WorldWideScience

Sample records for model simulations forced

  1. Digital design and fabrication of simulation model for measuring orthodontic force.

    Science.gov (United States)

    Liu, Yun-Feng; Zhang, Peng-Yuan; Zhang, Qiao-Fang; Zhang, Jian-Xing; Chen, Jie

    2014-01-01

    Three dimensional (3D) forces are the key factors for determining movement of teeth during orthodontic treatment. Designing precise forces and torques on tooth before treatment can result accurate tooth movements, but it is too difficult to realize. In orthodontic biomechanical systems, the periodontal tissues, including bones, teeth, and periodontal ligaments (PDL), are affected by braces, and measuring the forces applied on the teeth by braces should be based on a simulated model composed of these three types of tissues. This study explores the design and fabrication of a simulated oral model for 3D orthodontic force measurements. Based on medical image processing, tissue reconstruction, 3D printing, and PDL simulation and testing, a model for measuring force was designed and fabricated, which can potentially be used for force prediction, design of treatment plans, and precise clinical operation. The experiment illustrated that bi-component silicones with 2:8 ratios had similar mechanical properties to PDL, and with a positioning guide, the teeth were assembled in the mandible sockets accurately, and so a customized oral model for 3D orthodontic force measurement was created.

  2. Neural control of muscle force: indications from a simulation model

    Science.gov (United States)

    Luca, Carlo J. De

    2013-01-01

    We developed a model to investigate the influence of the muscle force twitch on the simulated firing behavior of motoneurons and muscle force production during voluntary isometric contractions. The input consists of an excitatory signal common to all the motor units in the pool of a muscle, consistent with the “common drive” property. Motor units respond with a hierarchically structured firing behavior wherein at any time and force, firing rates are inversely proportional to recruitment threshold, as described by the “onion skin” property. Time- and force-dependent changes in muscle force production are introduced by varying the motor unit force twitches as a function of time or by varying the number of active motor units. A force feedback adjusts the input excitation, maintaining the simulated force at a target level. The simulations replicate motor unit behavior characteristics similar to those reported in previous empirical studies of sustained contractions: 1) the initial decrease and subsequent increase of firing rates, 2) the derecruitment and recruitment of motor units throughout sustained contractions, and 3) the continual increase in the force fluctuation caused by the progressive recruitment of larger motor units. The model cautions the use of motor unit behavior at recruitment and derecruitment without consideration of changes in the muscle force generation capacity. It describes an alternative mechanism for the reserve capacity of motor units to generate extraordinary force. It supports the hypothesis that the control of motoneurons remains invariant during force-varying and sustained isometric contractions. PMID:23236008

  3. Simulation of a force on force exercise

    International Nuclear Information System (INIS)

    Terhune, R.; Van Slyke, D.; Sheppard, T.; Brandrup, M.

    1988-01-01

    The Security Exercise Evaluation System (SEES) is under development for use in planning Force on Force exercises and as an aid in post-exercise evaluation. This study is part of the development cycle where the simulation results are compared to field data to provide guidance for further development of the model. SEES is an event-driven stochastic computer program simulating individual movement and combat within an urban terrain environment. The simulator models the physics of movement, line of sight, and weapon effects. It relies on the controllers to provide all knowledge of security tactics, which are entered by the controllers during the simulation using interactive color graphic workstations. They are able to develop, modify and implement plans promptly as the simulator maintains real time. This paper reports on how SEES will be used to develop an intrusion plan, test the security response tactics and develop observer logistics. A Force on Force field exercise will then be executed to follow the plan with observations recorded. An analysis is made by first comparing the plan and events of the simulation with the field exercise, modifying the simulation plan to match the actual field exercise, and then running the simulation to develop a distribution of possible outcomes

  4. Mathematical modelling and numerical simulation of forces in milling process

    Science.gov (United States)

    Turai, Bhanu Murthy; Satish, Cherukuvada; Prakash Marimuthu, K.

    2018-04-01

    Machining of the material by milling induces forces, which act on the work piece material, tool and which in turn act on the machining tool. The forces involved in milling process can be quantified, mathematical models help to predict these forces. A lot of research has been carried out in this area in the past few decades. The current research aims at developing a mathematical model to predict forces at different levels which arise machining of Aluminium6061 alloy. Finite element analysis was used to develop a FE model to predict the cutting forces. Simulation was done for varying cutting conditions. Different experiments was designed using Taguchi method. A L9 orthogonal array was designed and the output was measure for the different experiments. The same was used to develop the mathematical model.

  5. Simulating Storm Surge Impacts with a Coupled Atmosphere-Inundation Model with Varying Meteorological Forcing

    Directory of Open Access Journals (Sweden)

    Alexandra N. Ramos Valle

    2018-04-01

    Full Text Available Storm surge events have the potential to cause devastating damage to coastal communities. The magnitude of their impacts highlights the need for increased accuracy and real-time forecasting and predictability of storm surge. In this study, we assess two meteorological forcing configurations to hindcast the storm surge of Hurricane Sandy, and ultimately support the improvement of storm surge forecasts. The Weather Research and Forecasting (WRF model is coupled to the ADvanced CIRCulation Model (ADCIRC to determine water elevations. We perform four coupled simulations and compare storm surge estimates resulting from the use of a parametric vortex model and a full-physics atmospheric model. One simulation is forced with track-based meteorological data calculated from WRF, while three simulations are forced with the full wind and pressure field outputs from WRF simulations of varying resolutions. Experiments were compared to an ADCIRC simulation forced by National Hurricane Center best track data, as well as to station observations. Our results indicated that given accurate meteorological best track data, a parametric vortex model can accurately forecast maximum water elevations, improving upon the use of a full-physics coupled atmospheric-surge model. In the absence of a best track, atmospheric forcing in the form of full wind and pressure field from a high-resolution atmospheric model simulation prove reliable for storm surge forecasting.

  6. An Approach for Simulation of the Muscle Force Modeling It by Summation of Motor Unit Contraction Forces

    Directory of Open Access Journals (Sweden)

    Rositsa Raikova

    2013-01-01

    Full Text Available Muscle force is due to the cumulative effect of repetitively contracting motor units (MUs. To simulate the contribution of each MU to whole muscle force, an approach implemented in a novel computer program is proposed. The individual contraction of an MU (the twitch is modeled by a 6-parameter analytical function previously proposed; the force of one MU is a sum of its contractions due to an applied stimulation pattern, and the muscle force is the sum of the active MUs. The number of MUs, the number of slow, fast-fatigue-resistant, and fast-fatigable MUs, and their six parameters as well as a file with stimulation patterns for each MU are inputs for the developed software. Different muscles and different firing patterns can be simulated changing the input data. The functionality of the program is illustrated with a model consisting of 30 MUs of rat medial gastrocnemius muscle. The twitches of these MUs were experimentally measured and modeled. The forces of the MUs and of the whole muscle were simulated using different stimulation patterns that included different regular, irregular, synchronous, and asynchronous firing patterns of MUs. The size principle of MUs for recruitment and derecruitment was also demonstrated using different stimulation paradigms.

  7. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    Science.gov (United States)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    The charge-spot technique for modeling the static electric forces acting between charged fine particles entails treating electric charges on individual particles as small sets of discrete point charges, located near their surfaces. This is in contrast to existing models, which assume a single charge per particle. The charge-spot technique more accurately describes the forces, torques, and moments that act on triboelectrically charged particles, especially image-charge forces acting near conducting surfaces. The discrete element method (DEM) simulation uses a truncation range to limit the number of near-neighbor charge spots via a shifted and truncated potential Coulomb interaction. The model can be readily adapted to account for induced dipoles in uncharged particles (and thus dielectrophoretic forces) by allowing two charge spots of opposite signs to be created in response to an external electric field. To account for virtual overlap during contacts, the model can be set to automatically scale down the effective charge in proportion to the amount of virtual overlap of the charge spots. This can be accomplished by mimicking the behavior of two real overlapping spherical charge clouds, or with other approximate forms. The charge-spot method much more closely resembles real non-uniform surface charge distributions that result from tribocharging than simpler approaches, which just assign a single total charge to a particle. With the charge-spot model, a single particle may have a zero net charge, but still have both positive and negative charge spots, which could produce substantial forces on the particle when it is close to other charges, when it is in an external electric field, or when near a conducting surface. Since the charge-spot model can contain any number of charges per particle, can be used with only one or two charge spots per particle for simulating charging from solar wind bombardment, or with several charge spots for simulating triboelectric charging

  8. Thermodynamic forces in coarse-grained simulations

    Science.gov (United States)

    Noid, William

    Atomically detailed molecular dynamics simulations have profoundly advanced our understanding of the structure and interactions in soft condensed phases. Nevertheless, despite dramatic advances in the methodology and resources for simulating atomically detailed models, low-resolution coarse-grained (CG) models play a central and rapidly growing role in science. CG models not only empower researchers to investigate phenomena beyond the scope of atomically detailed simulations, but also to precisely tailor models for specific phenomena. However, in contrast to atomically detailed simulations, which evolve on a potential energy surface, CG simulations should evolve on a free energy surface. Therefore, the forces in CG models should reflect the thermodynamic information that has been eliminated from the CG configuration space. As a consequence of these thermodynamic forces, CG models often demonstrate limited transferability and, moreover, rarely provide an accurate description of both structural and thermodynamic properties. In this talk, I will present a framework that clarifies the origin and impact of these thermodynamic forces. Additionally, I will present computational methods for quantifying these forces and incorporating their effects into CG MD simulations. As time allows, I will demonstrate applications of this framework for liquids, polymers, and interfaces. We gratefully acknowledge the support of the National Science Foundation via CHE 1565631.

  9. Selecting a Dynamic Simulation Modeling Method for Health Care Delivery Research—Part 2: Report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force

    NARCIS (Netherlands)

    Marshall, Deborah A.; Burgos-Liz, Lina; IJzerman, Maarten Joost; Crown, William; Padula, William V.; Wong, Peter K.; Pasupathy, Kalyan S.; Higashi, Mitchell K.; Osgood, Nathaniel D.

    2015-01-01

    In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling

  10. Sensitivity of tropical convection in cloud-resolving WRF simulations to model physics and forcing procedures

    Science.gov (United States)

    Endo, S.; Lin, W.; Jackson, R. C.; Collis, S. M.; Vogelmann, A. M.; Wang, D.; Oue, M.; Kollias, P.

    2017-12-01

    Tropical convection is one of the main drivers of the climate system and recognized as a major source of uncertainty in climate models. High-resolution modeling is performed with a focus on the deep convection cases during the active monsoon period of the TWP-ICE field campaign to explore ways to improve the fidelity of convection permitting tropical simulations. Cloud resolving model (CRM) simulations are performed with WRF modified to apply flexible configurations for LES/CRM simulations. We have enhanced the capability of the forcing module to test different implementations of large-scale vertical advective forcing, including a function for optional use of large-scale thermodynamic profiles and a function for the condensate advection. The baseline 3D CRM configurations are, following Fridlind et al. (2012), driven by observationally-constrained ARM forcing and tested with diagnosed surface fluxes and fixed sea-surface temperature and prescribed aerosol size distributions. After the spin-up period, the simulations follow the observed precipitation peaks associated with the passages of precipitation systems. Preliminary analysis shows that the simulation is generally not sensitive to the treatment of the large-scale vertical advection of heat and moisture, while more noticeable changes in the peak precipitation rate are produced when thermodynamic profiles above the boundary layer were nudged to the reference profiles from the forcing dataset. The presentation will explore comparisons with observationally-based metrics associated with convective characteristics and examine the model performance with a focus on model physics, doubly-periodic vs. nested configurations, and different forcing procedures/sources. A radar simulator will be used to understand possible uncertainties in radar-based retrievals of convection properties. Fridlind, A. M., et al. (2012), A comparison of TWP-ICE observational data with cloud-resolving model results, J. Geophys. Res., 117, D05204

  11. 3D modeling of olive tree and simulating the harvesting forces

    Directory of Open Access Journals (Sweden)

    Glăvan Dan Ovidiu

    2017-01-01

    Full Text Available The paper presents the results of the study regarding the influence of shaking forces on olive tree harvesting systems. Shaking forces can be released through several methods. Important is the end result, namely the shaking force and the cadence of shaking speed. Mechanical and automatic harvesting methods collect more olives than traditional methods but may damage the olive trees. In order to prevent this damage, we need to calculate the necessary shaking force. An original research method is proposed to simulate shaking forces using a 3D olive tree model with Autodesk Inventor software. In the experiments, we use different shaking forces and various shaking speeds. We also use different diameters of the olive tree trunk. We analyze the results from this experiment to determine the optimal shaking force for harvesting olives without damaging the olive tree.

  12. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation

    International Nuclear Information System (INIS)

    Vu-Quoc, L.; Lesburg, L.; Zhang, X.

    2004-01-01

    An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles

  13. Security force-adversary engagement simulation

    International Nuclear Information System (INIS)

    Bennett, H.A.

    1975-01-01

    A dynamic simulation of a security force-adversary engagement has been developed to obtain a better understanding of the complexities involved in security systems. Factors affecting engagement outcomes were identified and interrelated to represent an ambush of an escorted nuclear fuel truck convoy by an adversary group. Other forms of engagement such as assault and skirmish also can be simulated through suitable parameter changes. The dynamic model can provide a relative evaluation of changes in security force levels, equipment, training, and tactics. Continued application and subsequent refinements of the model are expected to augment the understanding of component interaction within a guard-based security system

  14. Validation of Vibro-Impact Force Models by Numerical Simulation, Perturbation Methods and Experiments

    DEFF Research Database (Denmark)

    de Souza Reboucas, Geraldo Francisco; Santos, Ilmar; Thomsen, Jon Juel

    2017-01-01

    The frequency response of a single degree of freedom vibro-impact oscillator is analyzed using Harmonic Linearization, Averaging and Numeric Simulation, considering three different impact force models: one given by a piecewise-linear function (Kelvin-Voigt model), another by a high-order power...

  15. Comparative study of wall-force models for the simulation of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Rzehak, Roland, E-mail: r.rzehak@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Krepper, Eckhard, E-mail: E.Krepper@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Lifante, Conxita, E-mail: Conxita.Lifante@ansys.com [ANSYS Germany GmbH, Staudenfeldweg 12, 83624 Otterfing (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Comparison of common models for the wall force with an experimental database. Black-Right-Pointing-Pointer Identification of suitable closure for bubbly flow. Black-Right-Pointing-Pointer Enables prediction of location and height of wall peak in void fraction profiles. - Abstract: Accurate numerical prediction of void-fraction profiles in bubbly multiphase-flow relies on suitable closure models for the momentum exchange between liquid and gas phases. We here consider forces acting on the bubbles in the vicinity of a wall. A number of different models for this so-called wall-force have been proposed in the literature and are implemented in widely used CFD-codes. Simulations using a selection of these models are compared with a set of experimental data on bubbly air-water flow in round pipes of different diameter. Based on the results, recommendations on suitable closures are given.

  16. Modeling and simulation of viscoelastic biological particles' 3D manipulation using atomic force microscopy

    Science.gov (United States)

    Korayem, M. H.; Habibi Sooha, Y.; Rastegar, Z.

    2018-05-01

    Manipulation of the biological particles by atomic force microscopy is used to transfer these particles inside body's cells, diagnosis and destruction of the cancer cells and drug delivery to damaged cells. According to the impossibility of simultaneous observation of this process, the importance of modeling and simulation can be realized. The contact of the tip with biological particle is important during manipulation, therefore, the first step of the modeling is choosing appropriate contact model. Most of the studies about contact between atomic force microscopy and biological particles, consider the biological particle as an elastic material. This is not an appropriate assumption because biological cells are basically soft and this assumption ignores loading history. In this paper, elastic and viscoelastic JKR theories were used in modeling and simulation of the 3D manipulation for three modes of tip-particle sliding, particle-substrate sliding and particle-substrate rolling. Results showed that critical force and time in motion modes (sliding and rolling) for two elastic and viscoelastic states are very close but these magnitudes were lower in the viscoelastic state. Then, three friction models, Coulomb, LuGre and HK, were used for tip-particle sliding mode in the first phase of manipulation to make results closer to reality. In both Coulomb and LuGre models, critical force and time are very close for elastic and viscoelastic states but in general critical force and time prediction of HK model was higher than LuGre and the LuGre model itself had higher prediction than Coulomb.

  17. Development of Swimming Human Simulation Model Considering Rigid Body Dynamics and Unsteady Fluid Force for Whole Body

    Science.gov (United States)

    Nakashima, Motomu; Satou, Ken; Miura, Yasufumi

    The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.

  18. Streamwise-body-force-model for rapid simulation combining internal and external flow fields

    Directory of Open Access Journals (Sweden)

    Cui Rong

    2016-10-01

    Full Text Available A streamwise-body-force-model (SBFM is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The validation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.

  19. How realistic are air quality hindcasts driven by forcings from climate model simulations?

    Science.gov (United States)

    Lacressonnière, G.; Peuch, V.-H.; Arteta, J.; Josse, B.; Joly, M.; Marécal, V.; Saint Martin, D.; Déqué, M.; Watson, L.

    2012-12-01

    Predicting how European air quality could evolve over the next decades in the context of changing climate requires the use of climate models to produce results that can be averaged in a climatologically and statistically sound manner. This is a very different approach from the one that is generally used for air quality hindcasts for the present period; analysed meteorological fields are used to represent specifically each date and hour. Differences arise both from the fact that a climate model run results in a pure model output, with no influence from observations (which are useful to correct for a range of errors), and that in a "climate" set-up, simulations on a given day, month or even season cannot be related to any specific period of time (but can just be interpreted in a climatological sense). Hence, although an air quality model can be thoroughly validated in a "realistic" set-up using analysed meteorological fields, the question remains of how far its outputs can be interpreted in a "climate" set-up. For this purpose, we focus on Europe and on the current decade using three 5-yr simulations performed with the multiscale chemistry-transport model MOCAGE and use meteorological forcings either from operational meteorological analyses or from climate simulations. We investigate how statistical skill indicators compare in the different simulations, discriminating also the effects of meteorology on atmospheric fields (winds, temperature, humidity, pressure, etc.) and on the dependent emissions and deposition processes (volatile organic compound emissions, deposition velocities, etc.). Our results show in particular how differing boundary layer heights and deposition velocities affect horizontal and vertical distributions of species. When the model is driven by operational analyses, the simulation accurately reproduces the observed values of O3, NOx, SO2 and, with some bias that can be explained by the set-up, PM10. We study how the simulations driven by climate

  20. Simulation and Sensitivity in a Nested Modeling System for South America. Part II: GCM Boundary Forcing.

    Science.gov (United States)

    Rojas, Maisa; Seth, Anji

    2003-08-01

    of this study, the RegCM's ability to simulate circulation and rainfall observed in the two extreme seasons was demonstrated when driven at the lateral boundaries by reanalyzed forcing. Seasonal integrations with the RegCM driven by GCM ensemble-derived lateral boundary forcing demonstrate that the nested model responds well to the SST forcing, by capturing the major features of the circulation and rainfall differences between the two years. The GCM-driven model also improves upon the monthly evolution of rainfall compared with that from the GCM. However, the nested model rainfall simulations for the two seasons are degraded compared with those from the reanalyses-driven RegCM integrations. The poor location of the Atlantic intertropical convergence zone (ITCZ) in the GCM leads to excess rainfall in Nordeste in the nested model.An expanded domain was tested, wherein the RegCM was permitted more internal freedom to respond to SST and regional orographic forcing. Results show that the RegCM is able to improve the location of the ITCZ, and the seasonal evolution of rainfall in Nordeste, the Amazon region, and the southeastern region of Brazil. However, it remains that the limiting factor in the skill of the nested modeling system is the quality of the lateral boundary forcing provided by the global model.

  1. Dynamic simulation of knee-joint loading during gait using force-feedback control and surrogate contact modelling.

    Science.gov (United States)

    Walter, Jonathan P; Pandy, Marcus G

    2017-10-01

    The aim of this study was to perform multi-body, muscle-driven, forward-dynamics simulations of human gait using a 6-degree-of-freedom (6-DOF) model of the knee in tandem with a surrogate model of articular contact and force control. A forward-dynamics simulation incorporating position, velocity and contact force-feedback control (FFC) was used to track full-body motion capture data recorded for multiple trials of level walking and stair descent performed by two individuals with instrumented knee implants. Tibiofemoral contact force errors for FFC were compared against those obtained from a standard computed muscle control algorithm (CMC) with a 6-DOF knee contact model (CMC6); CMC with a 1-DOF translating hinge-knee model (CMC1); and static optimization with a 1-DOF translating hinge-knee model (SO). Tibiofemoral joint loads predicted by FFC and CMC6 were comparable for level walking, however FFC produced more accurate results for stair descent. SO yielded reasonable predictions of joint contact loading for level walking but significant differences between model and experiment were observed for stair descent. CMC1 produced the least accurate predictions of tibiofemoral contact loads for both tasks. Our findings suggest that reliable estimates of knee-joint loading may be obtained by incorporating position, velocity and force-feedback control with a multi-DOF model of joint contact in a forward-dynamics simulation of gait. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  2. The influence of atmospheric grid resolution in a climate model-forced ice sheet simulation

    Science.gov (United States)

    Lofverstrom, Marcus; Liakka, Johan

    2018-04-01

    Coupled climate-ice sheet simulations have been growing in popularity in recent years. Experiments of this type are however challenging as ice sheets evolve over multi-millennial timescales, which is beyond the practical integration limit of most Earth system models. A common method to increase model throughput is to trade resolution for computational efficiency (compromise accuracy for speed). Here we analyze how the resolution of an atmospheric general circulation model (AGCM) influences the simulation quality in a stand-alone ice sheet model. Four identical AGCM simulations of the Last Glacial Maximum (LGM) were run at different horizontal resolutions: T85 (1.4°), T42 (2.8°), T31 (3.8°), and T21 (5.6°). These simulations were subsequently used as forcing of an ice sheet model. While the T85 climate forcing reproduces the LGM ice sheets to a high accuracy, the intermediate resolution cases (T42 and T31) fail to build the Eurasian ice sheet. The T21 case fails in both Eurasia and North America. Sensitivity experiments using different surface mass balance parameterizations improve the simulations of the Eurasian ice sheet in the T42 case, but the compromise is a substantial ice buildup in Siberia. The T31 and T21 cases do not improve in the same way in Eurasia, though the latter simulates the continent-wide Laurentide ice sheet in North America. The difficulty to reproduce the LGM ice sheets in the T21 case is in broad agreement with previous studies using low-resolution atmospheric models, and is caused by a substantial deterioration of the model climate between the T31 and T21 resolutions. It is speculated that this deficiency may demonstrate a fundamental problem with using low-resolution atmospheric models in these types of experiments.

  3. Forcing of global ocean models using an atmospheric boundary layer model: assessing consequences for the simulation of the AMOC

    Science.gov (United States)

    Abel, Rafael; Boening, Claus

    2015-04-01

    Current practice in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in conjunction with a prescribed, and unresponsive, atmospheric state as given, e.g., by reanalysis products. This forcing formulation corresponds to assuming an atmosphere with infinite heat capacity, and effectively damps SST anomalies even on basin scales. It thus curtails an important negative feedback between meridional ocean heat transport and SST in the North Atlantic, rendering simulations of the AMOC in such models excessively sensitive to details in the freshwater fluxes. As a consequence, such simulations are known for spurious drift behaviors which can only partially controlled by introducing some (and sometimes strong) unphysical restoring of sea surface salinity. There have been several suggestions during the last 20 years for at least partially alleviating the problem by including some simplified model of the atmospheric boundary layer (AML) which allows a feedback of SST anomalies on the near-surface air temperature and humidity needed to calculate the surface fluxes. We here present simulations with a simple, only thermally active AML formulation (based on the 'CheapAML' proposed by Deremble et al., 2013) implemented in a global model configuration based on NEMO (ORCA05). In a suite of experiments building on the CORE-bulk forcing methodology, we examine some general features of the AML-solutions (in which only the winds are prescribed) in comparison to solutions with a prescribed atmosperic state. The focus is on the North Atlantic, where we find that the adaptation of the atmospheric temperature the simulated ocean state can lead to strong local modifications in the surface heat fluxes in frontal regions (e.g., the 'Northwest Corner'). We particularly assess the potential of the AML-forcing concept for obtaining AMOC-simulations with reduced spurious drift, without

  4. Experimental validation of vibro-impact force models using numeric simulation and perturbation methods

    DEFF Research Database (Denmark)

    de Souza Reboucas, Geraldo Francisco; Santos, Ilmar; Thomsen, Jon Juel

    2017-01-01

    The frequency response of a single-degree of freedom vibro-impact oscillator is analysed using Harmonic Linearization, Averaging and Numeric Simulations considering two different impact force models, one given by a piecewise-linear function and other by a high-order polynomial. Experimental...

  5. A teleoperation training simulator with visual and kinesthetic force virtual reality

    Science.gov (United States)

    Kim, Won S.; Schenker, Paul

    1992-01-01

    A force-reflecting teleoperation training simulator with a high-fidelity real-time graphics display has been developed for operator training. A novel feature of this simulator is that it enables the operator to feel contact forces and torques through a force-reflecting controller during the execution of the simulated peg-in-hole task, providing the operator with the feel of visual and kinesthetic force virtual reality. A peg-in-hole task is used in our simulated teleoperation trainer as a generic teleoperation task. A quasi-static analysis of a two-dimensional peg-in-hole task model has been extended to a three-dimensional model analysis to compute contact forces and torques for a virtual realization of kinesthetic force feedback. The simulator allows the user to specify force reflection gains and stiffness (compliance) values of the manipulator hand for both the three translational and the three rotational axes in Cartesian space. Three viewing modes are provided for graphics display: single view, two split views, and stereoscopic view.

  6. Climate simulations for 1880-2003 with GISS modelE

    International Nuclear Information System (INIS)

    Hansen, J.; Lacis, A.; Miller, R.; Schmidt, G.A.; Russell, G.; Canuto, V.; Del Genio, A.; Hall, T.; Hansen, J.; Sato, M.; Kharecha, P.; Nazarenko, L.; Aleinov, I.; Bauer, S.; Chandler, M.; Faluvegi, G.; Jonas, J.; Ruedy, R.; Lo, K.; Cheng, Y.; Lacis, A.; Schmidt, G.A.; Del Genio, A.; Miller, R.; Cairns, B.; Hall, T.; Baum, E.; Cohen, A.; Fleming, E.; Jackman, C.; Friend, A.; Kelley, M.

    2007-01-01

    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcing. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcing, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcing are due to model deficiencies, inaccurate or incomplete forcing, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcing, we aim to provide a benchmark against which the effect of improvements in the model, climate forcing, and observations can be tested. Principal model deficiencies include unrealistic weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. Greatest uncertainties in the forcing are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds. (authors)

  7. Distributed force simulation for arbitrarily shaped IPMC actuators

    International Nuclear Information System (INIS)

    Martinez, M; Lumia, R

    2013-01-01

    This paper presents a simulation model that predicts the force output of arbitrarily shaped ionic polymer–metal composite (IPMC) actuators. Theoretical and experimental force measurements are compared for a triangular IPMC actuator with a tip length of 11 mm. The results show that the simulated tip force is within 80% of the experimentally determined value. Simulated electrical results for an artificial shark pectoral fin and a 7 mm × 17 mm actuator are also presented. In each case, the voltage is shown to decrease exponentially from the input point. The results of an ion migration simulation for a 180 μm cubic element of Nafion are presented for both a constant 2 V input and a 2 V 0.25 Hz sine signal. Finally, the simulated deformation of an IPMC shark fin is shown. (paper)

  8. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    Directory of Open Access Journals (Sweden)

    Santiago D. Solares

    2015-11-01

    Full Text Available This paper introduces a quasi-3-dimensional (Q3D viscoelastic model and software tool for use in atomic force microscopy (AFM simulations. The model is based on a 2-dimensional array of standard linear solid (SLS model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  9. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy.

    Science.gov (United States)

    Solares, Santiago D

    2015-01-01

    This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  10. A Discrete-Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Post-Landing Operations

    National Research Council Canada - National Science Library

    Martindale, Michael

    2006-01-01

    The purpose of this research was to develop a discrete-event computer simulation model of the post-landing vehicle recoveoperations to allow the Air Force Research Laboratory, Air Vehicles Directorate...

  11. Validation of Multibody Program to Optimize Simulated Trajectories II Parachute Simulation with Interacting Forces

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.; Hotchko, Nathaniel J.

    2009-01-01

    A capability to simulate trajectories of multiple interacting rigid bodies has been developed, tested and validated. This capability uses the Program to Optimize Simulated Trajectories II (POST 2). The standard version of POST 2 allows trajectory simulation of multiple bodies without force interaction. In the current implementation, the force interaction between the parachute and the suspended bodies has been modeled using flexible lines, allowing accurate trajectory simulation of the individual bodies in flight. The POST 2 multibody capability is intended to be general purpose and applicable to any parachute entry trajectory simulation. This research paper explains the motivation for multibody parachute simulation, discusses implementation methods, and presents validation of this capability.

  12. Improved social force model based on exit selection for microscopic pedestrian simulation in subway station

    Institute of Scientific and Technical Information of China (English)

    郑勋; 李海鹰; 孟令云; 许心越; 陈旭

    2015-01-01

    An improved social force model based on exit selection is proposed to simulate pedestrians’ microscopic behaviors in subway station. The modification lies in considering three factors of spatial distance, occupant density and exit width. In addition, the problem of pedestrians selecting exit frequently is solved as follows: not changing to other exits in the affected area of one exit, using the probability of remaining preceding exit and invoking function of exit selection after several simulation steps. Pedestrians in subway station have some special characteristics, such as explicit destinations, different familiarities with subway station. Finally, Beijing Zoo Subway Station is taken as an example and the feasibility of the model results is verified through the comparison of the actual data and simulation data. The simulation results show that the improved model can depict the microscopic behaviors of pedestrians in subway station.

  13. Numerical Simulation of Recycled Concrete Using Convex Aggregate Model and Base Force Element Method

    Directory of Open Access Journals (Sweden)

    Yijiang Peng

    2016-01-01

    Full Text Available By using the Base Force Element Method (BFEM on potential energy principle, a new numerical concrete model, random convex aggregate model, is presented in this paper to simulate the experiment under uniaxial compression for recycled aggregate concrete (RAC which can also be referred to as recycled concrete. This model is considered as a heterogeneous composite which is composed of five mediums, including natural coarse aggregate, old mortar, new mortar, new interfacial transition zone (ITZ, and old ITZ. In order to simulate the damage processes of RAC, a curve damage model was adopted as the damage constitutive model and the strength theory of maximum tensile strain was used as the failure criterion in the BFEM on mesomechanics. The numerical results obtained in this paper which contained the uniaxial compressive strengths, size effects on strength, and damage processes of RAC are in agreement with experimental observations. The research works show that the random convex aggregate model and the BFEM with the curve damage model can be used for simulating the relationship between microstructure and mechanical properties of RAC.

  14. Multi-body simulation of a canine hind limb: model development, experimental validation and calculation of ground reaction forces

    Directory of Open Access Journals (Sweden)

    Wefstaedt Patrick

    2009-11-01

    Full Text Available Abstract Background Among other causes the long-term result of hip prostheses in dogs is determined by aseptic loosening. A prevention of prosthesis complications can be achieved by an optimization of the tribological system which finally results in improved implant duration. In this context a computerized model for the calculation of hip joint loadings during different motions would be of benefit. In a first step in the development of such an inverse dynamic multi-body simulation (MBS- model we here present the setup of a canine hind limb model applicable for the calculation of ground reaction forces. Methods The anatomical geometries of the MBS-model have been established using computer tomography- (CT- and magnetic resonance imaging- (MRI- data. The CT-data were collected from the pelvis, femora, tibiae and pads of a mixed-breed adult dog. Geometric information about 22 muscles of the pelvic extremity of 4 mixed-breed adult dogs was determined using MRI. Kinematic and kinetic data obtained by motion analysis of a clinically healthy dog during a gait cycle (1 m/s on an instrumented treadmill were used to drive the model in the multi-body simulation. Results and Discussion As a result the vertical ground reaction forces (z-direction calculated by the MBS-system show a maximum deviation of 1.75%BW for the left and 4.65%BW for the right hind limb from the treadmill measurements. The calculated peak ground reaction forces in z- and y-direction were found to be comparable to the treadmill measurements, whereas the curve characteristics of the forces in y-direction were not in complete alignment. Conclusion In conclusion, it could be demonstrated that the developed MBS-model is suitable for simulating ground reaction forces of dogs during walking. In forthcoming investigations the model will be developed further for the calculation of forces and moments acting on the hip joint during different movements, which can be of help in context with the in

  15. Forced Translocation of Polymer through Nanopore: Deterministic Model and Simulations

    Science.gov (United States)

    Wang, Yanqian; Panyukov, Sergey; Liao, Qi; Rubinstein, Michael

    2012-02-01

    We propose a new theoretical model of forced translocation of a polymer chain through a nanopore. We assume that DNA translocation at high fields proceeds too fast for the chain to relax, and thus the chain unravels loop by loop in an almost deterministic way. So the distribution of translocation times of a given monomer is controlled by the initial conformation of the chain (the distribution of its loops). Our model predicts the translocation time of each monomer as an explicit function of initial polymer conformation. We refer to this concept as ``fingerprinting''. The width of the translocation time distribution is determined by the loop distribution in initial conformation as well as by the thermal fluctuations of the polymer chain during the translocation process. We show that the conformational broadening δt of translocation times of m-th monomer δtm^1.5 is stronger than the thermal broadening δtm^1.25 The predictions of our deterministic model were verified by extensive molecular dynamics simulations

  16. Assessing the quality of force feedback in soft tissue simulation.

    Science.gov (United States)

    Basafa, Ehsan; Sefati, Shahin; Okamura, Allison M

    2011-01-01

    Many types of deformable models have been proposed for simulation of soft tissue in surgical simulators, but their realism in comparison to actual tissue is rarely assessed. In this paper, a nonlinear mass-spring model is used for realtime simulation of deformable soft tissues and providing force feedback to a human operator. Force-deformation curves of real soft tissue samples were obtained experimentally, and the model was tuned accordingly. To test the realism of the model, we conducted two human-user experiments involving palpation with a rigid probe. First, in a discrimination test, users identified the correct category of real and virtual tissue better than chance, and tended to identify the tissues as real more often than virtual. Second, users identified real and virtual tissues by name, after training on only real tissues. The sorting accuracy was the same for both real and virtual tissues. These results indicate that, despite model limitations, the simulation could convey the feel of touching real tissues. This evaluation approach could be used to compare and validate various soft-tissue simulators.

  17. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC.

    Science.gov (United States)

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-03-16

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO 2 , the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO 2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO 2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO 2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m 2 . For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m 2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m 2 , leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions.

  18. Modeling the subfilter scalar variance for large eddy simulation in forced isotropic turbulence

    Science.gov (United States)

    Cheminet, Adam; Blanquart, Guillaume

    2011-11-01

    Static and dynamic model for the subfilter scalar variance in homogeneous isotropic turbulence are investigated using direct numerical simulations (DNS) of a lineary forced passive scalar field. First, we introduce a new scalar forcing technique conditioned only on the scalar field which allows the fluctuating scalar field to reach a statistically stationary state. Statistical properties, including 2nd and 3rd statistical moments, spectra, and probability density functions of the scalar field have been analyzed. Using this technique, we performed constant density and variable density DNS of scalar mixing in isotropic turbulence. The results are used in an a-priori study of scalar variance models. Emphasis is placed on further studying the dynamic model introduced by G. Balarac, H. Pitsch and V. Raman [Phys. Fluids 20, (2008)]. Scalar variance models based on Bedford and Yeo's expansion are accurate for small filter width but errors arise in the inertial subrange. Results suggest that a constant coefficient computed from an assumed Kolmogorov spectrum is often sufficient to predict the subfilter scalar variance.

  19. Finite-time adaptive sliding mode force control for electro-hydraulic load simulator based on improved GMS friction model

    Science.gov (United States)

    Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun

    2018-03-01

    This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm ​combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.

  20. Long-range force and moment calculations in multiresolution simulations of molecular systems

    International Nuclear Information System (INIS)

    Poursina, Mohammad; Anderson, Kurt S.

    2012-01-01

    Multiresolution simulations of molecular systems such as DNAs, RNAs, and proteins are implemented using models with different resolutions ranging from a fully atomistic model to coarse-grained molecules, or even to continuum level system descriptions. For such simulations, pairwise force calculation is a serious bottleneck which can impose a prohibitive amount of computational load on the simulation if not performed wisely. Herein, we approximate the resultant force due to long-range particle-body and body-body interactions applicable to multiresolution simulations. Since the resultant force does not necessarily act through the center of mass of the body, it creates a moment about the mass center. Although this potentially important torque is neglected in many coarse-grained models which only use particle dynamics to formulate the dynamics of the system, it should be calculated and used when coarse-grained simulations are performed in a multibody scheme. Herein, the approximation for this moment due to far-field particle-body and body-body interactions is also provided.

  1. The effect of drive frequency and set point amplitude on tapping forces in atomic force microscopy: simulation and experiment

    International Nuclear Information System (INIS)

    Legleiter, Justin

    2009-01-01

    In tapping mode atomic force microscopy (AFM), a sharp probe tip attached to an oscillating cantilever is allowed to intermittently strike a surface. By raster scanning the probe while monitoring the oscillation amplitude of the cantilever via a feedback loop, topographical maps of surfaces with nanoscale resolution can be acquired. While numerous studies have employed numerical simulations to elucidate the time-resolved tapping force between the probe tip and surface, until recent technique developments, specific read-outs from such models could not be experimentally verified. In this study, we explore, via numerical simulation, the impact of imaging parameters, i.e. set point ratio and drive frequency as a function of resonance, on time-varying tip-sample force interactions, which are directly compared to reconstructed tapping forces from real AFM experiments. As the AFM model contains a feedback loop allowing for the simulation of the entire scanning process, we further explore the impact that various tip-sample force have on the entire imaging process.

  2. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  3. Development of femoral bone fracture model simulating muscular contraction force by pneumatic rubber actuator.

    Science.gov (United States)

    Sen, Shin; Ando, Takehiro; Kobayashi, Etsuko; Miyamoto, Hideaki; Ohashi, Satoru; Tanaka, Sakae; Joung, Sanghyun; Park, Il-Hyung; Sakuma, Ichiro

    2014-01-01

    In femoral fracture reduction, orthopedic surgeons must pull distal bone fragments with great traction force and return them to their correct positions, by referring to 2D-fluoroscopic images. Since this method is physically burdensome, the introduction of robotic assistance is desirable. While such robots have been developed, adequate control methods have not yet been established because of the lack of experimental data. It is difficult to obtain accurate data using cadavers or animals because they are different from the living human body's muscle characteristics and anatomy. Therefore, an experimental model for simulating human femoral characteristics is required. In this research, human muscles are reproduced using a McKibben-type pneumatic rubber actuator (artificial muscle) to develop a model that simulates typical femur muscles using artificial muscles.

  4. Computer Simulations of Contact Forces for Airbags with Different Folding Patterns During Deployment Phase

    Directory of Open Access Journals (Sweden)

    King H. Yang

    1995-01-01

    Full Text Available An explicit finite element method was used to study the neck load and the contact force between an occupant and an airbag during an out-of-position frontal automobile crash. Two different folding patterns and two different mounting angles of the airbag were simulated. For the four cases simulated, the occupant’s neck axial force ranged from 156 to 376% of the data obtained from in-position sled tests using the Hybrid III dummy. The neck shear force ranged from 87 to 229% and the neck flexion moment ranged from 68 to 127% of in-position experimental results. In both 300 mounting angle simulations, the neck axial forces were higher than that of the two simulations with 00 mounting angles, but the trend for the neck shear force was the opposite. Although the kinematics of the model appear reasonable, the numbers generated by the model must be reviewed with great caution because the model has not been fully validated.

  5. Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model

    KAUST Repository

    Schmidt, H.; Rast, S.; Bunzel, F.; Esch, M.; Giorgetta, M.; Kinne, S.; Krismer, T.; Stenchikov, Georgiy L.; Timmreck, C.; Tomassini, L.; Walz, M.

    2013-01-01

    The ECHAM6 atmospheric general circulation model is the atmosphere component of the Max Planck Institute Earth System Model (MPI-ESM) that is used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. As ECHAM6 has its uppermost layer centered at 0.01 hPa in the upper mesosphere, these simulations offer the opportunity to study the middle atmosphere climate change and its relation to the troposphere on the basis of a very comprehensive set of state-of-the-art model simulations. The goals of this paper are (a) to introduce those new features of ECHAM6 particularly relevant for the middle atmosphere, including external forcing data, and (b) to evaluate the simulated middle atmosphere and describe the simulated response to natural and anthropogenic forcings. New features in ECHAM6 with respect to ECHAM5 include a new short-wave radiation scheme, the option to vary spectral irradiance independent of total solar irradiance, and a latitude-dependent gravity-wave source strength. The description of external forcing data focuses on solar irradiance and ozone. Stratospheric temperature trends simulated with the MPI-ESM for the last decades of the 20th century agree well with observations. The future projections depend strongly on the scenario. Under the high emission scenario RCP8.5, simulated temperatures are locally lower by more than 20 K than preindustrial values. Many of the simulated patterns of the responses to natural forcings as provided by solar variability, volcanic aerosols, and El Nino-Southern Oscillation, largely agree with the observations. 2013. American Geophysical Union. All Rights Reserved.

  6. Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model

    KAUST Repository

    Schmidt, H.

    2013-03-06

    The ECHAM6 atmospheric general circulation model is the atmosphere component of the Max Planck Institute Earth System Model (MPI-ESM) that is used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations. As ECHAM6 has its uppermost layer centered at 0.01 hPa in the upper mesosphere, these simulations offer the opportunity to study the middle atmosphere climate change and its relation to the troposphere on the basis of a very comprehensive set of state-of-the-art model simulations. The goals of this paper are (a) to introduce those new features of ECHAM6 particularly relevant for the middle atmosphere, including external forcing data, and (b) to evaluate the simulated middle atmosphere and describe the simulated response to natural and anthropogenic forcings. New features in ECHAM6 with respect to ECHAM5 include a new short-wave radiation scheme, the option to vary spectral irradiance independent of total solar irradiance, and a latitude-dependent gravity-wave source strength. The description of external forcing data focuses on solar irradiance and ozone. Stratospheric temperature trends simulated with the MPI-ESM for the last decades of the 20th century agree well with observations. The future projections depend strongly on the scenario. Under the high emission scenario RCP8.5, simulated temperatures are locally lower by more than 20 K than preindustrial values. Many of the simulated patterns of the responses to natural forcings as provided by solar variability, volcanic aerosols, and El Nino-Southern Oscillation, largely agree with the observations. 2013. American Geophysical Union. All Rights Reserved.

  7. How operator admittance affects the response of a teleoperation system to assistive forces – A model analytic study and simulation

    International Nuclear Information System (INIS)

    Wildenbeest, J.G.W.; Abbink, D.A.; Boessenkool, H.; Heemskerk, C.J.M.; Koning, J.F.

    2013-01-01

    Highlights: ► We developed a computational model of a human operator controlling a teleoperation system based on feedforward control, while performing a free-space motion. ► We studied how assistive forces affect the response of the combined system of telemanipulator and operator, when operator admittance changes due to task instruction or arm configuration. ► Inappropriate assistive forces can lead to assistive forces that are either not perceived, or deflect the combined system; assistive forces should be tailored to operator admittance. ► It is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail. -- Abstract: Haptic shared control is a promising approach to increase the effectiveness of remote handling operations. While in haptic shared control the operator is continuously guided with assistive forces, the operator's response to forces is not fully understood. This study describes the development of a computational model of a human operator controlling a teleoperation system based on feedforward control. In a simulation, the operator's response to repulsive forces in free-space motions was modeled for two degrees of freedom, for two operator endpoint admittances (estimated by means of closed-loop identification techniques). The simulation results show that similar repulsive forces lead to substantial discrepancies in response when admittance settings mismatch; wrongly estimated operator admittances can lead to assistive forces that are either not perceived, or deflect the combined system of human operator and telemanipulator. It is concluded that assistive forces should be tailored to the arm configuration and the type of task performed. In order to utilize haptic shared control to its full potential, it is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail

  8. How operator admittance affects the response of a teleoperation system to assistive forces – A model analytic study and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wildenbeest, J.G.W., E-mail: j.g.w.wildenbeest@tudelft.nl [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2626 CD Delft (Netherlands); Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); Abbink, D.A. [Department of Biomechanical Engineering, Delft University of Technology, Mekelweg 2, 2626 CD Delft (Netherlands); Boessenkool, H. [FOM Institute DIFFER (Dutch Institute of Fundamental Energy Research), Association EUROTOM-FOM, Partner in the Trilateral Eurogio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands); Heemskerk, C.J.M.; Koning, J.F. [Heemskerk Innovative Technology B.V., Jonckerweg 12, 2201 DZ Noordwijk (Netherlands); FOM Institute DIFFER (Dutch Institute of Fundamental Energy Research), Association EUROTOM-FOM, Partner in the Trilateral Eurogio Cluster, P.O. Box 1207, 3430 BE Nieuwegein (Netherlands)

    2013-10-15

    Highlights: ► We developed a computational model of a human operator controlling a teleoperation system based on feedforward control, while performing a free-space motion. ► We studied how assistive forces affect the response of the combined system of telemanipulator and operator, when operator admittance changes due to task instruction or arm configuration. ► Inappropriate assistive forces can lead to assistive forces that are either not perceived, or deflect the combined system; assistive forces should be tailored to operator admittance. ► It is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail. -- Abstract: Haptic shared control is a promising approach to increase the effectiveness of remote handling operations. While in haptic shared control the operator is continuously guided with assistive forces, the operator's response to forces is not fully understood. This study describes the development of a computational model of a human operator controlling a teleoperation system based on feedforward control. In a simulation, the operator's response to repulsive forces in free-space motions was modeled for two degrees of freedom, for two operator endpoint admittances (estimated by means of closed-loop identification techniques). The simulation results show that similar repulsive forces lead to substantial discrepancies in response when admittance settings mismatch; wrongly estimated operator admittances can lead to assistive forces that are either not perceived, or deflect the combined system of human operator and telemanipulator. It is concluded that assistive forces should be tailored to the arm configuration and the type of task performed. In order to utilize haptic shared control to its full potential, it is required to study, measure and quantitatively model operator behavior for teleoperated tasks in more detail.

  9. Driving-forces model on individual behavior in scenarios considering moving threat agents

    Science.gov (United States)

    Li, Shuying; Zhuang, Jun; Shen, Shifei; Wang, Jia

    2017-09-01

    The individual behavior model is a contributory factor to improve the accuracy of agent-based simulation in different scenarios. However, few studies have considered moving threat agents, which often occur in terrorist attacks caused by attackers with close-range weapons (e.g., sword, stick). At the same time, many existing behavior models lack validation from cases or experiments. This paper builds a new individual behavior model based on seven behavioral hypotheses. The driving-forces model is an extension of the classical social force model considering scenarios including moving threat agents. An experiment was conducted to validate the key components of the model. Then the model is compared with an advanced Elliptical Specification II social force model, by calculating the fitting errors between the simulated and experimental trajectories, and being applied to simulate a specific circumstance. Our results show that the driving-forces model reduced the fitting error by an average of 33.9% and the standard deviation by an average of 44.5%, which indicates the accuracy and stability of the model in the studied situation. The new driving-forces model could be used to simulate individual behavior when analyzing the risk of specific scenarios using agent-based simulation methods, such as risk analysis of close-range terrorist attacks in public places.

  10. Selecting a dynamic simulation modeling method for health care delivery research-part 2: report of the ISPOR Dynamic Simulation Modeling Emerging Good Practices Task Force.

    Science.gov (United States)

    Marshall, Deborah A; Burgos-Liz, Lina; IJzerman, Maarten J; Crown, William; Padula, William V; Wong, Peter K; Pasupathy, Kalyan S; Higashi, Mitchell K; Osgood, Nathaniel D

    2015-03-01

    In a previous report, the ISPOR Task Force on Dynamic Simulation Modeling Applications in Health Care Delivery Research Emerging Good Practices introduced the fundamentals of dynamic simulation modeling and identified the types of health care delivery problems for which dynamic simulation modeling can be used more effectively than other modeling methods. The hierarchical relationship between the health care delivery system, providers, patients, and other stakeholders exhibits a level of complexity that ought to be captured using dynamic simulation modeling methods. As a tool to help researchers decide whether dynamic simulation modeling is an appropriate method for modeling the effects of an intervention on a health care system, we presented the System, Interactions, Multilevel, Understanding, Loops, Agents, Time, Emergence (SIMULATE) checklist consisting of eight elements. This report builds on the previous work, systematically comparing each of the three most commonly used dynamic simulation modeling methods-system dynamics, discrete-event simulation, and agent-based modeling. We review criteria for selecting the most suitable method depending on 1) the purpose-type of problem and research questions being investigated, 2) the object-scope of the model, and 3) the method to model the object to achieve the purpose. Finally, we provide guidance for emerging good practices for dynamic simulation modeling in the health sector, covering all aspects, from the engagement of decision makers in the model design through model maintenance and upkeep. We conclude by providing some recommendations about the application of these methods to add value to informed decision making, with an emphasis on stakeholder engagement, starting with the problem definition. Finally, we identify areas in which further methodological development will likely occur given the growing "volume, velocity and variety" and availability of "big data" to provide empirical evidence and techniques

  11. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations. Part I: Surface fluxes

    Science.gov (United States)

    Josse, P.; Caniaux, G.; Giordani, H.; Planton, S.

    1999-04-01

    A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer to the atmosphere is

  12. A piecewise-integration method for simulating the influence of external forcing on climate

    Institute of Scientific and Technical Information of China (English)

    Zhifu Zhang; Chongjian Qiu; Chenghai Wang

    2008-01-01

    Climate drift occurs in most general circulation models (GCMs) as a result of incomplete physical and numerical representation of the complex climate system,which may cause large uncertainty in sensitivity experiments evaluating climate response to changes in external forcing.To solve this problem,we propose a piecewise-integration method to reduce the systematic error in climate sensitivity studies.The observations are firstly assimilated into a numerical model by using the dynamic relaxation technique to relax to the current state of atmosphere,and then the assimilated fields are continuously used to reinitialize the simulation to reduce the error of climate simulation.When the numerical model is integrated with changed external forcing,the results can be split into two parts,background and perturbation fields,and the background is the state before the external forcing is changed.The piecewise-integration method is used to continuously reinitialize the model with the assimilated field,instead of the background.Therefore,the simulation error of the model with the external forcing can be reduced.In this way,the accuracy of climate sensitivity experiments is greatly improved.Tests with a simple low-order spectral model show that this approach can significantly reduce the uncertainty of climate sensitivity experiments.

  13. Force and Stress along Simulated Dissociation Pathways of Cucurbituril-Guest Systems.

    Science.gov (United States)

    Velez-Vega, Camilo; Gilson, Michael K

    2012-03-13

    The field of host-guest chemistry provides computationally tractable yet informative model systems for biomolecular recognition. We applied molecular dynamics simulations to study the forces and mechanical stresses associated with forced dissociation of aqueous cucurbituril-guest complexes with high binding affinities. First, the unbinding transitions were modeled with constant velocity pulling (steered dynamics) and a soft spring constant, to model atomic force microscopy (AFM) experiments. The computed length-force profiles yield rupture forces in good agreement with available measurements. We also used steered dynamics with high spring constants to generate paths characterized by a tight control over the specified pulling distance; these paths were then equilibrated via umbrella sampling simulations and used to compute time-averaged mechanical stresses along the dissociation pathways. The stress calculations proved to be informative regarding the key interactions determining the length-force profiles and rupture forces. In particular, the unbinding transition of one complex is found to be a stepwise process, which is initially dominated by electrostatic interactions between the guest's ammoniums and the host's carbonyl groups, and subsequently limited by the extraction of the guest's bulky bicyclooctane moiety; the latter step requires some bond stretching at the cucurbituril's extraction portal. Conversely, the dissociation of a second complex with a more slender guest is mainly driven by successive electrostatic interactions between the different guest's ammoniums and the host's carbonyl groups. The calculations also provide information on the origins of thermodynamic irreversibilities in these forced dissociation processes.

  14. Artificial force fields for multi-agent simulations of maritime traffic and risk estimation

    NARCIS (Netherlands)

    Xiao, F.; Ligteringen, H.; Van Gulijk, C.; Ale, B.J.M.

    2012-01-01

    A probabilistic risk model is designed to estimate probabilities of collisions for shipping accidents in busy waterways. We propose a method based on multi-agent simulation that uses an artificial force field to model ship maneuvers. The artificial force field is calibrated by AIS data (Automatic

  15. Molecular dynamics simulation of amplitude modulation atomic force microscopy

    International Nuclear Information System (INIS)

    Hu, Xiaoli; Martini, Ashlie; Egberts, Philip; Dong, Yalin

    2015-01-01

    Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip–substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip–sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement. (paper)

  16. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    P. Josse

    1999-04-01

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  17. Intercomparison of oceanic and atmospheric forced and coupled mesoscale simulations Part I: Surface fluxes

    Directory of Open Access Journals (Sweden)

    H. Giordani

    Full Text Available A mesoscale non-hydrostatic atmospheric model has been coupled with a mesoscale oceanic model. The case study is a four-day simulation of a strong storm event observed during the SEMAPHORE experiment over a 500 × 500 km2 domain. This domain encompasses a thermohaline front associated with the Azores current. In order to analyze the effect of mesoscale coupling, three simulations are compared: the first one with the atmospheric model forced by realistic sea surface temperature analyses; the second one with the ocean model forced by atmospheric fields, derived from weather forecast re-analyses; the third one with the models being coupled. For these three simulations the surface fluxes were computed with the same bulk parametrization. All three simulations succeed well in representing the main oceanic or atmospheric features observed during the storm. Comparison of surface fields with in situ observations reveals that the winds of the fine mesh atmospheric model are more realistic than those of the weather forecast re-analyses. The low-level winds simulated with the atmospheric model in the forced and coupled simulations are appreciably stronger than the re-analyzed winds. They also generate stronger fluxes. The coupled simulation has the strongest surface heat fluxes: the difference in the net heat budget with the oceanic forced simulation reaches on average 50 Wm-2 over the simulation period. Sea surface-temperature cooling is too weak in both simulations, but is improved in the coupled run and matches better the cooling observed with drifters. The spatial distributions of sea surface-temperature cooling and surface fluxes are strongly inhomogeneous over the simulation domain. The amplitude of the flux variation is maximum in the coupled run. Moreover the weak correlation between the cooling and heat flux patterns indicates that the surface fluxes are not responsible for the whole cooling and suggests that the response of the ocean mixed layer

  18. Exploring the energy landscape of biopolymers using single molecule force spectroscopy and molecular simulations

    OpenAIRE

    Hyeon, Changbong

    2010-01-01

    In recent years, single molecule force techniques have opened a new avenue to decipher the folding landscapes of biopolymers by allowing us to watch and manipulate the dynamics of individual proteins and nucleic acids. In single molecule force experiments, quantitative analyses of measurements employing sound theoretical models and molecular simulations play central role more than any other field. With a brief description of basic theories for force mechanics and molecular simulation techniqu...

  19. Fixed-Charge Atomistic Force Fields for Molecular Dynamics Simulations in the Condensed Phase: An Overview.

    Science.gov (United States)

    Riniker, Sereina

    2018-03-26

    In molecular dynamics or Monte Carlo simulations, the interactions between the particles (atoms) in the system are described by a so-called force field. The empirical functional form of classical fixed-charge force fields dates back to 1969 and remains essentially unchanged. In a fixed-charge force field, the polarization is not modeled explicitly, i.e. the effective partial charges do not change depending on conformation and environment. This simplification allows, however, a dramatic reduction in computational cost compared to polarizable force fields and in particular quantum-chemical modeling. The past decades have shown that simulations employing carefully parametrized fixed-charge force fields can provide useful insights into biological and chemical questions. This overview focuses on the four major force-field families, i.e. AMBER, CHARMM, GROMOS, and OPLS, which are based on the same classical functional form and are continuously improved to the present day. The overview is aimed at readers entering the field of (bio)molecular simulations. More experienced users may find the comparison and historical development of the force-field families interesting.

  20. Forced vibration tests and simulation analyses of a nuclear reactor building. Part 2: simulation analyses

    International Nuclear Information System (INIS)

    Kuno, M.; Nakagawa, S.; Momma, T.; Naito, Y.; Niwa, M.; Motohashi, S.

    1995-01-01

    Forced vibration tests of a BWR-type reactor building. Hamaoka Unit 4, were performed. Valuable data on the dynamic characteristics of the soil-structure interaction system were obtained through the tests. Simulation analyses of the fundamental dynamic characteristics of the soil-structure system were conducted, using a basic lumped mass soil-structure model (lattice model), and strong correlation with the measured data was obtained. Furthermore, detailed simulation models were employed to investigate the effects of simultaneously induced vertical response and response of the adjacent turbine building on the lateral response of the reactor building. (author). 4 refs., 11 figs

  1. Simulated non-contact atomic force microscopy for GaAs surfaces based on real-space pseudopotentials

    International Nuclear Information System (INIS)

    Kim, Minjung; Chelikowsky, James R.

    2014-01-01

    We simulate non-contact atomic force microscopy (AFM) with a GaAs(1 1 0) surface using a real-space ab initio pseudopotential method. While most ab initio simulations include an explicit model for the AFM tip, our method does not introduce the tip modeling step. This approach results in a considerable reduction of computational work, and also provides complete AFM images, which can be directly compared to experiment. By analyzing tip-surface interaction forces in both our results and previous ab initio simulations, we find that our method provides very similar force profile to the pure Si tip results. We conclude that our method works well for systems in which the tip is not chemically active.

  2. Design and simulation of superconducting Lorentz Force Electrical Impedance Tomography (LFEIT)

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Boyang, E-mail: bs506@cam.ac.uk; Fu, Lin, E-mail: lf359@cam.ac.uk; Geng, Jianzhao, E-mail: jg717@cam.ac.uk; Zhang, Xiuchang, E-mail: xz326@cam.ac.uk; Zhang, Heng, E-mail: hz301@cam.ac.uk; Dong, Qihuan, E-mail: qd210@cam.ac.uk; Li, Chao, E-mail: cl644@cam.ac.uk; Li, Jing, E-mail: jl908@cam.ac.uk; Coombs, T.A., E-mail: tac1000@cam.ac.uk

    2016-05-15

    Highlights: • Design of superconducting magnets using Halbach Array configuration. • Combination of superconducting magnets together with Lorentz Force Electrical Impedance Tomography (LFEIT) system. • Simulation of superconducting LFEIT system based on the theory of magneto-acoustic effect. - Abstract: Lorentz Force Electrical Impedance Tomography (LFEIT) is a hybrid diagnostic scanner with strong capability for biological imaging, particularly in cancer and haemorrhages detection. This paper presents the design and simulation of a novel combination: a superconducting magnet together with LFEIT system. Superconducting magnets can generate magnetic field with high intensity and homogeneity, which could significantly enhance the imaging performance. The modelling of superconducting magnets was carried out using Finite Element Method (FEM) package, COMSOL Multiphysics, which was based on Partial Differential Equation (PDE) model with H-formulation coupling B-dependent critical current density and bulk approximation. The mathematical model for LFEIT system was built based on the theory of magneto-acoustic effect. The magnetic field properties from magnet design were imported into the LFEIT model. The basic imaging of electrical signal was developed using MATLAB codes. The LFEIT model simulated two samples located in three different magnetic fields with varying magnetic strength and homogeneity.

  3. Determination of Quantum Chemistry Based Force Fields for Molecular Dynamics Simulations of Aromatic Polymers

    Science.gov (United States)

    Jaffe, Richard; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Ab initio quantum chemistry calculations for model molecules can be used to parameterize force fields for molecular dynamics simulations of polymers. Emphasis in our research group is on using quantum chemistry-based force fields for molecular dynamics simulations of organic polymers in the melt and glassy states, but the methodology is applicable to simulations of small molecules, multicomponent systems and solutions. Special attention is paid to deriving reliable descriptions of the non-bonded and electrostatic interactions. Several procedures have been developed for deriving and calibrating these parameters. Our force fields for aromatic polyimide simulations will be described. In this application, the intermolecular interactions are the critical factor in determining many properties of the polymer (including its color).

