WorldWideScience

Sample records for model simulations confirm

  1. Confirmation of MRS/MPC transfer facility sizing using simulation modeling

    International Nuclear Information System (INIS)

    Houston, E.S.; Hadley, J.D.

    1994-01-01

    The Nuclear Waste Policy Act (NWPA) of 1982, as amended, requires the Department of Energy to begin receiving spent nuclear fuel (SNF) from utilities in January 1998. A repository will not be completed in time for the scheduled receipt of SNF. A Monitored Retrievable Storage (MRS) Facility is therefore a feasible solution to bridge the gap between the 1998 date for fuel acceptance and the startup of the repository. SNF will be stored temporarily at the MRS and later retrieved from storage and shipped to the repository. To simplify fuel handling and to standardize components, the multi-purpose canister (MPC) concept was investigated. The MPC would be a sealed, metallic canister containing multiple SNF assemblies in a dry inert environment. MPCs would be placed into different overpacks for transportation, storage, and disposal at the repository. The MRS transfer facility MPC and SNF throughput requirements, assumptions, and operating concepts were used to initially determine the size of the facility and the major equipment contained within the facility. This initial estimate was based on simplified calculation techniques. The adequacy of the design configurations were then confirmed using SLAM simulation modeling software. Modeling incorporates uncertainties in task durations, the effects of equipment reliability, availability of personnel and equipment, and system breakdowns. This paper describes how the model was developed and how it is used to verify the transfer facility size. It also illustrates how problems with the facility design, operational concepts, and staffing are identified with the results of the model

  2. Model confirmation in climate economics.

    Science.gov (United States)

    Millner, Antony; McDermott, Thomas K J

    2016-08-02

    Benefit-cost integrated assessment models (BC-IAMs) inform climate policy debates by quantifying the trade-offs between alternative greenhouse gas abatement options. They achieve this by coupling simplified models of the climate system to models of the global economy and the costs and benefits of climate policy. Although these models have provided valuable qualitative insights into the sensitivity of policy trade-offs to different ethical and empirical assumptions, they are increasingly being used to inform the selection of policies in the real world. To the extent that BC-IAMs are used as inputs to policy selection, our confidence in their quantitative outputs must depend on the empirical validity of their modeling assumptions. We have a degree of confidence in climate models both because they have been tested on historical data in hindcasting experiments and because the physical principles they are based on have been empirically confirmed in closely related applications. By contrast, the economic components of BC-IAMs often rely on untestable scenarios, or on structural models that are comparatively untested on relevant time scales. Where possible, an approach to model confirmation similar to that used in climate science could help to build confidence in the economic components of BC-IAMs, or focus attention on which components might need refinement for policy applications. We illustrate the potential benefits of model confirmation exercises by performing a long-run hindcasting experiment with one of the leading BC-IAMs. We show that its model of long-run economic growth-one of its most important economic components-had questionable predictive power over the 20th century.

  3. Calibration and Confirmation in Geophysical Models

    Science.gov (United States)

    Werndl, Charlotte

    2016-04-01

    For policy decisions the best geophysical models are needed. To evaluate geophysical models, it is essential that the best available methods for confirmation are used. A hotly debated issue on confirmation in climate science (as well as in philosophy) is the requirement of use-novelty (i.e. that data can only confirm models if they have not already been used before. This talk investigates the issue of use-novelty and double-counting for geophysical models. We will see that the conclusions depend on the framework of confirmation and that it is not clear that use-novelty is a valid requirement and that double-counting is illegitimate.

  4. Assessment of Response Surface Models using Independent Confirmation Point Analysis

    Science.gov (United States)

    DeLoach, Richard

    2010-01-01

    This paper highlights various advantages that confirmation-point residuals have over conventional model design-point residuals in assessing the adequacy of a response surface model fitted by regression techniques to a sample of experimental data. Particular advantages are highlighted for the case of design matrices that may be ill-conditioned for a given sample of data. The impact of both aleatory and epistemological uncertainty in response model adequacy assessments is considered.

  5. Confirming the Lanchestrian linear-logarithmic model of attrition

    Energy Technology Data Exchange (ETDEWEB)

    Hartley, D.S. III.

    1990-12-01

    This paper is the fourth in a series of reports on the breakthrough research in historical validation of attrition in conflict. Significant defense policy decisions, including weapons acquisition and arms reduction, are based in part on models of conflict. Most of these models are driven by their attrition algorithms, usually forms of the Lanchester square and linear laws. None of these algorithms have been validated. The results of this paper confirm the results of earlier papers, using a large database of historical results. The homogeneous linear-logarithmic Lanchestrian attrition model is validated to the extent possible with current initial and final force size data and is consistent with the Iwo Jima data. A particular differential linear-logarithmic model is described that fits the data very well. A version of Helmbold's victory predicting parameter is also confirmed, with an associated probability function. 37 refs., 73 figs., 68 tabs.

  6. Confirming the Value of Swimming-Performance Models for Adolescents.

    Science.gov (United States)

    Dormehl, Shilo J; Robertson, Samuel J; Barker, Alan R; Williams, Craig A

    2017-10-01

    To evaluate the efficacy of existing performance models to assess the progression of male and female adolescent swimmers through a quantitative and qualitative mixed-methods approach. Fourteen published models were tested using retrospective data from an independent sample of Dutch junior national-level swimmers from when they were 12-18 y of age (n = 13). The degree of association by Pearson correlations was compared between the calculated differences from the models and quadratic functions derived from the Dutch junior national qualifying times. Swimmers were grouped based on their differences from the models and compared with their swimming histories that were extracted from questionnaires and follow-up interviews. Correlations of the deviations from both the models and quadratic functions derived from the Dutch qualifying times were all significant except for the 100-m breaststroke and butterfly and the 200-m freestyle for females (P backstroke for males and 200-m freestyle for males and females were almost directly proportional. In general, deviations from the models were accounted for by the swimmers' training histories. Higher levels of retrospective motivation appeared to be synonymous with higher-level career performance. This mixed-methods approach helped confirm the validity of the models that were found to be applicable to adolescent swimmers at all levels, allowing coaches to track performance and set goals. The value of the models in being able to account for the expected performance gains during adolescence enables quantification of peripheral factors that could affect performance.

  7. Model-independent confirmation of the $Z(4430)^-$ state

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Balagura, Vladislav; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Bauer, Thomas; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; van den Brand, Johannes; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Busetto, Giovanni; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Camboni, Alessandro; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carranza-Mejia, Hector; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Giani', Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, Vladimir; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gordon, Hamish; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; Hartmann, Thomas; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jezabek, Marek; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kaballo, Michael; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanciotti, Elisa; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Liu, Guoming; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Manca, Giulia; Mancinelli, Giampiero; Manzali, Matteo; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Moran, Dermot; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Muresan, Raluca; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pazos Alvarez, Antonio; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perez Trigo, Eliseo; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Powell, Andrew; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Alexander; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Roa Romero, Diego; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruffini, Fabrizio; Ruiz, Hugo; Ruiz Valls, Pablo; Sabatino, Giovanni; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sapunov, Matvey; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Savrie, Mauro; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Seco, Marcos; Semennikov, Alexander; Senderowska, Katarzyna; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spinella, Franco; Spradlin, Patrick; Stagni, Federico; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szilard, Daniela; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; Voss, Helge; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wu, Suzhi; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Feng; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-01-01

    The decay $B^0\\to \\psi(2S) K^+\\pi^-$ is analyzed using $\\rm 3~fb^{-1}$ of $pp$ collision data collected with the LHCb detector. A model-independent description of the $\\psi(2S) \\pi$ mass spectrum is obtained, using as input the $K\\pi$ mass spectrum and angular distribution derived directly from data, without requiring a theoretical description of resonance shapes or their interference. The hypothesis that the $\\psi(2S)\\pi$ mass spectrum can be described in terms of $K\\pi$ reflections alone is rejected with more than 8$\\sigma$ significance. This provides confirmation, in a model-independent way, of the need for an additional resonant component in the mass region of the $Z(4430)^-$ exotic state.

  8. Catapult current sheet relaxation model confirmed by THEMIS observations

    Science.gov (United States)

    Machida, S.; Miyashita, Y.; Ieda, A.; Nose, M.; Angelopoulos, V.; McFadden, J. P.

    2014-12-01

    In this study, we show the result of superposed epoch analysis on the THEMIS probe data during the period from November, 2007 to April, 2009 by setting the origin of time axis to the substorm onset determined by Nishimura with THEMIS all sky imager (THEMS/ASI) data (http://www.atmos.ucla.edu/~toshi/files/paper/Toshi_THEMIS_GBO_list_distribution.xls). We confirmed the presence of earthward flows which can be associated with north-south auroral streamers during the substorm growth phase. At around X = -12 Earth radii (Re), the northward magnetic field and its elevation angle decreased markedly approximately 4 min before substorm onset. A northward magnetic-field increase associated with pre-onset earthward flows was found at around X = -17Re. This variation indicates the occurrence of the local depolarization. Interestingly, in the region earthwards of X = -18Re, earthward flows in the central plasma sheet (CPS) reduced significantly about 3min before substorm onset. However, the earthward flows enhanced again at t = -60 sec in the region around X = -14 Re, and they moved toward the Earth. At t = 0, the dipolarization of the magnetic field started at X ~ -10 Re, and simultaneously the magnetic reconnection started at X ~ -20 Re. Synthesizing these results, we can confirm the validity of our catapult current sheet relaxation model.

  9. Confirmation of translocated gastrointestinal bacteria in a neonatal model.

    Science.gov (United States)

    Moy, J; Lee, D J; Harmon, C M; Drongowski, R A; Coran, A G

    1999-11-01

    The hypothesis that enteric bacteria translocate from the gastrointestinal (GI) tract to extraintestinal sites has been extensively studied. However, definitive evidence that spontaneous bacterial translocation and dissemination from the GI tract to extraintestinal sites occur in a neonatal model has been lacking. The aim of this study was to confirm this phenomenon by tracking enterally administered, plasmid-labeled bacteria to extraintestinal sites. Escherichia coli 07:K1 (E. coli K1) with and without a nontransferable, ampicillin resistance plasmid (pGEM-7) were used in this study. Newborn New Zealand white rabbit pups were separated into three treatment groups: transformed E. coli K1 (E. coli K1 + pGEM-7, n = 20), nontransformed E. coli K1 (n = 12), and control pups (no bacteria, n = 7). Pups were enterally fed 10% Formulac solution supplemented with a suspension of bacteria respective to their group. After the pups fed twice daily for 2 days, representative tissue specimens from the small bowel (SB), mesenteric lymph nodes (MLNs), spleen (SPL), and liver (LIV) were aseptically harvested and tested for culture growth in ampicillin-supplemented medium. Positive growths of plasmid-induced ampicillin-resistant bacteria were detected in tissue specimens harvested from rabbits fed transformed E. coli K1, but were not detected in the other groups. This experiment demonstrated conclusively that transformed E. coli K1 fed to healthy rabbit pups spontaneously translocated from the intestinal lumen and subsequently disseminated to the mesenteric lymph nodes, spleen, and liver. Copyright 1999 Academic Press.

  10. EMC Simulation and Modeling

    Science.gov (United States)

    Takahashi, Takehiro; Schibuya, Noboru

    The EMC simulation is now widely used in design stage of electronic equipment to reduce electromagnetic noise. As the calculated electromagnetic behaviors of the EMC simulator depends on the inputted EMC model of the equipment, the modeling technique is important to obtain effective results. In this paper, simple outline of the EMC simulator and EMC model are described. Some modeling techniques of EMC simulation are also described with an example of the EMC model which is shield box with aperture.

  11. Intensive care nursing students' perceptions of simulation for learning confirming communication skills: A descriptive qualitative study.

    Science.gov (United States)

    Karlsen, Marte-Marie Wallander; Gabrielsen, Anita Kristin; Falch, Anne Lise; Stubberud, Dag-Gunnar

    2017-10-01

    The aim of this study was to explore intensive care nursing students experiences with confirming communication skills training in a simulation-based environment. The study has a qualitative, exploratory and descriptive design. The participants were students in a post-graduate program in intensive care nursing, that had attended a one day confirming communication course. Three focus group interviews lasting between 60 and 80min were conducted with 14 participants. The interviews were transcribed verbatim. Thematic analysis was performed, using Braun & Clark's seven steps. The analysis resulted in three main themes: "awareness", "ice-breaker" and "challenging learning environment". The participants felt that it was a challenge to see themselves on the video-recordings afterwards, however receiving feedback resulted in better self-confidence in mastering complex communication. The main finding of the study is that the students reported improved communication skills after the confirming communication course. However; it is uncertain how these skills can be transferred to clinical practice improving patient outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  13. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  14. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  15. E-Area Low-Level Waste Facility Vadose Zone Model: Confirmation of Water Mass Balance for Subsidence Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-11-30

    In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.

  16. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  17. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  18. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  19. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  20. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  1. Confirmation of ACRU model results for applications in land use and climate change studies

    Directory of Open Access Journals (Sweden)

    G. P. W. Jewitt

    2010-12-01

    Full Text Available The hydrological responses of a catchment are sensitive to, and strongly coupled to, land use and climate, and changes thereof. The hydrological responses to the impacts of changing land use and climate will be the result of complex interactions, where the change in one may moderate or exacerbate the effects of the other. Further difficulties in assessing these interactions are that dominant drivers of the hydrological system may vary at different spatial and temporal scales. To assess these interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, needs to be used. For this purpose the daily time step ACRU model was selected. However, to be able to use a hydrological model such as ACRU with confidence its representation of reality must be confirmed by comparing simulated output against observations across a range of climatic conditions. Comparison of simulated against observed streamflow was undertaken in three climatically diverse South African catchments, ranging from the semi-arid, sub-tropical Luvuvhu catchment, to the winter rainfall Upper Breede catchment and the sub-humid Mgeni catchment. Not only do the climates of the catchments differ, but their primary land uses also vary. In the upper areas of the Mgeni catchment commercial plantation forestry is dominant, while in the middle reaches there are significant areas of commercial plantation sugarcane and urban areas, while the lower reaches are dominated by urban areas. The Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas. In the Upper Breede catchment in the Western Cape, commercial orchards and vineyards are the primary land uses. Overall the ACRU model was able to represent the high, low and total flows, with satisfactory Nash-Sutcliffe efficiency indexes obtained for the selected catchments. The study concluded that the ACRU model can be used with confidence to simulate the streamflows

  2. Confirmation of ACRU model results for applications in land use and climate change studies

    Science.gov (United States)

    Warburton, M. L.; Schulze, R. E.; Jewitt, G. P. W.

    2010-12-01

    The hydrological responses of a catchment are sensitive to, and strongly coupled to, land use and climate, and changes thereof. The hydrological responses to the impacts of changing land use and climate will be the result of complex interactions, where the change in one may moderate or exacerbate the effects of the other. Further difficulties in assessing these interactions are that dominant drivers of the hydrological system may vary at different spatial and temporal scales. To assess these interactions, a process-based hydrological model, sensitive to land use and climate, and changes thereof, needs to be used. For this purpose the daily time step ACRU model was selected. However, to be able to use a hydrological model such as ACRU with confidence its representation of reality must be confirmed by comparing simulated output against observations across a range of climatic conditions. Comparison of simulated against observed streamflow was undertaken in three climatically diverse South African catchments, ranging from the semi-arid, sub-tropical Luvuvhu catchment, to the winter rainfall Upper Breede catchment and the sub-humid Mgeni catchment. Not only do the climates of the catchments differ, but their primary land uses also vary. In the upper areas of the Mgeni catchment commercial plantation forestry is dominant, while in the middle reaches there are significant areas of commercial plantation sugarcane and urban areas, while the lower reaches are dominated by urban areas. The Luvuvhu catchment has a large proportion of subsistence agriculture and informal residential areas. In the Upper Breede catchment in the Western Cape, commercial orchards and vineyards are the primary land uses. Overall the ACRU model was able to represent the high, low and total flows, with satisfactory Nash-Sutcliffe efficiency indexes obtained for the selected catchments. The study concluded that the ACRU model can be used with confidence to simulate the streamflows of the three selected

  3. Verification of the model of predisposition in triathlon – structural model of confirmative factor analysis

    Directory of Open Access Journals (Sweden)

    Lenka Kovářová

    2012-09-01

    Full Text Available BACKGROUND: The triathlon is a combination of three different types of sport – swimming, cycling, and running. Each of these requires different top level predispositions and complex approach to talent selection is a rather difficult process. Attempts to identify assumptions in the triathlon have so far been specific and focused only on some groups of predispositions (physiology, motor tests, and psychology. The latest studies missed the structural approach and were based on determinants of sport performance, theory of sports training and expert assessment. OBJECTIVE: The aim of our study was to verify the model of predisposition in the short triathlon for talent assessment of young male athletes age 17–20 years. METHODS: The research sample consisted of 55 top level triathletes – men, who were included in the Government supported sports talent programme in the Czech Republic at the age of 17–20 years. We used a confirmative factor analysis (FA and Path diagram to verify the model, which allow us to explain mutual relationships among observed variables. For statistical data processing we used a structure equating modeling (SEM by software Lisrel L88. RESULTS: The study confirms best structural model for talent selection in triathlon at the age of 17–20 years old men, which composed seventeen indicators (tests and explained 91% of all cross-correlations (Goodness of Fit Index /GFI/ 0.91, Root Mean Square Residual /RMSR/ 0.13. Tests for predispositions in triathlons were grouped into five items, three motor predispositions (swimming, cycling and running skills, aerobic and psychological predispositions. Aerobic predispositions showed the highest importance to the assumptions to the general factor (1.00; 0. Running predispositions were measured as a very significant factor (–0.85; 0.28 which confirms importance of this critical stage of the race. Lower factor weight showed clusters of swimming (–0.61; 0.63 and cycling (0.53; 0

  4. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  5. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  6. Confirmation of a realistic reactor model for BNCT dosimetry at the TRIGA Mainz

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, Markus, E-mail: Markus.Ziegner.fl@ait.ac.at [AIT Austrian Institute of Technology GmbH, Vienna A-1220, Austria and Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna A-1020 (Austria); Schmitz, Tobias; Hampel, Gabriele [Institut für Kernchemie, Johannes Gutenberg-Universität, Mainz DE-55128 (Germany); Khan, Rustam [Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad PK-44000 (Pakistan); Blaickner, Matthias [AIT Austrian Institute of Technology GmbH, Vienna A-1220 (Austria); Palmans, Hugo [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW, United Kingdom and Medical Physics Group, EBG MedAustron GmbH, Wiener Neustadt A-2700 (Austria); Sharpe, Peter [Acoustics and Ionising Radiation Division, National Physical Laboratory, Teddington TW11 0LW (United Kingdom); Böck, Helmuth [Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna A-1020 (Austria)

    2014-11-01

    Purpose: In order to build up a reliable dose monitoring system for boron neutron capture therapy (BNCT) applications at the TRIGA reactor in Mainz, a computer model for the entire reactor was established, simulating the radiation field by means of the Monte Carlo method. The impact of different source definition techniques was compared and the model was validated by experimental fluence and dose determinations. Methods: The depletion calculation code ORIGEN2 was used to compute the burn-up and relevant material composition of each burned fuel element from the day of first reactor operation to its current core. The material composition of the current core was used in a MCNP5 model of the initial core developed earlier. To perform calculations for the region outside the reactor core, the model was expanded to include the thermal column and compared with the previously established ATTILA model. Subsequently, the computational model is simplified in order to reduce the calculation time. Both simulation models are validated by experiments with different setups using alanine dosimetry and gold activation measurements with two different types of phantoms. Results: The MCNP5 simulated neutron spectrum and source strength are found to be in good agreement with the previous ATTILA model whereas the photon production is much lower. Both MCNP5 simulation models predict all experimental dose values with an accuracy of about 5%. The simulations reveal that a Teflon environment favorably reduces the gamma dose component as compared to a polymethyl methacrylate phantom. Conclusions: A computer model for BNCT dosimetry was established, allowing the prediction of dosimetric quantities without further calibration and within a reasonable computation time for clinical applications. The good agreement between the MCNP5 simulations and experiments demonstrates that the ATTILA model overestimates the gamma dose contribution. The detailed model can be used for the planning of structural

  7. Simulation - modeling - experiment

    International Nuclear Information System (INIS)

    2004-01-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  8. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    leaving students. It is a probabilistic model. In the next part of this article, two more models - 'input/output model' used for production systems or economic studies and a. 'discrete event simulation model' are introduced. Aircraft Performance Model.

  9. Integrating technology readiness into the expectation-confirmation model: an empirical study of mobile services.

    Science.gov (United States)

    Chen, Shih-Chih; Liu, Ming-Ling; Lin, Chieh-Peng

    2013-08-01

    The aim of this study was to integrate technology readiness into the expectation-confirmation model (ECM) for explaining individuals' continuance of mobile data service usage. After reviewing the ECM and technology readiness, an integrated model was demonstrated via empirical data. Compared with the original ECM, the findings of this study show that the integrated model may offer an ameliorated way to clarify what factors and how they influence the continuous intention toward mobile services. Finally, the major findings are summarized, and future research directions are suggested.

  10. Modelling and Simulation: An Overview

    OpenAIRE

    McAleer, Michael; Chan, Felix; Oxley, Les

    2013-01-01

    This discussion paper resulted in a publication in 'Selected Papers of the MSSANZ 19th Biennial Conference on Modelling and Simulation Mathematics and Computers in Simulation', 2013, pp. viii. The papers in this special issue of Mathematics and Computers in Simulation cover the following topics: improving judgmental adjustment of model-based forecasts, whether forecast updates are progressive, on a constrained mixture vector autoregressive model, whether all estimators are born equal: the emp...

  11. Notes on modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.

  12. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operati...

  13. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  14. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  15. Fault-plane Solutions Determined by Waveform Modeling Confirm Tectonic Collision in the Eastern Adriatic

    Science.gov (United States)

    Louvari, E.; Kiratzi, A.; Papazachos, B.; Hatzidimitriou, P.

    - Source parameters for thirteen earthquakes in the SE Adriatic region have been determined using P and SH body-waveform inversion. The results of this modeling are combined with eleven other earthquakes with M>=5 whose focal mechanisms have been determined mainly by waveform modeling. The results confirm that movement on mainly low-angle reverse faults causes the deformation in coastal southern Yugoslavia through Albania up to the Lefkada Island in NW Greece. This zone of thrusting has a NW-SE trend (N34°W), follows the coastline, and dips towards the continent. The slip vectors of these events trend at N229° along the Dalmatian coasts, to N247° along Albania and NW Greece. The deformation is attributed to the continental collision between the Adriatic block to the west and Eurasia to the east. Along the mountain line in eastern Albania (Albanides Mts.) and in NW Greece (Hellenides Mts.), E-W extension is occurring. The E-W extension associated with the orogenic belt could be attributed to a variety of models such as: gravity, internal deformation of the thrust wedge, a probable down bulge of the dense lithosphere of the Adriatic block beneath the Eurasian lithospheric plate in combination with the compressional stresses applied along the collision belt.

  16. Proposed core competencies and empirical validation procedure in competency modeling: confirmation and classification

    Directory of Open Access Journals (Sweden)

    Anna Katarzyna Baczynska

    2016-03-01

    Full Text Available Competency models provide insight into key skills which are common to many positions in an organization. Moreover, there is a range of competencies that is used by many companies. Researchers have developed core competency terminology to underline their cross-organizational value. The article presents a theoretical model of core competencies consisting of two main higher-order competencies called performance and entrepreneurship. Each of them consists of three elements: the performance competency includes cooperation, organization of work and goal orientation, while entrepreneurship includes innovativeness, calculated risk-taking and pro-activeness. However, there is lack of empirical validation of competency concepts in organizations and this would seem crucial for obtaining reliable results from organizational research. We propose a two-step empirical validation procedure: 1 confirmation factor analysis, and 2 classification of employees. The sample consisted of 636 respondents (M = 44.5; SD = 15.1. Participants were administered a questionnaire developed for the study purpose. The reliability, measured by Cronbach’s alpha, ranged from .60 to .83 for six scales. Next, we tested the model using a confirmatory factor analysis. The two separate, single models of performance and entrepreneurial orientations fit quite well to the data, while a complex model based on the two single concepts needs further research. In the classification of employees based on the two higher order competencies we obtained four main groups of employees. Their profiles relate to those found in the literature, including so-called niche finders and top performers. Some proposal for organizations is discussed.

