developed at the National Renewable Energy Laboratory, for estimating direct beam, total hemispherical and diffuse sky radiation are briefly reviewed. The latter include the Bird clear sky model for global, direct beam, and diffuse terrestrial solar radiation; the Direct Insolation Simulation Code (DISC) for estimating direct beam radiation from global measurements; and the METSTAT (Meteorological and Statistical) and Climatological Solar Radiation (CSR) models that estimate solar radiation from meteorological data. We conclude that currently the best model uncertainties are representative of the uncertainty in measured data

  3. Factors influencing the performance and efficiency of solar water pumping systems:  a review

    OpenAIRE

    Gouws, Rupert; Lukhwareni, Thendo

    2012-01-01

    The world is having an energy crisis and currently there is a strong drive towards renewable energy. A renewable energy option is solar energy, where by means of photovoltaic (PV) modules electrical energy can be produced. A residential as well as industrial application for these PV modules is solar water pumping systems. Disadvantages of solar water pumping systems are low performance and low energy efficiency. This paper provides a review on the factors that influence the performance and ef...

  4. Technical Analysis of Combined Solar Water Heating Systems for Cold Climate Regions

    OpenAIRE

    Hossein Lotfizadeh; André McDonald; Amit Kumar

    2016-01-01

    Renewable energy resources, which can supplement space and water heating for residential buildings, can have a noticeable impact on natural gas consumption and air pollution. This study considers a technical analysis of a combined solar water heating system with evacuated tube solar collectors for different solar coverage, ranging from 20% to 100% of the total roof area of a typical residential building located in Edmonton, Alberta, Canada. The alternative heating systems were conventional (n...

  5. Underground water stress release models

    Science.gov (United States)

    Li, Yong; Dang, Shenjun; Lü, Shaochuan

    2011-08-01

    The accumulation of tectonic stress may cause earthquakes at some epochs. However, in most cases, it leads to crustal deformations. Underground water level is a sensitive indication of the crustal deformations. We incorporate the information of the underground water level into the stress release models (SRM), and obtain the underground water stress release model (USRM). We apply USRM to the earthquakes occurred at Tangshan region. The analysis shows that the underground water stress release model outperforms both Poisson model and stress release model. Monte Carlo simulation shows that the simulated seismicity by USRM is very close to the real seismicity.

  6. Preliminary ECLSS waste water model

    Science.gov (United States)

    Carter, Donald L.; Holder, Donald W., Jr.; Alexander, Kevin; Shaw, R. G.; Hayase, John K.

    1991-01-01

    A preliminary waste water model for input to the Space Station Freedom (SSF) Environmental Control and Life Support System (ECLSS) Water Processor (WP) has been generated for design purposes. Data have been compiled from various ECLSS tests and flight sample analyses. A discussion of the characterization of the waste streams comprising the model is presented, along with a discussion of the waste water model and the rationale for the inclusion of contaminants in their respective concentrations. The major objective is to establish a methodology for the development of a waste water model and to present the current state of that model.

  7. Optimizing the solar water disinfection (SODIS) method by decreasing turbidity with NaCl

    OpenAIRE

    Dawney, Brittney; Pearce, Joshua

    2012-01-01

    International audience; Solar water disinfection (SODIS) has proven to be effective at reducing diarrheal incidence in epidemiological intervention studies. However, the SODIS method is limited to waters of low turbidity (

  8. Business Opportunity Prospectus for Utilities in Solar Water Heating

    Energy Technology Data Exchange (ETDEWEB)

    Energy Alliance Group

    1999-06-30

    Faced with deregulation and increasingly aggressive competition, utilities are looking for new products and services to increase revenues, improve customer loyalty and retention, and establish barriers to market erosion. With open access now a reality, and retail wheeling just around the corner, business expansion via new products and services is now the central goal for most utilities in the United States. It may seem surprising that solar thermal energy as applied to heating domestic hot water - an idea that has been around for a long time - offers what utilities and their residential customers want most in a new product/service. This document not only explains how and why, it shows how to get into the business and succeed on a commercial scale.

  9. Toward Improved Modeling of Spectral Solar Irradiance for Solar Energy Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yu [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sengupta, Manajit [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-19

    This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to extend the capability of the Fast All-sky Radiation Model for Solar applications (FARMS) by computing spectral solar irradiances over both horizontal and inclined surfaces. A new model is developed by computing the optical thickness of the atmosphere using a spectral irradiance model for clear-sky conditions, SMARTS2. A comprehensive lookup table (LUT) of cloud bidirectional transmittance distribution functions (BTDFs) is precomputed for 2002 wavelength bands using an atmospheric radiative transfer model, libRadtran. The solar radiation transmitted through the atmosphere is given by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. Our results indicate that this new model has an accuracy that is similar to that of state-of-the-art radiative transfer models, but it is significantly more efficient.

  10. Feasibility study of a solar photovoltaic water pumping system for rural Ethiopia

    Directory of Open Access Journals (Sweden)

    Misrak Girma

    2015-06-01

    Full Text Available Solar Photovoltaic (SPV water pumping system is one of the best technologies that utilize the solar energy to pump water from deep well underground water sources and to provide clean drinking water worldwide. The availability of abundant solar radiation and enough underground water sources in Ethiopia can be combined together to make clean drinking water available to rural communities. The software PVsyst 5.56 was used to study the feasibility of solar photovoltaic water pumping system in the selected sites. The designed system is capable of providing a daily average of 10.5, 7 and 6.5 m3/day for 700, 467 and 433 people in Siadberand Wayu, Wolmera and Enderta sites respectively, with average daily water consumption of 15 liters per day per person and the costs of water without any subsidy, are approximately 0.1, 0.14 and 0.16 $/m3for each site respectively. If diesel generator is used instead of solar photovoltaic water pumping system, to provide the same average daily water for the selected community, the costs of water without any subsidy are approximately 0.2, 0.23 and 0.27 $/m3 for each site respectively. A life cycle cost analysis method was also carried out for economic comparison between solar PV and the diesel pumping system. The results of this study are encouraging the use of the PV system for drinking water supply in the remote areas of the country.

  11. Application of the genetic algorithm for optimisation of large solar hot water systems

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Visser, H.

    2002-01-01

    An implementation of the genetic algorithm in a design support tool for (large) solar hot water systems is described. The tool calculates the yield and the costs of solar hot water systems based on technical and financial data of the system components. The genetic algorithm allows for optimisation

  12. Design and experimental study of a solar system for heating water ...

    African Journals Online (AJOL)

    Water temperature reached a maximum of 74 °C with eleven reflective mirrors. The maximum value of the thermal efficiency is 29.21%. The results obtained are very encouraging for using linear Fresnel concentrator in the solar fields allocated to the domestics and industrial water-heaters. Keywords: Solar energy; design, ...

  13. Solar hot water demonstration project at Red Star Industrial Laundry, Fresno, California

    Science.gov (United States)

    1980-01-01

    The performance of a Solar Hot Water System at a laundry in Fresno, California is described. The system features an integrated wastewater heat recovery subsystem and a solar preheating system designed to supply a part of the hot water requirements. Performance data for a six month period are projected to an annual savings of $18,703.

  14. Water vapour retrieval using the Precision Solar Spectroradiometer

    Science.gov (United States)

    Raptis, Panagiotis-Ioannis; Kazadzis, Stelios; Gröbner, Julian; Kouremeti, Natalia; Doppler, Lionel; Becker, Ralf; Helmis, Constantinos

    2018-02-01

    The Precision Solar Spectroradiometer (PSR) is a new spectroradiometer developed at Physikalisch-Meteorologisches Observatorium Davos - World Radiation Center (PMOD-WRC), Davos, measuring direct solar irradiance at the surface, in the 300-1020 nm spectral range and at high temporal resolution. The purpose of this work is to investigate the instrument's potential to retrieve integrated water vapour (IWV) using its spectral measurements. Two different approaches were developed in order to retrieve IWV: the first one uses single-channel and wavelength measurements, following a theoretical water vapour high absorption wavelength, and the second one uses direct sun irradiance integrated at a certain spectral region. IWV results have been validated using a 2-year data set, consisting of an AERONET sun-photometer Cimel CE318, a Global Positioning System (GPS), a microwave radiometer profiler (MWP) and radiosonde retrievals recorded at Meteorological Observatorium Lindenberg, Germany. For the monochromatic approach, better agreement with retrievals from other methods and instruments was achieved using the 946 nm channel, while for the spectral approach the 934-948 nm window was used. Compared to other instruments' retrievals, the monochromatic approach leads to mean relative differences up to 3.3 % with the coefficient of determination (R2) being in the region of 0.87-0.95, while for the spectral approach mean relative differences up to 0.7 % were recorded with R2 in the region of 0.96-0.98. Uncertainties related to IWV retrieval methods were investigated and found to be less than 0.28 cm for both methods. Absolute IWV deviations of differences between PSR and other instruments were determined the range of 0.08-0.30 cm and only in extreme cases would reach up to 15 %.

  15. Excystation of Cryptosporidium parvum at temperatures that are reached during solar water disinfection.

    Science.gov (United States)

    Gómez-Couso, H; Fontán-Sainz, M; Fernández-Alonso, J; Ares-Mazás, E

    2009-04-01

    Species belonging to the genera Cryptosporidium are recognized as waterborne pathogens. Solar water disinfection (SODIS) is a simple method that involves the use of solar radiation to destroy pathogenic microorganisms that cause waterborne diseases. A notable increase in water temperature and the existence of a large number of empty or partially excysted (i.e. unviable) oocysts have been observed in previous SODIS studies with water experimentally contaminated with Cryptosporidium parvum oocysts under field conditions. The aim of the present study was to evaluate the effect of the temperatures that can be reached during exposure of water samples to natural sunlight (37-50 degrees C), on the excystation of C. parvum in the absence of other stimuli. In samples exposed to 40-48 degrees C, a gradual increase in the percentage of excystation was observed as the time of exposure increased and a maximum of 53.81% of excystation was obtained on exposure of the water to a temperature of 46 degrees C for 12 h (versus 8.80% initial isolate). Under such conditions, the oocyst infectivity evaluated in a neonatal murine model decreased statistically with respect to the initial isolate (19.38% versus 100%). The results demonstrate the important effect of the temperature on the excystation of C. parvum and therefore on its viability and infectivity.

  16. Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration.

    Science.gov (United States)

    Davies, C M; Roser, D J; Feitz, A J; Ashbolt, N J

    2009-02-01

    Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34 degrees S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1x10(5) mL(-1), and exposed to natural sunlight in 30-L reaction vessels. Water temperature ranged from 17 to 39 degrees C during the experiments lasting up to 6h. Dark controls showed little inactivation and so it was concluded that the inactivation observed was primarily driven by non-thermal processes. The optimised reactor design achieved S90 values (cumulative exposure required for 90% reduction) for the test microorganisms in the range 0.63-1.82 MJ m(-2) of Global Solar Exposure (GSX) without the need for TiO2 as a catalyst. High turbidity (840-920 NTU) only reduced the S(90) value by 0.05). However, inactivation was significantly reduced for E. faecalis and P22 when the transmittance of UV wavelengths was attenuated by water with high colour (140 PtCo units) or a suboptimally transparent reactor lid (prob.SODIS type pasteurization were not produced, non-thermal inactivation alone appeared to offer a viable means for reliably disinfecting low colour source waters by greater than 4 orders of magnitude on sunny days at 34 degrees S latitude.

  17. Modelling rotational and cyclical spectral solar irradiance variations

    Science.gov (United States)

    Unruh, Yvonne

    Solar irradiance changes are highly wavelength dependent: solar-cycle variations in the UV can be on the order of tens of percent, while changes in the visible are typically only of the order of one or two permille. With the launch of a number of instruments to measure spectral solar irradiance, we are now for a first time in a good position to explore the changing solar irradiance over a large range of wavelengths and to test our irradiance models as well as some of their underlying assumptions. I will introduce some of the current modelling approaches and present model-data comparisons, using the SATIRE irradiance model and SORCE/SIM measurements as an example. I will conclude by highlighting a number of outstanding questions regarding the modelling of spectral irradiance and current approaches to address these.

  18. A rhetorical investigation of energy-related environmental issues and a proposed modeling of variables influencing the employment of domestic solar water heaters with a focus on mobilizing information

    Science.gov (United States)

    Garner, Lilla Gayle

    how the variables and information identified in the rhetorical investigation might be actualized in the construction of messages related to a particular consumer energy behavior, the proposed modeling of variables is used as a framework for a heuristic experimental study. This experimental study is designed to test the influence of one particular variable found at the beliefs level---action strategies and skills, or mobilizing information---on consumers' attitudes and intentions to behave toward a specific energy-related topic, the employment of domestic solar water heaters.

  19. Mathematical modelling of unglazed solar collectors under extreme operating conditions

    DEFF Research Database (Denmark)

    Bunea, M.; Perers, Bengt; Eicher, S.

    2015-01-01

    average temperature levels at the evaporator. Simulation of these systems requires a collector model that can take into account operation at very low temperatures (below freezing) and under various weather conditions, particularly operation without solar irradiation.A solar collector mathematical model......Combined heat pumps and solar collectors got a renewed interest on the heating system market worldwide. Connected to the heat pump evaporator, unglazed solar collectors can considerably increase their efficiency, but they also raise the coefficient of performance of the heat pump with higher...... was found due to the condensation phenomenon and up to 40% due to frost under no solar irradiation. This work also points out the influence of the operating conditions on the collector's characteristics.Based on experiments carried out at a test facility, every heat flux on the absorber was separately...

  20. Experimental investigation of a Hybrid Solar Drier and Water Heater System

    International Nuclear Information System (INIS)

    Mohajer, Alireza; Nematollahi, Omid; Joybari, Mahmood Mastani; Hashemi, Seyed Ahmad; Assari, Mohammad Reza

    2013-01-01

    Highlights: • A Hybrid Solar Drier and Water Heater System experimentally investigated. • Using collected data, GIS maps were plotted for solar energy of Khuzestan Province. • System is presented which facilitates a dual-purpose solar collector. • The system includes a 100 l water storage tank, a solar dryer with 5 trays. • Experiments were carried out to dry vegetables (parsley, dill and coriander). - Abstract: Drying process is of great importance in food industries. One of the best methods of food drying is using solar dryers. For initial estimation of solar energy, calculations were made for statistical information measured by Renewable Energy Organization of Iran. Using collected data, GIS maps were plotted for solar energy of Khuzestan Province, Iran. In this study, a new hybrid system is presented which facilitates a dual-purpose solar collector to simultaneously support a dryer system and provide consumptive hot water. The system includes a 100 l water storage tank, a solar dryer with 5 trays, and a dual-purpose collector. Experiments were carried out to dry a mixture of vegetables (parsley, dill and coriander) at constant air and water flow rates. Besides, an electrical heater has been used as an auxiliary source for heating. The results indicated that the system optimally dried the vegetables and simultaneously provided the consumptive hot water

  1. Performance study of the inverted absorber solar still with water depth and total dissolved solid

    Energy Technology Data Exchange (ETDEWEB)

    Dev, Rahul [Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 (India); Abdul-Wahab, Sabah A. [Mechanical and Industrial Engineering Department, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al Khoud 123 (Oman); Tiwari, G.N. [BAG-Energy Research Society, A-112, Prodhyogiki Apartment, Plot 11, Sector 3, Dwarka, New Delhi 110 075 (India)

    2011-01-15

    In this communication, an experimental study of inverted absorber solar still (IASS) and single slope solar still (SS) at different water depth and total dissolved solid (TDS) is presented. Experiments are conducted for the climatic condition of Muscat, Oman. A thermal model is also developed for the IASS and validated with experimental results. A fair agreement is found for the daytime operation of the IASS. It is observed that higher water temperature can be achieved by using the IASS in comparison to the SS. The daily yield obtained from the IASS are 6.302, 5.576 and 4.299 kg/m{sup 2}-day at water depths (d{sub w}) 0.01, 0.02 and 0.03 m respectively. At same respective water depths, the daily yield obtained from the SS are 2.152, 1.931, 0.826 kg/m{sup 2}-day respectively lower than that of the IASS. It is observed that for climatic condition of Muscat, Oman, the optimum water depth for the IASS is 0.03 m above which the addition of reflector under the basin does not affect its performance much more in comparison to that of the SS for sea water. The feed saline water and yielded distilled water are also compared for different TDS values, pH, and electrical conductance. On the basis of economic analysis of IASS, it is found that the annualized cost of distilled water in Indian rupees for Muscat climatic condition is Rs. 0.74, 0.66 and 0.62 (conversion factors: $ 1 = Rs. 50 and 1 OMR = Rs. 120) for the life time of 15, 20 and 25 years respectively. (author)

  2. Development of domestic hot water systems in Costa Rica from solar energy

    International Nuclear Information System (INIS)

    Lizana-Moreno, Fernando

    2015-01-01

    A software tool is developed to implement the solar domestic hot water systems (DHW) in Costa Rica and to replace the electric water heating equipment. A database with information from the solar radiation is elaborated for different locations in Costa Rica. A manual of design DHW solar systems is realized for the country. An DHW solar system is designed for the type of average building the of country. A software is implemented to calculate the parameters and dimensions necessary for the solar installation of DHW, using the F-Chart method; in addition, the information of the mentioned database is included. A financial analysis is elaborated of the DHW solar systems in Costa Rica. The strategies are proposed for the implementation of DHW solar systems in Costa Rica [es

  3. A dissipative model of solar system

    Science.gov (United States)

    Vladimir, V. G.

    2009-04-01

    In classical model of Solar system of a planet are represented by the material points cooperating under the law of universal gravitation. This model remains fair if planet to consider as absolutely firm spheres with spherical distribution of density. The gravitational potential of such body coincides with potential of a material point, and rotation of each sphere concerning his centre of weights occurs to constant angular speed. Movement concerning the centre of weights of a sphere is represented by rotation with constant angular speed concerning an axis of an any direction, and movement of the centers of weights of spherical planets identically to movement in the appropriate problem of N points. Let's notice, that forms of planets of Solar system are close to spherical as dominant forces at formation of planets are gravitational forces to which forces of molecular interaction in substance of a planet counteract. The model of the isolated Solar system submitted in a not indignant condition N by homogeneous viscoelastic spheres is considered. Under action of own rotation and tidal gravitational forces the spherical planet changes the form: there is "flattening" a planet in a direction of a vector of its angular speed and formation of tidal humps on the lines connecting the centre of a planet with the centers of other planets. From a variational principle of Hamilton the full system of the equations describing movements of the centers of weights of planets, rotations of systems of coordinates, by integrated image connected with planets, and deformations of planets be relative these of systems of coordinates is received. It is supposed, that tidal gravitational, centrifugal and elastic forces result in small change of the spherical form of a planet. In system there are small parameters - inversely proportional of the Young modules of materials of the planets, providing small deformations of planets at influence on them of the centrifugal forces produced by own

  4. A case study of electric utility demand reduction with commerical solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, M.; Hoffner, J.E.; Panico, D. (City of Austin Electric Utility Dept., Austin, TX (US))

    1991-05-01

    The City of Austin, is studying the impact of solar water heaters on summer peak electric demand. One passive and two active solar water heating systems were installed on city owned commercial buildings which had electric water heaters in 1985 and have been monitored for two years. This paper reports on a method that has been developed to determine the peak demand reduction attributable to the solar systems. Results show that solar water heating systems are capable of large demand reductions as long as there is a large hot water demand to displace. The average noncoincident demand reduction (during the water heater's peak output) ranged from 0.8 to 5.8 kilowatts per system, however, the coincident demand reduction during the utility peak demand period was 0.3 to 0.8 kilowatts per system. Thus, a critical factor when assessing the benefit to the electric utility is the time of hot water demand.

  5. An Economic Analysis of Solar Water & Space Heating.

    Science.gov (United States)

    Energy Research and Development Administration, Washington, DC. Div. of Solar Energy.

    Solar system designs for 13 cities were optimized so as to minimize the life cycle cost over the assumed 20-year lifetime of the solar energy systems. A number of major assumptions were made regarding the solar system, type and use of building, financial considerations, and economic environment used in the design optimization. Seven optimum…

  6. Arkansas Solar Retrofit Guide. Greenhouses, Air Heaters and Water Heaters.

    Science.gov (United States)

    Skiles, Albert; Rose, Mary Jo

    Solar retrofits are devices of structures designed to be attached to existing buildings to augment their existing heating sources with solar energy. An investigation of how solar retrofits should be designed to suit the climate and resources of Arkansas is the subject of this report. Following an introduction (section 1), section 2 focuses on…

  7. New Results in Optical Modelling of Quantum Well Solar Cells

    Directory of Open Access Journals (Sweden)

    Silvian Fara

    2012-01-01

    Full Text Available This project brought further advancements to the quantum well solar cell concept proposed by Keith Barnham. In this paper, the optical modelling of MQW solar cells was analyzed and we focussed on the following topics: (i simulation of the refraction index and the reflectance, (ii simulation of the absorption coefficient, (iii simulation of the quantum efficiency for the absorption process, (iv discussion and modelling of the quantum confinement effect, and (v evaluation of datasheet parameters of the MQW cell.

  8. Carbon-Electrode-Tailored All-Inorganic Perovskite Solar Cells Too Harvest Solar and Water-Vapor Energy.

    Science.gov (United States)

    Duan, Jialong; Hu, Tianyu; Zhao, Yuanyuan; He, Benlin; Tang, Qunwei

    2018-03-30

    Moisture is the worst enemy for state-of-the-art perovskite solar cells (PSCs). However, the flowing water vapor within nanoporous carbonaceous materials can create potentials. Therefore, it is a challenge to integrate water vapor and solar energies into a single PSC device. We demonstrate herein all-inorganic cesium lead bromide (CsPbBr 3 ) solar cells tailored with carbon electrodes to simultaneously harvest solar and water-vapor energy. Upon interfacial modification and plasma treatment, the bifunctional PSCs yield a maximum power conversion efficiency up to 9.43 % under one sun irradiation according to photoelectric conversion principle and a power output of 0.158 μW with voltage of 0.35 V and current of 0.45 μA in 80 % relative humidity through the flowing potentials at the carbon/water interface. The initial efficiency is only reduced by 2 % on exposing the inorganic PSC with 80 % humidity over 40 days. The successful realization of physical proof-of-concept multi-energy integrated solar cells provides new opportunities of maximizing overall power output. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Heat exchanger modelling in central receiver solar power plant using dense particle suspension

    Science.gov (United States)

    Reyes-Belmonte, Miguel A.; Gómez-García, Fabrisio; González-Aguilar, José; Romero, Manuel; Benoit, Hadrien; Flamant, Gilles

    2017-06-01

    In this paper, a detailed thermodynamic model for a heat exchanger (HX) working with a dense particle suspension (DPS) as heat transfer fluid (HTF) in the solar loop and water-steam as working fluid is presented. HX modelling is based on fluidized bed (FB) technology and its design has been conceived to couple solar plant using DPS as HTF and storage media with Rankine cycle for power generation. Using DPS as heat transfer fluid allows extending operating temperature range what will help to reduce thermal energy storage costs favoring higher energy densities but will also allow running power cycle at higher temperature what will increase its efficiency. Besides HX modelling description, this model will be used to reproduce solar plant performance under steady state and transient conditions.