  4. Flight Testing an Iced Business Jet for Flight Simulation Model Validation

    Science.gov (United States)

    Ratvasky, Thomas P.; Barnhart, Billy P.; Lee, Sam; Cooper, Jon

    2007-01-01

    A flight test of a business jet aircraft with various ice accretions was performed to obtain data to validate flight simulation models developed through wind tunnel tests. Three types of ice accretions were tested: pre-activation roughness, runback shapes that form downstream of the thermal wing ice protection system, and a wing ice protection system failure shape. The high fidelity flight simulation models of this business jet aircraft were validated using a software tool called "Overdrive." Through comparisons of flight-extracted aerodynamic forces and moments to simulation-predicted forces and moments, the simulation models were successfully validated. Only minor adjustments in the simulation database were required to obtain adequate match, signifying the process used to develop the simulation models was successful. The simulation models were implemented in the NASA Ice Contamination Effects Flight Training Device (ICEFTD) to enable company pilots to evaluate flight characteristics of the simulation models. By and large, the pilots confirmed good similarities in the flight characteristics when compared to the real airplane. However, pilots noted pitch up tendencies at stall with the flaps extended that were not representative of the airplane and identified some differences in pilot forces. The elevator hinge moment model and implementation of the control forces on the ICEFTD were identified as a driver in the pitch ups and control force issues, and will be an area for future work.

  5. Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations

    Science.gov (United States)

    Mockler, E. M.; Chun, K. P.; Sapriza-Azuri, G.; Bruen, M.; Wheater, H. S.

    2016-11-01

    Predictions of river flow dynamics provide vital information for many aspects of water management including water resource planning, climate adaptation, and flood and drought assessments. Many of the subjective choices that modellers make including model and criteria selection can have a significant impact on the magnitude and distribution of the output uncertainty. Hydrological modellers are tasked with understanding and minimising the uncertainty surrounding streamflow predictions before communicating the overall uncertainty to decision makers. Parameter uncertainty in conceptual rainfall-runoff models has been widely investigated, and model structural uncertainty and forcing data have been receiving increasing attention. This study aimed to assess uncertainties in streamflow predictions due to forcing data and the identification of behavioural parameter sets in 31 Irish catchments. By combining stochastic rainfall ensembles and multiple parameter sets for three conceptual rainfall-runoff models, an analysis of variance model was used to decompose the total uncertainty in streamflow simulations into contributions from (i) forcing data, (ii) identification of model parameters and (iii) interactions between the two. The analysis illustrates that, for our subjective choices, hydrological model selection had a greater contribution to overall uncertainty, while performance criteria selection influenced the relative intra-annual uncertainties in streamflow predictions. Uncertainties in streamflow predictions due to the method of determining parameters were relatively lower for wetter catchments, and more evenly distributed throughout the year when the Nash-Sutcliffe Efficiency of logarithmic values of flow (lnNSE) was the evaluation criterion.

  6. Pedestrians’ behavior in emergency evacuation: Modeling and simulation

    Science.gov (United States)

    Wang, Lei; Zheng, Jie-Hui; Zhang, Xiao-Shuang; Zhang, Jian-Lin; Wang, Qiu-Zhen; Zhang, Qian

    2016-11-01

    The social force model has been widely used to simulate pedestrian evacuation by analyzing attractive, repulsive, driving, and fluctuating forces among pedestrians. Many researchers have improved its limitations in simulating behaviors of large-scale population. This study modifies the well-accepted social force model by considering the impacts of interaction among companions and further develops a comprehensive model by combining that with a multi-exit utility function. Then numerical simulations of evacuations based on the comprehensive model are implemented in the waiting hall of the Wulin Square Subway Station in Hangzhou, China. The results provide safety thresholds of pedestrian density and panic levels in different operation situations. In spite of the operation situation and the panic level, a larger friend-group size results in lower evacuation efficiency. Our study makes important contributions to building a comprehensive multi-exit social force model and to applying it to actual scenarios, which produces data to facilitate decision making in contingency plans and emergency treatment. Project supported by the National Natural Science Foundation of China (Grant No. 71471163).

  7. GPU-based Green's function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models.

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W; McGough, Robert J

    2018-05-15

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green's functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green's function approach are ideally suited for high-performance GPUs.

  8. Walking Ahead: The Headed Social Force Model.

    Directory of Open Access Journals (Sweden)

    Francesco Farina

    Full Text Available Human motion models are finding an increasing number of novel applications in many different fields, such as building design, computer graphics and robot motion planning. The Social Force Model is one of the most popular alternatives to describe the motion of pedestrians. By resorting to a physical analogy, individuals are assimilated to point-wise particles subject to social forces which drive their dynamics. Such a model implicitly assumes that humans move isotropically. On the contrary, empirical evidence shows that people do have a preferred direction of motion, walking forward most of the time. Lateral motions are observed only in specific circumstances, such as when navigating in overcrowded environments or avoiding unexpected obstacles. In this paper, the Headed Social Force Model is introduced in order to improve the realism of the trajectories generated by the classical Social Force Model. The key feature of the proposed approach is the inclusion of the pedestrians' heading into the dynamic model used to describe the motion of each individual. The force and torque representing the model inputs are computed as suitable functions of the force terms resulting from the traditional Social Force Model. Moreover, a new force contribution is introduced in order to model the behavior of people walking together as a single group. The proposed model features high versatility, being able to reproduce both the unicycle-like trajectories typical of people moving in open spaces and the point-wise motion patterns occurring in high density scenarios. Extensive numerical simulations show an increased regularity of the resulting trajectories and confirm a general improvement of the model realism.

  9. Information driving force and its application in agent-based modeling

    Science.gov (United States)

    Chen, Ting-Ting; Zheng, Bo; Li, Yan; Jiang, Xiong-Fei

    2018-04-01

    Exploring the scientific impact of online big-data has attracted much attention of researchers from different fields in recent years. Complex financial systems are typical open systems profoundly influenced by the external information. Based on the large-scale data in the public media and stock markets, we first define an information driving force, and analyze how it affects the complex financial system. The information driving force is observed to be asymmetric in the bull and bear market states. As an application, we then propose an agent-based model driven by the information driving force. Especially, all the key parameters are determined from the empirical analysis rather than from statistical fitting of the simulation results. With our model, both the stationary properties and non-stationary dynamic behaviors are simulated. Considering the mean-field effect of the external information, we also propose a few-body model to simulate the financial market in the laboratory.

  10. Modelling, simulation and applications of longitudinal train dynamics

    Science.gov (United States)

    Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan

    2017-10-01

    Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.

  11. Modified two-layer social force model for emergency earthquake evacuation

    Science.gov (United States)

    Zhang, Hao; Liu, Hong; Qin, Xin; Liu, Baoxi

    2018-02-01

    Studies of crowd behavior with related research on computer simulation provide an effective basis for architectural design and effective crowd management. Based on low-density group organization patterns, a modified two-layer social force model is proposed in this paper to simulate and reproduce a group gathering process. First, this paper studies evacuation videos from the Luan'xian earthquake in 2012, and extends the study of group organization patterns to a higher density. Furthermore, taking full advantage of the strength in crowd gathering simulations, a new method on grouping and guidance is proposed while using crowd dynamics. Second, a real-life grouping situation in earthquake evacuation is simulated and reproduced. Comparing with the fundamental social force model and existing guided crowd model, the modified model reduces congestion time and truly reflects group behaviors. Furthermore, the experiment result also shows that a stable group pattern and a suitable leader could decrease collision and allow a safer evacuation process.

  12. Influence of wheel-rail contact modelling on vehicle dynamic simulation

    Science.gov (United States)

    Burgelman, Nico; Sichani, Matin Sh.; Enblom, Roger; Berg, Mats; Li, Zili; Dollevoet, Rolf

    2015-08-01

    This paper presents a comparison of four models of rolling contact used for online contact force evaluation in rail vehicle dynamics. Until now only a few wheel-rail contact models have been used for online simulation in multibody software (MBS). Many more models exist and their behaviour has been studied offline, but a comparative study of the mutual influence between the calculation of the creep forces and the simulated vehicle dynamics seems to be missing. Such a comparison would help researchers with the assessment of accuracy and calculation time. The contact methods investigated in this paper are FASTSIM, Linder, Kik-Piotrowski and Stripes. They are compared through a coupling between an MBS for the vehicle simulation and Matlab for the contact models. This way the influence of the creep force calculation on the vehicle simulation is investigated. More specifically this study focuses on the influence of the contact model on the simulation of the hunting motion and on the curving behaviour.

  13. Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution

    Science.gov (United States)

    Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.

    2018-01-01

    In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.

  14. GPU-based Green’s function simulations of shear waves generated by an applied acoustic radiation force in elastic and viscoelastic models

    Science.gov (United States)

    Yang, Yiqun; Urban, Matthew W.; McGough, Robert J.

    2018-05-01

    Shear wave calculations induced by an acoustic radiation force are very time-consuming on desktop computers, and high-performance graphics processing units (GPUs) achieve dramatic reductions in the computation time for these simulations. The acoustic radiation force is calculated using the fast near field method and the angular spectrum approach, and then the shear waves are calculated in parallel with Green’s functions on a GPU. This combination enables rapid evaluation of shear waves for push beams with different spatial samplings and for apertures with different f/#. Relative to shear wave simulations that evaluate the same algorithm on an Intel i7 desktop computer, a high performance nVidia GPU reduces the time required for these calculations by a factor of 45 and 700 when applied to elastic and viscoelastic shear wave simulation models, respectively. These GPU-accelerated simulations also compared to measurements in different viscoelastic phantoms, and the results are similar. For parametric evaluations and for comparisons with measured shear wave data, shear wave simulations with the Green’s function approach are ideally suited for high-performance GPUs.

  15. Simulation of airflow and aerodynamic forces acting on a commercial turbine ventilator

    International Nuclear Information System (INIS)

    Farahani, A.S.; Nor Mariah Adam; Khairol Anuar

    2009-01-01

    Full text: This study is concerned with performing simulation of airflow using Computational Fluid Dynamics (CFD) technique code name FLUENT so as to visualize the flow behavior around and within turbine ventilator in addition to determining the aerodynamic forces acting on turbine ventilator during operation and comparing the simulated results to the wind tunnel experiment. To achieve this, Realizable k-ε and RSM turbulence models are used by taking advantage of moving mesh method to simulate the rotation of turbine ventilator and the consequent results are obtained through the sequential process which ensures accuracy of the computations. The results demonstrated that, the RSM turbulence model shows the best performance on flow visualization and predicting the aerodynamic forces acting on a turbine ventilator. Results from this work would lead us to a noticeable increase in efficiency of future turbine ventilator by enhancing the shape of inner vanes, and redesign them using CFD technique. (author)

  16. Communication: Multiple atomistic force fields in a single enhanced sampling simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoang Viet, Man [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202 (United States); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France); Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2015-07-14

    The main concerns of biomolecular dynamics simulations are the convergence of the conformational sampling and the dependence of the results on the force fields. While the first issue can be addressed by employing enhanced sampling techniques such as simulated tempering or replica exchange molecular dynamics, repeating these simulations with different force fields is very time consuming. Here, we propose an automatic method that includes different force fields into a single advanced sampling simulation. Conformational sampling using three all-atom force fields is enhanced by simulated tempering and by formulating the weight parameters of the simulated tempering method in terms of the energy fluctuations, the system is able to perform random walk in both temperature and force field spaces. The method is first demonstrated on a 1D system and then validated by the folding of the 10-residue chignolin peptide in explicit water.

  17. Sensitivity of ocean model simulation in the coastal ocean to the resolution of the meteorological forcing

    Science.gov (United States)

    Chen, Feng; Shapiro, Georgy; Thain, Richard

    2013-04-01

    The quality of ocean simulations depends on a number of factors such as approximations in governing equations, errors introduced by the numerical scheme, uncertainties in input parameters, and atmospheric forcing. The identification of relations between the uncertainties in input and output data is still a challenge for the development of numerical models. The impacts of ocean variables on ocean models are still not well known (e.g., Kara et al., 2009). Given the considerable importance of the atmospheric forcing to the air-sea interaction, it is essential that researchers in ocean modelling work need a good understanding about how sensitive the atmospheric forcing is to variations of model results, which is beneficial to the development of ocean models. Also, it provides a proper way to choose the atmospheric forcing in ocean modelling applications. Our previous study (Shapiro et al, 2011) has shown that the basin-wide circulation pattern and the temperature structure in the Black Sea produced by the same model is significantly dependent on the source of the meteorological input, giving remarkably different responses. For the purpose of this study we have chosen the Celtic Sea where high resolution meteo data are available from the UK Met office since 2006. The Celtic Sea is tidally dominated water basin, with the tidal stream amplitude varying from 0.25m/s in the southwest to 2 m/s in the Bristol Channel. It is also filled with mesoscale eddies which contribute to the formation of the residual (tidally averaged) circulation pattern (Young et al, 2003). The sea is strongly stratified from April to November, which adds to the formation of density driven currents. In this paper we analyse how sensitive the model output is to variations in the spatial resolution of meteorological using low (1.6°) and high (0.11°) resolution meteo forcing, giving the quantitative relation between variations of met forcing and the resulted differences of model results, as well as

  18. System modelling of a lateral force microscope

    International Nuclear Information System (INIS)

    Michal, Guillaume; Lu, Cheng; Kiet Tieu, A

    2008-01-01

    To quantitatively analyse lateral force microscope measurements one needs to develop a model able to relate the photodiode signal to the force acting on the tip apex. In this paper we focus on the modelling of the interaction between the cantilever and the optical chain. The laser beam is discretized by a set of rays which propagates in the system. The analytical equation of a single ray's position on the optical sensor is presented as a function of the reflection's state on top of the cantilever. We use a finite element analysis on the cantilever to connect the optical model with the force acting on the tip apex. A first-order approximation of the constitutive equations are derived along with a definition of the system's crosstalk. Finally, the model is used to analytically simulate the 'wedge method' in the presence of crosstalk in 2D. The analysis shows how the torsion loop and torsion offset signals are affected by the crosstalk.

  19. Simulation of imaging in tapping-mode atomic-force microscopy: a comparison amongst a variety of approaches

    Energy Technology Data Exchange (ETDEWEB)

    Pishkenari, H N; Mahboobi, S H; Meghdari, A, E-mail: mahboobi@sharif.edu [Center of Excellence in Design, Robotics and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2011-02-23

    Models capable of accurate simulation of microcantilever dynamics coupled with complex tip-sample interactions are essential for interpretation and prediction of the imaging results in amplitude modulation or tapping-mode atomic-force microscopy (AM-AFM or TM-AFM). In this paper, four approaches based on combinations of lumped and finite element methods for modelling of cantilever dynamics, and van der Waals and molecular dynamics for modelling of tip-sample interactions, are used to simulate the precise imaging by AM-AFM. Based on the simulated imaging and force determination, the efficiency of different modelling schemes is evaluated. This comparison is performed considering their coincidence with the realistic behaviour of AM-AFM in imaging of nanoscale features. In the conducted simulations, a diamond tip is used to scan a C60 molecule absorbed on a graphite substrate. The effects of amplitude set-point, cantilever stiffness and quality factor on the accuracy of different modelling approaches are studied.

  20. cellGPU: Massively parallel simulations of dynamic vertex models

    Science.gov (United States)

    Sussman, Daniel M.

    2017-10-01

    Vertex models represent confluent tissue by polygonal or polyhedral tilings of space, with the individual cells interacting via force laws that depend on both the geometry of the cells and the topology of the tessellation. This dependence on the connectivity of the cellular network introduces several complications to performing molecular-dynamics-like simulations of vertex models, and in particular makes parallelizing the simulations difficult. cellGPU addresses this difficulty and lays the foundation for massively parallelized, GPU-based simulations of these models. This article discusses its implementation for a pair of two-dimensional models, and compares the typical performance that can be expected between running cellGPU entirely on the CPU versus its performance when running on a range of commercial and server-grade graphics cards. By implementing the calculation of topological changes and forces on cells in a highly parallelizable fashion, cellGPU enables researchers to simulate time- and length-scales previously inaccessible via existing single-threaded CPU implementations. Program Files doi:http://dx.doi.org/10.17632/6j2cj29t3r.1 Licensing provisions: MIT Programming language: CUDA/C++ Nature of problem: Simulations of off-lattice "vertex models" of cells, in which the interaction forces depend on both the geometry and the topology of the cellular aggregate. Solution method: Highly parallelized GPU-accelerated dynamical simulations in which the force calculations and the topological features can be handled on either the CPU or GPU. Additional comments: The code is hosted at https://gitlab.com/dmsussman/cellGPU, with documentation additionally maintained at http://dmsussman.gitlab.io/cellGPUdocumentation

  1. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.

    Science.gov (United States)

    Matthews, James F; Beckham, Gregg T; Bergenstråhle-Wohlert, Malin; Brady, John W; Himmel, Michael E; Crowley, Michael F

    2012-02-14

    Molecular dynamics simulations of cellulose have recently become more prevalent due to increased interest in renewable energy applications, and many atomistic and coarse-grained force fields exist that can be applied to cellulose. However, to date no systematic comparison between carbohydrate force fields has been conducted for this important system. To that end, we present a molecular dynamics simulation study of hydrated, 36-chain cellulose Iβ microfibrils at room temperature with three carbohydrate force fields (CHARMM35, GLYCAM06, and Gromos 45a4) up to the near-microsecond time scale. Our results indicate that each of these simulated microfibrils diverge from the cellulose Iβ crystal structure to varying degrees under the conditions tested. The CHARMM35 and GLYCAM06 force fields eventually result in structures similar to those observed at 500 K with the same force fields, which are consistent with the experimentally observed high-temperature behavior of cellulose I. The third force field, Gromos 45a4, produces behavior significantly different from experiment, from the other two force fields, and from previously reported simulations with this force field using shorter simulation times and constrained periodic boundary conditions. For the GLYCAM06 force field, initial hydrogen-bond conformations and choice of electrostatic scaling factors significantly affect the rate of structural divergence. Our results suggest dramatically different time scales for convergence of properties of interest, which is important in the design of computational studies and comparisons to experimental data. This study highlights that further experimental and theoretical work is required to understand the structure of small diameter cellulose microfibrils typical of plant cellulose.

  2. Forced response of the East Asian summer rainfall over the past millennium: results from a coupled model simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jian; Wang, Hongli; Ti, Ruyuan [Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, State Key Laboratory of Lake Science and Environment, Nanjing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology and IPRC, Honolulu, HI (United States); Kuang, Xueyuan [Nanjing University, School of Atmospheric Sciences, Nanjing (China)

    2011-01-15

    The centennial-millennial variation of the East Asian summer monsoon (EASM) precipitation over the past 1000 years was investigated through the analysis of a millennium simulation of the coupled ECHO-G model. The model results indicate that the centennial-millennial variation of the EASM is essentially a forced response to the external radiative forcing (insolation, volcanic aerosol, and green house gases). The strength of the response depends on latitude; and the spatial structure of the centennial-millennial variation differs from the interannual variability that arises primarily from the internal feedback processes within the climate system. On millennial time scale, the extratropical and subtropical precipitation was generally strong during Medieval Warm Period (MWP) and weak during Little Ice Age (LIA). The tropical rainfall is insensitive to the effective solar radiation forcing (insolation plus radiative effect of volcanic aerosols) but significantly responds to the modern anthropogenic radiative forcing. On centennial time scale, the variation of the extratropical and subtropical rainfall also tends to follow the effective solar radiation forcing closely. The forced response features in-phase rainfall variability between the extratropics and subtropics, which is in contrast to the anti-correlation on the interannual time scale. Further, the behavior of the interannual-decadal variation in the extratropics is effectively modulated by change of the mean states on the millennial time scale, suggesting that the structure of the internal mode may vary with significant changes in the external forcing. These findings imply that on the millennial time scale, (a) the proxy data in the extratropical EA may more sensitively reflect the EASM rainfall variations, and (b) the Meiyu and the northern China rainfall provide a consistent measure for the EASM strength. (orig.)

  3. Particle force model effects in a shock-driven multiphase instability

    Science.gov (United States)

    Black, W. J.; Denissen, N.; McFarland, J. A.

    2018-05-01

    This work presents simulations on a shock-driven multiphase instability (SDMI) at an initial particle volume fraction of 1% with the addition of a suite of particle force models applicable in dense flows. These models include pressure-gradient, added-mass, and interparticle force terms in an effort to capture the effects neighboring particles have in non-dilute flow regimes. Two studies are presented here: the first seeks to investigate the individual contributions of the force models, while the second study focuses on examining the effect of these force models on the hydrodynamic evolution of a SDMI with various particle relaxation times (particle sizes). In the force study, it was found that the pressure gradient and interparticle forces have little effect on the instability under the conditions examined, while the added-mass force decreases the vorticity deposition and alters the morphology of the instability. The relaxation-time study likewise showed a decrease in metrics associated with the evolution of the SDMI for all sizes when the particle force models were included. The inclusion of these models showed significant morphological differences in both the particle and carrier species fields, which increased as particle relaxation times increased.

  4. A simulation technique for 3D MR-guided acoustic radiation force imaging

    International Nuclear Information System (INIS)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-01-01

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison

  5. Modeling of Dynamic Fluid Forces in Fast Switching Valves

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Pedersen, Henrik Clemmensen

    2015-01-01

    Switching valves experience opposing fluid forces due to movement of the moving member itself, as the surrounding fluid volume must move to accommodate the movement. This movement-induced fluid force may be divided into three main components; the added mass term, the viscous term and the socalled...... history term. For general valve geometries there are no simple solution to either of these terms. During development and design of such switching valves, it is therefore, common practice to use simple models to describe the opposing fluid forces, neglecting all but the viscous term which is determined...... based on shearing areas and venting channels. For fast acting valves the opposing fluid force may retard the valve performance significantly, if appropriate measures are not taken during the valve design. Unsteady Computational Fluid Dynamics (CFD) simulations are available to simulate the total fluid...

  6. Investigating the dependence of SCM simulated precipitation and clouds on the spatial scale of large-scale forcing at SGP

    Science.gov (United States)

    Tang, Shuaiqi; Zhang, Minghua; Xie, Shaocheng

    2017-08-01

    Large-scale forcing data, such as vertical velocity and advective tendencies, are required to drive single-column models (SCMs), cloud-resolving models, and large-eddy simulations. Previous studies suggest that some errors of these model simulations could be attributed to the lack of spatial variability in the specified domain-mean large-scale forcing. This study investigates the spatial variability of the forcing and explores its impact on SCM simulated precipitation and clouds. A gridded large-scale forcing data during the March 2000 Cloud Intensive Operational Period at the Atmospheric Radiation Measurement program's Southern Great Plains site is used for analysis and to drive the single-column version of the Community Atmospheric Model Version 5 (SCAM5). When the gridded forcing data show large spatial variability, such as during a frontal passage, SCAM5 with the domain-mean forcing is not able to capture the convective systems that are partly located in the domain or that only occupy part of the domain. This problem has been largely reduced by using the gridded forcing data, which allows running SCAM5 in each subcolumn and then averaging the results within the domain. This is because the subcolumns have a better chance to capture the timing of the frontal propagation and the small-scale systems. Other potential uses of the gridded forcing data, such as understanding and testing scale-aware parameterizations, are also discussed.

  7. Model Engine Performance Measurement From Force Balance Instrumentation

    Science.gov (United States)

    Jeracki, Robert J.

    1998-01-01

    A large scale model representative of a low-noise, high bypass ratio turbofan engine was tested for acoustics and performance in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. This test was part of NASA's continuing Advanced Subsonic Technology Noise Reduction Program. The low tip speed fan, nacelle, and an un-powered core passage (with core inlet guide vanes) were simulated. The fan blades and hub are mounted on a rotating thrust and torque balance. The nacelle, bypass duct stators, and core passage are attached to a six component force balance. The two balance forces, when corrected for internal pressure tares, measure the total thrust-minus-drag of the engine simulator. Corrected for scaling and other effects, it is basically the same force that the engine supports would feel, operating at similar conditions. A control volume is shown and discussed, identifying the various force components of the engine simulator thrust and definitions of net thrust. Several wind tunnel runs with nearly the same hardware installed are compared, to identify the repeatability of the measured thrust-minus-drag. Other wind tunnel runs, with hardware changes that affected fan performance, are compared to the baseline configuration, and the thrust and torque effects are shown. Finally, a thrust comparison between the force balance and nozzle gross thrust methods is shown, and both yield very similar results.

  8. A rolling constraint reproduces ground reaction forces and moments in dynamic simulations of walking, running, and crouch gait.

    Science.gov (United States)

    Hamner, Samuel R; Seth, Ajay; Steele, Katherine M; Delp, Scott L

    2013-06-21

    Recent advances in computational technology have dramatically increased the use of muscle-driven simulation to study accelerations produced by muscles during gait. Accelerations computed from muscle-driven simulations are sensitive to the model used to represent contact between the foot and ground. A foot-ground contact model must be able to calculate ground reaction forces and moments that are consistent with experimentally measured ground reaction forces and moments. We show here that a rolling constraint can model foot-ground contact and reproduce measured ground reaction forces and moments in an induced acceleration analysis of muscle-driven simulations of walking, running, and crouch gait. We also illustrate that a point constraint and a weld constraint used to model foot-ground contact in previous studies produce inaccurate reaction moments and lead to contradictory interpretations of muscle function. To enable others to use and test these different constraint types (i.e., rolling, point, and weld constraints) we have included them as part of an induced acceleration analysis in OpenSim, a freely-available biomechanics simulation package. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Do responses to different anthropogenic forcings add linearly in climate models?

    International Nuclear Information System (INIS)

    Marvel, Kate; Schmidt, Gavin A; LeGrande, Allegra N; Nazarenko, Larissa; Shindell, Drew; Bonfils, Céline; Tsigaridis, Kostas

    2015-01-01

    Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However, we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments. (letter)

  10. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.

    Science.gov (United States)

    Malgarinos, Ilias; Nikolopoulos, Nikolaos; Marengo, Marco; Antonini, Carlo; Gavaises, Manolis

    2014-10-01

    In this study,a novel numerical implementation for the adhesion of liquid droplets impacting normally on solid dry surfaces is presented. The advantage of this new approach, compared to the majority of existing models, is that the dynamic contact angle forming during the surface wetting process is not inserted as a boundary condition, but is derived implicitly by the induced fluid flow characteristics (interface shape) and the adhesion physics of the gas-liquid-surface interface (triple line), starting only from the advancing and receding equilibrium contact angles. These angles are required in order to define the wetting properties of liquid phases when interacting with a solid surface. The physical model is implemented as a source term in the momentum equation of a Navier-Stokes CFD flow solver as an "adhesion-like" force which acts at the triple-phase contact line as a result of capillary interactions between the liquid drop and the solid substrate. The numerical simulations capture the liquid-air interface movement by considering the volume of fluid (VOF) method and utilizing an automatic local grid refinement technique in order to increase the accuracy of the predictions at the area of interest, and simultaneously minimize numerical diffusion of the interface. The proposed model is validated against previously reported experimental data of normal impingement of water droplets on dry surfaces at room temperature. A wide range of impact velocities, i.e. Weber numbers from as low as 0.2 up to 117, both for hydrophilic (θadv=10°-70°) and hydrophobic (θadv=105°-120°) surfaces, has been examined. Predictions include in addition to droplet spreading dynamics, the estimation of the dynamic contact angle; the latter is found in reasonable agreement against available experimental measurements. It is thus concluded that theimplementation of this model is an effective approach for overcoming the need of a pre-defined dynamic contact angle law, frequently adopted as

  11. Single molecule force spectroscopy data and BD- and MD simulations on the blood protein von Willebrand factor

    Directory of Open Access Journals (Sweden)

    Sandra Posch

    2016-09-01

    Full Text Available We here give information for a deeper understanding of single molecule force spectroscopy (SMFS data through the example of the blood protein von Willebrand factor (VWF. It is also shown, how fitting of rupture forces versus loading rate profiles in the molecular dynamics (MD loading-rate range can be used to demonstrate the qualitative agreement between SMFS and MD simulations. The recently developed model by Bullerjahn, Sturm, and Kroy (BSK was used for this demonstration. Further, Brownian dynamics (BD simulations, which can be utilized to estimate the lifetimes of intramolecular VWF interactions under physiological shear, are described. For interpretation and discussion of the methods and data presented here, we would like to directly point the reader to the related research paper, “Mutual A domain interactions in the force sensing protein von Willebrand Factor” (Posch et al., 2016 [1]. Keywords: Atomic force microscopy, Single molecule force spectroscopy, Molecular dynamics simulation, Brownian dynamics simulation, von Willebrand factor

  12. A Phenomenological Model and Validation of Shortening Induced Force Depression during Muscle Contractions

    Science.gov (United States)

    McGowan, C.P.; Neptune, R.R.; Herzog, W.

    2009-01-01

    History dependent effects on muscle force development following active changes in length have been measured in a number of experimental studies. However, few muscle models have included these properties or examined their impact on force and power output in dynamic cyclic movements. The goal of this study was to develop and validate a modified Hill-type muscle model that includes shortening induced force depression and assess its influence on locomotor performance. The magnitude of force depression was defined by empirical relationships based on muscle mechanical work. To validate the model, simulations incorporating force depression were developed to emulate single muscle in situ and whole muscle group leg extension experiments. There was excellent agreement between simulation and experimental values, with in situ force patterns closely matching the experimental data (average RMS error pedaling with and without force depression were generated. Force depression decreased maximum crank power by 20% – 40%, depending on the relationship between force depression and muscle work used. These results indicate that force depression has the potential to substantially influence muscle power output in dynamic cyclic movements. However, to fully understand the impact of this phenomenon on human movement, more research is needed to characterize the relationship between force depression and mechanical work in large muscles with different morphologies. PMID:19879585

  13. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train

    Science.gov (United States)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  14. The MARTINI force field : Coarse grained model for biomolecular simulations

    NARCIS (Netherlands)

    Marrink, Siewert J.; Risselada, H. Jelger; Yefimov, Serge; Tieleman, D. Peter; de Vries, Alex H.

    2007-01-01

    We present an improved and extended version of our coarse grained lipid model. The new version, coined the MARTINI force field, is parametrized in a systematic way, based on the reproduction of partitioning free energies between polar and apolar phases of a large number of chemical compounds. To

  15. Creep force modelling for rail traction vehicles based on the Fastsim algorithm

    Science.gov (United States)

    Spiryagin, Maksym; Polach, Oldrich; Cole, Colin

    2013-11-01

    The evaluation of creep forces is a complex task and their calculation is a time-consuming process for multibody simulation (MBS). A methodology of creep forces modelling at large traction creepages has been proposed by Polach [Creep forces in simulations of traction vehicles running on adhesion limit. Wear. 2005;258:992-1000; Influence of locomotive tractive effort on the forces between wheel and rail. Veh Syst Dyn. 2001(Suppl);35:7-22] adapting his previously published algorithm [Polach O. A fast wheel-rail forces calculation computer code. Veh Syst Dyn. 1999(Suppl);33:728-739]. The most common method for creep force modelling used by software packages for MBS of running dynamics is the Fastsim algorithm by Kalker [A fast algorithm for the simplified theory of rolling contact. Veh Syst Dyn. 1982;11:1-13]. However, the Fastsim code has some limitations which do not allow modelling the creep force - creep characteristic in agreement with measurements for locomotives and other high-power traction vehicles, mainly for large traction creep at low-adhesion conditions. This paper describes a newly developed methodology based on a variable contact flexibility increasing with the ratio of the slip area to the area of adhesion. This variable contact flexibility is introduced in a modification of Kalker's code Fastsim by replacing the constant Kalker's reduction factor, widely used in MBS, by a variable reduction factor together with a slip-velocity-dependent friction coefficient decreasing with increasing global creepage. The proposed methodology is presented in this work and compared with measurements for different locomotives. The modification allows use of the well recognised Fastsim code for simulation of creep forces at large creepages in agreement with measurements without modifying the proven modelling methodology at small creepages.

  16. Identification of GMS friction model without friction force measurement

    International Nuclear Information System (INIS)

    Grami, Said; Aissaoui, Hicham

    2011-01-01

    This paper deals with an online identification of the Generalized Maxwell Slip (GMS) friction model for both presliding and sliding regime at the same time. This identification is based on robust adaptive observer without friction force measurement. To apply the observer, a new approach of calculating the filtered friction force from the measurable signals is introduced. Moreover, two approximations are proposed to get the friction model linear over the unknown parameters and an approach of suitable filtering is introduced to guarantee the continuity of the model. Simulation results are presented to prove the efficiency of the approach of identification.

  17. COMPUTER SIMULATION IN MECHANICS TEACHING AND LEARNING: A CASE STUDY ON STUDENTS’ UNDERSTANDING OF FORCE AND MOTION

    Directory of Open Access Journals (Sweden)

    Dyah Permata Sari

    2015-12-01

    Full Text Available The objective of this research was to develop a force and motion simulation based on the open-source Easy Java Simulation. The process of computer simulation development was done following the ADDIE model. Based on the Analysis and Design phases, the Development phase used the open-source Easy Java Simulation (EJS to develop a computer simulation with physics content that was relevant to the subtopic. Computing and communication technology continue to make an increasing impact on all aspects of education. EJS is a powerful didactic resource that gives us the ability to focus our students’ attention on the principles of physics. Using EJS, a computer simulation was created through which the motion of a particle under the action of a specific force can be studied. The implementation phase is implemented the computer simulation in the teaching and learning process. To describe the improvements in the students’ understanding of the force and motion concepts, we used a t-test to evaluate each of the four phases. These results indicated that the use of the computer simulation could improve students’ force and motion conceptual competence regarding Newton's second law of motion.

  18. Time domain models for damping-controlled fluidelastic instability forces in multi-span tubes with loose supports

    International Nuclear Information System (INIS)

    Hassan, M.A.; Rogers, R.J.; Gerber, A.G.

    2009-01-01

    This paper presents simulations of a loosely supported multi-span tube subjected to turbulence and fluidelastic instability forces. Several time-domain fluid force models simulating the damping controlled fluidelastic instability mechanism in tube arrays have been presented. These models include the negative damping model based on the Connors equation, fluid force coefficient-based models (Chen and Tanaka and Takahara), and two semi-analytical models (Price and Paidoussis; and Lever and Weaver) were implemented in an in-house finite code. Time domain modeling challenges for each of these theories were discussed. The implemented models were validated against available experimental data. The linear simulations showed that the Connors-equation based model exhibits the most conservative prediction of the critical flow velocity when the recommended design values for the Connors equation were used. The models were then utilized to simulate the nonlinear response of a three-span cantilever tube in a square lattice bar support subjected to air crossflow. The tube was subjected to a single-phase flow passing over one of the tube's spans. For each of these models the flow velocity and the support clearance were varied. Special attention was paid to the tube/support interaction parameters that affect wear, such as impact forces, contact ratio, and normal work rate. As the prediction of the linear threshold varies depending on the utilized model, the nonlinear response also differs. The investigated models exhibit similar response characteristics for the impact force, tip lift response, and work rate. Simulation results show that the Connors-based model underestimates the response and the tube/support interaction parameters for the loose support case. (author)

  19. Fundamentals of force feedback and application to a surgery simulator.

    Science.gov (United States)

    Maass, Heiko; Chantier, Benjamin B A; Cakmak, Hueseyin K; Trantakis, Christos; Kuehnapfel, Uwe G

    2003-01-01

    Force feedback increases the effectiveness of virtual-reality surgery training systems. An overview of the fundamentals of applying force feedback is presented. An impedance control technique and data processing methods for stability preservation are illustrated. A flexible interface for general force-feedback applications has been developed. This interface is capable of controlling several different force-feedback hardware systems, including the SensAble PHANTOM, the Laparoscopic Impulse Engines from Immersion, and the VS-One virtual endoscopic surgery trainer. The findings are evaluated using the main simulation system, KISMET, and the modeling tools KISMO and VESUV. Within the scope of a cooperative project called HapticIO (funded by the German Ministry of Education and Research [BMBF]), new haptic devices have been designed for virtual neuroendoscopy and laparoscopy. The concept and implementations presented in this paper have been found to be flexible, stable and suitable for universal use. The impedance method, combined with the open-loop feed-forward control technique, is well suited and appropriate for the task.

  20. Force modeling for incisions into various tissues with MRF haptic master

    Science.gov (United States)

    Kim, Pyunghwa; Kim, Soomin; Park, Young-Dai; Choi, Seung-Bok

    2016-03-01

    This study proposes a new model to predict the reaction force that occurs in incisions during robot-assisted minimally invasive surgery. The reaction force is fed back to the manipulator by a magneto-rheological fluid (MRF) haptic master, which is featured by a bi-directional clutch actuator. The reaction force feedback provides similar sensations to laparotomy that cannot be provided by a conventional master for surgery. This advantage shortens the training period for robot-assisted minimally invasive surgery and can improve the accuracy of operations. The reaction force modeling of incisions can be utilized in a surgical simulator that provides a virtual reaction force. In this work, in order to model the reaction force during incisions, the energy aspect of the incision process is adopted and analyzed. Each mode of the incision process is classified by the tendency of the energy change, and modeled for realistic real-time application. The reaction force model uses actual reaction force information with three types of actual tissues: hard tissue, medium tissue, and soft tissue. This modeled force is realized by the MRF haptic master through an algorithm based on the position and velocity of a scalpel using two different control methods: an open-loop algorithm and a closed-loop algorithm. The reaction forces obtained from the proposed model are compared with a desired force in time domain.

  1. Force modeling for incisions into various tissues with MRF haptic master

    International Nuclear Information System (INIS)

    Kim, Pyunghwa; Kim, Soomin; Park, Young-Dai; Choi, Seung-Bok

    2016-01-01

    This study proposes a new model to predict the reaction force that occurs in incisions during robot-assisted minimally invasive surgery. The reaction force is fed back to the manipulator by a magneto-rheological fluid (MRF) haptic master, which is featured by a bi-directional clutch actuator. The reaction force feedback provides similar sensations to laparotomy that cannot be provided by a conventional master for surgery. This advantage shortens the training period for robot-assisted minimally invasive surgery and can improve the accuracy of operations. The reaction force modeling of incisions can be utilized in a surgical simulator that provides a virtual reaction force. In this work, in order to model the reaction force during incisions, the energy aspect of the incision process is adopted and analyzed. Each mode of the incision process is classified by the tendency of the energy change, and modeled for realistic real-time application. The reaction force model uses actual reaction force information with three types of actual tissues: hard tissue, medium tissue, and soft tissue. This modeled force is realized by the MRF haptic master through an algorithm based on the position and velocity of a scalpel using two different control methods: an open-loop algorithm and a closed-loop algorithm. The reaction forces obtained from the proposed model are compared with a desired force in time domain. (paper)

  2. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    Science.gov (United States)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  3. Atomic Force Microscopy Based Nanorobotics Modelling, Simulation, Setup Building and Experiments

    CERN Document Server

    Xie, Hui; Régnier, Stéphane; Sitti, Metin

    2012-01-01

    The atomic force microscope (AFM) has been successfully used to perform nanorobotic manipulation operations on nanoscale entities such as particles, nanotubes, nanowires, nanocrystals, and DNA since 1990s. There have been many progress on modeling, imaging, teleoperated or automated control, human-machine interfacing, instrumentation, and applications of AFM based nanorobotic manipulation systems in literature. This book aims to include all of such state-of-the-art progress in an organized, structured, and detailed manner as a reference book and also potentially a textbook in nanorobotics and any other nanoscale dynamics, systems and controls related research and education. Clearly written and well-organized, this text introduces designs and prototypes of the nanorobotic systems in detail with innovative principles of three-dimensional manipulation force microscopy and parallel imaging/manipulation force microscopy.

  4. Regimes of seasonal air-sea interaction and implications for performance of forced simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Renguang [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Kirtman, Ben P. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, School of Computational Sciences, Fairfax, VA (United States)

    2007-09-15

    Sea surface temperature (SST) anomalies can induce anomalous convection through surface evaporation and low-level moisture convergence. This SST forcing of the atmosphere is indicated in a positive local rainfall-SST correlation. Anomalous convection can feedback on SST through cloud-radiation and wind-evaporation effects and wind-induced oceanic mixing and upwelling. These atmospheric feedbacks are reflected in a negative local rainfall-SST tendency correlation. As such, the simultaneous rainfall-SST and rainfall-SST tendency correlations can indicate the nature of local air-sea interactions. Based on the magnitude of simultaneous rainfall-SST and rainfall-SST tendency correlations, the present study identifies three distinct regimes of local air-sea interactions. The relative importance of SST forcing and atmospheric forcing differs in these regimes. In the equatorial central-eastern Pacific and, to a smaller degree, in the western equatorial Indian Ocean, SST forcing dominates throughout the year and the surface heat flux acts mainly as a damping term. In the tropical Indo-western Pacific Ocean regions, SST forcing and atmospheric forcing dominate alternatively in different seasons. Atmospheric forcing dominates in the local warm/rainy season. SST forcing dominates with a positive wind-evaporation feedback during the transition to the cold/dry season. SST forcing also dominates during the transition to the warm/rainy season but with a negative cloud-radiation feedback. The performance of atmospheric general circulation model simulations forced by observed SST is closely linked to the regime of air-sea interaction. The forced simulations have good performance when SST forcing dominates. The performance is low or poor when atmospheric forcing dominates. (orig.)

  5. Modeling and Simulation of Satellite Subsystems for End-to-End Spacecraft Modeling

    National Research Council Canada - National Science Library

    Schum, William K; Doolittle, Christina M; Boyarko, George A

    2006-01-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems...

  6. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    International Nuclear Information System (INIS)

    Haydock, David

    2005-01-01

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important

  7. Lattice Boltzmann simulations of the time-averaged forces on a cylinder in a sound field

    Energy Technology Data Exchange (ETDEWEB)

    Haydock, David [Unilever R and D Colworth, Sharnbrook, Bedford MK44 1LQ (United Kingdom); Department of Physics, Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2005-04-15

    We show that lattice Boltzmann simulations can be used to model the radiation force on an object in a standing wave acoustic field and comparisons are made to theoretical predictions. We show how viscous effects change the radiation force and predict the motion of a particle placed near a boundary where viscous effects are important.

  8. Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model

    Science.gov (United States)

    Gelati, Emiliano; Decharme, Bertrand; Calvet, Jean-Christophe; Minvielle, Marie; Polcher, Jan; Fairbairn, David; Weedon, Graham P.

    2018-04-01

    Physically consistent descriptions of land surface hydrology are crucial for planning human activities that involve freshwater resources, especially in light of the expected climate change scenarios. We assess how atmospheric forcing data uncertainties affect land surface model (LSM) simulations by means of an extensive evaluation exercise using a number of state-of-the-art remote sensing and station-based datasets. For this purpose, we use the CO2-responsive ISBA-A-gs LSM coupled with the CNRM version of the Total Runoff Integrated Pathways (CTRIP) river routing model. We perform multi-forcing simulations over the Euro-Mediterranean area (25-75.5° N, 11.5° W-62.5° E, at 0.5° resolution) from 1979 to 2012. The model is forced using four atmospheric datasets. Three of them are based on the ERA-Interim reanalysis (ERA-I). The fourth dataset is independent from ERA-Interim: PGF, developed at Princeton University. The hydrological impacts of atmospheric forcing uncertainties are assessed by comparing simulated surface soil moisture (SSM), leaf area index (LAI) and river discharge against observation-based datasets: SSM from the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative projects (ESA-CCI), LAI of the Global Inventory Modeling and Mapping Studies (GIMMS), and Global Runoff Data Centre (GRDC) river discharge. The atmospheric forcing data are also compared to reference datasets. Precipitation is the most uncertain forcing variable across datasets, while the most consistent are air temperature and SW and LW radiation. At the monthly timescale, SSM and LAI simulations are relatively insensitive to forcing uncertainties. Some discrepancies with ESA-CCI appear to be forcing-independent and may be due to different assumptions underlying the LSM and the remote sensing retrieval algorithm. All simulations overestimate average summer and early-autumn LAI. Forcing uncertainty impacts on simulated river discharge are

  9. Equivalent linear damping characterization in linear and nonlinear force-stiffness muscle models.

    Science.gov (United States)

    Ovesy, Marzieh; Nazari, Mohammad Ali; Mahdavian, Mohammad

    2016-02-01

    In the current research, the muscle equivalent linear damping coefficient which is introduced as the force-velocity relation in a muscle model and the corresponding time constant are investigated. In order to reach this goal, a 1D skeletal muscle model was used. Two characterizations of this model using a linear force-stiffness relationship (Hill-type model) and a nonlinear one have been implemented. The OpenSim platform was used for verification of the model. The isometric activation has been used for the simulation. The equivalent linear damping and the time constant of each model were extracted by using the results obtained from the simulation. The results provide a better insight into the characteristics of each model. It is found that the nonlinear models had a response rate closer to the reality compared to the Hill-type models.

  10. Simulation of forced convection in non-Newtonian fluid through sandstones

    Science.gov (United States)

    Gokhale, M. Y.; Fernandes, Ignatius

    2017-11-01

    Numerical simulation is carried out to study forced convection in non-Newtonian fluids flowing through sandstones. Simulation is carried out using lattice Boltzmann method (LBM) for both shear-thinning and shear-thickening, by varying the power law index from 0.5 to 1.5 in Carreau-Yasuda model. Parameters involved in LBM and Carreau model are identified to achieve numerical convergence. Permeability and porosity are varied in the range of 10-10-10-6 and 0.1-0.7, respectively, to match actual geometrical properties of sandstone. Numerical technology is validated by establishing Darcy's law by plotting the graph between velocity and pressure gradient. Consequently, investigation is carried out to study the influence of material properties of porous media on flow properties such as velocity profiles, temperature profiles, and Nusselt number.

  11. Problem of long-range forces in the computer simulation of condensed media

    International Nuclear Information System (INIS)

    Ceperely, D.

    1980-07-01

    Simulation (both Monte Carlo and molecular dynamical) has become a powerful tool in the study of classical systems of particles interacting with short-range pair potentials. For systems involving long-range forces (e.g., Coulombic, dipolar, hydrodynamic) it is a different story. Relating infinite-system properties to the results of computer simulation involving relatively small numbers of particles, periodically replicated, raises difficult and challenging problems. The purpose of the workshop was to bring together a group of scientists, all of whom share a strong direct interest in clearly formulating and resolving these problems. There were 46 participants, most of whom have been actively engaged in simulations of Hamiltonian models of condensed media. A few participants were scientists who are not primarily concerned, themselves, with simulation, but who are deeply involved in the theory of such models

  12. Mathematical modelling of fire in forced ventilated enclosures

    International Nuclear Information System (INIS)

    Cox, G.; Kumar, S.

    1985-01-01

    The application of a computer fire simulation model to the prediction of conditions in a forced ventilated experimental fire test cell at the Lawrence Livermore National Laboratory is discussed. Comparisons between theoretical and experimental determinations are shown to be in reasonable agreement and areas requiring further research indicated

  13. Structure formation by a fifth force: N-body versus linear simulations

    International Nuclear Information System (INIS)

    Li Baojiu; Zhao Hongsheng

    2009-01-01

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ 2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million

  14. Structure formation by a fifth force: N-body versus linear simulations

    Science.gov (United States)

    Li, Baojiu; Zhao, Hongsheng

    2009-08-01

    We lay out the frameworks to numerically study the structure formation in both linear and nonlinear regimes in general dark-matter-coupled scalar field models, and give an explicit example where the scalar field serves as a dynamical dark energy. Adopting parameters of the scalar field which yield a realistic cosmic microwave background (CMB) spectrum, we generate the initial conditions for our N-body simulations, which follow the spatial distributions of the dark matter and the scalar field by solving their equations of motion using the multilevel adaptive grid technique. We show that the spatial configuration of the scalar field tracks well the voids and clusters of dark matter. Indeed, the propagation of scalar degree of freedom effectively acts as a fifth force on dark matter particles, whose range and magnitude are determined by the two model parameters (μ,γ), local dark matter density as well as the background value for the scalar field. The model behaves like the ΛCDM paradigm on scales relevant to the CMB spectrum, which are well beyond the probe of the local fifth force and thus not significantly affected by the matter-scalar coupling. On scales comparable or shorter than the range of the local fifth force, the fifth force is perfectly parallel to gravity and their strengths have a fixed ratio 2γ2 determined by the matter-scalar coupling, provided that the chameleon effect is weak; if on the other hand there is a strong chameleon effect (i.e., the scalar field almost resides at its effective potential minimum everywhere in the space), the fifth force indeed has suppressed effects in high density regions and shows no obvious correlation with gravity, which means that the dark-matter-scalar-field coupling is not simply equivalent to a rescaling of the gravitational constant or the mass of the dark matter particles. We show these spatial distributions and (lack of) correlations at typical redshifts (z=0,1,5.5) in our multigrid million-particle simulations

  15. Modeling and Simulation for Exploring Human-Robot Team Interaction Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Dudenhoeffer, Donald Dean; Bruemmer, David Jonathon; Davis, Midge Lee

    2001-12-01

    Small-sized and micro-robots will soon be available for deployment in large-scale forces. Consequently, the ability of a human operator to coordinate and interact with largescale robotic forces is of great interest. This paper describes the ways in which modeling and simulation have been used to explore new possibilities for human-robot interaction. The paper also discusses how these explorations have fed implementation of a unified set of command and control concepts for robotic force deployment. Modeling and simulation can play a major role in fielding robot teams in actual missions. While live testing is preferred, limitations in terms of technology, cost, and time often prohibit extensive experimentation with physical multi-robot systems. Simulation provides insight, focuses efforts, eliminates large areas of the possible solution space, and increases the quality of actual testing.

  16. Impact of global warming on tropical cyclone genesis in coupled and forced simulations: role of SST spatial anomalies

    Science.gov (United States)

    Royer, Jean-François; Chauvin, Fabrice; Daloz, Anne-Sophie

    2010-05-01

    The response of tropical cyclones (TC) activity to global warming has not yet reached a clear consensus in the Fourth Assessment Report (AR4) published by the Intergovernmental Panel on Climate Change (IPCC, 2007) or in the recent scientific literature. Observed series are neither long nor reliable enough for a statistically significant detection and attribution of past TC trends, and coupled climate models give widely divergent results for the future evolution of TC activity in the different ocean basins. The potential importance of the spatial structure of the future SST warming has been pointed out by Chauvin et al. (2006) in simulations performed at CNRM with the ARPEGE-Climat GCM. The current presentation describes a new set of simulations that have been performed with the ARPEGE-Climat model to try to understand the possible role of SST patterns in the TC cyclogenesis response in 15 CMIP3 coupled simulations analysed by Royer et al (2009). The new simulations have been performed with the atmospheric component of the ARPEGE-Climat GCM forced in 10 year simulations by the SST patterns from each of 15 CMIP3 simulations with different climate model at the end of the 21st century according to scenario A2. The TC analysis is based on the computation of a Convective Yearly Genesis Parameter (CYGP) and the Genesis Potential Index (GPI). The computed genesis indices for each of the ARPEGE-Climat forced simulations is compared with the indices computed directly from the initial coupled simulation. The influence of SST patterns can then be more easily assessed since all the ARPEGE-Climat simulations are performed with the same atmospheric model, whereas the original simulations used models with different parameterization and resolutions. The analysis shows that CYGP or GPI anomalies obtained with ARPEGE are as variable between each other as those obtained originally by the different IPCC models. The variety of SST patterns used to force ARPEGE explains a large part of

  17. Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach

    International Nuclear Information System (INIS)

    Ahmed, Fayez Shakil; Laghrouche, Salah; Mehmood, Adeel; El Bagdouri, Mohammed

    2014-01-01

    Highlights: • Estimation of aerodynamic force on variable turbine geometry vanes and actuator. • Method based on exhaust gas flow modeling. • Simulation tool for integration of aerodynamic force in automotive simulation software. - Abstract: This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results

  18. Development of a Simulation Model for Swimming with Diving Fins

    Directory of Open Access Journals (Sweden)

    Motomu Nakashima

    2018-02-01

    Full Text Available The simulation model to assess the performance of diving fin was developed by extending the swimming human simulation model SWUM. A diving fin was modeled as a series of five rigid plates and connected to the human model by springs and dampers. These plates were connected to each other by virtual springs and dampers, and fin’s bending property was represented by springs and dampers as well. An actual diver’s swimming motion with fins was acquired by a motion capture experiment. In order to determine the bending property of the fin, two bending tests on land were conducted. In addition, an experiment was conducted in order to determine the fluid force coefficients in the fluid force model for the fin. Finally, using all measured and identified information, a simulation, in which the experimental situation was reproduced, was carried out. It was confirmed that the diver in the simulation propelled forward in the water successfully.

  19. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    International Nuclear Information System (INIS)

    Zheng, Lin; Zheng, Song; Zhai, Qinglan

    2016-01-01

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  20. Continuous surface force based lattice Boltzmann equation method for simulating thermocapillary flow

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Lin, E-mail: lz@njust.edu.cn [School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Zheng, Song [School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou 310018 (China); Zhai, Qinglan [School of Economics Management and Law, Chaohu University, Chaohu 238000 (China)

    2016-02-05

    In this paper, we extend a lattice Boltzmann equation (LBE) with continuous surface force (CSF) to simulate thermocapillary flows. The model is designed on our previous CSF LBE for athermal two phase flow, in which the interfacial tension forces and the Marangoni stresses as the results of the interface interactions between different phases are described by a conception of CSF. In this model, the sharp interfaces between different phases are separated by a narrow transition layers, and the kinetics and morphology evolution of phase separation would be characterized by an order parameter via Cahn–Hilliard equation which is solved in the frame work of LBE. The scalar convection–diffusion equation for temperature field is resolved by thermal LBE. The models are validated by thermal two layered Poiseuille flow, and two superimposed planar fluids at negligibly small Reynolds and Marangoni numbers for the thermocapillary driven convection, which have analytical solutions for the velocity and temperature. Then thermocapillary migration of two/three dimensional deformable droplet are simulated. Numerical results show that the predictions of present LBE agreed with the analytical solution/other numerical results. - Highlights: • A CSF LBE to thermocapillary flows. • Thermal layered Poiseuille flows. • Thermocapillary migration.

  1. Numerical simulation of the force generated by a superelastic NiTi orthodontic archwire during tooth alignment phase: comparison between different constitutive models

    Science.gov (United States)

    Gannoun, M.; Laroussi Hellara, M.; Bouby, C.; Ben Zineb, T.; Bouraoui, T.

    2018-04-01

    Nickel Titanium (NiTi) Superelastic (SE) Shape Memory Alloys (SMAs) are widely considered for applications that need high reversible strain or high recovery forces. In particular, the SE SMAs present a high interest for biomedical applications such as endodontic and orthodontic apparatus. They are available in a large variety of archwires exerting continuum forces to ensure the dental displacement. The purpose of this study is to report the clinical implications of NiTi SE wires for dental treatment in a given configuration. Three main constitutive models of the literature (Lagoudas and Boyd 1996 Int. J. Plast. 12 805–842, Auricchio and Petrini 2004 Int. J. Numer. Meth. Engng. 61 807–836 and Chemisky et al 2011 Mech. Mater. 68 361–376) are considered for the finite element (FE) numerical simulations of the SMA archwires response. Tensile tests had been carried out in order to identify the material parameters of these constitutive models. The FE numerical study allowed to predict the dental displacement and its corresponding orthodontic force level exerted by the wire in similar conditions to those in the oral environment. This work allows to predict the orthodontic generated load by a NiTi SE archwire with a 0.64 × 0.46 mm2 rectangular cross section under prescribed thermomechanical conditions. The effect of the temperature and the alveolar bone stiffness on the orthodontic load level and the tooth displacement degree has been investigated. The performed numerical simulations demonstrate that the orthodontic load is sensitive to the displacement magnitude, to the tooth stiffness and to the temperature variations. The obtained forces applied continuously and at a constant level are within the acceptable orthodontic force level range. Some directives are therefore provided to help orthodontists to select the optimal archwire.

  2. On the Representation of Ice Nucleation in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, T.

    2015-12-01

    Substantial improvements have been made to the cloud microphysical schemes used in the latest generation of global climate models (GCMs), however, an outstanding weakness of these schemes lies in the arbitrariness of their tuning parameters. Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  3. Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations

    Directory of Open Access Journals (Sweden)

    M. Schulz

    2006-01-01

    Full Text Available Nine different global models with detailed aerosol modules have independently produced instantaneous direct radiative forcing due to anthropogenic aerosols. The anthropogenic impact is derived from the difference of two model simulations with prescribed aerosol emissions, one for present-day and one for pre-industrial conditions. The difference in the solar energy budget at the top of the atmosphere (ToA yields a new harmonized estimate for the aerosol direct radiative forcing (RF under all-sky conditions. On a global annual basis RF is −0.22 Wm−2, ranging from +0.04 to −0.41 Wm−2, with a standard deviation of ±0.16 Wm−2. Anthropogenic nitrate and dust are not included in this estimate. No model shows a significant positive all-sky RF. The corresponding clear-sky RF is −0.68 Wm−2. The cloud-sky RF was derived based on all-sky and clear-sky RF and modelled cloud cover. It was significantly different from zero and ranged between −0.16 and +0.34 Wm−2. A sensitivity analysis shows that the total aerosol RF is influenced by considerable diversity in simulated residence times, mass extinction coefficients and most importantly forcing efficiencies (forcing per unit optical depth. The clear-sky forcing efficiency (forcing per unit optical depth has diversity comparable to that for the all-sky/ clear-sky forcing ratio. While the diversity in clear-sky forcing efficiency is impacted by factors such as aerosol absorption, size, and surface albedo, we can show that the all-sky/clear-sky forcing ratio is important because all-sky forcing estimates require proper representation of cloud fields and the correct relative altitude placement between absorbing aerosol and clouds. The analysis of the sulphate RF shows that long sulphate residence times are compensated by low mass extinction coefficients and vice versa. This is explained by more sulphate particle humidity growth and thus higher extinction in those models where short-lived sulphate

  4. Computational simulations of direct contact condensation as the driving force for water hammer

    International Nuclear Information System (INIS)

    Ceuca, Sabin-Cristian

    2015-01-01

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  5. Computational simulations of direct contact condensation as the driving force for water hammer

    Energy Technology Data Exchange (ETDEWEB)

    Ceuca, Sabin-Cristian

    2015-04-27

    An analysis, based on Computer Simulations of the Direct Contact Condensation as the Driving Force for the Condensation Induced Water Hammer phenomenon is performed within this thesis. The goal of the work is to develop a mechanistic HTC model, with predictive capabilities for the simulation of horizontal or nearly horizontal two-phase ows with complex patterns including the e ect of interfacial heat and mass transfer. The newly developed HTC model was implemented into the system code ATHLET and into the CFD tools ANSYS CFX and OpenFOAM. Validation calculations have been performed for horizontal or nearly horizontal ows, where simulation results have been compared against the local measurement data such as void and temperature or area averaged data delivered by a wire mesh sensor.

  6. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichirou; Dershowitz, W.