  17. CONFIRMATION OF THE MATHEMATICAL MODEL ADEQUACY OF A LINEAR SYNCHRONOUS MOTOR

    Directory of Open Access Journals (Sweden)

    V. F. Novikov

    2015-06-01

    Full Text Available Purpose.To reduce labor costs and the amount of computer time in the design of linear synchronous motors with excitation from a source of a constant magnetic field of high-speed ground transportation it is necessary to use engineering methods. The purpose of this study is to confirm the adequacy of the previously proposed mathematical model of this engine and assumptions. It is also intended to confirm the possibility of applying the method of calculation of traction that occurs in the engine in the interaction of the permanent magnetic field of the excitation system of a vehicle with a coil track structure.Methodology. As for empirical theories the positive result of the experiment is not absolute proof of the truth, for an unambiguous conclusion about the adequacy of the developed model and the effectiveness of the developed methods need to be tested for falsification. In accordance with this criterion, it is necessary to conduct an experiment, the results of which will coincide with the calculation but you also need to avoid errors caused by random coincidences. For this purpose the experiments with varying parameters are conducted. Findings. In a critical experiment configuration changes of the excitation system were held so that the shape dependence of traction from displacement is differed significantly. The comparison of the results of the calculated and experimental values of traction for different configurations showed that the differences are minor and easily explained by measurement error and uneven gaps between the poles and excitation coils of the track structure. Originality. The adequacy of the mathematical model of a linear synchronous motor without a ferromagnetic magnetic circuit and the assumptions and applicability of the calculation method of traction forces involved in it, at the interaction of a permanent magnetic field of the excitation system of a vehicle with a coil track structure were proved. This proof is built on

  18. TREAT Modeling and Simulation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a four-phase process used to describe the strategy in developing modeling and simulation software for the Transient Reactor Test Facility. The four phases of this research and development task are identified as (1) full core transient calculations with feedback, (2) experiment modeling, (3) full core plus experiment simulation and (4) quality assurance. The document describes the four phases, the relationship between these research phases, and anticipated needs within each phase.

  19. FASTBUS simulation models in VHDL

    International Nuclear Information System (INIS)

    Appelquist, G.

    1992-11-01

    Four hardware simulation models implementing the FASTBUS protocol are described. The models are written in the VHDL hardware description language to obtain portability, i.e. without relations to any specific simulator. They include two complete FASTBUS devices, a full-duplex segment interconnect and ancillary logic for the segment. In addition, master and slave models using a high level interface to describe FASTBUS operations, are presented. With these models different configurations of FASTBUS systems can be evaluated and the FASTBUS transactions of new devices can be verified. (au)

  20. Prediction of iodide adsorption on oxides by surface complexation modeling with spectroscopic confirmation.

    Science.gov (United States)

    Nagata, Takahiro; Fukushi, Keisuke; Takahashi, Yoshio

    2009-04-15

    A deficiency in environmental iodine can cause a number of health problems. Understanding how iodine is sequestered by materials is helpful for evaluating and developing methods for minimizing human health effects related to iodine. In addition, (129)I is considered to be strategically important for safety assessment of underground radioactive waste disposal. To assess the long-term stability of disposed radioactive waste, an understanding of (129)I adsorption on geologic materials is essential. Therefore, the adsorption of I(-) on naturally occurring oxides is of environmental concern. The surface charges of hydrous ferric oxide (HFO) in NaI electrolyte solutions were measured by potentiometric acid-base titration. The surface charge data were analyzed by means of an extended triple-layer model (ETLM) for surface complexation modeling to obtain the I(-) adsorption reaction and its equilibrium constant. The adsorption of I(-) was determined to be an outer-sphere process from ETLM analysis, which was consistent with independent X-ray absorption near-edge structure (XANES) observation of I(-) adsorbed on HFO. The adsorption equilibrium constants for I(-) on beta-TiO(2) and gamma-Al(2)O(3) were also evaluated by analyzing the surface charge data of these oxides in NaI solution as reported in the literature. Comparison of these adsorption equilibrium constants for HFO, beta-TiO(2), and gamma-Al(2)O(3) based on site-occupancy standard states permitted prediction of I(-) adsorption equilibrium constants for all oxides by means of the Born solvation theory. The batch adsorption data for I(-) on HFO and amorphous aluminum oxide were reasonably reproduced by ETLM with the predicted equilibrium constants, confirming the validity of the present approach. Using the predicted adsorption equilibrium constants, we calculated distribution coefficient (K(d)) values for I(-) adsorption on common soil minerals as a function of pH and ionic strength.

  1. Electron acceleration in solar-flare magnetic traps: Model properties and their observational confirmations

    Science.gov (United States)

    Gritsyk, P. A.; Somov, B. V.

    2017-09-01

    Using an analytical solution of the kinetic equation, we have investigated the model properties of the coronal and chromospheric hard X-ray sources in the limb flare of July 19, 2012. We calculated the emission spectrum at the flare loop footpoints in the thick-target approximation with a reverse current and showed it to be consistent with the observed one. The spectrum of the coronal source located above the flare loop was calculated in the thin-target approximation. In this case, the slope of the hard X-ray spectrum is reproduced very accurately, but the intensity of the coronal emission is lower than the observed one by several times. Previously, we showed that this contradiction is completely removed if the additional (relative to the primary acceleration in the reconnecting current layer) electron acceleration in the coronal magnetic trap that contracts in the transverse direction and decreases in length during the impulsive flare phase is taken into account. In this paper we study in detail this effect in the context of a more realistic flare scenario, where a whole ensemble of traps existed in the hard X-ray burst time, each of which was at different stages of its evolution: formation, collapse, destruction. Our results point not only to the existence of first-order Fermi acceleration and betatron electron heating in solar flares but also to their high efficiency. Highly accurate observations of a specific flare are used as an example to show that the previously predicted theoretical features of the model find convincing confirmations.

  2. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Most systems involve parameters and variables, which are random variables due to uncertainties. Probabilistic meth- ods are powerful in modelling such systems. In this second part, we describe probabilistic models and Monte Carlo simulation along with 'classical' matrix methods and differ- ential equations as most real ...

  3. Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2009-01-01

    This contribution presents an overview of sensitivity analysis of simulation models, including the estimation of gradients. It covers classic designs and their corresponding (meta)models; namely, resolution-III designs including fractional-factorial two-level designs for first-order polynomial

  4. Modelling and Simulation: An Overview

    NARCIS (Netherlands)

    M.J. McAleer (Michael); F. Chan (Felix); L. Oxley (Les)

    2013-01-01

    textabstractThe papers in this special issue of Mathematics and Computers in Simulation cover the following topics: improving judgmental adjustment of model-based forecasts, whether forecast updates are progressive, on a constrained mixture vector autoregressive model, whether all estimators are

  5. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  6. Modeling and Simulation: An Overview

    OpenAIRE

    Michael McAleer; Felix Chan; Les Oxley

    2013-01-01

    The papers in this special issue of Mathematics and Computers in Simulation cover the following topics. Improving judgmental adjustment of model-based forecasts, whether forecast updates are progressive, on a constrained mixture vector autoregressive model, whether all estimators are born equal. The empirical properties of some estimators of long memory, characterising trader manipulation in a limitorder driven market, measuring bias in a term-structure model of commodity prices through the c...

  7. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  8. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  9. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...... to operate a boiler plant dynamically means that the boiler designs must be able to absorb any fluctuations in water level and temperature gradients resulting from the pressure change in the boiler. On the one hand a large water-/steam space may be required, i.e. to build the boiler as big as possible. Due...

  10. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    This paper describes the modelling, simulating and optimizing including experimental verification as being carried out as part of a Ph.D. project being written resp. supervised by the authors. The work covers dynamic performance of both water-tube boilers and fire tube boilers. A detailed dynamic...... to the internal pressure the consequence of the increased volume (i.e. water-/steam space) is an increased wall thickness in the pressure part of the boiler. The stresses introduced in the boiler pressure part as a result of the temperature gradients are proportional to the square of the wall thickness...... model of the boiler has been developed and simulations carried out by means of the Matlab integration routines. The model is prepared as a dynamic model consisting of both ordinary differential equations and algebraic equations, together formulated as a Differential-Algebraic-Equation system. Being able...

  11. Modeling control in manufacturing simulation

    NARCIS (Netherlands)

    Zee, Durk-Jouke van der; Chick, S.; Sánchez, P.J.; Ferrin, D.; Morrice, D.J.

    2003-01-01

    A significant shortcoming of traditional simulation languages is the lack of attention paid to the modeling of control structures, i.e., the humans or systems responsible for manufacturing planning and control, their activities and the mutual tuning of their activities. Mostly they are hard coded

  12. A Modeling & Simulation Implementation Framework for Large-Scale Simulation

    Directory of Open Access Journals (Sweden)

    Song Xiao

    2012-10-01

    Full Text Available Classical High Level Architecture (HLA systems are facing development problems for lack of supporting fine-grained component integration and interoperation in large-scale complex simulation applications. To provide efficient methods of this issue, an extensible, reusable and composable simulation framework is proposed. To promote the reusability from coarse-grained federate to fine-grained components, this paper proposes a modelling & simulation framework which consists of component-based architecture, modelling methods, and simulation services to support and simplify the process of complex simulation application construction. Moreover, a standard process and simulation tools are developed to ensure the rapid and effective development of simulation application.

  13. Validation process of simulation model

    International Nuclear Information System (INIS)

    San Isidro, M. J.

    1998-01-01

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  14. Modeling and Simulation for Safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn T. [Los Alamos National Laboratory

    2012-07-26

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  15. Model continuity in discrete event simulation: A framework for model-driven development of simulation models

    NARCIS (Netherlands)

    Cetinkaya, D; Verbraeck, A.; Seck, MD

    2015-01-01

    Most of the well-known modeling and simulation (M&S) methodologies state the importance of conceptual modeling in simulation studies, and they suggest the use of conceptual models during the simulation model development process. However, only a limited number of methodologies refers to how to

  16. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  17. Simulating spin models on GPU

    Science.gov (United States)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  18. Creating Simulated Microgravity Patient Models

    Science.gov (United States)

    Hurst, Victor; Doerr, Harold K.; Bacal, Kira

    2004-01-01

    The Medical Operational Support Team (MOST) has been tasked by the Space and Life Sciences Directorate (SLSD) at the NASA Johnson Space Center (JSC) to integrate medical simulation into 1) medical training for ground and flight crews and into 2) evaluations of medical procedures and equipment for the International Space Station (ISS). To do this, the MOST requires patient models that represent the physiological changes observed during spaceflight. Despite the presence of physiological data collected during spaceflight, there is no defined set of parameters that illustrate or mimic a 'space normal' patient. Methods: The MOST culled space-relevant medical literature and data from clinical studies performed in microgravity environments. The areas of focus for data collection were in the fields of cardiovascular, respiratory and renal physiology. Results: The MOST developed evidence-based patient models that mimic the physiology believed to be induced by human exposure to a microgravity environment. These models have been integrated into space-relevant scenarios using a human patient simulator and ISS medical resources. Discussion: Despite the lack of a set of physiological parameters representing 'space normal,' the MOST developed space-relevant patient models that mimic microgravity-induced changes in terrestrial physiology. These models are used in clinical scenarios that will medically train flight surgeons, biomedical flight controllers (biomedical engineers; BME) and, eventually, astronaut-crew medical officers (CMO).

  19. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and fie...... as support decision making. However, several other factors affect decision making such as, ethics, politics and economics. Furthermore, the insight gained when models are build leads to point out areas where knowledge is lacking....... of FMD spread that can provide useful and trustworthy advises, there are four important issues, which the model should represent: 1) The herd structure of the country in question, 2) the dynamics of animal movements and contacts between herds, 3) the biology of the disease, and 4) the regulations...

  20. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  1. Transit Timing Observations from Kepler: IV. Confirmation of 4 Multiple Planet Systems by Simple Physical Models

    Energy Technology Data Exchange (ETDEWEB)

    Fabrycky, Daniel C.; /UC, Santa Cruz; Ford, Eric B.; /Florida U.; Steffen, Jason H.; /Fermilab; Rowe, Jason F.; /SETI Inst., Mtn. View /NASA, Ames; Carter, Joshua A.; /Harvard-Smithsonian Ctr. Astrophys.; Moorhead, Althea V.; /Florida U.; Batalha, Natalie M.; /San Jose State U.; Borucki, William J.; /NASA, Ames; Bryson, Steve; /NASA, Ames; Buchhave, Lars A.; /Bohr Inst. /Copenhagen U.; Christiansen, Jessie L.; /SETI Inst., Mtn. View /NASA, Ames /Caltech

    2012-01-01

    Eighty planetary systems of two or more planets are known to orbit stars other than the Sun. For most, the data can be sufficiently explained by non-interacting Keplerian orbits, so the dynamical interactions of these systems have not been observed. Here we present 4 sets of lightcurves from the Kepler spacecraft, which each show multiple planets transiting the same star. Departure of the timing of these transits from strict periodicity indicates the planets are perturbing each other: the observed timing variations match the forcing frequency of the other planet. This confirms that these objects are in the same system. Next we limit their masses to the planetary regime by requiring the system remain stable for astronomical timescales. Finally, we report dynamical fits to the transit times, yielding possible values for the planets masses and eccentricities. As the timespan of timing data increases, dynamical fits may allow detailed constraints on the systems architectures, even in cases for which high-precision Doppler follow-up is impractical.

  2. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  3. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  4. Atomic Weights Confirm Bipolar Model of Oscillations in a Chain System

    Directory of Open Access Journals (Sweden)

    Ries A.

    2013-10-01

    Full Text Available We apply the bipolar model of oscillations in a chain system to the data set of standard atomic weights. 90% of these masses could be reproduced by this model and were expressed in continued fraction form, where all numerators are Euler’s number and the sum of the free link and all partial denominators yields zero. All outliers were either radioactive or polynuclidic elements whose isotopic compositions as found in samples on Earth might not be fully representative for the mean values when considering samples from all parts of the universe.

  5. Design, simulation and manufacture of a multi leaf collimator to confirm the target volumes in intensity modulated radiation therapy

    International Nuclear Information System (INIS)

    Kamali-Asl, A.; Batooli, A. H.; Harriri, S.; Salman-Rezaee, F.; Shahmardan, F.; Yavari, L.

    2010-01-01

    Intensity modulated radiation therapy is one of the cancer treatment methods. It is important to selectively aim at the target in this way, which can be performed using a multi leaf collimator. Materials and Methods: In order to specifically irradiate the target volume in radiotherapy to reduce the patient absorbed dose, the use of multi leaf collimator has been investigated in this work. Design and simulation of an multi leaf collimator was performed by a Monte Carlo method and the optimum material for manufacturing the leaves was determined using MCNP4C. After image processing (CT or MRI) in this system, the tumor configuration is determined. Then the linear accelerator is switched on and the beam irradiates the cancerous cells. When the multi leaf collimator leaves receive a command from the micro controller, they start to move and absorb the radiation and modulate its intensity. Consequently, the tumor receives maximum intensity of radiation but minimum intensity is delivered to healthy tissues. Results: According to the simulations and calculations, the best material to manufacture the leaves from is tungsten alloy containing copper and nickel which absorbs a large amount of the radiation; by using a 8.65 cm thickness of alloy, 10.55% of radiation will transmit through the leaves. Discussion and Conclusion: Lead blocks are conventionally used in radiotherapy. However, they have some problems like cost, storage and manufacture for every patient. Certainly, the multi leaf collimator is the most efficient device to specifically irradiate the tumor in Intensity modulated radiation therapy. Furthermore, it facilitates treating the target in different views by rotation around the patient. Thus the patient's absorbed dose will decrease and the tumor will receive maximum dose.

  6. The application of selective reaction monitoring confirms dysregulation of glycolysis in a preclinical model of schizophrenia

    Directory of Open Access Journals (Sweden)

    Martins-de-Souza Daniel

    2012-03-01

    Full Text Available Abstract Background Establishing preclinical models is essential for novel drug discovery in schizophrenia. Most existing models are characterized by abnormalities in behavioral readouts, which are informative, but do not necessarily translate to the symptoms of the human disease. Therefore, there is a necessity of characterizing the preclinical models from a molecular point of view. Selective reaction monitoring (SRM has already shown promise in preclinical and clinical studies for multiplex measurement of diagnostic, prognostic and treatment-related biomarkers. Methods We have established an SRM assay for multiplex analysis of 7 enzymes of the glycolysis pathway which is already known to be affected in human schizophrenia and in the widely-used acute PCP rat model of schizophrenia. The selected enzymes were hexokinase 1 (Hk1, aldolase C (Aldoc, triosephosphate isomerase (Tpi1, glyceraldehyde-3-phosphate dehydrogenase (Gapdh, phosphoglycerate mutase 1 (Pgam1, phosphoglycerate kinase 1 (Pgk1 and enolase 2 (Eno2. The levels of these enzymes were analyzed using SRM in frontal cortex from brain tissue of PCP treated rats. Results Univariate analyses showed statistically significant altered levels of Tpi1 and alteration of Hk1, Aldoc, Pgam1 and Gapdh with borderline significance in PCP rats compared to controls. Most interestingly, multivariate analysis which considered the levels of all 7 enzymes simultaneously resulted in generation of a bi-dimensional chart that can distinguish the PCP rats from the controls. Conclusions This study not only supports PCP treated rats as a useful preclinical model of schizophrenia, but it also establishes that SRM mass spectrometry could be used in the development of multiplex classification tools for complex psychiatric disorders such as schizophrenia.

  7. Positive water vapour feedback in climate models confirmed by satellite data

    Science.gov (United States)

    Rind, D.; Lerner, J.; Chiou, E.-W.; Chu, W.; Larsen, J.; Mccormick, M. P.; Mcmaster, L.

    1991-01-01

    It has recently been suggested that GCMs used to evaluate climate change overestimate the greenhouse effect due to increased concentrations of trace gases in the atmosphere. Here, new satellite-generated water vapor data are used to compare summer and winter moisture values in regions of the middle and upper troposphere that have previously been difficult to observe with confidence. It is found that, as the hemispheres warm, increased convection leads to increased water vapor above 500 mbar in approximate quantitative agreement with results from current climate models. The same conclusion is reached by comparing the tropical western and eastern Pacific regions. Thus, water vapor feedback is not overestimated in models and should amplify the climate response to increased trace-gas concentrations.

  8. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  9. Polarisation confirmed

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    The polarisation of photons emitted in the decay of a bottom quark into a strange quark, as predicted by the Standard Model, has just been observed for the first time by the LHCb collaboration. More detailed research is still required to determine the value of this polarisation with precision.   In this LHCb event, K, π and γ are emitted from a B+ → K+π-π+γ decay. This was investigated by the LHCb collaboration in order to study the photon (γ) polarisation.   If we imagine that photons are like little spinning tops which spin around an axis aligned with their direction of propagation, we can identify two types of photons. Those that are “right-handed” turn in the same direction as a corkscrew, and those that are “left-handed” turn in the opposite direction. If for a large number of decays of a given type we can observe an imbalance between the production of right-han...

  10. Modeling and simulation of Indus-2 RF feedback control system

    International Nuclear Information System (INIS)

    Sharma, D.; Bagduwal, P.S.; Tiwari, N.; Lad, M.; Hannurkar, P.R.

    2012-01-01

    Indus-2 synchrotron radiation source has four RF stations along with their feedback control systems. For higher beam energy and current operation amplitude and phase feedback control systems of Indus-2 are being upgraded. To understand the behaviour of amplitude and phase control loop under different operating conditions, modelling and simulation of RF feedback control system is done. RF cavity baseband I/Q model has been created due to its close correspondence with actual implementation and better computational efficiency which makes the simulation faster. Correspondence between cavity baseband and RF model is confirmed by comparing their simulation results. Low Level RF (LLRF) feedback control system simulation is done using the same cavity baseband I/Q model. Error signals are intentionally generated and response of the closed loop system is observed. Simulation will help us in optimizing parameters of upgraded LLRF system for higher beam energy and current operation. (author)

  11. Impulse pumping modelling and simulation

    International Nuclear Information System (INIS)

    Pierre, B; Gudmundsson, J S

    2010-01-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  12. Bridging experiments, models and simulations

    DEFF Research Database (Denmark)

    Carusi, Annamaria; Burrage, Kevin; Rodríguez, Blanca

    2012-01-01

    understanding of living organisms and also how they can reduce, replace, and refine animal experiments. A fundamental requirement to fulfill these expectations and achieve the full potential of computational physiology is a clear understanding of what models represent and how they can be validated. The present...... of biovariability; 2) testing and developing robust techniques and tools as a prerequisite to conducting physiological investigations; 3) defining and adopting standards to facilitate the interoperability of experiments, models, and simulations; 4) and understanding physiological validation as an iterative process...... that contributes to defining the specific aspects of cardiac electrophysiology the MSE system targets, rather than being only an external test, and that this is driven by advances in experimental and computational methods and the combination of both....

  13. Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model.

    Science.gov (United States)

    Morrison, Juliet; Rathore, Abhay P S; Mantri, Chinmay K; Aman, Siti A B; Nishida, Andrew; St John, Ashley L

    2017-09-15

    using a mouse model of disease. We found that DENV infection induced metabolic dysregulation and inflammatory responses and affected the immune cell content of the spleen and liver. The use of the mast cell stabilization drug ketotifen reversed many of these responses and induced additional changes in the transcriptome and immune cell repertoire that contribute to decreased dengue disease. Copyright © 2017 Morrison et al.

  14. Development of a Simulation Model for Swimming with Diving Fins

    Directory of Open Access Journals (Sweden)

    Motomu Nakashima

    2018-02-01

    Full Text Available The simulation model to assess the performance of diving fin was developed by extending the swimming human simulation model SWUM. A diving fin was modeled as a series of five rigid plates and connected to the human model by springs and dampers. These plates were connected to each other by virtual springs and dampers, and fin’s bending property was represented by springs and dampers as well. An actual diver’s swimming motion with fins was acquired by a motion capture experiment. In order to determine the bending property of the fin, two bending tests on land were conducted. In addition, an experiment was conducted in order to determine the fluid force coefficients in the fluid force model for the fin. Finally, using all measured and identified information, a simulation, in which the experimental situation was reproduced, was carried out. It was confirmed that the diver in the simulation propelled forward in the water successfully.