  10. Modelling water temperature in TOXSWA

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Deneer, J.W.; Adriaanse, P.I.

    2010-01-01

    A reasonably accurate estimate of the water temperature is necessary for a good description of the degradation of plant protection products in water which is used in the surface water model TOXSWA. Based on a consideration of basic physical processes that describe the influence of weather on the

  11. Modeling and simulation of a New Design of the SMCEC Desalination Unit Using Solar Energy

    International Nuclear Information System (INIS)

    Zhani, K.; Ben Bacha, H.

    2009-01-01

    The aim of this research is to parametrically study a new process working design with Humidification/Dehumidification (HD) technique using solar energy which is developed to ameliorate the production of the SMCEC unit (Solar Multiple Condensation Evaporation Cycle). The SMCEC unit is currently operating at Sfax's national engineering school in Tunisia. The improvement of the production consists in increasing the capacity of air to load water vapor with heating and subsequent humidification of air at the exit of the condensation tower instead of rejecting or recycling it. So, to attend our objective, we need to integrate into the SMCEC unit a flat plate solar air collector for heating air and a humidifier for its humidification. Then, the newly designed system is basically composed of a flat plate solar air collector, a flat plate solar water collector, a humidifier, an evaporation tower and a condensation tower. A general model based on heat and mass transfers in each component of the unit is developed in a steady state regime. The obtained set of ordinary differential equations is converted to a set of algebraic system of equations by the functional approximation method of orthogonal collocation. The developed model is used to investigate both the effect of different operating modes on the water condensation rate and the steady state behavior of each component of the unit and the entire system exposed to a variation of the entrance parameters and meteorological conditions.

  12. Development Smart Water Aquaponics Model

    Directory of Open Access Journals (Sweden)

    Gheorghe Adrian ZUGRAVU

    2017-06-01

    Full Text Available The present paper contributes to the modeling aquaculture. The paper main objectives are to identify an analysis smart water aquaponics. The purpose is to add more value to end aquaponics products. Aquaculture production depends on physical, chemical and biological qualities of pond water to a greater extent. The successful pond management requires an understanding of water quality. Intensification of pond makes the water quality undesirable with a number of water quality parameters. The objective of this model is to test and predicts plant and fish growth and net ammonium and nitrate concentrations in water in an aquaponic system. This is done by comparing the model outputs with measurements under controlled conditions in order to assess the accuracy of the tool to simulate nutrient concentrations in water and fish and plant biomass production of the system.

  13. Low-flow-storage solar system for domestic hot water; Low-flow Speicherkonzept fuer die solare Trinkwassererwaermung

    Energy Technology Data Exchange (ETDEWEB)

    Leibfried, U. [CONSOLAR Energiespeicher- und Regelungssysteme GmbH, Frankfurt am Main (Germany)

    2004-09-01

    Solar domestic hot water treatment relies on effective and insulated reservoirs to maximize solar efficiency. The article describes a newly developed low flow stratification tank. Key feature of this system is the spiral flow of the coolant in countermovement to the drinking water being heated. (orig.) [German] Bei der Solaren Trinkwassererwaermung ist der Einsatz effektiver Speichersysteme notwendig, um den solaren Ertrag zu maximieren. Im Bericht wird ein low-flow Speicherkonzept vorgestellt. Bei diesem System stroemt der vom Solarkollektor kommende Waermetraeger spiralfoermig von oben nach unten im Gegenstrom zu sich erwaermenden Trinkwasser. (orig.)

  14. Hawaii Solar Integration Study: Solar Modeling Developments and Study Results; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Orwig, K.; Corbus, D.; Piwko, R.; Schuerger, M.; Matsuura, M.; Roose, L.

    2012-12-01

    The Hawaii Solar Integration Study (HSIS) is a follow-up to the Oahu Wind Integration and Transmission Study completed in 2010. HSIS focuses on the impacts of higher penetrations of solar energy on the electrical grid and on other generation. HSIS goes beyond the island of Oahu and investigates Maui as well. The study examines reserve strategies, impacts on thermal unit commitment and dispatch, utilization of energy storage, renewable energy curtailment, and other aspects of grid reliability and operation. For the study, high-frequency (2-second) solar power profiles were generated using a new combined Numerical Weather Prediction model/ stochastic-kinematic cloud model approach, which represents the 'sharp-edge' effects of clouds passing over solar facilities. As part of the validation process, the solar data was evaluated using a variety of analysis techniques including wavelets, power spectral densities, ramp distributions, extreme values, and cross correlations. This paper provides an overview of the study objectives, results of the solar profile validation, and study results.

  15. Water in the Solar System: The Development of Science Education Curriculum Focused on Planetary Exploration

    Science.gov (United States)

    Edgar, L. A.; Anderson, R. B.; Gaither, T. A.; Milazzo, M. P.; Vaughan, R. G.; Rubino-Hare, L.; Clark, J.; Ryan, S.

    2017-12-01

    "Water in the Solar System" is an out-of-school time (OST) science education activity for middle school students that was developed as part of the Planetary Learning that Advances the Nexus of Engineering, Technology, and Science (PLANETS) project. The PLANETS project was selected in support of the NASA Science Mission Directorate's Science Education Cooperative Agreement Notice, with the goal of developing and disseminating OST curriculum and related professional development modules that integrate planetary science, technology, and engineering. "Water in the Solar System" is a science activity that addresses the abundance and availability of water in the solar system. The activity consists of three exercises based on the following guiding questions: 1) How much water is there on the Earth? 2) Where can you find water in the solar system? and 3) What properties affect whether or not water can be used by astronauts? The three exercises involve a scaling relationship demonstration about the abundance of useable water on Earth, a card game to explore where water is found in the solar system, and a hands-on exercise to investigate pH and salinity. Through these activities students learn that although there is a lot of water on Earth, most of it is not in a form that is accessible for humans to use. They also learn that most water in the solar system is actually farther from the sun, and that properties such as salinity and pH affect whether water can be used by humans. In addition to content for students, the activity includes background information for educators, and links to in-depth descriptions of the science content. "Water in the Solar System" was developed through collaboration between subject matter experts at the USGS Astrogeology Science Center, and curriculum and professional development experts in the Center for Science Teaching and Learning at Northern Arizona University. Here we describe our process of curriculum development, education objectives of

  16. Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water.

    Science.gov (United States)

    Walker, D Carey; Len, Soo-Voon; Sheehan, Brita

    2004-04-01

    A second-generation solar disinfection (SODIS) system (pouch) was constructed from food-grade, commercially available packaging materials selected to fully transmit and amplify the antimicrobial properties of sunlight. Depending upon the season, water source, and challenge organism, culturable bacteria were reduced between 3.5 and 5.5 log cycles. The system was also capable of reducing the background presumptive coliform population in nonsterile river water below the level of detection. Similar experiments conducted with a model virus, the F-specific RNA bacteriophage MS2, indicated that the pouch was slightly less efficient, reducing viable plaques by 3.5 log units in comparison to a 5.0 log reduction of enterotoxigenic Escherichia coli O18:H11 within the same time period. These results suggest that water of poor microbiological quality can be improved by using a freely available resource (sunlight) and a specifically designed plastic pouch constructed of food-grade packaging materials.

  17. Solar heating and hot water system installed at Saint Louis, Missouri

    Science.gov (United States)

    1980-01-01

    The solar heating and hot water system installed at the William Tao & Associates, Inc., office building in St. Louis, Missouri is described, including maintenance and construction problems, final drawings, system requirements, and manufacturer's component data. The solar system was designed to provide 50 percent of the hot water requirements and 45 percent of the space heating needs for a 900 sq ft office space and drafting room. The solar facility has 252 sq ft of glass tube concentrator collectors and a 1000 gallon steel storage tank buried below a concrete slab floor. Freeze protection is provided by a propylene glycol/water mixture in the collector loop. The collectors are roof mounted on a variable tilt array which is adjusted seasonally and is connected to the solar thermal storage tank by a tube-in-shell heat exchanger. Incoming city water is preheated through the solar energy thermal storage tank.

  18. Investigation of solar photovoltaic module power output by various models

    International Nuclear Information System (INIS)

    Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Baini, R.

    2012-01-01

    This paper aims to investigate the power output of a solar photovoltaic module by various models and to formulate a suitable model for predicting the performance of solar photovoltaic modules. The model was used to correct the configurations of solar photovoltaic systems for sustainable power supply. Different types of models namely the efficiency, power, fill factor and current-voltage characteristic curve models have been reviewed. It was found that the examined models predicted a 40% yield of the rated power in cloudy weather conditions and up to 80% in clear skies. The models performed well in terms of electrical efficiency in cloudy days if the influence of low irradiance were incorporated. Both analytical and numerical methods were employed in the formulation of improved model which gave +- 2% error when compared with the rated power output of solar photovoltaic module. The proposed model is more practical in terms of number of variables used and acceptable performance in humid atmospheres. Therefore, it could be useful for the estimation of power output of the solar photovoltaic systems in Sarawak region. (author)

  19. Modelling Ballast Water Transport

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; Babu, M.T.; Vethamony, P.

    water in the marine environment. The bathymetry of the region has been taken from the CMAP data and augmented by data from hydrographic charts and bathymetry data available at NIO Data Center, Goa. Tides along the open boundary were generated...

  20. Solar optical codes evaluation for modeling and analyzing complex solar receiver geometries

    Science.gov (United States)

    Yellowhair, Julius; Ortega, Jesus D.; Christian, Joshua M.; Ho, Clifford K.

    2014-09-01

    Solar optical modeling tools are valuable for modeling and predicting the performance of solar technology systems. Four optical modeling tools were evaluated using the National Solar Thermal Test Facility heliostat field combined with flat plate receiver geometry as a benchmark. The four optical modeling tools evaluated were DELSOL, HELIOS, SolTrace, and Tonatiuh. All are available for free from their respective developers. DELSOL and HELIOS both use a convolution of the sunshape and optical errors for rapid calculation of the incident irradiance profiles on the receiver surfaces. SolTrace and Tonatiuh use ray-tracing methods to intersect the reflected solar rays with the receiver surfaces and construct irradiance profiles. We found the ray-tracing tools, although slower in computation speed, to be more flexible for modeling complex receiver geometries, whereas DELSOL and HELIOS were limited to standard receiver geometries such as flat plate, cylinder, and cavity receivers. We also list the strengths and deficiencies of the tools to show tool preference depending on the modeling and design needs. We provide an example of using SolTrace for modeling nonconventional receiver geometries. The goal is to transfer the irradiance profiles on the receiver surfaces calculated in an optical code to a computational fluid dynamics code such as ANSYS Fluent. This approach eliminates the need for using discrete ordinance or discrete radiation transfer models, which are computationally intensive, within the CFD code. The irradiance profiles on the receiver surfaces then allows for thermal and fluid analysis on the receiver.

  1. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place. The present ...

  2. CPV solar cell modeling and metallization optimization

    NARCIS (Netherlands)

    Gupta, D.K.; Barink, M.; Langelaar, M.

    2018-01-01

    Concentrated photovoltaics (CPV) has recently gained popularity due to its ability to deliver significantly more power at relatively lower absorber material costs. In CPVs, lenses and mirrors are used to concentrate illumination over a small solar cell, thereby increasing the incident light by

  3. CPV solar cell modeling and metallization optimization

    NARCIS (Netherlands)

    Gupta, D.K.; Barink, Marco; Langelaar, M.

    2018-01-01

    Concentrated photovoltaics (CPV) has recently gained popularity due to its ability to deliver significantly more power at relatively lower absorber material costs. In CPVs, lenses and mirrors are used to concentrate illumination over a small solar cell, thereby increasing the incident light by

  4. Nanoflare heating model for collisionless solar corona

    Indian Academy of Sciences (India)

    2017-01-31

    Jan 31, 2017 ... Magnetic reconnection plays a significant role in heating the solar corona. When two oppositely directed magnetic fields come closer to form a current sheet, the current density of the plasma increases due to which magnetic reconnection and conversion of magnetic energy into thermal energy takes place.

  5. Dimensioning of a solar water heater made from PET bottles; Dimensionamento de um aquecedor solar de agua feito com garrafas PET

    Energy Technology Data Exchange (ETDEWEB)

    Bertoleti, Pedro Henrique Fonseca; Souza, Teofilo Miguel de [Universidade Estadual Paulista (UNESP), Guaratingueta, SP (Brazil). Centro de Energias Renovaveis

    2008-07-01

    This document show the solar water heater made of PET bottles, a simple-construction solar water heater that try to give us two important solutions, water heating using solar energy and reutilization of the PET bottles left in the nature. Also, it will be showed how to do the dimensioning of it. Based on the showed dimensioning a application / software is developed and after that simulations are made using the application to provide how is the economy if it's used this kind of solar water heater and their environmental contribution by reutilization of the PET bottles abandoned in the nature. For example, in a common home the economy is about 45% of the electricity bill considering that the warmed water is used just to take a shower. So, the conclusion is: the solar water heater made by PET bottles is a very relevant equipment to the use of the solar energy, to useful applications and environmental contribution. (author)

  6. Solar energy uses in home water heating systems; Utilizacao da energia solar em sistemas de aquecimento de agua residencial

    Energy Technology Data Exchange (ETDEWEB)

    Basso, Luiz Henrique

    2008-07-01

    The awareness of the importance of the environment has stimulated the study of new energy sources renewed and less pollutant. Amongst these sources, solar energy stands alone for being perennial and clean. The use of solar energy in systems of residential water heating, instead of the electric shower, can compliment the economy of electric energy, based on the Brazilian energy matrix. To know all the factors that influence the operation of a system of water heating by solar energy it is important the determination of its economic and technical viabilities and, distribution targeting in urban and agricultural residences. To evaluate equipment of water heating for solar energy in the region west of the Parana, Brazil, an archetype with similar characteristics to equipment used in residences for two inhabitants was built, to function with natural circulation or thermosyphon and without help of a complementary heating system. The room temperature and the speed of the wind were also evaluated, verifying its influence in the heating system. The equipment revealed technical viability, reaching the minimum temperature of 35 deg C for shower, whenever the solar radiation was above the 3500 W.m{sup -2}, for the majority of the studied days. The system operated without interruptions and it did not need maintenance, except for the monthly glass cleaning. Economic viability was clearly demonstrated since the useful life of the equipment exceeded the period of use to gain its investment. (author)

  7. A reconstruction of solar irradiance using a flux transport model

    Science.gov (United States)

    Dasi Espuig, Maria; Jiang, Jie; Krivova, Natalie; Solanki, Sami

    2013-04-01

    Reconstructions of solar irradiance into the past are of considerable interest for studies of solar influence on climate. Models based on the assumption that irradiance changes are caused by the evolution of the photospheric magnetic field have been the most successful in reproducing the measured irradiance variations. Our SATIRE-S model is one of these. It uses solar full-disc magnetograms as an input, and these are available for less than four decades. Thus, to reconstruct the irradiance back to times when no observed magnetograms are available, we combine the SATIRE-S model with synthetic magnetograms, produced using a surface flux transport model. The model is fed with daily, observed or modelled statistically, records of sunspot positions, areas, and tilt angles. To describe the secular change in the irradiance, we used the concept of overlapping ephemeral region cycles. With this technique TSI can be reconstructed back to 1610.

  8. Thermal performance of an integrated collector storage solar water heater (ICSSWH) with phase change materials (PCM)

    International Nuclear Information System (INIS)

    Chaabane, Monia; Mhiri, Hatem; Bournot, Philippe

    2014-01-01

    Highlights: • We study the effect of phase change materials integration on the thermal performances of an ICSSWH. • Two kinds and tree radiuses of the PCM layer are studied and the most appropriate design is presented. • The use of phase change materials in ICSSWH is determined to reduce the night thermal losses. • Myristic acid is the most appropriate PCM for this application regarding the daily and night operation. - Abstract: In this paper, we propose a numerical study of an integrated collector storage solar water heater (ICSSWH). Two numerical models in three-dimensional modeling are developed. The first one which describes a sensible heat storage unit (SHSU), allowing validating the numerical model. Based on the good agreement between numerical results and experimental data from literature, and as this type of solar water heater presents the disadvantage of its high night losses, we propose to integrate a phase change material (PCM) directly in the collector and to study its effect on the ICSSWH thermal performance. Indeed, a second 3D CFD model is developed and series of numerical simulations are conducted for two kind (myristic acid and RT42-graphite) and three radiuses (R = 0.2 m, R = 0.25 m and R = 0.3 m) of this PCM layer. Numerical results show that during the day-time, the latent heat storage unit (LHSU) performs better than the sensible one when myristic acid is used as PCM. Regarding the night operating of this solar system, it is found that the LHSU is more effective for both PCMs as it allows lower thermal losses and better heat preservation

  9. Experimental Study on Performance of a Box Solar Cooker with Flat Plate Collector to Boil Water

    Science.gov (United States)

    Sitepu, T.; Gunawan, S.; Nasution, D. M.; Ambarita, H.; Siregar, R. E. T.; Ronowikarto, A. D.

    2017-03-01

    In this study, a flat plate type solar cooker is tested by exposing in solar irradiation. The objective is to examine the performance of solar cooker in boiling water. The solar cooker is a box type with collector area and height are 100 × 100 cm and 40 cm, respectively. Vessel for water is made of aluminum plate with diameter and height of 22 cm and 15 cm. The experiments are performed by varying mass of the water. It is 2 kg and 4 kg, respectively. Every experiment starts from 10:00 AM until the boiling temperature is reached. The parameters measured are radiance intensity, ambient and solar box cooker temperatures, and wind speed. The results show that the duration of water heating up to 100°C with water mass 2 kg within 2 hours 45 minutes and water mass 4 kg within 3 hours 17 minutes. The maximum temperatur of solar box cooker is 117°C at 12:56 PM and maximum efficiency is 46.30%. The main conclusion can be drawn here is that a simple solar box cooker can be used to boil water.

  10. Economical judge possibility uses solar collectors to warm service water and heating

    Directory of Open Access Journals (Sweden)

    Lívia Bodonská

    2006-09-01

    Full Text Available The sun-heated water has been used from before fossil fuels started to determine the direction of our power consumption. This article is focused on the assessing of the use of solar energy as one of inexhaustible resources that has multiple uses, including hot water service systems. Heating is rendered through solar collectors that permit to transform solar energy to warm water. We divide solar collectors into various groups but in principle they are medium temperature collectors and low temperature collectors. The work is directed also on the solar collector market. In our case the market is just at its initial stage as this technology is little known and costs of collectors are rather high, compared to our conditions, on average, they may grow up to 100,000 Slovac crowns per a family house. Because it is the only investment and the costs of operation are minimum throughout the entire collectors lifetime, from the economic point of view, it is a rather advantageous investment. Solar collectors are used in heating and also in hot service water systems in family houses, where they permit to lower costs for the consumption of many kinds of energies. In the hot service water system, solar collectors permit to lower the consumption by almost 70 %. This way of using the solar energy is very prospective and in future it will be used in various sectors

  11. Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions.

    Science.gov (United States)

    Terada, Naoki; Kulikov, Yuri N; Lammer, Helmut; Lichtenegger, Herbert I M; Tanaka, Takashi; Shinagawa, Hiroyuki; Zhang, Tielong

    2009-01-01

    The upper limits of the ion pickup and cold ion outflow loss rates from the early martian atmosphere shortly after the Sun arrived at the Zero-Age-Main-Sequence (ZAMS) were investigated. We applied a comprehensive 3-D multi-species magnetohydrodynamic (MHD) model to an early martian CO(2)-rich atmosphere, which was assumed to have been exposed to a solar XUV [X-ray and extreme ultraviolet (EUV)] flux that was 100 times higher than today and a solar wind that was about 300 times denser. We also assumed the late onset of a planetary magnetic dynamo, so that Mars had no strong intrinsic magnetic field at that early period. We found that, due to such extreme solar wind-atmosphere interaction, a strong magnetic field of about approximately 4000 nT was induced in the entire dayside ionosphere, which could efficiently protect the upper atmosphere from sputtering loss. A planetary obstacle ( approximately ionopause) was formed at an altitude of about 1000 km above the surface due to the drag force and the mass loading by newly created ions in the highly extended upper atmosphere. We obtained an O(+) loss rate by the ion pickup process, which takes place above the ionopause, of about 1.5 x 10(28) ions/s during the first water loss equivalent to a global martian ocean with a depth of approximately 8 m. Consequently, even if the magnetic protection due to the expected early martian magnetic dynamo is neglected, ion pickup and sputtering were most likely not the dominant loss processes for the planet's initial atmosphere and water inventory. However, it appears that the cold ion outflow into the martian tail, due to the transfer of momentum from the solar wind to the ionospheric plasma, could have removed a global ocean with a depth of 10-70 m during the first < or =150 million years after the Sun arrived at the ZAMS.

  12. A parametric study on a humidification–dehumidification (HDH) desalination unit powered by solar air and water heaters

    International Nuclear Information System (INIS)

    Yıldırım, Cihan; Solmuş, İsmail

    2014-01-01

    Highlights: • A time dependent humidification–dehumidification desalination process is investigated. • Fourth-order Runge–Kutta method is used to simulate the problem. • Daily and annual performance are examined. • Various operational parameters are investigated. - Abstract: The performance of a solar powered humidification–dehumidification desalination system is theoretically investigated for various operating and design parameters of the system under climatological conditions of Antalya, Turkey. The primary components of the system are a flat plate solar water heater, a flat plate double pass solar air heater, a humidifier, a dehumidifier and a storage tank. The mathematical model of the system is developed and governing conservation equations are numerically solved by using the Fourth order Runge–Kutta method. Daily and annual yields are calculated for different configurations of the system such as only water heating, only air heating and water–air heating

  13. A model for the origin of solar wind stream interfaces

    International Nuclear Information System (INIS)

    Hundhausen, A.J.; Burlaga, L.F.