    2005-01-01

    During Heisei-16, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the Mizunami Underground Research Laboratory (MIU), participation in Task 6 of the AEspoe Task Force on Modeling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU support during H-16 involved updating the H-15 FracMan discrete fracture network (DFN) models for the MIU shaft region, and developing improved simulation procedures. Updates to the conceptual model included incorporation of 'Step2' (2004) versions of the deterministic structures, and revision of background fractures to be consistent with conductive structure data from the DH-2 borehole. Golder developed improved simulation procedures for these models through the use of hybrid discrete fracture network (DFN), equivalent porous medium (EPM), and nested DFN/EPM approaches. For each of these models, procedures were documented for the entire modeling process including model implementation, MMP simulation, and shaft grouting simulation. Golder supported JNC participation in Task 6AB, 6D and 6E of the AEspoe Task Force on Modeling of Groundwater Flow and Transport during H-16. For Task 6AB, Golder developed a new technique to evaluate the role of grout in performance assessment time-scale transport. For Task 6D, Golder submitted a report of H-15 simulations to SKB. For Task 6E, Golder carried out safety assessment time-scale simulations at the block scale, using the Laplace Transform Galerkin method. During H-16, Golder supported JNC's Total System Performance Assessment (TSPA) strategy by developing technologies for the analysis of the use site characterization data in safety assessment. This approach will aid in the understanding of the use of site characterization to progressively reduce site characterization uncertainty. (author)

  7. Gaining insight into the physics of dynamic atomic force microscopy in complex environments using the VEDA simulator

    Science.gov (United States)

    Kiracofe, Daniel; Melcher, John; Raman, Arvind

    2012-01-01

    Dynamic atomic force microscopy (dAFM) continues to grow in popularity among scientists in many different fields, and research on new methods and operating modes continues to expand the resolution, capabilities, and types of samples that can be studied. But many promising increases in capability are accompanied by increases in complexity. Indeed, interpreting modern dAFM data can be challenging, especially on complicated material systems, or in liquid environments where the behavior is often contrary to what is known in air or vacuum environments. Mathematical simulations have proven to be an effective tool in providing physical insight into these non-intuitive systems. In this article we describe recent developments in the VEDA (virtual environment for dynamic AFM) simulator, which is a suite of freely available, open-source simulation tools that are delivered through the cloud computing cyber-infrastructure of nanoHUB (www.nanohub.org). Here we describe three major developments. First, simulations in liquid environments are improved by enhancements in the modeling of cantilever dynamics, excitation methods, and solvation shell forces. Second, VEDA is now able to simulate many new advanced modes of operation (bimodal, phase-modulation, frequency-modulation, etc.). Finally, nineteen different tip-sample models are available to simulate the surface physics of a wide variety different material systems including capillary, specific adhesion, van der Waals, electrostatic, viscoelasticity, and hydration forces. These features are demonstrated through example simulations and validated against experimental data, in order to provide insight into practical problems in dynamic AFM.

  8. The Effect of Varying Jaw-elevator Muscle Forces on a Finite Element Model of a Human Cranium.

    Science.gov (United States)

    Toro-Ibacache, Viviana; O'Higgins, Paul

    2016-07-01

    Finite element analyses simulating masticatory system loading are increasingly undertaken in primates, hominin fossils and modern humans. Simplifications of models and loadcases are often required given the limits of data and technology. One such area of uncertainty concerns the forces applied to cranial models and their sensitivity to variations in these forces. We assessed the effect of varying force magnitudes among jaw-elevator muscles applied to a finite element model of a human cranium. The model was loaded to simulate incisor and molar bites using different combinations of muscle forces. Symmetric, asymmetric, homogeneous, and heterogeneous muscle activations were simulated by scaling maximal forces. The effects were compared with respect to strain distribution (i.e., modes of deformation) and magnitudes; bite forces and temporomandibular joint (TMJ) reaction forces. Predicted modes of deformation, strain magnitudes and bite forces were directly proportional to total applied muscle force and relatively insensitive to the degree of heterogeneity of muscle activation. However, TMJ reaction forces and mandibular fossa strains decrease and increase on the balancing and working sides according to the degree of asymmetry of loading. These results indicate that when modes, rather than magnitudes, of facial deformation are of interest, errors in applied muscle forces have limited effects. However the degree of asymmetric loading does impact on TMJ reaction forces and mandibular fossa strains. These findings are of particular interest in relation to studies of skeletal and fossil material, where muscle data are not available and estimation of muscle forces from skeletal proxies is prone to error. Anat Rec, 299:828-839, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Quantum mechanical force fields for condensed phase molecular simulations

    Science.gov (United States)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  10. On the Representation of Cloud Phase in Global Climate Models, and its Importance for Simulations of Climate Forcings and Feedbacks

    Science.gov (United States)

    Storelvmo, Trude; Sagoo, Navjit; Tan, Ivy

    2016-04-01

    Despite the growing effort in improving the cloud microphysical schemes in GCMs, most of this effort has not focused on improving the ability of GCMs to accurately simulate phase partitioning in mixed-phase clouds. Getting the relative proportion of liquid droplets and ice crystals in clouds right in GCMs is critical for the representation of cloud radiative forcings and cloud-climate feedbacks. Here, we first present satellite observations of cloud phase obtained by NASA's CALIOP instrument, and report on robust statistical relationships between cloud phase and several aerosols species that have been demonstrated to act as ice nuclei (IN) in laboratory studies. We then report on results from model intercomparison projects that reveal that GCMs generally underestimate the amount of supercooled liquid in clouds. For a selected GCM (NCAR 's CAM5), we thereafter show that the underestimate can be attributed to two main factors: i) the presence of IN in the mixed-phase temperature range, and ii) the Wegener-Bergeron-Findeisen process, which converts liquid to ice once ice crystals have formed. Finally, we show that adjusting these two processes such that the GCM's cloud phase is in agreement with the observed has a substantial impact on the simulated radiative forcing due to IN perturbations, as well as on the cloud-climate feedbacks and ultimately climate sensitivity simulated by the GCM.

  11. An ocular biomechanic model for dynamic simulation of different eye movements.

    Science.gov (United States)

    Iskander, J; Hossny, M; Nahavandi, S; Del Porto, L

    2018-04-11

    Simulating and analysing eye movement is useful for assessing visual system contribution to discomfort with respect to body movements, especially in virtual environments where simulation sickness might occur. It can also be used in the design of eye prosthesis or humanoid robot eye. In this paper, we present two biomechanic ocular models that are easily integrated into the available musculoskeletal models. The model was previously used to simulate eye-head coordination. The models are used to simulate and analyse eye movements. The proposed models are based on physiological and kinematic properties of the human eye. They incorporate an eye-globe, orbital suspension tissues and six muscles with their connective tissues (pulleys). Pulleys were incorporated in rectus and inferior oblique muscles. The two proposed models are the passive pulleys and the active pulleys models. Dynamic simulations of different eye movements, including fixation, saccade and smooth pursuit, are performed to validate both models. The resultant force-length curves of the models were similar to the experimental data. The simulation results show that the proposed models are suitable to generate eye movement simulations with results comparable to other musculoskeletal models. The maximum kinematic root mean square error (RMSE) is 5.68° and 4.35° for the passive and active pulley models, respectively. The analysis of the muscle forces showed realistic muscle activation with increased muscle synergy in the active pulley model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Mammogram synthesis using a 3D simulation. I. Breast tissue model and image acquisition simulation

    International Nuclear Information System (INIS)

    Bakic, Predrag R.; Albert, Michael; Brzakovic, Dragana; Maidment, Andrew D. A.

    2002-01-01

    A method is proposed for generating synthetic mammograms based upon simulations of breast tissue and the mammographic imaging process. A computer breast model has been designed with a realistic distribution of large and medium scale tissue structures. Parameters controlling the size and placement of simulated structures (adipose compartments and ducts) provide a method for consistently modeling images of the same simulated breast with modified position or acquisition parameters. The mammographic imaging process is simulated using a compression model and a model of the x-ray image acquisition process. The compression model estimates breast deformation using tissue elasticity parameters found in the literature and clinical force values. The synthetic mammograms were generated by a mammogram acquisition model using a monoenergetic parallel beam approximation applied to the synthetically compressed breast phantom

  13. Cluster Risk of Walking Scenarios Based on Macroscopic Flow Model and Crowding Force Analysis

    Directory of Open Access Journals (Sweden)

    Xiaohong Li

    2018-02-01

    Full Text Available In recent years, accidents always happen in confined space such as metro stations because of congestion. Various researchers investigated the patterns of dense crowd behaviors in different scenarios via simulations or experiments and proposed methods for avoiding accidents. In this study, a classic continuum macroscopic model was applied to simulate the crowded pedestrian flow in typical scenarios such as at bottlenecks or with an obstacle. The Lax–Wendroff finite difference scheme and artificial viscosity filtering method were used to discretize the model to identify high-density risk areas. Furthermore, we introduced a contact crowding force test of the interactions among pedestrians at bottlenecks. Results revealed that in the most dangerous area, the individual on the corner position bears the maximum pressure in such scenarios is 90.2 N, and there is an approximate exponential relationship between crowding force and density indicated by our data. The results and findings presented in this paper can facilitate more reasonable and precise simulation models by utilizing crowding force and crowd density and ensure the safety of pedestrians in high-density scenarios.

  14. Estimation of the uncertainty of a climate model using an ensemble simulation

    Science.gov (United States)

    Barth, A.; Mathiot, P.; Goosse, H.

    2012-04-01

    The atmospheric forcings play an important role in the study of the ocean and sea-ice dynamics of the Southern Ocean. Error in the atmospheric forcings will inevitably result in uncertain model results. The sensitivity of the model results to errors in the atmospheric forcings are studied with ensemble simulations using multivariate perturbations of the atmospheric forcing fields. The numerical ocean model used is the NEMO-LIM in a global configuration with an horizontal resolution of 2°. NCEP reanalyses are used to provide air temperature and wind data to force the ocean model over the last 50 years. A climatological mean is used to prescribe relative humidity, cloud cover and precipitation. In a first step, the model results is compared with OSTIA SST and OSI SAF sea ice concentration of the southern hemisphere. The seasonal behavior of the RMS difference and bias in SST and ice concentration is highlighted as well as the regions with relatively high RMS errors and biases such as the Antarctic Circumpolar Current and near the ice-edge. Ensemble simulations are performed to statistically characterize the model error due to uncertainties in the atmospheric forcings. Such information is a crucial element for future data assimilation experiments. Ensemble simulations are performed with perturbed air temperature and wind forcings. A Fourier decomposition of the NCEP wind vectors and air temperature for 2007 is used to generate ensemble perturbations. The perturbations are scaled such that the resulting ensemble spread matches approximately the RMS differences between the satellite SST and sea ice concentration. The ensemble spread and covariance are analyzed for the minimum and maximum sea ice extent. It is shown that errors in the atmospheric forcings can extend to several hundred meters in depth near the Antarctic Circumpolar Current.

  15. Testing thermal gradient driving force for grain boundary migration using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Strong thermal gradients in low-thermal-conductivity ceramics may drive extended defects, such as grain boundaries and voids, to migrate in preferential directions. In this work, molecular dynamics simulations are conducted to study thermal gradient driven grain boundary migration and to verify a previously proposed thermal gradient driving force equation, using uranium dioxide as a model system. It is found that a thermal gradient drives grain boundaries to migrate up the gradient and the migration velocity increases under a constant gradient owing to the increase in mobility with temperature. Different grain boundaries migrate at very different rates due to their different intrinsic mobilities. The extracted mobilities from the thermal gradient driven simulations are compared with those calculated from two other well-established methods and good agreement between the three different methods is found, demonstrating that the theoretical equation of the thermal gradient driving force is valid, although a correction of one input parameter should be made. The discrepancy in the grain boundary mobilities between modeling and experiments is also discussed.

  16. A direct force model for Galilean invariant lattice Boltzmann simulation of fluid-particle flows

    Science.gov (United States)

    Tao, Shi; He, Qing; Chen, Baiman; Yang, Xiaoping; Huang, Simin

    The lattice Boltzmann method (LBM) has been widely used in the simulation of particulate flows involving complex moving boundaries. Due to the kinetic background of LBM, the bounce-back (BB) rule and the momentum exchange (ME) method can be easily applied to the solid boundary treatment and the evaluation of fluid-solid interaction force, respectively. However, recently it has been found that both the BB and ME schemes may violate the principle of Galilean invariance (GI). Some modified BB and ME methods have been proposed to reduce the GI error. But these remedies have been recognized subsequently to be inconsistent with Newton’s Third Law. Therefore, contrary to those corrections based on the BB and ME methods, a unified iterative approach is adopted to handle the solid boundary in the present study. Furthermore, a direct force (DF) scheme is proposed to evaluate the fluid-particle interaction force. The methods preserve the efficiency of the BB and ME schemes, and the performance on the accuracy and GI is verified and validated in the test cases of particulate flows with freely moving particles.

  17. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  18. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.

    Science.gov (United States)

    Hast, Michael W; Piazza, Stephen J

    2013-02-01

    Model-based estimation of in vivo contact forces arising between components of a total knee replacement is challenging because such forces depend upon accurate modeling of muscles, tendons, ligaments, contact, and multibody dynamics. Here we describe an approach to solving this problem with results that are tested by comparison to knee loads measured in vivo for a single subject and made available through the Grand Challenge Competition to Predict in vivo Tibiofemoral Loads. The approach makes use of a "dual-joint" paradigm in which the knee joint is alternately represented by (1) a ball-joint knee for inverse dynamic computation of required muscle controls and (2) a 12 degree-of-freedom (DOF) knee with elastic foundation contact at the tibiofemoral and patellofemoral articulations for forward dynamic integration. Measured external forces and kinematics were applied as a feedback controller and static optimization attempted to track measured knee flexion angles and electromyographic (EMG) activity. The resulting simulations showed excellent tracking of knee flexion (average RMS error of 2.53 deg) and EMG (muscle activations within ±10% envelopes of normalized measured EMG signals). Simulated tibiofemoral contact forces agreed qualitatively with measured contact forces, but their RMS errors were approximately 25% of the peak measured values. These results demonstrate the potential of a dual-joint modeling approach to predict joint contact forces from kinesiological data measured in the motion laboratory. It is anticipated that errors in the estimation of contact force will be reduced as more accurate subject-specific models of muscles and other soft tissues are developed.

  19. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S., E-mail: satoshi@sum.sd.keio.ac.j [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nagashima, K.; Seino, H. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, T.; Sawa, K. [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2009-10-15

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  20. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    International Nuclear Information System (INIS)

    Araki, S.; Nagashima, K.; Seino, H.; Murakami, T.; Sawa, K.

    2009-01-01

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  1. A novel drag force coefficient model for gas–water two-phase flows under different flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn

    2015-07-15

    Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.

  2. Radiative Forcing in the ACCMIP Historical and Future Climate Simulations

    Science.gov (United States)

    Shindell, Drew Todd; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; hide

    2013-01-01

    A primary goal of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100climate change in the current generation of climate models. Here we evaluate historicaland 5 future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of whichalso participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).The models generally reproduce present-day climatological total aerosol opticaldepth (AOD) relatively well. components to this total, however, and most appear to underestimate AOD over East10 Asia. The models generally capture 1980-2000 AOD trends fairly well, though theyunderpredict AOD increases over the YellowEastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, SouthAmerica and Southern Hemisphere Africa.We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing AF, including direct andindirect effects). The models calculated all aerosol all-sky 1850 to 2000 global meanannual average RF ranges from 0.06 to 0.49 W m(sup -2), with a mean of 0.26 W m(sup -2) and a median of 0.27 W m(sup -2. Adjusting for missing aerosol components in some modelsbrings the range to 0.12 to 0.62W m(sup -2), with a mean of 0.39W m(sup -2). Screen20ing the models based on their ability to capture spatial patterns and magnitudes ofAOD and AOD trends yields a quality-controlled mean of 0.42W m(sup -2) and range of0.33 to 0.50 W m(sup -2) (accounting for missing components). The CMIP5 subset of ACCMIPmodels spans 0.06 to 0.49W m(sup -2), suggesting some CMIP5 simulations likelyhave too little aerosol RF. A substantial, but not well quantified, contribution to histori25cal aerosol RF may come from climate feedbacks (35 to 58). The mean aerosol AF during this period is 1.12W m(sup -2) (median value 1.16W m(sup -2), range 0.72 to1.44W m

  3. Non-monotonic resonance in a spatially forced Lengyel-Epstein model

    Energy Technology Data Exchange (ETDEWEB)

    Haim, Lev [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Oncology, Soroka University Medical Center, Beer-Sheva 84101 (Israel); Hagberg, Aric [Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Meron, Ehud [Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 84990 (Israel)

    2015-06-15

    We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.

  4. Defining the effect of sweep tillage tool cutting edge geometry on tillage forces using 3D discrete element modelling

    Directory of Open Access Journals (Sweden)

    Mustafa Ucgul

    2015-09-01

    Full Text Available The energy required for tillage processes accounts for a significant proportion of total energy used in crop production. In many tillage processes decreasing the draft and upward vertical forces is often desired for reduced fuel use and improved penetration, respectively. Recent studies have proved that the discrete element modelling (DEM can effectively be used to model the soil–tool interaction. In his study, Fielke (1994 [1] examined the effect of the various tool cutting edge geometries, namely; cutting edge height, length of underside rub, angle of underside clearance, on draft and vertical forces. In this paper the experimental parameters of Fielke (1994 [1] were simulated using 3D discrete element modelling techniques. In the simulations a hysteretic spring contact model integrated with a linear cohesion model that considers the plastic deformation behaviour of the soil hence provides better vertical force prediction was employed. DEM parameters were determined by comparing the experimental and simulation results of angle of repose and penetration tests. The results of the study showed that the simulation results of the soil-various tool cutting edge geometries agreed well with the experimental results of Fielke (1994 [1]. The modelling was then used to simulate a further range of cutting edge geometries to better define the effect of sweep tool cutting edge geometry parameters on tillage forces. The extra simulations were able to show that by using a sharper cutting edge with zero vertical cutting edge height the draft and upward vertical force were further reduced indicating there is benefit from having a really sharp cutting edge. The extra simulations also confirmed that the interpolated trends for angle of underside clearance as suggested by Fielke (1994 [1] where correct with a linear reduction in draft and upward vertical force for angle of underside clearance between the ranges of −25 and −5°, and between −5 and 0°. The

  5. Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?: NUDGING AND MODEL SENSITIVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Guangxing [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Wan, Hui [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Zhang, Kai [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Qian, Yun [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA; Ghan, Steven J. [Pacific Northwest National Laboratory, Atmospheric Science and Global Change Division, Richland Washington USA

    2016-07-10

    Efficient simulation strategies are crucial for the development and evaluation of high resolution climate models. This paper evaluates simulations with constrained meteorology for the quantification of parametric sensitivities in the Community Atmosphere Model version 5 (CAM5). Two parameters are perturbed as illustrating examples: the convection relaxation time scale (TAU), and the threshold relative humidity for the formation of low-level stratiform clouds (rhminl). Results suggest that the fidelity and computational efficiency of the constrained simulations depend strongly on 3 factors: the detailed implementation of nudging, the mechanism through which the perturbed parameter affects precipitation and cloud, and the magnitude of the parameter perturbation. In the case of a strong perturbation in convection, temperature and/or wind nudging with a 6-hour relaxation time scale leads to non-negligible side effects due to the distorted interactions between resolved dynamics and parameterized convection, while a 1-year free running simulation can satisfactorily capture the annual mean precipitation sensitivity in terms of both global average and geographical distribution. In the case of a relatively weak perturbation the large-scale condensation scheme, results from 1-year free-running simulations are strongly affected by noise associated with internal variability, while nudging winds effectively reduces the noise, and reasonably reproduces the response of precipitation and cloud forcing to parameter perturbation. These results indicate that caution is needed when using nudged simulations to assess precipitation and cloud forcing sensitivities to parameter changes in general circulation models. We also demonstrate that ensembles of short simulations are useful for understanding the evolution of model sensitivities.

  6. Uterus models for use in virtual reality hysteroscopy simulators.

    Science.gov (United States)

    Niederer, Peter; Weiss, Stephan; Caduff, Rosmarie; Bajka, Michael; Szekély, Gabor; Harders, Matthias

    2009-05-01

    Virtual reality models of human organs are needed in surgery simulators which are developed for educational and training purposes. A simulation can only be useful, however, if the mechanical performance of the system in terms of force-feedback for the user as well as the visual representation is realistic. We therefore aim at developing a mechanical computer model of the organ in question which yields realistic force-deformation behavior under virtual instrument-tissue interactions and which, in particular, runs in real time. The modeling of the human uterus is described as it is to be implemented in a simulator for minimally invasive gynecological procedures. To this end, anatomical information which was obtained from specially designed computed tomography and magnetic resonance imaging procedures as well as constitutive tissue properties recorded from mechanical testing were used. In order to achieve real-time performance, the combination of mechanically realistic numerical uterus models of various levels of complexity with a statistical deformation approach is suggested. In view of mechanical accuracy of such models, anatomical characteristics including the fiber architecture along with the mechanical deformation properties are outlined. In addition, an approach to make this numerical representation potentially usable in an interactive simulation is discussed. The numerical simulation of hydrometra is shown in this communication. The results were validated experimentally. In order to meet the real-time requirements and to accommodate the large biological variability associated with the uterus, a statistical modeling approach is demonstrated to be useful.

  7. A Force Balanced Fragmentation Method for ab Initio Molecular Dynamic Simulation of Protein

    Directory of Open Access Journals (Sweden)

    Mingyuan Xu

    2018-05-01

    Full Text Available A force balanced generalized molecular fractionation with conjugate caps (FB-GMFCC method is proposed for ab initio molecular dynamic simulation of proteins. In this approach, the energy of the protein is computed by a linear combination of the QM energies of individual residues and molecular fragments that account for the two-body interaction of hydrogen bond between backbone peptides. The atomic forces on the caped H atoms were corrected to conserve the total force of the protein. Using this approach, ab initio molecular dynamic simulation of an Ace-(ALA9-NME linear peptide showed the conservation of the total energy of the system throughout the simulation. Further a more robust 110 ps ab initio molecular dynamic simulation was performed for a protein with 56 residues and 862 atoms in explicit water. Compared with the classical force field, the ab initio molecular dynamic simulations gave better description of the geometry of peptide bonds. Although further development is still needed, the current approach is highly efficient, trivially parallel, and can be applied to ab initio molecular dynamic simulation study of large proteins.

  8. Effect of the forcing term in the pseudopotential lattice Boltzmann modeling of thermal flows.

    Science.gov (United States)

    Li, Qing; Luo, K H

    2014-05-01

    The pseudopotential lattice Boltzmann (LB) model is a popular model in the LB community for simulating multiphase flows. Recently, several thermal LB models, which are based on the pseudopotential LB model and constructed within the framework of the double-distribution-function LB method, were proposed to simulate thermal multiphase flows [G. Házi and A. Márkus, Phys. Rev. E 77, 026305 (2008); L. Biferale, P. Perlekar, M. Sbragaglia, and F. Toschi, Phys. Rev. Lett. 108, 104502 (2012); S. Gong and P. Cheng, Int. J. Heat Mass Transfer 55, 4923 (2012); M. R. Kamali et al., Phys. Rev. E 88, 033302 (2013)]. The objective of the present paper is to show that the effect of the forcing term on the temperature equation must be eliminated in the pseudopotential LB modeling of thermal flows. First, the effect of the forcing term on the temperature equation is shown via the Chapman-Enskog analysis. For comparison, alternative treatments that are free from the forcing-term effect are provided. Subsequently, numerical investigations are performed for two benchmark tests. The numerical results clearly show that the existence of the forcing-term effect will lead to significant numerical errors in the pseudopotential LB modeling of thermal flows.

  9. Force Limiting Vibration Tests Evaluated from both Ground Acoustic Tests and FEM Simulations of a Flight Like Vehicle System Assembly

    Science.gov (United States)

    Smith, Andrew; LaVerde, Bruce; Waldon, James; Hunt, Ron

    2014-01-01

    Marshall Space Flight Center has conducted a series of ground acoustic tests with the dual goals of informing analytical judgment, and validating analytical methods when estimating vibroacoustic responses of launch vehicle subsystems. The process of repeatedly correlating finite element-simulated responses with test-measured responses has assisted in the development of best practices for modeling and post-processing. In recent work, force transducers were integrated to measure interface forces at the base of avionics box equipment. Other force data was indirectly measured using strain gauges. The combination of these direct and indirect force measurements has been used to support and illustrate the advantages of implementing the Force Limiting approach for equipment qualification tests. The comparison of force response from integrated system level tests to measurements at the same locations during component level vibration tests provides an excellent illustration. A second comparison of the measured response cases from the system level acoustic tests to finite element simulations has also produced some principles for assessing the suitability of Finite Element Models (FEMs) for making vibroacoustics estimates. The results indicate that when FEM models are employed to guide force limiting choices, they should include sufficient detail to represent the apparent mass of the system in the frequency range of interest.

  10. Influence of lubrication forces in direct numerical simulations of particle-laden flows

    Science.gov (United States)

    Maitri, Rohit; Peters, Frank; Padding, Johan; Kuipers, Hans

    2016-11-01

    Accurate numerical representation of particle-laden flows is important for fundamental understanding and optimizing the complex processes such as proppant transport in fracking. Liquid-solid flows are fundamentally different from gas-solid flows because of lower density ratios (solid to fluid) and non-negligible lubrication forces. In this interface resolved model, fluid-solid coupling is achieved by incorporating the no-slip boundary condition implicitly at particle's surfaces by means of an efficient second order ghost-cell immersed boundary method. A fixed Eulerian grid is used for solving the Navier-Stokes equations and the particle-particle interactions are implemented using the soft sphere collision and sub-grid scale lubrication model. Due to the range of influence of lubrication force on a smaller scale than the grid size, it is important to implement the lubrication model accurately. In this work, different implementations of the lubrication model on particle dynamics are studied for various flow conditions. The effect of a particle surface roughness on lubrication force and the particle transport is also investigated. This study is aimed at developing a validated methodology to incorporate lubrication models in direct numerical simulation of particle laden flows. This research is supported from Grant 13CSER014 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organisation for Scientific Research (NWO).

  11. A superellipsoid-plane model for simulating foot-ground contact during human gait.

    Science.gov (United States)

    Lopes, D S; Neptune, R R; Ambrósio, J A; Silva, M T

    2016-01-01

    Musculoskeletal models and forward dynamics simulations of human movement often include foot-ground interactions, with the foot-ground contact forces often determined using a constitutive model that depends on material properties and contact kinematics. When using soft constraints to model the foot-ground interactions, the kinematics of the minimum distance between the foot and planar ground needs to be computed. Due to their geometric simplicity, a considerable number of studies have used point-plane elements to represent these interacting bodies, but few studies have provided comparisons between point contact elements and other geometrically based analytical solutions. The objective of this work was to develop a more general-purpose superellipsoid-plane contact model that can be used to determine the three-dimensional foot-ground contact forces. As an example application, the model was used in a forward dynamics simulation of human walking. Simulation results and execution times were compared with a point-like viscoelastic contact model. Both models produced realistic ground reaction forces and kinematics with similar computational efficiency. However, solving the equations of motion with the surface contact model was found to be more efficient (~18% faster), and on average numerically ~37% less stiff. The superellipsoid-plane elements are also more versatile than point-like elements in that they allow for volumetric contact during three-dimensional motions (e.g. rotating, rolling, and sliding). In addition, the superellipsoid-plane element is geometrically accurate and easily integrated within multibody simulation code. These advantages make the use of superellipsoid-plane contact models in musculoskeletal simulations an appealing alternative to point-like elements.

  12. Mars Exploration Rover Terminal Descent Mission Modeling and Simulation

    Science.gov (United States)

    Raiszadeh, Behzad; Queen, Eric M.

    2004-01-01

    Because of NASA's added reliance on simulation for successful interplanetary missions, the MER mission has developed a detailed EDL trajectory modeling and simulation. This paper summarizes how the MER EDL sequence of events are modeled, verification of the methods used, and the inputs. This simulation is built upon a multibody parachute trajectory simulation tool that has been developed in POST I1 that accurately simulates the trajectory of multiple vehicles in flight with interacting forces. In this model the parachute and the suspended bodies are treated as 6 Degree-of-Freedom (6 DOF) bodies. The terminal descent phase of the mission consists of several Entry, Descent, Landing (EDL) events, such as parachute deployment, heatshield separation, deployment of the lander from the backshell, deployment of the airbags, RAD firings, TIRS firings, etc. For an accurate, reliable simulation these events need to be modeled seamlessly and robustly so that the simulations will remain numerically stable during Monte-Carlo simulations. This paper also summarizes how the events have been modeled, the numerical issues, and modeling challenges.

  13. Rolling Process Modeling Report: Finite-Element Prediction of Roll Separating Force and Rolling Defects

    Energy Technology Data Exchange (ETDEWEB)

    Soulami, Ayoub [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lavender, Curt A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Paxton, Dean M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Burkes, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-04-23

    Pacific Northwest National Laboratory (PNNL) has been investigating manufacturing processes for the uranium-10% molybdenum (U-10Mo) alloy plate-type fuel for the U.S. high-performance research reactors. This work supports the Convert Program of the U.S. Department of Energy’s National Nuclear Security Administration (DOE/NNSA) Global Threat Reduction Initiative. This report documents modeling results of PNNL’s efforts to perform finite-element simulations to predict roll separating forces and rolling defects. Simulations were performed using a finite-element model developed using the commercial code LS-Dyna. Simulations of the hot rolling of U-10Mo coupons encapsulated in low-carbon steel have been conducted following two different schedules. Model predictions of the roll-separation force and roll-pack thicknesses at different stages of the rolling process were compared with experimental measurements. This report discusses various attributes of the rolled coupons revealed by the model (e.g., dog-boning and thickness non-uniformity).

  14. Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)

    Science.gov (United States)

    Liu, J.; Wang, B.

    2009-12-01

    The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for

  15. Uncertainties of Large-Scale Forcing Caused by Surface Turbulence Flux Measurements and the Impacts on Cloud Simulations at the ARM SGP Site

    Science.gov (United States)

    Tang, S.; Xie, S.; Tang, Q.; Zhang, Y.

    2017-12-01

    Two types of instruments, the eddy correlation flux measurement system (ECOR) and the energy balance Bowen ratio system (EBBR), are used at the Atmospheric Radiation Measurement (ARM) program Southern Great Plains (SGP) site to measure surface latent and sensible fluxes. ECOR and EBBR typically sample different land surface types, and the domain-mean surface fluxes derived from ECOR and EBBR are not always consistent. The uncertainties of the surface fluxes will have impacts on the derived large-scale forcing data and further affect the simulations of single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulation models (LES), especially for the shallow-cumulus clouds which are mainly driven by surface forcing. This study aims to quantify the uncertainties of the large-scale forcing caused by surface turbulence flux measurements and investigate the impacts on cloud simulations using long-term observations from the ARM SGP site.

  16. Concurrent Modeling of Hydrodynamics and Interaction Forces Improves Particle Deposition Predictions.

    Science.gov (United States)

    Jin, Chao; Ren, Carolyn L; Emelko, Monica B

    2016-04-19

    It is widely believed that media surface roughness enhances particle deposition-numerous, but inconsistent, examples of this effect have been reported. Here, a new mathematical framework describing the effects of hydrodynamics and interaction forces on particle deposition on rough spherical collectors in absence of an energy barrier was developed and validated. In addition to quantifying DLVO force, the model includes improved descriptions of flow field profiles and hydrodynamic retardation functions. This work demonstrates that hydrodynamic effects can significantly alter particle deposition relative to expectations when only the DLVO force is considered. Moreover, the combined effects of hydrodynamics and interaction forces on particle deposition on rough, spherical media are not additive, but synergistic. Notably, the developed model's particle deposition predictions are in closer agreement with experimental observations than those from current models, demonstrating the importance of inclusion of roughness impacts in particle deposition description/simulation. Consideration of hydrodynamic contributions to particle deposition may help to explain discrepancies between model-based expectations and experimental outcomes and improve descriptions of particle deposition during physicochemical filtration in systems with nonsmooth collector surfaces.

  17. Experimental Validation of Flow Force Models for Fast Switching Valves

    DEFF Research Database (Denmark)

    Bender, Niels Christian; Pedersen, Henrik Clemmensen; Nørgård, Christian

    2017-01-01

    This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties of the surroun......This paper comprises a detailed study of the forces acting on a Fast Switching Valve (FSV) plunger. The objective is to investigate to what extend different models are valid to be used for design purposes. These models depend on the geometry of the moving plunger and the properties...... to compare and validate different models, where an effort is directed towards capturing the fluid squeeze effect just before material on material contact. The test data is compared with simulation data relying solely on analytic formulations. The general dynamics of the plunger is validated...

  18. Evaluation of a Surrogate Contact Model in Force-Dependent Kinematic Simulations of Total Knee Replacement

    NARCIS (Netherlands)

    Marra, M.A.; Andersen, M.S.; Damsgaard, M.; Koopman, B.; Janssen, D.W.; Verdonschot, N.J.

    2017-01-01

    Knowing the forces in the human body is of great clinical interest and musculoskeletal (MS) models are the most commonly used tool to estimate them in vivo. Unfortunately, the process of computing muscle, joint contact, and ligament forces simultaneously is computationally highly demanding. The goal

  19. Evaluation of a surrogate contact model in force-dependent kinematic simulations of total knee replacement

    NARCIS (Netherlands)

    Marra, Marco Antonio; Andersen, Michael S.; Damsgaard, Michael; Koopman, Bart F.J.M.; Janssen, Dennis; Verdonschot, Nico

    2017-01-01

    Knowing the forces in the human body is of great clinical interest and musculoskeletal (MS) models are the most commonly used tool to estimate them in vivo. Unfortunately, the process of computing muscle, joint contact, and ligament forces simultaneously is computationally highly demanding. The goal

  20. Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-1.

    Science.gov (United States)

    Caro, J Jaime; Briggs, Andrew H; Siebert, Uwe; Kuntz, Karen M

    2012-01-01

    Models-mathematical frameworks that facilitate estimation of the consequences of health care decisions-have become essential tools for health technology assessment. Evolution of the methods since the first ISPOR modeling task force reported in 2003 has led to a new task force, jointly convened with the Society for Medical Decision Making, and this series of seven papers presents the updated recommendations for best practices in conceptualizing models; implementing state-transition approaches, discrete event simulations, or dynamic transmission models; dealing with uncertainty; and validating and reporting models transparently. This overview introduces the work of the task force, provides all the recommendations, and discusses some quandaries that require further elucidation. The audience for these papers includes those who build models, stakeholders who utilize their results, and, indeed, anyone concerned with the use of models to support decision making.

  1. Complex oscillatory behaviour in a delayed protein cross talk model with periodic forcing

    International Nuclear Information System (INIS)

    Nikolov, Svetoslav

    2009-01-01

    The purpose of this paper is to examine the effects of periodic forcing on the time delay protein cross talk model behaviour. We assume periodic variation for the plasma membrane permeability. The dynamic behaviour of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that periodic forcing can very easily give rise to complex dynamics, including a period-doubling cascade, chaos, quasi-periodic oscillating, and periodic windows. Finally, we calculate the maximal Lyapunov exponent in the regions of the parameter space where chaotic motion of delayed protein cross talk model with periodic forcing exists.

  2. Modeling and simulation of satellite subsystems for end-to-end spacecraft modeling

    Science.gov (United States)

    Schum, William K.; Doolittle, Christina M.; Boyarko, George A.

    2006-05-01

    During the past ten years, the Air Force Research Laboratory (AFRL) has been simultaneously developing high-fidelity spacecraft payload models as well as a robust distributed simulation environment for modeling spacecraft subsystems. Much of this research has occurred in the Distributed Architecture Simulation Laboratory (DASL). AFRL developers working in the DASL have effectively combined satellite power, attitude pointing, and communication link analysis subsystem models with robust satellite sensor models to create a first-order end-to-end satellite simulation capability. The merging of these two simulation areas has advanced the field of spacecraft simulation, design, and analysis, and enabled more in-depth mission and satellite utility analyses. A core capability of the DASL is the support of a variety of modeling and analysis efforts, ranging from physics and engineering-level modeling to mission and campaign-level analysis. The flexibility and agility of this simulation architecture will be used to support space mission analysis, military utility analysis, and various integrated exercises with other military and space organizations via direct integration, or through DOD standards such as Distributed Interaction Simulation. This paper discusses the results and lessons learned in modeling satellite communication link analysis, power, and attitude control subsystems for an end-to-end satellite simulation. It also discusses how these spacecraft subsystem simulations feed into and support military utility and space mission analyses.

  3. Mapping the Protein Fold Universe Using the CamTube Force Field in Molecular Dynamics Simulations.

    Science.gov (United States)

    Kukic, Predrag; Kannan, Arvind; Dijkstra, Maurits J J; Abeln, Sanne; Camilloni, Carlo; Vendruscolo, Michele

    2015-10-01

    It has been recently shown that the coarse-graining of the structures of polypeptide chains as self-avoiding tubes can provide an effective representation of the conformational space of proteins. In order to fully exploit the opportunities offered by such a 'tube model' approach, we present here a strategy to combine it with molecular dynamics simulations. This strategy is based on the incorporation of the 'CamTube' force field into the Gromacs molecular dynamics package. By considering the case of a 60-residue polyvaline chain, we show that CamTube molecular dynamics simulations can comprehensively explore the conformational space of proteins. We obtain this result by a 20 μs metadynamics simulation of the polyvaline chain that recapitulates the currently known protein fold universe. We further show that, if residue-specific interaction potentials are added to the CamTube force field, it is possible to fold a protein into a topology close to that of its native state. These results illustrate how the CamTube force field can be used to explore efficiently the universe of protein folds with good accuracy and very limited computational cost.

  4. Numerical Simulation of a Grinding Process Model for the Spatial Work-pieces: Development of Modeling Techniques

    Directory of Open Access Journals (Sweden)

    S. A. Voronov

    2015-01-01

    Full Text Available The article presents a literature review in simulation of grinding processes. It takes into consideration the statistical, energy based, and imitation approaches to simulation of grinding forces. Main stages of interaction between abrasive grains and machined surface are shown. The article describes main approaches to the geometry modeling of forming new surfaces when grinding. The review of approaches to the chip and pile up effect numerical modeling is shown. Advantages and disadvantages of grain-to-surface interaction by means of finite element method and molecular dynamics method are considered. The article points out that it is necessary to take into consideration the system dynamics and its effect on the finished surface. Structure of the complex imitation model of grinding process dynamics for flexible work-pieces with spatial surface geometry is proposed from the literature review. The proposed model of spatial grinding includes the model of work-piece dynamics, model of grinding wheel dynamics, phenomenological model of grinding forces based on 3D geometry modeling algorithm. Model gives the following results for spatial grinding process: vibration of machining part and grinding wheel, machined surface geometry, static deflection of the surface and grinding forces under various cutting conditions.

  5. Long-wave forcing for regional atmospheric modelling

    Energy Technology Data Exchange (ETDEWEB)

    Storch, H. von; Langenberg, H.; Feser, F. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    A new method, named 'spectral nudging', of linking a regional model to the driving large-scale model simulated or analyzed by a global model is proposed and tested. Spectral nudging is based on the idea that regional-scale climate statistics are conditioned by the interplay between continental-scale atmospheric conditions and such regional features as marginal seas and mountain ranges. Following this 'downscaling' idea, the regional model is forced to satisfy not only boundary conditions, possibly in a boundary sponge region, but also large-scale flow conditions inside the integration area. We demonstrate that spectral nudging succeeds in keeping the simulated state close to the driving state at large scales, while generating smaller-scale features. We also show that the standard boundary forcing technique in current use allows the regional model to develop internal states conflicting with the large-scale state. It is concluded that spectral nudging may be seen as a suboptimal and indirect data assimilation technique. (orig.) [German] Eine neue Methode, genannt 'spektrales nudging', ein Regionalmodell an das durch ein Globalmodell simulierte grossskalige Antriebsfeld zu koppeln, wird vorgestellt und getestet. Das spektrale nudging basiert auf der Annahme, dass regionale Klimastatistik durch die Wechselwirkung zwischen dem kontinental-skaligen atmosphaerischen Zustand und regionalen Gegebenheiten, wie kleinere Seen und Gebirgszuege, bestimmt wird. Demnach muss das Regionalmodell nicht nur die Randbedingungen erfuellen, sondern auch die grossskaligen Zustaende innerhalb des Integrationsgebietes wiedergeben koennen. Wir zeigen, dass durch das spektrale nudging der grossskalige modellierte Zustand nahe an dem des Antriebsfeldes liegt, ohne die Modellierung regionaler Phaenomene zu beeintraechtigen. Ausserdem zeigen wir, dass das Regionalmodell durch die zur Zeit benutzte Antriebstechnik ueber den Modellrand interne Felder produzieren kann

  6. Subgrid-scale models for large-eddy simulation of rotating turbulent channel flows

    Science.gov (United States)

    Silvis, Maurits H.; Bae, Hyunji Jane; Trias, F. Xavier; Abkar, Mahdi; Moin, Parviz; Verstappen, Roel

    2017-11-01

    We aim to design subgrid-scale models for large-eddy simulation of rotating turbulent flows. Rotating turbulent flows form a challenging test case for large-eddy simulation due to the presence of the Coriolis force. The Coriolis force conserves the total kinetic energy while transporting it from small to large scales of motion, leading to the formation of large-scale anisotropic flow structures. The Coriolis force may also cause partial flow laminarization and the occurrence of turbulent bursts. Many subgrid-scale models for large-eddy simulation are, however, primarily designed to parametrize the dissipative nature of turbulent flows, ignoring the specific characteristics of transport processes. We, therefore, propose a new subgrid-scale model that, in addition to the usual dissipative eddy viscosity term, contains a nondissipative nonlinear model term designed to capture transport processes, such as those due to rotation. We show that the addition of this nonlinear model term leads to improved predictions of the energy spectra of rotating homogeneous isotropic turbulence as well as of the Reynolds stress anisotropy in spanwise-rotating plane-channel flows. This work is financed by the Netherlands Organisation for Scientific Research (NWO) under Project Number 613.001.212.

  7. Variable Thumb Moment Arm Modeling and Thumb-Tip Force Production of a Human-Like Robotic Hand.

    Science.gov (United States)

    Niehues, Taylor D; Deshpande, Ashish D

    2017-10-01

    The anatomically correct testbed (ACT) hand mechanically simulates the musculoskeletal structure of the fingers and thumb of the human hand. In this work, we analyze the muscle moment arms (MAs) and thumb-tip force vectors in the ACT thumb in order to compare the ACT thumb's mechanical structure to the human thumb. Motion data are used to determine joint angle-dependent MA models, and thumb-tip three-dimensional (3D) force vectors are experimentally analyzed when forces are applied to individual muscles. Results are presented for both a nominal ACT thumb model designed to match human MAs and an adjusted model that more closely replicates human-like thumb-tip forces. The results confirm that the ACT thumb is capable of faithfully representing human musculoskeletal structure and muscle functionality. Using the ACT hand as a physical simulation platform allows us to gain a better understanding of the underlying biomechanical and neuromuscular properties of the human hand to ultimately inform the design and control of robotic and prosthetic hands.

  8. SU-D-BRF-06: A Brachytherapy Simulator with Realistic Haptic Force Feedback and Real-Time Ultrasounds Image Simulation for Training and Teaching

    International Nuclear Information System (INIS)

    Beaulieu, L; Carette, A; Comtois, S; Lavigueur, M; Cardou, P; Laurendeau, D

    2014-01-01

    Purpose: Surgical procedures require dexterity, expertise and repetition to reach optimal patient outcomes. However, efficient training opportunities are usually limited. This work presents a simulator system with realistic haptic force-feedback and full, real-time ultrasounds image simulation. Methods: The simulator is composed of a custom-made Linear-DELTA force-feedback robotic platform. The needle tip is mounted on a force gauge at the end effector of the robot, which responds to needle insertion by providing reaction forces. 3D geometry of the tissue is using a tetrahedral finite element mesh (FEM) mimicking tissue properties. As the needle is inserted/retracted, tissue deformation is computed using a mass-tensor nonlinear visco-elastic FEM. The real-time deformation is fed to the L-DELTA to take into account the force imparted to the needle, providing feedback to the end-user when crossing tissue boundaries or needle bending. Real-time 2D US image is also generated synchronously showing anatomy, needle insertion and tissue deformation. The simulator is running on an Intel I7 6- core CPU at 3.26 MHz. 3D tissue rendering and ultrasound display are performed on a Windows 7 computer; the FEM computation and L-DELTA control are executed on a similar PC using the Neutrino real-time OS. Both machines communicate through an Ethernet link. Results: The system runs at 500 Hz for a 8333-tetrahedron tissue mesh and a 100-node angular spring needle model. This frame rate ensures a relatively smooth displacement of the needle when pushed or retracted (±20 N in all directions at speeds of up to 2 m/s). Unlike commercially-available haptic platforms, the oblong workspace of the L-DELTA robot complies with that required for brachytherapy needle displacements of 0.1m by 0.1m by 0.25m. Conclusion: We have demonstrated a real-life, realistic brachytherapy simulator developed for prostate implants (LDR/HDR). The platform could be adapted to other sites or training for other

  9. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Stier

    2013-03-01

    Full Text Available Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is −4.47 Wm−2 and the inter-model standard deviation is 0.55 Wm−2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm−2, and the standard deviation increases to 1.01 W−2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption is low, with absolute (relative standard deviations of 0.45 Wm−2 (8% clear-sky and 0.62 Wm−2 (11% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm−2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model

  10. Conservative and dissipative force field for simulation of coarse-grained alkane molecules: A bottom-up approach

    Energy Technology Data Exchange (ETDEWEB)

    Trément, Sébastien; Rousseau, Bernard, E-mail: bernard.rousseau@u-psud.fr [Laboratoire de Chimie-Physique, UMR 8000 CNRS, Université Paris-Sud, Orsay (France); Schnell, Benoît; Petitjean, Laurent; Couty, Marc [Manufacture Française des Pneumatiques MICHELIN, Centre de Ladoux, 23 place des Carmes, 63000 Clermont-Ferrand (France)

    2014-04-07

    We apply operational procedures available in the literature to the construction of coarse-grained conservative and friction forces for use in dissipative particle dynamics (DPD) simulations. The full procedure rely on a bottom-up approach: large molecular dynamics trajectories of n-pentane and n-decane modeled with an anisotropic united atom model serve as input for the force field generation. As a consequence, the coarse-grained model is expected to reproduce at least semi-quantitatively structural and dynamical properties of the underlying atomistic model. Two different coarse-graining levels are studied, corresponding to five and ten carbon atoms per DPD bead. The influence of the coarse-graining level on the generated force fields contributions, namely, the conservative and the friction part, is discussed. It is shown that the coarse-grained model of n-pentane correctly reproduces self-diffusion and viscosity coefficients of real n-pentane, while the fully coarse-grained model for n-decane at ambient temperature over-predicts diffusion by a factor of 2. However, when the n-pentane coarse-grained model is used as a building block for larger molecule (e.g., n-decane as a two blobs model), a much better agreement with experimental data is obtained, suggesting that the force field constructed is transferable to large macro-molecular systems.

  11. Tsunami Simulators in Physical Modelling - Concept to Practical Solutions

    Science.gov (United States)

    Chandler, Ian; Allsop, William; Robinson, David; Rossetto, Tiziana; McGovern, David; Todd, David

    2017-04-01

    Whilst many researchers have conducted simple 'tsunami impact' studies, few engineering tools are available to assess the onshore impacts of tsunami, with no agreed methods available to predict loadings on coastal defences, buildings or related infrastructure. Most previous impact studies have relied upon unrealistic waveforms (solitary or dam-break waves and bores) rather than full-duration tsunami waves, or have used simplified models of nearshore and over-land flows. Over the last 10+ years, pneumatic Tsunami Simulators for the hydraulic laboratory have been developed into an exciting and versatile technology, allowing the forces of real-world tsunami to be reproduced and measured in a laboratory environment for the first time. These devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example coastal defences and infrastructure. They have also reproduced full-duration tsunamis including Mercator 2004 and Tohoku 2011, both at 1:50 scale. Engineering scale models of these tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences, pressures / forces on buildings, and scour at idealised buildings. This presentation will describe how these Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facilities within which they operate, and will present research results from three generations of Tsunami Simulators. Highlights of direct importance to natural hazard modellers and coastal engineers include measurements of wave run-up levels, forces on single and multiple buildings and comparison with previous theoretical predictions. Multiple buildings have two malign effects. The density of buildings to flow area (blockage ratio) increases water depths and flow velocities in the 'streets'. But the increased building densities themselves also increase the cost of flow per unit area (both personal and monetary). The most recent study with the Tsunami

  12. Low-energy oxygen bombardment of silicon by MD simulations making use of a reactive force field

    International Nuclear Information System (INIS)

    Philipp, P.; Briquet, L.; Wirtz, T.; Kieffer, J.

    2011-01-01

    In the field of Secondary Ion Mass Spectrometry (SIMS), ion-matter interactions have been largely investigated by numerical simulations. For MD simulations related to inorganic samples, mostly classical force fields assuming stable bonding structure have been used. In materials science, level-three force fields capable of simulating the breaking and formation of chemical bonds have recently been conceived. One such force field has been developed by John Kieffer . This potential includes directional covalent bonds, Coulomb and dipolar interaction terms, dispersion terms, etc. Important features of this force field for simulating systems that undergo significant structural reorganization are (i) the ability to account for the redistribution of electron density upon ionization, formation, or breaking of bonds, through a charge transfer term, and (ii) the fact that the angular constraints dynamically adjust when a change in the coordination number of an atom occurs. In this paper, the modification of the force field to allow for an exact description of the sputtering process, the influence of this modification on previous results obtained for phase transitions in glasses as well as properties of particles sputtered at 250-1000 eV from a mono-crystalline silicon sample will be presented. The simulation results agree qualitatively with predictions from experiments or models. Most atoms are sputtered from the first monolayer: for an impact energy of 250 eV up to 86% of the atoms are sputtered from the first monolayer and for 750 eV, this percentage drops to 61%, with 89% of the atoms being sputtered from the first two monolayers. For sputtering yields, 250 and 500 eV results agree with experimental data, but for 750 eV sub-channelling in the pristine sample becomes more important than in experiments where samples turn amorphous under ion bombardment.

  13. Climate forcings and climate sensitivities diagnosed from atmospheric global circulation models

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Bruce T. [Boston University, Department of Geography and Environment, Boston, MA (United States); Knight, Jeff R.; Ringer, Mark A. [Met Office Hadley Centre, Exeter (United Kingdom); Deser, Clara; Phillips, Adam S. [National Center for Atmospheric Research, Boulder, CO (United States); Yoon, Jin-Ho [University of Maryland, Cooperative Institute for Climate and Satellites, Earth System Science Interdisciplinary Center, College Park, MD (United States); Cherchi, Annalisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici, and Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2010-12-15

    Understanding the historical and future response of the global climate system to anthropogenic emissions of radiatively active atmospheric constituents has become a timely and compelling concern. At present, however, there are uncertainties in: the total radiative forcing associated with changes in the chemical composition of the atmosphere; the effective forcing applied to the climate system resulting from a (temporary) reduction via ocean-heat uptake; and the strength of the climate feedbacks that subsequently modify this forcing. Here a set of analyses derived from atmospheric general circulation model simulations are used to estimate the effective and total radiative forcing of the observed climate system due to anthropogenic emissions over the last 50 years of the twentieth century. They are also used to estimate the sensitivity of the observed climate system to these emissions, as well as the expected change in global surface temperatures once the climate system returns to radiative equilibrium. Results indicate that estimates of the effective radiative forcing and total radiative forcing associated with historical anthropogenic emissions differ across models. In addition estimates of the historical sensitivity of the climate to these emissions differ across models. However, results suggest that the variations in climate sensitivity and total climate forcing are not independent, and that the two vary inversely with respect to one another. As such, expected equilibrium temperature changes, which are given by the product of the total radiative forcing and the climate sensitivity, are relatively constant between models, particularly in comparison to results in which the total radiative forcing is assumed constant. Implications of these results for projected future climate forcings and subsequent responses are also discussed. (orig.)

  14. Internal force corrections with machine learning for quantum mechanics/molecular mechanics simulations.

    Science.gov (United States)

    Wu, Jingheng; Shen, Lin; Yang, Weitao

    2017-10-28

    Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.

  15. Combining experimental and simulation data of molecular processes via augmented Markov models.

    Science.gov (United States)

    Olsson, Simon; Wu, Hao; Paul, Fabian; Clementi, Cecilia; Noé, Frank

    2017-08-01

    Accurate mechanistic description of structural changes in biomolecules is an increasingly important topic in structural and chemical biology. Markov models have emerged as a powerful way to approximate the molecular kinetics of large biomolecules while keeping full structural resolution in a divide-and-conquer fashion. However, the accuracy of these models is limited by that of the force fields used to generate the underlying molecular dynamics (MD) simulation data. Whereas the quality of classical MD force fields has improved significantly in recent years, remaining errors in the Boltzmann weights are still on the order of a few [Formula: see text], which may lead to significant discrepancies when comparing to experimentally measured rates or state populations. Here we take the view that simulations using a sufficiently good force-field sample conformations that are valid but have inaccurate weights, yet these weights may be made accurate by incorporating experimental data a posteriori. To do so, we propose augmented Markov models (AMMs), an approach that combines concepts from probability theory and information theory to consistently treat systematic force-field error and statistical errors in simulation and experiment. Our results demonstrate that AMMs can reconcile conflicting results for protein mechanisms obtained by different force fields and correct for a wide range of stationary and dynamical observables even when only equilibrium measurements are incorporated into the estimation process. This approach constitutes a unique avenue to combine experiment and computation into integrative models of biomolecular structure and dynamics.

  16. Coupled model simulations of twentieth century climate of the Indian ...

    Indian Academy of Sciences (India)

    models showed serious problems in simulating the northward seasonal migration of the Inter- tropical convergence zone (ITCZ) into the Indian landmass. They have also shown .... state-of-the-art AGCMs when forced by observed. SST are unable to simulate properly Asian–Pacific summer monsoon rainfall. In their analysis ...

  17. Tsunami Simulators in Physical Modelling Laboratories - From Concept to Proven Technique

    Science.gov (United States)

    Allsop, W.; Chandler, I.; Rossetto, T.; McGovern, D.; Petrone, C.; Robinson, D.

    2016-12-01

    Before 2004, there was little public awareness around Indian Ocean coasts of the potential size and effects of tsunami. Even in 2011, the scale and extent of devastation by the Japan East Coast Tsunami was unexpected. There were very few engineering tools to assess onshore impacts of tsunami, so no agreement on robust methods to predict forces on coastal defences, buildings or related infrastructure. Modelling generally used substantial simplifications of either solitary waves (far too short durations) or dam break (unrealistic and/or uncontrolled wave forms).This presentation will describe research from EPI-centre, HYDRALAB IV, URBANWAVES and CRUST projects over the last 10 years that have developed and refined pneumatic Tsunami Simulators for the hydraulic laboratory. These unique devices have been used to model generic elevated and N-wave tsunamis up to and over simple shorelines, and at example defences. They have reproduced full-duration tsunamis including the Mercator trace from 2004 at 1:50 scale. Engineering scale models subjected to those tsunamis have measured wave run-up on simple slopes, forces on idealised sea defences and pressures / forces on buildings. This presentation will describe how these pneumatic Tsunami Simulators work, demonstrate how they have generated tsunami waves longer than the facility within which they operate, and will highlight research results from the three generations of Tsunami Simulator. Of direct relevance to engineers and modellers will be measurements of wave run-up levels and comparison with theoretical predictions. Recent measurements of forces on individual buildings have been generalized by separate experiments on buildings (up to 4 rows) which show that the greatest forces can act on the landward (not seaward) buildings. Continuing research in the 70m long 4m wide Fast Flow Facility on tsunami defence structures have also measured forces on buildings in the lee of a failed defence wall.

  18. Modeling and Simulation of Variable Mass, Flexible Structures

    Science.gov (United States)

    Tobbe, Patrick A.; Matras, Alex L.; Wilson, Heath E.

    2009-01-01

    during the flight. All forces that act on the vehicle during flight must be simulated, including deflected engine thrust force, spatially distributed aerodynamic forces, gravity, and reaction control jet thrust forces. These forces are used to excite an integrated flexible vehicle, slosh, and nozzle dynamics model for the vehicle stack that simulates large rigid body translations and rotations along with small elastic deformations. Highly effective matrix math operations on a distributed, threaded high-performance simulation node allow ARTEMIS to retain up to 30 modes of flex for real-time simulation. Stage elements that separate from the stack during flight are propagated as independent rigid six degrees of freedom (6DOF) bodies. This paper will present the formulation of the resulting equations of motion, solutions to example problems, and describe the resulting dynamics simulation engine within ARTEMIS.

  19. 3D finite element modelling of force transmission and particle fracture of sand

    Energy Technology Data Exchange (ETDEWEB)

    Imseeh, Wadi H.; Alshibli, Khalid A. (Tennessee-K)

    2018-02-01

    Global compressive loading of granular media causes rearrangements of particles into a denser configuration. Under 1D compression, researchers observed that particles initially translate and rotate which lead to more contacts between particles and the development of force chains to resist applied loads. Particles within force chains resist most of the applied loads while neighbor particles provide lateral support to prevent particles within force chains from buckling. Several experimental and numerical models have been proposed in the literature to characterize force chains within granular materials. This paper presents a 3D finite element (FE) model that simulates 1D compression experiment on F-75 Ottawa sand. The FE mesh of particles closely matched 3D physical shape of sand particles that were acquired using 3D synchrotron micro-computed tomography (SMT) technique. The paper presents a quantitative assessment of the model, in which evolution of force chains, fracture modes, and stress-strain relationships showed an excellent agreement with experimental measurements reported by Cil et al. Alshibli (2017).

  20. Drivers of 2016 record Arctic warmth assessed using climate simulations subjected to Factual and Counterfactual forcing

    Directory of Open Access Journals (Sweden)

    Lantao Sun

    2018-03-01

    Full Text Available A suite of historical atmospheric model simulations is described that uses a hierarchy of global boundary forcings designed to inform research on the detection and attribution of weather and climate-related extremes. In addition to experiments forced by actual variations in sea surface temperature, sea ice concentration, and atmospheric chemical composition (so-called Factual experiments; additional (Counterfactual experiments are conducted in which the boundary forcings are adjusted by removing estimates of long-term climate change. A third suite of experiments are identical to the Factual runs except that sea ice concentrations are set to climatological conditions (Clim-Polar experiments. These were used to investigate the cause for extremely warm Arctic surface temperature during 2016.Much of the magnitude of surface temperature anomalies averaged poleward of 65°N in 2016 (3.2 ± 0.6 °C above a 1980–89 reference is shown to have been forced by observed global boundary conditions. The Factual experiments reveal that at least three quarters of the magnitude of 2016 annual mean Arctic warmth was forced, with considerable sensitivity to assumptions of sea ice thickness change. Results also indicate that 30–40% of the overall forced Arctic warming signal in 2016 originated from drivers outside of the Arctic. Despite such remote effects, the experiments reveal that the extreme magnitude of the 2016 Arctic warmth could not have occurred without consideration of the Arctic sea ice loss. We find a near-zero probability for Arctic surface temperature to be as warm as occurred in 2016 under late-19th century boundary conditions, and also under 2016 boundary conditions that do not include the depleted Arctic sea ice. Results from the atmospheric model experiments are reconciled with coupled climate model simulations which lead to a conclusion that about 60% of the 2016 Arctic warmth was likely attributable to human-induced climate change

  1. A parallel direct-forcing fictitious domain method for simulating microswimmers

    Science.gov (United States)

    Gao, Tong; Lin, Zhaowu

    2017-11-01

    We present a 3D parallel direct-forcing fictitious domain method for simulating swimming micro-organisms at small Reynolds numbers. We treat the motile micro-swimmers as spherical rigid particles using the ``Squirmer'' model. The particle dynamics are solved on the moving Larangian meshes that overlay upon a fixed Eulerian mesh for solving the fluid motion, and the momentum exchange between the two phases is resolved by distributing pseudo body-forces over the particle interior regions which constrain the background fictitious fluids to follow the particle movement. While the solid and fluid subproblems are solved separately, no inner-iterations are required to enforce numerical convergence. We demonstrate the accuracy and robustness of the method by comparing our results with the existing analytical and numerical studies for various cases of single particle dynamics and particle-particle interactions. We also perform a series of numerical explorations to obtain statistical and rheological measurements to characterize the dynamics and structures of Squirmer suspensions. NSF DMS 1619960.

  2. Modelling the climate of the last millennium: what causes the differences between simulations?

    NARCIS (Netherlands)

    Goosse, H.; Crowley, T.J.; Zorita, E.; Ammann, C.M.; Renssen, H.; Driesschaert, E.

    2005-01-01

    An ensemble of simulations performed with a coarse resolution 3-D climate model driven by various combinations of external forcing is used to investigate possible causes for differences noticed in two recent simulations of the climate of the past millennium using General Circulation Models (GCMs).

  3. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995), 10.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012), 10.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  4. Transition point prediction in a multicomponent lattice Boltzmann model: Forcing scheme dependencies.

    Science.gov (United States)

    Küllmer, Knut; Krämer, Andreas; Joppich, Wolfgang; Reith, Dirk; Foysi, Holger

    2018-02-01

    Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.

  5. Model tests and numerical analysis on restoring force characteristics of reactor buildings

    International Nuclear Information System (INIS)

    Uchiyama, Y.; Suzuki, S.; Akino, K.