  15. Numerical simulations of enhanced gas recovery at the Zalezcze gas field in Poland confirm high CO2 storage capacity and mechanical integrity

    International Nuclear Information System (INIS)

    Klimkowski, Lukasz; Nagy, Stanislaw; Papiernik, Bartosz; Orlic, Bogdan; Kempka, Thomas

    2015-01-01

    Natural gas from the Zalecze gas field located in the Fore-Sudetic Monocline of the Southern Permian Basin has been produced since November 1973, and continuous gas production led to a decrease in the initial reservoir pressure from 151 bar to about 22 bar until 2010. We investigated a prospective enhanced gas recovery operation at the Zalecze gas field by coupled numerical hydro-mechanical simulations to account for the CO 2 storage capacity, trapping efficiency and mechanical integrity of the reservoir, cap-rock and regional faults. Dynamic flow simulations carried out indicate a CO 2 storage capacity of 106.6 Mt with a trapping efficiency of about 43% (45.8 Mt CO 2 ) established after 500 years of simulation. Two independent strategies on the assessment of mechanical integrity were followed by two different modeling groups resulting in the implementation of field- to regional-scale hydro-mechanical simulation models. The simulation results based on application of different constitutive laws for the lithological units show deviations of 31% to 93% for the calculated maximum vertical displacements at the reservoir top. Nevertheless, results of both simulation strategies indicate that fault reactivation generating potential leakage pathways from the reservoir to shallower units is very unlikely due to the low fault slip tendency (close to zero) in the Zechstein cap-rocks. Consequently, our simulation results also emphasise that the supra- and sub-saliferous fault systems at the Zalecze gas field are independent and very likely not hydraulically connected. Based on our simulation results derived from two independent modeling strategies with similar simulation results on fault and cap-rock integrity, we conclude that the investigated enhanced gas recovery scheme is feasible, with a negligibly low risk of relevant fault reactivation or formation fluid leakage through the Zechstein cap-rocks. (authors)

  16. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  17. Crowd Human Behavior for Modeling and Simulation

    Science.gov (United States)

    2009-08-06

    Crowd Human Behavior for Modeling and Simulation Elizabeth Mezzacappa, Ph.D. & Gordon Cooke, MEME Target Behavioral Response Laboratory, ARDEC...TYPE Conference Presentation 3. DATES COVERED 00-00-2008 to 00-00-2009 4. TITLE AND SUBTITLE Crowd Human Behavior for Modeling and Simulation...34understanding human behavior " and "model validation and verification" and will focus on modeling and simulation of crowds from a social scientist???s

  18. Simulation Model for DMEK Donor Preparation.

    Science.gov (United States)

    Mittal, Vikas; Mittal, Ruchi; Singh, Swati; Narang, Purvasha; Sridhar, Priti

    2018-04-09

    To demonstrate a simulation model for donor preparation in Descemet membrane endothelial keratoplasty (DMEK). The inner transparent membrane of the onion (Allium cepa) was used as a simulation model for human Descemet membrane (DM). Surgical video (see Video, Supplemental Digital Content 1, http://links.lww.com/ICO/A663) demonstrating all the steps was recorded. This model closely simulates human DM and helps DMEK surgeons learn the nuances of DM donor preparation steps with ease. The technique is repeatable, and the model is cost-effective. The described simulation model can assist surgeons and eye bank technicians to learn steps in donor preparation in DMEK.

  19. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  20. An introduction to enterprise modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ostic, J.K.; Cannon, C.E. [Los Alamos National Lab., NM (United States). Technology Modeling and Analysis Group

    1996-09-01

    As part of an ongoing effort to continuously improve productivity, quality, and efficiency of both industry and Department of Energy enterprises, Los Alamos National Laboratory is investigating various manufacturing and business enterprise simulation methods. A number of enterprise simulation software models are being developed to enable engineering analysis of enterprise activities. In this document the authors define the scope of enterprise modeling and simulation efforts, and review recent work in enterprise simulation at Los Alamos National Laboratory as well as at other industrial, academic, and research institutions. References of enterprise modeling and simulation methods and a glossary of enterprise-related terms are provided.

  1. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  2. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  3. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  4. Modeling the economic impact of linezolid versus vancomycin in confirmed nosocomial pneumonia caused by methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Patel, Dipen A; Shorr, Andrew F; Chastre, Jean; Niederman, Michael; Simor, Andrew; Stephens, Jennifer M; Charbonneau, Claudie; Gao, Xin; Nathwani, Dilip

    2014-07-22

    We compared the economic impacts of linezolid and vancomycin for the treatment of hospitalized patients with methicillin-resistant Staphylococcus aureus (MRSA)-confirmed nosocomial pneumonia. We used a 4-week decision tree model incorporating published data and expert opinion on clinical parameters, resource use and costs (in 2012 US dollars), such as efficacy, mortality, serious adverse events, treatment duration and length of hospital stay. The results presented are from a US payer perspective. The base case first-line treatment duration for patients with MRSA-confirmed nosocomial pneumonia was 10 days. Clinical treatment success (used for the cost-effectiveness ratio) and failure due to lack of efficacy, serious adverse events or mortality were possible clinical outcomes that could impact costs. Cost of treatment and incremental cost-effectiveness per successfully treated patient were calculated for linezolid versus vancomycin. Univariate (one-way) and probabilistic sensitivity analyses were conducted. The model allowed us to calculate the total base case inpatient costs as $46,168 (linezolid) and $46,992 (vancomycin). The incremental cost-effectiveness ratio favored linezolid (versus vancomycin), with lower costs ($824 less) and greater efficacy (+2.7% absolute difference in the proportion of patients successfully treated for MRSA nosocomial pneumonia). Approximately 80% of the total treatment costs were attributed to hospital stay (primarily in the intensive care unit). The results of our probabilistic sensitivity analysis indicated that linezolid is the cost-effective alternative under varying willingness to pay thresholds. These model results show that linezolid has a favorable incremental cost-effectiveness ratio compared to vancomycin for MRSA-confirmed nosocomial pneumonia, largely attributable to the higher clinical trial response rate of patients treated with linezolid. The higher drug acquisition cost of linezolid was offset by lower treatment failure

  5. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  6. Simulation Model of Mobile Detection Systems

    International Nuclear Information System (INIS)

    Edmunds, T.; Faissol, D.; Yao, Y.

    2009-01-01

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  7. VHDL simulation with access to transistor models

    Science.gov (United States)

    Gibson, J.

    1991-01-01

    Hardware description languages such as VHDL have evolved to aid in the design of systems with large numbers of elements and a wide range of electronic and logical abstractions. For high performance circuits, behavioral models may not be able to efficiently include enough detail to give designers confidence in a simulation's accuracy. One option is to provide a link between the VHDL environment and a transistor level simulation environment. The coupling of the Vantage Analysis Systems VHDL simulator and the NOVA simulator provides the combination of VHDL modeling and transistor modeling.

  8. Experimental Confirmation of Nonlinear-Model- Predictive Control Applied Offline to a Permanent Magnet Linear Generator for Ocean-Wave Energy Conversion

    KAUST Repository

    Tom, Nathan

    2015-01-01

    To further maximize power absorption in both regular and irregular ocean wave environments, nonlinear-model-predictive control (NMPC) was applied to a model-scale point absorber developed at the University of California Berkeley, Berkeley, CA, USA. The NMPC strategy requires a power-takeoff (PTO) unit that could be turned on and off, as the generator would be inactive for up to 60% of the wave period. To confirm the effectiveness of this NMPC strategy, an in-house-designed permanent magnet linear generator (PMLG) was chosen as the PTO. The time-varying performance of the PMLG was first characterized by dry-bench tests, using mechanical relays to control the electromagnetic conversion process. The on/off sequencing of the PMLG was tested under regular and irregular wave excitation to validate NMPC simulations using control inputs obtained from running the choice optimizer offline. Experimental results indicate that successful implementation was achieved and absorbed power using NMPC was up to 50% greater than the passive system, which utilized no controller. Previous investigations into MPC applied to wave energy converters have lacked the experimental results to confirm the reported gains in power absorption. However, after considering the PMLG mechanical-to-electrical conversion efficiency, the electrical power output was not consistently maximized. To improve output power, a mathematical relation between the efficiency and damping magnitude of the PMLG was inserted in the system model to maximize the electrical power output through continued use of NMPC which helps separate this work from previous investigators. Of significance, results from latter simulations provided a damping time series that was active over a larger portion of the wave period requiring the actuation of the applied electrical load, rather than on/off control.

  9. Policy advice derived from simulation models

    NARCIS (Netherlands)

    Brenner, T.; Werker, C.

    2009-01-01

    When advising policy we face the fundamental problem that economic processes are connected with uncertainty and thus policy can err. In this paper we show how the use of simulation models can reduce policy errors. We suggest that policy is best based on socalled abductive simulation models, which

  10. Model Validation for Simulations of Vehicle Systems

    Science.gov (United States)

    2012-08-01

    jackknife”, Annals of Statistics, 7:1-26, 1979. [45] B. Efron and G. Gong, “A leisurely look at the bootstrap, the jackknife, and cross-validation”, The...battery model developed in the Automotive Research Center, a US Army Center of Excellence for modeling and simulation of ground vehicle systems...Sandia National Laboratories and a battery model developed in the Automotive Research Center, a US Army Center of Excellence for modeling and simulation

  11. Transient Modeling and Simulation of Compact Photobioreactors

    OpenAIRE

    Ribeiro, Robert Luis Lara; Mariano, André Bellin; Souza, Jeferson Avila; Vargas, Jose Viriato Coelho

    2008-01-01

    In this paper, a mathematical model is developed to make possible the simulation of microalgae growth and its dependency on medium temperature and light intensity. The model is utilized to simulate a compact photobioreactor response in time with physicochemical parameters of the microalgae Phaeodactylum tricornutum. The model allows for the prediction of the transient and local evolution of the biomass concentration in the photobioreactor with low computational time. As a result, the model is...

  12. Modeling, Simulation and Analysis of Public Key Infrastructure

    Science.gov (United States)

    Liu, Yuan-Kwei; Tuey, Richard; Ma, Paul (Technical Monitor)

    1998-01-01

    Security is an essential part of network communication. The advances in cryptography have provided solutions to many of the network security requirements. Public Key Infrastructure (PKI) is the foundation of the cryptography applications. The main objective of this research is to design a model to simulate a reliable, scalable, manageable, and high-performance public key infrastructure. We build a model to simulate the NASA public key infrastructure by using SimProcess and MatLab Software. The simulation is from top level all the way down to the computation needed for encryption, decryption, digital signature, and secure web server. The application of secure web server could be utilized in wireless communications. The results of the simulation are analyzed and confirmed by using queueing theory.

  13. State resolved measurements of a (1)CH(2) removal confirm predictions of the gateway model for electronic quenching.

    Science.gov (United States)

    Gannon, K L; Blitz, M A; Kovács, T; Pilling, M J; Seakins, P W

    2010-01-14

    Collisional quenching of electronically excited states by inert gases is a fundamental physical process. For reactive excited species such as singlet methylene, (1)CH(2), the competition between relaxation and reaction has important implications in practical systems such as combustion. The gateway model has previously been applied to the relaxation of (1)CH(2) by inert gases [U. Bley and F. Temps, J. Chem. Phys. 98, 1058 (1993)]. In this model, gateway states with mixed singlet and triplet character allow conversion between the two electronic states. The gateway model makes very specific predictions about the relative relaxation rates of ortho and para quantum states of methylene at low temperatures; relaxation from para gateway states leads to faster deactivation independent of the nature of the collision partner. Experimental data are reported here which for the first time confirm these predictions at low temperatures for helium. However, it was found that in contrast with the model predictions, the magnitude of the effect decreases with increasing size of the collision partner. It is proposed that the attractive potential energy surface for larger colliders allows alternative gateway states to contribute to relaxation removing the dominance of the para gateway states.

  14. Microgenetic patterns of children’s multiplication learning: Confirming the overlapping waves model by latent growth modeling

    NARCIS (Netherlands)

    van der Ven, S.H.G.; Boom, J.; Kroesbergen, E.H.; Leseman, P.P.M.

    2012-01-01

    Variability in strategy selection is an important characteristic of learning new skills such as mathematical skills. Strategies gradually come and go during this development. In 1996, Siegler described this phenomenon as "overlapping waves." In the current microgenetic study, we attempted to model

  15. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  16. Simulation modeling for the health care manager.

    Science.gov (United States)

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.

  17. Modelization and simulation of capillary barriers

    International Nuclear Information System (INIS)

    Lisbona Cortes, F.; Aguilar Villa, G.; Clavero Gracia, C.; Gracia Lozano, J.L.

    1998-01-01

    Among the different underground transport phenomena, that due to water flows is of great relevance. Water flows in infiltration and percolation processes are responsible of the transport of hazardous wastes towards phreatic layers. From the industrial and geological standpoints, there is a great interest in the design of natural devices to avoid the flows transporting polluting substances. This interest is increased when devices are used to isolate radioactive waste repositories, whose life is to be longer than several hundred years. The so-called natural devices are those based on the superimposition of material with different hydraulic properties. In particular, the flow retention in this kind stratified media, in unsaturated conditions, is basically due to the capillary barrier effect, resulting from placing a low conductivity material over another with a high hydraulic conductivity. Covers designed from the effect above have also to allow a drainage of the upper layer. The lower cost of these covers, with respect to other kinds of protection systems, and the stability in time of their components make them very attractive. However, a previous investigation to determine their effectivity is required. In this report we present the computer code BCSIM, useful for easy simulations of unsaturated flows in a capillary barrier configuration with drainage, and which is intended to serve as a tool for designing efficient covers. The model, the numerical algorithm and several implementation aspects are described. Results obtained in several simulations, confirming the effectivity of capillary barriers as a technique to build safety covers for hazardous waste repositories, are presented. (Author)

  18. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  19. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  20. Physically realistic modeling of maritime training simulation

    OpenAIRE

    Cieutat , Jean-Marc

    2003-01-01

    Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...

  1. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose of the s......The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  2. Accelerating recovery from jet lag: prediction from a multi-oscillator model and its experimental confirmation in model animals

    Science.gov (United States)

    Kori, Hiroshi; Yamaguchi, Yoshiaki; Okamura, Hitoshi

    2017-04-01

    The endogenous circadian clock drives oscillations that are completely synchronized with the environmental day-night rhythms with a period of approximately 24 hours. Temporal misalignment between one’s internal circadian clock and the external solar time often occurs in shift workers and long-distance travelers; such misalignments are accompanied by sleep disturbances and gastrointestinal distress. Repeated exposure to jet lag and rotating shift work increases the risk of lifestyle-related diseases, such as cardiovascular complaints and metabolic insufficiencies. However, the mechanism behind the disruption of one’s internal clock is not well understood. In this paper, we therefore present a new theoretical concept called “jet lag separatrix” to understand circadian clock disruption and slow recovery from jet lag based on the mathematical model describing the hierarchical structure of the circadian clock. To demonstrate the utility of our theoretical study, we applied it to predict that re-entrainment via a two-step jet lag in which a four-hour shift of the light-dark cycle is given in the span of two successive days requires fewer days than when given as a single eight-hour shift. We experimentally verified the feasibility of our theory in C57BL/6 strain mice, with results indicating that this pre-exposure of jet lag is indeed beneficial.

  3. Dynamic modelling and simulation for control of a cylindrical robotic manipulator

    International Nuclear Information System (INIS)

    Iqbal, A.; Athar, S.M.

    1995-03-01

    In this report a dynamic model for the three degrees-of-freedom cylindrical manipulator, INFOMATE has been developed. Although the robot dynamics are highly coupled and non-linear, the developed model is relatively straight forward and compact for control engineering and simulation applications. The model has been simulated using the graphical simulation package SIMULINK. Different aspects of INFOMATE associated with forward dynamics, inverse dynamics and control have been investigated by performing various simulation experiments. These simulation experiments confirm the accuracy and applicability of the dynamic robot model. (author) 18 figs

  4. Modeling and simulation of complex systems a framework for efficient agent-based modeling and simulation

    CERN Document Server

    Siegfried, Robert

    2014-01-01

    Robert Siegfried presents a framework for efficient agent-based modeling and simulation of complex systems. He compares different approaches for describing structure and dynamics of agent-based models in detail. Based on this evaluation the author introduces the "General Reference Model for Agent-based Modeling and Simulation" (GRAMS). Furthermore he presents parallel and distributed simulation approaches for execution of agent-based models -from small scale to very large scale. The author shows how agent-based models may be executed by different simulation engines that utilize underlying hard

  5. Magnetosphere Modeling: From Cartoons to Simulations

    Science.gov (United States)

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems

  6. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    A familiar example of a feedback loop is the business model in which part of the output or profit is fedback as input or additional capital - for instance, a company may choose to reinvest 10% of the profit for expansion of the business. Such simple models, like ..... would help scientists, engineers and managers towards better.

  7. Complex Simulation Model of Mobile Fading Channel

    Directory of Open Access Journals (Sweden)

    Tomas Marek

    2005-01-01

    Full Text Available In the mobile communication environment the mobile channel is the main limiting obstacle to reach the best performance of wireless system. Modeling of the radio channel consists of two basic fading mechanisms - Long-term fading and Short-term fading. The contribution deals with simulation of complex mobile radio channel, which is the channel with all fading components. Simulation model is based on Clarke-Gans theoretical model for fading channel and is developed in MATLAB environment. Simulation results have shown very good coincidence with theory. This model was developed for hybrid adaptation 3G uplink simulator (described in this issue during the research project VEGA - 1/0140/03.

  8. Simulation Model Development for Mail Screening Process

    National Research Council Canada - National Science Library

    Vargo, Trish; Marvin, Freeman; Kooistra, Scott

    2005-01-01

    STUDY OBJECTIVE: Provide decision analysis support to the Homeland Defense Business Unit, Special Projects Team, in developing a simulation model to help determine the most effective way to eliminate backlog...

  9. SEIR model simulation for Hepatitis B

    Science.gov (United States)

    Side, Syafruddin; Irwan, Mulbar, Usman; Sanusi, Wahidah

    2017-09-01

    Mathematical modelling and simulation for Hepatitis B discuss in this paper. Population devided by four variables, namely: Susceptible, Exposed, Infected and Recovered (SEIR). Several factors affect the population in this model is vaccination, immigration and emigration that occurred in the population. SEIR Model obtained Ordinary Differential Equation (ODE) non-linear System 4-D which then reduces to 3-D. SEIR model simulation undertaken to predict the number of Hepatitis B cases. The results of the simulation indicates the number of Hepatitis B cases will increase and then decrease for several months. The result of simulation using the number of case in Makassar also found the basic reproduction number less than one, that means, Makassar city is not an endemic area of Hepatitis B.

  10. Simulation data mapping in virtual cardiac model.

    Science.gov (United States)

    Jiquan, Liu; Jingyi, Feng; Duan, Huilong; Siping, Chen

    2004-01-01

    Although 3D heart and torso model with realistic geometry are basis of simulation computation in LFX virtual cardiac model, the simulation results are mostly output in 2D format. To solve such a problem and enhance the virtual reality of LFX virtual cardiac model, the methods of voxel mapping and vertex project mapping were presented. With these methods, excitation isochrone map (EIM) was mapped from heart model with realistic geometry to real visible man heart model, and body surface potential map (BSPM) was mapped from torso model with realistic geometry to real visible man body surface. By visualizing in the 4Dview, which is a real-time 3D medical image visualization platform, the visualization results of EIM and BSPM simulation data before and after mapping were also provided. According to the visualization results, the output format of EIM and BSPM simulation data of LFX virtual cardiac model were extended from 2D to 4D (spatio-temporal) and from cardiac model with realistic geometry to real cardiac model, and more realistic and effective simulation was achieved.

  11. Performance Confirmation Plan

    International Nuclear Information System (INIS)

    Lindner, E.N.

    2000-01-01

    As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that is affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program

  12. Performance Confirmation Plan

    International Nuclear Information System (INIS)

    Lindner, E.N.

    2000-01-01

    As described, the purpose of the Performance Confirmation Plan is to specify monitoring, testing, and analysis activities for evaluating the accuracy and adequacy of the information used to determine that performance objectives for postclosure will be met. This plan defines a number of specific performance confirmation activities and associated test concepts in support of the MGR that will be implemented to fulfill this purpose. In doing so, the plan defines an approach to identify key factors and processes, predict performance, establish tolerances and test criteria, collect data (through monitoring, testing, and experiments), analyze these data, and recommend appropriate action. The process of defining which factors to address under performance confirmation incorporates input from several areas. In all cases, key performance confirmation factors are those factors which are: (1) important to safety, (2) measurable and predictable, and (3) relevant to the program (i.e., a factor that i s affected by construction, emplacement, or is a time-dependent variable). For the present version of the plan, performance confirmation factors important to safety are identified using the principal factors from the RSS (CRWMS M and O 2000a) (which is derived from TSPA analyses) together with other available performance assessment analyses. With this basis, key performance confirmation factors have been identified, and test concepts and test descriptions have been developed in the plan. Other activities are also incorporated into the performance confirmation program outside of these key factors. Additional activities and tests have been incorporated when they are prescribed by requirements and regulations or are necessary to address data needs and model validation requirements relevant to postclosure safety. These other activities have been included with identified factors to construct the overall performance confirmation program

  13. Fully Adaptive Radar Modeling and Simulation Development

    Science.gov (United States)

    2017-04-01

    AFRL-RY-WP-TR-2017-0074 FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT Kristine L. Bell and Anthony Kellems Metron, Inc...SMALL BUSINESS INNOVATION RESEARCH (SBIR) PHASE I REPORT. Approved for public release; distribution unlimited. See additional restrictions...2017 4. TITLE AND SUBTITLE FULLY ADAPTIVE RADAR MODELING AND SIMULATION DEVELOPMENT 5a. CONTRACT NUMBER FA8650-16-M-1774 5b. GRANT NUMBER 5c

  14. Theory, modeling, and simulation annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  15. Modeling of magnetic particle suspensions for simulations

    CERN Document Server

    Satoh, Akira

    2017-01-01

    The main objective of the book is to highlight the modeling of magnetic particles with different shapes and magnetic properties, to provide graduate students and young researchers information on the theoretical aspects and actual techniques for the treatment of magnetic particles in particle-based simulations. In simulation, we focus on the Monte Carlo, molecular dynamics, Brownian dynamics, lattice Boltzmann and stochastic rotation dynamics (multi-particle collision dynamics) methods. The latter two simulation methods can simulate both the particle motion and the ambient flow field simultaneously. In general, specialized knowledge can only be obtained in an effective manner under the supervision of an expert. The present book is written to play such a role for readers who wish to develop the skill of modeling magnetic particles and develop a computer simulation program using their own ability. This book is therefore a self-learning book for graduate students and young researchers. Armed with this knowledge,...

  16. Challenges for Modeling and Simulation

    National Research Council Canada - National Science Library

    Johnson, James

    2002-01-01

    This document deals with modeling and stimulation. The strengths are study processes that rarely or never occur, evaluate a wide range of alternatives, generate new ideas, new concepts and innovative solutions...

  17. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...

  18. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  19. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results......A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...

  20. Modeling and simulation of discrete event systems

    CERN Document Server

    Choi, Byoung Kyu

    2013-01-01

    Computer modeling and simulation (M&S) allows engineers to study and analyze complex systems. Discrete-event system (DES)-M&S is used in modern management, industrial engineering, computer science, and the military. As computer speeds and memory capacity increase, so DES-M&S tools become more powerful and more widely used in solving real-life problems. Based on over 20 years of evolution within a classroom environment, as well as on decades-long experience in developing simulation-based solutions for high-tech industries, Modeling and Simulation of Discrete-Event Systems is the only book on

  1. Minimum-complexity helicopter simulation math model

    Science.gov (United States)

    Heffley, Robert K.; Mnich, Marc A.

    1988-01-01

    An example of a minimal complexity simulation helicopter math model is presented. Motivating factors are the computational delays, cost, and inflexibility of the very sophisticated math models now in common use. A helicopter model form is given which addresses each of these factors and provides better engineering understanding of the specific handling qualities features which are apparent to the simulator pilot. The technical approach begins with specification of features which are to be modeled, followed by a build up of individual vehicle components and definition of equations. Model matching and estimation procedures are given which enable the modeling of specific helicopters from basic data sources such as flight manuals. Checkout procedures are given which provide for total model validation. A number of possible model extensions and refinement are discussed. Math model computer programs are defined and listed.

  2. A simulation model for football championships

    OpenAIRE

    Koning, Ruud H.; Koolhaas, Michael; Renes, Gusta

    2001-01-01

    In this paper we discuss a simulation/probability model that identifies the team that is most likely to win a tournament. The model can also be used to answer other questions like ‘which team had a lucky draw?’ or ‘what is the probability that two teams meet at some moment in the tournament?’. Input to the simulation/probability model are scoring intensities, that are estimated as a weighted average of goals scored. The model has been used in practice to write articles for the popular press, ...