    1975-01-01

    The basic variations in solar wind properties that have been observed at 'stream interfaces' near 1 AU are explained by a gas dynamic model in which a radially propagating stream, produced by a temperature variation in the solar envelope, steepens nonlinearly while moving through interplanetary space. The region thus identified with the stream interface separates the ambient solar wind from the fresh hot material originally in the stream. However, the interface regions given by the present model are thicker than most stream interfaces observed in the solar wind, a fact suggesting that some additional physical process may be important in determining that thickness. Variations in the density, speed, or Alfven pressure alone appear not to produce streams with such an interface

  14. Virtual Solar System Project: Building Understanding through Model Building.

    Science.gov (United States)

    Barab, Sasha A.; Hay, Kenneth E.; Barnett, Michael; Keating, Thomas

    2000-01-01

    Describes an introductory astronomy course for undergraduate students in which students use three-dimensional (3-D) modeling tools to model the solar system and develop rich understandings of astronomical phenomena. Indicates that 3-D modeling can be used effectively in regular undergraduate university courses as a tool to develop understandings…

  15. Early solar system. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source.

    Science.gov (United States)

    Sarafian, Adam R; Nielsen, Sune G; Marschall, Horst R; McCubbin, Francis M; Monteleone, Brian D

    2014-10-31

    Determining the origin of water and the timing of its accretion within the inner solar system is important for understanding the dynamics of planet formation. The timing of water accretion to the inner solar system also has implications for how and when life emerged on Earth. We report in situ measurements of the hydrogen isotopic composition of the mineral apatite in eucrite meteorites, whose parent body is the main-belt asteroid 4 Vesta. These measurements sample one of the oldest hydrogen reservoirs in the solar system and show that Vesta contains the same hydrogen isotopic composition as that of carbonaceous chondrites. Taking into account the old ages of eucrite meteorites and their similarity to Earth's isotopic ratios of hydrogen, carbon, and nitrogen, we demonstrate that these volatiles could have been added early to Earth, rather than gained during a late accretion event. Copyright © 2014, American Association for the Advancement of Science.

  16. Source Surface Models and Their Impact on Solar Wind Research

    Science.gov (United States)

    Sokolov, I. V.; Roussev, I. I.; Gombosi, T. I.; Liu, Y.

    2005-05-01

    To perform realistic modeling of the important processes in the solar corona, such as coronal mass ejections, flares, as well as the acceleration of solar particles, one needs to incorporate into the physical models any complicated pattern of the coronal magnetic field. The coronal magnetic field topology is determined by the helmet streamers (with closed field lines), the coronal holes (with open field lines) as well as the fine, but crucially important, details of the small-scale active regions. The standard practice to recover the global 3-D structure of the solar magnetic field from observations is to use the source surface model, in which the field is assumed to be potential, i.e., current-free. This approach ignores any volumetric current there may be present in the corona, and also neglects the existence of the equatorial current sheet, which starts from a height of 3-5 Rs above the solar surface. The fully potential solar magnetic field would have only closed field lines, not allowing for the solar wind to exist. In our Solar Corona model, incorparated into the Space Weather Modelling Framework, the solar magnetic field is split into two constituitive parts: one potential part which is recovered from the magnetic field data (e.g., from WSO, MWO, or MDI data) using the source surface method; and, one other non-potential part. For the potential field, we keep only the spherical harmonics decreasing with distance from the Sun or, equivalently, we use a very large value of the source surface radius. For the non-potential field, we solve the time-dependent induction equation with zero boundary condition at the solar surface. The full set of conservation laws for the MHD system is solved numerically using the BATS-R-US code. To power the solar wind in our model, we use a phenomenological turbulence model described in an earlier paper. The resulting steady-state MHD solution includes the well-resolved current sheet and helmet streamers. The modeled structure of

  17. Procedures of water desalination with solar energy and f-chart method

    Directory of Open Access Journals (Sweden)

    Petrović Andrija A.

    2015-01-01

    Full Text Available Due to rapid population growth, and climate change caused by environmental pollution needs for drinking water are increasing while amount of freshwater are decreasing. However possible solution for freshwater scarcity can be found in water desalination procedures. In this article three representative water desalination solar powered plants are described. Except explanation of processes it is also mentioned basic advantages and disadvantages of humidification, reverse osmosis and desalination evaporation by using solar energy. Simulation of the solar desalination system is analyzed with f-chart method monthly, located on located 42 degrees north latitude.

  18. DEVELOPMENT AND PRELIMINARY TESTING OF A PARABOLIC TROUGH SOLAR WATER HEATER

    Directory of Open Access Journals (Sweden)

    O. A. Lasode

    2011-06-01

    Full Text Available Solar energy is a high-temperature, high-energy radiant energy source, with tremendous advantages over other alternative energy sources. It is a reliable, robust renewable resource which is largely undeveloped. The design and fabrication of parabolic trough solar water heater for water heating was executed. The procedure employed includes the design, construction and testing stages. The equipment which is made up of the reflector surface (curved mirror, reflector support, absorber pipe and a stand was fabricated using locally sourced materials. The results obtained. compared favourably with other research works in the literature. It depicts that employing a suitable design, selection of time of heating and proper focusing of the reflected rays to the focal spot region, solar radiation can efficiently be utilized for water heating in a tropical environment. This work presents a parabolic trough solar water heater as a suitable renewable energy technology for reducing water-heating costs.

  19. The problem of multicollinearity in horizontal solar radiation estimation models and a new model for Turkey

    International Nuclear Information System (INIS)

    Demirhan, Haydar

    2014-01-01

    Highlights: • Impacts of multicollinearity on solar radiation estimation models are discussed. • Accuracy of existing empirical models for Turkey is evaluated. • A new non-linear model for the estimation of average daily horizontal global solar radiation is proposed. • Estimation and prediction performance of the proposed and existing models are compared. - Abstract: Due to the considerable decrease in energy resources and increasing energy demand, solar energy is an appealing field of investment and research. There are various modelling strategies and particular models for the estimation of the amount of solar radiation reaching at a particular point over the Earth. In this article, global solar radiation estimation models are taken into account. To emphasize severity of multicollinearity problem in solar radiation estimation models, some of the models developed for Turkey are revisited. It is observed that these models have been identified as accurate under certain multicollinearity structures, and when the multicollinearity is eliminated, the accuracy of these models is controversial. Thus, a reliable model that does not suffer from multicollinearity and gives precise estimates of global solar radiation for the whole region of Turkey is necessary. A new nonlinear model for the estimation of average daily horizontal solar radiation is proposed making use of the genetic programming technique. There is no multicollinearity problem in the new model, and its estimation accuracy is better than the revisited models in terms of numerous statistical performance measures. According to the proposed model, temperature, precipitation, altitude, longitude, and monthly average daily extraterrestrial horizontal solar radiation have significant effect on the average daily global horizontal solar radiation. Relative humidity and soil temperature are not included in the model due to their high correlation with precipitation and temperature, respectively. While altitude has

  20. Bactericidal effect of solar water disinfection under real sunlight conditions.

    Science.gov (United States)

    Boyle, M; Sichel, C; Fernández-Ibáñez, P; Arias-Quiroz, G B; Iriarte-Puña, M; Mercado, A; Ubomba-Jaswa, E; McGuigan, K G

    2008-05-01

    Batch solar disinfection (SODIS) inactivation kinetics are reported for suspensions in water of Campylobacter jejuni, Yersinia enterocolitica, enteropathogenic Escherichia coli, Staphylococcus epidermidis, and endospores of Bacillus subtilis, exposed to strong natural sunlight in Spain and Bolivia. The exposure time required for complete inactivation (at least 4-log-unit reduction and below the limit of detection, 17 CFU/ml) under conditions of strong natural sunlight (maximum global irradiance, approximately 1,050 W m(-2) +/- 10 W m(-2)) was as follows: C. jejuni, 20 min; S. epidermidis, 45 min; enteropathogenic E. coli, 90 min; Y. enterocolitica, 150 min. Following incomplete inactivation of B. subtilis endospores after the first day, reexposure of these samples on the following day found that 4% (standard error, 3%) of the endospores remained viable after a cumulative exposure time of 16 h of strong natural sunlight. SODIS is shown to be effective against the vegetative cells of a number of emerging waterborne pathogens; however, bacterial species which are spore forming may survive this intervention process.

  1. Bactericidal Effect of Solar Water Disinfection under Real Sunlight Conditions▿

    Science.gov (United States)

    Boyle, M.; Sichel, C.; Fernández-Ibáñez, P.; Arias-Quiroz, G. B.; Iriarte-Puña, M.; Mercado, A.; Ubomba-Jaswa, E.; McGuigan, K. G.

    2008-01-01

    Batch solar disinfection (SODIS) inactivation kinetics are reported for suspensions in water of Campylobacter jejuni, Yersinia enterocolitica, enteropathogenic Escherichia coli, Staphylococcus epidermidis, and endospores of Bacillus subtilis, exposed to strong natural sunlight in Spain and Bolivia. The exposure time required for complete inactivation (at least 4-log-unit reduction and below the limit of detection, 17 CFU/ml) under conditions of strong natural sunlight (maximum global irradiance, ∼1,050 W m−2 ± 10 W m−2) was as follows: C. jejuni, 20 min; S. epidermidis, 45 min; enteropathogenic E. coli, 90 min; Y. enterocolitica, 150 min. Following incomplete inactivation of B. subtilis endospores after the first day, reexposure of these samples on the following day found that 4% (standard error, 3%) of the endospores remained viable after a cumulative exposure time of 16 h of strong natural sunlight. SODIS is shown to be effective against the vegetative cells of a number of emerging waterborne pathogens; however, bacterial species which are spore forming may survive this intervention process. PMID:18359829

  2. Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China

    International Nuclear Information System (INIS)

    Zhao Xudong; Wang Zhangyuan; Tang Qi

    2010-01-01

    A novel loop heat pipe (LHP) solar water heating system for typical apartment buildings in Beijing was designed to enable effective collection of solar heat, distance transport, and efficient conversion of solar heat into hot water. Taking consideration of the heat balances occurring in various parts of the loop, such as the solar absorber, heat pipe loop, heat exchanger and storage tank, a computer model was developed to investigate the thermal performance of the system. With the specified system structure, the efficiency of the solar system was found to be a function of its operational characteristics - working temperature of the loop heat pipe, water flow rate across the heat exchanger, and external parameters, including ambient temperature, temperature of water across the exchanger and solar radiation. The relationship between the efficiency of the system and these parameters was established, analysed and discussed in detail. The study suggested that the loop heat pipe should be operated at around 72 deg. C and the water across the heat exchanger should be maintained at 5.1 l/min. Any variation in system structure, i.e., glazing cover and height difference between the absorber and heat exchanger, would lead to different system performance. The glazing covers could be made using either borosilicate or polycarbonate, but borosilicate is to be preferred as it performs better and achieves higher efficiency at higher temperature operation. The height difference between the absorber and heat exchanger in the design was 1.9 m which is an adequate distance causing no constraint to heat pipe heat transfer. These simulation results were validated with the primary testing results.

  3. SRADLIB: A C Library for Solar Radiation Modelling

    Energy Technology Data Exchange (ETDEWEB)

    Balenzategui, J. L. [Ciemat. Madrid (Spain)

    2000-07-01

    This document shows the result of an exhaustive study about the theoretical and numerical models available in the literature about solar radiation modelling. The purpose of this study is to develop or adapt mathematical models describing the solar radiation specifically for Spain locations as well as to create computer tools able to support the labour of researchers or engineers needing solar radiation data to solve or improve the technical or energetic performance of solar systems. As results of this study and revision, a C library (SRADLIB) is presented as a key for the compilation of the mathematical models from different authors, for the comparison among the different approaches and for its application in computer programs. Different topics related to solar radiation and its modelling are first discussed, including the assumptions and conventions adopted and describing the most accepted and used current state-of-the-art models. some typical problems in the numerical calculation of radiation values are also posed with the proposed solution. The document includes next a complete reference of the developed functions, with many examples of application and calculus. (Author) 24 refs.

  4. Direct solar water splitting cell using water, WO3, Pt, and polymer electrolyte membrane

    International Nuclear Information System (INIS)

    He Xiaoming; Boehm, Robert F.

    2009-01-01

    A solar water splitting cell composed of WO 3 , Polymer Electrolyte Membrane (PEM) and Pt was constructed for producing hydrogen from deionized water in sunlight. Spectral responsivity measurements under various temperatures and bias voltages were conducted for the cell using the Incident Photon to Current Efficiency (IPCE) method. For comparison, a known WO 3 Photo Electro Chemical (PEC) cell containing H 3 PO 4 electrolyte, WO 3 /H 3 PO 4 /Pt, was tested using the same test method. The WO 3 /PEM-H 2 O/Pt cell showed better Quantum Efficiency (QE) performance compared to that obtained from the cell with the chemical electrolyte. For the first time, spectral responsivity of photo water splitting process without bias power was unveiled in the new WO 3 cell, demonstrating the self-sustained photo electrolysis capability. Bias voltage effect on Solar to Hydrogen (STH) conversion efficiency was dramatic in the range from 0.2 V to 1.2 V and suppressions of STH were observed when high bias voltages were applied. In addition, a strong temperature effect on the energy conversion efficiency at high bias voltage was observed in the cell containing PEM-H 2 O, revealing that the STH at 54 °C is nearly five times that at 14 °C.

  5. Production of solar radiation bankable datasets from high-resolution solar irradiance derived with dynamical downscaling Numerical Weather prediction model

    Directory of Open Access Journals (Sweden)

    Yassine Charabi

    2016-11-01

    Full Text Available A bankable solar radiation database is required for the financial viability of solar energy project. Accurate estimation of solar energy resources in a country is very important for proper siting, sizing and life cycle cost analysis of solar energy systems. During the last decade an important progress has been made to develop multiple solar irradiance database (Global Horizontal Irradiance (GHI and Direct Normal Irradiance (DNI, using satellite of different resolution and sophisticated models. This paper assesses the performance of High-resolution solar irradiance derived with dynamical downscaling Numerical Weather Prediction model with, GIS topographical solar radiation model, satellite data and ground measurements, for the production of bankable solar radiation datasets. For this investigation, NWP model namely Consortium for Small-scale Modeling (COSMO is used for the dynamical downscaling of solar radiation. The obtained results increase confidence in solar radiation data base obtained from dynamical downscaled NWP model. The mean bias of dynamical downscaled NWP model is small, on the order of a few percents for GHI, and it could be ranked as a bankable datasets. Fortunately, these data are usually archived in the meteorological department and gives a good idea of the hourly, monthly, and annual incident energy. Such short time-interval data are valuable in designing and operating the solar energy facility. The advantage of the NWP model is that it can be used for solar radiation forecast since it can estimate the weather condition within the next 72–120 hours. This gives a reasonable estimation of the solar radiation that in turns can be used to forecast the electric power generation by the solar power plant.

  6. Comparison between a new TRNSYS model and experimental data of phase change materials in a solar combisystem

    Energy Technology Data Exchange (ETDEWEB)

    Bony, J.; Citherlet, S.

    2007-07-01

    In the framework of the IEA Task 32 (Solar Heating and Cooling Programme), we developed a numeric model to simulate heat transfer in phase change materials (PCM), and experimental data. The analyzed system is bulk PCM plunged in a water tank storage of a solar combisystem (heating and domestic hot water production). The numerical model, based on the enthalpy approach, takes into account hysteresis and subcooling characteristic and also the conduction and the convection in the PCM. This model has been implemented in an existing TRNSYS type of water tank storage. The simulations has been compared with experimental data obtained with a solar installation using water tank storage of about 900 litres, already studied during the IEA Task 26 (Weiss 2003). (author)

  7. A radiative transfer module for calculating photolysis rates and solar heating in climate models: Solar-J v7.5

    Directory of Open Access Journals (Sweden)

    J. Hsu

    2017-07-01

    Full Text Available Solar-J is a comprehensive radiative transfer model for the solar spectrum that addresses the needs of both solar heating and photochemistry in Earth system models. Solar-J is a spectral extension of Cloud-J, a standard in many chemical models that calculates photolysis rates in the 0.18–0.8 µm region. The Cloud-J core consists of an eight-stream scattering, plane-parallel radiative transfer solver with corrections for sphericity. Cloud-J uses cloud quadrature to accurately average over correlated cloud layers. It uses the scattering phase function of aerosols and clouds expanded to eighth order and thus avoids isotropic-equivalent approximations prevalent in most solar heating codes. The spectral extension from 0.8 to 12 µm enables calculation of both scattered and absorbed sunlight and thus aerosol direct radiative effects and heating rates throughout the Earth's atmosphere.The Solar-J extension adopts the correlated-k gas absorption bins, primarily water vapor, from the shortwave Rapid Radiative Transfer Model for general circulation model (GCM applications (RRTMG-SW. Solar-J successfully matches RRTMG-SW's tropospheric heating profile in a clear-sky, aerosol-free, tropical atmosphere. We compare both codes in cloudy atmospheres with a liquid-water stratus cloud and an ice-crystal cirrus cloud. For the stratus cloud, both models use the same physical properties, and we find a systematic low bias of about 3 % in planetary albedo across all solar zenith angles caused by RRTMG-SW's two-stream scattering. Discrepancies with the cirrus cloud using any of RRTMG-SW's three different parameterizations are as large as about 20–40 % depending on the solar zenith angles and occur throughout the atmosphere.Effectively, Solar-J has combined the best components of RRTMG-SW and Cloud-J to build a high-fidelity module for the scattering and absorption of sunlight in the Earth's atmosphere, for which the three major components – wavelength

  8. Ground water modelling

    International Nuclear Information System (INIS)

    Leino-Forsman, H.; Olin, M.

    1991-01-01

    The first Seminar on Groundwater Modelling was arranged by VTT (Reactor Laboratory) in Espoo Finland in May 1991. The one day seminar dealt both with modelling of geochemistry and transport of groundwater, as well as mathematical methods for modelling. The seminar concentrated on giving a broad picture of the applications of groundwater modelling e.g. nuclear waste, groundwater resources including artificial groundwater and pollution. The participants came from research institutes and universities as well as engineering companies. Articles are published in Finnish with English abstracts

  9. Stochastic Still Water Response Model

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Ditlevsen, Ove Dalager

    2002-01-01

    water bending moment is compared to statistics from available regression formulas. It is found that the suggested model predicts a coefficient of variation of the maximum still water bending moment that is a factor of two to three times lower than that obtained by use of the regression formula. It turns......In this study a stochastic field model for the still water loading is formulated where the statistics (mean value, standard deviation, and correlation) of the sectional forces are obtained by integration of the load field over the relevant part of the ship structure. The objective of the model...

  10. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application

    Directory of Open Access Journals (Sweden)

    Hrushikesh Bhujangrao Kulkarni

    2016-02-01

    Full Text Available Concentrating collectors absorbs solar energy and convert it into heat for generating hot water, steam at required temperature, which can be further used for solar thermal applications. The developing countries like India where solar energy is abundantly available; there is need to develop technology for harnessing solar energy for power production, but the main problem associated with concentrating solar power technology is the high cost of installation and low output efficiency. To solve this problem, a prototype cylindrical parabolic solar collector having aperture area of 1.89 m2 is designed and developed using low cost highly reflecting and absorbing material to reduce initial cost of project and improve thermal efficiency. ASHRAE Standard 93, 1986 was used to evaluate the thermal performance and it was observed that this system can generate hot water at an average temperature of 500C per day with an average efficiency of 49% which is considerable higher than flat plate solar collectors. Hot water produced by this system can be useful for domestic, agricultural, industrial process heat applications.Article History: Received Sept 19, 2015; Received in revised form Dec 23, 2015; Accepted February 2, 2016; Available online How to Cite This Article: Bhujangrao, K.H. (2016. Design and Development of Prototype Cylindrical Parabolic Solar Collector for Water Heating Application. International Journal of Renewable Energy Development, 5(1, 49-55 http://dx.doi.org/10.14710/ijred.5.1.49-55 

  11. Technical project of a solar water heating system for Hostal FRATERNIDAD, Santiago de Cuba

    International Nuclear Information System (INIS)

    Arzuaga Machado, Yusnel; Torres Ten, Alonso; Fonseca Fonseca, Susana; Fuetes lombá, Osmanys; Massipe Hernández, J. Raúl; Gonzalez, Wagner Roberto

    2017-01-01

    It is presented the technical project of a solar water heating system for Hostal FRATERNIDAD, Santiago de Cuba, Cuba, 20 Cabannas type tourism and a one of 2 square meter flat solar collector will be used, with a storage tank of 200 liters capacity, that is to say one system per cabin. (author)

  12. Modeling Water Filtration

    Science.gov (United States)

    Parks, Melissa

    2014-01-01

    Model-eliciting activities (MEAs) are not new to those in engineering or mathematics, but they were new to Melissa Parks. Model-eliciting activities are simulated real-world problems that integrate engineering, mathematical, and scientific thinking as students find solutions for specific scenarios. During this process, students generate solutions…

  13. Gallium arsenide (GaAs) solar cell modeling studies

    Science.gov (United States)

    Heinbockel, J. H.

    1980-01-01

    Various models were constructed which will allow for the variation of system components. Computer studies were then performed using the models constructed in order to study the effects of various system changes. In particular, GaAs and Si flat plate solar power arrays were studied and compared. Series and shunt resistance models were constructed. Models for the chemical kinetics of the annealing process were prepared. For all models constructed, various parametric studies were performed.