    1987-01-01

    Seismic shear walls of nuclear reactor buildings are composed of cylindrical, truncated cone-shape, box-shape, irregular polygonal walls or its combination and they are generally heavily reinforced concrete (RC) walls. So the elasto-plastic behaviors of those RC structures in ultimate regions have many unsolved and may be considered as especially important factors for explaining nonlinear response of nuclear reactor buildings. Following these research demands, the authors have prepared a nonlinear F.E.M. code called ''SANREF'' and made an extensive study for the restoring force characteristics of the inner concrete structures (I/C) of a PWR-type containment vessel and the principal seismic shear walls of a BWR-type reactor building by some series of reduced model tests and simulation analysis for the tests results. The detailed objectives of this study can be summarized as follows: (1) Examine the effectiveness of the configurations of shear walls, reinforcement ratios, shear span ratios (M/Qd) and vertical axial stress by ''partial model test'' which simulates some independent shear walls of the PWR-type and BWR-type reactor buildings. (2) Obtain fundamental data of restoring force characteristics of the complex shaped RC structures by ''composite model test'' which models are composed of the partial model test specimens. (3) Verify the applicability of analytical methods and constitutive modelings in SANREF code for complex shaped RC structures through nonlinear simulation analysis for the composite model test

  6. Numerical simulation for the magnetic force distribution in electromagnetic forming of small size flat sheet

    Science.gov (United States)

    Chen, Xiaowei; Wang, Wenping; Wan, Min

    2013-12-01

    It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.

  7. Modeling good research practices--overview: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--1.

    Science.gov (United States)

    Caro, J Jaime; Briggs, Andrew H; Siebert, Uwe; Kuntz, Karen M

    2012-01-01

    Models--mathematical frameworks that facilitate estimation of the consequences of health care decisions--have become essential tools for health technology assessment. Evolution of the methods since the first ISPOR Modeling Task Force reported in 2003 has led to a new Task Force, jointly convened with the Society for Medical Decision Making, and this series of seven articles presents the updated recommendations for best practices in conceptualizing models; implementing state-transition approaches, discrete event simulations, or dynamic transmission models; and dealing with uncertainty and validating and reporting models transparently. This overview article introduces the work of the Task Force, provides all the recommendations, and discusses some quandaries that require further elucidation. The audience for these articles includes those who build models, stakeholders who utilize their results, and, indeed, anyone concerned with the use of models to support decision making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  8. Simulated climate change during the last 1,000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Timothy J.; Briffa, Keith R. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Raper, Sarah C.B. [University of East Anglia, Climatic Research Unit, School of Environmental Sciences, Norwich (United Kingdom); Manchester Metropolitan University, Dalton Research Institute, Manchester (United Kingdom)

    2006-08-15

    An intercomparison of eight climate simulations, each driven with estimated natural and anthropogenic forcings for the last millennium, indicates that the so-called ''Erik'' simulation of the ECHO-G coupled ocean-atmosphere climate model exhibits atypical behaviour. The ECHO-G simulation has a much stronger cooling trend from 1000 to 1700 and a higher rate of warming since 1800 than the other simulations, with the result that the overall amplitude of millennial-scale temperature variations in the ECHO-G simulation is much greater than in the other models. The MAGICC (Model for the Assessment of Greenhouse-gas-Induced Climate Change) simple climate model is used to investigate possible causes of this atypical behaviour. It is shown that disequilibrium in the initial conditions probably contributes spuriously to the cooling trend in the early centuries of the simulation, and that the omission of tropospheric sulphate aerosol forcing is the likely explanation for the anomalously large recent warming. The simple climate model results are used to adjust the ECHO-G Erik simulation to mitigate these effects, which brings the simulation into better agreement with the other seven models considered here and greatly reduces the overall range of temperature variations during the last millennium simulated by ECHO-G. Smaller inter-model differences remain which can probably be explained by a combination of the particular forcing histories and model sensitivities of each experiment. These have not been investigated here, though we have diagnosed the effective climate sensitivity of ECHO-G to be 2.39{+-}0.11 K for a doubling of CO{sub 2}. (orig.)

  9. Omens of coupled model biases in the CMIP5 AMIP simulations

    Science.gov (United States)

    Găinuşă-Bogdan, Alina; Hourdin, Frédéric; Traore, Abdoul Khadre; Braconnot, Pascale

    2018-02-01

    Despite decades of efforts and improvements in the representation of processes as well as in model resolution, current global climate models still suffer from a set of important, systematic biases in sea surface temperature (SST), not much different from the previous generation of climate models. Many studies have looked at errors in the wind field, cloud representation or oceanic upwelling in coupled models to explain the SST errors. In this paper we highlight the relationship between latent heat flux (LH) biases in forced atmospheric simulations and the SST biases models develop in coupled mode, at the scale of the entire intertropical domain. By analyzing 22 pairs of forced atmospheric and coupled ocean-atmosphere simulations from the CMIP5 database, we show a systematic, negative correlation between the spatial patterns of these two biases. This link between forced and coupled bias patterns is also confirmed by two sets of dedicated sensitivity experiments with the IPSL-CM5A-LR model. The analysis of the sources of the atmospheric LH bias pattern reveals that the near-surface wind speed bias dominates the zonal structure of the LH bias and that the near-surface relative humidity dominates the east-west contrasts.

  10. Prediction of hydraulic force and momentum on pelton turbine jet deflector based on cfd simulation

    International Nuclear Information System (INIS)

    Popovski, Boro

    2015-01-01

    The numerical simulation of three-dimensional turbulent flow through the jet-distributor, free stream jet and deflector of Pelton Turbine is presented in this work. The calculations are performed using the CFD package Ansys CFX (Navie-Stokes equations and the k-omega SST turbulent model). A traditional definition for calculation of hydraulic forces and momentum on the jet deflector and a method for experimental evaluation are described. The steps for flow modelling, mesh (grid) generation, as well as the results obtained from the numerical simulation of the flow and stress deformation calculations of the jet-deflector are presented. This work corresponds with the actual approach of methods development for flow simulation and calculations of Pelton Turbines. The kinematic and dynamic parameters are calculated based on CFD simulations. The results of the calculations represents reliable tool in the procedure of development and construction of Pelton Turbines. (author)

  11. Mediterranean Thermohaline Response to Large-Scale Winter Atmospheric Forcing in a High-Resolution Ocean Model Simulation

    Science.gov (United States)

    Cusinato, Eleonora; Zanchettin, Davide; Sannino, Gianmaria; Rubino, Angelo

    2018-04-01

    Large-scale circulation anomalies over the North Atlantic and Euro-Mediterranean regions described by dominant climate modes, such as the North Atlantic Oscillation (NAO), the East Atlantic pattern (EA), the East Atlantic/Western Russian (EAWR) and the Mediterranean Oscillation Index (MOI), significantly affect interannual-to-decadal climatic and hydroclimatic variability in the Euro-Mediterranean region. However, whereas previous studies assessed the impact of such climate modes on air-sea heat and freshwater fluxes in the Mediterranean Sea, the propagation of these atmospheric forcing signals from the surface toward the interior and the abyss of the Mediterranean Sea remains unexplored. Here, we use a high-resolution ocean model simulation covering the 1979-2013 period to investigate spatial patterns and time scales of the Mediterranean thermohaline response to winter forcing from NAO, EA, EAWR and MOI. We find that these modes significantly imprint on the thermohaline properties in key areas of the Mediterranean Sea through a variety of mechanisms. Typically, density anomalies induced by all modes remain confined in the upper 600 m depth and remain significant for up to 18-24 months. One of the clearest propagation signals refers to the EA in the Adriatic and northern Ionian seas: There, negative EA anomalies are associated to an extensive positive density response, with anomalies that sink to the bottom of the South Adriatic Pit within a 2-year time. Other strong responses are the thermally driven responses to the EA in the Gulf of Lions and to the EAWR in the Aegean Sea. MOI and EAWR forcing of thermohaline properties in the Eastern Mediterranean sub-basins seems to be determined by reinforcement processes linked to the persistency of these modes in multiannual anomalous states. Our study also suggests that NAO, EA, EAWR and MOI could critically interfere with internal, deep and abyssal ocean dynamics and variability in the Mediterranean Sea.

  12. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...

  13. Mechanism of ENSO influence on the South Asian monsoon rainfall in global model simulations

    Science.gov (United States)

    Joshi, Sneh; Kar, Sarat C.

    2018-02-01

    Coupled ocean atmosphere global climate models are increasingly being used for seasonal scale simulation of the South Asian monsoon. In these models, sea surface temperatures (SSTs) evolve as coupled air-sea interaction process. However, sensitivity experiments with various SST forcing can only be done in an atmosphere-only model. In this study, the Global Forecast System (GFS) model at T126 horizontal resolution has been used to examine the mechanism of El Niño-Southern Oscillation (ENSO) forcing on the monsoon circulation and rainfall. The model has been integrated (ensemble) with observed, climatological and ENSO SST forcing to document the mechanism on how the South Asian monsoon responds to basin-wide SST variations in the Indian and Pacific Oceans. The model simulations indicate that the internal variability gets modulated by the SSTs with warming in the Pacific enhancing the ensemble spread over the monsoon region as compared to cooling conditions. Anomalous easterly wind anomalies cover the Indian region both at 850 and 200 hPa levels during El Niño years. The locations and intensity of Walker and Hadley circulations are altered due to ENSO SST forcing. These lead to reduction of monsoon rainfall over most parts of India during El Niño events compared to La Niña conditions. However, internally generated variability is a major source of uncertainty in the model-simulated climate.

  14. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    Science.gov (United States)

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  15. Integration of the Forced-Choice Questionnaire and the Likert Scale: A Simulation Study

    Directory of Open Access Journals (Sweden)

    Yue Xiao

    2017-05-01

    Full Text Available The Thurstonian item response theory (IRT model allows estimating the latent trait scores of respondents directly through their responses in forced-choice questionnaires. It solves a part of problems brought by the traditional scoring methods of this kind of questionnaires. However, the forced-choice designs may still have their own limitations: The model may encounter underidentification and non-convergence and the test may show low test reliability in simple test designs (e.g., test designs with only a small number of traits measured or short length. To overcome these weaknesses, the present study applied the Thurstonian IRT model and the Graded Response Model to a different test format that comprises both forced-choice blocks and Likert-type items. And the Likert items should have low social desirability. A Monte Carlo simulation study is used to investigate how the mixed response format performs under various conditions. Four factors are considered: the number of traits, test length, the percentage of Likert items, and the proportion of pairs composed of items keyed in opposite directions. Results reveal that the mixed response format can be superior to the forced-choice format, especially in simple designs where the latter performs poorly. Besides the number of Likert items needed is small. One point to note is that researchers need to choose Likert items cautiously as Likert items may bring other response biases to the test. Discussion and suggestions are given to construct personality tests that can resist faking as much as possible and have acceptable reliability.

  16. Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities

    International Nuclear Information System (INIS)

    Seppä, Jeremias; Sairanen, Hannu; Korpelainen, Virpi; Husu, Hannu; Heinonen, Martti; Lassila, Antti; Reischl, Bernhard; Raiteri, Paolo; Rohl, Andrew L; Nordlund, Kai

    2017-01-01

    Due to their operation principle atomic force microscopes (AFMs) are sensitive to all factors affecting the detected force between the probe and the sample. Relative humidity is an important and often neglected—both in experiments and simulations—factor in the interaction force between AFM probe and sample in air. This paper describes the humidity control system designed and built for the interferometrically traceable metrology AFM (IT-MAFM) at VTT MIKES. The humidity control is based on circulating the air of the AFM enclosure via dryer and humidifier paths with adjustable flow and mixing ratio of dry and humid air. The design humidity range of the system is 20–60 %rh. Force–distance adhesion studies at humidity levels between 25 %rh and 53 %rh are presented and compared to an atomistic molecular dynamics (MD) simulation. The uncertainty level of the thermal noise method implementation used for force constant calibration of the AFM cantilevers is 10 %, being the dominant component of the interaction force measurement uncertainty. Comparing the simulation and the experiment, the primary uncertainties are related to the nominally 7 nm radius and shape of measurement probe apex, possible wear and contamination, and the atomistic simulation technique details. The interaction forces are of the same order of magnitude in simulation and measurement (5 nN). An elongation of a few nanometres of the water meniscus between probe tip and sample, before its rupture, is seen in simulation upon retraction of the tip in higher humidity. This behaviour is also supported by the presented experimental measurement data but the data is insufficient to conclusively verify the quantitative meniscus elongation. (paper)

  17. Improvement of a force field to model the edges of clay particles

    International Nuclear Information System (INIS)

    Pouvreau, Maxime

    2016-01-01

    The CLAYFF force field is widely used to model the interfaces of clay minerals - and related layered materials - with an aqueous phase. In the simulations, clay particles are typically represented by semi-infinite layers, i.e. only surfaces parallel to the layer plane (basal surfaces) are considered. This simplification is acceptable to a certain extent, but clay layers are really nano sized and terminated by lateral surfaces or edges. These surfaces can not only adsorb solvated species but are also subject to proton transfers, and all physico-chemical processes related to the aqueous phase acidity predominantly occur at the edges. By adding to the CLAYFF force field a Metal-O-H angle bending term whose parameters are correctly adjusted, the simulations of edge interfaces become possible.The parameters of Al-O-H and Mg-O-H terms were obtained from DFT calculations on bulk, basal surface and edge structural models of gibbsite Al(OH) 3 and brucite Mg(OH) 2 , whose layers can be considered as the backbones of clay minerals and related materials. In addition, the Si-O-H term was parametrized from an edge model of kaolinite Al 2 Si 2 O 5 (OH) 4 . Molecular dynamics simulations based on DFT and on CLAYFF with and without Metal-O-H term were performed. The modified force field clearly improves the description of hydroxylated surfaces: the orientation and the vibrational dynamics of the hydroxyl groups, the hydrogen bonding, and the coordination of metal atoms belonging to the edge are all closer to reality [fr

  18. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichiro; Dershowitz, William

    2003-01-01

    During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA). MIU Underground Rock Laboratory support during H-14 involved discrete fracture network (DFN) modelling in support of the Multiple Modelling Project (MMP) and the Long Term Pumping Test (LPT). Golder developed updated DFN models for the MIU site, reflecting updated analyses of fracture data. Golder also developed scripts to support JNC simulations of flow and transport pathways within the MMP. Golder supported JNC participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport during H-14. Task 6A and 6B compared safety assessment (PA) and experimental time scale simulations along a pipe transport pathway. Task 6B2 extended Task 6B simulations from 1-D to 2-D. For Task 6B2, Golder carried out single fracture transport simulations on a wide variety of generic heterogeneous 2D fractures using both experimental and safety assessment boundary conditions. The heterogeneous 2D fractures were implemented according to a variety of in plane heterogeneity patterns. Multiple immobile zones were considered including stagnant zones, infillings, altered wall rock, and intact rock. During H-14, JNC carried out extensive studies of the distributed rock zone (DRZ) surrounding repository tunnels and drifts. Golder supported this activity be evaluating the calculation time necessary for simulating a reference heterogeneous DRZ cell network for a range of computational strategies. To support the development of JNC's total system performance assessment (TSPA) strategy, Golder carried out a review of the US DOE Yucca Mountain Project TSPA. This

  19. Expanded Large-Scale Forcing Properties Derived from the Multiscale Data Assimilation System and Its Application to Single-Column Models

    Science.gov (United States)

    Feng, S.; Li, Z.; Liu, Y.; Lin, W.; Toto, T.; Vogelmann, A. M.; Fridlind, A. M.

    2013-12-01

    We present an approach to derive large-scale forcing that is used to drive single-column models (SCMs) and cloud resolving models (CRMs)/large eddy simulation (LES) for evaluating fast physics parameterizations in climate models. The forcing fields are derived by use of a newly developed multi-scale data assimilation (MS-DA) system. This DA system is developed on top of the NCEP Gridpoint Statistical Interpolation (GSI) System and is implemented in the Weather Research and Forecasting (WRF) model at a cloud resolving resolution of 2 km. This approach has been applied to the generation of large scale forcing for a set of Intensive Operation Periods (IOPs) over the Atmospheric Radiation Measurement (ARM) Climate Research Facility's Southern Great Plains (SGP) site. The dense ARM in-situ observations and high-resolution satellite data effectively constrain the WRF model. The evaluation shows that the derived forcing displays accuracies comparable to the existing continuous forcing product and, overall, a better dynamic consistency with observed cloud and precipitation. One important application of this approach is to derive large-scale hydrometeor forcing and multiscale forcing, which is not provided in the existing continuous forcing product. It is shown that the hydrometeor forcing poses an appreciable impact on cloud and precipitation fields in the single-column model simulations. The large-scale forcing exhibits a significant dependency on domain-size that represents SCM grid-sizes. Subgrid processes often contribute a significant component to the large-scale forcing, and this contribution is sensitive to the grid-size and cloud-regime.

  20. The Impact of Model and Rainfall Forcing Errors on Characterizing Soil Moisture Uncertainty in Land Surface Modeling

    Science.gov (United States)

    Maggioni, V.; Anagnostou, E. N.; Reichle, R. H.

    2013-01-01

    The contribution of rainfall forcing errors relative to model (structural and parameter) uncertainty in the prediction of soil moisture is investigated by integrating the NASA Catchment Land Surface Model (CLSM), forced with hydro-meteorological data, in the Oklahoma region. Rainfall-forcing uncertainty is introduced using a stochastic error model that generates ensemble rainfall fields from satellite rainfall products. The ensemble satellite rain fields are propagated through CLSM to produce soil moisture ensembles. Errors in CLSM are modeled with two different approaches: either by perturbing model parameters (representing model parameter uncertainty) or by adding randomly generated noise (representing model structure and parameter uncertainty) to the model prognostic variables. Our findings highlight that the method currently used in the NASA GEOS-5 Land Data Assimilation System to perturb CLSM variables poorly describes the uncertainty in the predicted soil moisture, even when combined with rainfall model perturbations. On the other hand, by adding model parameter perturbations to rainfall forcing perturbations, a better characterization of uncertainty in soil moisture simulations is observed. Specifically, an analysis of the rank histograms shows that the most consistent ensemble of soil moisture is obtained by combining rainfall and model parameter perturbations. When rainfall forcing and model prognostic perturbations are added, the rank histogram shows a U-shape at the domain average scale, which corresponds to a lack of variability in the forecast ensemble. The more accurate estimation of the soil moisture prediction uncertainty obtained by combining rainfall and parameter perturbations is encouraging for the application of this approach in ensemble data assimilation systems.

  1. Forcing, feedback and internal variability in global temperature trends.

    Science.gov (United States)

    Marotzke, Jochem; Forster, Piers M

    2015-01-29

    Most present-generation climate models simulate an increase in global-mean surface temperature (GMST) since 1998, whereas observations suggest a warming hiatus. It is unclear to what extent this mismatch is caused by incorrect model forcing, by incorrect model response to forcing or by random factors. Here we analyse simulations and observations of GMST from 1900 to 2012, and show that the distribution of simulated 15-year trends shows no systematic bias against the observations. Using a multiple regression approach that is physically motivated by surface energy balance, we isolate the impact of radiative forcing, climate feedback and ocean heat uptake on GMST--with the regression residual interpreted as internal variability--and assess all possible 15- and 62-year trends. The differences between simulated and observed trends are dominated by random internal variability over the shorter timescale and by variations in the radiative forcings used to drive models over the longer timescale. For either trend length, spread in simulated climate feedback leaves no traceable imprint on GMST trends or, consequently, on the difference between simulations and observations. The claim that climate models systematically overestimate the response to radiative forcing from increasing greenhouse gas concentrations therefore seems to be unfounded.

  2. Magnetohydrodynamic Modeling of Solar Coronal Dynamics with an Initial Non-force-free Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, A.; Bhattacharyya, R.; Kumar, Sanjay [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313001 (India)

    2017-05-01

    The magnetic fields in the solar corona are generally neither force-free nor axisymmetric and have complex dynamics that are difficult to characterize. Here we simulate the topological evolution of solar coronal magnetic field lines (MFLs) using a magnetohydrodynamic model. The simulation is initialized with a non-axisymmetric non-force-free magnetic field that best correlates with the observed vector magnetograms of solar active regions (ARs). To focus on these ideas, simulations are performed for the flaring AR 11283 noted for its complexity and well-documented dynamics. The simulated dynamics develops as the initial Lorentz force pushes the plasma and facilitates successive magnetic reconnections at the two X-type null lines present in the initial field. Importantly, the simulation allows for the spontaneous development of mass flow, unique among contemporary works, that preferentially reconnects field lines at one of the X-type null lines. Consequently, a flux rope consisting of low-lying twisted MFLs, which approximately traces the major polarity inversion line, undergoes an asymmetric monotonic rise. The rise is attributed to a reduction in the magnetic tension force at the region overlying the rope, resulting from the reconnection. A monotonic rise of the rope is in conformity with the standard scenario of flares. Importantly, the simulated dynamics leads to bifurcations of the flux rope, which, being akin to the observed filament bifurcation in AR 11283, establishes the appropriateness of the initial field in describing ARs.

  3. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.

    Science.gov (United States)

    Kim, Elmer K; Wellnitz, Scott A; Bourdon, Sarah M; Lumpkin, Ellen A; Gerling, Gregory J

    2012-07-23

    The next generation of prosthetic limbs will restore sensory feedback to the nervous system by mimicking how skin mechanoreceptors, innervated by afferents, produce trains of action potentials in response to compressive stimuli. Prior work has addressed building sensors within skin substitutes for robotics, modeling skin mechanics and neural dynamics of mechanotransduction, and predicting response timing of action potentials for vibration. The effort here is unique because it accounts for skin elasticity by measuring force within simulated skin, utilizes few free model parameters for parsimony, and separates parameter fitting and model validation. Additionally, the ramp-and-hold, sustained stimuli used in this work capture the essential features of the everyday task of contacting and holding an object. This systems integration effort computationally replicates the neural firing behavior for a slowly adapting type I (SAI) afferent in its temporally varying response to both intensity and rate of indentation force by combining a physical force sensor, housed in a skin-like substrate, with a mathematical model of neuronal spiking, the leaky integrate-and-fire. Comparison experiments were then conducted using ramp-and-hold stimuli on both the spiking-sensor model and mouse SAI afferents. The model parameters were iteratively fit against recorded SAI interspike intervals (ISI) before validating the model to assess its performance. Model-predicted spike firing compares favorably with that observed for single SAI afferents. As indentation magnitude increases (1.2, 1.3, to 1.4 mm), mean ISI decreases from 98.81 ± 24.73, 54.52 ± 6.94, to 41.11 ± 6.11 ms. Moreover, as rate of ramp-up increases, ISI during ramp-up decreases from 21.85 ± 5.33, 19.98 ± 3.10, to 15.42 ± 2.41 ms. Considering first spikes, the predicted latencies exhibited a decreasing trend as stimulus rate increased, as is observed in afferent recordings. Finally, the SAI afferent's characteristic response

  4. Three-dimensional direct numerical simulation of electromagnetically driven multiscale shallow layer flows: Numerical modeling and physical properties

    Science.gov (United States)

    Lardeau, Sylvain; Ferrari, Simone; Rossi, Lionel

    2008-12-01

    Three-dimensional (3D) direct numerical simulations of a flow driven by multiscale electromagnetic forcing are performed in order to reproduce with maximum accuracy the quasi-two-dimensional (2D) flow generated by the same multiscale forcing in the laboratory. The method presented is based on a 3D description of the flow and the electromagnetic forcing. Very good agreements between our simulations and the experiments are found both on velocity and acceleration field, this last comparison being, to our knowledge, done for the first time. Such agreement requires that both experiments and simulations are carefully performed and, more importantly, that the underlying simplification to model the experiments and the multiscale electromagnetic forcing do not introduce significant errors. The results presented in this paper differ significantly from previous 2D direct numerical simulation in which a classical linear Rayleigh friction modeling term was used to mimic the effect of the wall-normal friction. Indeed, purely 2D simulations are found to underestimate the Reynolds number and, due to the dominance of nonhomogeneous bottom friction, lead to the wrong physical mechanism. For the range of conditions presented in this paper, the Reynolds number, defined by the ratio between acceleration and viscous terms, remains the order of unity, and the Hartmann number, defined by the ratio between electromagnetic force terms and viscous terms, is about 2. The main conclusion is that 3D simulations are required to model the (3D) electromagnetic forces and the wall-normal shear. Indeed, even if the flow is quasi-2D in terms of energy, a full 3D approach is required to simulate these shallow layer flows driven by multiscale electromagnetic forcing. In the range of forcing intensity investigated in this paper, these multiscale flows remain quasi-2D, with negligible energy in the wall-normal velocity component. It is also shown that the driving terms are the electromagnetic forcing and

  5. Study of deformation of droplet in external force field by using liquid-gas model of lattice-gas

    International Nuclear Information System (INIS)

    Ebihara, Ken-ichi; Watanabe, Tadashi

    2000-10-01

    The deformation of the droplet by the external force which is assumed to be gravity is studied by using the liquid-gas model of lattice-gas. Two types of liquid-gas models, one is the minimal model and the other is the maximal model, which are distinguished from each other by the added long-range interactions are used for the simulation of the droplet deformation. The difference of the droplet deformation between the maximal model and the minimal model was observed. While the droplet of the minimal model elongates in the direction of the external force, the droplet of the maximal model elongates in the perpendicular direction to the external force. Therefore the droplet deformation in the external force field of the maximal model is more similar to the droplet deformation which is observed in experiments than that of the minimal model. (author)

  6. A survey report for the biped locomotion model under external force

    International Nuclear Information System (INIS)

    Kato, Ichiro; Takanishi, Atsuo; Kume, Etsuo.

    1993-10-01

    A mechanical design study of biped locomotion robots is being performed at JAERI within the scope of the Human Acts Simulation Program (HASP). The design study at JAERI is of an arbitrarily mobile robot for inspection of nuclear facilities. We have developed the simulation software which has capability of obtaining several types of stable motions for straight walking in terms of design tools. In addition, we are studying more complex walking patterns such as turning. However, in order to realize the robustness of walking, it is also necessary for the robot to have a capability of walking under external force as a disturbance which is caused by touching an object and so on. A survey has been performed for collecting useful information from already existing biped locomotion robots. This is a survey report for the biped locomotion model under external force: the WL-12RIII/IV designed and developed at Waseda University. This report includes the machine model, control system, control method and results of walking experiments. (author)

  7. Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing

    Directory of Open Access Journals (Sweden)

    I. Cionni

    2011-11-01

    Full Text Available A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009 with multi-model mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2 Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISS-PUCCINI and of the future by one CCM (CAM3.5. The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs. Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that

  8. LightForce Photon-Pressure Collision Avoidance: Updated Efficiency Analysis Utilizing a Highly Parallel Simulation Approach

    Science.gov (United States)

    Stupl, Jan; Faber, Nicolas; Foster, Cyrus; Yang, Fan Yang; Nelson, Bron; Aziz, Jonathan; Nuttall, Andrew; Henze, Chris; Levit, Creon

    2014-01-01

    This paper provides an updated efficiency analysis of the LightForce space debris collision avoidance scheme. LightForce aims to prevent collisions on warning by utilizing photon pressure from ground based, commercial off the shelf lasers. Past research has shown that a few ground-based systems consisting of 10 kilowatt class lasers directed by 1.5 meter telescopes with adaptive optics could lower the expected number of collisions in Low Earth Orbit (LEO) by an order of magnitude. Our simulation approach utilizes the entire Two Line Element (TLE) catalogue in LEO for a given day as initial input. Least-squares fitting of a TLE time series is used for an improved orbit estimate. We then calculate the probability of collision for all LEO objects in the catalogue for a time step of the simulation. The conjunctions that exceed a threshold probability of collision are then engaged by a simulated network of laser ground stations. After those engagements, the perturbed orbits are used to re-assess the probability of collision and evaluate the efficiency of the system. This paper describes new simulations with three updated aspects: 1) By utilizing a highly parallel simulation approach employing hundreds of processors, we have extended our analysis to a much broader dataset. The simulation time is extended to one year. 2) We analyze not only the efficiency of LightForce on conjunctions that naturally occur, but also take into account conjunctions caused by orbit perturbations due to LightForce engagements. 3) We use a new simulation approach that is regularly updating the LightForce engagement strategy, as it would be during actual operations. In this paper we present our simulation approach to parallelize the efficiency analysis, its computational performance and the resulting expected efficiency of the LightForce collision avoidance system. Results indicate that utilizing a network of four LightForce stations with 20 kilowatt lasers, 85% of all conjunctions with a

  9. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  10. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    Science.gov (United States)

    Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A.

    2015-01-01

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal. PMID:25898351

  11. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise.

    Science.gov (United States)

    Brown, Patrick T; Li, Wenhong; Cordero, Eugene C; Mauget, Steven A

    2015-04-21

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

  12. Numerical simulations of altocumulus with a cloud resolving model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Krueger, S.K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  13. Nonlinear Model Predictive Control of a Cable-Robot-Based Motion Simulator

    DEFF Research Database (Denmark)

    Katliar, Mikhail; Fischer, Joerg; Frison, Gianluca

    2017-01-01

    In this paper we present the implementation of a model-predictive controller (MPC) for real-time control of a cable-robot-based motion simulator. The controller computes control inputs such that a desired acceleration and angular velocity at a defined point in simulator's cabin are tracked while...... satisfying constraints imposed by working space and allowed cable forces of the robot. In order to fully use the simulator capabilities, we propose an approach that includes the motion platform actuation in the MPC model. The tracking performance and computation time of the algorithm are investigated...

  14. A radial distribution function-based open boundary force model for multi-centered molecules

    KAUST Repository

    Neumann, Philipp

    2014-06-01

    We derive an expression for radial distribution function (RDF)-based open boundary forcing for molecules with multiple interaction sites. Due to the high-dimensionality of the molecule configuration space and missing rotational invariance, a computationally cheap, 1D approximation of the arising integral expressions as in the single-centered case is not possible anymore. We propose a simple, yet accurate model invoking standard molecule- and site-based RDFs to approximate the respective integral equation. The new open boundary force model is validated for ethane in different scenarios and shows very good agreement with data from periodic simulations. © World Scientific Publishing Company.

  15. Knowledge representation requirements for model sharing between model-based reasoning and simulation in process flow domains

    Science.gov (United States)

    Throop, David R.

    1992-01-01

    The paper examines the requirements for the reuse of computational models employed in model-based reasoning (MBR) to support automated inference about mechanisms. Areas in which the theory of MBR is not yet completely adequate for using the information that simulations can yield are identified, and recent work in these areas is reviewed. It is argued that using MBR along with simulations forces the use of specific fault models. Fault models are used so that a particular fault can be instantiated into the model and run. This in turn implies that the component specification language needs to be capable of encoding any fault that might need to be sensed or diagnosed. It also means that the simulation code must anticipate all these faults at the component level.

  16. Determination of Elevator and Rudder Hinge Forces on the Learjet Model 55 Aircraft

    Science.gov (United States)

    Boroughs, R. R.; Padmanabhan, V.

    1983-01-01

    The empennage structure on the Learjet 55 aircraft was quite similar to the empennage structure on earlier Learjet models. However, due to an important structural change in the vertical fin along with the new loads environment on the 50 series aircraft, a structural test was required on the vertical fin, but the horizontal tail was substantiated by a comparative analysis with previous tests. NASTRAN analysis was used to investigate empennage deflections, stress levels, and control surface hinge forces. The hinge force calculations were made with the control surfaces in the deflected as well as undeflected configurations. A skin panel buckling analysis was also performed, and the non-linear effects of buckling were simulated in the NASTRAN model to more accurately define internal loads and stress levels. Comparisons were then made between the Model 55 and the Model 35/36 stresses and internal forces to determine which components were qualified by previous tests. Some of the methods and techniques used in this analysis are described.

  17. A computational simulated control system for a high-force pneumatic muscle actuator: system definition and application as an augmented orthosis.

    Science.gov (United States)

    Gerschutz, Maria J; Phillips, Chandler A; Reynolds, David B; Repperger, Daniel W

    2009-04-01

    High-force pneumatic muscle actuators (PMAs) are used for force assistance with minimal displacement applications. However, poor control due to dynamic nonlinearities has limited PMA applications. A simulated control system is developed consisting of: (1) a controller relating an input position angle to an output proportional pressure regulator voltage, (2) a phenomenological model of the PMA with an internal dynamic force loop (system time constant information), (3) a physical model of a human sit-to-stand task and (4) an external position angle feed-back loop. The results indicate that PMA assistance regarding the human sit-to-stand task is feasible within a specified PMA operational pressure range.

  18. Classical description of dynamical many-body systems with central forces, spin-orbit forces and spin-spin forces

    International Nuclear Information System (INIS)

    Goepfert, A.

    1994-01-01

    This thesis develops a new model, and related numerical methods, to describe classical time-dependent many-body systems interacting through central forces, spin-orbit forces and spin-spin forces. The model is based on two-particle interactions. The two-body forces consist of attractive and repulsive parts. In this model the investigated multi-particle systems are self-bound. Also the total potential of the whole ensemble is derived from the two-particle potential and is not imposed 'from outside'. Each particle has the three degrees of freedom of its centre-of-mass motion and the spin degree of freedom. The model allows for the particles to be either charged or uncharged. Furthermore, each particle has an angular momentum, an intrinsic spin, and a magnetic dipole moment. Through the electromagnetic forces between these charges and moments there arise dynamical couplings between them. The internal interactions between the charges and moments are well described by electromagnetic coupling mechanisms. In fact, compared to conventional classical molecular dynamics calculations in van der Waals clusters, which have no spin degrees of freedom, or for Heisenberg spin Systems, which have no orbital degrees of freedom, the model presented here contains both types of degrees of freedom with a highly non-trivial coupling. The model allows to study the fundamental effects resulting from the dynamical coupling of the spin and the orbital-motion sub-systems. In particular, the dynamics of the particle mass points show a behaviour basically different from the one of particles in a potential with only central forces. Furthermore, a special type of quenching procedure was invented, which tends to drive the multi-particle Systems into states with highly periodic, non-ergodic behaviour. Application of the model to cluster simulations has provided evidence that the model can also be used to investigate items like solid-to-liquid phase transitions (melting), isomerism and specific heat

  19. Direct numerical simulation of free and forced square jets

    International Nuclear Information System (INIS)

    Gohil, Trushar B.; Saha, Arun K.; Muralidhar, K.

    2015-01-01

    Highlights: • Free square jet at Re = 500–2000 is studied using DNS. • Forced square jet at Re = 1000 subjected to varicose perturbation is also investigated at various forcing frequencies. • Vortex interactions within the jet and jet spreading are affected both for free and forced jets. • Perturbation at higher frequency shows axis-switching. - Abstract: Direct numerical simulation (DNS) of incompressible, spatially developing square jets in the Reynolds number range of 500–2000 is reported. The three-dimensional unsteady Navier–Stokes equations are solved using high order spatial and temporal discretization. The objective of the present work is to understand the evolution of free and forced square jets by examining the formation of large-scale structures. Coherent structures and related interactions of free jets suggest control strategies that can be used to achieve enhanced spreading and mixing of the jet with the surrounding fluid. The critical Reynolds number for the onset on unsteadiness in an unperturbed free square jet is found to be 875–900 while it reduces to the range 500–525 in the presence of small-scale perturbations. Disturbances applied at the flow inlet cause saturation of KH-instability and early transition to turbulence. Forced jet calculations have been carried out using varicose perturbation with amplitude of 15%, while frequency is independently varied. Simulations show that the initial development of the square jet is influenced by the four corners leading to the appearance hairpin structures along with the formation of vortex rings. Farther downstream, adjacent vortices strongly interact leading to their rapid breakup. Excitation frequencies in the range 0.4–0.6 cause axis-switching of the jet cross-section. Results show that square jets achieve greater spreading but are less controllable in comparison to the circular ones

  20. Force Limited Random Vibration Test of TESS Camera Mass Model

    Science.gov (United States)

    Karlicek, Alexandra; Hwang, James Ho-Jin; Rey, Justin J.

    2015-01-01

    The Transiting Exoplanet Survey Satellite (TESS) is a spaceborne instrument consisting of four wide field-of-view-CCD cameras dedicated to the discovery of exoplanets around the brightest stars. As part of the environmental testing campaign, force limiting was used to simulate a realistic random vibration launch environment. While the force limit vibration test method is a standard approach used at multiple institutions including Jet Propulsion Laboratory (JPL), NASA Goddard Space Flight Center (GSFC), European Space Research and Technology Center (ESTEC), and Japan Aerospace Exploration Agency (JAXA), it is still difficult to find an actual implementation process in the literature. This paper describes the step-by-step process on how the force limit method was developed and applied on the TESS camera mass model. The process description includes the design of special fixtures to mount the test article for properly installing force transducers, development of the force spectral density using the semi-empirical method, estimation of the fuzzy factor (C2) based on the mass ratio between the supporting structure and the test article, subsequent validating of the C2 factor during the vibration test, and calculation of the C.G. accelerations using the Root Mean Square (RMS) reaction force in the spectral domain and the peak reaction force in the time domain.

  1. PORTER S FIVE FORCES MODEL SCOTT MORTON S FIVE FORCES MODEL BAKOS TREACY MODEL ANALYZES STRATEGIC INFORMATION SYSTEMS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Indra Gamayanto

    2004-01-01

    Full Text Available Wollongong City Council (WCC is one of the most progressive and innovative local government organizations in Australia. Wollongong City Council use Information Technology to gain the competitive advantage and to face a global economy in the future. Porter's Five Force model is one of the models that can be using at Wollongong City Council because porter's five Forces model has strength in relationship between buyer and suppliers (Bargaining power of suppliers and bargaining power of buyers. Other model such as Scott Morton's Five Forces model has strength to analyze the social impact factor, so to gain competitive advantage in the future and have a good IT/IS strategic planning; this model can be use also. Bakos & Treacy model almost the same as Porter's model but Bakos & Treacy model can also be applying into Wollongong City Council to improve the capability in Transforming organization, efficiency, and effectiveness.

  2. A modified social force model for crowd dynamics

    Science.gov (United States)

    Hassan, Ummi Nurmasyitah; Zainuddin, Zarita; Abu-Sulyman, Ibtesam M.

    2017-08-01

    The Social Force Model (SFM) is one of the most successful models in microscopic pedestrian studies that is used to study the movement of pedestrians. Many modifications have been done to improvise the SFM by earlier researchers such as the incorporation of a constant respect factor into the self-stopping mechanism. Before the new mechanism is introduced, the researchers found out that a pedestrian will immediately come to a halt if other pedestrians are near to him, which seems to be an unrealistic behavior. Therefore, researchers introduce a self-slowing mechanism to gradually stop a pedestrian when he is approaching other pedestrians. Subsequently, the dynamic respect factor is introduced into the self-slowing mechanism based on the density of the pedestrians to make the model even more realistic. In real life situations, the respect factor of the pedestrians should be dynamic values instead of a constant value. However, when we reproduce the simulation of the dynamic respect factor, we found that the movement of the pedestrians are unrealistic because the pedestrians are lacking perception of the pedestrians in front of him. In this paper, we adopted both dynamic respect factor and dynamic angular parameter, called modified dynamic respect factor, which is dependent on the density of the pedestrians. Simulations are performed in a normal unidirectional walkway to compare the simulated pedestrians' movements produced by both models. The results obtained showed that the modified dynamic respect factor produces more realistic movement of the pedestrians which conform to the real situation. Moreover, we also found that the simulations endow the pedestrian with a self-slowing mechanism and a perception of other pedestrians in front of him.

  3. Fast Estimation of Strains for Cross-Beams Six-Axis Force/Torque Sensors by Mechanical Modeling

    Directory of Open Access Journals (Sweden)

    Junqing Ma

    2013-05-01

    Full Text Available Strain distributions are crucial criteria of cross-beams six-axis force/torque sensors. The conventional method for calculating the criteria is to utilize Finite Element Analysis (FEA to get numerical solutions. This paper aims to obtain analytical solutions of strains under the effect of external force/torque in each dimension. Genetic mechanical models for cross-beams six-axis force/torque sensors are proposed, in which deformable cross elastic beams and compliant beams are modeled as quasi-static Timoshenko beam. A detailed description of model assumptions, model idealizations, application scope and model establishment is presented. The results are validated by both numerical FEA simulations and calibration experiments, and test results are found to be compatible with each other for a wide range of geometric properties. The proposed analytical solutions are demonstrated to be an accurate estimation algorithm with higher efficiency.

  4. Lattice QCD simulation of meson exchange forces

    International Nuclear Information System (INIS)

    Richards, D.G.; Sinclair, D.K.; Sivers, D.

    1990-01-01

    We present the formalism for investigating the bar Qq bar Qq system in lattice QCD. This system serves as a model for describing exchange forces between heavy, static hadrons. We use this formalism to calculate the exchange potential from gauge configurations which incorporate the effects of dynamical quarks. Our data can be interpreted as giving preliminary results on the range of the nuclear force

  5. Polyphilic Interactions as Structural Driving Force Investigated by Molecular Dynamics Simulation (Project 7

    Directory of Open Access Journals (Sweden)

    Christopher Peschel

    2017-09-01

    Full Text Available We investigated the effect of fluorinated molecules on dipalmitoylphosphatidylcholine (DPPC bilayers by force-field molecular dynamics simulations. In the first step, we developed all-atom force-field parameters for additive molecules in membranes to enable an accurate description of those systems. On the basis of this force field, we performed extensive simulations of various bilayer systems containing different additives. The additive molecules were chosen to be of different size and shape, and they included small molecules such as perfluorinated alcohols, but also more complex molecules. From these simulations, we investigated the structural and dynamic effects of the additives on the membrane properties, as well as the behavior of the additive molecules themselves. Our results are in good agreement with other theoretical and experimental studies, and they contribute to a microscopic understanding of interactions, which might be used to specifically tune membrane properties by additives in the future.

  6. Simulation of Changes in the Near-Surface Soil Freeze/Thaw Cycle Using CLM4.5 With Four Atmospheric Forcing Data Sets

    Science.gov (United States)

    Guo, Donglin; Wang, Aihui; Li, Duo; Hua, Wei

    2018-03-01

    Change in the near-surface soil freeze/thaw cycle is critical for assessments of hydrological activity, ecosystems, and climate change. Previous studies investigated the near-surface soil freeze/thaw cycle change mostly based on in situ observations and satellite monitoring. Here numerical simulation method is tested to estimate the long-term change in the near-surface soil freeze/thaw cycle in response to recent climate warming for its application to predictions. Four simulations are performed at 0.5° × 0.5° resolution from 1979 to 2009 using the Community Land Model version 4.5, each driven by one of the four atmospheric forcing data sets (i.e., one default Climate Research Unit-National Centers for Environmental Prediction [CRUNCEP] and three newly developed Modern Era Retrospective-Analysis for Research and Applications, Climate Forecast System Reanalysis, and European Centre for Medium-Range Weather Forecasts Reanalysis Interim). The observations from 299 weather stations in both Russia and China are employed to validate the simulated results. The results show that all simulations reasonably reproduce the observed variations in the ground temperature, the freeze start and end dates, and the freeze duration (the correlation coefficients range from 0.47 to 0.99, and the Nash-Sutcliffe efficiencies range from 0.19 to 0.98). Part of the simulations also exactly simulate the trends of the ground temperature, the freeze start and end dates, and the freeze duration. Of the four simulations, the results from the simulation using the CRUNCEP data set show the best overall agreement with the in situ observations, indicating that the CRUNCEP data set could be preferentially considered as the basic atmospheric forcing data set for future prediction. The simulated area-averaged annual freeze duration shortened by 8.03 days on average from 1979 to 2009, with an uncertainty (one standard deviation) of 0.67 days caused by the different atmospheric forcing data sets. These

  7. Modeling a forced to natural convection boiling test with the program LOOP-W

    International Nuclear Information System (INIS)

    Carbajo, J.J.

    1984-01-01

    Extensive testing has been conducted in the Simulant Boiling Flow Visualization (SBFV) loop in which water is boiled in a vertical transparent tube by circulating hot glycerine in an annulus surrounding the tube. Tests ranged from nonboiling forced convection to oscillatory boiling natural convection. The program LOOP-W has been developed to analyze these tests. This program is a multi-leg, one-dimensional, two-phase equilibrium model with slip between the phases. In this study, a specific test, performed at low power where non-boiling forced convection was changed to boiling natural convection and then to non-boiling again, has been modeled with the program LOOP-W

  8. How sensitive are nanosecond molecular dynamics simulations of proteins to changes in the force field?

    NARCIS (Netherlands)

    Villa, Alessandra; Fan, Hao; Wassenaar, Tsjerk; Mark, Alan E.

    2007-01-01

    The sensitivity of molecular dynamics simulations to variations in the force field has been examined in relation to a set of 36 structures corresponding to 31 proteins simulated by using different versions of the GROMOS force field. The three parameter sets used (43a1, 53a5, and 53a6) differ

  9. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    Science.gov (United States)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model

  10. Optimization of the GBMV2 implicit solvent force field for accurate simulation of protein conformational equilibria.

    Science.gov (United States)

    Lee, Kuo Hao; Chen, Jianhan

    2017-06-15

    Accurate treatment of solvent environment is critical for reliable simulations of protein conformational equilibria. Implicit treatment of solvation, such as using the generalized Born (GB) class of models arguably provides an optimal balance between computational efficiency and physical accuracy. Yet, GB models are frequently plagued by a tendency to generate overly compact structures. The physical origins of this drawback are relatively well understood, and the key to a balanced implicit solvent protein force field is careful optimization of physical parameters to achieve a sufficient level of cancellation of errors. The latter has been hampered by the difficulty of generating converged conformational ensembles of non-trivial model proteins using the popular replica exchange sampling technique. Here, we leverage improved sampling efficiency of a newly developed multi-scale enhanced sampling technique to re-optimize the generalized-Born with molecular volume (GBMV2) implicit solvent model with the CHARMM36 protein force field. Recursive optimization of key GBMV2 parameters (such as input radii) and protein torsion profiles (via the CMAP torsion cross terms) has led to a more balanced GBMV2 protein force field that recapitulates the structures and stabilities of both helical and β-hairpin model peptides. Importantly, this force field appears to be free of the over-compaction bias, and can generate structural ensembles of several intrinsically disordered proteins of various lengths that seem highly consistent with available experimental data. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Effectiveness of Side Force Models for Flow Simulations Downstream of Vortex Generators

    NARCIS (Netherlands)

    Florentie, L.; van Zuijlen, A.H.; Hulshoff, S.J.; Bijl, H.

    2017-01-01

    Vortex generators (VGs) are a widely used means of flow control, and predictions of their influence are vital for efficient designs. However, accurate CFD simulations of their effect on the flow field by means of a body fitted mesh are computationally expensive. Therefore the BAY and jBAY models,

  12. Molecular dynamics simulations of cholesterol-rich membranes using a coarse-grained force field for cyclic alkanes

    Energy Technology Data Exchange (ETDEWEB)

    MacDermaid, Christopher M., E-mail: chris.macdermaid@temple.edu; Klein, Michael L.; Fiorin, Giacomo, E-mail: giacomo.fiorin@temple.edu [Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122-1801 (United States); Kashyap, Hemant K. [Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); DeVane, Russell H. [Modeling and Simulation, Corporate Research and Development, The Procter and Gamble Company, West Chester, Ohio 45069 (United States); Shinoda, Wataru [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Klauda, Jeffery B. [Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2015-12-28

    The architecture of a biological membrane hinges upon the fundamental fact that its properties are determined by more than the sum of its individual components. Studies on model membranes have shown the need to characterize in molecular detail how properties such as thickness, fluidity, and macroscopic bending rigidity are regulated by the interactions between individual molecules in a non-trivial fashion. Simulation-based approaches are invaluable to this purpose but are typically limited to short sampling times and model systems that are often smaller than the required properties. To alleviate both limitations, the use of coarse-grained (CG) models is nowadays an established computational strategy. We here present a new CG force field for cholesterol, which was developed by using measured properties of small molecules, and can be used in combination with our previously developed force field for phospholipids. The new model performs with precision comparable to atomistic force fields in predicting the properties of cholesterol-rich phospholipid bilayers, including area per lipid, bilayer thickness, tail order parameter, increase in bending rigidity, and propensity to form liquid-ordered domains in ternary mixtures. We suggest the use of this model to quantify the impact of cholesterol on macroscopic properties and on microscopic phenomena involving localization and trafficking of lipids and proteins on cellular membranes.

  13. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.; Held, Isaac M.; Stenchikov, Georgiy L.; Zeng, Fanrong; Horowitz, Larry W.

    2014-01-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  14. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  15. Theoretical model simulations for the global Thermospheric Mapping Study (TMS) periods

    Science.gov (United States)

    Rees, D.; Fuller-Rowell, T. J.

    Theoretical and semiempirical models of the solar UV/EUV and of the geomagnetic driving forces affecting the terrestrial mesosphere and thermosphere have been used to generate a series of representative numerical time-dependent and global models of the thermosphere, for the range of solar and geoamgnetic activity levels which occurred during the three Thermospheric Mapping Study periods. The simulations obtained from these numerical models are compared with observations, and with the results of semiempirical models of the thermosphere. The theoretical models provide a record of the magnitude of the major driving forces which affected the thermosphere during the study periods, and a baseline against which the actual observed structure and dynamics can be compared.

  16. Emerging patterns of simulated regional climatic changes for the 21st century due to anthropogenic forcings

    DEFF Research Database (Denmark)

    Giorgi, Filippo; Whetton, Peter H.; Jones, Richard G.

    2001-01-01

    We analyse temperature and precipitation changes for the late decades of the 21st century (with respect to present day conditions) over 23 land regions of the world from 18 recent transient, climate change experiments with coupled atmosphere-ocean General Circulation Models (AOGCMs). The analysis...... involves two different forcing scenarios and nine models, and it focuses on model agreement in the simulated regional changes for the summer and winter seasons. While to date very few conclusions have been presented on regional climatic changes, mostly limited to some broad latitudinal bands, our analysis...

  17. Exact simulation of conditioned Wright-Fisher models.

    Science.gov (United States)

    Zhao, Lei; Lascoux, Martin; Waxman, David

    2014-12-21

    Forward and backward simulations play an increasing role in population genetics, in particular when inferring the relative importance of evolutionary forces. It is therefore important to develop fast and accurate simulation methods for general population genetics models. Here we present an exact simulation method that generates trajectories of an allele׳s frequency in a finite population, as described by a general Wright-Fisher model. The method generates conditioned trajectories that start from a known frequency at a known time, and which achieve a specific final frequency at a known final time. The simulation method applies irrespective of the smallness of the probability of the transition between the initial and final states, because it is not based on rejection of trajectories. We illustrate the method on several different populations where a Wright-Fisher model (or related) applies, namely (i) a locus with 2 alleles, that is subject to selection and mutation; (ii) a locus with 3 alleles, that is subject to selection; (iii) a locus in a metapopulation consisting of two subpopulations of finite size, that are subject to selection and migration. The simulation method allows the generation of conditioned trajectories that can be used for the purposes of visualisation, the estimation of summary statistics, and the development/testing of new inferential methods. The simulated trajectories provide a very simple approach to estimating quantities that cannot easily be expressed in terms of the transition matrix, and can be applied to finite Markov chains other than the Wright-Fisher model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Simulating black carbon and dust and their radiative forcing in seasonal snow: a case study over North China with field campaign measurements

    Science.gov (United States)

    Zhao, C.; Hu, Z.; Qian, Y.; Leung, L. Ruby; Huang, J.; Huang, M.; Jin, J.; Flanner, M. G.; Zhang, R.; Wang, H.; Yan, H.; Lu, Z.; Streets, D. G.

    2014-10-01

    A state-of-the-art regional model, the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) coupled with a chemistry component (Chem) (Grell et al., 2005), is coupled with the snow, ice, and aerosol radiative (SNICAR) model that includes the most sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall within the uncertainty ranges of observations. The simulated BCS and DSTS are highest with > 5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to dust in the atmosphere. This study represents an effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snowpack. Although a variety of observational data sets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

  19. Simulation of Shuttle launch G forces and acoustic loads using the NASA Ames Research Center 20G centrifuge

    Science.gov (United States)

    Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.

    1994-01-01

    The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.

  20. Microstructure-sensitive flow stress modeling for force prediction in laser assisted milling of Inconel 718

    Directory of Open Access Journals (Sweden)

    Pan Zhipeng

    2017-01-01

    Full Text Available Inconel 718 is a typical hard-to-machine material that requires thermally enhanced machining technology such as laser-assisted milling. Based upon finite element analysis, this study simulates the forces in the laser-assisted milling process of Inconel 718 considering the effects of grain growth due to γ' and γ" phases. The γ" phase is unstable and becomes the δ phase, which is likely to precipitate at a temperature over 750 °C. The temperature around the center of spot in the experiments is 850 °C, so the phase transformation and grain growth happen throughout the milling process. In the analysis, this study includes the microstructure evolution while accounting for the effects of dynamic recrystallization and grain growth through the Avrami model. The grain growth reduces the yield stress and flow stress, which improves the machinability. In finite element analysis (FEA, several boundary conditions of temperature varying with time are defined to simulate the movement of laser spot, and the constitutive model is described by Johnson-Cook equation. In experiments, this study collects three sets of cutting forces and finds that the predicted values are in close agreements with measurements especially in feed direction, in which the smallest error is around 5%. In another three simulations, this study also examines the effect of laser preheating on the cutting forces by comparison with a traditional milling process without laser assist. When the laser is off, the forces increase in all cases, which prove the softening effect of laser-assisted milling. In addition, when the axial depth of milling increases, the laser has a more significant influence, especially in axial direction, in which the force with laser is more than 18% smaller than the one without laser. Overall, this study validates the influence of laser-assisted milling on Inconel 718 by predicting the cutting forces in FEA.

  1. Forced vibration analysis of a Timoshenko cracked beam using a continuous model for the crack

    Directory of Open Access Journals (Sweden)

    Mahdi Heydari

    2014-12-01

    Full Text Available In this paper, forced flexural vibration of a cracked beam is studied by using a continuous bilinear model for the displacement field. The effects of shear deformation and rotary inertia are considered in the model. The governing equation of motion for the beam is obtained using the Hamilton principle and based on the proposed displacement field. The equation of motion is given for a general force distribution. Then, the equation of motion has been solved for a concentrated force to present a numerical simulation of the method. The frequency response diagrams obtained from this study are compared with the finite element results to demonstrate the accuracy of the method. The results are also compared to results of a similar model with Euler-Bernoulli assumptions to confirm the advantages of the proposed model in the case of short beams.

  2. Fracture Network Modeling and GoldSim Simulation Support

    OpenAIRE

    杉田 健一郎; Dershowiz, W.

    2003-01-01

    During Heisei-14, Golder Associates provided support for JNC Tokai through data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aspo Task Force on Modelling of Groundwater Flow and Transport, and analysis of repository safety assessment technologies including cell networks for evaluation of the disturbed rock zone (DRZ) and total systems performance assessment (TSPA).

  3. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  4. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  5. Simulation model of a twin-tail, high performance airplane

    Science.gov (United States)

    Buttrill, Carey S.; Arbuckle, P. Douglas; Hoffler, Keith D.

    1992-01-01

    The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.

  6. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    Science.gov (United States)

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  7. EXPERIMENTAL INVESTIGATION OF THE IMPACT OF FLIGHT SPEED ON DRAG FORCE IN THE AUTOGYRO MODEL

    OpenAIRE

    Zbigniew Czyż; Paweł Magryta; Marcin Szlachetka

    2015-01-01

    The paper presents the experimental investigation of the impact of velocity on drag force in the autogyro model. One of the methods which simulate motion of the flying object consists of using a wind tunnel. In this case, test object is stationary and the motion of air is forced by e.g. a special fan. The costs related with renting and the wind tunnel service are still very high. In this paper, the motion of the autogyro with respect to the air, was produced by fixing this model with scale to...

  8. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.

    Science.gov (United States)

    Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S

    2016-04-01

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  9. Modelling the clamping force distribution among chips in press-pack IGBTs using the finite element method

    DEFF Research Database (Denmark)

    Hasmasan, Adrian Augustin; Busca, Christian; Teodorescu, Remus

    2012-01-01

    In this paper, a FEM (finite element method) based mechanical model for PP (press-pack) IGBTs (insulated gate bipolar transistors) is presented, which can be used to calculate the clamping force distribution among chips under various clamping conditions. The clamping force is an important parameter...... for the chip, because it influences contact electrical resistance, contact thermal resistance and power cycling capability. Ideally, the clamping force should be equally distributed among chips, in order to maximize the reliability of the PP IGBT. The model is built around a hypothetical PP IGBT with 9 chips......, and it has numerous simplifications in order to reduce the simulation time as much as possible. The developed model is used to analyze the clamping force distribution among chips, in various study cases, where uniform and non-uniform clamping pressures are applied on the studied PP IGBT....

  10. Easy Volcanic Aerosol (EVA v1.0: an idealized forcing generator for climate simulations

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2016-11-01

    Full Text Available Stratospheric sulfate aerosols from volcanic eruptions have a significant impact on the Earth's climate. To include the effects of volcanic eruptions in climate model simulations, the Easy Volcanic Aerosol (EVA forcing generator provides stratospheric aerosol optical properties as a function of time, latitude, height, and wavelength for a given input list of volcanic eruption attributes. EVA is based on a parameterized three-box model of stratospheric transport and simple scaling relationships used to derive mid-visible (550 nm aerosol optical depth and aerosol effective radius from stratospheric sulfate mass. Precalculated look-up tables computed from Mie theory are used to produce wavelength-dependent aerosol extinction, single scattering albedo, and scattering asymmetry factor values. The structural form of EVA and the tuning of its parameters are chosen to produce best agreement with the satellite-based reconstruction of stratospheric aerosol properties following the 1991 Pinatubo eruption, and with prior millennial-timescale forcing reconstructions, including the 1815 eruption of Tambora. EVA can be used to produce volcanic forcing for climate models which is based on recent observations and physical understanding but internally self-consistent over any timescale of choice. In addition, EVA is constructed so as to allow for easy modification of different aspects of aerosol properties, in order to be used in model experiments to help advance understanding of what aspects of the volcanic aerosol are important for the climate system.

  11. Electronic excitations and their effect on the interionic forces in simulations of radiation damage in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Sutton, A P

    2009-01-01

    Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.

  12. Electronic excitations and their effect on the interionic forces in simulations of radiation damage in metals.

    Science.gov (United States)

    Race, C P; Mason, D R; Sutton, A P

    2009-03-18

    Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.

  13. Lattice model for amyloid peptides: OPEP force field parametrization and applications to the nucleus size of Alzheimer’s peptides

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Thanh Thuy; Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr; Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS, Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France)

    2016-05-28

    Coarse-grained protein lattice models approximate atomistic details and keep the essential interactions. They are, therefore, suitable for capturing generic features of protein folding and amyloid formation at low computational cost. As our aim is to study the critical nucleus sizes of two experimentally well-characterized peptide fragments Aβ{sub 16−22} and Aβ{sub 37−42} of the full length Aβ{sub 1−42} Alzheimer’s peptide, it is important that simulations with the lattice model reproduce all-atom simulations. In this study, we present a comprehensive force field parameterization based on the OPEP (Optimized Potential for Efficient protein structure Prediction) force field for an on-lattice protein model, which incorporates explicitly the formation of hydrogen bonds and directions of side-chains. Our bottom-up approach starts with the determination of the best lattice force parameters for the Aβ{sub 16−22} dimer by fitting its equilibrium parallel and anti-parallel β-sheet populations to all-atom simulation results. Surprisingly, the calibrated force field is transferable to the trimer of Aβ{sub 16−22} and the dimer and trimer of Aβ{sub 37−42}. Encouraged by this finding, we characterized the free energy landscapes of the two decamers. The dominant structure of the Aβ{sub 16−22} decamer matches the microcrystal structure. Pushing the simulations for aggregates between 4-mer and 12-mer suggests a nucleus size for fibril formation of 10 chains. In contrast, the Aβ{sub 37−42} decamer is largely disordered with mixed by parallel and antiparallel chains, suggesting that the nucleus size is >10 peptides. Our refined force field coupled to this on-lattice model should provide useful insights into the critical nucleation number associated with neurodegenerative diseases.

  14. Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling

    Science.gov (United States)

    Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.