  3. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Modelling Deterministic Systems. N K Srinivasan gradu- ated from Indian. Institute of Science and obtained his Doctorate from Columbia Univer- sity, New York. He has taught in several universities, and later did system analysis, wargaming and simula- tion for defence. His other areas of interest are reliability engineer-.

  4. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    A model for a flue gas boiler covering the flue gas and the water-/steam side has been formulated. The model has been formulated as a number of sub models that are merged into an overall model for the complete boiler. Sub models have been defined for the furnace, the convection zone (split in 2......: a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat......Lab/Simulink has been applied for carrying out the simulations. To be able to verify the simulated results experiments has been carried out on a full scale boiler plant....

  5. Model Driven Development of Simulation Models : Defining and Transforming Conceptual Models into Simulation Models by Using Metamodels and Model Transformations

    NARCIS (Netherlands)

    Küçükkeçeci Çetinkaya, D.

    2013-01-01

    Modeling and simulation (M&S) is an effective method for analyzing and designing systems and it is of interest to scientists and engineers from all disciplines. This thesis proposes the application of a model driven software development approach throughout the whole set of M&S activities and it

  6. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  7. Dynamic modeling and simulation of wind turbines

    International Nuclear Information System (INIS)

    Ghafari Seadat, M.H.; Kheradmand Keysami, M.; Lari, H.R.

    2002-01-01

    Using wind energy for generating electricity in wind turbines is a good way for using renewable energies. It can also help to protect the environment. The main objective of this paper is dynamic modeling by energy method and simulation of a wind turbine aided by computer. In this paper, the equations of motion are extracted for simulating the system of wind turbine and then the behavior of the system become obvious by solving the equations. The turbine is considered with three blade rotor in wind direction, induced generator that is connected to the network and constant revolution for simulation of wind turbine. Every part of the wind turbine should be simulated for simulation of wind turbine. The main parts are blades, gearbox, shafts and generator

  8. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  9. The behaviour of adaptive boneremodeling simulation models

    NARCIS (Netherlands)

    Weinans, H.; Huiskes, R.; Grootenboer, H.J.

    1992-01-01

    The process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule applied to

  10. Analytical system dynamics modeling and simulation

    CERN Document Server

    Fabien, Brian C

    2008-01-01

    This book offering a modeling technique based on Lagrange's energy method includes 125 worked examples. Using this technique enables one to model and simulate systems as diverse as a six-link, closed-loop mechanism or a transistor power amplifier.

  11. Equivalent drawbead model in finite element simulations

    NARCIS (Netherlands)

    Carleer, Bart D.; Carleer, B.D.; Meinders, Vincent T.; Huetink, Han; Lee, J.K.; Kinzel, G.L.; Wagoner, R.

    1996-01-01

    In 3D simulations of the deep drawing process the drawbead geometries are seldom included. Therefore equivalent drawbeads are used. In order to investigate the drawbead behaviour a 2D plane strain finite element model was used. For verification of this model experiments were performed. The analyses

  12. A simulation model for football championships

    NARCIS (Netherlands)

    Koning, RH; Koolhaas, M; Renes, G; Ridder, G

    2003-01-01

    In this paper we discuss a simulation/probability model that identifies the team that is most likely to win a tournament. The model can also be used to answer other questions like 'which team bad a lucky draw?' or 'what is the probability that two teams meet at some moment in the tournament?' Input

  13. A simulation model for football championships

    NARCIS (Netherlands)

    Koning, Ruud H.; Koolhaas, Michael; Renes, Gusta

    2001-01-01

    In this paper we discuss a simulation/probability model that identifies the team that is most likely to win a tournament. The model can also be used to answer other questions like ‘which team had a lucky draw?’ or ‘what is the probability that two teams meet at some moment in the tournament?’. Input

  14. Regularization modeling for large-eddy simulation

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Holm, D.D.

    2003-01-01

    A new modeling approach for large-eddy simulation (LES) is obtained by combining a "regularization principle" with an explicit filter and its inversion. This regularization approach allows a systematic derivation of the implied subgrid model, which resolves the closure problem. The central role of

  15. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    Many studies have used water immersion and head-down bed rest as experimental models to simulate responses to microgravity. However, some data collected during space missions are at variance or in contrast with observations collected from experimental models. These discrepancies could reflect inc...

  16. Landscape Modelling and Simulation Using Spatial Data

    Directory of Open Access Journals (Sweden)

    Amjed Naser Mohsin AL-Hameedawi

    2017-08-01

    Full Text Available In this paper a procedure was performed for engendering spatial model of landscape acclimated to reality simulation. This procedure based on combining spatial data and field measurements with computer graphics reproduced using Blender software. Thereafter that we are possible to form a 3D simulation based on VIS ALL packages. The objective was to make a model utilising GIS, including inputs to the feature attribute data. The objective of these efforts concentrated on coordinating a tolerable spatial prototype, circumscribing facilitation scheme and outlining the intended framework. Thus; the eventual result was utilized in simulation form. The performed procedure contains not only data gathering, fieldwork and paradigm providing, but extended to supply a new method necessary to provide the respective 3D simulation mapping production, which authorises the decision makers as well as investors to achieve permanent acceptance an independent navigation system for Geoscience applications.

  17. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together...... to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal...... and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work...

  18. A queuing model for road traffic simulation

    International Nuclear Information System (INIS)

    Guerrouahane, N.; Aissani, D.; Bouallouche-Medjkoune, L.; Farhi, N.

    2015-01-01

    We present in this article a stochastic queuing model for the raod traffic. The model is based on the M/G/c/c state dependent queuing model, and is inspired from the deterministic Godunov scheme for the road traffic simulation. We first propose a variant of M/G/c/c state dependent model that works with density-flow fundamental diagrams rather than density-speed relationships. We then extend this model in order to consider upstream traffic demand as well as downstream traffic supply. Finally, we show how to model a whole raod by concatenating raod sections as in the deterministic Godunov scheme

  19. Quantitative interface models for simulating microstructure evolution

    International Nuclear Information System (INIS)

    Zhu, J.Z.; Wang, T.; Zhou, S.H.; Liu, Z.K.; Chen, L.Q.

    2004-01-01

    To quantitatively simulate microstructural evolution in real systems, we investigated three different interface models: a sharp-interface model implemented by the software DICTRA and two diffuse-interface models which use either physical order parameters or artificial order parameters. A particular example is considered, the diffusion-controlled growth of a γ ' precipitate in a supersaturated γ matrix in Ni-Al binary alloys. All three models use the thermodynamic and kinetic parameters from the same databases. The temporal evolution profiles of composition from different models are shown to agree with each other. The focus is on examining the advantages and disadvantages of each model as applied to microstructure evolution in alloys

  20. Analyzing Strategic Business Rules through Simulation Modeling

    Science.gov (United States)

    Orta, Elena; Ruiz, Mercedes; Toro, Miguel

    Service Oriented Architecture (SOA) holds promise for business agility since it allows business process to change to meet new customer demands or market needs without causing a cascade effect of changes in the underlying IT systems. Business rules are the instrument chosen to help business and IT to collaborate. In this paper, we propose the utilization of simulation models to model and simulate strategic business rules that are then disaggregated at different levels of an SOA architecture. Our proposal is aimed to help find a good configuration for strategic business objectives and IT parameters. The paper includes a case study where a simulation model is built to help business decision-making in a context where finding a good configuration for different business parameters and performance is too complex to analyze by trial and error.

  1. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  2. Kanban simulation model for production process optimization

    Directory of Open Access Journals (Sweden)

    Golchev Riste

    2015-01-01

    Full Text Available A long time has passed since the KANBAN system has been established as an efficient method for coping with the excessive inventory. Still, the possibilities for its improvement through its integration with other different approaches should be investigated further. The basic research challenge of this paper is to present benefits of KANBAN implementation supported with Discrete Event Simulation (DES. In that direction, at the beginning, the basics of KANBAN system are presented with emphasis on the information and material flow, together with a methodology for implementation of KANBAN system. Certain analysis on combining the simulation with this methodology is presented. The paper is concluded with a practical example which shows that through understanding the philosophy of the implementation methodology of KANBAN system and the simulation methodology, a simulation model can be created which can serve as a basis for a variety of experiments that can be conducted within a short period of time, resulting with production process optimization.

  3. Vermont Yankee simulator BOP model upgrade

    International Nuclear Information System (INIS)

    Alejandro, R.; Udbinac, M.J.

    2006-01-01

    The Vermont Yankee simulator has undergone significant changes in the 20 years since the original order was placed. After the move from the original Unix to MS Windows environment, and upgrade to the latest version of SimPort, now called MASTER, the platform was set for an overhaul and replacement of major plant system models. Over a period of a few months, the VY simulator team, in partnership with WSC engineers, replaced outdated legacy models of the main steam, condenser, condensate, circulating water, feedwater and feedwater heaters, and main turbine and auxiliaries. The timing was ideal, as the plant was undergoing a power up-rate, so the opportunity was taken to replace the legacy models with industry-leading, true on-line object oriented graphical models. Due to the efficiency of design and ease of use of the MASTER tools, VY staff performed the majority of the modeling work themselves with great success, with only occasional assistance from WSC, in a relatively short time-period, despite having to maintain all of their 'regular' simulator maintenance responsibilities. This paper will provide a more detailed view of the VY simulator, including how it is used and how it has benefited from the enhancements and upgrades implemented during the project. (author)

  4. A holistic water depth simulation model for small ponds

    Science.gov (United States)

    Ali, Shakir; Ghosh, Narayan C.; Mishra, P. K.; Singh, R. K.

    2015-10-01

    Estimation of time varying water depth and time to empty of a pond is prerequisite for comprehensive and coordinated planning of water resource for its effective utilization. A holistic water depth simulation (HWDS) and time to empty (TE) model for small, shallow ephemeral ponds have been derived by employing the generalized model based on the Green-Ampt equation in the basic water balance equation. The HWDS model includes time varying rainfall, runoff, surface water evaporation, outflow and advancement of wetting front length as external inputs. The TE model includes two external inputs; surface water evaporation and advancement of wetting front length. Both the models also consider saturated hydraulic conductivity and fillable porosity of the pond's bed material as their parameters. The solution of the HWDS model involved numerical iteration in successive time intervals. The HWDS model has successfully evaluated with 3 years of field data from two small ponds located within a watershed in a semi-arid region in western India. The HWDS model simulated time varying water depth in the ponds with high accuracy as shown by correlation coefficient (R2 ⩾ 0.9765), index of agreement (d ⩾ 0.9878), root mean square errors (RMSE ⩽ 0.20 m) and percent bias (PB ⩽ 6.23%) for the pooled data sets of the measured and simulated water depth. The statistical F and t-tests also confirmed the reliability of the HWDS model at probability level, p ⩽ 0.0001. The response of the TE model showed its ability to estimate the time to empty the ponds. An additional field calibration and validation of the HWDS and TE models with observed field data in varied hydro-climatic conditions could be conducted to increase the applicability and credibility of the models.

  5. TRANSFORM - TRANsient Simulation Framework of Reconfigurable Models

    Energy Technology Data Exchange (ETDEWEB)

    2017-09-01

    Existing development tools for early stage design and scoping of energy systems are often time consuming to use, proprietary, and do not contain the necessary function to model complete systems (i.e., controls, primary, and secondary systems) in a common platform. The Modelica programming language based TRANSFORM tool (1) provides a standardized, common simulation environment for early design of energy systems (i.e., power plants), (2) provides a library of baseline component modules to be assembled into full plant models using available geometry, design, and thermal-hydraulic data, (3) defines modeling conventions for interconnecting component models, and (4) establishes user interfaces and support tools to facilitate simulation development (i.e., configuration and parameterization), execution, and results display and capture.

  6. Biological transportation networks: Modeling and simulation

    KAUST Repository

    Albi, Giacomo

    2015-09-15

    We present a model for biological network formation originally introduced by Cai and Hu [Adaptation and optimization of biological transport networks, Phys. Rev. Lett. 111 (2013) 138701]. The modeling of fluid transportation (e.g., leaf venation and angiogenesis) and ion transportation networks (e.g., neural networks) is explained in detail and basic analytical features like the gradient flow structure of the fluid transportation network model and the impact of the model parameters on the geometry and topology of network formation are analyzed. We also present a numerical finite-element based discretization scheme and discuss sample cases of network formation simulations.

  7. A universal simulator for ecological models

    DEFF Research Database (Denmark)

    Holst, Niels

    2013-01-01

    Software design is an often neglected issue in ecological models, even though bad software design often becomes a hindrance for re-using, sharing and even grasping an ecological model. In this paper, the methodology of agile software design was applied to the domain of ecological models. Thus...... the principles for a universal design of ecological models were arrived at. To exemplify this design, the open-source software Universal Simulator was constructed using C++ and XML and is provided as a resource for inspiration....

  8. Object Oriented Modelling and Dynamical Simulation

    DEFF Research Database (Denmark)

    Wagner, Falko Jens; Poulsen, Mikael Zebbelin

    1998-01-01

    This report with appendix describes the work done in master project at DTU.The goal of the project was to develop a concept for simulation of dynamical systems based on object oriented methods.The result was a library of C++-classes, for use when both building componentbased models and when...

  9. preliminary multidomain modelling and simulation study

    African Journals Online (AJOL)

    user

    PRELIMINARY MULTIDOMAIN MODELLING AND SIMULATION STUDY OF A. HORIZONTAL AXIS WIND TURBINE (HAWT) TOWER VIBRATION. I. lliyasu1, I. Iliyasu2, I. K. Tanimu3 and D. O Obada4. 1,4 DEPARTMENT OF MECHANICAL ENGINEERING, AHMADU BELLO UNIVERSITY, ZARIA, KADUNA STATE. NIGERIA.

  10. Reproducibility in Computational Neuroscience Models and Simulations

    Science.gov (United States)

    McDougal, Robert A.; Bulanova, Anna S.; Lytton, William W.

    2016-01-01

    Objective Like all scientific research, computational neuroscience research must be reproducible. Big data science, including simulation research, cannot depend exclusively on journal articles as the method to provide the sharing and transparency required for reproducibility. Methods Ensuring model reproducibility requires the use of multiple standard software practices and tools, including version control, strong commenting and documentation, and code modularity. Results Building on these standard practices, model sharing sites and tools have been developed that fit into several categories: 1. standardized neural simulators, 2. shared computational resources, 3. declarative model descriptors, ontologies and standardized annotations; 4. model sharing repositories and sharing standards. Conclusion A number of complementary innovations have been proposed to enhance sharing, transparency and reproducibility. The individual user can be encouraged to make use of version control, commenting, documentation and modularity in development of models. The community can help by requiring model sharing as a condition of publication and funding. Significance Model management will become increasingly important as multiscale models become larger, more detailed and correspondingly more difficult to manage by any single investigator or single laboratory. Additional big data management complexity will come as the models become more useful in interpreting experiments, thus increasing the need to ensure clear alignment between modeling data, both parameters and results, and experiment. PMID:27046845

  11. Thermohydraulic modeling and simulation of breeder reactors

    International Nuclear Information System (INIS)

    Agrawal, A.K.; Khatib-Rahbar, M.; Curtis, R.T.; Hetrick, D.L.; Girijashankar, P.V.

    1982-01-01

    This paper deals with the modeling and simulation of system-wide transients in LMFBRs. Unprotected events (i.e., the presumption of failure of the plant protection system) leading to core-melt are not considered in this paper. The existing computational capabilities in the area of protected transients in the US are noted. Various physical and numerical approximations that are made in these codes are discussed. Finally, the future direction in the area of model verification and improvements is discussed

  12. Twitter's tweet method modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  13. Advances in NLTE modeling for integrated simulations

    Science.gov (United States)

    Scott, H. A.; Hansen, S. B.

    2010-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different atomic species for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly-excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with sufficient accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δ n = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short time steps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  14. Advances in NLTE Modeling for Integrated Simulations

    International Nuclear Information System (INIS)

    Scott, H.A.; Hansen, S.B.

    2009-01-01

    The last few years have seen significant progress in constructing the atomic models required for non-local thermodynamic equilibrium (NLTE) simulations. Along with this has come an increased understanding of the requirements for accurately modeling the ionization balance, energy content and radiative properties of different elements for a wide range of densities and temperatures. Much of this progress is the result of a series of workshops dedicated to comparing the results from different codes and computational approaches applied to a series of test problems. The results of these workshops emphasized the importance of atomic model completeness, especially in doubly excited states and autoionization transitions, to calculating ionization balance, and the importance of accurate, detailed atomic data to producing reliable spectra. We describe a simple screened-hydrogenic model that calculates NLTE ionization balance with surprising accuracy, at a low enough computational cost for routine use in radiation-hydrodynamics codes. The model incorporates term splitting, Δn = 0 transitions, and approximate UTA widths for spectral calculations, with results comparable to those of much more detailed codes. Simulations done with this model have been increasingly successful at matching experimental data for laser-driven systems and hohlraums. Accurate and efficient atomic models are just one requirement for integrated NLTE simulations. Coupling the atomic kinetics to hydrodynamics and radiation transport constrains both discretizations and algorithms to retain energy conservation, accuracy and stability. In particular, the strong coupling between radiation and populations can require either very short timesteps or significantly modified radiation transport algorithms to account for NLTE material response. Considerations such as these continue to provide challenges for NLTE simulations.

  15. SIMULATION MODELING OF IT PROJECTS BASED ON PETRI NETS

    Directory of Open Access Journals (Sweden)

    Александр Михайлович ВОЗНЫЙ

    2015-05-01

    Full Text Available An integrated simulation model of IT project based on a modified Petri net model that combines product and model of project tasks has been proposed. Substantive interpretation of the components of the simulation model has been presented, the process of simulation has been described. The conclusions about the integration of the product model and the model of works project were made.

  16. A parallel computational model for GATE simulations.

    Science.gov (United States)

    Rannou, F R; Vega-Acevedo, N; El Bitar, Z

    2013-12-01

    GATE/Geant4 Monte Carlo simulations are computationally demanding applications, requiring thousands of processor hours to produce realistic results. The classical strategy of distributing the simulation of individual events does not apply efficiently for Positron Emission Tomography (PET) experiments, because it requires a centralized coincidence processing and large communication overheads. We propose a parallel computational model for GATE that handles event generation and coincidence processing in a simple and efficient way by decentralizing event generation and processing but maintaining a centralized event and time coordinator. The model is implemented with the inclusion of a new set of factory classes that can run the same executable in sequential or parallel mode. A Mann-Whitney test shows that the output produced by this parallel model in terms of number of tallies is equivalent (but not equal) to its sequential counterpart. Computational performance evaluation shows that the software is scalable and well balanced. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Modeling, simulation and optimization of bipedal walking

    CERN Document Server

    Berns, Karsten

    2013-01-01

    The model-based investigation of motions of anthropomorphic systems is an important interdisciplinary research topic involving specialists from many fields such as Robotics, Biomechanics, Physiology, Orthopedics, Psychology, Neurosciences, Sports, Computer Graphics and Applied Mathematics. This book presents a study of basic locomotion forms such as walking and running is of particular interest due to the high demand on dynamic coordination, actuator efficiency and balance control. Mathematical models and numerical simulation and optimization techniques are explained, in combination with experimental data, which can help to better understand the basic underlying mechanisms of these motions and to improve them. Example topics treated in this book are Modeling techniques for anthropomorphic bipedal walking systems Optimized walking motions for different objective functions Identification of objective functions from measurements Simulation and optimization approaches for humanoid robots Biologically inspired con...

  18. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  19. Fault diagnosis based on continuous simulation models

    Science.gov (United States)

    Feyock, Stefan

    1987-01-01

    The results are described of an investigation of techniques for using continuous simulation models as basis for reasoning about physical systems, with emphasis on the diagnosis of system faults. It is assumed that a continuous simulation model of the properly operating system is available. Malfunctions are diagnosed by posing the question: how can we make the model behave like that. The adjustments that must be made to the model to produce the observed behavior usually provide definitive clues to the nature of the malfunction. A novel application of Dijkstra's weakest precondition predicate transformer is used to derive the preconditions for producing the required model behavior. To minimize the size of the search space, an envisionment generator based on interval mathematics was developed. In addition to its intended application, the ability to generate qualitative state spaces automatically from quantitative simulations proved to be a fruitful avenue of investigation in its own right. Implementations of the Dijkstra transform and the envisionment generator are reproduced in the Appendix.

  20. Numerical model simulation of atmospheric coolant plumes

    International Nuclear Information System (INIS)

    Gaillard, P.

    1980-01-01

    The effect of humid atmospheric coolants on the atmosphere is simulated by means of a three-dimensional numerical model. The atmosphere is defined by its natural vertical profiles of horizontal velocity, temperature, pressure and relative humidity. Effluent discharge is characterised by its vertical velocity and the temperature of air satured with water vapour. The subject of investigation is the area in the vicinity of the point of discharge, with due allowance for the wake effect of the tower and buildings and, where application, wind veer with altitude. The model equations express the conservation relationships for mometum, energy, total mass and water mass, for an incompressible fluid behaving in accordance with the Boussinesq assumptions. Condensation is represented by a simple thermodynamic model, and turbulent fluxes are simulated by introduction of turbulent viscosity and diffusivity data based on in-situ and experimental water model measurements. The three-dimensional problem expressed in terms of the primitive variables (u, v, w, p) is governed by an elliptic equation system which is solved numerically by application of an explicit time-marching algorithm in order to predict the steady-flow velocity distribution, temperature, water vapour concentration and the liquid-water concentration defining the visible plume. Windstill conditions are simulated by a program processing the elliptic equations in an axisymmetrical revolution coordinate system. The calculated visible plumes are compared with plumes observed on site with a view to validate the models [fr

  1. A Simulation Model for Extensor Tendon Repair

    Directory of Open Access Journals (Sweden)

    Elizabeth Aronstam

    2017-07-01

    Full Text Available Audience: This simulation model is designed for use by emergency medicine residents. Although we have instituted this at the PGY-2 level of our residency curriculum, it is appropriate for any level of emergency medicine residency training. It might also be adapted for use for a variety of other learners, such as practicing emergency physicians, orthopedic surgery residents, or hand surgery trainees. Introduction: Tendon injuries commonly present to the emergency department, so it is essential that emergency physicians be competent in evaluating such injuries. Indeed, extensor tendon repair is included as an ACGME Emergency Medicine Milestone (Milestone 13, Wound Management, Level 5 – “Performs advanced wound repairs, such as tendon repairs…”.1 However, emergency medicine residents may have limited opportunity to develop these skills due to a lack of patients, competition from other trainees, or preexisting referral patterns. Simulation may provide an alternative means to effectively teach these skills in such settings. Previously described tendon repair simulation models that were designed for surgical trainees have used rubber worms4, licorice5, feeding tubes, catheters6,7, drinking straws8, microfoam tape9, sheep forelimbs10 and cadavers.11 These models all suffer a variety of limitations, including high cost, lack of ready availability, or lack of realism. Objectives: We sought to develop an extensor tendon repair simulation model for emergency medicine residents, designed to meet ACGME Emergency Medicine Milestone 13, Level 5. We wished this model to be simple, inexpensive, and realistic. Methods: The learner responsible content/educational handout component of our innovation teaches residents about emergency department extensor tendon repair, and includes: 1 relevant anatomy 2 indications and contraindications for emergency department extensor tendon repair 3 physical exam findings 4 tendon suture techniques and 5 aftercare. During

  2. Modelling and simulation of thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Eborn, J.

    1998-02-01

    Mathematical modelling and simulation are important tools when dealing with engineering systems that today are becoming increasingly more complex. Integrated production and recycling of materials are trends that give rise to heterogenous systems, which are difficult to handle within one area of expertise. Model libraries are an excellent way to package engineering knowledge of systems and units to be reused by those who are not experts in modelling. Many commercial packages provide good model libraries, but they are usually domain-specific and closed. Heterogenous, multi-domain systems requires open model libraries written in general purpose modelling languages. This thesis describes a model database for thermal power plants written in the object-oriented modelling language OMOLA. The models are based on first principles. Subunits describe volumes with pressure and enthalpy dynamics and flows of heat or different media. The subunits are used to build basic units such as pumps, valves and heat exchangers which can be used to build system models. Several applications are described; a heat recovery steam generator, equipment for juice blending, steam generation in a sulphuric acid plant and a condensing steam plate heat exchanger. Model libraries for industrial use must be validated against measured data. The thesis describes how parameter estimation methods can be used for model validation. Results from a case-study on parameter optimization of a non-linear drum boiler model show how the technique can be used 32 refs, 21 figs

  3. Improved simulation of groundwater - surface water interaction in catchment models

    Science.gov (United States)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  4. Modeling and simulation of economic processes

    Directory of Open Access Journals (Sweden)

    Bogdan Brumar

    2010-12-01

    Full Text Available In general, any activity requires a longer action often characterized by a degree of uncertainty, insecurity, in terms of size of the objective pursued. Because of the complexity of real economic systems, the stochastic dependencies between different variables and parameters considered, not all systems can be adequately represented by a model that can be solved by analytical methods and covering all issues for management decision analysis-economic horizon real. Often in such cases, it is considered that the simulation technique is the only alternative available. Using simulation techniques to study real-world systems often requires a laborious work. Making a simulation experiment is a process that takes place in several stages.