  14. Solar disinfection (SODIS): simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti.

    Science.gov (United States)

    Oates, Peter M; Shanahan, Peter; Polz, Martin F

    2003-01-01

    Haiti and other developing countries do not have sufficient meteorological data to evaluate if they meet the solar disinfection (SODIS) threshold of 3-5 h of solar radiation above 500 W/m2, which is required for adequate microbial inactivation in drinking water. We have developed a mathematical model based on satellite-derived daily total energies to simulate monthly mean, minimum, and maximum 5-h averaged peak solar radiation intensities. This model can be used to assess if SODIS technology would be applicable anywhere in the world. Field measurements were made in Haiti during January 2001 to evaluate the model and test SODIS efficacy as a point-of-use treatment option. Using the total energy from a measured solar radiation intensity profile, the model recreated the intensity profile with 99% agreement. NASA satellite data were then used to simulate the mean, minimum, and maximum 5-h averaged peak intensities for Haiti in January, which were within 98.5%, 62.5%, and 86.0% agreement with the measured values, respectively. Most of the discrepancy was attributed to the heterogeneous nature of Haiti's terrain and the spatial resolution of the NASA data. Additional model simulations suggest that SODIS should be effective year-round in Haiti. Actual SODIS efficacy in January was tested by the inactivation of total coliform, E. coli, and H2S-producing bacteria. Exposure period proved critical. One-day exposure achieved complete bacterial inactivation 52% of the time, while a 2-day exposure period achieved complete microbial inactivation 100% of the time. A practical way of providing people with cold water every morning that has undergone a 2-day exposure would be to rotate three groups of bottles every morning, so two groups are out in the sun and one is being used for consumption.

  15. Purpose of neuronal method for modeling of solar collector

    Energy Technology Data Exchange (ETDEWEB)

    Salah, Hanini; Moussa, Cherif Si [LBMPt, Universite Yahia Fares de Medea, Quartier Ain D' heb, 2600, Medea (Algeria); Hamid, Abdi [SEEs/MS, B.P. 478, Route de Reggane, Adrar (Algeria); Tariq, Omari [LBMPT, Universite Yahia Fares de Medea, Quartier Ain D' Heb, 2600, Medea (Algeria); SEES/MS, B.P. 478, Route de Reggane, Adrar (Algeria); Unite de developpement des equipments solaires, Bou-Ismail, Tipaza (Algeria)

    2012-07-01

    Artificial Neural Networks (ANN) are widely accepted as a technology offering an alternative way to tackle complex and ill-defined problems. They have been used in diverse applications and have shown to be particularly effective in system identification and modeling as they are fault tolerant and can learn from examples. On the other hand, ANN are able to deal with non-linear problems and once trained can perform prediction at high speed. The objective of this work is the characterization of the integrated collector-storage solar water heater (ICSSWH) by the determination of the day time thermal (and optical) properties, and Night time heat loss coefficient with experimental temperatures, and predictive temperatures by (ANN). Because of that, an ANN has been trained using data for three types of systems, all employing the same collector panel under varying weather conditions. In this way the network was trained to accept and handle a number of unusual cases. The data presented as input were, the working systems (day or night), the type of system, the year, the month, the day, the time, the ambient air temperature, and the solar radiation. The network output is the temperature of the four tanks of storage unit. The correlations coefficients (R2-value) obtained for the training data set was equal to 0.997, 0.998, 0.998, and 0.996 for the four temperatures of each tank. The results obtained in this work indicate that the proposed method can successfully be used for the characterization of the ICSSWH.

  16. Prediction of hourly solar radiation with multi-model framework

    International Nuclear Information System (INIS)

    Wu, Ji; Chan, Chee Keong

    2013-01-01

    Highlights: • A novel approach to predict solar radiation through the use of clustering paradigms. • Development of prediction models based on the intrinsic pattern observed in each cluster. • Prediction based on proper clustering and selection of model on current time provides better results than other methods. • Experiments were conducted on actual solar radiation data obtained from a weather station in Singapore. - Abstract: In this paper, a novel multi-model prediction framework for prediction of solar radiation is proposed. The framework started with the assumption that there are several patterns embedded in the solar radiation series. To extract the underlying pattern, the solar radiation series is first segmented into smaller subsequences, and the subsequences are further grouped into different clusters. For each cluster, an appropriate prediction model is trained. Hence a procedure for pattern identification is developed to identify the proper pattern that fits the current period. Based on this pattern, the corresponding prediction model is applied to obtain the prediction value. The prediction result of the proposed framework is then compared to other techniques. It is shown that the proposed framework provides superior performance as compared to others

  17. Optimal design of solar water heating systems | Alemu | Zede Journal

    African Journals Online (AJOL)

    The pe1formance of the preliminary design is predicted by using either/chart method or by translate it simulation of solar heating system. Often, optimization is done off-line after correlating the annual contribution of solar energy to the heating load and collector area using simulation resu!ts by analytical methods. In this work ...

  18. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  19. WATER QUALITY MODELS: A REVIEW

    OpenAIRE

    Nair Sumita; Bhatia Sukhpreet Kaur

    2017-01-01

    Maintaining water quality and predicting the fate of water pollutants are one of the important tasks of present environmental problems. The best tool for predicting different pollution scenarios are the simulation of mathematical models which can provide a basis and technical support for environmental management.

  20. Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit

    Directory of Open Access Journals (Sweden)

    Betsie le Roux

    2016-10-01

    Full Text Available Water footprint (WF accounting as proposed by the Water Footprint Network (WFN can potentially provide important information for water resource management, especially in water scarce countries relying on irrigation to help meet their food requirements. However, calculating accurate WFs of short-season vegetable crops such as carrots, cabbage, beetroot, broccoli and lettuce presented some challenges. Planting dates and inter-annual weather conditions impact WF results. Joining weather datasets of just rainfall, minimum and maximum temperature with ones that include solar radiation and wind-speed affected crop model estimates and WF results. The functional unit selected can also have a major impact on results. For example, WFs according to the WFN approach do not account for crop residues used for other purposes, like composting and animal feed. Using yields in dry matter rather than fresh mass also impacts WF metrics, making comparisons difficult. To overcome this, using the nutritional value of crops as a functional unit can connect water use more directly to potential benefits derived from different crops and allow more straightforward comparisons. Grey WFs based on nitrogen only disregards water pollution caused by phosphates, pesticides and salinization. Poor understanding of the fate of nitrogen complicates estimation of nitrogen loads into the aquifer.

  1. dynamic modeling of natural convection solar energy flat plate ...

    African Journals Online (AJOL)

    NIJOTECH

    ABSTRACT. The analytical solutions to the dynamic model of an air-heating flat plate solar energy thermal collector were validated by direct measurement from a physical model constructed for that purpose, of the temperatures of the cover and absorber plates, the inlet and outlet fluids, and the ambient air from morning to ...

  2. Dynamic Modeling of Natural Convection Solar Energy Flat Plate ...

    African Journals Online (AJOL)

    The analytical solutions to the dynamic model of an air-heating flat plate solar energy thermal collector were validated by direct measurement from a physical model constructed for that purpose, of the temperatures of the cover and absorber plates, the inlet and outlet fluids, and the ambient air from morning to evening for ...

  3. Model predictive control of a solar-thermal reactor

    Science.gov (United States)

    Saade Saade, Maria Elizabeth

    Solar-thermal reactors represent a promising alternative to fossil fuels because they can harvest solar energy and transform it into storable and transportable fuels. The operation of solar-thermal reactors is restricted by the available sunlight and its inherently transient behavior, which affects the performance of the reactors and limits their efficiency. Before solar-thermal reactors can become commercially viable, they need to be able to maintain a continuous high-performance operation, even in the presence of passing clouds. A well-designed control system can preserve product quality and maintain stable product compositions, resulting in a more efficient and cost-effective operation, which can ultimately lead to scale-up and commercialization of solar thermochemical technologies. In this work, we propose a model predictive control (MPC) system for a solar-thermal reactor for the steam-gasification of biomass. The proposed controller aims at rejecting the disturbances in solar irradiation caused by the presence of clouds. A first-principles dynamic model of the process was developed. The model was used to study the dynamic responses of the process variables and to identify a linear time-invariant model used in the MPC algorithm. To provide an estimation of the disturbances for the control algorithm, a one-minute-ahead direct normal irradiance (DNI) predictor was developed. The proposed predictor utilizes information obtained through the analysis of sky images, in combination with current atmospheric measurements, to produce the DNI forecast. In the end, a robust controller was designed capable of rejecting disturbances within the operating region. Extensive simulation experiments showed that the controller outperforms a finely-tuned multi-loop feedback control strategy. The results obtained suggest that our controller is suitable for practical implementation.

  4. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  5. Attitudinal and Relational Factors Predicting the Use of Solar Water Disinfection: A Field Study in Nicaragua

    Science.gov (United States)

    Altherr, Anne-Marie; Mosler, Hans-Joachim; Tobias, Robert; Butera, Fabrizio

    2008-01-01

    Solar water disinfection (SODIS) is an uncomplicated and cheap technology providing individuals with safe drinking water by exposing water-filled plastic bottles to sunlight for 6 hours to kill waterborne pathogens. Two communities were visited, and 81 families (40 SODIS users and 41 nonusers) were interviewed. The relationship between several…

  6. Solar Energy Water Desalination in the United States and Saudi Arabia

    Energy Technology Data Exchange (ETDEWEB)

    Luft, W.

    1981-04-01

    Five solar energy water desalination systems are described. The systems will each deliver 6000 m3/day of desalted water from either seawater or brackish water. After the system definition study is completed in August 1981, two systems will be selected for pilot plant construction. The pilot plants will have capacities in the range of 1 00 to 400 m3/day.

  7. Large scale solar district heating. Evaluation, modelling and designing

    Energy Technology Data Exchange (ETDEWEB)

    Heller, A.

    2000-07-01

    The main objective of the research was to evaluate large-scale solar heating connected to district heating (CSDHP), to build up a simulation tool and to demonstrate the application of the tool for design studies and on a local energy planning case. The evaluation of the central solar heating technology is based on measurements on the case plant in Marstal, Denmark, and on published and unpublished data for other, mainly Danish, CSDHP plants. Evaluations on the thermal, economical and environmental performances are reported, based on the experiences from the last decade. The measurements from the Marstal case are analysed, experiences extracted and minor improvements to the plant design proposed. For the detailed designing and energy planning of CSDHPs, a computer simulation model is developed and validated on the measurements from the Marstal case. The final model is then generalised to a 'generic' model for CSDHPs in general. The meteorological reference data, Danish Reference Year, is applied to find the mean performance for the plant designs. To find the expectable variety of the thermal performance of such plants, a method is proposed where data from a year with poor solar irradiation and a year with strong solar irradiation are applied. Equipped with a simulation tool design studies are carried out spreading from parameter analysis over energy planning for a new settlement to a proposal for the combination of plane solar collectors with high performance solar collectors, exemplified by a trough solar collector. The methodology of utilising computer simulation proved to be a cheap and relevant tool in the design of future solar heating plants. The thesis also exposed the demand for developing computer models for the more advanced solar collector designs and especially for the control operation of CSHPs. In the final chapter the CSHP technology is put into perspective with respect to other possible technologies to find the relevance of the application

  8. Modelling of cloudless solar radiation for PV module performance analysis

    International Nuclear Information System (INIS)

    Dusabe, D.; Munda, J.; Jimoh, A.

    2009-01-01

    The empirical model developed in this study uses standard specifications together with actual solar radiation and cell temperature to predict voltage-current characteristics of a photovoltaic panel under varying weather conditions. The paper focuses on the modelling of hourly cloudless solar radiation to provide the insolation on a PV module of any orientation, located at any site. The model is built in MATLAB/Simulink environment to provide a tool that may be loaded in the library. It is found that the predicted solar radiation strongly agrees with the experimental data from the National Renewable Energy Laboratory (NREL). Further, a satisfactory agreement between the predicted voltage - current curves and laboratory measurements is obtained. (authors)

  9. Solar domestic hot water system installed at Texas City, Texas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    The Solar Energy System located at LaQuinta Motor Inn, Texas City, Texas was designed to supply 63% of the total hot water load. The Solar Energy System consists of a 2100 square foot Raypack Liquid Flat Plate Collector Subsystem and a 2500 gallon storage subsystem circulating hot water producing 3.67 x 10/sup 8/ Btu/y. Abstracts from the site files, specification references, drawings, installation, operation and maintenance instructions are included.

  10. Solar hot water system installed at Las Vegas, Nevada. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The solar hot water system installed at LaQuinta Motor Inn Inc., at Las Vegas, Nevada is described. The Inn is a three-story building with a flat roof for installation of the solar panels. The system consists of 1200 square feet of liquid flat plate collectors, a 2500 gallon insulated vertical steel storage tank, two heat exchangers and pumps and controls. The system was designed to supply approximately 74 percent of the total hot water load.

  11. The Search for Surviving Direct Samples of Early Solar System Water

    Science.gov (United States)

    Zolensky, Michael

    2016-01-01

    We have become increasingly aware of the fundamental importance of water, and aqueous alteration, on primitive solar-system bodies. All classes of astromaterials studied show some degree of interaction with aqueous fluids. Nevertheless, we are still lacking fundamental information such as the location and timing of the aqueous alteration and the detailed nature of the aqueous fluids. Halite crystals in two meteorite regolith breccias were found to contain aqueous fluid inclusions (brines) trapped approx. 4.5 BYBP. Heating/freezing studies of the aqueous fluid inclusions in these halites demonstrated that they were trapped near 25 C. The initial results of our O and H isotopic measurements on these brine inclusions can be explained by a simple model mixing asteroidal and cometary water. We have been analyzing solids and organics trapped alongside the brines in the halites by FTIR, C-XANES, SXRD and Raman, as clues to the origin of the water. The organics show thermal effects that span the entire range witnessed by organics in all chondrite types. Since we identified water-soluble aromatics, including partially halogenated methanol, in some of the halite, we suspected amino acids were also present, but have thus far found that levels of amino acids were undetectable (which is very interesting). We have also been locating aqueous fluid inclusions in other astromaterials, principally carbonates in CI and CM chondrites. Although we have advanced slowly towards detailed analysis of these ancient brines, since they require techniques right at or just beyond current analytical capabilities, their eventual full characterization will completely open the window onto the origin and activity of early solar system water.

  12. Thermodynamic optimization of a solar system for cogeneration of water heating/purification and absorption cooling

    Science.gov (United States)

    Hovsapian, Zohrob O.

    This dissertation presents a contribution to understanding the behavior of solar powered air conditioning and refrigeration systems with a view to determining the manner in which refrigeration rate; mass flows, heat transfer areas, and internal architecture are related. A cogeneration system consisting of a solar concentrator, a cavity-type receiver, a gas burner, and a thermal storage reservoir is devised to simultaneously produce water heating/purification and cooling (absorption refrigerator system). A simplified mathematical model, which combines fundamental and empirical correlations, and principles of classical thermodynamics, mass and heat transfer, is developed. An experimental setup was built to adjust and validate the numerical results obtained with the mathematical model. The proposed model is then utilized to simulate numerically the system transient and steady state response under different operating and design conditions. A system global optimization for maximum performance (or minimum exergy destruction) in the search for minimum pull-down and pull-up times, and maximum system second law efficiency is performed with low computational time. Appropriate dimensionless groups are identified and the results presented in normalized charts for general application. The numerical results show that the three way maximized system second law efficiency, etaII,max,max,max, occurs when three system characteristic mass flow rates are optimally selected in general terms as dimensionless heat capacity rates, i.e., (Psisps , Psiwxwx, PsiHs)opt ≅ (1.43, 0.17, 0.19). The minimum pull-down and pull-up times, and maximum second law efficiencies found with respect to the optimized operating parameters are sharp and, therefore important to be considered in actual design. As a result, the model is expected to be a useful tool for simulation, design, and optimization of solar energy systems in the context of distributed power generation.

  13. Water Stress Projection Modeling

    Science.gov (United States)

    2016-09-01

    www.eia.gov/ forecasts /aeo/tables_ref.cfm U.S. Geological Survey (USGS). 2014. National land cover database (NLCD). Multi - Resolution Land...Engineers Washington, DC 20314-1000 ERDC/CERL TR-16-32 ii Abstract U.S. Army stationing is a constant multi -scale process. Large scale station- ing, which...20 4.6 Model output

  14. Reliability models applicable to space telescope solar array assembly system

    Science.gov (United States)

    Patil, S. A.

    1986-01-01

    A complex system may consist of a number of subsystems with several components in series, parallel, or combination of both series and parallel. In order to predict how well the system will perform, it is necessary to know the reliabilities of the subsystems and the reliability of the whole system. The objective of the present study is to develop mathematical models of the reliability which are applicable to complex systems. The models are determined by assuming k failures out of n components in a subsystem. By taking k = 1 and k = n, these models reduce to parallel and series models; hence, the models can be specialized to parallel, series combination systems. The models are developed by assuming the failure rates of the components as functions of time and as such, can be applied to processes with or without aging effects. The reliability models are further specialized to Space Telescope Solar Arrray (STSA) System. The STSA consists of 20 identical solar panel assemblies (SPA's). The reliabilities of the SPA's are determined by the reliabilities of solar cell strings, interconnects, and diodes. The estimates of the reliability of the system for one to five years are calculated by using the reliability estimates of solar cells and interconnects given n ESA documents. Aging effects in relation to breaks in interconnects are discussed.

  15. Theoretical comparison of solar water/space-heating combi systems and stratification design options

    DEFF Research Database (Denmark)

    Andersen, Elsa; Furbo, Simon

    2007-01-01

    A theoretical analysis of differently designed solar combi systems is performed with weather data from the Danish Design Reference Year (55ºN). Three solar combi system designs found on the market are investigated. The investigation focuses on the influence of stratification on the thermal...... performance under different operation conditions with different domestic hot water and space heating demands. The solar combi systems are initially equipped with heat exchanger spirals and direct inlets to the tank. A step-by-step investigation is performed demonstrating the influence on the thermal...... performance of using inlet stratification pipes at the different inlets. Also, it is investigated how the design of the space heating system, the control system of the solar collectors, and the system size influence the thermal performance of solar combi systems. The work is carried out within the Solar...

  16. Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid- and late Holocene

    Directory of Open Access Journals (Sweden)

    S. Dietrich

    2013-01-01

    Full Text Available In this study we investigate the impact of mid- and late Holocene orbital forcing and solar activity on variations of the oxygen isotopic composition in precipitation. The investigation is motivated by a recently published speleothem δ18O record from the well-monitored Bunker Cave in Germany. The record reveals some high variability on multi-centennial to millennial scales that does not linearly correspond to orbital forcing. Our model study is based on a set of novel climate simulations performed with the atmosphere general circulation model ECHAM5-wiso enhanced by explicit water isotope diagnostics. From the performed model experiments, we derive the following major results: (1 the response of both orbital and solar forcing lead to changes in surface temperatures and δ18O in precipitation with similar magnitudes during the mid- and late Holocene. (2 Past δ18O anomalies correspond to changing temperatures in the orbital driven simulations. This does not hold true if an additional solar forcing is added. (3 Two orbital driven mid-Holocene experiments, simulating the mean climate state approximately 5000 and 6000 yr ago, yield very similar results. However, if an identical additional solar activity-induced forcing is added, the simulated changes of surface temperatures as well as δ18O between both periods differ. We conclude from our simulation results that non-linear effects and feedbacks of the orbital and solar activity forcing substantially alter the δ18O in precipitation pattern and its relation to temperature change.

  17. System design package for SIMS Prototype System 4, solar heating and domestic hot water

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-01

    This report is a collation of documents and drawings that describe a prototype solar heating and hot water system using air type solar energy collection techniques. The system consists of a modular designed prepackaged solar unit containing solar collctors, a rock storage container, blowers, dampers, ducting, air-to-water heat exchanger, DHW preheat tank, piping and system controls. The system was designed to be installed adjacent to a small single family dwelling. The description, performance specification, subsystem drawings, verification plan/procedure, and hazard analysis of the system are packaged for evaluation of the system with inforation sufficient to assemble a similar system. The prepackage solar unit has been installed at the Mississippi Power and Light Company, Training Facilities, Clinton, Mississippi.

  18. Design of solar thermal systems utilizing pressurized hot water storage for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, Govind N.; Kedare, Shireesh B.; Bandyopadhyay, Santanu [Energy Systems Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400 076 (India)

    2008-08-15

    A large number of industrial processes demand thermal energy in the temperature range of 80-240{sup o}C. In this temperature range, solar thermal systems have a great scope of application. However, the challenge lies in the integration of a periodic, dilute and variable solar input into a wide variety of industrial processes. Issues in the integration are selection of collectors, working fluid and sizing of components. Application specific configurations are required to be adopted and designed. Analysis presented in this paper lays an emphasis on the component sizing. The same is done by developing a design procedure for a specific configuration. The specific configuration consists of concentrating collectors, pressurized hot water storage and a load heat exchanger. The design procedure follows a methodology called design space approach. In the design space approach a mathematical model is built for generation of the design space. In the generation of the design space, design variables of concern are collector area, storage volume, solar fraction, storage mass flow rate and heat exchanger size. Design space comprises of constant solar fraction curves traced on a collector area versus storage volume diagram. Results of the design variables study demonstrate that a higher maximum storage mass flow rates and a larger heat exchanger size are desired while limiting storage temperature should be as low as possible. An economic optimization is carried out to design the overall system. In economic optimization, total annualized cost of the overall system has been minimized. The proposed methodology is demonstrated through an illustrative example. It has been shown that 23% reduction in the total system cost may be achieved as compared to the existing design. The proposed design tool offers flexibility to the designer in choosing a system configuration on the basis of desired performance and economy. (author)

  19. Bioinspired solar water splitting, sensitized solar cells, and ultraviolet sensor based on semiconductor nanocrystal antenna/graphene nanoassemblies

    Science.gov (United States)

    Chang, Haixin; Lv, Xiaojun; Zheng, Zijian; Wu, Hongkai

    2012-02-01

    Graphene, two-dimensional carbon crystal with only one atom thickness, provides a general platform for nanoscale even atomic scale optoelectronics and photonics. Graphene has many advantages for optoelectronics such as high conductivity, high electronic mobility, flexibility and transparency. However, graphene also has disadvantages such as low light absorption which are unfavorable for optoelectronic devices. On the other hand, many natural photonic systems provide wonderful solution to enhance light absorption for solar energy harvesting and conversion, such as chlorophyll in green plants. Herein, learning from nature, we described bioinspired photocatalytic solar-driven water splitting, sensitized solar cells and ultraviolet optoelectronic sensors enabled by introducing photosensitive semiconductor nanocrystal antenna to graphene for constructing a series of graphene/nanocrystal nanoassemblies. We have demonstrated that high performance optoelectronic devices can come true with the introducing of photosensitive nanocrystal antenna elements.