    This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.

  15. Operations planning simulation: Model study

    Science.gov (United States)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  16. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  17. How weather impacts the forced climate response

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Ben P. [University of Miami, Division of Meteorology and Physical Oceanography, Rosenstiel School for Atmospheric and Marine Science, Miami, FL (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Schneider, Edwin K.; Straus, David M. [George Mason University, Department of Atmospheric, Oceanic and Earth Sciences, Fairfax, VA (United States); Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); Min, Dughong; Burgman, Robert [University of Miami, Division of Meteorology and Physical Oceanography, Rosenstiel School for Atmospheric and Marine Science, Miami, FL (United States)

    2011-12-15

    The new interactive ensemble modeling strategy is used to diagnose how noise due to internal atmospheric dynamics impacts the forced climate response during the twentieth century (i.e., 1870-1999). The interactive ensemble uses multiple realizations of the atmospheric component model coupled to a single realization of the land, ocean and ice component models in order to reduce the noise due to internal atmospheric dynamics in the flux exchange at the interface of the component models. A control ensemble of so-called climate of the twentieth century simulations of the Community Climate Simulation Model version 3 (CCSM3) are compared with a similar simulation with the interactive ensemble version of CCSM3. Despite substantial differences in the overall mean climate, the global mean trends in surface temperature, 500 mb geopotential and precipitation are largely indistinguishable between the control ensemble and the interactive ensemble. Large differences in the forced response; however, are detected particularly in the surface temperature of the North Atlantic. Associated with the forced North Atlantic surface temperature differences are local differences in the forced precipitation and a substantial remote rainfall response in the deep tropical Pacific. We also introduce a simple variance analysis to separately compare the variance due to noise and the forced response. We find that the noise variance is decreased when external forcing is included. In terms of the forced variance, we find that the interactive ensemble increases this variance relative to the control. (orig.)

  18. Investigation of the hydrodynamic model test of forced rolling for a barge using PIV

    Directory of Open Access Journals (Sweden)

    WANG Xiaoqiang

    2017-03-01

    Full Text Available In order to study the physical details of viscous flow in ship roll motions and improve the accuracy of ship roll damping numerical simulation, the application of the Particle Image Velocimetry (PIV technique is investigated in model tests of forced ship rolling in calm water. The hydrodynamic force and flow field at the bilge region are simultaneously measured for barges at different amplitudes and frequencies in which the self-made forced rolling facility was used. In the model test, the viscous flow variation with the time around the bilge region was studied during ship rolling motion. The changes in ship roll damping coefficients with the rolling amplitude and period were also investigated. A comparison of the model test results with the Computational Fluid Dynamics(CFDresults shows that the numerical ship roll damping coefficients agree well with the model test results, while the differences in the local flow details exist between the CFD results and model test results. Further research into the model test technique and CFD application is required.

  19. Reduction of systematic biases in regional climate downscaling through ensemble forcing

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hongwei; Wang, Bin [Chinese Academy of Sciences, LASG, Institute of Atmospheric Physics, Beijing (China); Wang, Bin [University of Hawaii at Manoa, Department of Meteorology, Honolulu, Hawaii (United States); University of Hawaii at Manoa, International Pacific Research Center, Honolulu, Hawaii (United States)

    2012-02-15

    Simulations of the East Asian summer monsoon for the period of 1979-2001 were carried out using the Weather Research and Forecast (WRF) model forced by three reanalysis datasets (NCEP-R2, ERA-40, and JRA-25). The experiments forced by different reanalysis data exhibited remarkable differences, primarily caused by uncertainties in the lateral boundary (LB) moisture fluxes over the Bay of Bengal and the Philippine Sea. The climatological mean water vapor convergence into the model domain computed from ERA-40 was about 24% higher than that from the NCEP-R2 reanalysis. We demonstrate that using the ensemble mean of NCEP-R2, ERA-40, and JRA-25 as LB forcing considerably reduced the biases in the model simulation. The use of ensemble forcing improved the performance in simulated mean circulation and precipitation, inter-annual variation in seasonal precipitation, and daily precipitation. The model simulated precipitation was superior to that in the reanalysis in both climatology and year-to-year variations, indicating the added value of dynamic downscaling. The results suggest that models having better performance under one set of LB forcing might worsen when another set of reanalysis data is used as LB forcing. Use of ensemble mean LB forcing for assessing regional climate model performance is recommended. (orig.)

  20. Simulation of the 2008 Iowa Flood using HiResFlood-UCI Model with Remote Sensing Data

    Science.gov (United States)

    Nguyen, P.; Thorstensen, A. R.; Hsu, K. L.; AghaKouchak, A.; Sanders, B. F.; Sorooshian, S.

    2014-12-01

    Precipitation is a key forcing variable in hydrological modeling of floods and being able to accurately observe precipitation is extremely important in mitigating flood impacts. The Global Precipitation Measurement (GPM) Mission, launched in Feb 2014 also presents an opportunity for high-quality real-time precipitation data and improved flood warnings. The PERSIANN-CCS developed by the scientists at the Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California, Irvine is one algorithm integrated in the IMERG of PMM/GPM. In this research, the high resolution coupled hydrologic/hydraulic model named HiResFlood-UCI was applied to simulate the historical 2008 Iowa flood in the Cedar River basin. HiResFlood-UCI is a coupling of the NWS's distributed hydrologic model HL-RDHM and the hydraulic model BreZo developed by the Computational Hydraulics Group at the University of California, Irvine. The model was forced with the real-time PERSIANN-CCS and NEXRAD Stage 2 precipitation data. Simulations were evaluated based on 2 criteria: hydrographs within the basin and the areal extent of the flooding. Streamflow hydrographs were compared at 7 USGS gages, and simulated inundation maps were evaluated using USDA AWiFS 56m resolution areal flood imagery. The results show reasonable simulated hydrographs compared to USGS streamflow observations when simulating with PERSIANN-CCS and NEXRAD Stage 2 as forcing inputs. The simulation driven by NEXRAD Stage 2 slightly outperforms the PERSIANN-CCS simulation as the latter marginally underestimated the observed hydrographs. The simulation in both cases shows a good agreement (0.672 and 0.727 CSI for Stage 2 and PERSIANN-CCS simulations respectively) with the AWiFS image over the most impacted area in the Cedar Rapids region. Since the PERSIANN-CCS simulation slightly underestimated the discharge, the probability of detection (0.925) is lower than that of the Stage 2 simulation (0.965). As a trade-off, the false

  1. Modeling and simulation of three dimensional manipulations of biological micro/nanoparticles by applying cylindrical contact mechanics models by means of AFM

    International Nuclear Information System (INIS)

    Korayem, M. H.; Saraee, M. B.; Mahmoodi, Z.; Dehghani, S.

    2015-01-01

    This paper has attempted to investigate the effective forces in 3D manipulation of biological micro/nano particles. Most of the recent researches have only examined 2D spherical geometries but in this paper, the cylindrical geometries, which are much closer to the real geometries, were considered. For achieving a more accurate modeling, manipulation dynamics was also considered to be three dimensional which have been done for the first time. Because of the sensibility to the amount of endurable applied forces, manipulation process of biological micro/nano particles has some restrictions. Therefore, applied forces exerted on the particles in all different directions were simulated in order to restrict all those possible damages cause by operator of the AFM. Those data from simulated forces will bring a more accurate and sensible understanding for the operator to operate. For the validation of results, the proposed model was compared with the model presented for manipulation of gold nanoparticle and then, by reducing the effective parameters in the 3D manipulation, the results were compared with those obtained for the 2D cylindrical model and with the experimental results of spherical nanoparticle in the 2D manipulation

  2. Simulation of forced-ventilation fires

    International Nuclear Information System (INIS)

    Krause, F.R.; Gregory, W.S.

    1982-01-01

    Fire hazard descriptions and compartment fire models are assessed as input to airflow network analysis methods that simulate the exposure of ventilation system components to fire products. The assessment considered the availability of hazard descriptions and models for predicting simultaneous heat and mass release at special compartment openings that are characterized by a one-dimensional and controllable volumetric flux

  3. May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?

    Science.gov (United States)

    Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar

    2018-02-01

    Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.

  4. Light-cone quark model with spin force for the nucleon and Δ(1232)

    International Nuclear Information System (INIS)

    Weber, H.J.

    1992-01-01

    Electromagnetic structure functions for the nucleon, static observables for the nucleon and N→D(1232) transition form factors are calculated in a relativistic constituent quark model on the light cone. The model simulates the main effect of the spin force between quarks in terms of smaller (and lighter) scalar ud diquarks in the nucleon. The polarized proton structure function is found to agree with the EMC data. (orig.)

  5. Pneumatic Artificial Muscles Force Modelling and the Position and Stiffness Control on the Knee Joint of the Musculoskeletal Leg

    Directory of Open Access Journals (Sweden)

    Jingtao Lei

    2017-03-01

    Full Text Available Pneumatic artificial muscles (PAMs have properties similar to biological muscle and are widely used in robotics as actuators. A musculoskeletal leg mechanism driven by PAMs is presented in this paper. The joint stiffness of the musculoskeletal bionic leg for jumping movement needs to be analysed. The synchronous control on the position and stiffness of the joint is important to improve the flexibility of leg. The accurate force model of PAM is the foundation to achieving better control and dynamic jumping performance. The experimental platform of PAM is conducted, and the static equal pressure experiments are performed to obtain the PAM force model. According to the testing data, parameter identification method is adopted to determine the force model of PAM. A simulation on the position and stiffness control of the knee joint is performed, and the simulation results show the effectiveness of the presented method.

  6. Force Modelling in Orthogonal Cutting Considering Flank Wear Effect

    Science.gov (United States)

    Rathod, Kanti Bhikhubhai; Lalwani, Devdas I.

    2017-05-01

    In the present work, an attempt has been made to provide a predictive cutting force model during orthogonal cutting by combining two different force models, that is, a force model for a perfectly sharp tool plus considering the effect of edge radius and a force model for a worn tool. The first force model is for a perfectly sharp tool that is based on Oxley's predictive machining theory for orthogonal cutting as the Oxley's model is for perfectly sharp tool, the effect of cutting edge radius (hone radius) is added and improve model is presented. The second force model is based on worn tool (flank wear) that was proposed by Waldorf. Further, the developed combined force model is also used to predict flank wear width using inverse approach. The performance of the developed combined total force model is compared with the previously published results for AISI 1045 and AISI 4142 materials and found reasonably good agreement.

  7. Computational model to investigate the relative contributions of different neuromuscular properties of tibialis anterior on force generated during ankle dorsiflexion.

    Science.gov (United States)

    Siddiqi, Ariba; Poosapadi Arjunan, Sridhar; Kumar, Dinesh Kant

    2018-01-16

    This study describes a new model of the force generated by tibialis anterior muscle with three new features: single-fiber action potential, twitch force, and pennation angle. This model was used to investigate the relative effects and interaction of ten age-associated neuromuscular parameters. Regression analysis (significance level of 0.05) between the neuromuscular properties and corresponding simulated force produced at the footplate was performed. Standardized slope coefficients were computed to rank the effect of the parameters. The results show that reduction in the average firing rate is the reason for the sharp decline in the force and other factors, such as number of muscle fibers, specific force, pennation angle, and innervation ratio. The fast fiber ratio affects the simulated force through two significant interactions. This study has ranked the individual contributions of the neuromuscular factors to muscle strength decline of the TA and identified firing rate decline as the biggest cause followed by decrease in muscle fiber number and specific force. The strategy for strength preservation for the elderly should focus on improving firing rate. Graphical abstract Neuromuscular properties of Tibialis Anterior on force generated during ankle dorsiflexion.

  8. Simulations of an Offshore Wind Farm Using Large-Eddy Simulation and a Torque-Controlled Actuator Disc Model

    Science.gov (United States)

    Creech, Angus; Früh, Wolf-Gerrit; Maguire, A. Eoghan

    2015-05-01

    We present here a computational fluid dynamics (CFD) simulation of Lillgrund offshore wind farm, which is located in the Øresund Strait between Sweden and Denmark. The simulation combines a dynamic representation of wind turbines embedded within a large-eddy simulation CFD solver and uses hr-adaptive meshing to increase or decrease mesh resolution where required. This allows the resolution of both large-scale flow structures around the wind farm, and the local flow conditions at individual turbines; consequently, the response of each turbine to local conditions can be modelled, as well as the resulting evolution of the turbine wakes. This paper provides a detailed description of the turbine model which simulates the interaction between the wind, the turbine rotors, and the turbine generators by calculating the forces on the rotor, the body forces on the air, and instantaneous power output. This model was used to investigate a selection of key wind speeds and directions, investigating cases where a row of turbines would be fully aligned with the wind or at specific angles to the wind. Results shown here include presentations of the spin-up of turbines, the observation of eddies moving through the turbine array, meandering turbine wakes, and an extensive wind farm wake several kilometres in length. The key measurement available for cross-validation with operational wind farm data is the power output from the individual turbines, where the effect of unsteady turbine wakes on the performance of downstream turbines was a main point of interest. The results from the simulations were compared to the performance measurements from the real wind farm to provide a firm quantitative validation of this methodology. Having achieved good agreement between the model results and actual wind farm measurements, the potential of the methodology to provide a tool for further investigations of engineering and atmospheric science problems is outlined.

  9. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP

    Directory of Open Access Journals (Sweden)

    Y. H. Lee

    2013-03-01

    Full Text Available As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP, we evaluate the historical black carbon (BC aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996–2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5–3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period. We find a large divergence among models at both Northern Hemisphere (NH and Southern Hemisphere (SH high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2–3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan

  10. Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    Science.gov (United States)

    Lee, Y. H.; Lamarque, J.-F.; Flanner, M. G.; Jiao, C.; Shindell, D. T.; Bernsten, T.; Bisiaux, M. M.; Cao, J.; Collins, W. J.; Curran, M.; hide

    2013-01-01

    As part of the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), we evaluate the historical black carbon (BC) aerosols simulated by 8 ACCMIP models against observations including 12 ice core records, long-term surface mass concentrations, and recent Arctic BC snowpack measurements. We also estimate BC albedo forcing by performing additional simulations using offline models with prescribed meteorology from 1996-2000. We evaluate the vertical profile of BC snow concentrations from these offline simulations using the recent BC snowpack measurements. Despite using the same BC emissions, the global BC burden differs by approximately a factor of 3 among models due to differences in aerosol removal parameterizations and simulated meteorology: 34 Gg to 103 Gg in 1850 and 82 Gg to 315 Gg in 2000. However, the global BC burden from preindustrial to present-day increases by 2.5-3 times with little variation among models, roughly matching the 2.5-fold increase in total BC emissions during the same period.We find a large divergence among models at both Northern Hemisphere (NH) and Southern Hemisphere (SH) high latitude regions for BC burden and at SH high latitude regions for deposition fluxes. The ACCMIP simulations match the observed BC surface mass concentrations well in Europe and North America except at Ispra. However, the models fail to predict the Arctic BC seasonality due to severe underestimations during winter and spring. The simulated vertically resolved BC snow concentrations are, on average, within a factor of 2-3 of the BC snowpack measurements except for Greenland and the Arctic Ocean. For the ice core evaluation, models tend to adequately capture both the observed temporal trends and the magnitudes at Greenland sites. However, models fail to predict the decreasing trend of BC depositions/ice core concentrations from the 1950s to the 1970s in most Tibetan Plateau ice cores. The distinct temporal trend at the Tibetan Plateau ice cores

  11. A novel model for simulating the racing effect in capillary-driven underfill process in flip chip

    Science.gov (United States)

    Zhu, Wenhui; Wang, Kanglun; Wang, Yan

    2018-04-01

    Underfill is typically applied in flip chips to increase the reliability of the electronic packagings. In this paper, the evolution of the melt-front shape of the capillary-driven underfill flow is studied through 3D numerical analysis. Two different models, the prevailing surface force model and the capillary model based on the wetted wall boundary condition, are introduced to test their applicability, where level set method is used to track the interface of the two phase flow. The comparison between the simulation results and experimental data indicates that, the surface force model produces better prediction on the melt-front shape, especially in the central area of the flip chip. Nevertheless, the two above models cannot simulate properly the racing effect phenomenon that appears during underfill encapsulation. A novel ‘dynamic pressure boundary condition’ method is proposed based on the validated surface force model. Utilizing this approach, the racing effect phenomenon is simulated with high precision. In addition, a linear relationship is derived from this model between the flow front location at the edge of the flip chip and the filling time. Using the proposed approach, the impact of the underfill-dispensing length on the melt-front shape is also studied.

  12. Mathematical model of small water-plane area twin-hull and application in marine simulator

    Science.gov (United States)

    Zhang, Xiufeng; Lyu, Zhenwang; Yin, Yong; Jin, Yicheng

    2013-09-01

    Small water-plane area twin-hull (SWATH) has drawn the attention of many researchers due to its good sea-keeping ability. In this paper, MMG's idea of separation was used to perform SWATH movement modeling and simulation; respectively the forces and moment of SWATH were divided into bare hull, propeller, rudder at the fluid hydrodynamics, etc. Wake coefficient at the propellers which reduces thrust coefficient, and rudder mutual interference forces among the hull and propeller, for the calculation of SWATH, were all considered. The fourth-order Runge-Kutta method of integration was used by solving differential equations, in order to get SWATH's movement states. As an example, a turning test at full speed and full starboard rudder of `Seagull' craft is shown. The simulation results show the SWATH's regular pattern and trend of motion. It verifies the correctness of the mathematical model of the turning movement. The SWATH's mathematical model is applied to marine simulator in order to train the pilots or seamen, or safety assessment for ocean engineering project. Lastly, the full mission navigation simulating system (FMNSS) was determined to be a successful virtual reality technology application sample in the field of navigation simulation.

  13. A heterogeneous lattice gas model for simulating pedestrian evacuation

    Science.gov (United States)

    Guo, Xiwei; Chen, Jianqiao; Zheng, Yaochen; Wei, Junhong

    2012-02-01

    Based on the cellular automata method (CA model) and the mobile lattice gas model (MLG model), we have developed a heterogeneous lattice gas model for simulating pedestrian evacuation processes in an emergency. A local population density concept is introduced first. The update rule in the new model depends on the local population density and the exit crowded degree factor. The drift D, which is one of the key parameters influencing the evacuation process, is allowed to change according to the local population density of the pedestrians. Interactions including attraction, repulsion, and friction between every two pedestrians and those between a pedestrian and the building wall are described by a nonlinear function of the corresponding distance, and the repulsion forces increase sharply as the distances get small. A critical force of injury is introduced into the model, and its effects on the evacuation process are investigated. The model proposed has heterogeneous features as compared to the MLG model or the basic CA model. Numerical examples show that the model proposed can capture the basic features of pedestrian evacuation, such as clogging and arching phenomena.

  14. Free energy simulations with the AMOEBA polarizable force field and metadynamics on GPU platform.

    Science.gov (United States)

    Peng, Xiangda; Zhang, Yuebin; Chu, Huiying; Li, Guohui

    2016-03-05

    The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Integration of soft tissue model and open haptic device for medical training simulator

    Science.gov (United States)

    Akasum, G. F.; Ramdhania, L. N.; Suprijanto; Widyotriatmo, A.

    2016-03-01

    Minimally Invasive Surgery (MIS) has been widely used to perform any surgical procedures nowadays. Currently, MIS has been applied in some cases in Indonesia. Needle insertion is one of simple MIS procedure that can be used for some purposes. Before the needle insertion technique used in the real situation, it essential to train this type of medical student skills. The research has developed an open platform of needle insertion simulator with haptic feedback that providing the medical student a realistic feel encountered during the actual procedures. There are three main steps in build the training simulator, which are configure hardware system, develop a program to create soft tissue model and the integration of hardware and software. For evaluating its performance, haptic simulator was tested by 24 volunteers on a scenario of soft tissue model. Each volunteer must insert the needle on simulator until rearch the target point with visual feedback that visualized on the monitor. From the result it can concluded that the soft tissue model can bring the sensation of touch through the perceived force feedback on haptic actuator by looking at the different force in accordance with different stiffness in each layer.

  16. Porter S Five Forces Model Scott Morton S Five Forces Model Bakos Treacy Model Analyzes Strategic Information Systems Management

    OpenAIRE

    Gamayanto, Indra

    2004-01-01

    Wollongong City Council (WCC) is one of the most progressive and innovative local government organizations in Australia. Wollongong City Council use Information Technology to gain the competitive advantage and to face a global economy in the future. Porter's Five Force model is one of the models that can be using at Wollongong City Council because porter's five Forces model has strength in relationship between buyer and suppliers (Bargaining power of suppliers and bargaining power of buyers)....

  17. Variable slip wind generator modeling for real-time simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, R.; Brochu, J.; Turmel, G. [Hydro-Quebec, Varennes, PQ (Canada). IREQ

    2006-07-01

    A model of a wind turbine using a variable slip wound-rotor induction machine was presented. The model was created as part of a library of generic wind generator models intended for wind integration studies. The stator winding of the wind generator was connected directly to the grid and the rotor was driven by the turbine through a drive train. The variable resistors was synthesized by an external resistor in parallel with a diode rectifier. A forced-commutated power electronic device (IGBT) was connected to the wound rotor by slip rings and brushes. Simulations were conducted in a Matlab/Simulink environment using SimPowerSystems blocks to model power systems elements and Simulink blocks to model the turbine, control system and drive train. Detailed descriptions of the turbine, the drive train and the control system were provided. The model's implementation in the simulator was also described. A case study demonstrating the real-time simulation of a wind generator connected at the distribution level of a power system was presented. Results of the case study were then compared with results obtained from the SimPowerSystems off-line simulation. Results showed good agreement between the waveforms, demonstrating the conformity of the real-time and the off-line simulations. The capability of Hypersim for real-time simulation of wind turbines with power electronic converters in a distribution network was demonstrated. It was concluded that hardware-in-the-loop (HIL) simulation of wind turbine controllers for wind integration studies in power systems is now feasible. 5 refs., 1 tab., 6 figs.

  18. Force-field parameters from the SAFT-γ equation of state for use in coarse-grained molecular simulations.

    Science.gov (United States)

    Müller, Erich A; Jackson, George

    2014-01-01

    A description of fluid systems with molecular-based algebraic equations of state (EoSs) and by direct molecular simulation is common practice in chemical engineering and the physical sciences, but the two approaches are rarely closely coupled. The key for an integrated representation is through a well-defined force field and Hamiltonian at the molecular level. In developing coarse-grained intermolecular potential functions for the fluid state, one typically starts with a detailed, bottom-up quantum-mechanical or atomic-level description and then integrates out the unwanted degrees of freedom using a variety of techniques; an iterative heuristic simulation procedure is then used to refine the parameters of the model. By contrast, with a top-down technique, one can use an accurate EoS to link the macroscopic properties of the fluid and the force-field parameters. We discuss the latest developments in a top-down representation of fluids, with a particular focus on a group-contribution formulation of the statistical associating fluid theory (SAFT-γ). The accurate SAFT-γ EoS is used to estimate the parameters of the Mie force field, which can then be used with confidence in direct molecular simulations to obtain thermodynamic, structural, interfacial, and dynamical properties that are otherwise inaccessible from the EoS. This is exemplified for several prototypical fluids and mixtures, including carbon dioxide, hydrocarbons, perfluorohydrocarbons, and aqueous surfactants.

  19. Three-particle forces and nuclear models

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1980-01-01

    Different nuclear models accounting and unaccounting for three-particle internucleon forces (TIF) are reviewed. At present only two nuclear models use manifestly TIP: the Vautherin-Brink-Skyrme (VBS) model and the model proposed by the author of the review and called the semiphenomenological (SP) nuclear model. There is a short discussion of major drawbacks of models unaccounting for TIF: multiparticle shell model, ''superfluid model'', Harty-Fock calculations with two-particle forces, Bruckner-Hartry-Fock calculations, the relativistic self-consistent nuclear model. The VBS and SP models are discussed in detail. It is concluded, that the employment of TIF even in a very simplified form (extremely short-range) puts away a lot of problems characteristic to models limited by two-particle forces (collapse at iteratious in Hartry-Fock, simultaneous fitting of the binding energy of a nucleus and the binding energy of a nucleon, etc.) and makes it possible to obtain in a rather simple way such nuclear characteristics as nuclear binding energy, nuclear mean square root radii, nucleon density of a nucleus

  20. Activation force splines

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    We present a method for simulating the active contraction of deformable models, usable for interactive animation of soft deformable objects. We present a novel physical principle as the governing equation for the coupling between the low dimensional 1D activation force model and the higher...

  1. Radiative forcing in the ACCMIP historical and future climate simulations

    Directory of Open Access Journals (Sweden)

    D. T. Shindell

    2013-03-01

    Full Text Available The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5. The models reproduce present-day total aerosol optical depth (AOD relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980–2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects. The models' all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range −0.26 W m−2; −0.06 to −0.49 W m−2. Screening based on model skill in capturing observed AOD yields a best estimate of −0.42 W m−2; −0.33 to −0.50 W m−2, including adjustment for missing aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to −58% to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is −1.17 W m−2; −0.71 to −1.44 W m−2. Thus adjustments, including clouds, typically cause greater forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global aerosol RF

  2. Materials for the nuclear - Modelling and simulation of structure materials

    International Nuclear Information System (INIS)

    Berthoud, Georges; Ducros, Gerard; Feron, Damien; Guerin, Yannick; Latge, Christian; Limoge, Yves; Santarini, Gerard; Seiler, Jean-Marie; Vernaz, Etienne; Cappelaere, Chantal; Andrieux, Catherine; Athenes, Manuel; Baldinozzi, Guido; Bechade, Jean-Luc; Bonin, Bernard; Boutard, Jean-Louis; Brechet, Yves; Bruneval, Fabien; Carassou, Sebastien; Castelier, Etienne; Chartier, Alain; Clouet, Emmanuel; Marinica, Mihai-Cosmin; Crocombette, Jean-Paul; Dupuy, Laurent; Forget, Pierre; Fu, Chu Chun; Garnier, Jerome; Gelebart, Lionel; Henry, Jean; Jourdan, Thomas; Luneville, Laurence; Marini, Bernard; Meslin, Estelle; Nastar, Maylise; Onimus, Fabien; Poussard, Christophe; Proville, Laurent; Ribis, Joel; Robertson, Christian; Rodney, David; Roma, Guido; Sauzay, Maxime; Simeone, David; Soisson, Frederic; Tanguy, Benoit; Toffolon-Masclet, Caroline; Trocellier, Patrick; Van Brutzel, Laurent; Ventelon, Usa; Vincent, Ludovic; Willaime, Francois; Yvon, Pascal; Behar, Christophe; Provitina, Olivier; Lecomte, Michael; Forestier, Alain; Bender, Alexandra; Parisot, Jean-Francois; Finot, Pierre

    2016-01-01

    This collective publication proposes presentations of scientific approaches implemented to model and simulate the behaviour of materials submitted to irradiation, of associated experimental methods, and of some recent important results. After an introduction presenting the various materials used in different types of nuclear reactors (PWR, etc.), the effects of irradiation at the macroscopic or at the atomic scale, and the multi-scale (time and space) approach to the modelling of these materials, a chapter proposes an overview of modelling tools: multi-scale approach, electronic calculations for condensed matter, inter-atomic potentials, molecular dynamics simulation, thermodynamic and medium force potentials, phase diagrams, simulation of primary damages in reactor materials, kinetic models, dislocation dynamics, production of microstructures for simulation, crystalline visco-plasticity, homogenization methods in continuum mechanics, local approach and probabilistic approach in material fracture. The next part presents tools for experimental validation: tools for microscopic characterization or for mechanical characterization, experimental reactors and tests in atomic pile, tools for irradiation by charged particles. The next chapters presents different examples of thermodynamic and kinetic modelling in the case of various alloys (zirconium alloys, iron-chromium alloys, silicon carbide, austenitic alloys), of plasticity and failure modelling

  3. EMC3-eIRENE simulation of impurity transport in comparison with EUV emission measurements in the stochastic layer of LHD: effects of force balance and transport coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Dai, S. [National Institute for Fusion Science, Toki (Japan); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian (China); Kobayashi, M.; Morita, S.; Oishi, T.; Suzuki, Y. [National Institute for Fusion Science, Toki (Japan); Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki (Japan); Kawamura, G. [National Institute for Fusion Science, Toki (Japan); Zhang, H.M.; Huang, X.L. [Department of Fusion Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), Toki (Japan); Feng, Y. [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Wang, D.Z. [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian (China); Collaboration: The LHD experiment group

    2016-08-15

    The transport properties and line emissions of the intrinsic carbon in the stochastic layer of the Large Helical Device have been investigated with the three-dimensional edge transport code EMC3-EIRENE. The simulations of impurity transport and emissivity have been performed to study the dedicated experiment in which the carbon emission distributions are measured by a space-resolved EUV spectrometer system. A discrepancy of the CIV impurity emission between the measurement and simulation is obtained, which is studied with the variation of the ion thermal force, friction force and the perpendicular diffusivity in the impurity transport model. An enhanced ion thermal force or a reduced friction force in the modelling can increase the CIV impurity emission at the inboard X-point region. Furthermore, the impact of the perpendicular diffusivity Dimp is studied which shows that the CIV impurity emission pattern is very sensitive to Dimp. It is found that the simulation results with the increased Dimp tend to be closer to the experimental observation. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Simulated interannual variability of the Greenland Sea deep water formation and its connection to surface forcing

    Science.gov (United States)

    Haekkinen, Sirpa

    1995-01-01

    A fully prognostic Arctic ice-ocean model is used to study the interannual variability of deepwater formation in the Greenland Sea Gyre based on the simulations for the Arctic ice-ocean system for the period 1955 and 1960 - 1985. The model uses monthly climatology for thermodynamic forcing components (such as air temperature and cloudiness), together with constant annual net precipitation and river runoff. The daily wind forcing is derived from analyzed sea level air pressures from the National Center for Atmospheric Research (NCAR). In summary, the model shows that the occurence of deep convection in the Greenland Sea Gyre is controlled by the extensive Fram Strait ice export and/or local wind conditions in the Greenland Sea. In the latter case the weakening of the local wind curl allows the Polar Front to move eastward. The movement of the Polar Front causes adverse ice conditions, often together with much larger than normal ice export from the Arctic, such as in 1968, which can block convection in the gyre. The density difference between upper and lower layers is investigated as an indication of water mass formation through convection, occurring as strong diffusion in the model. The model-simulated density difference between the average top 100 m and deep levels reveals that the period 1960 - 1985 had only a few distinct years with weak stratification, and, especially, the model predicts no deep convection since the nid-1970s. The common factor for the years of the weakest decrease of the model-predicted heat content of the upper 2000 m which can, to a high degree, be explained by local heat loss.

  5. The expression of the skeletal muscle force-length relationship in vivo: a simulation study.

    Science.gov (United States)

    Winter, Samantha L; Challis, John H

    2010-02-21

    The force-length relationship is one of the most important mechanical characteristics of skeletal muscle in humans and animals. For a physiologically realistic joint range of motion and therefore range of muscle fibre lengths only part of the force-length curve may be used in vivo, i.e. only a section of the force-length curve is expressed. A generalised model of a mono-articular muscle-tendon complex was used to examine the effect of various muscle architecture parameters on the expressed section of the force-length relationship for a 90 degrees joint range of motion. The parameters investigated were: the ratio of tendon resting length to muscle fibre optimum length (L(TR):L(F.OPT)) (varied from 0.5 to 11.5), the ratio of muscle fibre optimum length to average moment arm (L(F.OPT):r) (varied from 0.5 to 5), the normalised tendon strain at maximum isometric force (c) (varied from 0 to 0.08), the muscle fibre pennation angle (theta) (varied from 0 degrees to 45 degrees) and the joint angle at which the optimum muscle fibre length occurred (phi). The range of values chosen for each parameter was based on values reported in the literature for five human mono-articular muscles with different functional roles. The ratios L(TR):L(F.OPT) and L(F.OPT):r were important in determining the amount of variability in the expressed section of the force-length relationship. The modelled muscle operated over only one limb at intermediate values of these two ratios (L(TR):L(F.OPT)=5; L(F.OPT):r=3), whether this was the ascending or descending limb was determined by the precise values of the other parameters. It was concluded that inter-individual variability in the expressed section of the force-length relationship is possible, particularly for muscles with intermediate values of L(TR):L(F.OPT) and L(F.OPT):r such as the brachialis and vastus lateralis. Understanding the potential for inter-individual variability in the expressed section is important when using muscle models to

  6. Force 2025 and Beyond Strategic Force Design Analytic Model

    Science.gov (United States)

    2017-01-12

    focused thinking , functional hierarchy, task capability matching 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT U 18. NUMBER OF...describe and evaluate current organizational designs in terms of Force Employment and Force Design using the model to offer recommendations and analysis...developed to illuminate the current organizational design structure to better understand how the network of BCTs and enablers function in today’s steady

  7. Radiative forcing in the ACCMIP historical and future climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shindell, D. T.; Lamarque, J. -F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J. -H.; Lo, F.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to -58 %) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is -1.17Wm-2-2forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global

  8. The Effect of Wind Forcing on Modeling Coastal Circulation at a Marine Renewable Test Site

    Directory of Open Access Journals (Sweden)

    Lei Ren

    2017-12-01

    Full Text Available The hydrodynamic circulation in estuaries is primarily driven by tides, river inflows and surface winds. While tidal and river data can be quite easily obtained for input to hydrodynamic models, sourcing accurate surface wind data is problematic. Inaccurate wind data can lead to inaccuracies in the surface currents computed by three-dimensional hydrodynamic models. In this research, a high-resolution wind model was coupled with a three-dimensional hydrodynamic model of Galway Bay, a semi-enclosed estuary on the west coast of Ireland, to investigate the effect of wind forcing on model accuracy. Two wind-forcing conditions were investigated: (1 using wind data measured onshore on the NUI Galway campus (NUIG and (2 using offshore wind data provided by a high resolution wind model (HR. A scenario with no wind forcing (NW was also assessed. The onshore wind data varied with time but the speed and direction were applied across the full model domain. The modeled offshore wind fields varied with both time and space. The effect of wind forcing on modeled hydrodynamics was assessed via comparison of modeled surface currents with surface current measurements obtained from a High-Frequency (HF radar Coastal Ocean Dynamics Applications Radar (CODAR observation system. Results indicated that winds were most significant in simulating the north-south surface velocity component. The model using high resolution temporally- and spatially-varying wind data achieved better agreement with the CODAR surface currents than the model using the onshore wind measurements and the model without any wind forcing.

  9. Idealized Mesoscale Model Simulations of Open Cellular Convection Over the Sea

    DEFF Research Database (Denmark)

    Vincent, Claire Louise; Hahmann, Andrea N.; Kelly, Mark C.

    2012-01-01

    The atmospheric conditions during an observed case of open cellular convection over the North Sea were simulated using the Weather Research and Forecasting (WRF) numerical model. Wind, temperature and water vapour mixing ratio profiles from the WRF simulation were used to initialize an idealized...... version of the model, which excluded the effects of topography, surface inhomogeneities and large-scale weather forcing. Cells with an average diameter of 17.4 km developed. Simulations both with and without a capping inversion were made, and the cell-scale kinetic energy budget was calculated for each...... case. By considering all sources of explicit diffusion in the model, the budgets were balanced. In comparison with previous work based on observational studies, the use of three-dimensional, gridded model data afforded the possibility of calculating all terms in the budgets, which showed...

  10. Modelling and simulation of particle-particle interaction in a magnetophoretic bio-separation chip

    Science.gov (United States)

    Alam, Manjurul; Golozar, Matin; Darabi, Jeff

    2018-04-01

    A Lagrangian particle trajectory model is developed to predict the interaction between cell-bead particle complexes and to track their trajectories in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in the OpenFOAM CFD software and imported into MATLAB to obtain the trapping lengths and trajectories of the particles. A connector vector is introduced to calculate the interaction force between cell-bead complexes as they flow through a microfluidic device. The interaction force calculations are performed for cases where the connector vector is parallel, perpendicular, and at an angle of 45° with the applied magnetic field. The trajectories of the particles are simulated by solving a system of eight ordinary differential equations using a fourth order Runge-Kutta method. The model is then used to study the effects of geometric positions and angles of the connector vector between the particles as well as the cell size, number of beads per cell, and flow rate on the interaction force and trajectories of the particles. The results show that the interaction forces may be attractive or repulsive, depending on the orientation of the connector vector distance between the particle complexes and the applied magnetic field. When the interaction force is attractive, the particles are observed to merge and trap sooner than a single particle, whereas a repulsive interaction force has little or no effect on the trapping length.

  11. Uncertainty in parameterisation and model structure affect simulation results in coupled ecohydrological models

    Directory of Open Access Journals (Sweden)

    S. Arnold

    2009-10-01

    Full Text Available In this paper we develop and apply a conceptual ecohydrological model to investigate the effects of model structure and parameter uncertainty on the simulation of vegetation structure and hydrological dynamics. The model is applied for a typical water limited riparian ecosystem along an ephemeral river: the middle section of the Kuiseb River in Namibia. We modelled this system by coupling an ecological model with a conceptual hydrological model. The hydrological model is storage based with stochastical forcing from the flood. The ecosystem is modelled with a population model, and represents three dominating riparian plant populations. In appreciation of uncertainty about population dynamics, we applied three model versions with increasing complexity. Population parameters were found by Latin hypercube sampling of the parameter space and with the constraint that three species should coexist as observed. Two of the three models were able to reproduce the observed coexistence. However, both models relied on different coexistence mechanisms, and reacted differently to change of long term memory in the flood forcing. The coexistence requirement strongly constrained the parameter space for both successful models. Only very few parameter sets (0.5% of 150 000 samples allowed for coexistence in a representative number of repeated simulations (at least 10 out of 100 and the success of the coexistence mechanism was controlled by the combination of population parameters. The ensemble statistics of average values of hydrologic variables like transpiration and depth to ground water were similar for both models, suggesting that they were mainly controlled by the applied hydrological model. The ensemble statistics of the fluctuations of depth to groundwater and transpiration, however, differed significantly, suggesting that they were controlled by the applied ecological model and coexistence mechanisms. Our study emphasizes that uncertainty about ecosystem

  12. Numeric simulation model for long-term orthodontic tooth movement with contact boundary conditions using the finite element method.

    Science.gov (United States)

    Hamanaka, Ryo; Yamaoka, Satoshi; Anh, Tuan Nguyen; Tominaga, Jun-Ya; Koga, Yoshiyuki; Yoshida, Noriaki

    2017-11-01

    Although many attempts have been made to simulate orthodontic tooth movement using the finite element method, most were limited to analyses of the initial displacement in the periodontal ligament and were insufficient to evaluate the effect of orthodontic appliances on long-term tooth movement. Numeric simulation of long-term tooth movement was performed in some studies; however, neither the play between the brackets and archwire nor the interproximal contact forces were considered. The objectives of this study were to simulate long-term orthodontic tooth movement with the edgewise appliance by incorporating those contact conditions into the finite element model and to determine the force system when the space is closed with sliding mechanics. We constructed a 3-dimensional model of maxillary dentition with 0.022-in brackets and 0.019 × 0.025-in archwire. Forces of 100 cN simulating sliding mechanics were applied. The simulation was accomplished on the assumption that bone remodeling correlates with the initial tooth displacement. This method could successfully represent the changes in the moment-to-force ratio: the tooth movement pattern during space closure. We developed a novel method that could simulate the long-term orthodontic tooth movement and accurately determine the force system in the course of time by incorporating contact boundary conditions into finite element analysis. It was also suggested that friction is progressively increased during space closure in sliding mechanics. Copyright © 2017. Published by Elsevier Inc.

  13. Process model simulations of the divergence effect

    Science.gov (United States)

    Anchukaitis, K. J.; Evans, M. N.; D'Arrigo, R. D.; Smerdon, J. E.; Hughes, M. K.; Kaplan, A.; Vaganov, E. A.

    2007-12-01

    We explore the extent to which the Vaganov-Shashkin (VS) model of conifer tree-ring formation can explain evidence for changing relationships between climate and tree growth over recent decades. The VS model is driven by daily environmental forcing (temperature, soil moisture, and solar radiation), and simulates tree-ring growth cell-by-cell as a function of the most limiting environmental control. This simplified representation of tree physiology allows us to examine using a selection of case studies whether instances of divergence may be explained in terms of changes in limiting environmental dependencies or transient climate change. Identification of model-data differences permits further exploration of the effects of tree-ring standardization, atmospheric composition, and additional non-climatic factors.

  14. Stability diagram for the forced Kuramoto model.

    Science.gov (United States)

    Childs, Lauren M; Strogatz, Steven H

    2008-12-01

    We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.

  15. On the Load-Unload (L-U) and Force-Release (F-R) Algorithms for Simulating Brittle Fracture Processes via Lattice Models

    KAUST Repository

    Liu, Jinxing

    2011-11-11

    General summaries on the load-unload and force-release methods indicate that the two methods are efficient for different-charactered quasi-static failures; therefore, it is important to choose the right one for different applications. Then we take, as an example, the case where the release of the ruptured element\\'s internal force is infinitely slower than the relaxation of the lattice system and analyze why the force-release method works better than the load-unload method in this particular case. Different trial deformation fields are used by them to track the next equilibrium state. Force-release method ensures that the deformation throughout the whole failure process coincides exactly with the controlled-displacement boundary conditions and we utilize the \\'left modulus\\' concept to prove that this method satisfies the energetic evolution in the force-displacement diagram; both of which are not satisfied by the load-unload method. To illustrate that the force-release method is not just another form of the load-unload method, a tensile test on a specifically designed system is analyzed to further compare the above two methods, showing that their predicted sequences of elemental failures can be different. In closing, we simulate the uniaxial tensile test on a beam lattice system by the load-unload and force-release methods and exploit the details of the resulting fracture processes. © The Author(s), 2011.

  16. Tyre tread-block friction: modelling, simulation and experimental validation

    Science.gov (United States)

    Wallaschek, Jörg; Wies, Burkard

    2013-07-01

    Pneumatic tyres are used in vehicles since the beginning of the last century. They generate braking and steering forces for bicycles, motor cycles, cars, busses, trucks, agricultural vehicles and aircraft. These forces are generated in the usually very small contact area between tyre and road and their performance characteristics are of eminent importance for safety and comfort. Much research has been addressed to optimise tyre design with respect to footprint pressure and friction. In this context, the development of virtual tyre prototypes, that is, simulation models for the tyre, has grown to a science in its own. While the modelling of the structural dynamics of the tyre has reached a very advanced level, which allows to take into account effects like the rate-independent inelasticity of filled elastomers or the transient 3D deformations of the ply-reinforced tread, shoulder and sidewalls, little is known about the friction between tread-block elements and road. This is particularly obvious in the case when snow, ice, water or a third-body layer are present in the tyre-road contact. In the present paper, we give a survey on the present state of knowledge in the modelling, simulation and experimental validation of tyre tread-block friction processes. We concentrate on experimental techniques.

  17. Design and verification of a simple 3D dynamic model of speed skating which mimics observed forces and motions.

    Science.gov (United States)

    van der Kruk, E; Veeger, H E J; van der Helm, F C T; Schwab, A L

    2017-11-07

    Advice about the optimal coordination pattern for an individual speed skater, could be addressed by simulation and optimization of a biomechanical speed skating model. But before getting to this optimization approach one needs a model that can reasonably match observed behaviour. Therefore, the objective of this study is to present a verified three dimensional inverse skater model with minimal complexity, which models the speed skating motion on the straights. The model simulates the upper body transverse translation of the skater together with the forces exerted by the skates on the ice. The input of the model is the changing distance between the upper body and the skate, referred to as the leg extension (Euclidean distance in 3D space). Verification shows that the model mimics the observed forces and motions well. The model is most accurate for the position and velocity estimation (respectively 1.2% and 2.9% maximum residuals) and least accurate for the force estimations (underestimation of 4.5-10%). The model can be used to further investigate variables in the skating motion. For this, the input of the model, the leg extension, can be optimized to obtain a maximal forward velocity of the upper body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Air Bag Momentum Force Including Aspiration

    Directory of Open Access Journals (Sweden)

    Guy Nusholtz

    1995-01-01

    Full Text Available A gas-jet momentum force drives the air bag into position during a crash. The magnitude of this force can change as a result of aspiration. To determine the potential magnitude of the effect on the momentum force and mass flow rate in an aspirated system, a series of experiments and simulations of those experiments was conducted. The simulation consists of a two-dimensional unsteady isentropic CFD model with special “infinite boundaries”. One of the difficulties in simulating the gas-jet behavior is determining the mass flow rate. To improve the reliability of the mass flow rate input to the simulation, a sampling procedure involving multiple tests was used, and an average of the tests was adopted.

  19. Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition.

    Directory of Open Access Journals (Sweden)

    Joseph L Baker

    2013-04-01

    Full Text Available Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon

  20. Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition.

    Science.gov (United States)

    Baker, Joseph L; Biais, Nicolas; Tama, Florence

    2013-04-01

    Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD) simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon stretching.

  1. Examining the origins of the hydration force between lipid bilayers using all-atom simulations.

    Science.gov (United States)

    Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B

    2010-05-01

    Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.

  2. ANALYSIS OF THE MAGNETIZED FRICTION FORCE.

    Energy Technology Data Exchange (ETDEWEB)

    FEDOTOV, A.V.; BRUHWILER, D.L.; SIDORIN, A.O.

    2006-05-29

    A comprehensive examination of theoretical models for the friction force, in use by the electron cooling community, was performed. Here, they present their insights about the models gained as a result of comparison between the friction force formulas and direct numerical simulations, as well as studies of the cooling process as a whole.

  3. Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model.

    Science.gov (United States)

    Ruan, Jesse S; El-Jawahri, Raed; Barbat, Saeed; Prasad, Priya

    2005-11-01

    Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact. Results also indicated that the model exhibited speed sensitive response characteristics and the compressibility of the abdomen significantly influenced the overall impact response in the simulated impact conditions. This study demonstrates that the development of a validated finite element human body model can be useful for abdominal injury assessment. Internal organ injuries, which are difficult to detect in experimental studies with human cadavers due to the difficulty of instrumentation, may be more easily identified with a validated finite element model through stress-strain analysis.

  4. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium - Part 1: Theory

    Science.gov (United States)

    Sundberg, R.; Moberg, A.; Hind, A.

    2012-08-01

    A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.

  5. Control of force during rapid visuomotor force-matching tasks can be described by discrete time PID control algorithms.

    Science.gov (United States)

    Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M

    2017-08-01

    Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.

  6. Sensitivity analysis with regard to variations of physical forcing including two possible future hydrographic regimes for the Oeregrundsgrepen. A follow-up baroclinic 3D-model study

    International Nuclear Information System (INIS)

    Engqvist, A.; Andrejev, O.

    2000-02-01

    A sensitivity analysis with regard to variations of physical forcing has been performed using a 3D baroclinic model of the Oeregrundsgrepen area for a whole-year period with data pertaining to 1992. The results of these variations are compared to a nominal run with unaltered physical forcing. This nominal simulation is based on the experience gained in an earlier whole-year modelling of the same area; the difference is mainly that the present nominal simulation is run with identical parameters for the whole year. From a computational economy point of view it has been necessary to vary the time step between the month-long simulation periods. For all simulations with varied forcing, the same time step as for the nominal run has been used. The analysis also comprises the water turnover of a hypsographically defined subsection, the Bio Model area, located above the SFR depository. The external forcing factors that have been varied are the following (with their found relative impact on the volume average of the retention time of the Bio Model area over one year given within parentheses): atmospheric temperature increased/reduced by 2.5 deg C (-0.1% resp. +0.6%), local freshwater discharge rate doubled/halved (-1.6% resp. +0.01%), salinity range at the border increased/reduced a factor 2 (-0.84% resp. 0.00%), wind speed forcing reduced 10% (+8.6%). The results of these simulations, at least the yearly averages, permit a reasonably direct physical explanation, while the detailed dynamics is for natural reasons more intricate. Two additional full-year simulations of possible future hydrographic regimes have also been performed. The first mimics a hypothetical situation with permanent ice cover, which increases the average retention time 87%. The second regime entails the future hypsography with its anticipated shoreline displacement by an 11 m land-rise in the year 4000 AD, which also considerably increases the average retention times for the two remaining layers of the

  7. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    Science.gov (United States)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. This paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated by the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating

  8. Nonlocal Peridynamic Modeling and Simulation on Crack Propagation in Concrete Structures

    Directory of Open Access Journals (Sweden)

    Dan Huang

    2015-01-01

    Full Text Available An extended peridynamic approach for crack propagation analysis in concrete structures was proposed. In the peridynamic constitutive model, concrete material was described as a series of interacting particles, and the short-range repulsive force and anisotropic behavior of concrete were taken into account in the expression of the interactive bonding force, which was given in terms of classical elastic constants and peridynamic horizon. The damage of material was defined locally at the level of pairwise bond, and the critical stretch of material bond was described as a function of fracture strength in the classical concrete failure theory. The efficiency and accuracy of the proposed model and algorithms were validated by simulating the propagation of mode I and I-II mixed mode cracks in concrete slabs. Furthermore, crack propagation in a double-edge notched concrete beam subjected to four-point load was simulated, in which the experimental observations are captured naturally as a consequence of the solution.

  9. Patterns and causes of species richness: a general simulation model for macroecology

    DEFF Research Database (Denmark)

    Gotelli, Nicholas J; Anderson, Marti J; Arita, Hector T

    2009-01-01

    to a mechanistic understanding of the patterns. During the past two decades, macroecologists have successfully addressed technical problems posed by spatial autocorrelation, intercorrelation of predictor variables and non-linearity. However, curve-fitting approaches are problematic because most theoretical models...... in macroecology do not make quantitative predictions, and they do not incorporate interactions among multiple forces. As an alternative, we propose a mechanistic modelling approach. We describe computer simulation models of the stochastic origin, spread, and extinction of species' geographical ranges...... in an environmentally heterogeneous, gridded domain and describe progress to date regarding their implementation. The output from such a general simulation model (GSM) would, at a minimum, consist of the simulated distribution of species ranges on a map, yielding the predicted number of species in each grid cell...

  10. The effect of ac-driven force on superlubricity in a two-dimensional Frenkel-Kontorova model

    International Nuclear Information System (INIS)

    Lin Maimai

    2010-01-01

    By using the molecular dynamic simulation method with a fourth-order Runge-Kutta algorithm, a two-dimensional dc- and ac-driven Frenkel-Kontorova model with a square symmetry substrate potential for a square lattice layer has been investigated in this paper. For this system, the effects of many different parameters on the static friction force have been studied in detail. It was found that not only the amplitude and frequency of the ac-driven force, but also the direction of dc- and ac-driven forces and the misfit angle between two layers have a strong influence on the static friction force. This indicated that the phenomenon of superlubricity appears easily with larger ac amplitude and smaller ac frequency for some special direction of the external driving force and misfit angle.

  11. Agent Based Modeling and Simulation of Pedestrian Crowds In Panic Situations

    KAUST Repository

    Alrashed, Mohammed

    2016-11-01

    The increasing occurrence of panic stampedes during mass events has motivated studying the impact of panic on crowd dynamics and the simulation of pedestrian flows in panic situations. The lack of understanding of panic stampedes still causes hundreds of fatalities each year, not to mention the scarce methodical studies of panic behavior capable of envisaging such crowd dynamics. Under those circumstances, there are thousands of fatalities and twice that many of injuries every year caused be crowd stampede worldwide, despite the tremendous efforts of crowd control and massive numbers of safekeeping forces. Pedestrian crowd dynamics are generally predictable in high-density crowds where pedestrians cannot move freely and thus gives rise to self-propelling interactions between pedestrians. Although every pedestrian has personal preferences, the motion dynamics can be modeled as a social force in such crowds. These forces are representations of internal preferences and objectives to perform certain actions or movements. The corresponding forces can be controlled for each individual to represent a different variety of behaviors that can be associated with panic situations such as escaping danger, clustering, and pushing. In this thesis, we use an agent-based model of pedestrian behavior in panic situations to predict the collective human behavior in such crowd dynamics. The proposed simulations suggests a practical way to alleviate fatalities and minimize the evacuation time in panic situations. Moreover, we introduce contagious panic and pushing behavior, resulting in a more realistic crowd dynamics model. The proposed methodology describes the intensity and spread of panic for each individual as a function of distances between pedestrians.

  12. Longitudinal tire force estimation based on sliding mode observer

    Energy Technology Data Exchange (ETDEWEB)

    El Hadri, A.; Cadiou, J.C.; M' Sirdi, N.K. [Versailles Univ., Paris (France). Lab. de Robotique; Beurier, G.; Delanne, Y. [Lab. Central des Ponts, Centre de Nantes (France)

    2001-07-01

    This paper presents an estimation method for vehicle longitudinal dynamics, particularly the tractive/braking force. The estimation can be used to detect a critical driving situation to improve security. It can be used also in several vehicle control systems. The main characteristics of the vehicle longitudinal dynamics were taken into account in the model used to design an observer and computer simulations. The state variables are the angular wheel velocity, vehicle velocity and the longitudinal tire force. The proposed differential equation of the tractive/braking force is derived using the concept of relaxation length. The observer designed is based on the sliding mode approach using only the angular wheel velocity measurement. The proposed method of estimation is verified through a one-wheel simulation model with a ''Magic formula'' tire model. Simulations results show an excellent reconstruction of the tire force. (orig.)

  13. Ground Contact Model for Mars Science Laboratory Mission Simulations

    Science.gov (United States)

    Raiszadeh, Behzad; Way, David

    2012-01-01

    The Program to Optimize Simulated Trajectories II (POST 2) has been successful in simulating the flight of launch vehicles and entry bodies on earth and other planets. POST 2 has been the primary simulation tool for the Entry Descent, and Landing (EDL) phase of numerous Mars lander missions such as Mars Pathfinder in 1997, the twin Mars Exploration Rovers (MER-A and MER-B) in 2004, Mars Phoenix lander in 2007, and it is now the main trajectory simulation tool for Mars Science Laboratory (MSL) in 2012. In all previous missions, the POST 2 simulation ended before ground impact, and a tool other than POST 2 simulated landing dynamics. It would be ideal for one tool to simulate the entire EDL sequence, thus avoiding errors that could be introduced by handing off position, velocity, or other fight parameters from one simulation to the other. The desire to have one continuous end-to-end simulation was the motivation for developing the ground interaction model in POST 2. Rover landing, including the detection of the postlanding state, is a very critical part of the MSL mission, as the EDL landing sequence continues for a few seconds after landing. The method explained in this paper illustrates how a simple ground force interaction model has been added to POST 2, which allows simulation of the entire EDL from atmospheric entry through touchdown.

  14. Simulating Black Carbon and Dust and their Radiative Forcing in Seasonal Snow: A Case Study over North China with Field Campaign Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chun; Hu, Zhiyuan; Qian, Yun; Leung, Lai-Yung R.; Huang, J.; Huang, Maoyi; Jin, Jiming; Flanner, M. G.; Zhang, Rudong; Wang, Hailong; Yan, Huiping; Lu, Zifeng; Streets, D. G.

    2014-10-30

    A state-of-the-art regional model, WRF-Chem, is coupled with the SNICAR model that includes the sophisticated representation of snow metamorphism processes available for climate study. The coupled model is used to simulate the black carbon (BC) and dust concentrations and their radiative forcing in seasonal snow over North China in January-February of 2010, with extensive field measurements used to evaluate the model performance. In general, the model simulated spatial variability of BC and dust mass concentrations in the top snow layer (hereafter BCS and DSTS, respectively) are quantitatively or qualitatively consistent with observations. The model generally moderately underestimates BCS in the clean regions but significantly overestimates BCS in some polluted regions. Most model results fall into the uncertainty ranges of observations. The simulated BCS and DSTS are highest with >5000 ng g-1 and up to 5 mg g-1, respectively, over the source regions and reduce to <50 ng g-1 and <1 μg g-1, respectively, in the remote regions. BCS and DSTS introduce similar magnitude of radiative warming (~10 W m-2) in snowpack, which is comparable to the magnitude of surface radiative cooling due to BC and dust in the atmosphere. This study represents the first effort in using a regional modeling framework to simulate BC and dust and their direct radiative forcing in snow. Although a variety of observational datasets have been used to attribute model biases, some uncertainties in the results remain, which highlights the need for more observations, particularly concurrent measurements of atmospheric and snow aerosols and the deposition fluxes of aerosols, in future campaigns.

  15. Tokamak Simulation Code modeling of NSTX

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kaye, S.; Menard, J.; Kessel, C.; Glasser, A.H.

    2000-01-01

    The Tokamak Simulation Code [TSC] is widely used for the design of new axisymmetric toroidal experiments. In particular, TSC was used extensively in the design of the National Spherical Torus eXperiment [NSTX]. The authors have now benchmarked TSC with initial NSTX results and find excellent agreement for plasma and vessel currents and magnetic flux loops when the experimental coil currents are used in the simulations. TSC has also been coupled with a ballooning stability code and with DCON to provide stability predictions for NSTX operation. TSC has also been used to model initial CHI experiments where a large poloidal voltage is applied to the NSTX vacuum vessel, causing a force-free current to appear in the plasma. This is a phenomenon that is similar to the plasma halo current that sometimes develops during a plasma disruption

  16. Reproducing multi-model ensemble average with Ensemble-averaged Reconstructed Forcings (ERF) in regional climate modeling

    Science.gov (United States)

    Erfanian, A.; Fomenko, L.; Wang, G.

    2016-12-01

    Multi-model ensemble (MME) average is considered the most reliable for simulating both present-day and future climates. It has been a primary reference for making conclusions in major coordinated studies i.e. IPCC Assessment Reports and CORDEX. The biases of individual models cancel out each other in MME average, enabling the ensemble mean to outperform individual members in simulating the mean climate. This enhancement however comes with tremendous computational cost, which is especially inhibiting for regional climate modeling as model uncertainties can originate from both RCMs and the driving GCMs. Here we propose the Ensemble-based Reconstructed Forcings (ERF) approach to regional climate modeling that achieves a similar level of bias reduction at a fraction of cost compared with the conventional MME approach. The new method constructs a single set of initial and boundary conditions (IBCs) by averaging the IBCs of multiple GCMs, and drives the RCM with this ensemble average of IBCs to conduct a single run. Using a regional climate model (RegCM4.3.4-CLM4.5), we tested the method over West Africa for multiple combination of (up to six) GCMs. Our results indicate that the performance of the ERF method is comparable to that of the MME average in simulating the mean climate. The bias reduction seen in ERF simulations is achieved by using more realistic IBCs in solving the system of equations underlying the RCM physics and dynamics. This endows the new method with a theoretical advantage in addition to reducing computational cost. The ERF output is an unaltered solution of the RCM as opposed to a climate state that might not be physically plausible due to the averaging of multiple solutions with the conventional MME approach. The ERF approach should be considered for use in major international efforts such as CORDEX. Key words: Multi-model ensemble, ensemble analysis, ERF, regional climate modeling

  17. Proteus: a direct forcing method in the simulations of particulate flows

    Science.gov (United States)

    Feng, Zhi-Gang; Michaelides, Efstathios E.

    2005-01-01

    A new and efficient direct numerical method for the simulation of particulate flows is introduced. The method combines desired elements of the immersed boundary method, the direct forcing method and the lattice Boltzmann method. Adding a forcing term in the momentum equation enforces the no-slip condition on the boundary of a moving particle. By applying the direct forcing scheme, Proteus eliminates the need for the determination of free parameters, such as the stiffness coefficient in the penalty scheme or the two relaxation parameters in the adaptive-forcing scheme. The method presents a significant improvement over the previously introduced immersed-boundary-lattice-Boltzmann method (IB-LBM) where the forcing term was computed using a penalty method and a user-defined parameter. The method allows the enforcement of the rigid body motion of a particle in a more efficient way. Compared to the "bounce-back" scheme used in the conventional LBM, the direct-forcing method provides a smoother computational boundary for particles and is capable of achieving results at higher Reynolds number flows. By using a set of Lagrangian points to track the boundary of a particle, Proteus eliminates any need for the determination of the boundary nodes that are prescribed by the "bounce-back" scheme at every time step. It also makes computations for particles of irregular shapes simpler and more efficient. Proteus has been developed in two- as well as three-dimensions. This new method has been validated by comparing its results with those from experimental measurements for a single sphere settling in an enclosure under gravity. As a demonstration of the efficiency and capabilities of the present method, the settling of a large number (1232) of spherical particles is simulated in a narrow box under two different boundary conditions. It is found that when the no-slip boundary condition is imposed at the front and rear sides of the box the particles motion is significantly hindered

  18. Effect of Downscaled Forcings and Soil Texture Properties on Hyperresolution Hydrologic Simulations in a Regional Basin in Northwest Mexico

    Science.gov (United States)

    Ko, A.; Mascaro, G.; Vivoni, E. R.