  5. Simulation as a surgical teaching model.

    Science.gov (United States)

    Ruiz-Gómez, José Luis; Martín-Parra, José Ignacio; González-Noriega, Mónica; Redondo-Figuero, Carlos Godofredo; Manuel-Palazuelos, José Carlos

    2018-01-01

    Teaching of surgery has been affected by many factors over the last years, such as the reduction of working hours, the optimization of the use of the operating room or patient safety. Traditional teaching methodology fails to reduce the impact of these factors on surgeońs training. Simulation as a teaching model minimizes such impact, and is more effective than traditional teaching methods for integrating knowledge and clinical-surgical skills. Simulation complements clinical assistance with training, creating a safe learning environment where patient safety is not affected, and ethical or legal conflicts are avoided. Simulation uses learning methodologies that allow teaching individualization, adapting it to the learning needs of each student. It also allows training of all kinds of technical, cognitive or behavioural skills. Copyright © 2017 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Mathematical models and numerical simulation in electromagnetism

    CERN Document Server

    Bermúdez, Alfredo; Salgado, Pilar

    2014-01-01

    The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory  based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.

  7. Facebook's personal page modelling and simulation

    Science.gov (United States)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    In this paper we will try to define the utility of Facebook's Personal Page marketing method. This tool that Facebook provides, is modelled and simulated using iThink in the context of a Facebook marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following model has been developed for a social media marketing agent/company, Facebook platform oriented and tested in real circumstances. This model is finalized through a number of revisions and iterators of the design, development, simulation, testing and evaluation processes. The validity and usefulness of this Facebook marketing model for the day-to-day decision making are authenticated by the management of the company organization. Facebook's Personal Page method can be adjusted, depending on the situation, in order to maximize the total profit of the company which is to bring new customers, keep the interest of the old customers and deliver traffic to its website.

  8. Modeling and simulation of photovoltaic solar panel

    International Nuclear Information System (INIS)

    Belarbi, M.; Haddouche, K.; Midoun, A.

    2006-01-01

    In this article, we present a new approach for estimating the model parameters of a photovoltaic solar panel according to the irradiance and temperature. The parameters of the one diode model are given from the knowledge of three operating points: short-circuit, open circuit, and maximum power. In the first step, the adopted approach concerns the resolution of the system of equations constituting the three operating points to write all the model parameters according to series resistance. Secondly, we make an iterative resolution at the optimal operating point by using the Newton-Raphson method to calculate the series resistance value as well as the model parameters. Once the panel model is identified, we consider other equations for taking into account the irradiance and temperature effect. The simulation results show the convergence speed of the model parameters and the possibility of visualizing the electrical behaviour of the panel according to the irradiance and temperature. Let us note that a sensitivity of the algorithm at the optimal operating point was observed owing to the fact that a small variation of the optimal voltage value leads to a very great variation of the identified parameters values. With the identified model, we can develop algorithms of maximum power point tracking, and make simulations of a solar water pumping system.(Author)

  9. A simulation model for material accounting systems

    International Nuclear Information System (INIS)

    Coulter, C.A.; Thomas, K.E.

    1987-01-01

    A general-purpose model that was developed to simulate the operation of a chemical processing facility for nuclear materials has been extended to describe material measurement and accounting procedures as well. The model now provides descriptors for material balance areas, a large class of measurement instrument types and their associated measurement errors for various classes of materials, the measurement instruments themselves with their individual calibration schedules, and material balance closures. Delayed receipt of measurement results (as for off-line analytical chemistry assay), with interim use of a provisional measurement value, can be accurately represented. The simulation model can be used to estimate inventory difference variances for processing areas that do not operate at steady state, to evaluate the timeliness of measurement information, to determine process impacts of measurement requirements, and to evaluate the effectiveness of diversion-detection algorithms. Such information is usually difficult to obtain by other means. Use of the measurement simulation model is illustrated by applying it to estimate inventory difference variances for two material balance area structures of a fictitious nuclear material processing line

  10. Theory, modeling and simulation: Annual report 1993

    International Nuclear Information System (INIS)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE's research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies

  11. Theory, modeling and simulation: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, T.H. Jr.; Garrett, B.C.

    1994-07-01

    Developing the knowledge base needed to address the environmental restoration issues of the US Department of Energy requires a fundamental understanding of molecules and their interactions in insolation and in liquids, on surfaces, and at interfaces. To meet these needs, the PNL has established the Environmental and Molecular Sciences Laboratory (EMSL) and will soon begin construction of a new, collaborative research facility devoted to advancing the understanding of environmental molecular science. Research in the Theory, Modeling, and Simulation program (TMS), which is one of seven research directorates in the EMSL, will play a critical role in understanding molecular processes important in restoring DOE`s research, development and production sites, including understanding the migration and reactions of contaminants in soils and groundwater, the development of separation process for isolation of pollutants, the development of improved materials for waste storage, understanding the enzymatic reactions involved in the biodegradation of contaminants, and understanding the interaction of hazardous chemicals with living organisms. The research objectives of the TMS program are to apply available techniques to study fundamental molecular processes involved in natural and contaminated systems; to extend current techniques to treat molecular systems of future importance and to develop techniques for addressing problems that are computationally intractable at present; to apply molecular modeling techniques to simulate molecular processes occurring in the multispecies, multiphase systems characteristic of natural and polluted environments; and to extend current molecular modeling techniques to treat complex molecular systems and to improve the reliability and accuracy of such simulations. The program contains three research activities: Molecular Theory/Modeling, Solid State Theory, and Biomolecular Modeling/Simulation. Extended abstracts are presented for 89 studies.

  12. A Model Management Approach for Co-Simulation Model Evaluation

    NARCIS (Netherlands)

    Zhang, X.C.; Broenink, Johannes F.; Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2011-01-01

    Simulating formal models is a common means for validating the correctness of the system design and reduce the time-to-market. In most of the embedded control system design, multiple engineering disciplines and various domain-specific models are often involved, such as mechanical, control, software

  13. eShopper modeling and simulation

    Science.gov (United States)

    Petrushin, Valery A.

    2001-03-01

    The advent of e-commerce gives an opportunity to shift the paradigm of customer communication into a highly interactive mode. The new generation of commercial Web servers, such as the Blue Martini's server, combines the collection of data on a customer behavior with real-time processing and dynamic tailoring of a feedback page. The new opportunities for direct product marketing and cross selling are arriving. The key problem is what kind of information do we need to achieve these goals, or in other words, how do we model the customer? The paper is devoted to customer modeling and simulation. The focus is on modeling an individual customer. The model is based on the customer's transaction data, click stream data, and demographics. The model includes the hierarchical profile of a customer's preferences to different types of products and brands; consumption models for the different types of products; the current focus, trends, and stochastic models for time intervals between purchases; product affinity models; and some generalized features, such as purchasing power, sensitivity to advertising, price sensitivity, etc. This type of model is used for predicting the date of the next visit, overall spending, and spending for different types of products and brands. For some type of stores (for example, a supermarket) and stable customers, it is possible to forecast the shopping lists rather accurately. The forecasting techniques are discussed. The forecasting results can be used for on- line direct marketing, customer retention, and inventory management. The customer model can also be used as a generative model for simulating the customer's purchasing behavior in different situations and for estimating customer's features.

  14. Simulation modelling in agriculture: General considerations. | R.I. ...

    African Journals Online (AJOL)

    The computer does all the necessary arithmetic when the hypothesis is invoked to predict the future behaviour of the simulated system under given conditions.A general ... in the advisory service. Keywords: agriculture; botany; computer simulation; modelling; simulation model; simulation modelling; south africa; techniques ...

  15. Aqueous Electrolytes: Model Parameters and Process Simulation

    DEFF Research Database (Denmark)

    Thomsen, Kaj

    This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer ...... program including a steady state process simulator for the design, simulation, and optimization of fractional crystallization processes is presented.......This thesis deals with aqueous electrolyte mixtures. The Extended UNIQUAC model is being used to describe the excess Gibbs energy of such solutions. Extended UNIQUAC parameters for the twelve ions Na+, K+, NH4+, H+, Cl-, NO3-, SO42-, HSO4-, OH-, CO32-, HCO3-, and S2O82- are estimated. A computer...

  16. A Placement Model for Flight Simulators.

    Science.gov (United States)

    1982-09-01

    simulator basing strategies. Captains David R. VanDenburg and Jon D. Veith developed a mathematical model to assist in the placement analysis of A-7...Institute for Defense Analysis, Arlington VA, August 1977. AD A049979. 23. Sugarman , Robert C., Steven L. Johnson, and William F. H. Ring. "B-I Systems...USAF Cost and Plan- nin& Factors. AFR 173-13. Washington: Govern- ment Printing Office, I February 1982. * 30. Van Denburg, Captain David R., USAF

  17. Modelling interplanetary CMEs using magnetohydrodynamic simulations

    Directory of Open Access Journals (Sweden)

    P. J. Cargill

    Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.

    Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies

  18. MODELING AND SIMULATION OF A HYDROCRACKING UNIT

    Directory of Open Access Journals (Sweden)

    HASSAN A. FARAG

    2016-06-01

    Full Text Available Hydrocracking is used in the petroleum industry to convert low quality feed stocks into high valued transportation fuels such as gasoline, diesel, and jet fuel. The aim of the present work is to develop a rigorous steady state two-dimensional mathematical model which includes conservation equations of mass and energy for simulating the operation of a hydrocracking unit. Both the catalyst bed and quench zone have been included in this integrated model. The model equations were numerically solved in both axial and radial directions using Matlab software. The presented model was tested against a real plant data in Egypt. The results indicated that a very good agreement between the model predictions and industrial values have been reported for temperature profiles, concentration profiles, and conversion in both radial and axial directions at the hydrocracking unit. Simulation of the quench zone conversion and temperature profiles in the quench zone was also included and gave a low deviation from the actual ones. In concentration profiles, the percentage deviation in the first reactor was found to be 9.28 % and 9.6% for the second reactor. The effect of several parameters such as: Pellet Heat Transfer Coefficient, Effective Radial Thermal Conductivity, Wall Heat Transfer Coefficient, Effective Radial Diffusivity, and Cooling medium (quench zone has been included in this study. The variation of Wall Heat Transfer Coefficient, Effective Radial Diffusivity for the near-wall region, gave no remarkable changes in the temperature profiles. On the other hand, even small variations of Effective Radial Thermal Conductivity, affected the simulated temperature profiles significantly, and this effect could not be compensated by the variations of the other parameters of the model.

  19. Reactive transport models and simulation with ALLIANCES

    International Nuclear Information System (INIS)

    Leterrier, N.; Deville, E.; Bary, B.; Trotignon, L.; Hedde, T.; Cochepin, B.; Stora, E.

    2009-01-01

    Many chemical processes influence the evolution of nuclear waste storage. As a result, simulations based only upon transport and hydraulic processes fail to describe adequately some industrial scenarios. We need to take into account complex chemical models (mass action laws, kinetics...) which are highly non-linear. In order to simulate the coupling of these chemical reactions with transport, we use a classical Sequential Iterative Approach (SIA), with a fixed point algorithm, within the mainframe of the ALLIANCES platform. This approach allows us to use the various transport and chemical modules available in ALLIANCES, via an operator-splitting method based upon the structure of the chemical system. We present five different applications of reactive transport simulations in the context of nuclear waste storage: 1. A 2D simulation of the lixiviation by rain water of an underground polluted zone high in uranium oxide; 2. The degradation of the steel envelope of a package in contact with clay. Corrosion of the steel creates corrosion products and the altered package becomes a porous medium. We follow the degradation front through kinetic reactions and the coupling with transport; 3. The degradation of a cement-based material by the injection of an aqueous solution of zinc and sulphate ions. In addition to the reactive transport coupling, we take into account in this case the hydraulic retroaction of the porosity variation on the Darcy velocity; 4. The decalcification of a concrete beam in an underground storage structure. In this case, in addition to the reactive transport simulation, we take into account the interaction between chemical degradation and the mechanical forces (cracks...), and the retroactive influence on the structure changes on transport; 5. The degradation of the steel envelope of a package in contact with a clay material under a temperature gradient. In this case the reactive transport simulation is entirely directed by the temperature changes and

  20. Simulation models generator. Applications in scheduling

    Directory of Open Access Journals (Sweden)

    Omar Danilo Castrillón

    2013-08-01

    Rev.Mate.Teor.Aplic. (ISSN 1409-2433 Vol. 20(2: 231–241, July 2013 generador de modelos de simulacion 233 will, in order to have an approach to reality to evaluate decisions in order to take more assertive. To test prototype was used as the modeling example of a production system with 9 machines and 5 works as a job shop configuration, testing stops processing times and stochastic machine to measure rates of use of machines and time average jobs in the system, as measures of system performance. This test shows the goodness of the prototype, to save the user the simulation model building

  1. Computer Models Simulate Fine Particle Dispersion

    Science.gov (United States)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  2. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  3. TMS modeling toolbox for realistic simulation.

    Science.gov (United States)

    Cho, Young Sun; Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong

    2010-01-01

    Transcranial magnetic stimulation (TMS) is a technique for brain stimulation using rapidly changing magnetic fields generated by coils. It has been established as an effective stimulation technique to treat patients suffering from damaged brain functions. Although TMS is known to be painless and noninvasive, it can also be harmful to the brain by incorrect focusing and excessive stimulation which might result in seizure. Therefore there is ongoing research effort to elucidate and better understand the effect and mechanism of TMS. Lately Boundary element method (BEM) and Finite element method (FEM) have been used to simulate the electromagnetic phenomenon of TMS. However, there is a lack of general tools to generate the models of TMS due to some difficulties in realistic modeling of the human head and TMS coils. In this study, we have developed a toolbox through which one can generate high-resolution FE TMS models. The toolbox allows creating FE models of the head with isotropic and anisotropic electrical conductivities in five different tissues of the head and the coils in 3D. The generated TMS model is importable to FE software packages such as ANSYS for further and efficient electromagnetic analysis. We present a set of demonstrative results of realistic simulation of TMS with our toolbox.

  4. Experience Report: Constraint-Based Modelling and Simulation of Railway Emergency Response Plans

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Sandberg, Lene

    2016-01-01

    We report on experiences from a case study applying a constraint-based process-modelling and -simulation tool, dcrgraphs.net, to the modelling and rehearsal of railway emergency response plans with domain experts. The case study confirmed the approach as a viable means for domain experts to analyse...

  5. Wedge Experiment Modeling and Simulation for Reactive Flow Model Calibration

    Science.gov (United States)

    Maestas, Joseph T.; Dorgan, Robert J.; Sutherland, Gerrit T.

    2017-06-01

    Wedge experiments are a typical method for generating pop-plot data (run-to-detonation distance versus input shock pressure), which is used to assess an explosive material's initiation behavior. Such data can be utilized to calibrate reactive flow models by running hydrocode simulations and successively tweaking model parameters until a match between experiment is achieved. Typical simulations are performed in 1D and typically use a flyer impact to achieve the prescribed shock loading pressure. In this effort, a wedge experiment performed at the Army Research Lab (ARL) was modeled using CTH (SNL hydrocode) in 1D, 2D, and 3D space in order to determine if there was any justification in using simplified models. A simulation was also performed using the BCAT code (CTH companion tool) that assumes a plate impact shock loading. Results from the simulations were compared to experimental data and show that the shock imparted into an explosive specimen is accurately captured with 2D and 3D simulations, but changes significantly in 1D space and with the BCAT tool. The difference in shock profile is shown to only affect numerical predictions for large run distances. This is attributed to incorrectly capturing the energy fluence for detonation waves versus flat shock loading. Portions of this work were funded through the Joint Insensitive Munitions Technology Program.

  6. Integrating Visualizations into Modeling NEST Simulations.

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  7. Integrating Visualizations into Modeling NEST Simulations

    Directory of Open Access Journals (Sweden)

    Christian eNowke

    2015-12-01

    Full Text Available Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work.

  8. Integrating Visualizations into Modeling NEST Simulations

    Science.gov (United States)

    Nowke, Christian; Zielasko, Daniel; Weyers, Benjamin; Peyser, Alexander; Hentschel, Bernd; Kuhlen, Torsten W.

    2015-01-01

    Modeling large-scale spiking neural networks showing realistic biological behavior in their dynamics is a complex and tedious task. Since these networks consist of millions of interconnected neurons, their simulation produces an immense amount of data. In recent years it has become possible to simulate even larger networks. However, solutions to assist researchers in understanding the simulation's complex emergent behavior by means of visualization are still lacking. While developing tools to partially fill this gap, we encountered the challenge to integrate these tools easily into the neuroscientists' daily workflow. To understand what makes this so challenging, we looked into the workflows of our collaborators and analyzed how they use the visualizations to solve their daily problems. We identified two major issues: first, the analysis process can rapidly change focus which requires to switch the visualization tool that assists in the current problem domain. Second, because of the heterogeneous data that results from simulations, researchers want to relate data to investigate these effectively. Since a monolithic application model, processing and visualizing all data modalities and reflecting all combinations of possible workflows in a holistic way, is most likely impossible to develop and to maintain, a software architecture that offers specialized visualization tools that run simultaneously and can be linked together to reflect the current workflow, is a more feasible approach. To this end, we have developed a software architecture that allows neuroscientists to integrate visualization tools more closely into the modeling tasks. In addition, it forms the basis for semantic linking of different visualizations to reflect the current workflow. In this paper, we present this architecture and substantiate the usefulness of our approach by common use cases we encountered in our collaborative work. PMID:26733860

  9. NOAA People Empowered Products (PeEP): Combining social media with scientific models to provide eye-witness confirmed products

    Science.gov (United States)

    Codrescu, S.; Green, J. C.; Redmon, R. J.; Minor, K.; Denig, W. F.; Kihn, E. A.

    2013-12-01

    NOAA products and alerts rely on combinations of models and data to provide the public with information regarding space and terrestrial weather phenomena and hazards. This operational paradigm, while effective, neglects an abundant free source of measurements: millions of eyewitnesses viewing weather events. We demonstrate the capabilities of a prototype People Empowered Product (PeEP) that combines the OVATION prime auroral model running at the NOAA National Geophysical Data Center with Twitter reports of observable aurora. We introduce an algorithm for scoring Tweets based on keywords to improve the signal to noise of this dynamic data source. We use the location of the aurora derived from this new database of crowd sourced observations to validate the OVATION model for use in auroral forecasting. The combined product displays the model aurora in real time with markers showing the location and text of tweets from people actually observing the aurora. We discuss how the application might be extended to other space weather products such as radiation related satellite anomalies.

  10. Efficient Turbulence Modeling for CFD Wake Simulations

    DEFF Research Database (Denmark)

    van der Laan, Paul

    , that can accurately and efficiently simulate wind turbine wakes. The linear k-ε eddy viscosity model (EVM) is a popular turbulence model in RANS; however, it underpredicts the velocity wake deficit and cannot predict the anisotropic Reynolds-stresses in the wake. In the current work, nonlinear eddy...... viscosity models (NLEVM) are applied to wind turbine wakes. NLEVMs can model anisotropic turbulence through a nonlinear stress-strain relation, and they can improve the velocity deficit by the use of a variable eddy viscosity coefficient, that delays the wake recovery. Unfortunately, all tested NLEVMs show...... numerically unstable behavior for fine grids, which inhibits a grid dependency study for numerical verification. Therefore, a simpler EVM is proposed, labeled as the k-ε - fp EVM, that has a linear stress-strain relation, but still has a variable eddy viscosity coefficient. The k-ε - fp EVM is numerically...

  11. Modeling and simulation of gamma camera

    International Nuclear Information System (INIS)

    Singh, B.; Kataria, S.K.; Samuel, A.M.

    2002-08-01

    Simulation techniques play a vital role in designing of sophisticated instruments and also for the training of operating and maintenance staff. Gamma camera systems have been used for functional imaging in nuclear medicine. Functional images are derived from the external counting of the gamma emitting radioactive tracer that after introduction in to the body mimics the behavior of native biochemical compound. The position sensitive detector yield the coordinates of the gamma ray interaction with the detector and are used to estimate the point of gamma ray emission within the tracer distribution space. This advanced imaging device is thus dependent on the performance of algorithm for coordinate computing, estimation of point of emission, generation of image and display of the image data. Contemporary systems also have protocols for quality control and clinical evaluation of imaging studies. Simulation of this processing leads to understanding of the basic camera design problems. This report describes a PC based package for design and simulation of gamma camera along with the options of simulating data acquisition and quality control of imaging studies. Image display and data processing the other options implemented in SIMCAM will be described in separate reports (under preparation). Gamma camera modeling and simulation in SIMCAM has preset configuration of the design parameters for various sizes of crystal detector with the option to pack the PMT on hexagon or square lattice. Different algorithm for computation of coordinates and spatial distortion removal are allowed in addition to the simulation of energy correction circuit. The user can simulate different static, dynamic, MUGA and SPECT studies. The acquired/ simulated data is processed for quality control and clinical evaluation of the imaging studies. Results show that the program can be used to assess these performances. Also the variations in performance parameters can be assessed due to the induced

  12. Desktop Modeling and Simulation: Parsimonious, yet Effective Discrete-Event Simulation Analysis

    Science.gov (United States)

    Bradley, James R.

    2012-01-01

    This paper evaluates how quickly students can be trained to construct useful discrete-event simulation models using Excel The typical supply chain used by many large national retailers is described, and an Excel-based simulation model is constructed of it The set of programming and simulation skills required for development of that model are then determined we conclude that six hours of training are required to teach the skills to MBA students . The simulation presented here contains all fundamental functionallty of a simulation model, and so our result holds for any discrete-event simulation model. We argue therefore that Industry workers with the same technical skill set as students having completed one year in an MBA program can be quickly trained to construct simulation models. This result gives credence to the efficacy of Desktop Modeling and Simulation whereby simulation analyses can be quickly developed, run, and analyzed with widely available software, namely Excel.

  13. Study on driver model for hybrid truck based on driving simulator experimental results

    Directory of Open Access Journals (Sweden)

    Dam Hoang Phuc

    2018-04-01

    Full Text Available In this paper, a proposed car-following driver model taking into account some features of both the compensatory and anticipatory model representing the human pedal operation has been verified by driving simulator experiments with several real drivers. The comparison between computer simulations performed by determined model parameters with the experimental results confirm the correctness of this mathematical driver model and identified model parameters. Then the driver model is joined to a hybrid vehicle dynamics model and the moderate car following maneuver simulations with various driver parameters are conducted to investigate influences of driver parameters on vehicle dynamics response and fuel economy. Finally, major driver parameters involved in the longitudinal control of drivers are clarified. Keywords: Driver model, Driver-vehicle closed-loop system, Car Following, Driving simulator/hybrid electric vehicle (B1

  14. Best Practices for Crash Modeling and Simulation

    Science.gov (United States)

    Fasanella, Edwin L.; Jackson, Karen E.