  20. Solar Energy for Domestic Hot Water: Case Studies in Sisimiut 1999-2005

    DEFF Research Database (Denmark)

    Reimann, Gregers Peter

    2005-01-01

    Two pioneer solar domestic hot water systems were installed at Bygge- og Anlægsskolen in Sisimiut in 1999 and 2000. Detailed measurements of energy flows and solar radiation incl. snow reflectance has been undertaken for both plants. Since August 2004 data logging of the measurements was made...... available online on the website www.arcticsolar.com. Measurements show that solar plant 1 and 2 cover 22% and 23%, respectively, of the energy spent for domestic hot water heating. This paper summarises the findings from the past 5 years....

  1. Models of the formation of the solar nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cassen, P.; Summers, A.

    1983-01-01

    Protostellar cloud collapse and solar nebula formation models indicate that the size of the nebula produced will be larger in terms of both gas centrifugal balance R(CF) and collapse time diffusion length R(V). From this, it can be deduced that low mass nebulas are produced if (R(V)/R(CF))-squared is much greater than unity, while nebulas result for values lower than approximately unity. The total angular momentum value distinguishes most current models of the solar nebula. Analytic expressions for the surface density, nebular mass flux and photospheric temperature distributions during the formation stage are presented for simple modes illustrating and general properties of growing protostellar disks.

  2. Solar-wind predictions for the Parker Solar Probe orbit. Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations

    Science.gov (United States)

    Venzmer, M. S.; Bothmer, V.

    2018-03-01

    Context. The Parker Solar Probe (PSP; formerly Solar Probe Plus) mission will be humanitys first in situ exploration of the solar corona with closest perihelia at 9.86 solar radii (R⊙) distance to the Sun. It will help answer hitherto unresolved questions on the heating of the solar corona and the source and acceleration of the solar wind and solar energetic particles. The scope of this study is to model the solar-wind environment for PSPs unprecedented distances in its prime mission phase during the years 2018 to 2025. The study is performed within the Coronagraphic German And US SolarProbePlus Survey (CGAUSS) which is the German contribution to the PSP mission as part of the Wide-field Imager for Solar PRobe. Aim. We present an empirical solar-wind model for the inner heliosphere which is derived from OMNI and Helios data. The German-US space probes Helios 1 and Helios 2 flew in the 1970s and observed solar wind in the ecliptic within heliocentric distances of 0.29 au to 0.98 au. The OMNI database consists of multi-spacecraft intercalibrated in situ data obtained near 1 au over more than five solar cycles. The international sunspot number (SSN) and its predictions are used to derive dependencies of the major solar-wind parameters on solar activity and to forecast their properties for the PSP mission. Methods: The frequency distributions for the solar-wind key parameters, magnetic field strength, proton velocity, density, and temperature, are represented by lognormal functions. In addition, we consider the velocity distributions bi-componental shape, consisting of a slower and a faster part. Functional relations to solar activity are compiled with use of the OMNI data by correlating and fitting the frequency distributions with the SSN. Further, based on the combined data set from both Helios probes, the parameters frequency distributions are fitted with respect to solar distance to obtain power law dependencies. Thus an empirical solar-wind model for the inner

  3. Economic Investigation of Different Configurations of Inclined Solar Water Desalination Systems

    Directory of Open Access Journals (Sweden)

    O. Phillips Agboola

    2014-02-01

    Full Text Available This study empirically investigated the performance of four configurations of inclined solar water desalination (ISWD system for parameters such as daily production, efficiency, system cost, and distilled water production cost. The empirical findings show that in terms of daily productivity improved inclined solar water desalination (IISWD performed best with 6.41 kg/m2/day while improved inclined solar water desalination with wire mesh (IISWDWM produced the least with 3.0 kg/m2/day. In terms of cost price of the systems, the control system inclined solar water desalination (ISWD is the cheapest while IISWDWM is the most expensive system. Distilled water cost price ranges from 0.059 TL/kg, for IISWDW, to 0.134 TL/kg, for IISWDWM system. All the systems are economically and technically feasible as a solar desalination system for potable water in northern Cyprus. Potable water from vendors/hawkers ranges from 0.2 to 0.3 TL/kg.

  4. Performance analysis of solar cogeneration system with different integration strategies for potable water and domestic hot water production

    International Nuclear Information System (INIS)

    Uday Kumar, N.T.; Mohan, Gowtham; Martin, Andrew

    2016-01-01

    Highlights: • Solar driven cogeneration system integrating membrane distillation technology is developed. • System utilizes solar thermal energy for the operations without auxiliary heaters. • Three different system integrations are experimentally investigated in UAE. • Economical benefits of solar cogeneration system is also reported. - Abstract: A novel solar thermal cogeneration system featuring the provision of potable water with membrane distillation in combination with domestic hot water supply has been developed and experimentally analyzed. The system integrates evacuated tube collectors, thermal storage, membrane distillation unit, and heat exchangers with the overall goals of maximizing the two outputs while minimizing costs for the given design conditions. Experiments were conducted during one month’s operation at AURAK’s facility in UAE, with average peak global irradiation levels of 650 W/m 2 . System performance was determined for three integration strategies, all utilizing brackish water (typical conductivity of 20,000 μs/cm) as a feedstock: Thermal store integration (TSI), which resembles a conventional indirect solar domestic hot water system; Direct solar integration (DSI) connecting collectors directly to the membrane distillation unit without thermal storage; and Direct solar with thermal store integration (DSTSI), a combination of these two approaches. The DSTSI strategy offered the best performance given its operational flexibility. Here the maximum distillate productivity was 43 L/day for a total gross solar collector area of 96 m 2 . In terms of simultaneous hot water production, 277 kWh/day was achieved with this configuration. An economic analysis shows that the DSTSI strategy has a payback period of 3.9 years with net cumulative savings of $325,000 during the 20 year system lifetime.

  5. An economic evaluation comparison of solar water pumping system with engine pumping system for rice cultivation

    Science.gov (United States)

    Treephak, Kasem; Thongpron, Jutturit; Somsak, Dhirasak; Saelao, Jeerawan; Patcharaprakiti, Nopporn

    2015-08-01

    In this paper we propose the design and economic evaluation of the water pumping systems for rice cultivation using solar energy, gasoline fuel and compare both systems. The design of the water and gasoline engine pumping system were evaluated. The gasoline fuel cost used in rice cultivation in an area of 1.6 acres. Under same conditions of water pumping system is replaced by the photovoltaic system which is composed of a solar panel, a converter and an electric motor pump which is compose of a direct current (DC) motor or an alternating current (AC) motor with an inverter. In addition, the battery is installed to increase the efficiency and productivity of rice cultivation. In order to verify, the simulation and economic evaluation of the storage energy battery system with batteries and without batteries are carried out. Finally the cost of four solar pumping systems was evaluated and compared with that of the gasoline pump. The results showed that the solar pumping system can be used to replace the gasoline water pumping system and DC solar pump has a payback less than 10 years. The systems that can payback the fastest is the DC solar pumping system without batteries storage system. The system the can payback the slowest is AC solar pumping system with batteries storage system. However, VAC motor pump of 220 V can be more easily maintained than the motor pump of 24 VDC and batteries back up system can supply a more stable power to the pump system.

  6. Thermal analysis of a solar collector consisting of V cavities for water heating; Analise termica de um coletor solar composto de cavidades V para aquecimento de agua

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Michel Fabio de Souza

    2009-03-15

    The solar water heating is carried through, in Brazil, by means of solar heaters compound for collectors flat plate of the type plate-and-pipes, devices that operate in stationary position and they do not require tracking of the sun. A compound collector for some formed V-trough concentrators can be an alternative to the conventional solar collectors flat plate. This compound collector for V-trough is considered, each one, for side-walls which are specularly reflecting surfaces associates in V (equivalent to a triangular gutter). Next to the vertex to each V-trough concentrators an absorber tube is fixed, for flow of the fluid to be heated. Interconnection of the absorbers tubes forms a similar tubular network existing in solar collectors of the type the plate and pipe. V-trough concentrators with the absorbers tubes are made use in series in the interior a prismatic box, which have one of its faces consisting by a glass covering and directed toward incidence of the solar radiation. An analysis of thermal performance of these devices operating stationary and without tracking of the sun is researched. A mathematical model for the computational simulation of the optical and thermal performance of these concentrative devices is elaborated, whose implementation was carried through software EES (Engineering Equation Solver). The efficiency optics of V-trough concentrators with cylindrical absorbers is calculated from the adaptation of the methodology used for Fraidenraich (1994), proposal for Hollands (1971) for V-trough cavities with plain absorbers. The thermal analysis of the considered collector was based on the applied methodology the CPC for Hsieh (1981) and Leao (1989). Relative results to the thermal performance of V-trough concentrators suggest that these configurations are not competitive, technique and economically, with the conventional plain collectors. Although some geometric configurations presented next thermal efficiencies to the conventional plain

  7. Hot water tank for use with a combination of solar energy and heat-pump desuperheating

    Science.gov (United States)

    Andrews, John W.

    1983-06-28

    A water heater or system which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

  8. Model of spacecraft atomic oxygen and solar exposure microenvironments

    Science.gov (United States)

    Bourassa, R. J.; Pippin, H. G.

    1993-01-01

    Computer models of environmental conditions in Earth orbit are needed for the following reasons: (1) derivation of material performance parameters from orbital test data, (2) evaluation of spacecraft hardware designs, (3) prediction of material service life, and (4) scheduling spacecraft maintenance. To meet these needs, Boeing has developed programs for modeling atomic oxygen (AO) and solar radiation exposures. The model allows determination of AO and solar ultraviolet (UV) radiation exposures for spacecraft surfaces (1) in arbitrary orientations with respect to the direction of spacecraft motion, (2) overall ranges of solar conditions, and (3) for any mission duration. The models have been successfully applied to prediction of experiment environments on the Long Duration Exposure Facility (LDEF) and for analysis of selected hardware designs for deployment on other spacecraft. The work on these models has been reported at previous LDEF conferences. Since publication of these reports, a revision has been made to the AO calculation for LDEF, and further work has been done on the microenvironments model for solar exposure.

  9. Performance evaluation of solar-assisted air-conditioning system with chilled water storage (CIESOL building)

    International Nuclear Information System (INIS)

    Rosiek, Sabina; Batlles Garrido, Francisco Javier

    2012-01-01

    Highlights: ► We present a new solar-assisted air-conditioning system’s operation sequence. ► This mode considers the chilled water tanks action with variable-speed pump. ► It permits to save about 20% and 30% of energy and water consumption, respectively. ► It allows storing the excess cooling capacity of the absorption chiller. ► It prevents the sudden start/stop (on/off cycles) of the absorption chiller. - Abstract: This study presents the performance of solar-assisted air-conditioning system with two chilled water storage tanks installed in the Solar Energy Research Center building. The system consists mainly of solar collectors’ array, a hot-water driven absorption chiller, a cooling tower, two hot storage tanks, an auxiliary heater as well as two chilled storage tanks. The chilled water storage tank circuit was further investigated in order to find the optimum solar system’s operation sequence while providing the best energy performance. Firstly, we carried out a study about the dynamics of building’s cooling load and the necessity of the integration of chilled water storage tanks to solar system. Subsequently, the new system’s operation mode was proposed to reduce the energy consumption. The results demonstrate that we can save about 20% of the total energy consumption and about 30% of water consumption applying the new operation sequence, which takes into account the chilled water tanks action. Moreover, it was demonstrated that the integration of chilled water storage tanks allows to reduce the sudden absorption chiller on/off cycles, thereby improving the efficiency of the solar-assisted system.

  10. Polarimetry of Solar System Objects: Observations vs. Models

    Science.gov (United States)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and

  11. Solar Load Voltage Tracking for Water Pumping: An Algorithm

    Science.gov (United States)

    Kappali, M.; Udayakumar, R. Y.

    2015-06-01

    Maximum power is to be harnessed from solar photovoltaic (PV) panel to minimize the effective cost of solar energy. This is accomplished by maximum power point tracking (MPPT). There are different methods to realise MPPT. This paper proposes a simple algorithm to implement MPPT lv method in a closed loop environment for centrifugal pump driven by brushed PMDC motor. Simulation testing of the algorithm is done and the results are found to be encouraging and supportive of the proposed method MPPT lv .

  12. Diffuse solar radiation estimation models for Turkey's big cities

    International Nuclear Information System (INIS)

    Ulgen, Koray; Hepbasli, Arif

    2009-01-01

    A reasonably accurate knowledge of the availability of the solar resource at any place is required by solar engineers, architects, agriculturists, and hydrologists in many applications of solar energy such as solar furnaces, concentrating collectors, and interior illumination of buildings. For this purpose, in the past, various empirical models (or correlations) have been developed in order to estimate the solar radiation around the world. This study deals with diffuse solar radiation estimation models along with statistical test methods used to statistically evaluate their performance. Models used to predict monthly average daily values of diffuse solar radiation are classified in four groups as follows: (i) From the diffuse fraction or cloudness index, function of the clearness index, (ii) From the diffuse fraction or cloudness index, function of the relative sunshine duration or sunshine fraction, (iii) From the diffuse coefficient, function of the clearness index, and (iv) From the diffuse coefficient, function of the relative sunshine duration or sunshine fraction. Empirical correlations are also developed to establish a relationship between the monthly average daily diffuse fraction or cloudness index (K d ) and monthly average daily diffuse coefficient (K dd ) with the monthly average daily clearness index (K T ) and monthly average daily sunshine fraction (S/S o ) for the three big cities by population in Turkey (Istanbul, Ankara and Izmir). Although the global solar radiation on a horizontal surface and sunshine duration has been measured by the Turkish State Meteorological Service (STMS) over all country since 1964, the diffuse solar radiation has not been measured. The eight new models for estimating the monthly average daily diffuse solar radiation on a horizontal surface in three big cites are validated, and thus, the most accurate model is selected for guiding future projects. The new models are then compared with the 32 models available in the

  13. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices.

    Science.gov (United States)

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2016-09-01

    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.

  14. Analysis of an innovative solar water desalination system using gravity induced vacuum

    International Nuclear Information System (INIS)

    Ayhan, T.; Al-Madani, H.

    2007-01-01

    This study presents the theoretical analysis, design and appropriate models of a new desalination system using gravity induced vacuum. The system utilizes natural means (gravity and atmospheric pressure) to create a vacuum under which water can be rapidly evaporated at much lower temperatures with less energy than conventional techniques. This technique is developed to overcome water storage, in the areas where good solar radiation (or waste heat sources) and sea water (or waste water sources). The developed system consists of an evaporator connected to condenser by means of a vacuum tank. The vapour produced in the evaporator is driven to condenser through the vacuum tank, where it condenses and collected as a product. Vacuum equivalent to 7 kPa (abs) or less can be created depending on ambient temperature of Bahrain climatic conditions. The effect of various operating conditions, namely water levels in condensation and evaporating columns on the system performance were studied. The theoretical analysis and preliminary experimental results show that the performance of this system depends on the condensation temperature

  15. River water quality modelling: II

    DEFF Research Database (Denmark)

    Shanahan, P.; Henze, Mogens; Koncsos, L.

    1998-01-01

    The U.S. EPA QUAL2E model is currently the standard for river water quality modelling. While QUAL2E is adequate for the regulatory situation for which it was developed (the U.S. wasteload allocation process), there is a need for a more comprehensive framework for research and teaching. Moreover......, and to achieve robust model calibration. Mass balance problems arise from failure to account for mass in the sediment as well as in the water column and due to the fundamental imprecision of BOD as a state variable. (C) 1998 IAWQ Published by Elsevier Science Ltd. All rights reserved....

  16. How mixing during hot water draw-offs influence the thermal performance of small solar domestic hot water systems

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    2005-01-01

    with high height/diameter ratios and small auxiliary volumes. Based on the investigations, it is recommended to design hot water tanks for small solar domestic hot water systems as mantle tanks with as high height/diameter ratio as possible and with as small an auxiliary volume as possible, of course under...

  17. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  18. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  19. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-01-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  20. Modeling and optimization of a hybrid solar combined cycle (HYCS)

    Science.gov (United States)

    Eter, Ahmad Adel

    2011-12-01

    The main objective of this thesis is to investigate the feasibility of integrating concentrated solar power (CSP) technology with the conventional combined cycle technology for electric generation in Saudi Arabia. The generated electricity can be used locally to meet the annual increasing demand. Specifically, it can be utilized to meet the demand during the hours 10 am-3 pm and prevent blackout hours, of some industrial sectors. The proposed CSP design gives flexibility in the operation system. Since, it works as a conventional combined cycle during night time and it switches to work as a hybrid solar combined cycle during day time. The first objective of the thesis is to develop a thermo-economical mathematical model that can simulate the performance of a hybrid solar-fossil fuel combined cycle. The second objective is to develop a computer simulation code that can solve the thermo-economical mathematical model using available software such as E.E.S. The developed simulation code is used to analyze the thermo-economic performance of different configurations of integrating the CSP with the conventional fossil fuel combined cycle to achieve the optimal integration configuration. This optimal integration configuration has been investigated further to achieve the optimal design of the solar field that gives the optimal solar share. Thermo-economical performance metrics which are available in the literature have been used in the present work to assess the thermo-economic performance of the investigated configurations. The economical and environmental impact of integration CSP with the conventional fossil fuel combined cycle are estimated and discussed. Finally, the optimal integration configuration is found to be solarization steam side in conventional combined cycle with solar multiple 0.38 which needs 29 hectare and LEC of HYCS is 63.17 $/MWh under Dhahran weather conditions.

  1. Solar system constraints on f(G) gravity models

    International Nuclear Information System (INIS)

    De Felice, Antonio; Tsujikawa, Shinji

    2009-01-01

    We discuss solar system constraints on f(G) gravity models, where f is a function of the Gauss-Bonnet term G. We focus on cosmologically viable f(G) models that can be responsible for late-time cosmic acceleration. These models generally give rise to corrections of the form ε(r/r s ) p to the vacuum Schwarzschild solution, where ε=H * 2 r s 2 s is the Schwarzschild radius of the Sun, and H * is the Hubble parameter today. We generally estimate the strength of modifications to general relativity in order to confront models with a number of experiments, such as the deflection of light and the perihelion shift. We show that cosmologically viable f(G) models can be consistent with solar system constraints for a wide range of model parameters.

  2. Modelling of solar energy potential in Nigeria using an artificial neural network model

    International Nuclear Information System (INIS)

    Fadare, D.A.

    2009-01-01

    In this study, an artificial neural network (ANN) based model for prediction of solar energy potential in Nigeria (lat. 4-14 o N, log. 2-15 o E) was developed. Standard multilayered, feed-forward, back-propagation neural networks with different architecture were designed using neural toolbox for MATLAB. Geographical and meteorological data of 195 cities in Nigeria for period of 10 years (1983-1993) from the NASA geo-satellite database were used for the training and testing the network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, mean temperature, and relative humidity) were used as inputs to the network, while the solar radiation intensity was used as the output of the network. The results show that the correlation coefficients between the ANN predictions and actual mean monthly global solar radiation intensities for training and testing datasets were higher than 90%, thus suggesting a high reliability of the model for evaluation of solar radiation in locations where solar radiation data are not available. The predicted solar radiation values from the model were given in form of monthly maps. The monthly mean solar radiation potential in northern and southern regions ranged from 7.01-5.62 to 5.43-3.54 kW h/m 2 day, respectively. A graphical user interface (GUI) was developed for the application of the model. The model can be used easily for estimation of solar radiation for preliminary design of solar applications.

  3. Calibration of Linked Hydrodynamic and Water Quality Model for Santa Margarita Lagoon

    Science.gov (United States)

    2016-07-01

    for lagoon temperature, and was simulated by including solar radiation as an additional source of heat for the entire lagoon water. The model...barometric pressure (mbar), dry bulb temperature (°C), relative humidity, rainfall rate (m/s), evapotranspiration rate (m/s), net solar shortwave ...the bottom layer, reflecting heating and cooling during the daylight and night time through the surface layer. In EFDC, heat from solar radiation

  4. Removal of fluorescence and ultraviolet absorbance of dissolved organic matter in reclaimed water by solar light.

    Science.gov (United States)

    Wu, Qianyuan; Li, Chao; Wang, Wenlong; He, Tao; Hu, Hongying; Du, Ye; Wang, Ting

    2016-05-01

    Storing reclaimed water in lakes is a widely used method of accommodating changes in the consumption of reclaimed water during wastewater reclamation and reuse. Solar light serves as an important function in degrading pollutants during storage, and its effect on dissolved organic matter (DOM) was investigated in this study. Solar light significantly decreased the UV254 absorbance and fluorescence (FLU) intensity of reclaimed water. However, its effect on the dissolved organic carbon (DOC) value of reclaimed water was very limited. The decrease in the UV254 absorbance intensity and FLU excitation-emission matrix regional integration volume (FLU volume) of reclaimed water during solar light irradiation was fit with pseudo-first order reaction kinetics. The decrease of UV254 absorbance was much slower than that of the FLU volume. Ultraviolet light in solar light had a key role in decreasing the UV254 absorbance and FLU intensity during solar light irradiation. The light fluence-based removal kinetic constants of the UV254 and FLU intensity were independent of light intensity. The peaks of the UV254 absorbance and FLU intensity with an apparent molecular weight (AMW) of 100Da to 2000Da decreased after solar irradiation, whereas the DOC value of the major peaks did not significantly change. Copyright © 2015. Published by Elsevier B.V.

  5. Heating Water with Solar Energy Costs Less at the Phoenix Federal Correctional Institution

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-09-01

    A large solar thermal system installed at the Phoenix Federal Correctional Institution (FCI) in 1998 heats water for the prison and costs less than buying electricity to heat that water. This renewable energy system provides 70% of the facility's annual hot water needs. The Federal Bureau of Prisons did not incur the up-front cost of this system because it was financed through an Energy Savings Performance Contract (ESPC). The ESPC payments are 10% less than the energy savings so that the prison saves an average of $6,700 per year, providing an immediate payback. The solar hot water system produces up to 50,000 gallons of hot water daily, enough to meet the needs of 1,250 inmates and staff who use the kitchen, shower, and laundry facilities. This publication details specifications of the parabolic trough solar system and highlights 5 years of measured performance data.