    2017-12-01

    Hyper-resolution ( 10 km) scales. In this study, we address some of the challenges by applying a parallel version of the Triangulated Irregular Network (TIN)-based Real Time Integrated Basin Simulator (tRIBS) to the Rio Sonora Basin (RSB) in northwest Mexico. The RSB is a large, semiarid watershed ( 21,000 km2) characterized by complex topography and a strong seasonality in vegetation conditions, due to the North American monsoon. We conducted simulations at an average spatial resolution of 88 m over a decadal (2004-2013) period using spatially-distributed forcings from remotely-sensed and reanalysis products. Meteorological forcings were derived from the North American Land Data Assimilation System (NLDAS) at the original resolution of 12 km and were downscaled at 1 km with techniques accounting for terrain effects. Two grids of soil properties were created from different sources, including: (i) CONABIO (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad) at 6 km resolution; and (ii) ISRIC (International Soil Reference Information Centre) at 250 m. Time-varying vegetation parameters were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) composite products. The model was first calibrated and validated through distributed soil moisture data from a network of 20 soil moisture stations during the monsoon season. Next, hydrologic simulations were conducted with five different combinations of coarse and downscaled forcings and soil properties. Outputs in the different configurations were then compared with independent observations of soil moisture, and with estimates of land surface temperature (1 km, daily) and evapotranspiration (1 km, monthly) from MODIS. This study is expected to support the community involved in hyper-resolution hydrologic modeling by identifying the crucial factors that, if available at higher resolution, lead to the largest improvement of the simulation prognostic capability.

  19. An electromechanical based deformable model for soft tissue simulation.

    Science.gov (United States)

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  20. Mechanical Study of Standard Six Beat Front Crawl Swimming by Using Swimming Human Simulation Model

    Science.gov (United States)

    Nakashima, Motomu

    There are many dynamical problems in front crawl swimming which have not been fully investigated by analytical approaches. Therefore, in this paper, standard six beat front crawl swimming is analyzed by the swimming human simulation model SWUM, which has been developed by the authors. First, the outline of the simulation model, the joint motion for one stroke cycle, and the specifications of calculation are described respectively. Next, contribution of each fluid force component and of each body part to the thrust, effect of the flutter kick, estimation of the active drag, roll motion, and the propulsive efficiency are discussed respectively. The following results were theoretically obtained: The thrust is produced at the upper limb by the normal drag force component. The flutter kick plays a role in raising the lower half of the body. The active drag coefficient in the simulation becomes 0.082. Buoyancy determines the primal wave of the roll motion fluctuation. The propulsive efficiency in the simulation becomes 0.2.

  1. Adaptive resolution simulation of polarizable supramolecular coarse-grained water models

    International Nuclear Information System (INIS)

    Zavadlav, Julija; Praprotnik, Matej; Melo, Manuel N.; Marrink, Siewert J.

    2015-01-01

    Multiscale simulations methods, such as adaptive resolution scheme, are becoming increasingly popular due to their significant computational advantages with respect to conventional atomistic simulations. For these kind of simulations, it is essential to develop accurate multiscale water models that can be used to solvate biophysical systems of interest. Recently, a 4-to-1 mapping was used to couple the bundled-simple point charge water with the MARTINI model. Here, we extend the supramolecular mapping to coarse-grained models with explicit charges. In particular, the two tested models are the polarizable water and big multiple water models associated with the MARTINI force field. As corresponding coarse-grained representations consist of several interaction sites, we couple orientational degrees of freedom of the atomistic and coarse-grained representations via a harmonic energy penalty term. This additional energy term aligns the dipole moments of both representations. We test this coupling by studying the system under applied static external electric field. We show that our approach leads to the correct reproduction of the relevant structural and dynamical properties

  2. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    Science.gov (United States)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  3. Polarization effects in molecular mechanical force fields

    Energy Technology Data Exchange (ETDEWEB)

    Cieplak, Piotr [Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92120 (United States); Dupradeau, Francois-Yves [UMR CNRS 6219-Faculte de Pharmacie, Universite de Picardie Jules Verne, 1 rue des Louvels, F-80037 Amiens (France); Duan, Yong [Genome Center and Department of Applied Science, University of California, Davis, One Shields Avenue, Davis, CA 95616 (United States); Wang Junmei, E-mail: pcieplak@burnham.or [Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Boulevard, ND9.136, Dallas, TX 75390-9050 (United States)

    2009-08-19

    The focus here is on incorporating electronic polarization into classical molecular mechanical force fields used for macromolecular simulations. First, we briefly examine currently used molecular mechanical force fields and the current status of intermolecular forces as viewed by quantum mechanical approaches. Next, we demonstrate how some components of quantum mechanical energy are effectively incorporated into classical molecular mechanical force fields. Finally, we assess the modeling methods of one such energy component-polarization energy-and present an overview of polarizable force fields and their current applications. Incorporating polarization effects into current force fields paves the way to developing potentially more accurate, though more complex, parameterizations that can be used for more realistic molecular simulations. (topical review)

  4. Many-body forces in nuclear shell-model

    International Nuclear Information System (INIS)

    Rath, P.K.

    1985-01-01

    In the microscopic derivation of the effective Hamiltonian for the nuclear shell model many-body forces between the valence nucleons occur. These many-body forces can be discriminated in ''real'' many-body forces, which can be related to mesonic and internal degrees of freedom of the nucleons, and ''effective'' many-body forces, which arise by the confinement of the nucleonic Hilbert space to the finite-dimension shell-model space. In the present thesis the influences of such three-body forces on the spectra of sd-shell nuclei are studied. For this the two common techniques for shell-model calculations (Oak Ridge-Rochester and Glasgow representation) are extended in such way that a general three-body term in the Hamiltonian can be regarded. The studies show that the repulsive contributions of the considered three-nucleon forces become more important with increasing number of valence nucleons. By this the particle-number dependence of empirical two-nucleon forces can be qualitatively explained. A special kind of effective many-body force occurs in the folded diagram expansion of the energy-dependent effective Hamiltonian for the shell model. Thereby it is shown that the contributions of the folded diagrams with three nucleons are just as important as those with two nucleons. Thus it is to be suspected that the folded diagram expansion contains many-particle terms with arbitrary particle number. The present studies however show that four nucleon effects are neglegible so that the folded diagram expansion can be confined to two- and three-particle terms. In shell-model calculations which extend over several main shells the influences of the spurious center-of-mass motion must be regarded. A procedure is discussed by which these spurious degrees of freedom can be exactly separated. (orig.) [de

  5. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    Science.gov (United States)

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular

  6. Magnetic force microscopy and simulation studies on Co 50 Fe 50 ...

    Indian Academy of Sciences (India)

    We studied the magnetization reversal mechanism of single-layered Co50Fe50 nanomagnets by measuring the magnetization reversal and using the micromagnetic simulations. The magnetization reversal strongly depends on the thickness of the nanomagnets. In the remanent state, the magnetic force microscopy studies ...

  7. A parameters optimization method for planar joint clearance model and its application for dynamics simulation of reciprocating compressor

    Science.gov (United States)

    Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li

    2015-05-01

    In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.

  8. Comprehensive modelling and simulation of cylindrical nanoparticles manipulation by using a virtual reality environment.

    Science.gov (United States)

    Korayem, Moharam Habibnejad; Hoshiar, Ali Kafash; Ghofrani, Maedeh

    2017-08-01

    With the expansion of nanotechnology, robots based on atomic force microscope (AFM) have been widely used as effective tools for displacing nanoparticles and constructing nanostructures. One of the most limiting factors in AFM-based manipulation procedures is the inability of simultaneously observing the controlled pushing and displacing of nanoparticles while performing the operation. To deal with this limitation, a virtual reality environment has been used in this paper for observing the manipulation operation. In the simulations performed in this paper, first, the images acquired by the atomic force microscope have been processed and the positions and dimensions of nanoparticles have been determined. Then, by dynamically modelling the transfer of nanoparticles and simulating the critical force-time diagrams, a controlled displacement of nanoparticles has been accomplished. The simulations have been further developed for the use of rectangular, V-shape and dagger-shape cantilevers. The established virtual reality environment has made it possible to simulate the manipulation of biological particles in a liquid medium. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dynamic simulation of perturbation responses in a closed-loop virtual arm model.

    Science.gov (United States)

    Du, Yu-Fan; He, Xin; Lan, Ning

    2010-01-01

    A closed-loop virtual arm (VA) model has been developed in SIMULINK environment by adding spinal reflex circuits and propriospinal neural networks to the open-loop VA model developed in early study [1]. An improved virtual muscle model (VM4.0) is used to speed up simulation and to generate more precise recruitment of muscle force at low levels of muscle activation. Time delays in the reflex loops are determined by their synaptic connections and afferent transmission back to the spinal cord. Reflex gains are properly selected so that closed-loop responses are stable. With the closed-loop VA model, we are developing an approach to evaluate system behaviors by dynamic simulation of perturbation responses. Joint stiffness is calculated based on simulated perturbation responses by a least-squares algorithm in MATLAB. This method of dynamic simulation will be essential for further evaluation of feedforward and reflex control of arm movement and position.

  10. Frameworks for Assessing the Quality of Modeling and Simulation Capabilities

    Science.gov (United States)

    Rider, W. J.

    2012-12-01

    The importance of assuring quality in modeling and simulation has spawned several frameworks for structuring the examination of quality. The format and content of these frameworks provides an emphasis, completeness and flow to assessment activities. I will examine four frameworks that have been developed and describe how they can be improved and applied to a broader set of high consequence applications. Perhaps the first of these frameworks was known as CSAU [Boyack] (code scaling, applicability and uncertainty) used for nuclear reactor safety and endorsed the United States' Nuclear Regulatory Commission (USNRC). This framework was shaped by nuclear safety practice, and the practical structure needed after the Three Mile Island accident. It incorporated the dominant experimental program, the dominant analysis approach, and concerns about the quality of modeling. The USNRC gave it the force of law that made the nuclear industry take it seriously. After the cessation of nuclear weapons' testing the United States began a program of examining the reliability of these weapons without testing. This program utilizes science including theory, modeling, simulation and experimentation to replace the underground testing. The emphasis on modeling and simulation necessitated attention on the quality of these simulations. Sandia developed the PCMM (predictive capability maturity model) to structure this attention [Oberkampf]. PCMM divides simulation into six core activities to be examined and graded relative to the needs of the modeling activity. NASA [NASA] has built yet another framework in response to the tragedy of the space shuttle accidents. Finally, Ben-Haim and Hemez focus upon modeling robustness and predictive fidelity in another approach. These frameworks are similar, and applied in a similar fashion. The adoption of these frameworks at Sandia and NASA has been slow and arduous because the force of law has not assisted acceptance. All existing frameworks are

  11. Nonlinear wave forces on large ocean structures

    Science.gov (United States)

    Huang, Erick T.

    1993-04-01

    This study explores the significance of second-order wave excitations on a large pontoon and tests the feasibility of reducing a nonlinear free surface problem by perturbation expansions. A simulation model has been developed based on the perturbation expansion technique to estimate the wave forces. The model uses a versatile finite element procedure for the solution of the reduced linear boundary value problems. This procedure achieves a fair compromise between computation costs and physical details by using a combination of 2D and 3D elements. A simple hydraulic model test was conducted to observe the wave forces imposed on a rectangle box by Cnoidal waves in shallow water. The test measurements are consistent with the numerical predictions by the simulation model. This result shows favorable support to the perturbation approach for estimating the nonlinear wave forces on shallow draft vessels. However, more sophisticated model tests are required for a full justification. Both theoretical and experimental results show profound second-order forces that could substantially impact the design of ocean facilities.

  12. Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects

    Science.gov (United States)

    Subba, T.; Gogoi, M. M.; Pathak, B.; Ajay, P.; Bhuyan, P. K.; Solmon, F.

    2018-05-01

    Ground reaching solar radiation flux was simulated using a 1-dimensional radiative transfer (SBDART) and a 3-dimensional regional climate (RegCM 4.4) model and their seasonality against simultaneous surface measurements carried out using a CNR4 net Radiometer over a sub-Himalayan foothill site of south-east Asia was assessed for the period from March 2013-January 2015. The model simulated incoming fluxes showed a very good correlation with the measured values with correlation coefficient R2 0.97. The mean bias errors between these two varied from -40 W m-2 to +7 W m-2 with an overestimation of 2-3% by SBDART and an underestimation of 2-9% by RegCM. Collocated measurements of the optical parameters of aerosols indicated a reduction in atmospheric transmission path by 20% due to aerosol load in the atmosphere when compared with the aerosol free atmospheric condition. Estimation of aerosol radiative forcing efficiency (ARFE) indicated that the presence of black carbon (BC, 10-15%) led to a surface dimming by -26.14 W m-2 τ-1 and a potential atmospheric forcing of +43.04 W m-2 τ-1. BC alone is responsible for >70% influence with a major role in building up of forcing efficiency of +55.69 W m-2 τ-1 (composite) in the atmosphere. On the other hand, the scattering due to aerosols enhance the outgoing radiation at the top of the atmosphere (ARFETOA -12.60 W m-2 ω-1), the absence of which would have resulted in ARFETOA of +16.91 W m-2 τ-1 (due to BC alone). As a result, 3/4 of the radiation absorption in the atmosphere is ascribed to the presence of BC. This translated to an atmospheric heating rate of 1.0 K day-1, with 0.3 K day-1 heating over the elevated regions (2-4 km) of the atmosphere, especially during pre-monsoon season. Comparison of the satellite (MODIS) derived and ground based estimates of surface albedo showed seasonal difference in their magnitudes (R2 0.98 during retreating monsoon and winter; 0.65 during pre-monsoon and monsoon), indicating that the

  13. Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows

    Energy Technology Data Exchange (ETDEWEB)

    Ayache, S.; Dawson, J.R.; Triantafyllidis, A. [Department of Engineering, University of Cambridge (United Kingdom); Balachandran, R. [Department of Mechanical Engineering, University College London (United Kingdom); Mastorakos, E., E-mail: em257@eng.cam.ac.u [Department of Engineering, University of Cambridge (United Kingdom)

    2010-10-15

    The isothermal air flow behind an enclosed axisymmetric bluff body, with the incoming flow being forced by a loudspeaker at a single frequency and with large amplitude, has been explored with high data-rate Laser-Doppler Anemometry measurements and Large-Eddy Simulations. The comparison between experiment and simulations allows a quantification of the accuracy of LES for turbulent flows with periodicity and the results provide insights into the structure of flows relevant to combustors undergoing self-excited oscillations. At low forcing frequencies, the whole flow pulsates with the incoming flow, although at a phase lag that depends on spatial location. At high forcing frequencies, vortices are shed from the bluff body and the recirculation zone, as a whole, pulsates less. Despite the fact that the incoming flow has an oscillation that is virtually monochromatic, the velocity spectra show peaks at various harmonics, whose relative magnitudes vary with location. A sub-harmonic peak is also observed inside the recirculation zone possibly caused by merging of the shed vortices. The phase-averaged turbulent fluctuations show large temporal and spatial variations. The LES reproduces reasonably accurately the experimental findings in terms of phase-averaged mean and r.m.s. velocities, vortex formation, and spectral peaks.

  14. Experiments and Large-Eddy Simulations of acoustically forced bluff-body flows

    International Nuclear Information System (INIS)

    Ayache, S.; Dawson, J.R.; Triantafyllidis, A.; Balachandran, R.; Mastorakos, E.

    2010-01-01

    The isothermal air flow behind an enclosed axisymmetric bluff body, with the incoming flow being forced by a loudspeaker at a single frequency and with large amplitude, has been explored with high data-rate Laser-Doppler Anemometry measurements and Large-Eddy Simulations. The comparison between experiment and simulations allows a quantification of the accuracy of LES for turbulent flows with periodicity and the results provide insights into the structure of flows relevant to combustors undergoing self-excited oscillations. At low forcing frequencies, the whole flow pulsates with the incoming flow, although at a phase lag that depends on spatial location. At high forcing frequencies, vortices are shed from the bluff body and the recirculation zone, as a whole, pulsates less. Despite the fact that the incoming flow has an oscillation that is virtually monochromatic, the velocity spectra show peaks at various harmonics, whose relative magnitudes vary with location. A sub-harmonic peak is also observed inside the recirculation zone possibly caused by merging of the shed vortices. The phase-averaged turbulent fluctuations show large temporal and spatial variations. The LES reproduces reasonably accurately the experimental findings in terms of phase-averaged mean and r.m.s. velocities, vortex formation, and spectral peaks.

  15. Multi-agent simulation of the von Thunen model formation mechanism

    Science.gov (United States)

    Tao, Haiyan; Li, Xia; Chen, Xiaoxiang; Deng, Chengbin

    2008-10-01

    This research tries to explain the internal driving forces of circular structure formation in urban geography via the simulation of interaction between individual behavior and market. On the premise of single city center, unchanged scale merit and complete competition, enterprise migration theory as well, an R-D algorithm, that has agents searched the best behavior rules in some given locations, is introduced with agent-based modeling technique. The experiment conducts a simulation on Swarm platform, whose result reflects and replays the formation process of Von Thünen circular structure. Introducing and considering some heterogeneous factors, such as traffic roads, the research verifies several landuse models and discusses the self-adjustment function of price mechanism.

  16. Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium – Part 2: A pseudo-proxy study addressing the amplitude of solar forcing

    Directory of Open Access Journals (Sweden)

    A. Hind

    2012-08-01

    Full Text Available The statistical framework of Part 1 (Sundberg et al., 2012, for comparing ensemble simulation surface temperature output with temperature proxy and instrumental records, is implemented in a pseudo-proxy experiment. A set of previously published millennial forced simulations (Max Planck Institute – COSMOS, including both "low" and "high" solar radiative forcing histories together with other important forcings, was used to define "true" target temperatures as well as pseudo-proxy and pseudo-instrumental series. In a global land-only experiment, using annual mean temperatures at a 30-yr time resolution with realistic proxy noise levels, it was found that the low and high solar full-forcing simulations could be distinguished. In an additional experiment, where pseudo-proxies were created to reflect a current set of proxy locations and noise levels, the low and high solar forcing simulations could only be distinguished when the latter served as targets. To improve detectability of the low solar simulations, increasing the signal-to-noise ratio in local temperature proxies was more efficient than increasing the spatial coverage of the proxy network. The experiences gained here will be of guidance when these methods are applied to real proxy and instrumental data, for example when the aim is to distinguish which of the alternative solar forcing histories is most compatible with the observed/reconstructed climate.

  17. Coupling a Mesoscale Numerical Weather Prediction Model with Large-Eddy Simulation for Realistic Wind Plant Aerodynamics Simulations (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Churchfield, M.; Mirocha, J.; Lee, S.; Lundquist, J.; Michalakes, J.; Moriarty, P.; Purkayastha, A.; Sprague, M.; Vanderwende, B.

    2014-06-01

    Wind plant aerodynamics are influenced by a combination of microscale and mesoscale phenomena. Incorporating mesoscale atmospheric forcing (e.g., diurnal cycles and frontal passages) into wind plant simulations can lead to a more accurate representation of microscale flows, aerodynamics, and wind turbine/plant performance. Our goal is to couple a numerical weather prediction model that can represent mesoscale flow [specifically the Weather Research and Forecasting model] with a microscale LES model (OpenFOAM) that can predict microscale turbulence and wake losses.

  18. Simulation of the Greenland Ice Sheet over two glacial–interglacial cycles: investigating a sub-ice-shelf melt parameterization and relative sea level forcing in an ice-sheet–ice-shelf model

    Directory of Open Access Journals (Sweden)

    S. L. Bradley

    2018-05-01

    Full Text Available Observational evidence, including offshore moraines and sediment cores, confirm that at the Last Glacial Maximum (LGM the Greenland ice sheet (GrIS expanded to a significantly larger spatial extent than seen at present, grounding into Baffin Bay and out onto the continental shelf break. Given this larger spatial extent and its close proximity to the neighbouring Laurentide Ice Sheet (LIS and Innuitian Ice Sheet (IIS, it is likely these ice sheets will have had a strong non-local influence on the spatial and temporal behaviour of the GrIS. Most previous paleo ice-sheet modelling simulations recreated an ice sheet that either did not extend out onto the continental shelf or utilized a simplified marine ice parameterization which did not fully include the effect of ice shelves or neglected the sensitivity of the GrIS to this non-local bedrock signal from the surrounding ice sheets. In this paper, we investigated the evolution of the GrIS over the two most recent glacial–interglacial cycles (240 ka BP to the present day using the ice-sheet–ice-shelf model IMAU-ICE. We investigated the solid earth influence of the LIS and IIS via an offline relative sea level (RSL forcing generated by a glacial isostatic adjustment (GIA model. The RSL forcing governed the spatial and temporal pattern of sub-ice-shelf melting via changes in the water depth below the ice shelves. In the ensemble of simulations, at the glacial maximums, the GrIS coalesced with the IIS to the north and expanded to the continental shelf break to the southwest but remained too restricted to the northeast. In terms of the global mean sea level contribution, at the Last Interglacial (LIG and LGM the ice sheet added 1.46 and −2.59 m, respectively. This LGM contribution by the GrIS is considerably higher (∼  1.26 m than most previous studies whereas the contribution to the LIG highstand is lower (∼  0.7 m. The spatial and temporal behaviour of the northern margin was

  19. Simulation of transient heat transfer during cooling and heating of whole sweet potato (Ipomoea batatas (L.) Lam.) roots under forced-air conditions

    International Nuclear Information System (INIS)

    Korese, Joseph Kudadam; Sturm, Barbara; Román, Franz; Hensel, Oliver

    2017-01-01

    Highlights: • Heat transfer of whole sweet potato roots under forced-air cooling and heating is investigated. • Experiments were carried out in a cooling and heating chamber. • The cooling and heating rate and time was clearly depended on air velocity and roots size. • Simulated and experimental data on cooling and heating times were compared for validation. • Simulation results quantitatively agreed with experimental results. - Abstract: In this work, we investigated how different air velocity and temperature affect the cooling and heating rate and time of individual sweet potato roots. Additionally, we modified and applied a simulation model which is based on the fundamental solution of the transient equations for estimating the cooling and heating time at the centre of sweet potato roots. The model was adapted to receive input parameters such as thermo-physical properties of whole sweet potato roots as well as the surrounding air properties, and was verified with experimental transient temperature data. The experimental results showed that the temperature at the centre and the under skin of sweet potato roots is almost homogeneous during forced convection cooling and heating. The cooling and heating time was significantly (P < 0.05) affected by high air velocity and sweet potato root size. The simulation results quantitatively agreed with the experimental transient data. This research, thus provides a reliable experimental and theoretical basis for understanding the temperature variations as well as estimating the cooling and heating times in individual sweet potato roots under forced convection cooling and heating. The result from this study could be applied to design and optimize forced-air treatment equipments with improved energy efficiency as well as ensuring safety and the maintenance of sweet potato roots quality.

  20. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.

    Science.gov (United States)

    Lim, Yi-Je; Deo, Dhanannjay; Singh, Tejinder P; Jones, Daniel B; De, Suvranu

    2009-06-01

    Development of a laparoscopic surgery simulator that delivers high-fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. As experiments on live human patients present significant risks, the use of cadavers presents an alternative. We present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a realistic model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real-time surgery simulator. To investigate the in situ mechanical, static, and dynamic properties of intra-abdominal organs, we have developed a high-precision instrument by retrofitting a robotic device from Sensable Technologies (position resolution of 0.03 mm) with a six-axis Nano 17 force-torque sensor from ATI Industrial Automation (force resolution of 1/1,280 N along each axis), and used it to apply precise displacement stimuli and record the force response of liver and stomach of ten fresh human cadavers. The mean elastic modulus of liver and stomach is estimated as 5.9359 kPa and 1.9119 kPa, respectively over the range of indentation depths tested. We have also obtained the parameters of a quasilinear viscoelastic (QLV) model to represent the nonlinear viscoelastic behavior of the cadaver stomach and liver over a range of indentation depths and speeds. The models are found to have an excellent goodness of fit (with R (2) > 0.99). The data and models presented in this paper together with additional ones based on the principles presented in this paper would result in realistic physics-based surgical simulators.

  1. Modelling toolkit for simulation of maglev devices

    Science.gov (United States)

    Peña-Roche, J.; Badía-Majós, A.

    2017-01-01

    A stand-alone App1 has been developed, focused on obtaining information about relevant engineering properties of magnetic levitation systems. Our modelling toolkit provides real time simulations of 2D magneto-mechanical quantities for superconductor (SC)/permanent magnet structures. The source code is open and may be customised for a variety of configurations. Ultimately, it relies on the variational statement of the critical state model for the superconducting component and has been verified against experimental data for YBaCuO/NdFeB assemblies. On a quantitative basis, the values of the arising forces, induced superconducting currents, as well as a plot of the magnetic field lines are displayed upon selection of an arbitrary trajectory of the magnet in the vicinity of the SC. The stability issues related to the cooling process, as well as the maximum attainable forces for a given material and geometry are immediately observed. Due to the complexity of the problem, a strategy based on cluster computing, database compression, and real-time post-processing on the device has been implemented.

  2. Dynamic simulation of a forced circulation evaporating system

    International Nuclear Information System (INIS)

    Lee, J.S.; Lee, K.J.

    1993-01-01

    A dynamic simulation program has been developed to simulate the forced circulation evaporating system of the Kori PWR Power Plant in Korea which is used to treat liquid waste containing boric acid. Energy and mass balances for the vapor and liquid phases are used to describe the interaction among system components such as the vapor body, heater jacket and condenser. In order to simulate entrainment carryover in the sieve tray column and wire mesh pad, Kister's and Carpenter-Othmer's correlations are adopted, respectively. A new correlation formula is also suggested to simulate the geometric effect of the vapor body. A fuzzy heuristic controller and conventional controllers such as P (proportional), PI (proportional-integral) and PID (proportional-integral-derivative) controls are incorporated to observe their responses to a given disturbance. The simulations show good agreement with the real operation data. It is also identified that the vapor velocity or flow rate in the sieve tray column determines the system decontamination factor (DF), and that the longer the vapor body is, the less entrainment carryover occurs out of the vapor body. In addition, the wire mesh pad is identified as maintaining very high deentrainment efficiency even though the vapor velocity may show large fluctuations. With respect to system control, the fuzzy heuristic controller approaches a new steady state faster than conventional controllers. Also the fuzzy controller maintains higher DF during transients and is stronger against time delay in the control components. (Author)

  3. Systematic simulations of modified gravity: symmetron and dilaton models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo

    2012-01-01

    We study the linear and nonlinear structure formation in the dilaton and symmetron models of modified gravity using a generic parameterisation which describes a large class of scenarios using only a few parameters, such as the coupling between the scalar field and the matter, and the range of the scalar force on very large scales. For this we have modified the N-body simulation code ECOSMOG, which is a variant of RAMSES working in modified gravity scenarios, to perform a set of 110 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a large portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM template cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 . Our results show the full effect of screening on nonlinear structure formation and the associated deviation from ΛCDM. We also investigate how differences in the force mediated by the scalar field in modified gravity models lead to qualitatively different features for the nonlinear power spectrum and the halo mass function, and how varying the individual model parameters changes these observables. The differences are particularly large in the nonlinear power spectra whose shapes for f(R), dilaton and symmetron models vary greatly, and where the characteristic bump around 1 hMpc −1 of f(R) models is preserved for symmetrons, whereas an increase on much smaller scales is particular to symmetrons. No bump is present for dilatons where a flattening of the power spectrum takes place on small scales. These deviations from ΛCDM and the differences between modified gravity models, such as dilatons and symmetrons, could be tested with future surveys

  4. A sEMG model with experimentally based simulation parameters.

    Science.gov (United States)

    Wheeler, Katherine A; Shimada, Hiroshima; Kumar, Dinesh K; Arjunan, Sridhar P

    2010-01-01

    A differential, time-invariant, surface electromyogram (sEMG) model has been implemented. While it is based on existing EMG models, the novelty of this implementation is that it assigns more accurate distributions of variables to create realistic motor unit (MU) characteristics. Variables such as muscle fibre conduction velocity, jitter (the change in the interpulse interval between subsequent action potential firings) and motor unit size have been considered to follow normal distributions about an experimentally obtained mean. In addition, motor unit firing frequencies have been considered to have non-linear and type based distributions that are in accordance with experimental results. Motor unit recruitment thresholds have been considered to be related to the MU type. The model has been used to simulate single channel differential sEMG signals from voluntary, isometric contractions of the biceps brachii muscle. The model has been experimentally verified by conducting experiments on three subjects. Comparison between simulated signals and experimental recordings shows that the Root Mean Square (RMS) increases linearly with force in both cases. The simulated signals also show similar values and rates of change of RMS to the experimental signals.

  5. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichiro; Dershowitz, William

    2004-01-01

    During Heisei-15, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the MIU Underground Rock Laboratory, participation in Task 6 of the Aespoe Task Force on Modelling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU Underground Rock Laboratory support during H-15 involved development of new discrete fracture network (DFN) models for the MIU Shoba-sama Site, in the region of shaft development. Golder developed three DFN models for the site using discrete fracture network, equivalent porous medium (EPM), and nested DFN/EPM approaches. Each of these models were compared based upon criteria established for the multiple modeling project (MMP). Golder supported JNC participation in Task 6AB, 6D and 6E of the Aespoe Task Force on Modelling of Groundwater Flow and Transport during H-15. For Task 6AB, Golder implemented an updated microstructural model in GoldSim, and used this updated model to simulate the propagation of uncertainty from experimental to safety assessment time scales, for 5 m scale transport path lengths. Task 6D and 6E compared safety assessment (PA) and experimental time scale simulations in a 200 m scale discrete fracture network. For Task 6D, Golder implemented a DFN model using FracMan/PA Works, and determined the sensitivity of solute transport to a range of material property and geometric assumptions. For Task 6E, Golder carried out demonstration FracMan/PA Works transport calculations at a 1 million year time scale, to ensure that task specifications are realistic. The majority of work for Task 6E will be carried out during H-16. During H-15, Golder supported JNC's Total System Performance Assessment (TSPO) strategy by developing technologies for the analysis of precipitant concentration. These approaches were based on the GoldSim precipitant data management features, and were

  6. Using an atmospheric boundary layer model to force global ocean models

    Science.gov (United States)

    Abel, Rafael; Böning, Claus

    2014-05-01

    Current practices in the atmospheric forcing of ocean model simulations can lead to unphysical behaviours. The problem lies in the bulk formulation of the turbulent air-sea fluxes in the conjunction with a prescribed, and unresponsive, atmospheric state (as given by reanalysis products). This can have impacts both on mesoscale processes as well as on the dynamics of the large-scale circulation. First, a possible local mismatch between the given atmospheric state and evolving sea surface temperature (SST) signatures can occur, especially for mesoscale features such as frontal areas, eddies, or near the sea ice edge. Any ocean front shift or evolution of mesoscale anomalies results in excessive, unrealistic surface fluxes due to the lack of atmospheric adaptation. Second, a subtle distortion in the sensitive balance of feedback processes being critical for the thermohaline circulation. Since the bulk formulations assume an infinite atmospheric heat capacity, resulting SST anomalies are strongly damped even on basin-scales (e.g. from trends in the Atlantic meridional overturning circulation). In consequence, an important negative feedback is eliminated, rendering the system excessively susceptible to small anomalies (or errors) in the freshwater fluxes. Previous studies (Seager et al., 1995, J. Clim.) have suggested a partial forcing issue remedy that aimed for a physically more realistic determination of air-sea fluxes by allowing some (thermodynamic) adaptation of the atmospheric boundary layer to SST changes. In this study a modernized formulation of this approach (Deremble et al., 2013, Mon. Weather Rev.; 'CheapAML') is implemented in a global ocean-ice model with moderate resolution (0.5°; ORCA05). In a set of experiments we explore the solution behaviour of this forcing approach (where only the winds are prescribed, while atmospheric temperature and humidity are computed), contrasting it with the solution obtained from the classical bulk formulation with a non

  7. Modeling and simulation of normal and hemiparetic gait

    Science.gov (United States)

    Luengas, Lely A.; Camargo, Esperanza; Sanchez, Giovanni

    2015-09-01

    Gait is the collective term for the two types of bipedal locomotion, walking and running. This paper is focused on walking. The analysis of human gait is of interest to many different disciplines, including biomechanics, human-movement science, rehabilitation and medicine in general. Here we present a new model that is capable of reproducing the properties of walking, normal and pathological. The aim of this paper is to establish the biomechanical principles that underlie human walking by using Lagrange method. The constraint forces of Rayleigh dissipation function, through which to consider the effect on the tissues in the gait, are included. Depending on the value of the factor present in the Rayleigh dissipation function, both normal and pathological gait can be simulated. First of all, we apply it in the normal gait and then in the permanent hemiparetic gait. Anthropometric data of adult person are used by simulation, and it is possible to use anthropometric data for children but is necessary to consider existing table of anthropometric data. Validation of these models includes simulations of passive dynamic gait that walk on level ground. The dynamic walking approach provides a new perspective of gait analysis, focusing on the kinematics and kinetics of gait. There have been studies and simulations to show normal human gait, but few of them have focused on abnormal, especially hemiparetic gait. Quantitative comparisons of the model predictions with gait measurements show that the model can reproduce the significant characteristics of normal gait.

  8. Damping-controlled fluidelastic instability forces in multi-span tubes with loose supports

    International Nuclear Information System (INIS)

    Hassan, Marwan A.; Rogers, Robert J.; Gerber, Andrew G.

    2011-01-01

    This paper presents simulations of a loosely supported multi-span tube subjected to turbulence and fluidelastic instability forces in order to compare several time-domain fluid force models simulating the damping-controlled fluidelastic instability mechanism in tube arrays. These models include the negative damping model based on the Connors equation, fluid force coefficient-based models (Chen; Tanaka and Takahara), and two semi-analytical models (Price and Paidoussis; and Lever and Weaver). Time domain modelling challenges for each of these theories are discussed. The implemented models are validated against available experimental data. The linear simulations (without tube/support clearance) show that the Connors-equation based model exhibits the most conservative prediction of the critical flow velocity when the recommended design values for the Connors equation are used. The models are then utilized to simulate the nonlinear response of a three-span cantilever tube in a lattice bar support subjected to air crossflow. The tube is subjected to a single-phase flow passing over the spans where the flow velocity and the support clearance are varied. Special attention is paid to the tube/support interaction parameters that affect wear, such as impact forces, contact ratio, and normal work rate. As was seen for the linear cases, the reduced flow velocity at the instability threshold differs for the fluid force models considered. The investigated models do, however, exhibit similar response characteristics for the impact force, tip lift response, and work rate, except for the Connors-based model that overestimates the response and the tube/support interaction parameters for the loose support case, especially at large clearances.

  9. Understanding the requirements of self-expandable stents for heart valve replacement: Radial force, hoop force and equilibrium.

    Science.gov (United States)

    Cabrera, María Sol; Oomens, Cees W J; Baaijens, Frank P T

    2017-04-01

    A proper interpretation of the forces developed during stent crimping and deployment is of paramount importance for a better understanding of the requirements for successful heart valve replacement. The present study combines experimental and computational methods to assess the performance of a nitinol stent for tissue-engineered heart valve implantation. To validate the stent model, the mechanical response to parallel plate compression and radial crimping was evaluated experimentally. Finite element simulations showed good agreement with the experimental findings. The computational models were further used to determine the hoop force on the stent and radial force on a rigid tool during crimping and self-expansion. In addition, stent deployment against ovine and human pulmonary arteries was simulated to determine the hoop force on the stent-artery system and the equilibrium diameter for different degrees of oversizing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Low frequency temperature forcing of chemical oscillations.

    Science.gov (United States)

    Novak, Jan; Thompson, Barnaby W; Wilson, Mark C T; Taylor, Annette F; Britton, Melanie M

    2011-07-14

    The low frequency forcing of chemical oscillations by temperature is investigated experimentally in the Belousov-Zhabotinsky (BZ) reaction and in simulations of the Oregonator model with Arrhenius temperature dependence of the rate constants. Forcing with temperature leads to modulation of the chemical frequency. The number of response cycles per forcing cycle is given by the ratio of the natural frequency to the forcing frequency and phase locking is only observed in simulations when this ratio is a whole number and the forcing amplitude is small. The global temperature forcing of flow-distributed oscillations in a tubular reactor is also investigated and synchronisation is observed in the variation of band position with the external signal, reflecting the periodic modulation of chemical oscillations by temperature.

  11. Isometric shoulder muscle activation patterns for 3-D planar forces: a methodology for musculo-skeletal model validation

    NARCIS (Netherlands)

    Groot, J.H.; Rozendaal, L.A.; Meskers, C.G.M.; Arwert, H.J.

    2004-01-01

    Objective. To present an isometric method for validation of a shoulder model simulation by means of experimentally obtained electromyography and addressing all muscles active around the shoulder joints. Background. Analysis of muscle force distribution in the shoulder by means of electromyography

  12. 3D Model Optimization of Four-Facet Drill for 3D Drilling Simulation

    Directory of Open Access Journals (Sweden)

    Buranský Ivan

    2016-09-01

    Full Text Available The article is focused on optimization of four-facet drill for 3D drilling numerical modelling. For optimization, the process of reverse engineering by PowerShape software was used. The design of four-facet drill was created in NumrotoPlus software. The modified 3D model of the drill was used in the numerical analysis of cutting forces. Verification of the accuracy of 3D models for reverse engineering was implemented using the colour deviation maps. The CAD model was in the STEP format. For simulation software, 3D model in the STEP format is ideal. STEP is a solid model. Simulation software automatically splits the 3D model into finite elements. The STEP model was therefore more suitable than the STL model.

  13. Molecular models and simulations of layered materials

    International Nuclear Information System (INIS)

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.

    2008-01-01

    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites

  14. The k-ε-fP model applied to double wind turbine wakes using different actuator disk force methods

    DEFF Research Database (Denmark)

    Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan

    2015-01-01

    The newly developed k-ε-fP  eddy viscosity model is applied to double wind turbine wake configurations in a neutral atmospheric boundary layer, using a Reynolds-Averaged Navier–Stokes solver. The wind turbines are represented by actuator disks. A proposed variable actuator disk force method...... two methods overpredict it. The results of the k-ε-fP  eddy viscosity model are also compared with the original k-ε eddy viscosity model and large-eddy simulations. Compared to the large-eddy simulations-predicted velocity and power deficits, the k-ε-fP  is superior to the original k-ε model...

  15. NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN

    Directory of Open Access Journals (Sweden)

    Petr Chmátal

    2016-04-01

    Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.

  16. A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model

    CERN Document Server

    Soulaine, Cyprien; Allain, Hervé; Baudouy, Bertrand; Van Weelderen, Rob

    2015-01-01

    This paper presents a segregated algorithm to solve numerically the superfluid helium (He II) equations using the two-fluid model. In order to validate the resulting code and illustrate its potential, different simulations have been performed. First, the flow through a capillary filled with He II with a heated area on one side is simulated and results are compared to analytical solutions in both Landau and Gorter–Mellink flow regimes. Then, transient heat transfer of a forced flow of He II is investigated. Finally, some two-dimensional simulations in a porous medium model are carried out.

  17. Computational Model and Numerical Simulation for Submerged Mooring Monitoring Platform’s Dynamical Response

    Directory of Open Access Journals (Sweden)

    He Kongde

    2015-01-01

    Full Text Available Computational model and numerical simulation for submerged mooring monitoring platform were formulated aimed at the dynamical response by the action of flow force, which based on Hopkinson impact load theory, taken into account the catenoid effect of mooring cable and revised the difference of tension and tangential direction action force by equivalent modulus of elasticity. Solved the equation by hydraulics theory and structural mechanics theory of oceaneering, studied the response of buoy on flow force. The validity of model were checked and the results were in good agreement; the result show the buoy will engender biggish heave and swaying displacement, but the swaying displacement got stable quickly and the heaven displacement cause vibration for the vortex-induced action by the flow.

  18. Contact force structure and force chains in 3D sheared granular systems

    Science.gov (United States)

    Mair, Karen; Jettestuen, Espen; Abe, Steffen

    2010-05-01

    Faults often exhibit accumulations of granular debris, ground up to create a layer of rock flour or fault gouge separating the rigid fault walls. Numerical simulations and laboratory experiments of sheared granular materials, suggest that applied loads are preferentially transmitted across such systems by transient force networks that carry enhanced forces. The characterisation of such features is important since their nature and persistence almost certainly influence the macroscopic mechanical stability of these systems and potentially that of natural faults. 3D numerical simulations of granular shear are a valuable investigation tool since they allow us to track individual particle motions, contact forces and their evolution during applied shear, that are difficult to view directly in laboratory experiments or natural fault zones. In characterising contact force distributions, it is important to use global structure measures that allow meaningful comparisons of granular systems having e.g. different grain size distributions, as may be expected at different stages of a fault's evolution. We therefore use a series of simple measures to characterise the structure, such as distributions and correlations of contact forces that can be mapped onto a force network percolation problem as recently proposed by Ostojic and coworkers for 2D granular systems. This allows the use of measures from percolation theory to both define and characterise the force networks. We demonstrate the application of this method to 3D simulations of a sheared granular material. Importantly, we then compare our measure of the contact force structure with macroscopic frictional behaviour measured at the boundaries of our model to determine the influence of the force networks on macroscopic mechanical stability.

  19. Simulated CONUS Flash Flood Climatologies from Distributed Hydrologic Models

    Science.gov (United States)

    Flamig, Z.; Gourley, J. J.; Vergara, H. J.; Kirstetter, P. E.; Hong, Y.

    2016-12-01

    This study will describe a CONUS flash flood climatology created over the period from 2002 through 2011. The MRMS reanalysis precipitation dataset was used as forcing into the Ensemble Framework For Flash Flood Forecasting (EF5). This high resolution 1-sq km 5-minute dataset is ideal for simulating flash floods with a distributed hydrologic model. EF5 features multiple water balance components including SAC-SMA, CREST, and a hydrophobic model all coupled with kinematic wave routing. The EF5/SAC-SMA and EF5/CREST water balance schemes were used for the creation of dual flash flood climatologies based on the differing water balance principles. For the period from 2002 through 2011 the daily maximum streamflow, unit streamflow, and time of peak streamflow was stored along with the minimum soil moisture. These variables are used to describe the states of the soils right before a flash flood event and the peak streamflow that was simulated during the flash flood event. The results will be shown, compared and contrasted. The resulting model simulations will be verified on basins less than 1,000-sq km with USGS gauges to ensure the distributed hydrologic models are reliable. The results will also be compared spatially to Storm Data flash flood event observations to judge the degree of agreement between the simulated climatologies and observations.

  20. Static and Dynamic Performance Simulation of Direct-Acting Force Motor Valve

    Science.gov (United States)

    Ye, Xinghai; Ding, Jianjun; Zheng, Gang; Jiang, Kunpeng; Chen, Dongdong

    2017-07-01

    This work focuses on static and dynamic characteristics of direct-acting force motor valve. First, we analyzed the structure features and operating principle of the Mitsubishi-Hitachi force motor valve (FMV) and the operating principle of its internal permanent-magnet moving-coil force motor magnetic circuit, determined the transfer function of the FMV force motor system, and established a mathematical model for the system. Secondly, we established a static performance analysis model using the AMESIM software and utilized the model in combination with experimental results to analyze the effects of electro-hydraulic servo valve structural parameters on static characteristics. Lastly, we deduced the trajectory equation of the system, established the relationship between dynamic characteristic indexes and structural parameters, and analyzed the effects of different parameter values on the dynamic characteristics of the system. This research can provide a theoretical guidance for designing and manufacturing the FMV body.

  1. On Improving 4-km Mesoscale Model Simulations

    Science.gov (United States)

    Deng, Aijun; Stauffer, David R.

    2006-03-01

    A previous study showed that use of analysis-nudging four-dimensional data assimilation (FDDA) and improved physics in the fifth-generation Pennsylvania State University National Center for Atmospheric Research Mesoscale Model (MM5) produced the best overall performance on a 12-km-domain simulation, based on the 18 19 September 1983 Cross-Appalachian Tracer Experiment (CAPTEX) case. However, reducing the simulated grid length to 4 km had detrimental effects. The primary cause was likely the explicit representation of convection accompanying a cold-frontal system. Because no convective parameterization scheme (CPS) was used, the convective updrafts were forced on coarser-than-realistic scales, and the rainfall and the atmospheric response to the convection were too strong. The evaporative cooling and downdrafts were too vigorous, causing widespread disruption of the low-level winds and spurious advection of the simulated tracer. In this study, a series of experiments was designed to address this general problem involving 4-km model precipitation and gridpoint storms and associated model sensitivities to the use of FDDA, planetary boundary layer (PBL) turbulence physics, grid-explicit microphysics, a CPS, and enhanced horizontal diffusion. Some of the conclusions include the following: 1) Enhanced parameterized vertical mixing in the turbulent kinetic energy (TKE) turbulence scheme has shown marked improvements in the simulated fields. 2) Use of a CPS on the 4-km grid improved the precipitation and low-level wind results. 3) Use of the Hong and Pan Medium-Range Forecast PBL scheme showed larger model errors within the PBL and a clear tendency to predict much deeper PBL heights than the TKE scheme. 4) Combining observation-nudging FDDA with a CPS produced the best overall simulations. 5) Finer horizontal resolution does not always produce better simulations, especially in convectively unstable environments, and a new CPS suitable for 4-km resolution is needed. 6

  2. Intraseasonal Variability of the Indian Monsoon as Simulated by a Global Model

    Science.gov (United States)

    Joshi, Sneh; Kar, S. C.

    2018-01-01

    This study uses the global forecast system (GFS) model at T126 horizontal resolution to carry out seasonal simulations with prescribed sea-surface temperatures. Main objectives of the study are to evaluate the simulated Indian monsoon variability in intraseasonal timescales. The GFS model has been integrated for 29 monsoon seasons with 15 member ensembles forced with observed sea-surface temperatures (SSTs) and additional 16-member ensemble runs have been carried out using climatological SSTs. Northward propagation of intraseasonal rainfall anomalies over the Indian region from the model simulations has been examined. It is found that the model is unable to simulate the observed moisture pattern when the active zone of convection is over central India. However, the model simulates the observed pattern of specific humidity during the life cycle of northward propagation on day - 10 and day + 10 of maximum convection over central India. The space-time spectral analysis of the simulated equatorial waves shows that the ensemble members have varying amount of power in each band of wavenumbers and frequencies. However, variations among ensemble members are more in the antisymmetric component of westward moving waves and maximum difference in power is seen in the 8-20 day mode among ensemble members.

  3. Engineering flow states with localized forcing in a thin Marangoni-driven inclined film.

    Science.gov (United States)

    Levy, Rachel; Rosenthal, Stephen; Wong, Jeffrey

    2010-11-01

    Numerical simulations of lubrication models provide clues for experimentalists about the development of wave structures in thin liquid films. We analyze numerical simulations of a lubrication model for an inclined thin liquid film modified by Marangoni forces due to a thermal gradient and additional localized forcing heating the substrate. Numerical results can be explained through connections to theory for hyperbolic conservation laws predicting wave fronts from Marangoni-driven thin films without forcing. We demonstrate how a variety of forcing profiles, such as gaussian, rectangular, and triangular, affect the formation of downstream transient structures, including an N wave not commonly discussed in the context of thin films. Simulations employing a controlled approximation of a compressive-undercompressive wave pair demonstrate possibilities for applications of localized forcing as microfluidic valve. In the simulations, localized forcing provides a control parameter that can be used to determine mass flux and film profiles.

  4. Cross-flow turbines: physical and numerical model studies towards improved array simulations

    Science.gov (United States)

    Wosnik, M.; Bachant, P.

    2015-12-01

    Cross-flow, or vertical-axis turbines, show potential in marine hydrokinetic (MHK) and wind energy applications. As turbine designs mature, the research focus is shifting from individual devices towards improving turbine array layouts for maximizing overall power output, i.e., minimizing wake interference for axial-flow turbines, or taking advantage of constructive wake interaction for cross-flow turbines. Numerical simulations are generally better suited to explore the turbine array design parameter space, as physical model studies of large arrays at large model scale would be expensive. However, since the computing power available today is not sufficient to conduct simulations of the flow in and around large arrays of turbines with fully resolved turbine geometries, the turbines' interaction with the energy resource needs to be parameterized, or modeled. Most models in use today, e.g. actuator disk, are not able to predict the unique wake structure generated by cross-flow turbines. Experiments were carried out using a high-resolution turbine test bed in a large cross-section tow tank, designed to achieve sufficiently high Reynolds numbers for the results to be Reynolds number independent with respect to turbine performance and wake statistics, such that they can be reliably extrapolated to full scale and used for model validation. To improve parameterization in array simulations, an actuator line model (ALM) was developed to provide a computationally feasible method for simulating full turbine arrays inside Navier--Stokes models. The ALM predicts turbine loading with the blade element method combined with sub-models for dynamic stall and flow curvature. The open-source software is written as an extension library for the OpenFOAM CFD package, which allows the ALM body force to be applied to their standard RANS and LES solvers. Turbine forcing is also applied to volume of fluid (VOF) models, e.g., for predicting free surface effects on submerged MHK devices. An

  5. Mechanical Properties of Boehmite Evaluated by Atomic Force Microscopy Experiments and Molecular Dynamic Finite Element Simulations

    International Nuclear Information System (INIS)

    Fankhanel, J.; Daum, B.; Kempe, A.; Rolfes, R.; Silbernagl, D.; Khorasani, M.Gh.Z.; Sturm, H.; Sturm, H.

    2016-01-01

    Boehmite nanoparticles show great potential in improving mechanical properties of fiber reinforced polymers. In order to predict the properties of nanocomposites, knowledge about the material parameters of the constituent phases, including the boehmite particles, is crucial. In this study, the mechanical behavior of boehmite is investigated using Atomic Force Microscopy (AFM) experiments and Molecular Dynamic Finite Element Method (MDFEM) simulations. Young’s modulus of the perfect crystalline boehmite nanoparticles is derived from numerical AFM simulations. Results of AFM experiments on boehmite nanoparticles deviate significantly. Possible causes are identified by experiments on complementary types of boehmite, that is, geological and hydrothermally synthesized samples, and further simulations of imperfect crystals and combined boehmite/epoxy models. Under certain circumstances, the mechanical behavior of boehmite was found to be dominated by inelastic effects that are discussed in detail in the present work. The studies are substantiated with accompanying X-ray diffraction and Raman experiments.

  6. Dynamic simulation of sustainable farm development scenarios using cognitive modeling

    Directory of Open Access Journals (Sweden)

    Tuzhyk Kateryna

    2017-03-01

    Full Text Available Dynamic simulation of sustainable farm development scenarios using cognitive modeling. The paper presents a dynamic simulation system of sustainable development scenarios on farms using cognitive modeling. The system incorporates relevant variables which affect the sustainable development of farms. Its user provides answers to strategic issues connected with the level of farm sustainability over a long-term perspective of dynamic development. The work contains a description of the model structure as well as the results of simulations carried out on 16 farms in northern Ukraine. The results show that the process of sustainability is based mainly on the potential for innovation in agricultural production and biodiversity. The user is able to simulate various scenarios for the sustainable development of a farm and visualize the influence of factors on the economic and social situation, as well as on environmental aspects. Upon carrying out a series of simulations, it was determined that the development of farms characterized by sustainable development is based on additional profit, which serves as the main motivation for transforming a conventional farm into a sustainable one. Nevertheless, additional profit is not the only driving force in the system of sustainable development. The standard of living, market condition, and legal regulations as well as government support also play a significant motivational role.

  7. A regional model simulation of the 1991 severe precipitation event over the Yangtze-Huai River Valley. Part 2: Model bias

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Wang, W.C.

    2000-01-01

    This is the second part of a study investigating the 1991 severe precipitation event over the Uangtze-Huai River valley (YHRV) in China using both observations and regional model simulations. While Part 1 reported on the Mei-yu front and its association with large-scale circulation, this study documents the biases associated with the treatment of the lateral boundary in the regional model. Two aspects of the biases were studied: the driving field, which provides large-scale boundary forcing, and the coupling scheme, which specified how the forcing is adopted by the model. The former bias is defined as model uncertainty because it is not related to the model itself, while the latter bias (as well as those biases attributed to other sources) is referred to as model error. These two aspects were examined by analyzing the regional model simulations of the 1991 summer severe precipitation event over YHRV using different driving fields (ECMWF-TOGA objective analysis, ECMWF reanalysis, and NCEP-NCAR reanalysis) and coupling scheme (distribution function of the nudging coefficient and width of the buffer zone). Spectral analysis was also used to study the frequency distribution of the bias.

  8. A dynamic globalization model for large eddy simulation of complex turbulent flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hae Cheon; Park, No Ma; Kim, Jin Seok [Seoul National Univ., Seoul (Korea, Republic of)

    2005-07-01

    A dynamic subgrid-scale model is proposed for large eddy simulation of turbulent flows in complex geometry. The eddy viscosity model by Vreman [Phys. Fluids, 16, 3670 (2004)] is considered as a base model. A priori tests with the original Vreman model show that it predicts the correct profile of subgrid-scale dissipation in turbulent channel flow but the optimal model coefficient is far from universal. Dynamic procedures of determining the model coefficient are proposed based on the 'global equilibrium' between the subgrid-scale dissipation and viscous dissipation. An important feature of the proposed procedures is that the model coefficient determined is globally constant in space but varies only in time. Large eddy simulations with the present dynamic model are conducted for forced isotropic turbulence, turbulent channel flow and flow over a sphere, showing excellent agreements with previous results.

  9. WRF-Chem Model Simulations of Arizona Dust Storms

    Science.gov (United States)

    Mohebbi, A.; Chang, H. I.; Hondula, D.

    2017-12-01

    The online Weather Research and Forecasting model with coupled chemistry module (WRF-Chem) is applied to simulate the transport, deposition and emission of the dust aerosols in an intense dust outbreak event that took place on July 5th, 2011 over Arizona. Goddard Chemistry Aerosol Radiation and Transport (GOCART), Air Force Weather Agency (AFWA), and University of Cologne (UoC) parameterization schemes for dust emission were evaluated. The model was found to simulate well the synoptic meteorological conditions also widely documented in previous studies. The chemistry module performance in reproducing the atmospheric desert dust load was evaluated using the horizontal field of the Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectro (MODIS) radiometer Terra/Aqua and Aerosol Robotic Network (AERONET) satellites employing standard Dark Target (DT) and Deep Blue (DB) algorithms. To assess the temporal variability of the dust storm, Particulate Matter mass concentration data (PM10 and PM2.5) from Arizona Department of Environmental Quality (AZDEQ) ground-based air quality stations were used. The promising performance of WRF-Chem indicate that the model is capable of simulating the right timing and loading of a dust event in the planetary-boundary-layer (PBL) which can be used to forecast approaching severe dust events and to communicate an effective early warning.

  10. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  11. NASA/Air Force Cost Model: NAFCOM

    Science.gov (United States)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  12. Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator.

    Science.gov (United States)

    Liu, Aiqin; Jennings, Louise M; Ingham, Eileen; Fisher, John

    2015-09-18

    The successful development of early-stage cartilage and meniscus repair interventions in the knee requires biomechanical and biotribological understanding of the design of the therapeutic interventions and their tribological function in the natural joint. The aim of this study was to develop and validate a porcine knee model using a whole joint knee simulator for investigation of the tribological function and biomechanical properties of the natural knee, which could then be used to pre-clinically assess the tribological performance of cartilage and meniscal repair interventions prior to in vivo studies. The tribological performance of standard artificial bearings in terms of anterior-posterior (A/P) shear force was determined in a newly developed six degrees of freedom tribological joint simulator. The porcine knee model was then developed and the tribological properties in terms of shear force measurements were determined for the first time for three levels of biomechanical constraints including A/P constrained, spring force semi-constrained and A/P unconstrained conditions. The shear force measurements showed higher values under the A/P constrained condition (predominantly sliding motion) compared to the A/P unconstrained condition (predominantly rolling motion). This indicated that the shear force simulation model was able to differentiate between tribological behaviours when the femoral and tibial bearing was constrained to slide or/and roll. Therefore, this porcine knee model showed the potential capability to investigate the effect of knee structural, biomechanical and kinematic changes, as well as different cartilage substitution therapies on the tribological function of natural knee joints. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Simulating Dynamic Stall Effects for Vertical Axis Wind Turbines Applying a Double Multiple Streamtube Model

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk

    2015-02-01

    Full Text Available The complex unsteady aerodynamics of vertical axis wind turbines (VAWT poses significant challenges to the simulation tools. Dynamic stall is one of the phenomena associated with the unsteady conditions for VAWTs, and it is in the focus of the study. Two dynamic stall models are compared: the widely-used Gormont model and a Leishman–Beddoes-type model. The models are included in a double multiple streamtube model. The effects of flow curvature and flow expansion are also considered. The model results are assessed against the measured data on a Darrieus turbine with curved blades. To study the dynamic stall effects, the comparison of force coefficients between the simulations and experiments is done at low tip speed ratios. Simulations show that the Leishman–Beddoes model outperforms the Gormont model for all tested conditions.

  14. Stochastic modeling of lift and drag dynamics to obtain aerodynamic forces with local dynamics on rotor blade under unsteady wind inflow

    International Nuclear Information System (INIS)

    Luhur, M.R.

    2014-01-01

    This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes. (author)

  15. Stochastic Modeling of Lift and Drag Dynamics to Obtain Aerodynamic Forces with Local Dynamics on Rotor Blade under Unsteady Wind Inflow

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan Luhur

    2014-01-01

    Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes

  16. Numerical simulation of lava flow using a GPU SPH model

    Directory of Open Access Journals (Sweden)

    Eugenio Rustico

    2011-12-01

    Full Text Available A smoothed particle hydrodynamics (SPH method for lava-flow modeling was implemented on a graphical processing unit (GPU using the compute unified device architecture (CUDA developed by NVIDIA. This resulted in speed-ups of up to two orders of magnitude. The three-dimensional model can simulate lava flow on a real topography with free-surface, non-Newtonian fluids, and with phase change. The entire SPH code has three main components, neighbor list construction, force computation, and integration of the equation of motion, and it is computed on the GPU, fully exploiting the computational power. The simulation speed achieved is one to two orders of magnitude faster than the equivalent central processing unit (CPU code. This GPU implementation of SPH allows high resolution SPH modeling in hours and days, rather than in weeks and months, on inexpensive and readily available hardware.

  17. Comparison of hybrid spectral-decomposition artificial neural network models for understanding climatic forcing of groundwater levels

    Science.gov (United States)

    Abrokwah, K.; O'Reilly, A. M.

    2017-12-01

    Groundwater is an important resource that is extracted every day because of its invaluable use for domestic, industrial and agricultural purposes. The need for sustaining groundwater resources is clearly indicated by declining water levels and has led to modeling and forecasting accurate groundwater levels. In this study, spectral decomposition of climatic forcing time series was used to develop hybrid wavelet analysis (WA) and moving window average (MWA) artificial neural network (ANN) models. These techniques are explored by modeling historical groundwater levels in order to provide understanding of potential causes of the observed groundwater-level fluctuations. Selection of the appropriate decomposition level for WA and window size for MWA helps in understanding the important time scales of climatic forcing, such as rainfall, that influence water levels. Discrete wavelet transform (DWT) is used to decompose the input time-series data into various levels of approximate and details wavelet coefficients, whilst MWA acts as a low-pass signal-filtering technique for removing high-frequency signals from the input data. The variables used to develop and validate the models were daily average rainfall measurements from five National Atmospheric and Oceanic Administration (NOAA) weather stations and daily water-level measurements from two wells recorded from 1978 to 2008 in central Florida, USA. Using different decomposition levels and different window sizes, several WA-ANN and MWA-ANN models for simulating the water levels were created and their relative performances compared against each other. The WA-ANN models performed better than the corresponding MWA-ANN models; also higher decomposition levels of the input signal by the DWT gave the best results. The results obtained show the applicability and feasibility of hybrid WA-ANN and MWA-ANN models for simulating daily water levels using only climatic forcing time series as model inputs.