    2002-01-01

    Aviation safety can be greatly enhanced by the expeditious use of computer simulations of crash impact. Unlike automotive impact testing, which is now routine, experimental crash tests of even small aircraft are expensive and complex due to the high cost of the aircraft and the myriad of crash impact conditions that must be considered. Ultimately, the goal is to utilize full-scale crash simulations of aircraft for design evaluation and certification. The objective of this publication is to describe "best practices" for modeling aircraft impact using explicit nonlinear dynamic finite element codes such as LS-DYNA, DYNA3D, and MSC.Dytran. Although "best practices" is somewhat relative, it is hoped that the authors' experience will help others to avoid some of the common pitfalls in modeling that are not documented in one single publication. In addition, a discussion of experimental data analysis, digital filtering, and test-analysis correlation is provided. Finally, some examples of aircraft crash simulations are described in several appendices following the main report.

  15. Systematic simulations of modified gravity: chameleon models

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Li, Baojiu [Institute for Computational Cosmology, Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Winther, Hans A. [Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo (Norway); Zhao, Gong-Bo, E-mail: philippe.brax@cea.fr, E-mail: a.c.davis@damtp.cam.ac.uk, E-mail: baojiu.li@durham.ac.uk, E-mail: h.a.winther@astro.uio.no, E-mail: gong-bo.zhao@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX (United Kingdom)

    2013-04-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.

  16. Systematic simulations of modified gravity: chameleon models

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Li, Baojiu; Winther, Hans A.; Zhao, Gong-Bo

    2013-01-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference with the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc −1 , since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future

  17. Closed loop models for analyzing engineering requirements for simulators

    Science.gov (United States)

    Baron, S.; Muralidharan, R.; Kleinman, D.

    1980-01-01

    A closed loop analytic model, incorporating a model for the human pilot, (namely, the optimal control model) that would allow certain simulation design tradeoffs to be evaluated quantitatively was developed. This model was applied to a realistic flight control problem. The resulting model is used to analyze both overall simulation effects and the effects of individual elements. The results show that, as compared to an ideal continuous simulation, the discrete simulation can result in significant performance and/or workload penalties.

  18. Biomechanics trends in modeling and simulation

    CERN Document Server

    Ogden, Ray

    2017-01-01

    The book presents a state-of-the-art overview of biomechanical and mechanobiological modeling and simulation of soft biological tissues. Seven well-known scientists working in that particular field discuss topics such as biomolecules, networks and cells as well as failure, multi-scale, agent-based, bio-chemo-mechanical and finite element models appropriate for computational analysis. Applications include arteries, the heart, vascular stents and valve implants as well as adipose, brain, collagenous and engineered tissues. The mechanics of the whole cell and sub-cellular components as well as the extracellular matrix structure and mechanotransduction are described. In particular, the formation and remodeling of stress fibers, cytoskeletal contractility, cell adhesion and the mechanical regulation of fibroblast migration in healing myocardial infarcts are discussed. The essential ingredients of continuum mechanics are provided. Constitutive models of fiber-reinforced materials with an emphasis on arterial walls ...

  19. Simulations, evaluations and models. Vol. 1

    International Nuclear Information System (INIS)

    Brehmer, B.; Leplat, J.

    1992-01-01

    Papers presented at the Fourth MOHAWC (Models of Human Activities in Work Context) workshop. The general theme was simulations, evaluations and models. The emphasis was on time in relation to the modelling of human activities in modern, high tech. work. Such work often requires people to control dynamic systems, and the behaviour and misbehaviour of these systems in time is a principle focus of work in, for example, a modern process plant. The papers report on microworlds and on their innovative uses, both in the form of experiments and in the form of a new form of use, that of testing a program which performs diagnostic reasoning. They present new aspects on the problem of time in process control, showing the importance of considering the time scales of dynamic tasks, both in individual decision making and in distributed decision making, and in providing new formalisms, both for the representation of time and for reasoning involving time in diagnosis. (AB)

  20. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  1. Modelling and Simulation for Major Incidents

    Directory of Open Access Journals (Sweden)

    Eleonora Pacciani

    2015-11-01

    Full Text Available In recent years, there has been a rise in Major Incidents with big impact on the citizens health and the society. Without the possibility of conducting live experiments when it comes to physical and/or toxic trauma, only an accurate in silico reconstruction allows us to identify organizational solutions with the best possible chance of success, in correlation with the limitations on available resources (e.g. medical team, first responders, treatments, transports, and hospitals availability and with the variability of the characteristic of event (e.g. type of incident, severity of the event and type of lesions. Utilizing modelling and simulation techniques, a simplified mathematical model of physiological evolution for patients involved in physical and toxic trauma incident scenarios has been developed and implemented. The model formalizes the dynamics, operating standards and practices of medical response and the main emergency service in the chain of emergency management during a Major Incident.

  2. Qualitative simulation in formal process modelling

    International Nuclear Information System (INIS)

    Sivertsen, Elin R.

    1999-01-01

    In relation to several different research activities at the OECD Halden Reactor Project, the usefulness of formal process models has been identified. Being represented in some appropriate representation language, the purpose of these models is to model process plants and plant automatics in a unified way to allow verification and computer aided design of control strategies. The present report discusses qualitative simulation and the tool QSIM as one approach to formal process models. In particular, the report aims at investigating how recent improvements of the tool facilitate the use of the approach in areas like process system analysis, procedure verification, and control software safety analysis. An important long term goal is to provide a basis for using qualitative reasoning in combination with other techniques to facilitate the treatment of embedded programmable systems in Probabilistic Safety Analysis (PSA). This is motivated from the potential of such a combination in safety analysis based on models comprising both software, hardware, and operator. It is anticipated that the research results from this activity will benefit V and V in a wide variety of applications where formal process models can be utilized. Examples are operator procedures, intelligent decision support systems, and common model repositories (author) (ml)

  3. Heinrich events modeled in transient glacial simulations

    Science.gov (United States)

    Ziemen, Florian; Kapsch, Marie; Mikolajewicz, Uwe

    2017-04-01

    Heinrich events are among the most prominent events of climate variability recorded in proxies across the northern hemisphere. They are the archetype of ice sheet — climate interactions on millennial time scales. Nevertheless, the exact mechanisms that cause Heinrich events are still under debate, and their climatic consequences are far from being fully understood. We address open questions by studying Heinrich events in a coupled ice sheet model (ISM) atmosphere-ocean-vegetation general circulation model (AOVGCM) framework, where this variability occurs as part of the model generated internal variability. The framework consists of a northern hemisphere setup of the modified Parallel Ice Sheet Model (mPISM) coupled to the global AOVGCM ECHAM5/MPIOM/LPJ. The simulations were performed fully coupled and with transient orbital and greenhouse gas forcing. They span from several millennia before the last glacial maximum into the deglaciation. To make these long simulations feasible, the atmosphere is accelerated by a factor of 10 relative to the other model components using a periodical-synchronous coupling technique. To disentangle effects of the Heinrich events and the deglaciation, we focus on the events occurring before the deglaciation. The modeled Heinrich events show a peak ice discharge of about 0.05 Sv and raise the sea level by 2.3 m on average. The resulting surface water freshening reduces the Atlantic meridional overturning circulation and ocean heat release. The reduction in ocean heat release causes a sub-surface warming and decreases the air temperature and precipitation regionally and downstream into Eurasia. The surface elevation decrease of the ice sheet enhances moisture transport onto the ice sheet and thus increases precipitation over the Hudson Bay area, thereby accelerating the recovery after an event.

  4. Simulation of arc models with the block modelling method

    NARCIS (Netherlands)

    Thomas, R.; Lahaye, D.J.P.; Vuik, C.; Van der Sluis, L.

    2015-01-01

    Simulation of current interruption is currently performed with non-ideal switching devices for large power systems. Nevertheless, for small networks, non-ideal switching devices can be substituted by arc models. However, this substitution has a negative impact on the computation time. At the same

  5. Modeling lignin polymerization. Part 1: simulation model of dehydrogenation polymers.

    NARCIS (Netherlands)

    F.R.D. van Parijs (Frederik); K. Morreel; J. Ralph; W. Boerjan; R.M.H. Merks (Roeland)

    2010-01-01

    htmlabstractLignin is a heteropolymer that is thought to form in the cell wall by combinatorial radical coupling of monolignols. Here, we present a simulation model of in vitro lignin polymerization, based on the combinatorial coupling theory, which allows us to predict the reaction conditions

  6. An Agent-Based Monetary Production Simulation Model

    DEFF Research Database (Denmark)

    Bruun, Charlotte

    2006-01-01

    An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable......An Agent-Based Simulation Model Programmed in Objective Borland Pascal. Program and source code is downloadable...

  7. Software to Enable Modeling & Simulation as a Service

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a Modeling and Simulation as a Service (M&SaaS) software service infrastructure to enable most modeling and simulation (M&S) activities to be...

  8. Treatment of cosmetic tattoos using carbon dioxide ablative fractional resurfacing in an animal model: a novel method confirmed histopathologically.

    Science.gov (United States)

    Wang, Chia-Chen; Huang, Chuen-Lin; Sue, Yuh-Mou; Lee, Shao-Chen; Leu, Fur-Jiang

    2013-04-01

    Treating cosmetic tattoos using quality-switched lasers is difficult. We used carbon dioxide ablative fractional resurfacing (CO2 AFR) to remove cosmetic tattoos and examined the pathophysiologic mechanisms involved in this technique in an animal model. Twelve rats were tattooed on their backs with white and flesh-colored pigments. Half of each tattoo was treated with CO2 AFR (5 sessions at 1-month intervals), and the other half was the untreated control. An independent observer reviewed photographic documentation of clinical response. Serial skin samples obtained at baseline and at various times after laser treatment were evaluated using histologic and immunohistochemical methods. Four rats had excellent responses to laser treatment and eight had good responses. White and flesh-colored tattoos had similar clearance rates and tissue reactions. Histologic analysis showed immediate ablation of tattoo pigments in the microscopic ablation zones. Tattoo pigments in the microscopic coagulation zones migrated to the epidermis and became part of the microscopic exudative necrotic debris appearing on day 2 that was exfoliated after 5 days. Increased fibronectin expression around the microscopic treatment zones during the extrusion of tattoo pigments indicated that wound healing facilitates this action. CO2 AFR successfully removes cosmetic tattoos. © 2012 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  9. Modelling and simulation of railway cable systems

    Energy Technology Data Exchange (ETDEWEB)

    Teichelmann, G.; Schaub, M.; Simeon, B. [Technische Univ. Muenchen, Garching (Germany). Zentrum Mathematik M2

    2005-12-15

    Mathematical models and numerical methods for the computation of both static equilibria and dynamic oscillations of railroad catenaries are derived and analyzed. These cable systems form a complex network of string and beam elements and lead to coupled partial differential equations in space and time where constraints and corresponding Lagrange multipliers express the interaction between carrier, contact wire, and pantograph head. For computing static equilibria, three different algorithms are presented and compared, while the dynamic case is treated by a finite element method in space, combined with stabilized time integration of the resulting differential algebraic system. Simulation examples based on reference data from industry illustrate the potential of such computational tools. (orig.)

  10. Petroleum reservoir data for testing simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, J.M.; Harrison, W.

    1980-09-01

    This report consists of reservoir pressure and production data for 25 petroleum reservoirs. Included are 5 data sets for single-phase (liquid) reservoirs, 1 data set for a single-phase (liquid) reservoir with pressure maintenance, 13 data sets for two-phase (liquid/gas) reservoirs and 6 for two-phase reservoirs with pressure maintenance. Also given are ancillary data for each reservoir that could be of value in the development and validation of simulation models. A bibliography is included that lists the publications from which the data were obtained.

  11. Simulation model for port shunting yards

    Science.gov (United States)

    Rusca, A.; Popa, M.; Rosca, E.; Rosca, M.; Dragu, V.; Rusca, F.

    2016-08-01

    Sea ports are important nodes in the supply chain, joining two high capacity transport modes: rail and maritime transport. The huge cargo flows transiting port requires high capacity construction and installation such as berths, large capacity cranes, respectively shunting yards. However, the port shunting yards specificity raises several problems such as: limited access since these are terminus stations for rail network, the in-output of large transit flows of cargo relatively to the scarcity of the departure/arrival of a ship, as well as limited land availability for implementing solutions to serve these flows. It is necessary to identify technological solutions that lead to an answer to these problems. The paper proposed a simulation model developed with ARENA computer simulation software suitable for shunting yards which serve sea ports with access to the rail network. Are investigates the principal aspects of shunting yards and adequate measures to increase their transit capacity. The operation capacity for shunting yards sub-system is assessed taking in consideration the required operating standards and the measure of performance (e.g. waiting time for freight wagons, number of railway line in station, storage area, etc.) of the railway station are computed. The conclusion and results, drawn from simulation, help transports and logistics specialists to test the proposals for improving the port management.

  12. Modeling VOC transport in simulated waste drums

    International Nuclear Information System (INIS)

    Liekhus, K.J.; Gresham, G.L.; Peterson, E.S.; Rae, C.; Hotz, N.J.; Connolly, M.J.

    1993-06-01

    A volatile organic compound (VOC) transport model has been developed to describe unsteady-state VOC permeation and diffusion within a waste drum. Model equations account for three primary mechanisms for VOC transport from a void volume within the drum. These mechanisms are VOC permeation across a polymer boundary, VOC diffusion across an opening in a volume boundary, and VOC solubilization in a polymer boundary. A series of lab-scale experiments was performed in which the VOC concentration was measured in simulated waste drums under different conditions. A lab-scale simulated waste drum consisted of a sized-down 55-gal metal drum containing a modified rigid polyethylene drum liner. Four polyethylene bags were sealed inside a large polyethylene bag, supported by a wire cage, and placed inside the drum liner. The small bags were filled with VOC-air gas mixture and the VOC concentration was measured throughout the drum over a period of time. Test variables included the type of VOC-air gas mixtures introduced into the small bags, the small bag closure type, and the presence or absence of a variable external heat source. Model results were calculated for those trials where the VOC permeability had been measured. Permeabilities for five VOCs [methylene chloride, 1,1,2-trichloro-1,2,2-trifluoroethane (Freon-113), 1,1,1-trichloroethane, carbon tetrachloride, and trichloroethylene] were measured across a polyethylene bag. Comparison of model and experimental results of VOC concentration as a function of time indicate that model accurately accounts for significant VOC transport mechanisms in a lab-scale waste drum

  13. Modeling and simulation of a wheatstone bridge pressure sensor in high temperature with VHDL-AMS

    OpenAIRE

    Baccar, Sahbi; Levi, Timothée; Dallet, Dominique; Barbara, François

    2013-01-01

    International audience; This paper presents a model of a Wheatstone bridge sensor in VHDL-AMS. This model is useful to take into account the temperature effect on the sensor accuracy. The model is developed on the basis of a resistor model. Simulations are performed for three different combinations of parameters values. They confirm the resistors mismatch effect on the sensor accuracy in high temperature (HT).

  14. 3D Core Model for simulation of nuclear power plants: Simulation requirements, model features, and validation

    International Nuclear Information System (INIS)

    Zerbino, H.

    1999-01-01

    In 1994-1996, Thomson Training and Simulation (TT and S) earned out the D50 Project, which involved the design and construction of optimized replica simulators for one Dutch and three German Nuclear Power Plants. It was recognized early on that the faithful reproduction of the Siemens reactor control and protection systems would impose extremely stringent demands on the simulation models, particularly the Core physics and the RCS thermohydraulics. The quality of the models, and their thorough validation, were thus essential. The present paper describes the main features of the fully 3D Core model implemented by TT and S, and its extensive validation campaign, which was defined in extremely positive collaboration with the Customer and the Core Data suppliers. (author)

  15. Stratospheric dryness: model simulations and satellite observations

    Directory of Open Access Journals (Sweden)

    J. Lelieveld

    2007-01-01

    Full Text Available The mechanisms responsible for the extreme dryness of the stratosphere have been debated for decades. A key difficulty has been the lack of comprehensive models which are able to reproduce the observations. Here we examine results from the coupled lower-middle atmosphere chemistry general circulation model ECHAM5/MESSy1 together with satellite observations. Our model results match observed temperatures in the tropical lower stratosphere and realistically represent the seasonal and inter-annual variability of water vapor. The model reproduces the very low water vapor mixing ratios (below 2 ppmv periodically observed at the tropical tropopause near 100 hPa, as well as the characteristic tape recorder signal up to about 10 hPa, providing evidence that the dehydration mechanism is well-captured. Our results confirm that the entry of tropospheric air into the tropical stratosphere is forced by large-scale wave dynamics, whereas radiative cooling regionally decelerates upwelling and can even cause downwelling. Thin cirrus forms in the cold air above cumulonimbus clouds, and the associated sedimentation of ice particles between 100 and 200 hPa reduces water mass fluxes by nearly two orders of magnitude compared to air mass fluxes. Transport into the stratosphere is supported by regional net radiative heating, to a large extent in the outer tropics. During summer very deep monsoon convection over Southeast Asia, centered over Tibet, moistens the stratosphere.

  16. Molecular models and simulations of layered materials

    International Nuclear Information System (INIS)

    Kalinichev, Andrey G.; Cygan, Randall Timothy; Heinz, Hendrik; Greathouse, Jeffery A.

    2008-01-01

    The micro- to nano-sized nature of layered materials, particularly characteristic of naturally occurring clay minerals, limits our ability to fully interrogate their atomic dispositions and crystal structures. The low symmetry, multicomponent compositions, defects, and disorder phenomena of clays and related phases necessitate the use of molecular models and modern simulation methods. Computational chemistry tools based on classical force fields and quantum-chemical methods of electronic structure calculations provide a practical approach to evaluate structure and dynamics of the materials on an atomic scale. Combined with classical energy minimization, molecular dynamics, and Monte Carlo techniques, quantum methods provide accurate models of layered materials such as clay minerals, layered double hydroxides, and clay-polymer nanocomposites

  17. VISION: Verifiable Fuel Cycle Simulation Model

    Energy Technology Data Exchange (ETDEWEB)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiative’s systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  18. Modeling and visual simulation of Microalgae photobioreactor

    Science.gov (United States)

    Zhao, Ming; Hou, Dapeng; Hu, Dawei

    Microalgae is a kind of nutritious and high photosynthetic efficiency autotrophic plant, which is widely distributed in the land and the sea. It can be extensively used in medicine, food, aerospace, biotechnology, environmental protection and other fields. Photobioreactor which is important equipment is mainly used to cultivate massive and high-density microalgae. In this paper, based on the mathematical model of microalgae which grew under different light intensity, three-dimensional visualization model was built and implemented in 3ds max, Virtools and some other three dimensional software. Microalgae is photosynthetic organism, it can efficiently produce oxygen and absorb carbon dioxide. The goal of the visual simulation is to display its change and impacting on oxygen and carbon dioxide intuitively. In this paper, different temperatures and light intensities were selected to control the photobioreactor, and dynamic change of microalgal biomass, Oxygen and carbon dioxide was observed with the aim of providing visualization support for microalgal and photobioreactor research.

  19. A rainfall simulation model for agricultural development in Bangladesh

    Directory of Open Access Journals (Sweden)

    M. Sayedur Rahman

    2000-01-01

    Full Text Available A rainfall simulation model based on a first-order Markov chain has been developed to simulate the annual variation in rainfall amount that is observed in Bangladesh. The model has been tested in the Barind Tract of Bangladesh. Few significant differences were found between the actual and simulated seasonal, annual and average monthly. The distribution of number of success is asymptotic normal distribution. When actual and simulated daily rainfall data were used to drive a crop simulation model, there was no significant difference of rice yield response. The results suggest that the rainfall simulation model perform adequately for many applications.

  20. Evaluation of the Users’ Continuous Intention to Use PACS Based on the Expectation Confirmation Model in Teaching Hospitals of Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mohtaram Nematolahi

    2017-01-01

    Full Text Available Introduction: Users’ behavioral intention to use the Picture Archiving and Communication System (PACS is important in the systems’ success and is an indicator of the users’ satisfaction with commitment and dependence on information systems. The present study aimed to evaluate the users’ continuous intention to use PACS based on the expectation confirmation model in educational hospitals of Shiraz University of Medical Sciences. Method: This cross-sectional study was conducted in Nemazee and Shahid Faghihi hospitals, Shiraz, Iran in 2014. The subjects were 50 general practitioners, residents and specialists selected through stratified random sampling. The study data were collected using a researcher-made questionnaire. The content validity of the questionnaire items was confirmed by five experts in health information management. To evaluate the accuracy of relationships among the measurement models, reliability criteria, including Cronbach’s alpha and composite reliability, convergent and divergent validity were used which showed acceptable reliability and validity. The data were entered into Smart PLS software, version 3.1.9 and analyzed through Structural Equation Modeling (SEM by using Partial Least Squares (PLS approach. Results: The results showed appropriate fitness of reliability indices (Cronbach’s alpha >0.7, composite reliability >0.7, loading >0.7, validity indices (AVE >0.5, structural model (redundancy =0.395, Q2CI=0.364, f2H5=0.524, R2CI=0.687, and the total model (GoF=0.518. Moreover, all the research hypotheses, except H1 (the relationship between expectation confirmation and perceived usefulness with T-value of 1.96. Conclusion: Expectation confirmation, perceived usefulness, and satisfaction were effective in continuous intention to use PACS. Thus, these factors should be considered by designers, developers, and managers while designing and implementing information systems to guarantee their success and improve the

  1. Modeling lift operations with SASmacr Simulation Studio

    Science.gov (United States)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  2. Plasma simulation studies using multilevel physics models

    International Nuclear Information System (INIS)

    Park, W.; Belova, E.V.; Fu, G.Y.

    2000-01-01

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future

  3. Plasma simulation studies using multilevel physics models

    Energy Technology Data Exchange (ETDEWEB)

    Park, W.; Belova, E.V.; Fu, G.Y. [and others

    2000-01-19

    The question of how to proceed toward ever more realistic plasma simulation studies using ever increasing computing power is addressed. The answer presented here is the M3D (Multilevel 3D) project, which has developed a code package with a hierarchy of physics levels that resolve increasingly complete subsets of phase-spaces and are thus increasingly more realistic. The rationale for the multilevel physics models is given. Each physics level is described and examples of its application are given. The existing physics levels are fluid models (3D configuration space), namely magnetohydrodynamic (MHD) and two-fluids; and hybrid models, namely gyrokinetic-energetic-particle/MHD (5D energetic particle phase-space), gyrokinetic-particle-ion/fluid-electron (5D ion phase-space), and full-kinetic-particle-ion/fluid-electron level (6D ion phase-space). Resolving electron phase-space (5D or 6D) remains a future project. Phase-space-fluid models are not used in favor of delta f particle models. A practical and accurate nonlinear fluid closure for noncollisional plasmas seems not likely in the near future.

  4. Confirmation of Elevated Methane Emissions in Utah's Uintah Basin With Ground-Based Observations and a High-Resolution Transport Model

    Science.gov (United States)

    Foster, C. S.; Crosman, E. T.; Holland, L.; Mallia, D. V.; Fasoli, B.; Bares, R.; Horel, J.; Lin, J. C.

    2017-12-01

    Large CH4 leak rates have been observed in the Uintah Basin of eastern Utah, an area with over 10,000 active and producing natural gas and oil wells. In this paper, we model CH4 concentrations at four sites in the Uintah Basin and compare the simulated results to in situ observations at these sites during two spring time periods in 2015 and 2016. These sites include a baseline location (Fruitland), two sites near oil wells (Roosevelt and Castlepeak), and a site near natural gas wells (Horsepool). To interpret these measurements and relate observed CH4 variations to emissions, we carried out atmospheric simulations using the Stochastic Time-Inverted Lagrangian Transport model driven by meteorological fields simulated by the Weather Research and Forecasting and High Resolution Rapid Refresh models. These simulations were combined with two different emission inventories: (1) aircraft-derived basin-wide emissions allocated spatially using oil and gas well locations, from the National Oceanic and Atmospheric Administration (NOAA), and (2) a bottom-up inventory for the entire U.S., from the Environmental Protection Agency (EPA). At both Horsepool and Castlepeak, the diurnal cycle of modeled CH4 concentrations was captured using NOAA emission estimates but was underestimated using the EPA inventory. These findings corroborate emission estimates from the NOAA inventory, based on daytime mass balance estimates, and provide additional support for a suggested leak rate from the Uintah Basin that is higher than most other regions with natural gas and oil development.