  6. Solar water disinfection (SODIS); Traitement de l'eau par l'energie solaire

    Energy Technology Data Exchange (ETDEWEB)

    Wegelin, M. [Water Treatment, EAWAG/SANDEC, Duebendorf (Switzerland)

    1998-07-01

    Solar water disinfection uses solar energy to inactivate and destroy pathogenic microorganisms present in the water. The use of solar energy, which is universally available and free of charge. is the basis of this low-cost technology to be applied on household level for the treatment of small quantifies of drinking water. The treatment basically consists in filling transparent containers with water and expose them to full sunlight for several hours. Extensive laboratory and field tests carried out by EAWAG and its partners revealed that synergies induced by the combined application of radiation and thermal treatment have a significant effect on the die-off rate of the microorganisms. For example, field tests demonstrated that the concentration of Vibrio cholerae is reduced by a factor of 1000 during an exposure time of 30 minutes and a water temperature of 50 deg.C. The use of half-side blackened bottles or of plastic bags is a simple application of the batch process which. however, limits the daily capacity to the volume of water stored in the containers. Continuous-flow systems consist of solar collectors and heat exchangers which significantly increase the use of the available solar energy and, thereby, also the output of treated water. (author)

  7. Thermodynamic modelling and solar reactor design for syngas production through SCWG of algae

    Science.gov (United States)

    Venkataraman, Mahesh B.; Rahbari, Alireza; Pye, John

    2017-06-01

    Conversion of algal biomass into value added products, such as liquid fuels, using solar-assisted supercritical water gasification (SCWG) offers a promising approach for clean fuel production. SCWG has significant advantages over conventional gasification in terms of flexibility of feedstock, faster intrinsic kinetics and lower char formation. A relatively unexplored avenue in SCWG is the use of non-renewable source of energy for driving the endothermic gasification. The use of concentrated solar thermal to provide the process heat is attractive, especially in the case of expensive feedstocks such as algae. This study attempts to identify the key parameters and constraints in designing a solar cavity receiver/reactor for on-sun SCWG of algal biomass. A tubular plug-flow reactor, operating at 24 MPa and 400-600 °C with a solar input of 20MWth is modelled. Solar energy is utilized to increase the temperature of the reaction medium (10 wt.% algae solution) from 400 to 605 °C and simultaneously drive the gasification. The model additionally incorporates material constraints based on the allowable stresses for a commercially available Ni-based alloy (Inconel 625), and exergy accounting for the cavity reactor. A parametric evaluation of the steady state performance and quantification of the losses through wall conduction, external radiation and convection, internal convection, frictional pressure drop, mixing and chemical irreversibility, is presented.

  8. Solar water disinfection (SODIS): A review from bench-top to roof-top

    Energy Technology Data Exchange (ETDEWEB)

    McGuigan, Kevin G., E-mail: kmcguigan@rcsi.ie [Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Conroy, Ronan M. [Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Mosler, Hans-Joachim [EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Ueberlandstrasse 133: CH-8600 Duebendorf (Switzerland); Preez, Martella du; Ubomba-Jaswa, Eunice [CSIR, Natural Resources and the Environment, Pretoria, Gauteng (South Africa); Fernandez-Ibanez, Pilar [Plataforma Solar de Almeria - CIEMAT, P.O. Box 22, 07200 Tabernas, Almeria (Spain)

    2012-10-15

    Graphical abstract: . Water being treated by solar disinfection outside a primary school classroom in Southern Uganda. Students fill their bottles at home and expose them to the sun while they are at school. Highlights: Black-Right-Pointing-Pointer A thorough review of current state of play of solar water disinfection. Black-Right-Pointing-Pointer An examination of both laboratory and field studies. Black-Right-Pointing-Pointer Description of the economic and behaviour change aspects of this technology. - Abstract: Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2 L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to 48 h depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact.

  9. Mathematical model for water quality (portable water): a case study ...

    African Journals Online (AJOL)

    A water quality model for water-use-goal is proposed. The model is tested with a treatment schedule at a water works for portable water. It was observed that at least a 25 per cent savings can be achieved if the model is employed. Mathematics Connection Vol. 4 2004: 27-30 ...

  10. Sustainable solar energy capability studies by using S2H model in treating groundwater supply

    Science.gov (United States)

    Musa, S.; Anuar, M. F.; Shahabuddin, M. M.; Ridzuan, M. B.; Radin Mohamed, R. M. S.; Madun, M. A.

    2018-04-01

    Groundwater extracted in Research Centre for Soft Soil Malaysia (RECESS) contains a number of pollutants that exceed the safe level for consumption. A Solar-Hydro (S2H) model which is a practical prototype has been introduced to treat the groundwater sustainably by solar energy process (evaporation method). Selected parameters was tested which are sulphate, nitrate, chloride, fluoride, pH and dissolved oxygen. The water quality result shows that all parameters have achieved 100% of the drinking water quality standard issued by the Ministry of Health Malaysia. Evaporation method was proven that this solar energy can be applied in sustainably treating groundwater quality with up to 90% effectiveness. On the other hand, the quantitative analysis has shown that the production of clean water is below than 2% according to time constraints and design factors. Thus, this study can be generate clean and fresh water from groundwater by using a simplified model and it has huge potential to be implemented by the local communities with a larger scale and affordable design.

  11. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  12. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid

    Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.

  13. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  14. Mathematical modelling and simulation of the thermal performance of a solar heated indoor swimming pool

    Directory of Open Access Journals (Sweden)

    Mančić Marko V.

    2014-01-01

    Full Text Available Buildings with indoor swimming pools have a large energy footprint. The source of major energy loss is the swimming pool hall where air humidity is increased by evaporation from the pool water surface. This increases energy consumption for heating and ventilation of the pool hall, fresh water supply loss and heat demand for pool water heating. In this paper, a mathematical model of the swimming pool was made to assess energy demands of an indoor swimming pool building. The mathematical model of the swimming pool is used with the created multi-zone building model in TRNSYS software to determine pool hall energy demand and pool losses. Energy loss for pool water and pool hall heating and ventilation are analyzed for different target pool water and air temperatures. The simulation showed that pool water heating accounts for around 22%, whereas heating and ventilation of the pool hall for around 60% of the total pool hall heat demand. With a change of preset controller air and water temperatures in simulations, evaporation loss was in the range 46-54% of the total pool losses. A solar thermal sanitary hot water system was modelled and simulated to analyze it's potential for energy savings of the presented demand side model. The simulation showed that up to 87% of water heating demands could be met by the solar thermal system, while avoiding stagnation. [Projekat Ministarstva nauke Republike Srbije, br. III 42006: Research and development of energy and environmentally highly effective polygeneration systems based on using renewable energy sources

  15. Models of the Solar Atmospheric Response to Flare Heating

    Science.gov (United States)

    Allred, Joel

    2011-01-01

    I will present models of the solar atmospheric response to flare heating. The models solve the equations of non-LTE radiation hydrodynamics with an electron beam added as a flare energy source term. Radiative transfer is solved in detail for many important optically thick hydrogen and helium transitions and numerous optically thin EUV lines making the models ideally suited to study the emission that is produced during flares. I will pay special attention to understanding key EUV lines as well the mechanism for white light production. I will also present preliminary results of how the model solar atmosphere responds to Fletcher & Hudson type flare heating. I will compare this with the results from flare simulations using the standard thick target model.

  16. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  17. Developing a model for predicting the global solar radiation in ...

    African Journals Online (AJOL)

    Developing a model for predicting the global solar radiation in Enugu using maximum temperature data. PE Okpani, MN Nnabuchi. Abstract. No Abstract. Nigerian Journal of Physics Vol. 20 (1) 2008: pp.112-117. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL ...

  18. Global Solar Dynamo Models: Simulations and Predictions Mausumi ...

    Indian Academy of Sciences (India)

    predict mean solar cycle features by assimilating magnetic field data from previous cycles. Key words. Sun—magnetic fields: .... recently published the steps for building such a model (see Fig. 2) and re-confirmed the results of the calibrated .... with different or time-varying meridional circulation, but that remains for the future.

  19. Uncertainty Model for Total Solar Irradiance Estimation on Australian Rooftops

    Science.gov (United States)

    Al-Saadi, Hassan; Zivanovic, Rastko; Al-Sarawi, Said

    2017-11-01

    The installations of solar panels on Australian rooftops have been in rise for the last few years, especially in the urban areas. This motivates academic researchers, distribution network operators and engineers to accurately address the level of uncertainty resulting from grid-connected solar panels. The main source of uncertainty is the intermittent nature of radiation, therefore, this paper presents a new model to estimate the total radiation incident on a tilted solar panel. Where a probability distribution factorizes clearness index, the model is driven upon clearness index with special attention being paid for Australia with the utilization of best-fit-correlation for diffuse fraction. The assessment of the model validity is achieved with the adoption of four goodness-of-fit techniques. In addition, the Quasi Monte Carlo and sparse grid methods are used as sampling and uncertainty computation tools, respectively. High resolution data resolution of solar irradiations for Adelaide city were used for this assessment, with an outcome indicating a satisfactory agreement between actual data variation and model.

  20. Improving Perovskite Solar Cells: Insights From a Validated Device Model

    NARCIS (Netherlands)

    Sherkar, Tejas S.; Momblona, Cristina; Gil-Escrig, Lidon; Bolink, Henk J.; Koster, L. Jan Anton

    2017-01-01

    To improve the efficiency of existing perovskite solar cells (PSCs), a detailed understanding of the underlying device physics during their operation is essential. Here, a device model has been developed and validated that describes the operation of PSCs and quantitatively explains the role of

  1. Models of Solar Irradiance Variability and the Instrumental Temperature Record

    Science.gov (United States)

    Marcus, S. L.; Ghil, M.; Ide, K.

    1998-01-01

    The effects of decade-to-century (Dec-Cen) variations in total solar irradiance (TSI) on global mean surface temperature Ts during the pre-Pinatubo instrumental era (1854-1991) are studied by using two different proxies for TSI and a simplified version of the IPCC climate model.

  2. A dynamic model of an innovative high-temperature solar heating and cooling system

    Directory of Open Access Journals (Sweden)

    Buonomano Annamaria

    2016-01-01

    Full Text Available In this paper a new simulation model of a novel solar heating and cooling system based on innovative high temperature flat plate evacuated solar thermal collector is presented. The system configuration includes: flat-plate evacuated solar collectors, a double-stage LiBr-H2O absorption chiller, gas-fired auxiliary heater, a closed loop cooling tower, pumps, heat exchangers, storage tanks, valves, mixers and controllers. The novelty of this study lies in the utilization of flat-plate stationary solar collectors, manufactured by TVP Solar, rather than concentrating ones (typically adopted for driving double-stage absorption chillers. Such devices show ultra-high thermal efficiencies, even at very high (about 200°C operating temperatures, thanks to the high vacuum insulation. Aim of the paper is to analyse the energy and economic feasibility of such novel technology, by including it in a prototypal solar heating and cooling system. For this purpose, the solar heating and cooling system design and performance were analysed by means of a purposely developed dynamic simulation model, implemented in TRNSYS. A suitable case study is also presented. Here, the simulated plant is conceived for the space heating and cooling and the domestic hot water production of a small building, whose energy needs are fulfilled through a real installation (settled also for experimental purposes built up close to Naples (South Italy. Simulation results show that the investigated system is able to reach high thermal efficiencies and very good energy performance. Finally, the economic analysis shows results comparable to those achieved through similar renewable energy systems.

  3. Integrating a Semitransparent, Fullerene-Free Organic Solar Cell in Tandem with a BiVO4 Photoanode for Unassisted Solar Water Splitting.

    Science.gov (United States)

    Peng, Yuelin; Govindaraju, Gokul V; Lee, Dong Ki; Choi, Kyoung-Shin; Andrew, Trisha L

    2017-07-12

    We report an unassisted solar water splitting system powered by a diketopyrrolopyrrole (DPP)-containing semitransparent organic solar cell. Two major merits of this fullerene-free solar cell enable its integration with a BiVO 4 photoanode. First is the high open circuit voltage and high fill factor displayed by this single junction solar cell, which yields sufficient power to effect water splitting when serially connected to an appropriate electrode/catalyst. Second, the wavelength-resolved photoaction spectrum of the DPP-based solar cell has minimal overlap with that of the BiVO 4 photoanode, thus ensuring that light collection across these two components can be optimized. The latter feature enables a new water splitting device configuration wherein the solar cell is placed first in the path of incident light, before the BiVO 4 photoanode, although BiVO 4 has a wider bandgap. This configuration is accessed by replacing the reflective top electrode of the standard DPP-based solar cell with a thin metal film and an antireflection layer, thus rendering the solar cell semitransparent. In this configuration, incident light does not travel through the aqueous electrolyte to reach the solar cell or photoanode, and therefore, photon losses due to the scattering of water are reduced. Moreover, this new configuration allows the BiVO 4 photoanode to be back-illuminated, i.e., through the BiVO 4 /back contact interface, which leads to higher photocurrents compared to front illumination. The combination of a semitransparent single-junction solar cell and a BiVO 4 photoanode coated with oxygen evolution catalysts in a new device configuration yielded an unassisted solar water splitting system with a solar-to-hydrogen conversion efficiency of 2.2% in water.

  4. Efficiency in the disinfection of water for human consumption in rural communities using solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Dominguez, A. [Instituto de Investigaciones Electricas, Mor (Mexico); Alarcon-Herrera, M.T.; Martin-Dominguez, I.R. [Centtro de Investigacion en Materiales Avanzados, Chih (Mexico); Gonzalez-Herrera, A. [Instituto Mexicano de Tecnologia del Agua, Mor (Mexico)

    2005-01-01

    The efficiency of solar disinfection for the inactivation of Total Coliforms (TC) and Escherichia coli (EC) in drinking water was tested in rural communities of the Guachochi Municipality, in the Tarahumara Sierra, State of Chihuahua, Mexico. The study zone was selected mostly because it lacks formal water supply systems and the population is forced to consume untreated water directly from rivers and shallow or artesian wells without treatment. To determine the bacteriological quality of the water consumed by the population, the amount of TC and EC in the water supplies of 23 communities in the studied municipality was determined. The efficiency of the solar energy based water disinfection process was determined for several months of the humid and dry seasons with water from the most contaminated sources of the study zone. The performed tests consisted in studying the effect of disinfecting water by direct exposure to sunlight during the whole day, with and without solar concentrators, in plastic bottles of commercial beverages. The three types of bottles used were transparent, partially painted black (one half of the bottle, along the longitudinal axis), and totally black. The study shows that, in this geographic zone, the available water must be disinfected before consumption and disinfection efficiency can reach 100% through the use of solar radiation. It was found that, since more than 6 h of daily solar radiation are available during most of the year in this zone, no solar concentrators are really necessary to ensure the complete elimination of bacteria. A complete disinfection takes place by simply placing water bottles in the sunlight during the whole day. Nevertheless, the use of solar concentrators and bottles partially painted black increases the TC and EC inactivation efficiency, reducing the solar exposure time required for a total disinfection to just 2 h. With the use of solar concentrators and partially blackened bottles, the water temperature

  5. Comparative modeling of InP solar cell structures

    Science.gov (United States)

    Jain, R. K.; Weinberg, I.; Flood, D. J.

    1991-01-01

    The comparative modeling of p(+)n and n(+)p indium phosphide solar cell structures is studied using a numerical program PC-1D. The optimal design study has predicted that the p(+)n structure offers improved cell efficiencies as compared to n(+)p structure, due to higher open-circuit voltage. The various cell material and process parameters to achieve the maximum cell efficiencies are reported. The effect of some of the cell parameters on InP cell I-V characteristics was studied. The available radiation resistance data on n(+)p and p(+)p InP solar cells are also critically discussed.

  6. A miniature solar device for overall water splitting consisting of series-connected spherical silicon solar cells

    KAUST Repository

    Kageshima, Yosuke

    2016-04-18

    A novel “photovoltaics (PV) + electrolyzer” concept is presented using a simple, small, and completely stand-alone non-biased device for solar-driven overall water splitting. Three or four spherical-shaped p-n junction silicon balls were successfully connected in series, named “SPHELAR.” SPHELAR possessed small projected areas of 0.20 (3PVs) and 0.26 cm2 (4PVs) and exhibited working voltages sufficient for water electrolysis. Impacts of the configuration on the PV module performance were carefully analyzed, revealing that a drastic increase in the photocurrent (≈20%) was attained by the effective utilization of a reflective sheet. Separate investigations on the electrocatalyst performance showed that non-noble metal based materials with reasonably small sizes (<0.80 cm2) exhibited substantial currents at the PV working voltage. By combining the observations of the PV characteristics, light management and electrocatalyst performance, solar-driven overall water splitting was readily achieved, reaching solar-to-hydrogen efficiencies of 7.4% (3PVs) and 6.4% (4PVs).

  7. Graphene-Based Standalone Solar Energy Converter for Water Desalination and Purification.

    Science.gov (United States)

    Yang, Yang; Zhao, Ruiqi; Zhang, Tengfei; Zhao, Kai; Xiao, Peishuang; Ma, Yanfeng; Ajayan, Pulickel M; Shi, Gaoquan; Chen, Yongsheng

    2018-01-23

    Harvesting solar energy for desalination and sewage treatment has been considered as a promising solution to produce clean water. However, state-of-the-art technologies often require optical concentrators and complicated systems with multiple components, leading to poor efficiency and high cost. Here, we demonstrate an extremely simple and standalone solar energy converter consisting of only an as-prepared 3D cross-linked honeycomb graphene foam material without any other supporting components. This simple all-in-one material can act as an ideal solar thermal converter capable of capturing and converting sunlight into heat, which in turn can distill water from various water sources into steam and produce purified water under ambient conditions and low solar flux with very high efficiency. High specific water production rate of 2.6 kg h -1 m -2 g -1 was achieved with near ∼87% under 1 sun intensity and >80% efficiency even under ambient sunlight (solar thermal water purification system for a variety of environmental conditions.

  8. Solar light irradiation significantly reduced cytotoxicity and disinfection byproducts in chlorinated reclaimed water.

    Science.gov (United States)

    Lv, Xiao-Tong; Zhang, Xue; Du, Ye; Wu, Qian-Yuan; Lu, Yun; Hu, Hong-Ying

    2017-11-15

    Chlorinated reclaimed water is widely used for landscaping and recreational purposes, resulting in human exposure to toxic disinfection byproducts. Although the quality of chlorinated reclaimed water might be affected by sunlight during storage, the effects of solar light irradiation on the toxicity remain unknown. This study investigated the changes in cytotoxicity and total organic halogen (TOX) of chlorinated reclaimed water exposed to solar light. Irradiation with solar light for 12 h was found to significantly reduce the cytotoxicity of chlorinated reclaimed water by about 75%, with ultraviolet light being responsible for the majority of this reduction. Chlorine residual in reclaimed water tended to increase the cytotoxicity, and the synergy between solar light and free chlorine could not enhance the reduction of cytotoxicity. Adding hydroxyl radical scavengers revealed that the contribution of hydroxyl radical to cytotoxicity reduction was limited. Solar light irradiation concurrently reduced TOX. The low molecular weight (cytotoxicity and TOX in chlorinated reclaimed water. Detoxification of the low molecular weight fraction by light irradiation was mainly a result of TOX dehalogenation, while detoxification of the high molecular weight (>1 kDa) fraction was probably caused by photoconversion from high toxic TOX to low toxic TOX. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A New Physical Model to Estimate Solar Irradiance Componets on the Earth's Surface from Satellite Images

    Science.gov (United States)

    Cony, Marco, ,, Dr.; Wiesenberg, Ralf, ,, Dr.; Fernandéz, Irene; Jimenez, Marta

    2017-04-01

    The present study describes a new model designed to estimate the incident solar radiation at the Earth's surface from geostationary satellites images (AFASat). In this new physical model proposed, the effect of Rayleigh scattering, aerosols and Earth's surface topography are taken into account. Water vapor absorption is also introduced by means of its climatological effects on shortwave radiation. Cloud albedo, ground albedo and absorption are derived from brightness measurements on the assumption that they both are linearly related to the brightness. However, this simple consideration applied to individual images elements represents quite accurately the bulk effect of clouds and reflectance. AFASat model uses the Heliosat-3 method and add others environmental factors to estimate with relative precision the solar radiation that arrives at the Earth's surface. Comparisons with daily radiation measurements from ground data station located in Europe, Africa and India (BSRN) showed that the satellite estimates were, on the average, within 2% of the ground measurements for global horizontal irradiance and less than 7% for direct normal irradiance. The hourly variations monitored by the satellite also followed very closely the variations measured on the ground. This study has shown that model is sufficient for the determination of the incident solar radiation when the high spatial and temporal coverage of a geostationary satellite is used. The AFASat is highly appropriate for such those projects that required an analysis of the solar resource assessment as such as TMY report (Typical Meteorological Year).

  10. Solar water disinfection (SODIS): a review from bench-top to roof-top.

    Science.gov (United States)

    McGuigan, Kevin G; Conroy, Ronán M; Mosler, Hans-Joachim; du Preez, Martella; Ubomba-Jaswa, Eunice; Fernandez-Ibañez, Pilar

    2012-10-15

    Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares

    Science.gov (United States)

    McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.

    2018-02-01

    Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.

  12. Water Distribution and Removal Model

    Energy Technology Data Exchange (ETDEWEB)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-08-26

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD&R) Model; (2) EBS Physical and Chemical Environment (P&CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD&R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment. The purposes

  13. Water Distribution and Removal Model

    International Nuclear Information System (INIS)

    Y. Deng; N. Chipman; E.L. Hardin

    2005-01-01

    The design of the Yucca Mountain high level radioactive waste repository depends on the performance of the engineered barrier system (EBS). To support the total system performance assessment (TSPA), the Engineered Barrier System Degradation, Flow, and Transport Process Model Report (EBS PMR) is developed to describe the thermal, mechanical, chemical, hydrological, biological, and radionuclide transport processes within the emplacement drifts, which includes the following major analysis/model reports (AMRs): (1) EBS Water Distribution and Removal (WD and R) Model; (2) EBS Physical and Chemical Environment (P and CE) Model; (3) EBS Radionuclide Transport (EBS RNT) Model; and (4) EBS Multiscale Thermohydrologic (TH) Model. Technical information, including data, analyses, models, software, and supporting documents will be provided to defend the applicability of these models for their intended purpose of evaluating the postclosure performance of the Yucca Mountain repository system. The WD and R model ARM is important to the site recommendation. Water distribution and removal represents one component of the overall EBS. Under some conditions, liquid water will seep into emplacement drifts through fractures in the host rock and move generally downward, potentially contacting waste packages. After waste packages are breached by corrosion, some of this seepage water will contact the waste, dissolve or suspend radionuclides, and ultimately carry radionuclides through the EBS to the near-field host rock. Lateral diversion of liquid water within the drift will occur at the inner drift surface, and more significantly from the operation of engineered structures such as drip shields and the outer surface of waste packages. If most of the seepage flux can be diverted laterally and removed from the drifts before contacting the wastes, the release of radionuclides from the EBS can be controlled, resulting in a proportional reduction in dose release at the accessible environment

  14. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  15. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    Science.gov (United States)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  16. Comparative environmental and economic analysis of conventional and nanofluid solar hot water technologies.