  18. Gothic simulation of single-channel fuel heatup following a loss of forced flow

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X-Q; Tahir, A. [NSS, Dept. of Thermal Hydraulics Analysis, Toronto, Ontario (Canada); Parlatan, Y. [Ontario Power Generation, NSATD, Pickering, Ontario (Canada); Kwee, M. [Bruce Power, NSASD, Toronto, Ontario (Canada)

    2011-07-01

    GOTHIC v7.2 was used to develop a computer model for the simulation of 28- and 37-element fuel heat-up at a loss of forced flow. The model has accounted for the non-uniformity of both axial and radial power distributions along the fuel channel for a typical CANDU reactor. In addition, the model has also accounted for the fuel rods, end-fittings, feeders and headers. Experimental test conditions for both 28- and 37-element bundles at either low or high powers were used for model validation. GOTHIC predictions of the rod and/or pressure-tube temperatures at a variety of test locations were compared with the corresponding experimental measurements. It is found that the numerical results agree well with the experimental measurements for most of the test locations. Results have also shown that the channel venting time is sensitive to the initial temperature distribution in the feeders and headers. An imposed temperature asymmetry at the beginning will cause the channel flow to vent earlier. (author)

  19. An Ensemble Three-Dimensional Constrained Variational Analysis Method to Derive Large-Scale Forcing Data for Single-Column Models

    Science.gov (United States)

    Tang, Shuaiqi

    Atmospheric vertical velocities and advective tendencies are essential as large-scale forcing data to drive single-column models (SCM), cloud-resolving models (CRM) and large-eddy simulations (LES). They cannot be directly measured or easily calculated with great accuracy from field measurements. In the Atmospheric Radiation Measurement (ARM) program, a constrained variational algorithm (1DCVA) has been used to derive large-scale forcing data over a sounding network domain with the aid of flux measurements at the surface and top of the atmosphere (TOA). We extend the 1DCVA algorithm into three dimensions (3DCVA) along with other improvements to calculate gridded large-scale forcing data. We also introduce an ensemble framework using different background data, error covariance matrices and constraint variables to quantify the uncertainties of the large-scale forcing data. The results of sensitivity study show that the derived forcing data and SCM simulated clouds are more sensitive to the background data than to the error covariance matrices and constraint variables, while horizontal moisture advection has relatively large sensitivities to the precipitation, the dominate constraint variable. Using a mid-latitude cyclone case study in March 3rd, 2000 at the ARM Southern Great Plains (SGP) site, we investigate the spatial distribution of diabatic heating sources (Q1) and moisture sinks (Q2), and show that they are consistent with the satellite clouds and intuitive structure of the mid-latitude cyclone. We also evaluate the Q1 and Q2 in analysis/reanalysis, finding that the regional analysis/reanalysis all tend to underestimate the sub-grid scale upward transport of moist static energy in the lower troposphere. With the uncertainties from large-scale forcing data and observation specified, we compare SCM results and observations and find that models have large biases on cloud properties which could not be fully explained by the uncertainty from the large-scale forcing

  20. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows.

    Science.gov (United States)

    Li, Q; Luo, K H; Li, X J

    2012-07-01

    The pseudopotential lattice Boltzmann (LB) model is a widely used multiphase model in the LB community. In this model, an interaction force, which is usually implemented via a forcing scheme, is employed to mimic the molecular interactions that cause phase segregation. The forcing scheme is therefore expected to play an important role in the pseudoepotential LB model. In this paper, we aim to address some key issues about forcing schemes in the pseudopotential LB model. First, theoretical and numerical analyses will be made for Shan-Chen's forcing scheme [Shan and Chen, Phys. Rev. E 47, 1815 (1993)] and the exact-difference-method forcing scheme [Kupershtokh et al., Comput. Math. Appl. 58, 965 (2009)]. The nature of these two schemes and their recovered macroscopic equations will be shown. Second, through a theoretical analysis, we will reveal the physics behind the phenomenon that different forcing schemes exhibit different performances in the pseudopotential LB model. Moreover, based on the analysis, we will present an improved forcing scheme and numerically demonstrate that the improved scheme can be treated as an alternative approach to achieving thermodynamic consistency in the pseudopotential LB model.

  1. Productivity simulation model for optimization of maritime container terminals

    Directory of Open Access Journals (Sweden)

    Elen TWRDY

    2009-01-01

    Full Text Available This article describes a proposed productivity simulation model enabling container terminal operators to find optimization possibilities. A research of more than forty terminals has been done, in order to provide a helping tool for maritime container terminals. By applying an adequate simulation model, it is possible to measure and increase the productivity in all subsystem of the maritime container terminal. Management of a maritime container terminal includes a vast number of different financial and operational decisions. Financial decisions are often in a direct connection with investments in infrastructure and handling equipment. Such investments are very expensive. Therefore, they must give back the invested money as soon as possible. On the other hand, some terminals are limited by the physical extension and are forced to increase annual throughput only with sophisticated equipment on the berth side and on the yard as well. Considering all these important facts in container and shipping industry, the proposed simulation model gives a helping tool for checking the productivity and its time variation and monitoring competitiveness of a certain maritime terminal with terminals from the same group.

  2. Two-Polarisation Physical Model of Bowed Strings with Nonlinear Contact and Friction Forces, and Application to Gesture-Based Sound Synthesis

    Directory of Open Access Journals (Sweden)

    Charlotte Desvages

    2016-05-01

    Full Text Available Recent bowed string sound synthesis has relied on physical modelling techniques; the achievable realism and flexibility of gestural control are appealing, and the heavier computational cost becomes less significant as technology improves. A bowed string sound synthesis algorithm is designed, by simulating two-polarisation string motion, discretising the partial differential equations governing the string’s behaviour with the finite difference method. A globally energy balanced scheme is used, as a guarantee of numerical stability under highly nonlinear conditions. In one polarisation, a nonlinear contact model is used for the normal forces exerted by the dynamic bow hair, left hand fingers, and fingerboard. In the other polarisation, a force-velocity friction curve is used for the resulting tangential forces. The scheme update requires the solution of two nonlinear vector equations. The dynamic input parameters allow for simulating a wide range of gestures; some typical bow and left hand gestures are presented, along with synthetic sound and video demonstrations.

  3. Forced-convection boiling tests performed in parallel simulated LMR fuel assemblies

    International Nuclear Information System (INIS)

    Rose, S.D.; Carbajo, J.J.; Levin, A.E.; Lloyd, D.B.; Montgomery, B.H.; Wantland, J.L.

    1985-01-01

    Forced-convection tests have been carried out using parallel simulated Liquid Metal Reactor fuel assemblies in an engineering-scale sodium loop, the Thermal-Hydraulic Out-of-Reactor Safety facility. The tests, performed under single- and two-phase conditions, have shown that for low forced-convection flow there is significant flow augmentation by thermal convection, an important phenomenon under degraded shutdown heat removal conditions in an LMR. The power and flows required for boiling and dryout to occur are much higher than decay heat levels. The experimental evidence supports analytical results that heat removal from an LMR is possible with a degraded shutdown heat removal system

  4. Eulerian-Eulerian two-phase numerical simulation of nanofluid laminar forced convection in a microchannel

    International Nuclear Information System (INIS)

    Kalteh, Mohammad; Abbassi, Abbas; Saffar-Avval, Majid; Harting, Jens

    2011-01-01

    In this paper, laminar forced convection heat transfer of a copper-water nanofluid inside an isothermally heated microchannel is studied numerically. An Eulerian two-fluid model is considered to simulate the nanofluid flow inside the microchannel and the governing mass, momentum and energy equations for both phases are solved using the finite volume method. For the first time, the detailed study of the relative velocity and temperature of the phases are presented and it has been observed that the relative velocity and temperature between the phases is very small and negligible and the nanoparticle concentration distribution is uniform. However, the two-phase modeling results show higher heat transfer enhancement in comparison to the homogeneous single-phase model. Also, the heat transfer enhancement increases with increase in Reynolds number and nanoparticle volume concentration as well as with decrease in the nanoparticle diameter, while the pressure drop increases only slightly.

  5. Force-Induced Unravelling of DNA Origami.

    Science.gov (United States)

    Engel, Megan C; Smith, David M; Jobst, Markus A; Sajfutdinow, Martin; Liedl, Tim; Romano, Flavio; Rovigatti, Lorenzo; Louis, Ard A; Doye, Jonathan P K

    2018-05-31

    The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently-proposed origami biosensor, whose function takes advantage of origami behaviour under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inwards for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces; and what design principles can be applied to enhance stability.

  6. Mechanical response and buckling of a polymer simulation model of the cell nucleus

    Science.gov (United States)

    Banigan, Edward; Stephens, Andrew; Marko, John

    The cell nucleus must robustly resist extra- and intracellular forces to maintain genome architecture. Micromanipulation experiments measuring nuclear mechanical response reveal that the nucleus has two force response regimes: a linear short-extension response due to the chromatin interior and a stiffer long-extension response from lamin A, comprising the intermediate filament protein shell. To explain these results, we developed a quantitative simulation model with realistic parameters for chromatin and the lamina. Our model predicts that crosslinking between chromatin and the lamina is essential for responding to small strains and that changes to the interior topological organization can alter the mechanical response of the whole nucleus. Thus, chromatin polymer elasticity, not osmotic pressure, is the dominant regulator of this force response. Our model reveals a novel buckling transition for polymer shells: as force increases, the shell buckles transverse to the applied force. This transition, which arises from topological constrains in the lamina, can be mitigated by tuning the properties of the chromatin interior. Thus, we find that the genome is a resistive mechanical element that can be tuned by its organization and connectivity to the lamina.

  7. Heavy truck modeling for fuel consumption. Simulations and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, T.

    2001-12-01

    Fuel consumption for heavy trucks depends on many factors like roads, weather, and driver behavior that are hard for a manufacturer to influence. However, one design possibility is the power train configuration. Here a new simulation program for heavy trucks is created to find the configuration of the power train that gives the lowest fuel consumption for each transport task. For efficient simulations the model uses production code for speed and gear control, and it uses exchangeable data sets to allow simulation of the whole production range of engine types, on recorded road profiles from all over the world. Combined with a graphical user interface this application is called STARS (Scania Truck And Road Simulation). The forces of rolling resistance and air resistance in the model are validated through an experiment where the propeller shaft torque of a heavy truck is measured. It is found that the coefficient of rolling resistance is strongly dependent on tire temperature, not only on vehicle speed as expected. This led to the development of a new model for rolling resistance. The model includes the dynamic behavior of the tires and relates rolling resistance to tire temperature and vehicle speed. In another experiment the fuel consumption of a test truck in highway driving is measured. The altitude of the road is recorded with a barometer and used in the corresponding simulations. Despite of the limited accuracy of this equipment the simulation program manage to predict a level of fuel consumption only 2% lower than the real measurements. It is concluded that STARS is a good tool for predicting fuel consumption for trucks in highway driving and for comparing different power train configurations.

  8. Effects of forcing time scale on the simulated turbulent flows and turbulent collision statistics of inertial particles

    International Nuclear Information System (INIS)

    Rosa, B.; Parishani, H.; Ayala, O.; Wang, L.-P.

    2015-01-01

    In this paper, we study systematically the effects of forcing time scale in the large-scale stochastic forcing scheme of Eswaran and Pope [“An examination of forcing in direct numerical simulations of turbulence,” Comput. Fluids 16, 257 (1988)] on the simulated flow structures and statistics of forced turbulence. Using direct numerical simulations, we find that the forcing time scale affects the flow dissipation rate and flow Reynolds number. Other flow statistics can be predicted using the altered flow dissipation rate and flow Reynolds number, except when the forcing time scale is made unrealistically large to yield a Taylor microscale flow Reynolds number of 30 and less. We then study the effects of forcing time scale on the kinematic collision statistics of inertial particles. We show that the radial distribution function and the radial relative velocity may depend on the forcing time scale when it becomes comparable to the eddy turnover time. This dependence, however, can be largely explained in terms of altered flow Reynolds number and the changing range of flow length scales present in the turbulent flow. We argue that removing this dependence is important when studying the Reynolds number dependence of the turbulent collision statistics. The results are also compared to those based on a deterministic forcing scheme to better understand the role of large-scale forcing, relative to that of the small-scale turbulence, on turbulent collision of inertial particles. To further elucidate the correlation between the altered flow structures and dynamics of inertial particles, a conditional analysis has been performed, showing that the regions of higher collision rate of inertial particles are well correlated with the regions of lower vorticity. Regions of higher concentration of pairs at contact are found to be highly correlated with the region of high energy dissipation rate

  9. Assessment of RANS and LES Turbulence Modeling for Buoyancy-Aided/Opposed Forced and Mixed Convection

    Science.gov (United States)

    Clifford, Corey; Kimber, Mark

    2017-11-01

    Over the last 30 years, an industry-wide shift within the nuclear community has led to increased utilization of computational fluid dynamics (CFD) to supplement nuclear reactor safety analyses. One such area that is of particular interest to the nuclear community, specifically to those performing loss-of-flow accident (LOFA) analyses for next-generation very-high temperature reactors (VHTR), is the capacity of current computational models to predict heat transfer across a wide range of buoyancy conditions. In the present investigation, a critical evaluation of Reynolds-averaged Navier-Stokes (RANS) and large-eddy simulation (LES) turbulence modeling techniques is conducted based on CFD validation data collected from the Rotatable Buoyancy Tunnel (RoBuT) at Utah State University. Four different experimental flow conditions are investigated: (1) buoyancy-aided forced convection; (2) buoyancy-opposed forced convection; (3) buoyancy-aided mixed convection; (4) buoyancy-opposed mixed convection. Overall, good agreement is found for both forced convection-dominated scenarios, but an overly-diffusive prediction of the normal Reynolds stress is observed for the RANS-based turbulence models. Low-Reynolds number RANS models perform adequately for mixed convection, while higher-order RANS approaches underestimate the influence of buoyancy on the production of turbulence.

  10. Biocellion: accelerating computer simulation of multicellular biological system models.

    Science.gov (United States)

    Kang, Seunghwa; Kahan, Simon; McDermott, Jason; Flann, Nicholas; Shmulevich, Ilya

    2014-11-01

    Biological system behaviors are often the outcome of complex interactions among a large number of cells and their biotic and abiotic environment. Computational biologists attempt to understand, predict and manipulate biological system behavior through mathematical modeling and computer simulation. Discrete agent-based modeling (in combination with high-resolution grids to model the extracellular environment) is a popular approach for building biological system models. However, the computational complexity of this approach forces computational biologists to resort to coarser resolution approaches to simulate large biological systems. High-performance parallel computers have the potential to address the computing challenge, but writing efficient software for parallel computers is difficult and time-consuming. We have developed Biocellion, a high-performance software framework, to solve this computing challenge using parallel computers. To support a wide range of multicellular biological system models, Biocellion asks users to provide their model specifics by filling the function body of pre-defined model routines. Using Biocellion, modelers without parallel computing expertise can efficiently exploit parallel computers with less effort than writing sequential programs from scratch. We simulate cell sorting, microbial patterning and a bacterial system in soil aggregate as case studies. Biocellion runs on x86 compatible systems with the 64 bit Linux operating system and is freely available for academic use. Visit http://biocellion.com for additional information. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Study of hydrogen-molecule guests in type II clathrate hydrates using a force-matched potential model parameterised from ab initio molecular dynamics

    Science.gov (United States)

    Burnham, Christian J.; Futera, Zdenek; English, Niall J.

    2018-03-01

    The force-matching method has been applied to parameterise an empirical potential model for water-water and water-hydrogen intermolecular interactions for use in clathrate-hydrate simulations containing hydrogen guest molecules. The underlying reference simulations constituted ab initio molecular dynamics (AIMD) of clathrate hydrates with various occupations of hydrogen-molecule guests. It is shown that the resultant model is able to reproduce AIMD-derived free-energy curves for the movement of a tagged hydrogen molecule between the water cages that make up the clathrate, thus giving us confidence in the model. Furthermore, with the aid of an umbrella-sampling algorithm, we calculate barrier heights for the force-matched model, yielding the free-energy barrier for a tagged molecule to move between cages. The barrier heights are reasonably large, being on the order of 30 kJ/mol, and are consistent with our previous studies with empirical models [C. J. Burnham and N. J. English, J. Phys. Chem. C 120, 16561 (2016) and C. J. Burnham et al., Phys. Chem. Chem. Phys. 19, 717 (2017)]. Our results are in opposition to the literature, which claims that this system may have very low barrier heights. We also compare results to that using the more ad hoc empirical model of Alavi et al. [J. Chem. Phys. 123, 024507 (2005)] and find that this model does very well when judged against the force-matched and ab initio simulation data.

  12. Enhanced oil recovery by nanoparticles injection: Modeling and simulation

    KAUST Repository

    El-Amin, Mohamed; Sun, Shuyu; Salama, Amgad

    2013-01-01

    In the present paper, a mathematical model and numerical simulation to describe the nanoparticles-water suspension imbibes into a water-oil two-phase flow in a porous medium is introduced. We extend the model to include the negative capillary pressure and mixed relative permeabilities correlations to fit with the mixed-wet system. Also, buoyancy and capillary forces as well as Brownian diffusion are considered. Throughout this investigation, we monitor the changing of the fluids and solid properties due to addition of the nanoparticles and check for possible enhancement of the oil recovery process using numerical experiments.

  13. Sensitivity of electrospray molecular dynamics simulations to long-range Coulomb interaction models.

    Science.gov (United States)

    Mehta, Neil A; Levin, Deborah A

    2018-03-01

    Molecular dynamics (MD) electrospray simulations of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF_{4}) ion liquid were performed with the goal of evaluating the influence of long-range Coulomb models on ion emission characteristics. The direct Coulomb (DC), shifted force Coulomb sum (SFCS), and particle-particle particle-mesh (PPPM) long-range Coulomb models were considered in this work. The DC method with a sufficiently large cutoff radius was found to be the most accurate approach for modeling electrosprays, but, it is computationally expensive. The Coulomb potential energy modeled by the DC method in combination with the radial electric fields were found to be necessary to generate the Taylor cone. The differences observed between the SFCS and the DC in terms of predicting the total ion emission suggest that the former should not be used in MD electrospray simulations. Furthermore, the common assumption of domain periodicity was observed to be detrimental to the accuracy of the capillary-based electrospray simulations.

  14. A simple atmospheric boundary layer model applied to large eddy simulations of wind turbine wakes

    DEFF Research Database (Denmark)

    Troldborg, Niels; Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming

    2014-01-01

    A simple model for including the influence of the atmospheric boundary layer in connection with large eddy simulations of wind turbine wakes is presented and validated by comparing computed results with measurements as well as with direct numerical simulations. The model is based on an immersed...... boundary type technique where volume forces are used to introduce wind shear and atmospheric turbulence. The application of the model for wake studies is demonstrated by combining it with the actuator line method, and predictions are compared with field measurements. Copyright © 2013 John Wiley & Sons, Ltd....

  15. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E.; Zubov, V.; Egorova, T.; Ozolin, Y. [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1997-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  16. The model evaluation of subsonic aircraft effect on the ozone and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Rozanov, E; Zubov, V; Egorova, T; Ozolin, Y [Main Geophysical Observatory, St.Petersburg (Russian Federation)

    1998-12-31

    Two dimensional transient zonally averaged model was used for the evaluation of the effect of subsonic aircraft exhausts upon the ozone, trace gases and radiation in the troposphere and lower stratosphere. The mesoscale transformation of gas composition was included on the base of the box model simulations. It has been found that the transformation of the exhausted gases in sub-grid scale is able to influence the results of the modelling. The radiative forcing caused by gas, sulfate aerosol, soot and contrails changes was estimated as big as 0.12-0.15 W/m{sup 2} (0.08 W/m{sup 2} globally and annually averaged). (author) 10 refs.

  17. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    Science.gov (United States)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  18. The force pyramid: a spatial analysis of force application during virtual reality brain tumor resection.

    Science.gov (United States)

    Azarnoush, Hamed; Siar, Samaneh; Sawaya, Robin; Zhrani, Gmaan Al; Winkler-Schwartz, Alexander; Alotaibi, Fahad Eid; Bugdadi, Abdulgadir; Bajunaid, Khalid; Marwa, Ibrahim; Sabbagh, Abdulrahman Jafar; Del Maestro, Rolando F

    2017-07-01

    OBJECTIVE Virtual reality simulators allow development of novel methods to analyze neurosurgical performance. The concept of a force pyramid is introduced as a Tier 3 metric with the ability to provide visual and spatial analysis of 3D force application by any instrument used during simulated tumor resection. This study was designed to answer 3 questions: 1) Do study groups have distinct force pyramids? 2) Do handedness and ergonomics influence force pyramid structure? 3) Are force pyramids dependent on the visual and haptic characteristics of simulated tumors? METHODS Using a virtual reality simulator, NeuroVR (formerly NeuroTouch), ultrasonic aspirator force application was continually assessed during resection of simulated brain tumors by neurosurgeons, residents, and medical students. The participants performed simulated resections of 18 simulated brain tumors with different visual and haptic characteristics. The raw data, namely, coordinates of the instrument tip as well as contact force values, were collected by the simulator. To provide a visual and qualitative spatial analysis of forces, the authors created a graph, called a force pyramid, representing force sum along the z-coordinate for different xy coordinates of the tool tip. RESULTS Sixteen neurosurgeons, 15 residents, and 84 medical students participated in the study. Neurosurgeon, resident and medical student groups displayed easily distinguishable 3D "force pyramid fingerprints." Neurosurgeons had the lowest force pyramids, indicating application of the lowest forces, followed by resident and medical student groups. Handedness, ergonomics, and visual and haptic tumor characteristics resulted in distinct well-defined 3D force pyramid patterns. CONCLUSIONS Force pyramid fingerprints provide 3D spatial assessment displays of instrument force application during simulated tumor resection. Neurosurgeon force utilization and ergonomic data form a basis for understanding and modulating resident force

  19. Thermodynamic properties for applications in chemical industry via classical force fields.

    Science.gov (United States)

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.

  20. Simulation of glacial ocean biogeochemical tracer and isotope distributions based on the PMIP3 suite of climate models

    Science.gov (United States)

    Khatiwala, Samar; Muglia, Juan; Kvale, Karin; Schmittner, Andreas

    2016-04-01

    In the present climate system, buoyancy forced convection at high-latitudes together with internal mixing results in a vigorous overturning circulation whose major component is North Atlantic Deep Water. One of the key questions of climate science is whether this "mode" of circulation persisted during glacial periods, and in particular at the Last Glacial Maximum (LGM; 21000 years before present). Resolving this question is both important for advancing our understanding of the climate system, as well as a critical test of numerical models' ability to reliably simulate different climates. The observational evidence, based on interpreting geochemical tracers archived in sediments, is conflicting, as are simulations carried out with state-of-the-art climate models (e.g., as part of the PMIP3 suite), which, due to the computational cost involved, do not by and large include biogeochemical and isotope tracers that can be directly compared with proxy data. Here, we apply geochemical observations to evaluate the ability of several realisations of an ocean model driven by atmospheric forcing from the PMIP3 suite of climate models to simulate global ocean circulation during the LGM. This results in a wide range of circulation states that are then used to simulate biogeochemical tracer and isotope (13C, 14C and Pa/Th) distributions using an efficient, "offline" computational scheme known as the transport matrix method (TMM). One of the key advantages of this approach is the use of a uniform set of biogeochemical and isotope parameterizations across all the different circulations based on the PMIP3 models. We compare these simulated distributions to both modern observations and data from LGM ocean sediments to identify similarities and discrepancies between model and data. We find, for example, that when the ocean model is forced with wind stress from the PMIP3 models the radiocarbon age of the deep ocean is systematically younger compared with reconstructions. Changes in

  1. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model

    DEFF Research Database (Denmark)

    Stendel, Martin; Mogensen, Irene A.; Christensen, Jens H.

    2006-01-01

    The results of a simulation of the climate of the last five centuries with a state-of-the-art coupled atmosphere-ocean general circulation model are presented. The model has been driven with most relevant forcings, both natural (solar variability, volcanic aerosol) and anthropogenic (greenhouse...... gases, sulphate aerosol, land-use changes). In contrast to previous GCM studies, we have taken into account the latitudinal dependence of volcanic aerosol and the changing land cover for a period covering several centuries. We find a clear signature of large volcanic eruptions in the simulated...

  2. Solar forcing for CMIP6 (v3.2)

    Science.gov (United States)

    Matthes, Katja; Funke, Bernd; Andersson, Monika E.; Barnard, Luke; Beer, Jürg; Charbonneau, Paul; Clilverd, Mark A.; Dudok de Wit, Thierry; Haberreiter, Margit; Hendry, Aaron; Jackman, Charles H.; Kretzschmar, Matthieu; Kruschke, Tim; Kunze, Markus; Langematz, Ulrike; Marsh, Daniel R.; Maycock, Amanda C.; Misios, Stergios; Rodger, Craig J.; Scaife, Adam A.; Seppälä, Annika; Shangguan, Ming; Sinnhuber, Miriam; Tourpali, Kleareti; Usoskin, Ilya; van de Kamp, Max; Verronen, Pekka T.; Versick, Stefan

    2017-06-01

    This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI), solar spectral irradiance (SSI), and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850-2014), and future (2015-2300) simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models.For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2-NRLSSI2) and a semi-empirical one (SATIRE). A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m-2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of -0.04 W m-2. In the 200-400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %).We compare the climatic effects of the CMIP6 solar forcing dataset to its CMIP

  3. Solar forcing for CMIP6 (v3.2

    Directory of Open Access Journals (Sweden)

    K. Matthes

    2017-06-01

    Full Text Available This paper describes the recommended solar forcing dataset for CMIP6 and highlights changes with respect to CMIP5. The solar forcing is provided for radiative properties, namely total solar irradiance (TSI, solar spectral irradiance (SSI, and the F10.7 index as well as particle forcing, including geomagnetic indices Ap and Kp, and ionization rates to account for effects of solar protons, electrons, and galactic cosmic rays. This is the first time that a recommendation for solar-driven particle forcing has been provided for a CMIP exercise. The solar forcing datasets are provided at daily and monthly resolution separately for the CMIP6 preindustrial control, historical (1850–2014, and future (2015–2300 simulations. For the preindustrial control simulation, both constant and time-varying solar forcing components are provided, with the latter including variability on 11-year and shorter timescales but no long-term changes. For the future, we provide a realistic scenario of what solar behavior could be, as well as an additional extreme Maunder-minimum-like sensitivity scenario. This paper describes the forcing datasets and also provides detailed recommendations as to their implementation in current climate models.For the historical simulations, the TSI and SSI time series are defined as the average of two solar irradiance models that are adapted to CMIP6 needs: an empirical one (NRLTSI2–NRLSSI2 and a semi-empirical one (SATIRE. A new and lower TSI value is recommended: the contemporary solar-cycle average is now 1361.0 W m−2. The slight negative trend in TSI over the three most recent solar cycles in the CMIP6 dataset leads to only a small global radiative forcing of −0.04 W m−2. In the 200–400 nm wavelength range, which is important for ozone photochemistry, the CMIP6 solar forcing dataset shows a larger solar-cycle variability contribution to TSI than in CMIP5 (50 % compared to 35 %.We compare the climatic effects of

  4. Direct calculation of 1-octanol-water partition coefficients from adaptive biasing force molecular dynamics simulations.

    Science.gov (United States)

    Bhatnagar, Navendu; Kamath, Ganesh; Chelst, Issac; Potoff, Jeffrey J

    2012-07-07

    The 1-octanol-water partition coefficient log K(ow) of a solute is a key parameter used in the prediction of a wide variety of complex phenomena such as drug availability and bioaccumulation potential of trace contaminants. In this work, adaptive biasing force molecular dynamics simulations are used to determine absolute free energies of hydration, solvation, and 1-octanol-water partition coefficients for n-alkanes from methane to octane. Two approaches are evaluated; the direct transfer of the solute from 1-octanol to water phase, and separate transfers of the solute from the water or 1-octanol phase to vacuum, with both methods yielding statistically indistinguishable results. Calculations performed with the TIP4P and SPC∕E water models and the TraPPE united-atom force field for n-alkanes show that the choice of water model has a negligible effect on predicted free energies of transfer and partition coefficients for n-alkanes. A comparison of calculations using wet and dry octanol phases shows that the predictions for log K(ow) using wet octanol are 0.2-0.4 log units lower than for dry octanol, although this is within the statistical uncertainty of the calculation.

  5. Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation

    Directory of Open Access Journals (Sweden)

    G. Myhre

    2009-02-01

    Full Text Available A high-resolution global aerosol model (Oslo CTM2 driven by meteorological data and allowing a comparison with a variety of aerosol observations is used to simulate radiative forcing (RF of the direct aerosol effect. The model simulates all main aerosol components, including several secondary components such as nitrate and secondary organic carbon. The model reproduces the main chemical composition and size features observed during large aerosol campaigns. Although the chemical composition compares best with ground-based measurement over land for modelled sulphate, no systematic differences are found for other compounds. The modelled aerosol optical depth (AOD is compared to remote sensed data from AERONET ground and MODIS and MISR satellite retrievals. To gain confidence in the aerosol modelling, we have tested its ability to reproduce daily variability in the aerosol content, and this is performing well in many regions; however, we also identified some locations where model improvements are needed. The annual mean regional pattern of AOD from the aerosol model is broadly similar to the AERONET and the satellite retrievals (mostly within 10–20%. We notice a significant improvement from MODIS Collection 4 to Collection 5 compared to AERONET data. Satellite derived estimates of aerosol radiative effect over ocean for clear sky conditions differs significantly on regional scales (almost up to a factor two, but also in the global mean. The Oslo CTM2 has an aerosol radiative effect close to the mean of the satellite derived estimates. We derive a radiative forcing (RF of the direct aerosol effect of −0.35 Wm−2 in our base case. Implementation of a simple approach to consider internal black carbon (BC mixture results in a total RF of −0.28 Wm−2. Our results highlight the importance of carbonaceous particles, producing stronger individual RF than considered in the recent IPCC estimate; however, net RF is less different

  6. Nonlinear Dynamics of Carbon Nanotubes Under Large Electrostatic Force

    KAUST Repository

    Xu, Tiantian; Younis, Mohammad I.

    2015-01-01

    Because of the inherent nonlinearities involving the behavior of CNTs when excited by electrostatic forces, modeling and simulating their behavior is challenging. The complicated form of the electrostatic force describing the interaction

  7. Extended two-fluid model for simulating magneto-rheological fluid flows

    International Nuclear Information System (INIS)

    Shivaram, A C

    2011-01-01

    The current practice of designing magneto-rheological (MR) fluid-based devices is, to a large extent, based on simple phenomenological models like the Bingham model. Though useful for initial force or torque estimation and sizing, these models lack the capability to predict performance degradation due to changes in the particle volume fraction distribution. The present work demonstrates the use of the two-fluid model for predicting the particle volume fraction distribution inside a device in the absence of a field and proposes a novel modeling scheme which can simulate the fluid flow in the presence of a field. This modeling scheme can be used to (a) visualize flow patterns inside a device under various operating conditions, (b) predict the spatial distribution of particles inside a device after multiple operating cycles, (c) assist in estimating the extent of performance degradation due to non-uniform particle distribution and (d) enable testing of various design strategies to mitigate such performance issues using simulations. This is illustrated through numerical examples of a few case studies of typical MR device configurations

  8. Polymer translocation under a pulling force: Scaling arguments and threshold forces

    Science.gov (United States)

    Menais, Timothée

    2018-02-01

    DNA translocation through nanopores is one of the most promising strategies for next-generation sequencing technologies. Most experimental and numerical works have focused on polymer translocation biased by electrophoresis, where a pulling force acts on the polymer within the nanopore. An alternative strategy, however, is emerging, which uses optical or magnetic tweezers. In this case, the pulling force is exerted directly at one end of the polymer, which strongly modifies the translocation process. In this paper, we report numerical simulations of both linear and structured (mimicking DNA) polymer models, simple enough to allow for a statistical treatment of the pore structure effects on the translocation time probability distributions. Based on extremely extended computer simulation data, we (i) propose scaling arguments for an extension of the predicted translocation times τ ˜N2F-1 over the moderate forces range and (ii) analyze the effect of pore size and polymer structuration on translocation times τ .

  9. Accessing the dynamics of end-grafted flexible polymer chains by atomic force-electrochemical microscopy. Theoretical modeling of the approach curves by the elastic bounded diffusion model and Monte Carlo simulations. Evidence for compression-induced lateral chain escape.

    Science.gov (United States)

    Abbou, Jeremy; Anne, Agnès; Demaille, Christophe

    2006-11-16

    The dynamics of a molecular layer of linear poly(ethylene glycol) (PEG) chains of molecular weight 3400, bearing at one end a ferrocene (Fc) label and thiol end-grafted at a low surface coverage onto a gold substrate, is probed using combined atomic force-electrochemical microscopy (AFM-SECM), at the scale of approximately 100 molecules. Force and current approach curves are simultaneously recorded as a force-sensing microelectrode (tip) is inserted within the approximately 10 nm thick, redox labeled, PEG chain layer. Whereas the force approach curve gives access to the structure of the compressed PEG layer, the tip-current, resulting from tip-to-substrate redox cycling of the Fc head of the chain, is controlled by chain dynamics. The elastic bounded diffusion model, which considers the motion of the Fc head as diffusion in a conformational field, complemented by Monte Carlo (MC) simulations, from which the chain conformation can be derived for any degree of confinement, allows the theoretical tip-current approach curve to be calculated. The experimental current approach curve can then be very satisfyingly reproduced by theory, down to a tip-substrate separation of approximately 2 nm, using only one adjustable parameter characterizing the chain dynamics: the effective diffusion coefficient of the chain head. At closer tip-substrate separations, an unpredicted peak is observed in the experimental current approach curve, which is shown to find its origin in a compression-induced escape of the chain from within the narrowing tip-substrate gap. MC simulations provide quantitative support for lateral chain elongation as the escape mechanism.

  10. Hybrid integral-differential simulator of EM force interactions/scenario-assessment tool with pre-computed influence matrix in applications to ITER

    Science.gov (United States)

    Rozov, V.; Alekseev, A.

    2015-08-01

    A necessity to address a wide spectrum of engineering problems in ITER determined the need for efficient tools for modeling of the magnetic environment and force interactions between the main components of the magnet system. The assessment of the operating window for the machine, determined by the electro-magnetic (EM) forces, and the check of feasibility of particular scenarios play an important role for ensuring the safety of exploitation. Such analysis-powered prevention of damages forms an element of the Machine Operations and Investment Protection strategy. The corresponding analysis is a necessary step in preparation of the commissioning, which finalizes the construction phase. It shall be supported by the development of the efficient and robust simulators and multi-physics/multi-system integration of models. The developed numerical model of interactions in the ITER magnetic system, based on the use of pre-computed influence matrices, facilitated immediate and complete assessment and systematic specification of EM loads on magnets in all foreseen operating regimes, their maximum values, envelopes and the most critical scenarios. The common principles of interaction in typical bilateral configurations have been generalized for asymmetry conditions, inspired by the plasma and by the hardware, including asymmetric plasma event and magnetic system fault cases. The specification of loads is supported by the technology of functional approximation of nodal and distributed data by continuous patterns/analytical interpolants. The global model of interactions together with the mesh-independent analytical format of output provides the source of self-consistent and transferable data on the spatial distribution of the system of forces for assessments of structural performance of the components, assemblies and supporting structures. The numerical model used is fully parametrized, which makes it very suitable for multi-variant and sensitivity studies (positioning, off

  11. Sideways wall force produced during tokamak disruptions

    Science.gov (United States)

    Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.

    2013-07-01

    A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.

  12. Analytical modeling of soliton interactions in a nonlocal nonlinear medium analogous to gravitational force

    Science.gov (United States)

    Zeng, Shihao; Chen, Manna; Zhang, Ting; Hu, Wei; Guo, Qi; Lu, Daquan

    2018-01-01

    We illuminate an analytical model of soliton interactions in lead glass by analogizing to a gravitational force system. The orbits of spiraling solitons under a long-range interaction are given explicitly and demonstrated to follow Newton's second law of motion and the Binet equation by numerical simulations. The condition for circular orbits is obtained and the oscillating orbits are proved not to be closed. We prove the analogy between the nonlocal nonlinear optical system and gravitational system and specify the quantitative relation of the quantity between the two models.

  13. Bifurcations of a periodically forced microbial continuous culture model with restrained growth rate

    Science.gov (United States)

    Ren, Jingli; Yuan, Qigang

    2017-08-01

    A three dimensional microbial continuous culture model with a restrained microbial growth rate is studied in this paper. Two types of dilution rates are considered to investigate the dynamic behaviors of the model. For the unforced system, fold bifurcation and Hopf bifurcation are detected, and numerical simulations reveal that the system undergoes degenerate Hopf bifurcation. When the system is periodically forced, bifurcation diagrams for periodic solutions of period-one and period-two are given by researching the Poincaré map, corresponding to different bifurcation cases in the unforced system. Stable and unstable quasiperiodic solutions are obtained by Neimark-Sacker bifurcation with different parameter values. Periodic solutions of various periods can occur or disappear and even change their stability, when the Poincaré map of the forced system undergoes Neimark-Sacker bifurcation, flip bifurcation, and fold bifurcation. Chaotic attractors generated by a cascade of period doublings and some phase portraits are given at last.

  14. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  15. Modelling the effects of the radiation reaction force on the interaction of thin foils with ultra-intense laser fields

    Science.gov (United States)

    Duff, M. J.; Capdessus, R.; Del Sorbo, D.; Ridgers, C. P.; King, M.; McKenna, P.

    2018-06-01

    The effects of the radiation reaction (RR) force on thin foils undergoing radiation pressure acceleration (RPA) are investigated. Using QED-particle-in-cell simulations, the influence of the RR force on the collective electron dynamics within the target can be examined. The magnitude of the RR force is found to be strongly dependent on the target thickness, leading to effects which can be observed on a macroscopic scale, such as changes to the distribution of the emitted radiation and the target dynamics. This suggests that such parameters may be controlled in experiments at multi-PW laser facilities. In addition, the effects of the RR force are characterized in terms of an average radiation emission angle. We present an analytical model which, for the first time, describes the effect of the RR force on the collective electron dynamics within the ‘light-sail’ regime of RPA. The predictions of this model can be tested in future experiments with ultra-high intensity lasers interacting with solid targets.

  16. Active design method for the static characteristics of a piezoelectric six-axis force/torque sensor.

    Science.gov (United States)

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2014-01-02

    To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezoelectric six-axis force sensor experimental prototype is developed according to the analytical mathematical model and numerical simulation model, and selected static characteristic parameters (including sensitivity, isotropic degree and cross-coupling) are tested using this model with three approaches. The measured results are in agreement with the analytical results from the static-active design method. Therefore, this study has successfully established a foundation for further research into the piezoelectric multi-axis force sensor and an overall design approach based on static characteristics.

  17. Forces between permanent magnets: experiments and model

    International Nuclear Information System (INIS)

    González, Manuel I

    2017-01-01

    This work describes a very simple, low-cost experimental setup designed for measuring the force between permanent magnets. The experiment consists of placing one of the magnets on a balance, attaching the other magnet to a vertical height gauge, aligning carefully both magnets and measuring the load on the balance as a function of the gauge reading. A theoretical model is proposed to compute the force, assuming uniform magnetisation and based on laws and techniques accessible to undergraduate students. A comparison between the model and the experimental results is made, and good agreement is found at all distances investigated. In particular, it is also found that the force behaves as r −4 at large distances, as expected. (paper)

  18. Reduced order dynamic model for polysaccharides molecule attached to an atomic force microscope

    International Nuclear Information System (INIS)

    Tang Deman; Li Aiqin; Attar, Peter; Dowell, Earl H.

    2004-01-01

    A dynamic analysis and numerical simulation has been conducted of a polysaccharides molecular structure (a ten (10) single-α-D-glucose molecule chain) connected to a moving atomic force microscope (AFM). Sinusoidal base excitation of the AFM cantilevered beam is considered. First a linearized perturbation model is constructed for the complex polysaccharides molecular structure. Then reduced order (dynamic) models based upon a proper orthogonal decomposition (POD) technique are constructed using global modes for both the linearized perturbation model and for the full nonlinear model. The agreement between the original and reduced order models (ROM/POD) is very good even when only a few global modes are included in the ROM for either the linear case or for the nonlinear case. The computational advantage of the reduced order model is clear from the results presented

  19. Wall modeling for the simulation of highly non-isothermal unsteady flows

    International Nuclear Information System (INIS)

    Devesa, A.

    2006-12-01

    Nuclear industry flows are most of the time characterized by their high Reynolds number, density variations (at low Mach numbers) and a highly unsteady behaviour (low to moderate frequencies). High Reynolds numbers are un-affordable by direct simulation (DNS), and simulations must either be performed by solving averaged equations (RANS), or by solving only the large eddies (LES), both using a wall model. A first investigation of this thesis dealt with the derivation and test of two variable density wall models: an algebraic law (CWM) and a zonal approach dedicated to LES (TBLE-ρ). These models were validated in quasi-isothermal cases, before being used in academic and industrial non-isothermal flows with satisfactory results. Then, a numerical experiment of pulsed passive scalars was performed by DNS, were two forcing conditions were considered: oscillations are imposed in the outer flow; oscillations come from the wall. Several frequencies and amplitudes of oscillations were taken into account in order to gain insights in unsteady effects in the boundary layer, and to create a database for validating wall models in such context. The temporal behaviour of two wall models (algebraic and zonal wall models) were studied and showed that a zonal model produced better results when used in the simulation of unsteady flows. (author)

  20. modelingthe effect the effect of contact and seepage forces

    African Journals Online (AJOL)

    eobe

    This research work has investigated the contribution of contact force and seepage force to the ... e equilibrium model has deduced an expression for the safe hydraulic head during well ...... Plastic deformation of soils simulation using DEM,.

  1. Forced reptation revealed by chain pull-out simulations.

    Science.gov (United States)

    Bulacu, Monica; van der Giessen, Erik

    2009-08-14

    We report computation results obtained from extensive molecular dynamics simulations of tensile disentanglement of connector chains placed at the interface between two polymer bulks. Each polymer chain (either belonging to the bulks or being a connector) is treated as a sequence of beads interconnected by springs, using a coarse-grained representation based on the Kremer-Grest model, extended to account for stiffness along the chain backbone. Forced reptation of the connectors was observed during their disentanglement from the bulk chains. The extracted chains are clearly seen following an imaginary "tube" inside the bulks as they are pulled out. The entropic and energetic responses to the external deformation are investigated by monitoring the connector conformation tensor and the modifications of the internal parameters (bonds, bending, and torsion angles along the connectors). The work needed to separate the two bulks is computed from the tensile force induced during debonding in the connector chains. The value of the work reached at total separation is considered as the debonding energy G. The most important parameters controlling G are the length (n) of the chains placed at the interface and their areal density. Our in silico experiments are performed at relatively low areal density and are disregarded if chain scission occurs during disentanglement. As predicted by the reptation theory, for this pure pull-out regime, the power exponent from the scaling G proportional, variant n(a) is a approximately 2, irrespective of chain stiffness. Small variations are found when the connectors form different number of stitches at the interface, or when their length is randomly distributed in between the two bulks. Our results show that the effects of the number of stitches and of the randomness of the block lengths have to be considered together, especially when comparing with experiments where they cannot be controlled rigorously. These results may be significant for

  2. The ELBA force field for coarse-grain modeling of lipid membranes.

    Directory of Open Access Journals (Sweden)

    Mario Orsi

    Full Text Available A new coarse-grain model for molecular dynamics simulation of lipid membranes is presented. Following a simple and conventional approach, lipid molecules are modeled by spherical sites, each representing a group of several atoms. In contrast to common coarse-grain methods, two original (interdependent features are here adopted. First, the main electrostatics are modeled explicitly by charges and dipoles, which interact realistically through a relative dielectric constant of unity (ε(r = 1. Second, water molecules are represented individually through a new parametrization of the simple Stockmayer potential for polar fluids; each water molecule is therefore described by a single spherical site embedded with a point dipole. The force field is shown to accurately reproduce the main physical properties of single-species phospholipid bilayers comprising dioleoylphosphatidylcholine (DOPC and dioleoylphosphatidylethanolamine (DOPE in the liquid crystal phase, as well as distearoylphosphatidylcholine (DSPC in the liquid crystal and gel phases. Insights are presented into fundamental properties and phenomena that can be difficult or impossible to study with alternative computational or experimental methods. For example, we investigate the internal pressure distribution, dipole potential, lipid diffusion, and spontaneous self-assembly. Simulations lasting up to 1.5 microseconds were conducted for systems of different sizes (128, 512 and 1058 lipids; this also allowed us to identify size-dependent artifacts that are expected to affect membrane simulations in general. Future extensions and applications are discussed, particularly in relation to the methodology's inherent multiscale capabilities.

  3. Global ice volume variations through the last glacial cycle simulated by a 3-D ice-dynamical model

    NARCIS (Netherlands)

    Bintanja, R.; Wal, R.S.W. van de; Oerlemans, J.

    2002-01-01

    A coupled ice sheet—ice shelf—bedrock model was run at 20km resolution to simulate the evolution of global ice cover during the last glacial cycle. The mass balance model uses monthly mean temperature and precipitation as input and incorporates the albedo—mass balance feedback. The model is forced

  4. Bond slip model for the simulation of reinforced concrete structures

    International Nuclear Information System (INIS)

    Casanova, A.; Jason, L.; Davenne, L.

    2012-01-01

    This paper presents a new finite element approach to model the steel-concrete bond effects. This model proposes to relate steel, represented by truss elements, with the surrounding concrete in the case where the two meshes are not necessary coincident. The theoretical formulation is described and the model is applied on a reinforced concrete tie. A characteristic stress distribution is observed, related to the transfer of bond forces from steel to concrete. The results of this simulation are compared with a computation in which a perfect relation between steel and concrete is supposed. It clearly shows how the introduction of the bond model can improve the description of the cracking process (finite number of cracks). (authors)

  5. Finite Element Modelling of the effect of tool rake angle on tool temperature and cutting force during high speed machining of AISI 4340 steel

    International Nuclear Information System (INIS)

    Sulaiman, S; Roshan, A; Ariffin, M K A

    2013-01-01

    In this paper, a Finite Element Method (FEM) based on the ABAQUS explicit software which involves Johnson-Cook material model was used to simulate cutting force and tool temperature during high speed machining (HSM) of AISI 4340 steel. In this simulation work, a tool rake angle ranging from 0° to 20° and a range of cutting speeds between 300 to 550 m/min was investigated. The purpose of this simulation analysis was to find optimum tool rake angle where cutting force is smallest as well as tool temperature is lowest during high speed machining. It was found that cutting forces to have a decreasing trend as rake angle increased to positive direction. The optimum rake angle observed between 10° and 18° due to decrease of cutting force as 20% for all simulated cutting speeds. In addition, increasing cutting tool rake angle over its optimum value had negative influence on tool's performance and led to an increase in cutting temperature. The results give a better understanding and recognition of the cutting tool design for high speed machining processes

  6. Data for molecular dynamics simulations of B-type cytochrome c oxidase with the Amber force field

    Directory of Open Access Journals (Sweden)

    Longhua Yang

    2016-09-01

    Full Text Available Cytochrome c oxidase (CcO is a vital enzyme that catalyzes the reduction of molecular oxygen to water and pumps protons across mitochondrial and bacterial membranes. This article presents parameters for the cofactors of ba3-type CcO that are compatible with the all-atom Amber ff12SB and ff14SB force fields. Specifically, parameters were developed for the CuA pair, heme b, and the dinuclear center that consists of heme a3 and CuB bridged by a hydroperoxo group. The data includes geometries in XYZ coordinate format for cluster models that were employed to compute proton transfer energies and derive bond parameters and point charges for the force field using density functional theory. Also included are the final parameter files that can be employed with the Amber leap program to generate input files for molecular dynamics simulations with the Amber software package. Based on the high resolution (1.8 Å X-ray crystal structure of the ba3-type CcO from Thermus thermophilus (Protein Data Bank ID number PDB: 3S8F, we built a model that is embedded in a POPC lipid bilayer membrane and solvated with TIP3P water molecules and counterions. We provide PDB data files of the initial model and the equilibrated model that can be used for further studies.

  7. Cutting force model for high speed machining process

    International Nuclear Information System (INIS)

    Haber, R. E.; Jimenez, J. E.; Jimenez, A.; Lopez-Coronado, J.

    2004-01-01

    This paper presents cutting force-based models able to describe a high speed machining process. The model considers the cutting force as output variable, essential for the physical processes that are taking place in high speed machining. Moreover, this paper shows the mathematical development to derive the integral-differential equations, and the algorithms implemented in MATLAB to predict the cutting force in real time MATLAB is a software tool for doing numerical computations with matrices and vectors. It can also display information graphically and includes many toolboxes for several research and applications areas. Two end mill shapes are considered (i. e. cylindrical and ball end mill) for real-time implementation of the developed algorithms. the developed models are validated in slot milling operations. The results corroborate the importance of the cutting force variable for predicting tool wear in high speed machining operations. The developed models are the starting point for future work related with vibration analysis, process stability and dimensional surface finish in high speed machining processes. (Author) 19 refs

  8. Speeding up N-body simulations of modified gravity: chameleon screening models

    Science.gov (United States)

    Bose, Sownak; Li, Baojiu; Barreira, Alexandre; He, Jian-hua; Hellwing, Wojciech A.; Koyama, Kazuya; Llinares, Claudio; Zhao, Gong-Bo

    2017-02-01

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R) simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.

  9. Speeding up N -body simulations of modified gravity: chameleon screening models

    International Nuclear Information System (INIS)

    Bose, Sownak; Li, Baojiu; He, Jian-hua; Llinares, Claudio; Barreira, Alexandre; Hellwing, Wojciech A.; Koyama, Kazuya; Zhao, Gong-Bo

    2017-01-01

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f ( R ) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f ( R ) simulations. For example, a test simulation with 512 3 particles in a box of size 512 Mpc/ h is now 5 times faster than before, while a Millennium-resolution simulation for f ( R ) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.

  10. Speeding up N -body simulations of modified gravity: chameleon screening models

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Sownak; Li, Baojiu; He, Jian-hua; Llinares, Claudio [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Barreira, Alexandre [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Hellwing, Wojciech A.; Koyama, Kazuya [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom); Zhao, Gong-Bo, E-mail: sownak.bose@durham.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: barreira@mpa-garching.mpg.de, E-mail: jianhua.he@durham.ac.uk, E-mail: wojciech.hellwing@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: claudio.llinares@durham.ac.uk, E-mail: gbzhao@nao.cas.cn [National Astronomy Observatories, Chinese Academy of Science, Beijing, 100012 (China)

    2017-02-01

    We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of modified gravity theories, such as the widely studied f ( R ) gravity models. High resolution simulations for such models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities. The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate. Our new method not only avoids this, but also allows the discretised equation to be written in a form that is analytically solvable. We show that this new method greatly improves the performance and efficiency of f ( R ) simulations. For example, a test simulation with 512{sup 3} particles in a box of size 512 Mpc/ h is now 5 times faster than before, while a Millennium-resolution simulation for f ( R ) gravity is estimated to be more than 20 times faster than with the old method. Our new implementation will be particularly useful for running very high resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method will bring us to a new era for precision cosmological tests of gravity.

  11. Numerical simulation of nonlinear wave force on a quasi-ellipse caisson

    Science.gov (United States)

    Wang, Yongxue; Ren, Xiaozhong; Wang, Guoyu

    2011-09-01

    A three dimensional numerical model of nonlinear wave action on a quasi-ellipse caisson in a time domain was developed in this paper. Navier-Stokes equations were solved by the finite difference method, and the volume of fluid (VOF) method was employed to trace the free surface. The partial cell method was used to deal with the irregular boundary typical of this type of problem during first-time wave interaction with the structure, and a satisfactory result was obtained. The numerical model was verified and used to investigate the effects of the relative wave height H/d, relative caisson width kD, and relative length-width ratio B/D on the wave forces of the quasi-ellipse caisson. It was shown that the relative wave height H/d has a significant effect on the wave forces of the caisson. Compared with the non-dimensional inline wave force, the relative length-width ratio B/D was shown to have significant influence on the non-dimensional transverse wave force.

  12. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    International Nuclear Information System (INIS)

    Yao, Jianyong; Jiao, Zongxia; Yao, Bin

    2014-01-01

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  13. Nonlinear adaptive robust back stepping force control of hydraulic load simulator: Theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianyong [Nanjing University of Science and Technology, Nanjing (China); Jiao, Zongxia [Beihang University, Beijing (China); Yao, Bin [Purdue University, West Lafayette (United States)

    2014-04-15

    High performance robust force control of hydraulic load simulator with constant but unknown hydraulic parameters is considered. In contrast to the linear control based on hydraulic linearization equations, hydraulic inherent nonlinear properties and uncertainties make the conventional feedback proportional-integral-derivative (PID) control not yield to high performance requirements. Furthermore, the hydraulic system may be subjected to non-smooth and discontinuous nonlinearities due to the directional change of valve opening. In this paper, based on a nonlinear system model of hydraulic load simulator, a discontinuous projection-based nonlinear adaptive robust back stepping controller is developed with servo valve dynamics. The proposed controller constructs a novel stable adaptive controller and adaptation laws with additional pressure dynamic related unknown parameters, which can compensate for the system nonlinearities and uncertain parameters, meanwhile a well-designed robust controller is also synthesized to dominate the model uncertainties coming from both parametric uncertainties and uncertain nonlinearities including unmodeled and ignored system dynamics. The controller theoretically guarantee a prescribed transient performance and final tracking accuracy in presence of both parametric uncertainties and uncertain nonlinearities; while achieving asymptotic output tracking in the absence of unstructured uncertainties. The implementation issues are also discussed for controller simplification. Some comparative results are obtained to verify the high-performance nature of the proposed controller.

  14. Constraining Stochastic Parametrisation Schemes Using High-Resolution Model Simulations

    Science.gov (United States)

    Christensen, H. M.; Dawson, A.; Palmer, T.

    2017-12-01

    Stochastic parametrisations are used in weather and climate models as a physically motivated way to represent model error due to unresolved processes. Designing new stochastic schemes has been the target of much innovative research over the last decade. While a focus has been on developing physically motivated approaches, many successful stochastic parametrisation schemes are very simple, such as the European Centre for Medium-Range Weather Forecasts (ECMWF) multiplicative scheme `Stochastically Perturbed Parametrisation Tendencies' (SPPT). The SPPT scheme improves the skill of probabilistic weather and seasonal forecasts, and so is widely used. However, little work has focused on assessing the physical basis of the SPPT scheme. We address this matter by using high-resolution model simulations to explicitly measure the `error' in the parametrised tendency that SPPT seeks to represent. The high resolution simulations are first coarse-grained to the desired forecast model resolution before they are used to produce initial conditions and forcing data needed to drive the ECMWF Single Column Model (SCM). By comparing SCM forecast tendencies with the evolution of the high resolution model, we can measure the `error' in the forecast tendencies. In this way, we provide justification for the multiplicative nature of SPPT, and for the temporal and spatial scales of the stochastic perturbations. However, we also identify issues with the SPPT scheme. It is therefore hoped these measurements will improve both holistic and process based approaches to stochastic parametrisation. Figure caption: Instantaneous snapshot of the optimal SPPT stochastic perturbation, derived by comparing high-resolution simulations with a low resolution forecast model.

  15. Modeling and boundary force control of microcantilevers utilized in atomic force microscopy for cellular imaging and characterization

    Science.gov (United States)

    Eslami, Sohrab

    This dissertation undertakes the theoretical and experimental developments microcantilevers utilized in Atomic Force Microscopy (AFM) with applications to cellular imaging and characterization. The capability of revealing the inhomogeneties or interior of ultra-small materials has been of most interest to many researchers. However, the fundamental concept of signal and image formation remains unexplored and not fully understood. For his, a semi-empirical nonlinear force model is proposed to show that virtual frequency generation, regarded as the simplest synthesized subsurface probe, occurs optimally when the force is tuned to the van der Waals form. This is the first-time observation of a novel theoretical dynamic multi-frequency force microscopy that has not been already reported. Owing to the broad applications of microcantilevers in the nanoscale imaging and microscopic techniques, there is an essential feeling to study and propose a comprehensive model of such systems. Therefore, in the theoretical part of this dissertation, a distributed-parameters representation modeling of the microcantilever along with a general interaction force comprising of two attractive and repulsive components with general amplitude and power terms is studied. This model is investigated in a general 2D Cartesian coordinate to consider the motions of the probe with a tip mass. There is an excitation at the microcantilever's base such that the end of the beam is subject to the proposed general force. These forces are very sensitive to the amplitude and power terms of these parts; on the other hand, atomic intermolecular force is a function of the distance such that this distance itself is also a function of the interaction force that will result in a nonlinear implicit equation. From a parametric study in the probe-sample excitation, it is shown that the predicted behavior of the generated difference-frequency oscillation amplitude agrees well with experimental measurements. Following

  16. Forcings and feedbacks on convection in the 2010 Pakistan flood: Modeling extreme precipitation with interactive large-scale ascent

    Science.gov (United States)

    Nie, Ji; Shaevitz, Daniel A.; Sobel, Adam H.

    2016-09-01

    Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. The causal relationships between these factors are often not obvious, however, the roles of different physical processes in producing the extreme precipitation event can be difficult to disentangle. Here we examine the large-scale forcings and convective heating feedback in the precipitation events, which caused the 2010 Pakistan flood within the Column Quasi-Geostrophic framework. A cloud-revolving model (CRM) is forced with large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation using input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. Numerical results show that the positive feedback of convective heating to large-scale dynamics is essential in amplifying the precipitation intensity to the observed values. Orographic lifting is the most important dynamic forcing in both events, while differential potential vorticity advection also contributes to the triggering of the first event. Horizontal moisture advection modulates the extreme events mainly by setting the environmental humidity, which modulates the amplitude of the convection's response to the dynamic forcings. When the CRM is replaced by either a single-column model (SCM) with parameterized convection or a dry model with a reduced effective static stability, the model results show substantial discrepancies compared with reanalysis data. The reasons for these discrepancies are examined, and the implications for global models and theoretical models are discussed.

  17. Reconstruction of piano hammer force from string velocity.

    Science.gov (United States)

    Chaigne, Antoine

    2016-11-01

    A method is presented for reconstructing piano hammer forces through appropriate filtering of the measured string velocity. The filter design is based on the analysis of the pulses generated by the hammer blow and propagating along the string. In the five lowest octaves, the hammer force is reconstructed by considering two waves only: the incoming wave from the hammer and its first reflection at the front end. For the higher notes, four- or eight-wave schemes must be considered. The theory is validated on simulated string velocities by comparing imposed and reconstructed forces. The simulations are based on a nonlinear damped stiff string model previously developed by Chabassier, Chaigne, and Joly [J. Acoust. Soc. Am. 134(1), 648-665 (2013)]. The influence of absorption, dispersion, and amplitude of the string waves on the quality of the reconstruction is discussed. Finally, the method is applied to real piano strings. The measured string velocity is compared to the simulated velocity excited by the reconstructed force, showing a high degree of accuracy. A number of simulations are compared to simulated strings excited by a force derived from measurements of mass and acceleration of the hammer head. One application to an historic piano is also presented.

  18. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model

    Science.gov (United States)

    Savelyev, Alexey; MacKerell, Alexander D.

    2014-01-01

    Presented is a first generation atomistic force field for DNA in which electronic polarization is modeled based on the classical Drude oscillator formalism. The DNA model is based on parameters for small molecules representative of nucleic acids, including alkanes, ethers, dimethylphosphate, and the nucleic acid bases and empirical adjustment of key dihedral parameters associated with the phosphodiester backbone, glycosidic linkages and sugar moiety of DNA. Our optimization strategy is based on achieving a compromise between satisfying the properties of the underlying model compounds in the gas phase targeting QM data and reproducing a number of experimental properties of DNA duplexes in the condensed phase. The resulting Drude force field yields stable DNA duplexes on the 100 ns time scale and satisfactorily reproduces (1) the equilibrium between A and B forms of DNA and (2) transitions between the BI and BII sub-states of B form DNA. Consistency with the gas phase QM data for the model compounds is significantly better for the Drude model as compared to the CHARMM36 additive force field, which is suggested to be due to the improved response of the model to changes in the environment associated with the explicit inclusion of polarizability. Analysis of dipole moments associated with the nucleic acid bases shows the Drude model to have significantly larger values than those present in CHARMM36, with the dipoles of individual bases undergoing significant variations during the MD simulations. Additionally, the dipole moment of water was observed to be perturbed in the grooves of DNA. PMID:24752978

  19. Interannual Rainfall Variability in North-East Brazil: Observation and Model Simulation

    Science.gov (United States)

    Harzallah, A.; Rocha de Aragão, J. O.; Sadourny, R.