  5. Modeling and numerical simulations of the influenced Sznajd model

    Science.gov (United States)

    Karan, Farshad Salimi Naneh; Srinivasan, Aravinda Ramakrishnan; Chakraborty, Subhadeep

    2017-08-01

    This paper investigates the effects of independent nonconformists or influencers on the behavioral dynamic of a population of agents interacting with each other based on the Sznajd model. The system is modeled on a complete graph using the master equation. The acquired equation has been numerically solved. Accuracy of the mathematical model and its corresponding assumptions have been validated by numerical simulations. Regions of initial magnetization have been found from where the system converges to one of two unique steady-state PDFs, depending on the distribution of influencers. The scaling property and entropy of the stationary system in presence of varying level of influence have been presented and discussed.

  6. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    Science.gov (United States)

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  7. Comparison of performance of simulation models for floor heating

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    2005-01-01

    This paper describes the comparison of performance of simulation models for floor heating with different level of detail in the modelling process. The models are compared in an otherwise identical simulation model containing room model, walls, windows, ceiling and ventilation system. By exchanging...

  8. Modeling, Identification, Estimation, and Simulation of Urban Traffic Flow in Jakarta and Bandung

    Directory of Open Access Journals (Sweden)

    Herman Y. Sutarto

    2015-06-01

    Full Text Available This paper presents an overview of urban traffic flow from the perspective of system theory and stochastic control. The topics of modeling, identification, estimation and simulation techniques are evaluated and validated using actual traffic flow data from the city of Jakarta and Bandung, Indonesia, and synthetic data generated from traffic micro-simulator VISSIM. The results on particle filter (PF based state estimation and Expectation-Maximization (EM based parameter estimation (identification confirm the proposed model gives satisfactory results that capture the variation of urban traffic flow. The combination of the technique and the simulator platform assembles possibility to develop a real-time traffic light controller.  

  9. Tecnomatix Plant Simulation modeling and programming by means of examples

    CERN Document Server

    Bangsow, Steffen

    2015-01-01

    This book systematically introduces the development of simulation models as well as the implementation and evaluation of simulation experiments with Tecnomatix Plant Simulation. It deals with all users of Plant Simulation, who have more complex tasks to handle. It also looks for an easy entry into the program. Particular attention has been paid to introduce the simulation flow language SimTalk and its use in various areas of the simulation. The author demonstrates with over 200 examples how to combine the blocks for simulation models and how to deal with SimTalk for complex control and analys

  10. Nonlinear distortion in wireless systems modeling and simulation with Matlab

    CERN Document Server

    Gharaibeh, Khaled M

    2011-01-01

    This book covers the principles of modeling and simulation of nonlinear distortion in wireless communication systems with MATLAB simulations and techniques In this book, the author describes the principles of modeling and simulation of nonlinear distortion in single and multichannel wireless communication systems using both deterministic and stochastic signals. Models and simulation methods of nonlinear amplifiers explain in detail how to analyze and evaluate the performance of data communication links under nonlinear amplification. The book addresses the analysis of nonlinear systems

  11. Modeling human response errors in synthetic flight simulator domain

    Science.gov (United States)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  12. Multiple Time Series Ising Model for Financial Market Simulations

    International Nuclear Information System (INIS)

    Takaishi, Tetsuya

    2015-01-01

    In this paper we propose an Ising model which simulates multiple financial time series. Our model introduces the interaction which couples to spins of other systems. Simulations from our model show that time series exhibit the volatility clustering that is often observed in the real financial markets. Furthermore we also find non-zero cross correlations between the volatilities from our model. Thus our model can simulate stock markets where volatilities of stocks are mutually correlated

  13. Modeling and Simulation Techniques for Large-Scale Communications Modeling

    National Research Council Canada - National Science Library

    Webb, Steve

    1997-01-01

    .... Tests of random number generators were also developed and applied to CECOM models. It was found that synchronization of random number strings in simulations is easy to implement and can provide significant savings for making comparative studies. If synchronization is in place, then statistical experiment design can be used to provide information on the sensitivity of the output to input parameters. The report concludes with recommendations and an implementation plan.

  14. Modelling and Simulation of Search Engine

    Science.gov (United States)

    Nasution, Mahyuddin K. M.

    2017-01-01

    The best tool currently used to access information is a search engine. Meanwhile, the information space has its own behaviour. Systematically, an information space needs to be familiarized with mathematics so easily we identify the characteristics associated with it. This paper reveal some characteristics of search engine based on a model of document collection, which are then estimated the impact on the feasibility of information. We reveal some of characteristics of search engine on the lemma and theorem about singleton and doubleton, then computes statistically characteristic as simulating the possibility of using search engine. In this case, Google and Yahoo. There are differences in the behaviour of both search engines, although in theory based on the concept of documents collection.

  15. Monte Carlo simulation of Markov unreliability models

    International Nuclear Information System (INIS)

    Lewis, E.E.; Boehm, F.

    1984-01-01

    A Monte Carlo method is formulated for the evaluation of the unrealibility of complex systems with known component failure and repair rates. The formulation is in terms of a Markov process allowing dependences between components to be modeled and computational efficiencies to be achieved in the Monte Carlo simulation. Two variance reduction techniques, forced transition and failure biasing, are employed to increase computational efficiency of the random walk procedure. For an example problem these result in improved computational efficiency by more than three orders of magnitudes over analog Monte Carlo. The method is generalized to treat problems with distributed failure and repair rate data, and a batching technique is introduced and shown to result in substantial increases in computational efficiency for an example problem. A method for separating the variance due to the data uncertainty from that due to the finite number of random walks is presented. (orig.)

  16. Modeling and simulation technology readiness levels.

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Robert L.; Shneider, Max S.; Marburger, S. J.; Trucano, Timothy Guy

    2006-01-01

    This report summarizes the results of an effort to establish a framework for assigning and communicating technology readiness levels (TRLs) for the modeling and simulation (ModSim) capabilities at Sandia National Laboratories. This effort was undertaken as a special assignment for the Weapon Simulation and Computing (WSC) program office led by Art Hale, and lasted from January to September 2006. This report summarizes the results, conclusions, and recommendations, and is intended to help guide the program office in their decisions about the future direction of this work. The work was broken out into several distinct phases, starting with establishing the scope and definition of the assignment. These are characterized in a set of key assertions provided in the body of this report. Fundamentally, the assignment involved establishing an intellectual framework for TRL assignments to Sandia's modeling and simulation capabilities, including the development and testing of a process to conduct the assignments. To that end, we proposed a methodology for both assigning and understanding the TRLs, and outlined some of the restrictions that need to be placed on this process and the expected use of the result. One of the first assumptions we overturned was the notion of a ''static'' TRL--rather we concluded that problem context was essential in any TRL assignment, and that leads to dynamic results (i.e., a ModSim tool's readiness level depends on how it is used, and by whom). While we leveraged the classic TRL results from NASA, DoD, and Sandia's NW program, we came up with a substantially revised version of the TRL definitions, maintaining consistency with the classic level definitions and the Predictive Capability Maturity Model (PCMM) approach. In fact, we substantially leveraged the foundation the PCMM team provided, and augmented that as needed. Given the modeling and simulation TRL definitions and our proposed assignment methodology, we

  17. Computational Modeling and Simulation of Developmental ...

    Science.gov (United States)

    Standard practice for assessing developmental toxicity is the observation of apical endpoints (intrauterine death, fetal growth retardation, structural malformations) in pregnant rats/rabbits following exposure during organogenesis. EPA’s computational toxicology research program (ToxCast) generated vast in vitro cellular and molecular effects data on >1858 chemicals in >600 high-throughput screening (HTS) assays. The diversity of assays has been increased for developmental toxicity with several HTS platforms, including the devTOX-quickPredict assay from Stemina Biomarker Discovery utilizing the human embryonic stem cell line (H9). Translating these HTS data into higher order-predictions of developmental toxicity is a significant challenge. Here, we address the application of computational systems models that recapitulate the kinematics of dynamical cell signaling networks (e.g., SHH, FGF, BMP, retinoids) in a CompuCell3D.org modeling environment. Examples include angiogenesis (angiodysplasia) and dysmorphogenesis. Being numerically responsive to perturbation, these models are amenable to data integration for systems Toxicology and Adverse Outcome Pathways (AOPs). The AOP simulation outputs predict potential phenotypes based on the in vitro HTS data ToxCast. A heuristic computational intelligence framework that recapitulates the kinematics of dynamical cell signaling networks in the embryo, together with the in vitro profiling data, produce quantitative predic

  18. CERN confirms LHC schedule

    CERN Multimedia

    2003-01-01

    The CERN Council held its 125th session on 20 June. Highlights of the meeting included confirmation that the LHC is on schedule for a 2007 start-up, and the announcement of a new organizational structure in 2004.

  19. Using Computational Simulations to Confront Students' Mental Models

    Science.gov (United States)

    Rodrigues, R.; Carvalho, P. Simeão

    2014-01-01

    In this paper we show an example of how to use a computational simulation to obtain visual feedback for students' mental models, and compare their predictions with the simulated system's behaviour. Additionally, we use the computational simulation to incrementally modify the students' mental models in order to accommodate new data,…

  20. RADIAL VELOCITY OBSERVATIONS AND LIGHT CURVE NOISE MODELING CONFIRM THAT KEPLER-91b IS A GIANT PLANET ORBITING A GIANT STAR

    Energy Technology Data Exchange (ETDEWEB)

    Barclay, Thomas; Huber, Daniel; Rowe, Jason F.; Quintana, Elisa V. [NASA Ames Research Center, M/S 244-30, Moffett Field, CA 94035 (United States); Endl, Michael; Cochran, William D.; MacQueen, Phillip J. [McDonald Observatory, The University of Texas at Austin, Austin, TX 78712 (United States); Foreman-Mackey, Daniel [New York University, Center for Cosmology and Particle Physics, New York, NY 10003 (United States)

    2015-02-10

    Kepler-91b is a rare example of a transiting hot Jupiter around a red giant star, providing the possibility to study the formation and composition of hot Jupiters under different conditions compared to main-sequence stars. However, the planetary nature of Kepler-91b, which was confirmed using phase-curve variations by Lillo-Box et al., was recently called into question based on a re-analysis of Kepler data. We have obtained ground-based radial velocity observations from the Hobby-Eberly Telescope and unambiguously confirm the planetary nature of Kepler-91b by simultaneously modeling the Kepler and radial velocity data. The star exhibits temporally correlated noise due to stellar granulation which we model as a Gaussian Process. We hypothesize that it is this noise component that led previous studies to suspect Kepler-91b to be a false positive. Our work confirms the conclusions presented by Lillo-Box et al. that Kepler-91b is a 0.73 ± 0.13 M {sub Jup} planet orbiting a red giant star.

  1. Multiagent Model for Wide-Area Disaster-Evacuation Simulations with Local Factors Considered

    Science.gov (United States)

    Muraki, Yuji; Kanoh, Hitoshi

    In this paper, we propose a multiagent model for wide-area disaster-evacuation simulations with local factorsconsidered. Conventional multiagent models for evacuation simulations neither allow general-purpose computers to executewide-area simulations nor allow the object area to be changed easily. If these problems are solved, however, these simulations can be useful for local governments to make disaster damage prevention plan. In the proposed model, each roadis expressed by a series of cells. A computational amount relevant to interaction among agents is reduced by describing themodel for agents to be affected by other agents through the state of each cell. This makes possible wide area simulations. Using the data of a digital map database that is widely used for car navigation systems enables the simulations to beperformed for any region in Japan. Local factors are reflected in simulations by setting some parameters for evacuees, anevacuation environment, and disaster damage prevention plan of the object area. As an evaluation experiment, wesimulated the situations of Kobe city on the date of the Great Hanshin-Awaji Earthquake. Simulations results about thepercentage of evacuees who arrived at refuges were in good agreement with the actual data when parameters forevacuation-start timing were adjusted. We also simulated the current situations of two cities, Kobe and Tsukuba, and confirmed that this model was successfully applied to the two cities. From these evaluation experiments, we believe thatthis model can be applied to various areas and will perform further experiments in the future.

  2. A Geostationary Earth Orbit Satellite Model Using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Goh, Giam Hwee

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic…

  3. Using a simulation assistant in modeling manufacturing systems

    Science.gov (United States)

    Schroer, Bernard J.; Tseng, Fan T.; Zhang, S. X.; Wolfsberger, John W.

    1988-01-01

    Numerous simulation languages exist for modeling discrete event processes, and are now ported to microcomputers. Graphic and animation capabilities were added to many of these languages to assist the users build models and evaluate the simulation results. With all these languages and added features, the user is still plagued with learning the simulation language. Futhermore, the time to construct and then to validate the simulation model is always greater than originally anticipated. One approach to minimize the time requirement is to use pre-defined macros that describe various common processes or operations in a system. The development of a simulation assistant for modeling discrete event manufacturing processes is presented. A simulation assistant is defined as an interactive intelligent software tool that assists the modeler in writing a simulation program by translating the modeler's symbolic description of the problem and then automatically generating the corresponding simulation code. The simulation assistant is discussed with emphasis on an overview of the simulation assistant, the elements of the assistant, and the five manufacturing simulation generators. A typical manufacturing system will be modeled using the simulation assistant and the advantages and disadvantages discussed.

  4. Development of a Generic Didactic Model for Simulator Training

    National Research Council Canada - National Science Library

    Emmerik, M

    1997-01-01

    .... The development of such a model is motivated by the need to control training and instruction factors in research on simulator fidelity, the need to assess the benefit of training simulators, e.g...

  5. Modeling and Simulation in Healthcare Future Directions

    Science.gov (United States)

    2010-07-13

    information all have equal “weight” in the information world Computers Internet Simulation The Future Distribute & communicate Predict, plan & train...Acquire & analyze Third Leg of the Information Age Satava 2 Feb 1999 Simulation Computers Acquire Analyze Simulation Predict, Train Internet Communicate...Serendipity Inspiration FURTHER PROOF: Current evidence is inadequate for Event horizons Cognition Genome Quantum mechanics Memes Etc New

  6. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f...... to team intervention and philosophies informing what good situated learning research is. This study generates system knowledge that might inform scenario development for in situ simulation.......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...

  7. Repository performance confirmation

    International Nuclear Information System (INIS)

    Hansen, Francis D.

    2011-01-01

    Repository performance confirmation links the technical bases of repository science and societal acceptance. This paper explores the myriad aspects of what has been labeled performance confirmation in U.S. programs, which involves monitoring as a collection of distinct activities combining technical and social significance in radioactive waste management. This paper is divided into four parts: (1) A distinction is drawn between performance confirmation monitoring and other testing and monitoring objectives; (2) A case study illustrates confirmation activities integrated within a long-term testing and monitoring strategy for Yucca Mountain; (3) A case study reviews compliance monitoring developed and implemented for the Waste Isolation Pilot Plant; and (4) An approach for developing, evaluating and implementing the next generation of performance confirmation monitoring is presented. International interest in repository monitoring is exhibited by the European Commission Seventh Framework Programme 'Monitoring Developments for Safe Repository Operation and Staged Closure' (MoDeRn) Project. The MoDeRn partners are considering the role of monitoring in a phased approach to the geological disposal of radioactive waste. As repository plans advance in different countries, the need to consider monitoring strategies within a controlled framework has become more apparent. The MoDeRn project pulls together technical and societal experts to assimilate a common understanding of a process that could be followed to develop a monitoring program. A fundamental consideration is the differentiation of confirmation monitoring from the many other testing and monitoring activities. Recently, the license application for Yucca Mountain provided a case study including a technical process for meeting regulatory requirements to confirm repository performance as well as considerations related to the preservation of retrievability. The performance confirmation plan developed as part of the

  8. Modelling toolkit for simulation of maglev devices

    Science.gov (United States)

    Peña-Roche, J.; Badía-Majós, A.

    2017-01-01

    A stand-alone App1 has been developed, focused on obtaining information about relevant engineering properties of magnetic levitation systems. Our modelling toolkit provides real time simulations of 2D magneto-mechanical quantities for superconductor (SC)/permanent magnet structures. The source code is open and may be customised for a variety of configurations. Ultimately, it relies on the variational statement of the critical state model for the superconducting component and has been verified against experimental data for YBaCuO/NdFeB assemblies. On a quantitative basis, the values of the arising forces, induced superconducting currents, as well as a plot of the magnetic field lines are displayed upon selection of an arbitrary trajectory of the magnet in the vicinity of the SC. The stability issues related to the cooling process, as well as the maximum attainable forces for a given material and geometry are immediately observed. Due to the complexity of the problem, a strategy based on cluster computing, database compression, and real-time post-processing on the device has been implemented.

  9. Simulation and Modeling Application in Agricultural Mechanization

    Directory of Open Access Journals (Sweden)

    R. M. Hudzari

    2012-01-01

    Full Text Available This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp.

  10. Power spectrum model of visual masking: simulations and empirical data.

    Science.gov (United States)

    Serrano-Pedraza, Ignacio; Sierra-Vázquez, Vicente; Derrington, Andrew M

    2013-06-01

    In the study of the spatial characteristics of the visual channels, the power spectrum model of visual masking is one of the most widely used. When the task is to detect a signal masked by visual noise, this classical model assumes that the signal and the noise are previously processed by a bank of linear channels and that the power of the signal at threshold is proportional to the power of the noise passing through the visual channel that mediates detection. The model also assumes that this visual channel will have the highest ratio of signal power to noise power at its output. According to this, there are masking conditions where the highest signal-to-noise ratio (SNR) occurs in a channel centered in a spatial frequency different from the spatial frequency of the signal (off-frequency looking). Under these conditions the channel mediating detection could vary with the type of noise used in the masking experiment and this could affect the estimation of the shape and the bandwidth of the visual channels. It is generally believed that notched noise, white noise and double bandpass noise prevent off-frequency looking, and high-pass, low-pass and bandpass noises can promote it independently of the channel's shape. In this study, by means of a procedure that finds the channel that maximizes the SNR at its output, we performed numerical simulations using the power spectrum model to study the characteristics of masking caused by six types of one-dimensional noise (white, high-pass, low-pass, bandpass, notched, and double bandpass) for two types of channel's shape (symmetric and asymmetric). Our simulations confirm that (1) high-pass, low-pass, and bandpass noises do not prevent the off-frequency looking, (2) white noise satisfactorily prevents the off-frequency looking independently of the shape and bandwidth of the visual channel, and interestingly we proved for the first time that (3) notched and double bandpass noises prevent off-frequency looking only when the noise

  11. Simulation Models for Socioeconomic Inequalities in Health: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Niko Speybroeck

    2013-11-01

    Full Text Available Background: The emergence and evolution of socioeconomic inequalities in health involves multiple factors interacting with each other at different levels. Simulation models are suitable for studying such complex and dynamic systems and have the ability to test the impact of policy interventions in silico. Objective: To explore how simulation models were used in the field of socioeconomic inequalities in health. Methods: An electronic search of studies assessing socioeconomic inequalities in health using a simulation model was conducted. Characteristics of the simulation models were extracted and distinct simulation approaches were identified. As an illustration, a simple agent-based model of the emergence of socioeconomic differences in alcohol abuse was developed. Results: We found 61 studies published between 1989 and 2013. Ten different simulation approaches were identified. The agent-based model illustration showed that multilevel, reciprocal and indirect effects of social determinants on health can be modeled flexibly. Discussion and Conclusions: Based on the review, we discuss the utility of using simulation models for studying health inequalities, and refer to good modeling practices for developing such models. The review and the simulation model example suggest that the use of simulation models may enhance the understanding and debate about existing and new socioeconomic inequalities of health frameworks.

  12. Powertrain modeling and simulation for off-road vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ouellette, S. [McGill Univ., Montreal, PQ (Canada)

    2010-07-01

    Standard forward facing automotive powertrain modeling and simulation methodology did not perform equally for all vehicles in all applications in the 2010 winter Olympics, 2009 world alpine ski championships, summit station in Greenland, the McGill Formula Hybrid, Unicell QuickSider, and lunar mobility. This presentation provided a standard automotive powertrain modeling and simulation flow chart as well as an example. It also provided a flow chart for location based powertrain modeling and simulation and discussed location based powertrain modeling and simulation implementation. It was found that in certain applications, vehicle-environment interactions cannot be neglected in order to have good model fidelity. Powertrain modeling and simulation of off-road vehicles demands a new approach to powertrain modeling and simulation. It was concluded that the proposed location based methodology could improve the results for off-road vehicles. tabs., figs.

  13. Reusable Component Model Development Approach for Parallel and Distributed Simulation

    Science.gov (United States)

    Zhu, Feng; Yao, Yiping; Chen, Huilong; Yao, Feng

    2014-01-01

    Model reuse is a key issue to be resolved in parallel and distributed simulation at present. However, component models built by different domain experts usually have diversiform interfaces, couple tightly, and bind with simulation platforms closely. As a result, they are difficult to be reused across different simulation platforms and applications. To address the problem, this paper first proposed a reusable component model framework. Based on this framework, then our reusable model development approach is elaborated, which contains two phases: (1) domain experts create simulation computational modules observing three principles to achieve their independence; (2) model developer encapsulates these simulation computational modules with six standard service interfaces to improve their reusability. The case study of a radar model indicates that the model developed using our approach has good reusability and it is easy to be used in different simulation platforms and applications. PMID:24729751

  14. Aircraft vulnerability analysis by modeling and simulation

    Science.gov (United States)

    Willers, Cornelius J.; Willers, Maria S.; de Waal, Alta

    2014-10-01

    guidance acceleration and seeker sensitivity. For the purpose of this investigation the aircraft is equipped with conventional pyrotechnic decoy flares and the missile has no counter-countermeasure means (security restrictions on open publication). This complete simulation is used to calculate the missile miss distance, when the missile is launched from different locations around the aircraft. The miss distance data is then graphically presented showing miss distance (aircraft vulnerability) as a function of launch direction and range. The aircraft vulnerability graph accounts for aircraft and missile characteristics, but does not account for missile deployment doctrine. A Bayesian network is constructed to fuse the doctrinal rules with the aircraft vulnerability data. The Bayesian network now provides the capability to evaluate the combined risk of missile launch and aircraft vulnerability. It is shown in this paper that it is indeed possible to predict the aircraft vulnerability to missile attack in a comprehensive modelling and a holistic process. By using the appropriate real-world models, this approach is used to evaluate the effectiveness of specific countermeasure techniques against specific missile threats. The use of a Bayesian network provides the means to fuse simulated performance data with more abstract doctrinal rules to provide a realistic assessment of the aircraft vulnerability.

  15. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis

    DEFF Research Database (Denmark)

    Tølbøl, Kirstine S; Kristiansen, Maria Nb; Hansen, Henrik H

    2018-01-01

    AIM: To evaluate the pharmacodynamics of compounds in clinical development for nonalcoholic steatohepatitis (NASH) in obese mouse models of biopsy-confirmed NASH. METHODS: Male wild-type C57BL/6J mice (DIO-NASH) and Lep ob/ob (ob/ob-NASH) mice were fed a diet high in trans-fat (40%), fructose (20...... by global gene expression (RNA sequencing) and liver lipid biochemistry. CONCLUSION: DIO-NASH andob/ob-NASH mouse models show distinct treatment effects of liraglutide, OCA, and elafibranor, being in general agreement with corresponding findings in clinical trials for NASH. The present data therefore...... further supports the clinical translatability and utility of DIO-NASH andob/ob-NASH mouse models of NASH for probing the therapeutic efficacy of compounds in preclinical drug development for NASH....