    Science.gov (United States)

    Otanicar, Todd P; Golden, Jay S

    2009-08-01

    This study compares environmental and economic impacts of using nanofluids to enhance solar collector efficiency as compared to conventional solar collectors for domestic hotwater systems. Results show that for the current cost of nanoparticles the nanofluid based solar collector has a slightly longer payback period but at the end of its useful life has the same economic savings as a conventional solar collector. The nanofluid based collector has a lower embodied energy (approximately 9%) and approximately 3% higher levels of pollution offsets than a conventional collector. In addition if 50% penetration of residential nanofluid based solar collector systems for hot water heating could be achieved in Phoenix, Arizona over 1 million metric tons of CO2 would be offset per year.

  17. Optimization methods and silicon solar cell numerical models

    Science.gov (United States)

    Girardini, K.; Jacobsen, S. E.

    1986-01-01

    An optimization algorithm for use with numerical silicon solar cell models was developed. By coupling an optimization algorithm with a solar cell model, it is possible to simultaneously vary design variables such as impurity concentrations, front junction depth, back junction depth, and cell thickness to maximize the predicted cell efficiency. An optimization algorithm was developed and interfaced with the Solar Cell Analysis Program in 1 Dimension (SCAP1D). SCAP1D uses finite difference methods to solve the differential equations which, along with several relations from the physics of semiconductors, describe mathematically the performance of a solar cell. A major obstacle is that the numerical methods used in SCAP1D require a significant amount of computer time, and during an optimization the model is called iteratively until the design variables converge to the values associated with the maximum efficiency. This problem was alleviated by designing an optimization code specifically for use with numerically intensive simulations, to reduce the number of times the efficiency has to be calculated to achieve convergence to the optimal solution.

  18. Response surface methodology and optimization of solar powered reverse osmosis plant for brackish water desalination

    Energy Technology Data Exchange (ETDEWEB)

    Khayet, M.; Essalhi, M.; Cojocaru, C. [Univ. Complutense of Madrid, Madrid (Spain). Dept. of Applied Physics; Armenta-Deu, C. [Univ. Complutense of Madrid, Madrid (Spain). Dept. of Atomic Molecular and Nuclear Physics; Hilal, N. [Nottingham Univ., Nottingham (United Kingdom). Faculty of Engineering, Centre for Clear Water Technologies

    2010-07-01

    The costs and energy consumption associated with reverse osmosis (RO) desalination have decreased significantly in recent years due to the development of novel membranes and modules with high RO performance. In addition, adequate pretreatment processes are now used with along with energy recovery devices and renewable energy systems. Response surface methodology (RSM) was used in this study to develop a predictive model that characterized the general response of a brackish water reverse osmosis (BWRO) plant to determine the optimum operating conditions and the RO specific performance index. The RSM methodology allowed factors to be simultaneously varied between minimum and maximum values. The significance of the RSM polynomial model was determined by analysis of variance (ANOVA). The predicted and experimental responses of the BWRO plant were in good agreement. Optimization was carried out using canonical analysis and the step adjusting gradient method to ensure high quantity and quality potable water production with low energy consumption. The input variables were the feed temperature, the feed flow-rate and the feed pressure. The BWRO plant was powered with photovoltaic panels and a solar thermal collector. For a brackish water of 6 g/L salt concentration, the optimized BWRO plant guaranteed a production of 0.2 m{sup 3}/day with an energy consumption less than 1.3 kWh/m{sup 3}. 6 refs., 1 tab., 2 figs.

  19. Solar pre-heating of water for steam generation in the friendship textile mill

    International Nuclear Information System (INIS)

    Sid -Ahmed, M.O.; Hussien, T.

    1994-01-01

    The technology of solar water heating is simple and can be used for pre-heating of water entering a boiler. In this paper the economics of solar pre-heating of water was calculated. The calculations were based on the performance and cost of a locally-made flat plate collector, and the performance and fuel consumption of a boiler in a textile mill. The results showed that a collector area of about 800 meter square with initial cost of about LS 5,000,000, could save annually about 130 tons of furnace oil. ( Author )

  20. Development of circuit model for arcing on solar panels

    International Nuclear Information System (INIS)

    Mehta, Bhoomi K; Deshpande, S P; Mukherjee, S; Gupta, S B; Ranjan, M; Rane, R; Vaghela, N; Acharya, V; Sudhakar, M; Sankaran, M; Suresh, E P

    2010-01-01

    The increased requirements of payload capacity of the satellites have resulted in much higher power requirements of the satellites. In order to minimize the energy loss during power transmission due to cable loss, use of high voltage solar panels becomes necessary. When a satellite encounters space plasma it floats negatively with respect to the surrounding space plasma environment. At high voltage, charging and discharging on solar panels causes the power system breakdown. Once a solar panel surface is charged and potential difference between surface insulator and conductor exceeds certain value, electrostatic discharge (ESD) may occur. This ESD may trigger a secondary arc that can destroy the solar panel circuit. ESD is also called as primary or minor arc and secondary is called major arc. The energy of minor arc is supplied by the charge stored in the coverglass of solar array and is a pulse of typically several 100 ns to several 100 μs duration. The damage caused by minor arc is less compared to major arcs, but it is observed that the minor arc is cause of major arc. Therefore it is important to develop an understanding of minor arc and mitigation techniques. In this paper we present a linear circuit analysis for minor arcs on solar panels. To study arcing event, a ground experimental facility to simulate space plasma environment has been developed at Facilitation Centre for Industrial Plasma Technologies (Institute for Plasma Research) in collaboration with Indian Space Research Organization's ISRO Satellite Technology Centre (ISAC). A linear circuit model has been developed to explain the experimental results by representing the coverglass, solar cell interconnect and wiring by an LCR circuit and the primary arc by an equivalent LR circuit. The aim of the circuit analysis is to predict the arc current which flows through the arc plasma. It is established from the model that the current depends on various parameters like potential difference between insulator

  1. Solar water disinfection (SODIS): A review from bench-top to roof-top

    CSIR Research Space (South Africa)

    McGuigan, KG

    2012-10-01

    Full Text Available Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2 L PET beverage bottles) which are then exposed to the sun. Exposure times vary...

  2. Solar Energy and Other Appropriate Technologies for Small Potable Water Systems in Puerto Rico

    Science.gov (United States)

    This Region 2 research demonstration project presentation studied the efficacy of sustainable solar-powered water delivery and monitoring systems to reduce the economic burden of operating and maintaining Non-PRASA drinking water systems and to reduce the impact of climate change...

  3. Space Station Solar Dynamic Module modelling and simulation

    Science.gov (United States)

    Tylim, A.

    1989-01-01

    Efforts to model and simulate the Solar Dynamic Power Module (SDPM) for the Space Station are discussed. The SDPM configuration is given and the SDPM subsytems are described, including the concentrator assembly, the fine pointing and tracking system, the power generation system, the heat rejection assembly, the electrical equipment, the interface structure and integration hardware, and the beta gimbal assembly. Performance requirements and design considerations are given. The development of models to simulate the SDPM is examined, noting research on models such as the Electric Power System Transient Analysis Model, the Electric Power System on Orbit Performance model, and a spatial flux distribution function.

  4. Impacts of the January 2005 solar particle event on noctilucent clouds and water at the polar summer mesopause

    Directory of Open Access Journals (Sweden)

    H. Winkler

    2012-06-01

    Full Text Available The response of noctilucent clouds to the solar particle event in January 2005 is investigated by means of icy particle and ion chemistry simulations. It is shown that the decreasing occurrence rate of noctilucent clouds derived from measurements of the SCIAMACHY/Envisat instrument can be reproduced by one-dimensional model simulations if temperature data from the MLS/Aura instrument are used. The model calculations indicate that the sublimation of noctilucent clouds leads to significant changes of the water distribution in the mesopause region. These model results are compared with H2O measurements from the MLS and the MIPAS/Envisat satellite instruments. The pronounced modelled water enhancement below the icy particle layer and its decrease during the SPE are not observed by the satellite instruments. At altitudes >85 km the satellite measurements show an increase of H2O during the SPE in qualitative agreement with the model predictions. The discrepancies between model H2O and observations at lower altitudes might be attributed to the one-dimensional model approach which in particular neglects inhomogeneities and horizontal transport processes. Additionally, it is revealed that the water depletion due to reactions of proton hydrates during the considered solar particle event has only a minor impact on the icy particles.

  5. Data analysis for solar neutrinos observed by water Cherenkov detectors{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Koshio, Yusuke [Okayama University, Okayama (Japan)

    2016-04-15

    A method of analyzing solar neutrino measurements using water-based Cherenkov detectors is presented. The basic detection principle is that the Cherenkov photons produced by charged particles via neutrino interaction are observed by photomultiplier tubes. A large amount of light or heavy water is used as a medium. The first detector to successfully measure solar neutrinos was Kamiokande in the 1980's. The next-generation detectors, i.e., Super-Kamiokande and the Sudbury Neutrino Observatory (SNO), commenced operation from the mid-1990's. These detectors have been playing the critical role of solving the solar neutrino problem and determining the neutrino oscillation parameters over the last decades. The future prospects of solar neutrino analysis using this technique are also described. (orig.)

  6. Solar hot water system installed at Quality Inn, Key West, Florida

    Science.gov (United States)

    1980-04-01

    The solar energy hot water system installed in the Quality Inn, Key West, Florida, which consists of four buildings is described. Three buildings are low-rise, two-story buildings containing 100 rooms. The fourth is a four-story building with 48 rooms. The solar system was designed to provide approximately 50 percent of the energy required for the domestic hot water system. The solar system consists of approximately 1400 square feet of flat plate collector, two 500 gallon storage tanks, a circulating pump, and a controller. Operation of the system was begun in April 1978, and has continued to date with only three minor interruptions for pump repair. In the first year of operation, it was determined that the use of the solar facility resulted in forty percent fuel savings.

  7. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor.

    Science.gov (United States)

    Polo-López, M I; Fernández-Ibáñez, P; Ubomba-Jaswa, E; Navntoft, C; García-Fernández, I; Dunlop, P S M; Schmid, M; Byrne, J A; McGuigan, K G

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Polo-Lopez, M.I., E-mail: mpolo@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Fernandez-Ibanez, P., E-mail: pilar.fernandez@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Ubomba-Jaswa, E., E-mail: euniceubombajaswa@yahoo.com [Natural Resources and the Environment, CSIR, PO Box 395, Pretoria (South Africa); Navntoft, C., E-mail: christian.navntoft@solarmate.com.ar [Instituto de Investigacion e Ingenieria Ambiental, Universidad Nacional de San Martin (3iA-UNSAM), Peatonal Belgrano 3563, B1650ANQ San Martin (Argentina); Universidad Tecnologica Nacional - Facultad Regional Buenos Aires - Departamento de Ingenieria Civil - Laboratorio de Estudios sobre Energia Solar, (UTN-FRBA-LESES), Mozart 2300, (1407) Ciudad Autonoma de Buenos Aires, Republica Argentina (Argentina); Garcia-Fernandez, I., E-mail: irene.garcia@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Dunlop, P.S.M., E-mail: psm.dunlop@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Schmid, M. [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Byrne, J.A., E-mail: j.byrne@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); and others

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  9. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    International Nuclear Information System (INIS)

    Polo-López, M.I.; Fernández-Ibáñez, P.; Ubomba-Jaswa, E.; Navntoft, C.; García-Fernández, I.; Dunlop, P.S.M.; Schmid, M.; Byrne, J.A.

    2011-01-01

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  10. Utilization of solar energy in the photodegradation of gasoline in water and of oil-field-produced water.

    Science.gov (United States)

    Moraes, José Ermírio F; Silva, Douglas N; Quina, Frank H; Chiavone-Filho, Osvaldo; Nascimento, Cláudio Augusto O

    2004-07-01

    The photo-Fenton process utilizes ferrous ions (Fe2+), hydrogen peroxide (H2O2), and ultraviolet (UV) irradiation as a source of hydroxyl radicals for the oxidation of organic matter present in aqueous effluents. The cost associated with the use of artificial irradiation sources has hindered industrial application of this process. In this work, the applicability of solar radiation for the photodegradation of raw gasoline in water has been studied. The photo-Fenton process was also applied to a real effluent, i.e., oil-field-produced water, and the experimental results demonstrate the feasibility of employing solar irradiation to degrade this complex saturated-hydrocarbon-containing system.

  11. COMPILATION OF GROUND WATER MODELS

    Science.gov (United States)

    The full report presents an overview of currently available computer-based simulation models for ground-water flow, solute and heat transport, and hydrogeochemistry in both porous media and fractured rock. Separate sections address multiphase flow and related chemical species tra...

  12. A model to calculate solar radiation fluxes on the Martian surface

    Directory of Open Access Journals (Sweden)

    Vicente-Retortillo Álvaro

    2015-01-01

    Full Text Available We present a new comprehensive radiative transfer model to study the solar irradiance that reaches the surface of Mars in the spectral range covered by MetSIS, a sensor aboard the Mars MetNet mission that will measure solar irradiance in several bands from the ultraviolet (UV to the near infrared (NIR. The model includes up-to-date wavelength-dependent radiative properties of dust, water ice clouds, and gas molecules. It enables the characterization of the radiative environment in different spectral regions under different scenarios. Comparisons between the model results and MetSIS observations will allow for the characterization of the temporal variability of atmospheric optical depth and dust size distribution, enhancing the scientific return of the mission. The radiative environment at the Martian surface has important implications for the habitability of Mars as well as a strong impact on its atmospheric dynamics and climate.

  13. Parametric cost model for solar space power and DIPS systems

    International Nuclear Information System (INIS)

    Meisl, C.J.

    1993-01-01

    A detailed cost model has been developed to parametrically determine the program development and production cost of (1) photovoltaic, (2) solar dynamic and (3) dynamic isotope (DIPS) space power systems. The model is applicable in the net electrical power range of 3 to 300 kWe for solar power, and 0.5 to 10 kWe for DIPS. Application of the cost model allows spacecraft or space-based power system architecture and design trade studies or budgetary forecasting and cost benefit analyses. The cost model considers all major power subsystems (i.e., power generation, power conversion, energy storage, thermal management, and power management/distribution/control). It also considers system cost effects such as integration, testing, management, etc. The cost breakdown structure, model assumptions, ground rules, bases, Cost Estimation Relationship (CER) format and rationale are presented, and the application of the cost model to 100-kWe solar space power plants and to a 1.0-kWe DIPS are demonstrated

  14. Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system

    International Nuclear Information System (INIS)

    Zhang, Xingxing; Zhao, Xudong; Xu, Jihuan; Yu, Xiaotong

    2013-01-01

    Highlights: ► Describing concept and operating principle of the PV/LHP heat pump water heating system. ► Developing a numerical model to evaluate the performance of the system. ► Experimental testing of the prototype system. ► Characterizing the system performance using parallel comparison between the modelling and experimental results. ► Investigating the impact of the operating conditions to the system’s performance. -- Abstract: This paper introduced the concept, potential application and benefits relating to a novel solar photovoltaic/loop-heat-pipe (PV/LHP) heat pump system for hot water generation. On this basis, the paper reported the process and results of characterizing the performance of such a system, which was undertaken through dedicated thermo-fluid and energy balance analyses, computer model development and operation, and experimental verification and modification. The fundamental heat transfer, fluid flow and photovoltaic governing equations were applied to characterize the energy conversion and transfer processes occurring in each part and whole system layout; while the energy balance approach was utilized to enable inter-connection and resolution of the grouped equations. As a result, a dedicated computer model was developed and used to calculate the operational parameters, optimise the geometrical configurations and sizes, and recommend the appropriate operational condition relating to the system. Further, an experimental rig was constructed and utilized to acquire the relevant measurement data that thus enabled the parallel comparison between the simulation and experiment. It is concluded that the testing and modelling results are in good agreement, indicating that the model has the reasonable accuracy in predicting the system’s performance. Under the given experimental conditions, the electrical, thermal and overall efficiency of the PV/LHP module were around 10%, 40% and 50% respectively; whilst the system’s overall performance

  15. Modelling the luminous efficacy of solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, E. [Universidad Autonoma de Madrid (Spain). Dpto. de Fisica Aplicada; Soler, A.; Robledo, L. [Universidad de Madrid (Spain). Dpto. de Fisic a e Instalaciones Aplicadas

    2000-07-01

    The global and diffuse luminous efficacy models proposed in Muneer (1995), Muneer and Kinghorn (1997), have been tested with experimental data obtained in Madrid. When the models with local coefficients are statistically assessed with local data, global illuminance L{sub g} is estimated with an acceptable accuracy, but diffuse illuminance L{sub d} is overestimated for L{sub d} higher than about 25 klux. (author)

  16. Solar service water heating systems. Information about thermal solar energy systems for hot water preparation and heating support; Brauchwasserbereitung mit Sonnenenergie. Wissenswertes ueber thermische Solaranlagen fuer die Warmwasserbereitung und Heizungsunterstuetzung

    Energy Technology Data Exchange (ETDEWEB)

    Loga, Tobias; Born, Rolf

    2012-04-15

    The increased environmental awareness has led to more interest in solar energy. Under this aspect, the leaflet under considerations presents useful information on thermal solar energy systems for the hot water preparation and support for space heating. The construction of solar collectors and their arrangement at the roof are described as well as their economic efficiency and environmental relief.

  17. Influence of solar water disinfection on immunity against cholera - a review.

    Science.gov (United States)

    Ssemakalu, Cornelius Cano; Ubomba-Jaswa, Eunice; Motaung, Keolebogile Shirley; Pillay, Michael

    2014-09-01

    Cholera remains a problem in developing countries. This is attributed to the unavailability of proper water treatment, sanitary infrastructure and poor hygiene. As a consequence, countries facing cholera outbreaks rely on interventions such as the use of oral rehydration therapy and antibiotics to save lives. In addition to vaccination, the provision of chlorine tablets and hygiene sensitization drives have been used to prevent new cholera infections. The implementation of these interventions remains a challenge due to constraints associated with the cost, ease of use and technical knowhow. These challenges have been reduced through the use of solar water disinfection (SODIS). The success of SODIS in mitigating the risk associated with the consumption of waterborne pathogens has been associated with solar irradiation. This has prompted a lot of focus on the solar component for enhanced disinfection. However, the role played by the host immune system following the consumption of solar-irradiated water pathogens has not received any significant attention. The mode of inactivation resulting from the exposure of microbiologically contaminated water results in immunologically important microbial states as well as components. In this review, the possible influence that solar water disinfection may have on the immunity against cholera is discussed.

  18. Optimization of Solar Water Heating System under Time and Spatial Partition Heating in Rural Dwellings

    OpenAIRE

    Yanfeng Liu; Tao Li; Yaowen Chen; Dengjia Wang

    2017-01-01

    This paper proposes the application of time and spatial partition heating to a solar water heating system. The heating effect and system performance were analyzed under the continuous and whole space heating and time and spatial partition heating using TRNSYS. The results were validated by comparing with the test results of the demonstration building. Compared to continuous and whole space heating, the use of time and spatial partition heating increases the solar fraction by 16.5%, reduces th...

  19. Solar heating and hot water system installed at James Hurst Elementary School, Portsmouth, Virginia

    Science.gov (United States)

    1981-01-01

    Solar heating and a hot water system installed in an elementary school in Portsmouth, Virginia are examined. The building is zoned into four heating/cooling areas. Each area is equipped with an air handling unit that is monitored and controlled by central control and monitoring system. The solar system for the building uses a collector area of 3,630 sq. ft. of flat plate liquid collectors, and a 6,000 gallon storage tank. System descriptions, maintenance reports, detailed component specifications, and design drawings to evaluate this solar system are reported.

  20. Validation of Model Forecasts of the Ambient Solar Wind

    Science.gov (United States)

    Macneice, P. J.; Hesse, M.; Kuznetsova, M. M.; Rastaetter, L.; Taktakishvili, A.

    2009-01-01

    Independent and automated validation is a vital step in the progression of models from the research community into operational forecasting use. In this paper we describe a program in development at the CCMC to provide just such a comprehensive validation for models of the ambient solar wind in the inner heliosphere. We have built upon previous efforts published in the community, sharpened their definitions, and completed a baseline study. We also provide first results from this program of the comparative performance of the MHD models available at the CCMC against that of the Wang-Sheeley-Arge (WSA) model. An important goal of this effort is to provide a consistent validation to all available models. Clearly exposing the relative strengths and weaknesses of the different models will enable forecasters to craft more reliable ensemble forecasting strategies. Models of the ambient solar wind are developing rapidly as a result of improvements in data supply, numerical techniques, and computing resources. It is anticipated that in the next five to ten years, the MHD based models will supplant semi-empirical potential based models such as the WSA model, as the best available forecast models. We anticipate that this validation effort will track this evolution and so assist policy makers in gauging the value of past and future investment in modeling support.

  1. Fluorine in the solar neighborhood: Chemical evolution models

    Science.gov (United States)

    Spitoni, E.; Matteucci, F.; Jönsson, H.; Ryde, N.; Romano, D.

    2018-04-01

    Context. In light of new observational data related to fluorine abundances in solar neighborhood stars, we present chemical evolution models testing various fluorine nucleosynthesis prescriptions with the aim to best fit those new data. Aim. We consider chemical evolution models in the solar neighborhood testing various nucleosynthesis prescriptions for fluorine production with the aim of reproducing the observed abundance ratios [F/O] versus [O/H] and [F/Fe] versus [Fe/H]. We study in detail the effects of various stellar yields on fluorine production. Methods: We adopted two chemical evolution models: the classical two-infall model, which follows the chemical evolution of halo-thick disk and thin disk phases; and the one-infall model, which is designed only for thin disk evolution. We tested the effects on the predicted fluorine abundance ratios of various nucleosynthesis yield sources, that is, asymptotic giant branch (AGB) stars, Wolf-Rayet (W-R) stars, Type II and Type Ia supernovae, and novae. Results: The fluorine production is dominated by AGB stars but the W-R stars are required to reproduce the trend of the observed data in the solar neighborhood with our chemical evolution models. In particular, the best model both for the two-infall and one-infall cases requires an increase by a factor of 2 of the W-R yields. We also show that the novae, even if their yields are still uncertain, could help to better reproduce the secondary behavior of F in the [F/O] versus [O/H] relation. Conclusions: The inclusion of the fluorine production by W-R stars seems to be essential to reproduce the new observed ratio [F/O] versus [O/H] in the solar neighborhood. Moreover, the inclusion of novae helps to reproduce the observed fluorine secondary behavior substantially.