    1996-08-01

    The relationship between interannual variability of rainfall in north-east Brazil and tropical sea-surface temperature is studied using observations and model simulations. The simulated precipitation is the average of seven independent realizations performed using the Laboratoire de Météorologie Dynamique atmospheric general model forced by the 1970-1988 observed sea-surface temperature. The model reproduces very well the rainfall anomalies (correlation of 091 between observed and modelled anomalies). The study confirms that precipitation in north-east Brazil is highly correlated to the sea-surface temperature in the tropical Atlantic and Pacific oceans. Using the singular value decomposition method, we find that Nordeste rainfall is modulated by two independent oscillations, both governed by the Atlantic dipole, but one involving only the Pacific, the other one having a period of about 10 years. Correlations between precipitation in north-east Brazil during February-May and the sea-surface temperature 6 months earlier indicate that both modes are essential to estimate the quality of the rainy season.

  20. Approximate photochemical dynamics of azobenzene with reactive force fields

    Science.gov (United States)

    Li, Yan; Hartke, Bernd

    2013-12-01

    We have fitted reactive force fields of the ReaxFF type to the ground and first excited electronic states of azobenzene, using global parameter optimization by genetic algorithms. Upon coupling with a simple energy-gap transition probability model, this setup allows for completely force-field-based simulations of photochemical cis→trans- and trans→cis-isomerizations of azobenzene, with qualitatively acceptable quantum yields. This paves the way towards large-scale dynamics simulations of molecular machines, including bond breaking and formation (via the reactive force field) as well as photochemical engines (presented in this work).

  1. Biomechanical modeling and load-carrying simulation of lower limb exoskeleton.

    Science.gov (United States)

    Zhu, Yanhe; Zhang, Guoan; Zhang, Chao; Liu, Gangfeng; Zhao, Jie

    2015-01-01

    This paper introduces novel modern equipment-a lower extremity exoskeleton, which can implement the mutual complement and the interaction between human intelligence and the robot's mechanical strength. In order to provide a reference for the exoskeleton structure and the drive unit, the human biomechanics were modeled and analyzed by LifeModeler and Adams software to derive each joint kinematic parameter. The control was designed to implement the zero-force interaction between human and exoskeleton. Furthermore, simulations were performed to verify the control and assist effect. In conclusion, the system scheme of lower extremity exoskeleton is demonstrated to be feasible.

  2. Screening fifth forces in k-essence and DBI models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Théorique, CEA, IPhT, CNRS, URA2306, F-91191 Gif-sur-Yvette cédex (France); Burrage, Clare [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Davis, Anne-Christine, E-mail: Philippe.Brax@cea.fr, E-mail: Clare.Burrage@nottingham.ac.uk, E-mail: A.C.Davis@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge CB3 0WA (United Kingdom)

    2013-01-01

    New fifth forces have not yet been detected in the laboratory or in the solar system, hence it is typically difficult to introduce new light scalar fields that would mediate such forces. In recent years it has been shown that a number of non-linear scalar field theories allow for a dynamical mechanism, such as the Vainshtein and chameleon ones, that suppresses the strength of the scalar fifth force in experimental environments. This is known as screening, however it is unclear how common screening is within non-linear scalar field theories. k-essence models are commonly studied examples of non-linear models, with DBI as the best motivated example, and so we ask whether these non-linearities are able to screen a scalar fifth force. We find that a Vainshtein-like screening mechanism exists for such models although with limited applicability. For instance, we cannot find a screening mechanism for DBI models. On the other hand, we construct a large class of k-essence models which lead to the acceleration of the Universe in the recent past for which the fifth force mediated by the scalar can be screened.

  3. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data

    Science.gov (United States)

    McCabe, M. F.; Ershadi, A.; Jimenez, C.; Miralles, D. G.; Michel, D.; Wood, E. F.

    2016-01-01

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, four commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman-Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m-2; 0.65), followed closely by GLEAM (0.68; 64 W m-2

  4. Entropic elasticity in the generation of muscle Force - A theoretical model

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2002-01-01

    A novel simplified structural model of sarcomeric force production in striate muscle is presented. Using some simple assumptions regarding the distribution of myosin spring lengths at different sliding velocities it is possible to derive a very simple expression showing the main components...... of the experimentally observed force-velocity relationship of muscle: nonlinearity during contraction (Hill, 1938), maximal force production during stretching equal to two times the isometric force (Katz, 1939), yielding at high stretching velocity, slightly concave force-extension relationship during sudden length......-bridges are explored [linear, power function and worm-like chain (WLC) model based], and it is shown that the best results are obtained if the individual myosin-spring forces are modelled using a WLC model, thus hinting that entropic elasticity could be the main source of force in myosin undergoing the conformational...

  5. Evaluation of simulation alternatives for the brute-force ray-tracing approach used in backlight design

    Science.gov (United States)

    Desnijder, Karel; Hanselaer, Peter; Meuret, Youri

    2016-04-01

    A key requirement to obtain a uniform luminance for a side-lit LED backlight is the optimised spatial pattern of structures on the light guide that extract the light. The generation of such a scatter pattern is usually performed by applying an iterative approach. In each iteration, the luminance distribution of the backlight with a particular scatter pattern is analysed. This is typically performed with a brute-force ray-tracing algorithm, although this approach results in a time-consuming optimisation process. In this study, the Adding-Doubling method is explored as an alternative way for evaluating the luminance of a backlight. Due to the similarities between light propagating in a backlight with extraction structures and light scattering in a cloud of light scatterers, the Adding-Doubling method which is used to model the latter could also be used to model the light distribution in a backlight. The backlight problem is translated to a form upon which the Adding-Doubling method is directly applicable. The calculated luminance for a simple uniform extraction pattern with the Adding-Doubling method matches the luminance generated by a commercial raytracer very well. Although successful, no clear computational advantage over ray tracers is realised. However, the dynamics of light propagation in a light guide as used the Adding-Doubling method, also allow to enhance the efficiency of brute-force ray-tracing algorithms. The performance of this enhanced ray-tracing approach for the simulation of backlights is also evaluated against a typical brute-force ray-tracing approach.

  6. Surface force measurements and simulations of mussel-derived peptide adhesives on wet organic surfaces.

    Science.gov (United States)

    Levine, Zachary A; Rapp, Michael V; Wei, Wei; Mullen, Ryan Gotchy; Wu, Chun; Zerze, Gül H; Mittal, Jeetain; Waite, J Herbert; Israelachvili, Jacob N; Shea, Joan-Emma

    2016-04-19

    Translating sticky biological molecules-such as mussel foot proteins (MFPs)-into synthetic, cost-effective underwater adhesives with adjustable nano- and macroscale characteristics requires an intimate understanding of the glue's molecular interactions. To help facilitate the next generation of aqueous adhesives, we performed a combination of surface forces apparatus (SFA) measurements and replica-exchange molecular dynamics (REMD) simulations on a synthetic, easy to prepare, Dopa-containing peptide (MFP-3s peptide), which adheres to organic surfaces just as effectively as its wild-type protein analog. Experiments and simulations both show significant differences in peptide adsorption on CH3-terminated (hydrophobic) and OH-terminated (hydrophilic) self-assembled monolayers (SAMs), where adsorption is strongest on hydrophobic SAMs because of orientationally specific interactions with Dopa. Additional umbrella-sampling simulations yield free-energy profiles that quantitatively agree with SFA measurements and are used to extract the adhesive properties of individual amino acids within the context of MFP-3s peptide adhesion, revealing a delicate balance between van der Waals, hydrophobic, and electrostatic forces.

  7. Development of fine-resolution analyses and expanded large-scale forcing properties: 2. Scale awareness and application to single-column model experiments

    Science.gov (United States)

    Feng, Sha; Li, Zhijin; Liu, Yangang; Lin, Wuyin; Zhang, Minghua; Toto, Tami; Vogelmann, Andrew M.; Endo, Satoshi

    2015-01-01

    three-dimensional fields have been produced using the Community Gridpoint Statistical Interpolation (GSI) data assimilation system for the U.S. Department of Energy's Atmospheric Radiation Measurement Program (ARM) Southern Great Plains region. The GSI system is implemented in a multiscale data assimilation framework using the Weather Research and Forecasting model at a cloud-resolving resolution of 2 km. From the fine-resolution three-dimensional fields, large-scale forcing is derived explicitly at grid-scale resolution; a subgrid-scale dynamic component is derived separately, representing subgrid-scale horizontal dynamic processes. Analyses show that the subgrid-scale dynamic component is often a major component over the large-scale forcing for grid scales larger than 200 km. The single-column model (SCM) of the Community Atmospheric Model version 5 is used to examine the impact of the grid-scale and subgrid-scale dynamic components on simulated precipitation and cloud fields associated with a mesoscale convective system. It is found that grid-scale size impacts simulated precipitation, resulting in an overestimation for grid scales of about 200 km but an underestimation for smaller grids. The subgrid-scale dynamic component has an appreciable impact on the simulations, suggesting that grid-scale and subgrid-scale dynamic components should be considered in the interpretation of SCM simulations.

  8. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally-gridded forcing data

    Science.gov (United States)

    McCabe, M. F.; Ershadi, A.; Jimenez, C.; Miralles, D. G.; Michel, D.; Wood, E. F.

    2015-08-01

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the GEWEX LandFlux project, four commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman-Monteith based Mu model (PM-Mu) and the Global Land Evaporation: the Amsterdam Methodology (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from forty-five globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overally statistical performance (0.72; 61 W m-2; 0.65), followed closely by GLEAM (0.68; 64 W m-2; 0.62), with values in

  9. Advances in snow cover distributed modelling via ensemble simulations and assimilation of satellite data

    Science.gov (United States)

    Revuelto, J.; Dumont, M.; Tuzet, F.; Vionnet, V.; Lafaysse, M.; Lecourt, G.; Vernay, M.; Morin, S.; Cosme, E.; Six, D.; Rabatel, A.

    2017-12-01

    Nowadays snowpack models show a good capability in simulating the evolution of snow in mountain areas. However singular deviations of meteorological forcing and shortcomings in the modelling of snow physical processes, when accumulated on time along a snow season, could produce large deviations from real snowpack state. The evaluation of these deviations is usually assessed with on-site observations from automatic weather stations. Nevertheless the location of these stations could strongly influence the results of these evaluations since local topography may have a marked influence on snowpack evolution. Despite the evaluation of snowpack models with automatic weather stations usually reveal good results, there exist a lack of large scale evaluations of simulations results on heterogeneous alpine terrain subjected to local topographic effects.This work firstly presents a complete evaluation of the detailed snowpack model Crocus over an extended mountain area, the Arve upper catchment (western European Alps). This catchment has a wide elevation range with a large area above 2000m a.s.l. and/or glaciated. The evaluation compares results obtained with distributed and semi-distributed simulations (the latter nowadays used on the operational forecasting). Daily observations of the snow covered area from MODIS satellite sensor, seasonal glacier surface mass balance evolution measured in more than 65 locations and the galciers annual equilibrium line altitude from Landsat/Spot/Aster satellites, have been used for model evaluation. Additionally the latest advances in producing ensemble snowpack simulations for assimilating satellite reflectance data over extended areas will be presented. These advances comprises the generation of an ensemble of downscaled high-resolution meteorological forcing from meso-scale meteorological models and the application of a particle filter scheme for assimilating satellite observations. Despite the results are prefatory, they show a good

  10. Application of blocking diagnosis methods to general circulation models. Part II: model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Barriopedro, D.; Trigo, R.M. [Universidade de Lisboa, CGUL-IDL, Faculdade de Ciencias, Lisbon (Portugal); Garcia-Herrera, R.; Gonzalez-Rouco, J.F. [Universidad Complutense de Madrid, Departamento de Fisica de la Tierra II, Facultad de C.C. Fisicas, Madrid (Spain)

    2010-12-15

    A previously defined automatic method is applied to reanalysis and present-day (1950-1989) forced simulations of the ECHO-G model in order to assess its performance in reproducing atmospheric blocking in the Northern Hemisphere. Unlike previous methodologies, critical parameters and thresholds to estimate blocking occurrence in the model are not calibrated with an observed reference, but objectively derived from the simulated climatology. The choice of model dependent parameters allows for an objective definition of blocking and corrects for some intrinsic model bias, the difference between model and observed thresholds providing a measure of systematic errors in the model. The model captures reasonably the main blocking features (location, amplitude, annual cycle and persistence) found in observations, but reveals a relative southward shift of Eurasian blocks and an overall underestimation of blocking activity, especially over the Euro-Atlantic sector. Blocking underestimation mostly arises from the model inability to generate long persistent blocks with the observed frequency. This error is mainly attributed to a bias in the basic state. The bias pattern consists of excessive zonal winds over the Euro-Atlantic sector and a southward shift at the exit zone of the jet stream extending into in the Eurasian continent, that are more prominent in cold and warm seasons and account for much of Euro-Atlantic and Eurasian blocking errors, respectively. It is shown that other widely used blocking indices or empirical observational thresholds may not give a proper account of the lack of realism in the model as compared with the proposed method. This suggests that in addition to blocking changes that could be ascribed to natural variability processes or climate change signals in the simulated climate, attention should be paid to significant departures in the diagnosis of phenomena that can also arise from an inappropriate adaptation of detection methods to the climate of the

  11. Aviation Safety Simulation Model

    Science.gov (United States)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  12. Simulation of spheroidisation of elongated Si-particle in Al-Si alloys by the phase-field model

    International Nuclear Information System (INIS)

    Kovacevic, I.

    2008-01-01

    The application of the phase-field model for spheroidisation of undissolvable particles during high-temperature treatment of alloys is pointed out. Modelling of the spheroidisation of elongated Si-particles during annealing of Al-Si alloy is elaborated in this paper. The driving force for spheroidisation is the minimization of the total free-energy of the system or the minimization of the ratio between the interface areas and the particle volumes. The spheroidisation kinetics of elongated Si-particle for binary Al-Si system during homogenisation of aluminium alloys simulated by the phase-field model is demonstrated. The influences of the interface energy and the homogenisation temperature on the spheroidisation kinetics is presented. The lack of knowledge of the interface energy anisotropy between Si-particle and the aluminium phase is the only reason for using isotropic interface energy in simulations. The thermodynamic driving force for the phase transformation of the silicon into the aluminium phase is computed from the data obtained from the JMatPro software for aluminium alloys

  13. Motor unit firing rate patterns during voluntary muscle force generation: a simulation study

    Science.gov (United States)

    Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.

    2014-04-01

    Objective. Muscle force is generated by a combination of motor unit (MU) recruitment and changes in the discharge rate of active MUs. There have been two basic MU recruitment and firing rate paradigms reported in the literature, which describe the control of the MUs during force generation. The first (termed the reverse ‘onion skin’ profile), exhibits lower firing rates for lower threshold units, with higher firing rates occurring in higher threshold units. The second (termed the ‘onion skin’ profile), exhibits an inverse arrangement, with lower threshold units reaching higher firing rates. Approach. Using a simulation of the MU activity in a hand muscle, this study examined the force generation capacity and the variability of the muscle force magnitude at different excitation levels of the MU pool under these two different MU control paradigms. We sought to determine which rate/recruitment scheme was more efficient for force generation, and which scheme gave rise to the lowest force variability. Main results. We found that the force output of both firing patterns leads to graded force output at low excitation levels, and that the force generation capacity of the two different paradigms diverged around 50% excitation. In the reverse ‘onion skin’ pattern, at 100% excitation, the force output reached up to 88% of maximum force, whereas for the ‘onion skin’ pattern, the force output only reached up to 54% of maximum force at 100% excitation. The force variability was lower at the low to moderate force levels under the ‘onion skin’ paradigm than with the reverse ‘onion skin’ firing patterns, but this effect was reversed at high force levels. Significance. This study captures the influence of MU recruitment and firing rate organization on muscle force properties, and our results suggest that the different firing organizations can be beneficial at different levels of voluntary muscle force generation and perhaps for different tasks.

  14. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  15. Simulation of stationary and transient geopotential-height eddies in January and July with a spectral general circulation model

    International Nuclear Information System (INIS)

    Malone, R.C.; Pitcher, E.J.; Blackmon, M.L.; Puri, K.; Bourke, W.

    1984-01-01

    We examine the characteristics of stationary and transient eddies in the geopotential-height field as simulated by a spectral general circulation model. The model possessess a realistic, but smootheed, topography. Two simulations with perpetual January and July forcing by climatological sea surface temperatures, sea ice, and insolation were extended to 1200 days, of which the final 600 days were used for the results in this study. We find that the stationary waves are well simulated in both seasons in the Northern Hemisphere, where strong forcing by orography and land-sea thermal contrast exists. However, in the Southern Hemisphere, where no continents are present in midlatitudes, the stationary waves have smaller amplitude than that observed in both seasons. In both hemispheres, the transient eddies are well simulated in the winter season but are too weak in the summer season. The model fails to generate a sufficiently intense summertime midlatitude jet in either hemisphere, and this results in a low level of transient activity. The variance in the tropical troposphere is very well simulated. We examine the geographical distribution and vertical structure of the transient eddies. Fourier analysis in zonal wavenumber and temporal filtering are used to display the wavelength and frequency characteristics of the eddies

  16. On the response of Indian summer monsoon to aerosol forcing in CMIP5 model simulations

    Science.gov (United States)

    Sanap, S. D.; Pandithurai, G.; Manoj, M. G.

    2015-11-01

    The Indo-Gangetic plains (IGP), which hosts 1/7th of the world population, has undergone significant anomalous changes in hydrological cycle in recent decades. In present study, the role of aerosols in the precipitation changes over IGP region is investigated using Coupled Model Inter-comparison Project-5 (CMIP5) experiments with adequate representation of aerosols in state-of-the art climate models. The climatological sea surface temperature experiments are used to explore the relative impact of the aerosols. The diagnostic analysis on representation of aerosols and precipitation over Indian region was investigated in CMIP5 models. After the evaluation, multi-model ensemble was used for further analysis. It is revealed from the analysis that aerosol-forcing plays an important role in observed weakening of the monsoon circulation and decreased precipitation over the IGP region. The significant cooling of the continental Indian region (mainly IGP) caused by the aerosols leads to reduction in land sea temperature contrast, which further leads to weakening of monsoon overturning circulation and reduction in precipitation.

  17. The CSIRO Mk3L climate system model version 1.0 – Part 2: Response to external forcings

    Directory of Open Access Journals (Sweden)

    S. J. Phipps

    2012-05-01

    Full Text Available The CSIRO Mk3L climate system model is a coupled general circulation model, designed primarily for millennial-scale climate simulation and palaeoclimate research. Mk3L includes components which describe the atmosphere, ocean, sea ice and land surface, and combines computational efficiency with a stable and realistic control climatology. It is freely available to the research community. This paper evaluates the response of the model to external forcings which correspond to past and future changes in the climate system.

    A simulation of the mid-Holocene climate is performed, in which changes in the seasonal and meridional distribution of incoming solar radiation are imposed. Mk3L correctly simulates increased summer temperatures at northern mid-latitudes and cooling in the tropics. However, it is unable to capture some of the regional-scale features of the mid-Holocene climate, with the precipitation over Northern Africa being deficient. The model simulates a reduction of between 7 and 15% in the amplitude of El Niño-Southern Oscillation, a smaller decrease than that implied by the palaeoclimate record. However, the realism of the simulated ENSO is limited by the model's relatively coarse spatial resolution.

    Transient simulations of the late Holocene climate are then performed. The evolving distribution of insolation is imposed, and an acceleration technique is applied and assessed. The model successfully captures the temperature changes in each hemisphere and the upward trend in ENSO variability. However, the lack of a dynamic vegetation scheme does not allow it to simulate an abrupt desertification of the Sahara.

    To assess the response of Mk3L to other forcings, transient simulations of the last millennium are performed. Changes in solar irradiance, atmospheric greenhouse gas concentrations and volcanic emissions are applied to the model. The model is again broadly successful at simulating larger-scale changes in the

  18. A cutting force model for micromilling applications

    DEFF Research Database (Denmark)

    Bissacco, Giuliano; Hansen, Hans Nørgaard; De Chiffre, Leonardo

    2006-01-01

    In micro milling the maximum uncut chip thickness is often smaller than the cutting edge radius. This paper introduces a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge radius.......In micro milling the maximum uncut chip thickness is often smaller than the cutting edge radius. This paper introduces a new cutting force model for ball nose micro milling that is capable of taking into account the effect of the edge radius....

  19. The influence of environmental forcing on biodiversity and extinction in a resource competition model.

    Science.gov (United States)

    Vakulenko, Sergey A; Sudakov, Ivan; Mander, Luke

    2018-03-01

    In this paper, we study a model of many species that compete, directly or indirectly, for a pool of common resources under the influence of periodic, stochastic, and/or chaotic environmental forcing. Using numerical simulations, we find the number and sequence of species going extinct when the community is initially packed with a large number of species of random initial densities. Thereby, any species with a density below a given threshold is regarded to be extinct.

  20. The influence of environmental forcing on biodiversity and extinction in a resource competition model

    Science.gov (United States)

    Vakulenko, Sergey A.; Sudakov, Ivan; Mander, Luke

    2018-03-01

    In this paper, we study a model of many species that compete, directly or indirectly, for a pool of common resources under the influence of periodic, stochastic, and/or chaotic environmental forcing. Using numerical simulations, we find the number and sequence of species going extinct when the community is initially packed with a large number of species of random initial densities. Thereby, any species with a density below a given threshold is regarded to be extinct.

  1. EXPERIMENTAL INVESTIGATION OF THE IMPACT OF FLIGHT SPEED ON DRAG FORCE IN THE AUTOGYRO MODEL

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż

    2015-05-01

    Full Text Available The paper presents the experimental investigation of the impact of velocity on drag force in the autogyro model. One of the methods which simulate motion of the flying object consists of using a wind tunnel. In this case, test object is stationary and the motion of air is forced by e.g. a special fan. The costs related with renting and the wind tunnel service are still very high. In this paper, the motion of the autogyro with respect to the air, was produced by fixing this model with scale to measure the drag force on the passenger car roof. The position of the object relative to the vehicle was checked on the basis of numerical analysis of the airflow around this vehicle. Based on the investigations, the field of velocity and pressure, and air flow formed around the contour of the vehicle which have been chosen, were determined. In addition, the drag force characteristic was determined as a function of velocity and it was compared with the values from the numerical analysis. This research is a form of verifying opportunities for this type of research on vehicles. The conclusions derived from the analysis of the results will be used in the future to carry out further research.

  2. High-resolution nested model simulations of the climatological circulation in the southeastern Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    S. Brenner

    2003-01-01

    Full Text Available As part of the Mediterranean Forecasting System Pilot Project (MFSPP we have implemented a high-resolution (2 km horizontal grid, 30 sigma levels version of the Princeton Ocean Model for the southeastern corner of the Mediterranean Sea. The domain extends 200 km offshore and includes the continental shelf and slope, and part of the open sea. The model is nested in an intermediate resolution (5.5 km grid model that covers the entire Levantine, Ionian, and Aegean Sea. The nesting is one way so that velocity, temperature, and salinity along the boundaries are interpolated from the relevant intermediate model variables. An integral constraint is applied so that the net mass flux across the open boundaries is identical to the net flux in the intermediate model. The model is integrated for three perpetual years with surface forcing specified from monthly mean climatological wind stress and heat fluxes. The model is stable and spins up within the first year to produce a repeating seasonal cycle throughout the three-year integration period. While there is some internal variability evident in the results, it is clear that, due to the relatively small domain, the results are strongly influenced by the imposed lateral boundary conditions. The results closely follow the simulation of the intermediate model. The main improvement is in the simulation over the narrow shelf region, which is not adequately resolved by the coarser grid model. Comparisons with direct current measurements over the shelf and slope show reasonable agreement despite the limitations of the climatological forcing. The model correctly simulates the direction and the typical speeds of the flow over the shelf and slope, but has difficulty properly re-producing the seasonal cycle in the speed.Key words. Oceanography: general (continental shelf processes; numerical modelling; ocean prediction

  3. Cross-sectional neck response of a total human body FE model during simulated frontal and side automobile impacts.

    Science.gov (United States)

    White, Nicholas A; Moreno, Daniel P; Gayzik, F Scott; Stitzel, Joel D

    2015-01-01

    Human body finite element (FE) models are beginning to play a more prevalent role in the advancement of automotive safety. A methodology has been developed to evaluate neck response at multiple levels in a human body FE model during simulated automotive impacts. Three different impact scenarios were simulated: a frontal impact of a belted driver with airbag deployment, a frontal impact of a belted passenger without airbag deployment and an unbelted side impact sled test. Cross sections were created at each vertebral level of the cervical spine to calculate the force and moment contributions of different anatomical components of the neck. Adjacent level axial force ratios varied between 0.74 and 1.11 and adjacent level bending moment ratios between 0.55 and 1.15. The present technique is ideal for comparing neck forces and moments to existing injury threshold values, calculating injury criteria and for better understanding the biomechanical mechanisms of neck injury and load sharing during sub-injurious and injurious loading.

  4. Vortex forcing model for turbulent flow over spanwise-heterogeneous topogrpahies: scaling arguments and similarity solution

    Science.gov (United States)

    Anderson, William; Yang, Jianzhi

    2017-11-01

    Spanwise surface heterogeneity beneath high-Reynolds number, fully-rough wall turbulence is known to induce mean secondary flows in the form of counter-rotating streamwise vortices. The secondary flows are a manifestation of Prandtl's secondary flow of the second kind - driven and sustained by spatial heterogeneity of components of the turbulent (Reynolds averaged) stress tensor. The spacing between adjacent surface heterogeneities serves as a control on the spatial extent of the counter-rotating cells, while their intensity is controlled by the spanwise gradient in imposed drag (where larger gradients associated with more dramatic transitions in roughness induce stronger cells). In this work, we have performed an order of magnitude analysis of the mean (Reynolds averaged) streamwise vorticity transport equation, revealing the scaling dependence of circulation upon spanwise spacing. The scaling arguments are supported by simulation data. Then, we demonstrate that mean streamwise velocity can be predicted a priori via a similarity solution to the mean streamwise vorticity transport equation. A vortex forcing term was used to represent the affects of spanwise topographic heterogeneity within the flow. Efficacy of the vortex forcing term was established with large-eddy simulation cases, wherein vortex forcing model parameters were altered to capture different values of spanwise spacing.

  5. Aspect of ECMWF downscaled Regional Climate Modeling in simulating Indian summer monsoon rainfall and dependencies on lateral boundary conditions

    Science.gov (United States)

    Ghosh, Soumik; Bhatla, R.; Mall, R. K.; Srivastava, Prashant K.; Sahai, A. K.

    2018-03-01

    Climate model faces considerable difficulties in simulating the rainfall characteristics of southwest summer monsoon. In this study, the dynamical downscaling of European Centre for Medium-Range Weather Forecast's (ECMWF's) ERA-Interim (EIN15) has been utilized for the simulation of Indian summer monsoon (ISM) through the Regional Climate Model version 4.3 (RegCM-4.3) over the South Asia Co-Ordinated Regional Climate Downscaling EXperiment (CORDEX) domain. The complexities of model simulation over a particular terrain are generally influenced by factors such as complex topography, coastal boundary, and lack of unbiased initial and lateral boundary conditions. In order to overcome some of these limitations, the RegCM-4.3 is employed for simulating the rainfall characteristics over the complex topographical conditions. For reliable rainfall simulation, implementations of numerous lower boundary conditions are forced in the RegCM-4.3 with specific horizontal grid resolution of 50 km over South Asia CORDEX domain. The analysis is considered for 30 years of climatological simulation of rainfall, outgoing longwave radiation (OLR), mean sea level pressure (MSLP), and wind with different vertical levels over the specified region. The dependency of model simulation with the forcing of EIN15 initial and lateral boundary conditions is used to understand the impact of simulated rainfall characteristics during different phases of summer monsoon. The results obtained from this study are used to evaluate the activity of initial conditions of zonal wind circulation speed, which causes an increase in the uncertainty of regional model output over the region under investigation. Further, the results showed that the EIN15 zonal wind circulation lacks sufficient speed over the specified region in a particular time, which was carried forward by the RegCM output and leads to a disrupted regional simulation in the climate model.

  6. Quadriceps force and anterior tibial force occur obviously later than vertical ground reaction force: a simulation study

    OpenAIRE

    Ueno, Ryo; Ishida, Tomoya; Yamanaka, Masanori; Taniguchi, Shohei; Ikuta, Ryohei; Samukawa, Mina; Saito, Hiroshi; Tohyama, Harukazu

    2017-01-01

    Background: Although it is well known that quadriceps force generates anterior tibial force, it has been unclear whether quadriceps force causes great anterior tibial force during the early phase of a landing task. The purpose of the present study was to examine whether the quadriceps force induced great anterior tibial force during the early phase of a landing task. Methods: Fourteen young, healthy, female subjects performed a single-leg landing task. Muscle force and anterior tibial force w...

  7. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    Science.gov (United States)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  8. Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial

    Directory of Open Access Journals (Sweden)

    A. Robinson

    2011-04-01

    Full Text Available Using a new approach to force an ice sheet model, we performed an ensemble of simulations of the Greenland Ice Sheet evolution during the last two glacial cycles, with emphasis on the Eemian Interglacial. This ensemble was generated by perturbing four key parameters in the coupled regional climate-ice sheet model and by introducing additional uncertainty in the prescribed "background" climate change. The sensitivity of the surface melt model to climate change was determined to be the dominant driver of ice sheet instability, as reflected by simulated ice sheet loss during the Eemian Interglacial period. To eliminate unrealistic parameter combinations, constraints from present-day and paleo information were applied. The constraints include (i the diagnosed present-day surface mass balance partition between surface melting and ice discharge at the margin, (ii the modeled present-day elevation at GRIP; and (iii the modeled elevation reduction at GRIP during the Eemian. Using these three constraints, a total of 360 simulations with 90 different model realizations were filtered down to 46 simulations and 20 model realizations considered valid. The paleo constraint eliminated more sensitive melt parameter values, in agreement with the surface mass balance partition assumption. The constrained simulations resulted in a range of Eemian ice loss of 0.4–4.4 m sea level equivalent, with a more likely range of about 3.7–4.4 m sea level if the GRIP δ18O isotope record can be considered an accurate proxy for the precipitation-weighted annual mean temperatures.

  9. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation

    NARCIS (Netherlands)

    Vrugt, J.A.; Braak, ter C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A.

    2008-01-01

    There is increasing consensus in the hydrologic literature that an appropriate framework for streamflow forecasting and simulation should include explicit recognition of forcing and parameter and model structural error. This paper presents a novel Markov chain Monte Carlo (MCMC) sampler, entitled

  10. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  11. Toward the description of electrostatic interactions between globular proteins: potential of mean force in the primitive model.

    Science.gov (United States)

    Dahirel, Vincent; Jardat, Marie; Dufrêche, Jean-François; Turq, Pierre

    2007-09-07

    Monte Carlo simulations are used to calculate the exact potential of mean force between charged globular proteins in aqueous solution. The aim of the present paper is to study the influence of the ions of the added salt on the effective interaction between these nanoparticles. The charges of the model proteins, either identical or opposite, are either central or distributed on a discrete pattern. Contrarily to Poisson-Boltzmann predictions, attractive, and repulsive direct forces between proteins are not screened similarly. Moreover, it has been shown that the relative orientations of the charge patterns strongly influence salt-mediated interactions. More precisely, for short distances between the proteins, ions enhance the difference of the effective forces between (i) like-charged and oppositely charged proteins, (ii) attractive and repulsive relative orientations of the proteins, which may affect the selectivity of protein/protein recognition. Finally, such results observed with the simplest models are applied to a more elaborate one to demonstrate their generality.

  12. Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations

    Science.gov (United States)

    Sun, Cheng; Li, Jianping; Kucharski, Fred; Xue, Jiaqing; Li, Xiang

    2018-04-01

    The spatial structure of Atlantic multidecadal oscillation (AMO) is analyzed and compared between the observations and simulations from slab ocean models (SOMs) and fully coupled models. The observed sea surface temperature (SST) pattern of AMO is characterized by a basin-wide monopole structure, and there is a significantly high degree of spatial coherence of decadal SST variations across the entire North Atlantic basin. The observed SST anomalies share a common decadal-scale signal, corresponding to the basin-wide average (i. e., the AMO). In contrast, the simulated AMO in SOMs (AMOs) exhibits a tripole-like structure, with the mid-latitude North Atlantic SST showing an inverse relationship with other parts of the basin, and the SOMs fail to reproduce the observed strong spatial coherence of decadal SST variations associated with the AMO. The observed spatial coherence of AMO SST anomalies is identified as a key feature that can be used to distinguish the AMO mechanism. The tripole-like SST pattern of AMOs in SOMs can be largely explained by the atmosphere-forced thermodynamics mechanism due to the surface heat flux changes associated with the North Atlantic Oscillation (NAO). The thermodynamic forcing of AMOs by the NAO gives rise to a simultaneous inverse NAO-AMOs relationship at both interannual and decadal timescales and a seasonal phase locking of the AMOs variability to the cold season. However, the NAO-forced thermodynamics mechanism cannot explain the observed NAO-AMO relationship and the seasonal phase locking of observed AMO variability to the warm season. At decadal timescales, a strong lagged relationship between NAO and AMO is observed, with the NAO leading by up to two decades, while the simultaneous correlation of NAO with AMO is weak. This lagged relationship and the spatial coherence of AMO can be well understood from the view point of ocean dynamics. A time-integrated NAO index, which reflects the variations in Atlantic meridional overturning

  13. MHD simulation study of compact toroid injection into magnetized plasmas

    International Nuclear Information System (INIS)

    Suzuki, Yoshio; Kishimoto, Yasuaki

    2000-01-01

    To understand the fuelling process in a fusion device by a compact toroid (CT) plasmoid injection method, we have carried out MHD numerical simulations where a spheromak-like CT (SCT) is injected into a magnetized target plasma region. So far, we revealed that the penetration depth of the SCT plasma becomes shorter than that estimated from the conducting sphere (CS) model, because in the simulation the Lorentz force of the target magnetic field sequentially decelerates the injected SCT while in the CS model only the magnetic pressure force acts as the deceleration mechanism. In this study, we represent the new theoretical model where the injected SCT is decelerated by both the magnetic pressure force and the magnetic tension force (we call it the non-slipping sphere (NS) model) and investigate in detail the deceleration mechanism of the SCT by comparison with simulation results. As a result, it is found that the decrease of the SCT kinetic energy in the simulation coincides with that in the NS model more than in the CS model. It means that not only the magnetic pressure force but also the magnetic tension force acts as the deceleration mechanism of the SCT. Furthermore, it is revealed that magnetic reconnection between the SCT magnetic field and the target magnetic field plays a role to relax the SCT deceleration. (author)

  14. The Hysteresis Performance and Restoring Force Model for Corroded Reinforced Concrete Frame Columns

    Directory of Open Access Journals (Sweden)

    Guifeng Zhao

    2016-01-01

    Full Text Available A numerical simulation of the hysteresis performance of corroded reinforced concrete (RC frame columns was conducted. Moreover, the results obtained were compared with experimental data. On this basis, a degenerated three-linearity (D-TRI restoring force model was established which could reflect the hysteresis performance of corroded RC frame columns through theoretical analysis and data fitting. Results indicated that the hysteretic bearing capacity of frame columns decreased significantly due to corrosion of the rebar. In view of the characteristics of the hysteresis curve, the plumpness of the hysteresis loop for frame columns decreased and shrinkage increased with increasing rebar corrosion. All these illustrated that the seismic energy dissipation performance of frame columns reduced but their brittleness increased. As for the features of the skeleton curve, the trends for corroded and noncorroded members were basically consistent and roughly corresponded to the features of a trilinear equivalent model. Thereby, the existing Clough hysteresis rule can be used to establish the restoring force model applicable to corroded RC frame columns based on that of the noncorroded RC members. The calculated skeleton curve and hysteresis curve of corroded RC frame columns using the D-TRI model are closer to the experimental results.

  15. An Advanced Simulation Framework for Parallel Discrete-Event Simulation

    Science.gov (United States)

    Li, P. P.; Tyrrell, R. Yeung D.; Adhami, N.; Li, T.; Henry, H.

    1994-01-01

    Discrete-event simulation (DEVS) users have long been faced with a three-way trade-off of balancing execution time, model fidelity, and number of objects simulated. Because of the limits of computer processing power the analyst is often forced to settle for less than desired performances in one or more of these areas.

  16. Agent-based modeling traction force mediated compaction of cell-populated collagen gels using physically realistic fibril mechanics.

    Science.gov (United States)

    Reinhardt, James W; Gooch, Keith J

    2014-02-01

    Agent-based modeling was used to model collagen fibrils, composed of a string of nodes serially connected by links that act as Hookean springs. Bending mechanics are implemented as torsional springs that act upon each set of three serially connected nodes as a linear function of angular deflection about the central node. These fibrils were evaluated under conditions that simulated axial extension, simple three-point bending and an end-loaded cantilever. The deformation of fibrils under axial loading varied <0.001% from the analytical solution for linearly elastic fibrils. For fibrils between 100 μm and 200 μm in length experiencing small deflections, differences between simulated deflections and their analytical solutions were <1% for fibrils experiencing three-point bending and <7% for fibrils experiencing cantilever bending. When these new rules for fibril mechanics were introduced into a model that allowed for cross-linking of fibrils to form a network and the application of cell traction force, the fibrous network underwent macroscopic compaction and aligned between cells. Further, fibril density increased between cells to a greater extent than that observed macroscopically and appeared similar to matrical tracks that have been observed experimentally in cell-populated collagen gels. This behavior is consistent with observations in previous versions of the model that did not allow for the physically realistic simulation of fibril mechanics. The significance of the torsional spring constant value was then explored to determine its impact on remodeling of the simulated fibrous network. Although a stronger torsional spring constant reduced the degree of quantitative remodeling that occurred, the inclusion of torsional springs in the model was not necessary for the model to reproduce key qualitative aspects of remodeling, indicating that the presence of Hookean springs is essential for this behavior. These results suggest that traction force mediated matrix

  17. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    Science.gov (United States)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  18. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    Science.gov (United States)

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  19. Modelling and Simulation of Novel Three Arm MEMS Actuators and Its Application

    International Nuclear Information System (INIS)

    Pandiyan, Jagadeesh; Umapathy, M; Balachandar, S; Arumugam, M; Ramasamy, S; Gajjar, Nilesh C

    2006-01-01

    This paper presents the design and Finite Element Model (FEM) simulation of a novel electrothermal microactuators and arrays. It is a single material microactuator which deflects at its tips by differential thermal expansion of its constituent parts. The electrothermal actuator consists of three thin arms, three thin blades and two electrical connection pads. The goal of this coupled electrothermal actuator design was to multiply the force by adding the individual contributions of all the three actuators. The difference in magnitude of blade deflections depends on the geometrical characteristics of the actuators. The thermal deformation and thermal stability are easily controllable. The simulation employing ANSYS/Multiphysics software results include force, deflection, thermal stress, ideal electrothermal actuator and array geometries. The main advantage of this electrothermal actuator is large deflection of blades with very low actuation voltage in comparison with electrostatic actuators. A typical application in a micromirror is shown to illustrate the utility of these actuators and arrays

  20. Fast Monte Carlo-simulator with full collimator and detector response modelling for SPECT

    International Nuclear Information System (INIS)

    Sohlberg, A.O.; Kajaste, M.T.

    2012-01-01

    Monte Carlo (MC)-simulations have proved to be a valuable tool in studying single photon emission computed tomography (SPECT)-reconstruction algorithms. Despite their popularity, the use of Monte Carlo-simulations is still often limited by their large computation demand. This is especially true in situations where full collimator and detector modelling with septal penetration, scatter and X-ray fluorescence needs to be included. This paper presents a rapid and simple MC-simulator, which can effectively reduce the computation times. The simulator was built on the convolution-based forced detection principle, which can markedly lower the number of simulated photons. Full collimator and detector response look-up tables are pre-simulated and then later used in the actual MC-simulations to model the system response. The developed simulator was validated by comparing it against 123 I point source measurements made with a clinical gamma camera system and against 99m Tc software phantom simulations made with the SIMIND MC-package. The results showed good agreement between the new simulator, measurements and the SIMIND-package. The new simulator provided near noise-free projection data in approximately 1.5 min per projection with 99m Tc, which was less than one-tenth of SIMIND's time. The developed MC-simulator can markedly decrease the simulation time without sacrificing image quality. (author)

  1. Mathematical modeling and simulation in animal health. Part I: Moving beyond pharmacokinetics.

    Science.gov (United States)

    Riviere, J E; Gabrielsson, J; Fink, M; Mochel, J

    2016-06-01

    The application of mathematical modeling to problems in animal health has a rich history in the form of pharmacokinetic modeling applied to problems in veterinary medicine. Advances in modeling and simulation beyond pharmacokinetics have the potential to streamline and speed-up drug research and development programs. To foster these goals, a series of manuscripts will be published with the following goals: (i) expand the application of modeling and simulation to issues in veterinary pharmacology; (ii) bridge the gap between the level of modeling and simulation practiced in human and veterinary pharmacology; (iii) explore how modeling and simulation concepts can be used to improve our understanding of common issues not readily addressed in human pharmacology (e.g. breed differences, tissue residue depletion, vast weight ranges among adults within a single species, interspecies differences, small animal species research where data collection is limited to sparse sampling, availability of different sampling matrices); and (iv) describe how quantitative pharmacology approaches could help understanding key pharmacokinetic and pharmacodynamic characteristics of a drug candidate, with the goal of providing explicit, reproducible, and predictive evidence for optimizing drug development plans, enabling critical decision making, and eventually bringing safe and effective medicines to patients. This study introduces these concepts and introduces new approaches to modeling and simulation as well as clearly articulate basic assumptions and good practices. The driving force behind these activities is to create predictive models that are based on solid physiological and pharmacological principles as well as adhering to the limitations that are fundamental to applying mathematical and statistical models to biological systems. © 2015 John Wiley & Sons Ltd.

  2. Assessment of Southern Ocean water mass circulation and characteristics in CMIP5 models: Historical bias and forcing response

    Science.gov (United States)

    Sallée, J.-B.; Shuckburgh, E.; Bruneau, N.; Meijers, A. J. S.; Bracegirdle, T. J.; Wang, Z.; Roy, T.

    2013-04-01

    The ability of the models contributing to the fifth Coupled Models Intercomparison Project (CMIP5) to represent the Southern Ocean hydrological properties and its overturning is investigated in a water mass framework. Models have a consistent warm and light bias spread over the entire water column. The greatest bias occurs in the ventilated layers, which are volumetrically dominated by mode and intermediate layers. The ventilated layers have been observed to have a strong fingerprint of climate change and to impact climate by sequestrating a significant amount of heat and carbon dioxide. The mode water layer is poorly represented in the models and both mode and intermediate water have a significant fresh bias. Under increased radiative forcing, models simulate a warming and lightening of the entire water column, which is again greatest in the ventilated layers, highlighting the importance of these layers for propagating the climate signal into the deep ocean. While the intensity of the water mass overturning is relatively consistent between models, when compared to observation-based reconstructions, they exhibit a slightly larger rate of overturning at shallow to intermediate depths, and a slower rate of overturning deeper in the water column. Under increased radiative forcing, atmospheric fluxes increase the rate of simulated upper cell overturning, but this increase is counterbalanced by diapycnal fluxes, including mixed-layer horizontal mixing, and mostly vanishes.

  3. Quantum–classical simulations of the electronic stopping force and charge on slow heavy channelling ions in metals

    International Nuclear Information System (INIS)

    Race, C P; Mason, D R; Foo, M H F; Foulkes, W M C; Sutton, A P; Horsfield, A P

    2013-01-01

    By simulating the passage of heavy ions along open channels in a model crystalline metal using semi-classical Ehrenfest dynamics we directly investigate the nature of non-adiabatic electronic effects. Our time-dependent tight-binding approach incorporates both an explicit quantum mechanical electronic system and an explicit representation of a set of classical ions. The coupled evolution of the ions and electrons allows us to explore phenomena that lie beyond the approximations made in classical molecular dynamics simulations and in theories of electronic stopping. We report a velocity-dependent charge-localization phenomenon not predicted by previous theoretical treatments of channelling. This charge localization can be attributed to the excitation of electrons into defect states highly localized on the channelling ion. These modes of excitation only become active when the frequency at which the channelling ion moves from interstitial point to equivalent interstitial point matches the frequency corresponding to excitations from the Fermi level into the localized states. Examining the stopping force exerted on the channelling ion by the electronic system, we find broad agreement with theories of slow ion stopping (a stopping force proportional to velocity) for a low velocity channelling ion (up to about 0.5 nm fs −1 from our calculations), and a reduction in stopping power attributable to the charge localization effect at higher velocities. By exploiting the simplicity of our electronic structure model we are able to illuminate the physics behind the excitation processes that we observe and present an intuitive picture of electronic stopping from a real-space, chemical perspective. (paper)

  4. Objective Assessment of Laparoscopic Force and Psychomotor Skills in a Novel Virtual Reality-Based Haptic Simulator.

    Science.gov (United States)

    Prasad, M S Raghu; Manivannan, Muniyandi; Manoharan, Govindan; Chandramohan, S M

    2016-01-01

    Most of the commercially available virtual reality-based laparoscopic simulators do not effectively evaluate combined psychomotor and force-based laparoscopic skills. Consequently, the lack of training on these critical skills leads to intraoperative errors. To assess the effectiveness of the novel virtual reality-based simulator, this study analyzed the combined psychomotor (i.e., motion or movement) and force skills of residents and expert surgeons. The study also examined the effectiveness of real-time visual force feedback and tool motion during training. Bimanual fundamental (i.e., probing, pulling, sweeping, grasping, and twisting) and complex tasks (i.e., tissue dissection) were evaluated. In both tasks, visual feedback on applied force and tool motion were provided. The skills of the participants while performing the early tasks were assessed with and without visual feedback. Participants performed 5 repetitions of fundamental and complex tasks. Reaction force and instrument acceleration were used as metrics. Surgical Gastroenterology, Government Stanley Medical College and Hospital; Institute of Surgical Gastroenterology, Madras Medical College and Rajiv Gandhi Government General Hospital. Residents (N = 25; postgraduates and surgeons with 4 and ≤10 years of laparoscopic surgery). Residents applied large forces compared with expert surgeons and performed abrupt tool movements (p < 0.001). However, visual + haptic feedback improved the performance of residents (p < 0.001). In complex tasks, visual + haptic feedback did not influence the applied force of expert surgeons, but influenced their tool motion (p < 0.001). Furthermore, in complex tissue sweeping task, expert surgeons applied more force, but were within the tissue damage limits. In both groups, exertion of large forces and abrupt tool motion were observed during grasping, probing or pulling, and tissue sweeping maneuvers (p < 0.001). Modern day curriculum-based training should evaluate the skills

  5. Active Design Method for the Static Characteristics of a Piezoelectric Six-Axis Force/Torque Sensor

    OpenAIRE

    Liu, Jun; Li, Min; Qin, Lan; Liu, Jingcheng

    2014-01-01

    To address the bottleneck issues of an elastic-style six-axis force/torque sensor (six-axis force sensor), this work proposes a no-elastic piezoelectric six-axis force sensor. The operating principle of the piezoelectric six-axis force sensor is analyzed, and a structural model is constructed. The static-active design theory of the piezoelectric six-axis force sensor is established, including a static analytical/mathematical model and numerical simulation model (finite element model). A piezo...

  6. Mechanism of force mode dip-pen nanolithography

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Haijun, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Interfacial Water Division and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Xie, Hui; Rong, Weibin; Sun, Lining [State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150080 (China); Wu, Haixia; Guo, Shouwu, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn [Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240 (China); Wang, Huabin, E-mail: yanghaijun@sinap.ac.cn, E-mail: swguo@sjtu.edu.cn, E-mail: wanghuabin@cigit.ac.cn [Centre for Tetrahertz Research, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China)

    2014-05-07

    In this work, the underlying mechanism of the force mode dip-pen nanolithography (FMDPN) is investigated in depth by analyzing force curves, tapping mode deflection signals, and “Z-scan” voltage variations during the FMDPN. The operation parameters including the relative “trigger threshold” and “surface delay” parameters are vital to control the loading force and dwell time for ink deposition during FMDPN. A model is also developed to simulate the interactions between the atomic force microscope tip and soft substrate during FMDPN, and verified by its good performance in fitting our experimental data.

  7. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    Science.gov (United States)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  8. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  9. Three-dimensional lattice Boltzmann model for immiscible two-phase flow simulations.

    Science.gov (United States)

    Liu, Haihu; Valocchi, Albert J; Kang, Qinjun

    2012-04-01

    We present an improved three-dimensional 19-velocity lattice Boltzmann model for immisicible binary fluids with variable viscosity and density ratios. This model uses a perturbation step to generate the interfacial tension and a recoloring step to promote phase segregation and maintain surfaces. A generalized perturbation operator is derived using the concept of a continuum surface force together with the constraints of mass and momentum conservation. A theoretical expression for the interfacial tension is determined directly without any additional analysis and assumptions. The recoloring algorithm proposed by Latva-Kokko and Rothman is applied for phase segregation, which minimizes the spurious velocities and removes lattice pinning. This model is first validated against the Laplace law for a stationary bubble. It is found that the interfacial tension is predicted well for density ratios up to 1000. The model is then used to simulate droplet deformation and breakup in simple shear flow. We compute droplet deformation at small capillary numbers in the Stokes regime and find excellent agreement with the theoretical Taylor relation for the segregation parameter β=0.7. In the limit of creeping flow, droplet breakup occurs at a critical capillary number 0.35simulations and experiments. Droplet breakup can also be promoted by increasing the Reynolds number. Finally, we numerically investigate a single bubble rising under buoyancy force in viscous fluids for a wide range of Eötvös and Morton numbers. Numerical results are compared with theoretical predictions and experimental results, and satisfactory agreement is shown.

  10. Comparing wall modeled LES and prescribed boundary layer approach in infinite wind farm simulations

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Mikkelsen, Robert; Sørensen, Jens Nørkær

    2015-01-01

    be imposed to study the wake and dynamics of vortices. The methodology is used for simulation of interactions of an infinitely long wind farm with the neutral ABL. Flow statistics are compared with the WMLES computations in terms of mean velocity as well as higher order statistical moments. The results......This paper aims at presenting a simple and computationally fast method for simulation of the Atmospheric Boundary Layer (ABL) and comparing the results with the commonly used wall-modelled Large Eddy Simulation (WMLES). The simple method, called Prescribed Mean Shear and Turbulence (PMST) hereafter......, is based on imposing body forces over the whole domain to maintain a desired unsteady ow, where the ground is modeled as a slip-free boundary which in return hampers the need for grid refinement and/or wall modeling close to the solid walls. Another strength of this method besides being computationally...

  11. Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis

    Science.gov (United States)

    Bradley, James R.

    2012-01-01

    This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.

  12. raaSAFT: A framework enabling coarse-grained molecular dynamics simulations based on the SAFT- γ Mie force field

    Science.gov (United States)

    Ervik, Åsmund; Serratos, Guadalupe Jiménez; Müller, Erich A.

    2017-03-01

    We describe here raaSAFT, a Python code that enables the setup and running of coarse-grained molecular dynamics simulations in a systematic and efficient manner. The code is built on top of the popular HOOMD-blue code, and as such harnesses the computational power of GPUs. The methodology makes use of the SAFT- γ Mie force field, so the resulting coarse grained pair potentials are both closely linked to and consistent with the macroscopic thermodynamic properties of the simulated fluid. In raaSAFT both homonuclear and heteronuclear models are implemented for a wide range of compounds spanning from linear alkanes, to more complicated fluids such as water and alcohols, all the way up to nonionic surfactants and models of asphaltenes and resins. Adding new compounds as well as new features is made straightforward by the modularity of the code. To demonstrate the ease-of-use of raaSAFT, we give a detailed walkthrough of how to simulate liquid-liquid equilibrium of a hydrocarbon with water. We describe in detail how both homonuclear and heteronuclear compounds are implemented. To demonstrate the performance and versatility of raaSAFT, we simulate a large polymer-solvent mixture with 300 polystyrene molecules dissolved in 42 700 molecules of heptane, reproducing the experimentally observed temperature-dependent solubility of polystyrene. For this case we obtain a speedup of more than three orders of magnitude as compared to atomistically-detailed simulations.

  13. Three-Body Nuclear Forces from a Matrix Model

    CERN Document Server

    Hashimoto, Koji

    2010-01-01

    We compute three-body nuclear forces at short distances by using the nuclear matrix model of holographic QCD proposed in our previous paper with P. Yi. We find that the three-body forces at short distances are repulsive for (a) aligned three neutrons with averaged spins, and (b) aligned proton-proton-neutron / proton-neutron-neutron. These indicate that in dense states of neutrons such as cores of neutron stars, or in Helium-3 / tritium nucleus, the repulsive forces are larger than the ones estimated from two-body forces only.

  14. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data

    KAUST Repository

    McCabe, Matthew; Ershadi, Ali; Jimenez, C.; Miralles, Diego G.; Michel, D.; Wood, E. F.

    2016-01-01

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, four commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance.

    Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m−2; 0.65), followed

  15. The GEWEX LandFlux project: evaluation of model evaporation using tower-based and globally gridded forcing data

    KAUST Repository

    McCabe, Matthew

    2016-01-26

    Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, four commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance.

    Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m−2; 0.65), followed

  16. Potential of mean force analysis of the self-association of leucine-rich transmembrane α-helices: Difference between atomistic and coarse-grained simulations

    International Nuclear Information System (INIS)

    Nishizawa, Manami; Nishizawa, Kazuhisa

    2014-01-01

    Interaction of transmembrane (TM) proteins is important in many biological processes. Large-scale computational studies using coarse-grained (CG) simulations are becoming popular. However, most CG model parameters have not fully been calibrated with respect to lateral interactions of TM peptide segments. Here, we compare the potential of mean forces (PMFs) of dimerization of TM helices obtained using a MARTINI CG model and an atomistic (AT) Berger lipids-OPLS/AA model (AT OPLS ). For helical, tryptophan-flanked, leucine-rich peptides (WL15 and WALP15) embedded in a parallel configuration in an octane slab, the AT OPLS PMF profiles showed a shallow minimum (with a depth of approximately 3 kJ/mol; i.e., a weak tendency to dimerize). A similar analysis using the CHARMM36 all-atom model (AT CHARMM ) showed comparable results. In contrast, the CG analysis generally showed steep PMF curves with depths of approximately 16–22 kJ/mol, suggesting a stronger tendency to dimerize compared to the AT model. This CG > AT discrepancy in the propensity for dimerization was also seen for dilauroylphosphatidylcholine (DLPC)-embedded peptides. For a WL15 (and WALP15)/DLPC bilayer system, AT OPLS PMF showed a repulsive mean force for a wide range of interhelical distances, in contrast to the attractive forces observed in the octane system. The change from the octane slab to the DLPC bilayer also mitigated the dimerization propensity in the CG system. The dimerization energies of CG (AALALAA) 3 peptides in DLPC and dioleoylphosphatidylcholine bilayers were in good agreement with previous experimental data. The lipid headgroup, but not the length of the lipid tails, was a key causative factor contributing to the differences between octane and DLPC. Furthermore, the CG model, but not the AT model, showed high sensitivity to changes in amino acid residues located near the lipid-water interface and hydrophobic mismatch between the peptides and membrane. These findings may help interpret

  17. Simulations of ecosystem hydrological processes using a unified multi-scale model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofan; Liu, Chongxuan; Fang, Yilin; Hinkle, Ross; Li, Hong-Yi; Bailey, Vanessa; Bond-Lamberty, Ben

    2015-01-01

    This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

  18. Impact of ocean model resolution on CCSM climate simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kirtman, Ben P.; Rousset, Clement; Siqueira, Leo [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Coral Gables, FL (United States); Bitz, Cecilia [University of Washington, Department of Atmospheric Science, Seattle, WA (United States); Bryan, Frank; Dennis, John; Hearn, Nathan; Loft, Richard; Tomas, Robert; Vertenstein, Mariana [National Center for Atmospheric Research, Boulder, CO (United States); Collins, William [University of California, Berkeley, Berkeley, CA (United States); Kinter, James L.; Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Fairfax, VA (United States)

    2012-09-15

    interannual temperature variability is increased with the resolved eddies, and a notable increases in the amplitude of the El Nino and the Southern Oscillation is also detected. Changes in global temperature anomaly teleconnections and local air-sea feedbacks are also documented and show large changes in ocean-atmosphere coupling. In particular, local air-sea feedbacks are significantly modified by the increased ocean resolution. In the high-resolution simulation in the extra-tropics there is compelling evidence of stronger forcing of the atmosphere by SST variability arising from ocean dynamics. This coupling is very weak or absent in the low-resolution model. (orig.)

  19. Molecular dynamics simulation of subnanometric tool-workpiece contact on a force sensor-integrated fast tool servo for ultra-precision microcutting

    International Nuclear Information System (INIS)

    Cai, Yindi; Chen, Yuan-Liu; Shimizu, Yuki; Ito, So; Gao, Wei; Zhang, Liangchi

    2016-01-01

    Highlights: • Subnanometric contact between a diamond tool and a copper workpiece surface is investigated by MD simulation. • A multi-relaxation time technique is proposed to eliminate the influence of the atom vibrations. • The accuracy of the elastic-plastic transition contact depth estimation is improved by observing the residual defects. • The simulation results are beneficial for optimization of the next-generation microcutting instruments. - Abstract: This paper investigates the contact characteristics between a copper workpiece and a diamond tool in a force sensor-integrated fast tool servo (FS-FTS) for single point diamond microcutting and in-process measurement of ultra-precision surface forms of the workpiece. Molecular dynamics (MD) simulations are carried out to identify the subnanometric elastic-plastic transition contact depth, at which the plastic deformation in the workpiece is initiated. This critical depth can be used to optimize the FS-FTS as well as the cutting/measurement process. It is clarified that the vibrations of the copper atoms in the MD model have a great influence on the subnanometric MD simulation results. A multi-relaxation time method is then proposed to reduce the influence of the atom vibrations based on the fact that the dominant vibration component has a certain period determined by the size of the MD model. It is also identified that for a subnanometric contact depth, the position of the tool tip for the contact force to be zero during the retracting operation of the tool does not correspond to the final depth of the permanent contact impression on the workpiece surface. The accuracy for identification of the transition contact depth is then improved by observing the residual defects on the workpiece surface after the tool retracting.

  20. Response of water temperature to surface wave effects in the Baltic Sea: simulations with the coupled NEMO-WAM model

    Science.gov (United States)

    Alari, Victor; Staneva, Joanna; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian; Janssen, Peter

    2016-04-01

    The effects of wind waves on the Baltic Sea water temperature has been studied by coupling the hydrodynamical model NEMO with the wave model WAM. The wave forcing terms that have been taken into consideration are: Stokes-Coriolis force, seastate dependent energy flux and sea-state dependent momentum flux. The combined role of these processes as well as their individual contributions on simulated temperature is analysed. The results indicate a pronounced effect of waves on surface temperature, on the distribution of vertical temperature and on upwellinǵs. In northern parts of the Baltic Sea a warming of the surface layer occurs in the wave included simulations. This in turn reduces the cold bias between simulated and measured data. The warming is primarily caused by sea-state dependent energy flux. Wave induced cooling is mostly observed in near coastal areas and is mainly due to Stokes-Coriolis forcing. The latter triggers effect of intensifying upwellings near the coasts, depending on the direction of the wind. The effect of sea-state dependent momentum flux is predominantly to warm the surface layer. During the summer the wave induced water temperature changes were up to 1 °C.