  2. Mobility dependent recombination models for organic solar cells

    Science.gov (United States)

    Wagenpfahl, Alexander

    2017-09-01

    Modern solar cell technologies are driven by the effort to enhance power conversion efficiencies. A main mechanism limiting power conversion efficiencies is charge carrier recombination which is a direct function of the encounter probability of both recombination partners. In inorganic solar cells with rather high charge carrier mobilities, charge carrier recombination is often dominated by energetic states which subsequently trap both recombination partners for recombination. Free charge carriers move fast enough for Coulomb attraction to be irrelevant for the encounter probability. Thus, charge carrier recombination is independent of charge carrier mobilities. In organic semiconductors charge carrier mobilities are much lower. Therefore, electrons and holes have more time react to mutual Coulomb-forces. This results in the strong charge carrier mobility dependencies of the observed charge carrier recombination rates. In 1903 Paul Langevin published a fundamental model to describe the recombination of ions in gas-phase or aqueous solutions, known today as Langevin recombination. During the last decades this model was used to interpret and model recombination in organic semiconductors. However, certain experiments especially with bulk-heterojunction solar cells reveal much lower recombination rates than predicted by Langevin. In search of an explanation, many material and device properties such as morphology and energetic properties have been examined in order to extend the validity of the Langevin model. A key argument for most of these extended models is, that electron and hole must find each other at a mutual spatial location. This encounter may be limited for instance by trapping of charges in trap states, by selective electrodes separating electrons and holes, or simply by the morphology of the involved semiconductors, making it impossible for electrons and holes to recombine at high rates. In this review, we discuss the development of mobility limited

  3. Numerical study on the effect of configuration of a simple box solar cooker for boiling water

    Science.gov (United States)

    Ambarita, H.

    2018-02-01

    In this work, a numerical study is carried out to investigate the effect of configuration of a simple box solar cooker. In order to validate the numerical results, a simple a simple solar box cooker with absorber area of 0.835 m × 0.835 m is designed and fabricated. The solar box cooker is employed to boil water by exposing to the solar radiation in Medan city of Indonesia. In the numerical method, a set of transient governing equations are developed. The governing equations are solved using forward time step marching technique. The main objective is to explore the effect of double glasses cover, dimensions of the cooking vessel, and depth of the box cooker to the performance of the solar box cooker. The results show that the experimental and numerical results show good agreement. The performance of the solar box cooker strongly affected by the distance of the double glass cover, the solar cooker depth, and the solar collector length.

  4. Productivity Amelioration of Solar Water Distillator Linked with Salt Gradient Pond

    Directory of Open Access Journals (Sweden)

    Miqdam Miqdam Tariq Chaichan

    2013-04-01

    Full Text Available There is a great need for fresh water in many developing countries. Water sources from, e.g., lakes; rivers and groundwater are often brackish or contain harmful bacteria and should therefore not be used for drinking or irrigation.In this work a simple solar double sloped basin type still was connected to a solar salt gradient pond. The salinity-gradient solar pond is constructed in such a manner that the convective circulation in the pond is prohibited by making the bottom water much denser than the surface water. In doing so, the solar radiation absorbed in the deep water can be stored; the hot water from the salt pond was used to heat salt water in the stiller, at daylight and night.The tests were conducted in September and October in autumn season in Baghdad city-Iraq in 2009. The results show development in stiller productivity at daylight and larger productivity increase at night. The stiller productivity increased also with cooling the glass cover from the still outside. 

  5. Estimation of solar collector area for water heating in buildings of Malaysia

    Science.gov (United States)

    Manoj Kumar, Nallapaneni; Sudhakar, K.; Samykano, M.

    2018-04-01

    Solar thermal energy (STE) utilization for water heating at various sectorial levels became popular and still growing especially for buildings in the residential area. This paper aims to study and identify the solar collector area needed based on the user requirements in an efficient manner. A step by step mathematical approach is followed to estimate the area in Sq. m. Four different cases each having different hot water temperatures (45°, 50°C, 55°C, and 60°C) delivered by the solar water heating system (SWHS) for typical residential application at Kuala Lumpur City, Malaysia is analysed for the share of hot and cold water mix. As the hot water temperature levels increased the share of cold water mix is increased to satisfy the user requirement temperature, i.e. 40°C. It is also observed that as the share of hot water mix is reduced, the collector area can also be reduced. Following this methodology at the installation stage would help both the user and installers in the effective use of the solar resource.

  6. Solar water disinfection (SODIS): Impact on hepatitis A virus and on a human Norovirus surrogate under natural solar conditions.

    Science.gov (United States)

    Polo, David; García-Fernández, Irene; Fernández-Ibáñez, Pilar; Romalde, Jesús L

    2015-03-01

    This study evaluates the effectiveness of solar water disinfection (SODIS) in the reduction and inactivation of hepatitis A virus (HAV) and of the human Norovirus surrogate, murine Norovirus (MNV-1), under natural solar conditions. Experiments were performed in 330 ml polyethylene terephthalate (PET) bottles containing HAV or MNV-1 contaminated waters (10(3) PFU/ml) that were exposed to natural sunlight for 2 to 8 h. Parallel experiments under controlled temperature and/or in darkness conditions were also included. Samples were concentrated by electropositive charged filters and analysed by RT-real time PCR (RT-qPCR) and infectivity assays. Temperature reached in bottles throughout the exposure period ranged from 22 to 40ºC. After 8 h of solar exposure (cumulative UV dose of ~828 kJ/m2 and UV irradiance of ~20 kJ/l), the results showed significant (PSODIS conditions induced a loss of infectivity between 33.4% and 83.4% after 4 to 8 h in HAV trials, and between 33.4% and 66.7% after 6 h to 8 h in MNV-1 trials. The results obtained indicated a greater importance of sunlight radiation over the temperature as the main factor for viral reduction. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  7. Forced-circulation solar water heater using a solar battery; Taiyo denchi wo mochiita kyosei junkahshiki taiyonetsu onsuiki

    Energy Technology Data Exchange (ETDEWEB)

    Asai, S.; Mizuno, T. [Yazaki Corp., Tokyo (Japan)

    1997-11-25

    Optimal operation control was discussed on a forced-circulation solar water heater using solar cells not only as the power supply of a heat collecting pump, but also for controlling operation of the heat collecting pump. With this system, when the amount of power generated by solar cells reaches a sufficient level for operating the heat collecting pump, the heat collecting pump starts operation, wherein the heat collecting medium circulates in the system. The discussion was given by using simulation based on experimental expressions such as the relation expression between insolation and heat collecting medium flow rate as derived from the result of the system`s heat collecting performance test. As a result, the following conclusions were obtained: optimal insolation for activating the discussed system is from 50 to 100 W/m {sup 2}, and the heat collected within this range is within -1.5% of the collected heat amount at an optimum value; optimal activating insolation for the case of 1000 to 2000 W/m {sup 2} with low daily cumulative insolation is from 0 to 50 W/m {sup 2}, whereas the optimal activating insolation amount increases as the daily cumulative insolation amount increases; and the optimal activating insolation amount increases as water to be supplied requires higher temperature. 1 ref., 17 figs., 2 tabs.

  8. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  9. Water Footprint and Land Requirement of Solar Thermochemical Jet-Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Pitz-Paal, Robert

    2017-11-07

    The production of alternative fuels via the solar thermochemical pathway has the potential to provide supply security and to significantly reduce greenhouse gas emissions. H 2 O and CO 2 are converted to liquid hydrocarbon fuels using concentrated solar energy mediated by redox reactions of a metal oxide. Because attractive production locations are in arid regions, the water footprint and the land requirement of this fuel production pathway are analyzed. The water footprint consists of 7.4 liters per liter of jet fuel of direct demand on-site and 42.4 liters per liter of jet fuel of indirect demand, where the dominant contributions are the mining of the rare earth oxide ceria, the manufacturing of the solar concentration infrastructure, and the cleaning of the mirrors. The area-specific productivity is found to be 33 362 liters per hectare per year of jet fuel equivalents, where the land coverage is mainly due to the concentration of solar energy for heat and electricity. The water footprint and the land requirement of the solar thermochemical fuel pathway are larger than the best power-to-liquid pathways but an order of magnitude lower than the best biomass-to-liquid pathways. For the production of solar thermochemical fuels arid regions are best-suited, and for biofuels regions of a moderate and humid climate.

  10. Yanqing solar field: Dynamic optical model and operational safety analysis

    International Nuclear Information System (INIS)

    Zhao, Dongming; Wang, Zhifeng; Xu, Ershu; Zhu, Lingzhi; Lei, Dongqiang; Xu, Li; Yuan, Guofeng

    2017-01-01

    Highlights: • A dynamic optical model of the Yanqing solar field was built. • Tracking angle characteristics were studied with different SCA layouts and time. • The average energy flux was simulated across four clear days. • Influences of defocus angles for energy flux were analyzed. - Abstract: A dynamic optical model was established for the Yanqing solar field at the parabolic trough solar thermal power plant and a simulation was conducted on four separate days of clear weather (March 3rd, June 2nd, September 25th, December 17th). The solar collector assembly (SCA) was comprised of a North-South and East-West layout. The model consisted of the following modules: DNI, SCA operational, and SCA optical. The tracking angle characteristics were analyzed and the results showed that the East-West layout of the tracking system was the most viable. The average energy flux was simulated for a given time period and different SCA layouts, yielding an average flux of 6 kW/m 2 , which was then used as the design and operational standards of the Yanqing parabolic trough plant. The mass flow of North-South layout was relatively stable. The influences of the defocus angles on both the average energy flux and the circumferential flux distribution were also studied. The results provided a theoretical basis for the following components: solar field design, mass flow control of the heat transfer fluid, design and operation of the tracking system, operational safety of SCAs, and power production prediction in the Yanqing 1 MW parabolic trough plant.

  11. Raster-Based Approach to Solar Pressure Modeling

    Science.gov (United States)

    Wright, Theodore W. II

    2013-01-01

    An algorithm has been developed to take advantage of the graphics processing hardware in modern computers to efficiently compute high-fidelity solar pressure forces and torques on spacecraft, taking into account the possibility of self-shading due to the articulation of spacecraft components such as solar arrays. The process is easily extended to compute other results that depend on three-dimensional attitude analysis, such as solar array power generation or free molecular flow drag. The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. The parts of the components being lit depends on the orientation of the craft with respect to the Sun, as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun. The purpose of this innovation is to enable high-fidelity computation of solar pressure and power generation effects of illuminated portions of spacecraft, taking self-shading from spacecraft attitude and movable components into account. The key idea in this innovation is to compute results dependent upon complicated geometry by using an image to break the problem into thousands or millions of sub-problems with simple geometry, and then the results from the simpler problems are combined to give high-fidelity results for the full geometry. This process is performed by constructing a 3D model of a spacecraft using an appropriate computer language (OpenGL), and running that model on a modern computer's 3D accelerated video processor. This quickly and accurately generates a view of the model (as shown on a computer screen) that takes rotation and articulation of spacecraft components into account. When this view is interpreted as the spacecraft as seen by the Sun, then only the portions of the craft visible in the view are illuminated. The view as

  12. Modeling geomagnetic shielding of solar energetic particles and cosmic rays

    Science.gov (United States)

    Kress, B. T.

    2009-12-01

    Solar energetic particles (SEPs) are a space weather hazard posing risks to manned and robotic space flight missions. At low- to mid-latitudes the Earth's magnetic field usually shields the upper atmosphere and spacecraft in low Earth orbit from SEPs. During severe geomagnetic storms distortion of the Earth's field suppresses geomagnetic shielding giving SEPs access to Earth at the mid-latitudes. Significant variations in geomagnetic shielding can occur on timescales of an hour or less in response to changes in the solar wind dynamic pressure and IMF. Geomagnetic shielding of energetic ions is quantified in terms of cutoff rigidity, and a dynamic geomagnetic cutoff model can be used for predicting SEP and cosmic ray fluxes in geospace. Two advancements in recent years that have made a real-time geomagnetic cutoff rigidity model a possibility are (1) increased computer power, and (2) the development of accurate dynamic geomagnetic field models that respond to changes in Dst, solar wind dynamic pressure and IMF. A numerical model capable of a real time cutoff prediction will be presented. Issues and techniques related to modeling SEP and cosmic ray fluxes in the magnetosphere will be discussed.

  13. Hydrologic Activity of Deciduous Agroforestry Tree : Observed through Monitoring of Stable Isotopes in Stem Water, Solar Radiation Attenuation, and Sapflow

    Science.gov (United States)

    Ceperley, N. C.; Mande, T.; Parlange, M. B.

    2012-12-01

    The net benefit of agroforestry trees for small scale farmers in dryland agricultural systems is debatable because while they provide significant direct and indirect services, they also consume considerable amounts of scare water resources. In this study we monitor the stable isotopes of water to improve a water budget of a Sclerocarya birrea tree in a millet field in South Eastern Burkina Faso. Data obtained from air temperature and humidity, surface temperature, solar radiation, and soil moisture sensors attached to a wireless sensor network uniquely configured around the agroforestry tree provided the initial calculation of the local water balance. Isotopic ratios were determined from water extracted from stems and sub canopy soil, and from nearby ground water, precipitation, and surface water that was sampled weekly. A linear mixing model is used to predict when the tree switched between water sources. The results from the linear mixing model coupled with a tree water balance demonstrate the extreme seasonality of the annual cycle of water use by this deciduous species.

  14. Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing

    International Nuclear Information System (INIS)

    Bessa, Vanessa M.T.; Prado, Racine T.A.

    2015-01-01

    Growing global concern regarding climate change motivates technological studies to minimize environmental impacts. In this context, solar water heating (SWH) systems are notably prominent in Brazil, primarily because of the abundance of solar energy in the country. However, SWH designs have not always been perfectly developed. In most projects, the installation option of the solar system only considers the electric power economy aspects and not the particular characteristics of each climatic zone. Thus, the primary objective of this paper is to assess the potential of carbon dioxide reduction with the use of SWH in comparison with electric showers in social housing in several Brazilian climatic zones. The Brazilian government authorities have created public policies to encourage the use of these technologies primarily among the low-income population. The results of this paper indicate that hot climactic regions demonstrate a low reduction of CO 2 emissions with SWH installations. Thus, solar radiation is not useful for water heating in those regions, but it does lead to a large fraction of household cooling loads, implying a demand for electrical energy for air conditioning or requiring the adoption of passive techniques to maintain indoor temperatures below threshold values. -- Graphical abstract: Display Omitted -- Highlights: •Brazil has created public policies to increase the use of solar water heating in social housing. •We have evaluated the potential for reduction of CO 2 emissions installing solar water heating. •We have found that the coldest regions have the greatest potential for reducing emissions. •Passive technologies for thermal comfort in hot climate households are more useful than solar water heating systems

  15. One-Dimensional Metal-Oxide Nanostructures for Solar Photocatalytic Water-Splitting

    Science.gov (United States)

    Wang, Fengyun; Song, Longfei; Zhang, Hongchao; Luo, Linqu; Wang, Dong; Tang, Jie

    2017-08-01

    Because of their unique physical and chemical properties, one-dimensional (1-D) metal-oxide nanostructures have been extensively applied in the areas of gas sensors, electrochromic devices, nanogenerators, and so on. Solar water-splitting has attracted extensive research interest because hydrogen generated from solar-driven water splitting is a clean, sustainable, and abundant energy source that not only solves the energy crisis, but also protects the environment. In this comprehensive review, the main synthesis methods, properties, and especially prominent applications in solar water splitting of 1-D metal-oxides, including titanium dioxide (TiO2), zinc oxide (ZnO), tungsten trioxide (WO3), iron oxide (Fe2O3), and copper oxide (CuO) are fully discussed.

  16. Analysis of systems for hot water supply with solar energy utilization

    International Nuclear Information System (INIS)

    Zlateva, M.

    2001-01-01

    The results from the analysis of the hot water consumption of a group of hotels in the Black See resort Albena are presented. Structural schemes of hot water solar systems with flat plate collectors have been synthesized. By the synthesis have been analyzed the type of the consumers, the operating period, the existing heating plants, the auxiliary energy source - electricity. The change of the solar fraction by different performance of the system have been investigated. A comparative analysis of the alternative solutions has been fulfilled. The most advantageous solution has been chosen on the basis of the evaluation of the pay-back period, the life cycle savings and the benefit-cost ratio. The effect of the changing economic characteristics on the economic efficiency have been investigated. The risk for the investments has been examined. It had been proved that for the conditions in Bulgarian Black See region the use of solar energy for hot water producing is economic reasonable. (author)

  17. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Lamei, A.; Van der Zaag, P.; Von Muench, E. [UNESCO-IHE Institute for Water Education, 2601 DA Delft (Netherlands)

    2008-05-15

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W{sub p} (W{sub p} is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W{sub p}. Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W{sub p}), but advances in the technology will continue to drive the prices down, whilst

  18. Impact of solar energy cost on water production cost of seawater desalination plants in Egypt

    International Nuclear Information System (INIS)

    Lamei, A.; Van der Zaag, P.; Von Muench, E.

    2008-01-01

    Many countries in North Africa and the Middle East are experiencing localized water shortages and are now using desalination technologies with either reverse osmosis (RO) or thermal desalination to overcome part of this shortage. Desalination is performed using electricity, mostly generated from fossil fuels with associated greenhouse gas emissions. Increased fuel prices and concern over climate change are causing a push to shift to alternative sources of energy, such as solar energy, since solar radiation is abundant in this region all year round. This paper presents unit production costs and energy costs for 21 RO desalination plants in the region. An equation is proposed to estimate the unit production costs of RO desalination plants as a function of plant capacity, price of energy and specific energy consumption. This equation is used to calculate unit production costs for desalinated water using photovoltaic (PV) solar energy based on current and future PV module prices. Multiple PV cells are connected together to form a module or a panel. Unit production costs of desalination plants using solar energy are compared with conventionally generated electricity considering different prices for electricity. The paper presents prices for both PV and solar thermal energy. The paper discusses at which electricity price solar energy can be considered economical to be used for RO desalination; this is independent of RO plant capacity. For countries with electricity prices of 0.09 US$/kWh, solar-generated electricity (using PV) can be competitive starting from 2 US$/W p (W p is the number of Watts output under standard conditions of sunlight). For Egypt (price of 0.06 US$/kWh), solar-generated electricity starts to be competitive from 1 US$/W p . Solar energy is not cost competitive at the moment (at a current module price for PV systems including installation of 8 US$/W p ), but advances in the technology will continue to drive the prices down, whilst penalties on usage

  19. A Generalized Equatorial Model for the Accelerating Solar Wind

    Science.gov (United States)

    Tasnim, S.; Cairns, Iver H.; Wheatland, M. S.

    2018-02-01

    A new theoretical model for the solar wind is developed that includes the wind's acceleration, conservation of angular momentum, deviations from corotation, and nonradial velocity and magnetic field components from an inner boundary (corresponding to the onset of the solar wind) to beyond 1 AU. The model uses a solution of the time-steady isothermal equation of motion to describe the acceleration and analytically predicts the Alfvénic critical radius. We fit the model to near-Earth observations of the Wind spacecraft during the solar rotation period of 1-27 August 2010. The resulting data-driven model demonstrates the existence of noncorotating, nonradial flows and fields from the inner boundary (r = rs) outward and predicts the magnetic field B = (Br,Bϕ), velocity v = (vr,vϕ), and density n(r,ϕ,t), which vary with heliocentric distance r, heliolatitude ϕ, and time t in a Sun-centered standard inertial plane. The description applies formally only in the equatorial plane. In a frame corotating with the Sun, the transformed velocity v' and a field B' are not parallel, resulting in an electric field with a component Ez' along the z axis. The resulting E'×B'=E'×B drift lies in the equatorial plane, while the ∇B and curvature drifts are out of the plane. Together these may lead to enhanced scattering/heating of sufficiently energetic particles. The model predicts that deviations δvϕ from corotation at the inner boundary are common, with δvϕ(rs,ϕs,ts) comparable to the transverse velocities due to granulation and supergranulation motions. Abrupt changes in δvϕ(rs,ϕs,ts) are interpreted in terms of converging and diverging flows at the cell boundaries and centers, respectively. Large-scale variations in the predicted angular momentum demonstrate that the solar wind can drive vorticity and turbulence from near the Sun to 1 AU and beyond.

  20. INWARD RADIAL MIXING OF INTERSTELLAR WATER ICES IN THE SOLAR PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Vacher, Lionel G.; Marrocchi, Yves; Villeneuve, Johan [CRPG, CNRS, Université de Lorraine, UMR 7358, Vandoeuvre-lés-Nancy, F-54501 (France); Verdier-Paoletti, Maximilien J.; Gounelle, Matthieu, E-mail: lvacher@crpg.cnrs-nancy.fr [IMPMC, MNHN, UPMC, UMR CNRS 7590, 61 rue Buffon, F-75005 Paris (France)

    2016-08-10

    The very wide diversity of asteroid compositions in the main belt suggests significant material transport in the solar protoplanetary disk and hints at the presence of interstellar ices in hydrated bodies. However, only a few quantitative estimations of the contribution of interstellar ice in the inner solar system have been reported, leading to considerable uncertainty about the extent of radial inward mixing in the solar protoplanetary disk 4.56 Ga ago. We show that the pristine CM chondrite Paris contains primary Ca-carbonates whose O-isotopic compositions require an 8%–35% contribution from interstellar water. The presence of interstellar water in Paris is confirmed by its bulk D/H isotopic composition that shows significant D enrichment (D/H = (167 ± 0.2) × 10{sup −6}) relative to the mean D/H of CM chondrites ((145 ± 3) × 10{sup −6}) and the putative D/H of local CM water ((82 ± 1.5) × 10{sup −6}). These results imply that (i) efficient radial mixing of interstellar ices occurred from the outer zone of the solar protoplanetary disk inward and that (ii) chondrites accreted water ice grains from increasing heliocentric distances in the solar protoplanetary disk.