  16. Model calibration for building energy efficiency simulation

    International Nuclear Information System (INIS)

    Mustafaraj, Giorgio; Marini, Dashamir; Costa, Andrea; Keane, Marcus

    2014-01-01

    Highlights: • Developing a 3D model relating to building architecture, occupancy and HVAC operation. • Two calibration stages developed, final model providing accurate results. • Using an onsite weather station for generating the weather data file in EnergyPlus. • Predicting thermal behaviour of underfloor heating, heat pump and natural ventilation. • Monthly energy saving opportunities related to heat pump of 20–27% was identified. - Abstract: This research work deals with an Environmental Research Institute (ERI) building where an underfloor heating system and natural ventilation are the main systems used to maintain comfort condition throughout 80% of the building areas. Firstly, this work involved developing a 3D model relating to building architecture, occupancy and HVAC operation. Secondly, the calibration methodology, which consists of two levels, was then applied in order to insure accuracy and reduce the likelihood of errors. To further improve the accuracy of calibration a historical weather data file related to year 2011, was created from the on-site local weather station of ERI building. After applying the second level of calibration process, the values of Mean bias Error (MBE) and Cumulative Variation of Root Mean Squared Error (CV(RMSE)) on hourly based analysis for heat pump electricity consumption varied within the following ranges: (MBE) hourly from −5.6% to 7.5% and CV(RMSE) hourly from 7.3% to 25.1%. Finally, the building was simulated with EnergyPlus to identify further possibilities of energy savings supplied by a water to water heat pump to underfloor heating system. It found that electricity consumption savings from the heat pump can vary between 20% and 27% on monthly bases

  17. Sunspot Modeling: From Simplified Models to Radiative MHD Simulations

    Directory of Open Access Journals (Sweden)

    Rolf Schlichenmaier

    2011-09-01

    Full Text Available We review our current understanding of sunspots from the scales of their fine structure to their large scale (global structure including the processes of their formation and decay. Recently, sunspot models have undergone a dramatic change. In the past, several aspects of sunspot structure have been addressed by static MHD models with parametrized energy transport. Models of sunspot fine structure have been relying heavily on strong assumptions about flow and field geometry (e.g., flux-tubes, "gaps", convective rolls, which were motivated in part by the observed filamentary structure of penumbrae or the necessity of explaining the substantial energy transport required to maintain the penumbral brightness. However, none of these models could self-consistently explain all aspects of penumbral structure (energy transport, filamentation, Evershed flow. In recent years, 3D radiative MHD simulations have been advanced dramatically to the point at which models of complete sunspots with sufficient resolution to capture sunspot fine structure are feasible. Here overturning convection is the central element responsible for energy transport, filamentation leading to fine-structure and the driving of strong outflows. On the larger scale these models are also in the progress of addressing the subsurface structure of sunspots as well as sunspot formation. With this shift in modeling capabilities and the recent advances in high resolution observations, the future research will be guided by comparing observation and theory.

  18. Predictive Capability Maturity Model for computational modeling and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy; Pilch, Martin M.

    2007-10-01

    The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

  19. Beyond Modeling: All-Atom Olfactory Receptor Model Simulations

    Directory of Open Access Journals (Sweden)

    Peter C Lai

    2012-05-01

    Full Text Available Olfactory receptors (ORs are a type of GTP-binding protein-coupled receptor (GPCR. These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can validate experimental functional studies as well as generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level. Here we have shown the specific advantages of simulating the dynamic environment that is associated with OR-odorant interactions. We present a rigorous methodology that ranges from the creation of a computationally-derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.

  20. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis

    Science.gov (United States)

    Tølbøl, Kirstine S; Kristiansen, Maria NB; Hansen, Henrik H; Veidal, Sanne S; Rigbolt, Kristoffer TG; Gillum, Matthew P; Jelsing, Jacob; Vrang, Niels; Feigh, Michael

    2018-01-01

    AIM To evaluate the pharmacodynamics of compounds in clinical development for nonalcoholic steatohepatitis (NASH) in obese mouse models of biopsy-confirmed NASH. METHODS Male wild-type C57BL/6J mice (DIO-NASH) and Lepob/ob (ob/ob-NASH) mice were fed a diet high in trans-fat (40%), fructose (20%) and cholesterol (2%) for 30 and 21 wk, respectively. Prior to treatment, all mice underwent liver biopsy for confirmation and stratification of liver steatosis and fibrosis, using the nonalcoholic fatty liver disease activity score (NAS) and fibrosis staging system. The mice were kept on the diet and received vehicle, liraglutide (0.2 mg/kg, SC, BID), obeticholic acid (OCA, 30 mg/kg PO, QD), or elafibranor (30 mg/kg PO, QD) for eight weeks. Within-subject comparisons were performed on changes in steatosis, inflammation, ballooning degeneration, and fibrosis scores. In addition, compound effects were evaluated by quantitative liver histology, including percent fractional area of liver fat, galectin-3, and collagen 1a1. RESULTS Liraglutide and elafibranor, but not OCA, reduced body weight in both models. Liraglutide improved steatosis scores in DIO-NASH mice only. Elafibranor and OCA reduced histopathological scores of hepatic steatosis and inflammation in both models, but only elafibranor reduced fibrosis severity. Liraglutide and OCA reduced total liver fat, collagen 1a1, and galectin-3 content, driven by significant reductions in liver weight. The individual drug effects on NASH histological endpoints were supported by global gene expression (RNA sequencing) and liver lipid biochemistry. CONCLUSION DIO-NASH and ob/ob-NASH mouse models show distinct treatment effects of liraglutide, OCA, and elafibranor, being in general agreement with corresponding findings in clinical trials for NASH. The present data therefore further supports the clinical translatability and utility of DIO-NASH and ob/ob-NASH mouse models of NASH for probing the therapeutic efficacy of compounds in

  1. Federated Modelling and Simulation for Critical Infrastructure Protection

    NARCIS (Netherlands)

    Rome, E.; Langeslag, P.J.H.; Usov, A.

    2014-01-01

    Modelling and simulation is an important tool for Critical Infrastructure (CI) dependency analysis, for testing methods for risk reduction, and as well for the evaluation of past failures. Moreover, interaction of such simulations with external threat models, e.g., a river flood model, or economic

  2. IDEF method-based simulation model design and development framework

    Directory of Open Access Journals (Sweden)

    Ki-Young Jeong

    2009-09-01

    Full Text Available The purpose of this study is to provide an IDEF method-based integrated framework for a business process simulation model to reduce the model development time by increasing the communication and knowledge reusability during a simulation project. In this framework, simulation requirements are collected by a function modeling method (IDEF0 and a process modeling method (IDEF3. Based on these requirements, a common data model is constructed using the IDEF1X method. From this reusable data model, multiple simulation models are automatically generated using a database-driven simulation model development approach. The framework is claimed to help both requirement collection and experimentation phases during a simulation project by improving system knowledge, model reusability, and maintainability through the systematic use of three descriptive IDEF methods and the features of the relational database technologies. A complex semiconductor fabrication case study was used as a testbed to evaluate and illustrate the concepts and the framework. Two different simulation software products were used to develop and control the semiconductor model from the same knowledge base. The case study empirically showed that this framework could help improve the simulation project processes by using IDEF-based descriptive models and the relational database technology. Authors also concluded that this framework could be easily applied to other analytical model generation by separating the logic from the data.

  3. Simulation models in population breast cancer screening : A systematic review

    NARCIS (Netherlands)

    Koleva-Kolarova, Rositsa G; Zhan, Zhuozhao; Greuter, Marcel J W; Feenstra, Talitha L; De Bock, Geertruida H

    The aim of this review was to critically evaluate published simulation models for breast cancer screening of the general population and provide a direction for future modeling. A systematic literature search was performed to identify simulation models with more than one application. A framework for

  4. Simulation Modeling of a Facility Layout in Operations Management Classes

    Science.gov (United States)

    Yazici, Hulya Julie

    2006-01-01

    Teaching quantitative courses can be challenging. Similarly, layout modeling and lean production concepts can be difficult to grasp in an introductory OM (operations management) class. This article describes a simulation model developed in PROMODEL to facilitate the learning of layout modeling and lean manufacturing. Simulation allows for the…

  5. The Random Walk Drainage Simulation Model as a Teaching Exercise

    Science.gov (United States)

    High, Colin; Richards, Paul

    1972-01-01

    Practical instructions about using the random walk drainage network simulation model as a teaching excercise are given and the results discussed. A source of directional bias in the resulting simulated drainage patterns is identified and given an interpretation in the terms of the model. Three points of educational value concerning the model are…

  6. Maneuver simulation model of an experimental hovercraft for the Antarctic

    Science.gov (United States)

    Murao, Rinichi

    Results of an investigation of a hovercraft model designed for Antarctic conditions are presented. The buoyancy characteristics, the propellant control system, and simulation model control are examined. An ACV (air cushion vehicle) model of the hovercraft is used to examine the flexibility and friction of the skirt. Simulation results are presented which show the performance of the hovercraft.

  7. Historical Development of Simulation Models of Recreation Use

    Science.gov (United States)

    Jan W. van Wagtendonk; David N. Cole

    2005-01-01

    The potential utility of modeling as a park and wilderness management tool has been recognized for decades. Romesburg (1974) explored how mathematical decision modeling could be used to improve decisions about regulation of wilderness use. Cesario (1975) described a computer simulation modeling approach that utilized GPSS (General Purpose Systems Simulator), a...

  8. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...

  9. A New Model for Simulating TSS Washoff in Urban Areas

    Directory of Open Access Journals (Sweden)

    E. Crobeddu

    2011-01-01

    Full Text Available This paper presents the formulation and validation of the conceptual Runoff Quality Simulation Model (RQSM that was developed to simulate the erosion and transport of solid particles in urban areas. The RQSM assumes that solid particle accumulation on pervious and impervious areas is infinite. The RQSM simulates soil erosion using rainfall kinetic energy and solid particle transport with linear system theory. A sensitivity analysis was conducted on the RQSM to show the influence of each parameter on the simulated load. Total suspended solid (TSS loads monitored at the outlet of the borough of Verdun in Canada and at three catchment outlets of the City of Champaign in the United States were used to validate the RQSM. TSS loads simulated by the RQSM were compared to measured loads and to loads simulated by the Rating Curve model and the Exponential model of the SWMM software. The simulation performance of the RQSM was comparable to the Exponential and Rating Curve models.

  10. Business Process Simulation: Requirements for Business and Resource Models

    OpenAIRE

    Audrius Rima; Olegas Vasilecas

    2015-01-01

    The purpose of Business Process Model and Notation (BPMN) is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.

  11. Evaluation of Marine Corps Manpower Computer Simulation Model

    Science.gov (United States)

    2016-12-01

    overall end strength are maintained. To assist their mission, an agent-based computer simulation model was developed in the Java computer language...maintained. To assist their mission, an agent-based computer simulation model was developed in the Java computer language. This thesis investigates that...a simulation software that models business practices to assist that business in its “ability to analyze and make decisions on how to improve (their

  12. Ion thruster modeling: Particle simulations and experimental validations

    International Nuclear Information System (INIS)

    Wang, Joseph; Polk, James; Brinza, David

    2003-01-01

    This paper presents results from ion thruster modeling studies performed in support of NASA's Deep Space 1 mission and NSTAR project. Fully 3-dimensional computer particle simulation models are presented for ion optics plasma flow and ion thruster plume. Ion optics simulation results are compared with measurements obtained from ground tests of the NSTAR ion thruster. Plume simulation results are compared with in-flight measurements from the Deep Space 1 spacecraft. Both models show excellent agreement with experimental data

  13. Business Process Simulation: Requirements for Business and Resource Models

    Directory of Open Access Journals (Sweden)

    Audrius Rima

    2015-07-01

    Full Text Available The purpose of Business Process Model and Notation (BPMN is to provide easily understandable graphical representation of business process. Thus BPMN is widely used and applied in various areas one of them being a business process simulation. This paper addresses some BPMN model based business process simulation problems. The paper formulate requirements for business process and resource models in enabling their use for business process simulation.

  14. Diversity modelling for electrical power system simulation

    International Nuclear Information System (INIS)

    Sharip, R M; Abu Zarim, M A U A

    2013-01-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios

  15. Diversity modelling for electrical power system simulation

    Science.gov (United States)

    Sharip, R. M.; Abu Zarim, M. A. U. A.

    2013-12-01

    This paper considers diversity of generation and demand profiles against the different future energy scenarios and evaluates these on a technical basis. Compared to previous studies, this research applied a forecasting concept based on possible growth rates from publically electrical distribution scenarios concerning the UK. These scenarios were created by different bodies considering aspects such as environment, policy, regulation, economic and technical. In line with these scenarios, forecasting is on a long term timescale (up to every ten years from 2020 until 2050) in order to create a possible output of generation mix and demand profiles to be used as an appropriate boundary condition for the network simulation. The network considered is a segment of rural LV populated with a mixture of different housing types. The profiles for the 'future' energy and demand have been successfully modelled by applying a forecasting method. The network results under these profiles shows for the cases studied that even though the value of the power produced from each Micro-generation is often in line with the demand requirements of an individual dwelling there will be no problems arising from high penetration of Micro-generation and demand side management for each dwellings considered. The results obtained highlight the technical issues/changes for energy delivery and management to rural customers under the future energy scenarios.

  16. The COD Model: Simulating Workgroup Performance

    Science.gov (United States)

    Biggiero, Lucio; Sevi, Enrico

    Though the question of the determinants of workgroup performance is one of the most central in organization science, precise theoretical frameworks and formal demonstrations are still missing. In order to fill in this gap the COD agent-based simulation model is here presented and used to study the effects of task interdependence and bounded rationality on workgroup performance. The first relevant finding is an algorithmic demonstration of the ordering of interdependencies in terms of complexity, showing that the parallel mode is the most simplex, followed by the sequential and then by the reciprocal. This result is far from being new in organization science, but what is remarkable is that now it has the strength of an algorithmic demonstration instead of being based on the authoritativeness of some scholar or on some episodic empirical finding. The second important result is that the progressive introduction of realistic limits to agents' rationality dramatically reduces workgroup performance and addresses to a rather interesting result: when agents' rationality is severely bounded simple norms work better than complex norms. The third main finding is that when the complexity of interdependence is high, then the appropriate coordination mechanism is agents' direct and active collaboration, which means teamwork.

  17. Millimeter waves sensor modeling and simulation

    Science.gov (United States)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. One important class of sensors are millimeter waves radar systems that are very efficient for seeing through atmosphere and/or foliage for example. This type of high frequency radar can produce high quality images with very tricky features such as dihedral and trihedral bright points, shadows and lay over effect. Besides, image quality is very dependent on the carrier velocity and trajectory. Such sensors systems are so complex that they need simulation to be tested. This paper presents a state of the Art of millimeter waves sensor models. A short presentation of asymptotic methods shows that physical optics support is mandatory to reach realistic results. SE-Workbench-RF tool is presented and typical examples of results are shown both in the frame of Synthetic Aperture Radar sensors and Real Beam Ground Mapping radars. Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench-RF are showed and commented.

  18. Novel Methodology for Functional Modeling and Simulation of Wireless Embedded Systems

    Directory of Open Access Journals (Sweden)

    Sosa Morales Emma

    2008-01-01

    Full Text Available Abstract A novel methodology is presented for the modeling and the simulation of wireless embedded systems. Tight interaction between the analog and the digital functionality makes the design and verification of such systems a real challenge. The applied methodology brings together the functional models of the baseband algorithms written in C language with the circuit descriptions at behavioral level in Verilog or Verilog-AMS for the system simulations in a single kernel environment. The physical layer of an ultrawideband system has been successfully modeled and simulated. The results confirm that this methodology provides a standardized framework in order to efficiently and accurately simulate complex mixed signal applications for embedded systems.

  19. Modeling and Simulation Fundamentals Theoretical Underpinnings and Practical Domains

    CERN Document Server

    Sokolowski, John A

    2010-01-01

    An insightful presentation of the key concepts, paradigms, and applications of modeling and simulation. Modeling and simulation has become an integral part of research and development across many fields of study, having evolved from a tool to a discipline in less than two decades. Modeling and Simulation Fundamentals offers a comprehensive and authoritative treatment of the topic and includes definitions, paradigms, and applications to equip readers with the skills needed to work successfully as developers and users of modeling and simulation. Featuring contributions written by leading experts

  20. Global Information Enterprise (GIE) Modeling and Simulation (GIESIM)

    National Research Council Canada - National Science Library

    Bell, Paul

    2005-01-01

    ... AND S) toolkits into the Global Information Enterprise (GIE) Modeling and Simulation (GIESim) framework to create effective user analysis of candidate communications architectures and technologies...

  1. Modeling, Simulation and Position Control of 3DOF Articulated Manipulator

    Directory of Open Access Journals (Sweden)

    Hossein Sadegh Lafmejani

    2014-08-01

    Full Text Available In this paper, the modeling, simulation and control of 3 degrees of freedom articulated robotic manipulator have been studied. First, we extracted kinematics and dynamics equations of the mentioned manipulator by using the Lagrange method. In order to validate the analytical model of the manipulator we compared the model simulated in the simulation environment of Matlab with the model was simulated with the SimMechanics toolbox. A sample path has been designed for analyzing the tracking subject. The system has been linearized with feedback linearization and then a PID controller was applied to track a reference trajectory. Finally, the control results have been compared with a nonlinear PID controller.

  2. Modeling and Simulation of U-tube Steam Generator

    Science.gov (United States)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  3. Simulation Models in Economic Higher Education

    OpenAIRE

    Paraschiv Dorel Mihai; Belu Mihaela Gabriela; Popa Ioan

    2013-01-01

    The simulation methods are implemented to develop students' professional skills and competencies in the economic field, making the link between the academic and business environments. The paper presents these methods of simulation in areas such as trade, international business, tourism and banking, applied in the European Program POSDRU/90/2.1/S/63442 project.

  4. Snoopy's hybrid simulator: a tool to construct and simulate hybrid biological models.

    Science.gov (United States)

    Herajy, Mostafa; Liu, Fei; Rohr, Christian; Heiner, Monika

    2017-07-28

    Hybrid simulation of (computational) biochemical reaction networks, which combines stochastic and deterministic dynamics, is an important direction to tackle future challenges due to complex and multi-scale models. Inherently hybrid computational models of biochemical networks entail two time scales: fast and slow. Therefore, it is intricate to efficiently and accurately analyse them using only either deterministic or stochastic simulation. However, there are only a few software tools that support such an approach. These tools are often limited with respect to the number as well as the functionalities of the provided hybrid simulation algorithms. We present Snoopy's hybrid simulator, an efficient hybrid simulation software which builds on Snoopy, a tool to construct and simulate Petri nets. Snoopy's hybrid simulator provides a wide range of state-of-the-art hybrid simulation algorithms. Using this tool, a computational model of biochemical networks can be constructed using a (coloured) hybrid Petri net's graphical notations, or imported from other compatible formats (e.g. SBML), and afterwards executed via dynamic or static hybrid simulation. Snoopy's hybrid simulator is a platform-independent tool providing an accurate and efficient simulation of hybrid (biological) models. It can be downloaded free of charge as part of Snoopy from http://www-dssz.informatik.tu-cottbus.de/DSSZ/Software/Snoopy .

  5. MODEL OF HEAT SIMULATOR FOR DATA CENTERS

    Directory of Open Access Journals (Sweden)

    Jan Novotný

    2016-08-01

    Full Text Available The aim of this paper is to present a design and a development of a heat simulator, which will be used for a flow research in data centers. The designed heat simulator is based on an ideological basis of four-processor 1U Supermicro server. The designed heat simulator enables to control the flow and heat output within the range of 10–100 %. The paper covers also the results of testing measurements of mass flow rates and heat flow rates in the simulator. The flow field at the outlet of the server was measured by the stereo PIV method. The heat flow rate was determined, based on measuring the temperature field at the inlet and outlet of the simulator and known mass flow rate.

  6. Simulation Tools Model Icing for Aircraft Design

    Science.gov (United States)

    2012-01-01

    the years from strictly a research tool to one used routinely by industry and other government agencies. Glenn contractor William Wright has been the architect of this development, supported by a team of researchers investigating icing physics, creating validation data, and ensuring development according to standard software engineering practices. The program provides a virtual simulation environment for determining where water droplets strike an airfoil in flight, what kind of ice would result, and what shape that ice would take. Users can enter geometries for specific, two-dimensional cross sections of an airfoil or other airframe surface and then apply a range of inputs - different droplet sizes, temperatures, airspeeds, and more - to model how ice would build up on the surface in various conditions. The program s versatility, ease of use, and speed - LEWICE can run through complex icing simulations in only a few minutes - have contributed to it becoming a popular resource in the aviation industry.

  7. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  8. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon

    2012-09-16

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  9. Modelling and simulation of containment on full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zou Tingyun

    1996-01-01

    A multi-node containment thermal-hydraulic model has been developed and adapted in Full Scope Simulator for Qinshan 300 MW Nuclear Power Unit with good realtime simulation effects. Containment pressure for LBLOCA calculated by the model is well agreed with those of CONTEMPT-4/MOD3

  10. Medical simulation: Overview, and application to wound modelling and management

    Directory of Open Access Journals (Sweden)

    Dinker R Pai

    2012-01-01

    Full Text Available Simulation in medical education is progressing in leaps and bounds. The need for simulation in medical education and training is increasing because of a overall increase in the number of medical students vis-à-vis the availability of patients; b increasing awareness among patients of their rights and consequent increase in litigations and c tremendous improvement in simulation technology which makes simulation more and more realistic. Simulation in wound care can be divided into use of simulation in wound modelling (to test the effect of projectiles on the body and simulation for training in wound management. Though this science is still in its infancy, more and more researchers are now devising both low-technology and high-technology (virtual reality simulators in this field. It is believed that simulator training will eventually translate into better wound care in real patients, though this will be the subject of further research.

  11. Opinion dynamics with confirmation bias.

    Directory of Open Access Journals (Sweden)

    Armen E Allahverdyan

    Full Text Available Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science.We formulate a (non-Bayesian model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect-when consecutively exposed to two opinions, the preference is given to the last opinion (recency or the first opinion (primacy -and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties.The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development.

  12. Opinion dynamics with confirmation bias.

    Science.gov (United States)

    Allahverdyan, Armen E; Galstyan, Aram

    2014-01-01

    Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect-when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) -and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development.

  13. Micro energy harvesting from ambient motion : modeling, simulation and design

    Energy Technology Data Exchange (ETDEWEB)

    Blystad, Lars-Cyril

    2012-07-01

    excitations, but result in the same output power whether the end stops are lossy or not. In contrast end stop loss is important under broadband vibrations. A piezoelectric mesoscale energy harvester was built, and tests of the harvester confirm the predicted behavior from the modeling and simulations. The modeling of the end stop as a parallel spring-dashpot system is sufficient to recapture the end stop behavior. Design and characterization of a novel MEMS electrostatic vibration energy harvester have been done. The harvester exploits the relative motion between two proof masses with different resonant frequencies. The transducer is implemented as an in-plane gap overlap comb struc- structure. Its main feature is to broaden the effective bandwidth compared to a single mass reference design. The silicon area of one energy harvester device measures 8.5 mm X 8.5 mm. Experimental tests prove the concept. For broadband vibrations the dual mass harvester obtains a wider bandwidth (approximately 8 Hz) compared to a single mass reference device (approximately 4 Hz).(au)

  14. An economic model to compare linezolid and vancomycin for the treatment of confirmed methicillin-resistant Staphylococcus aureus nosocomial pneumonia in Germany

    Directory of Open Access Journals (Sweden)

    Patel DA

    2014-10-01

    Full Text Available Dipen A Patel,1 Andre Michel,2 Jennifer Stephens,1 Bertram Weber,3 Christian Petrik,4 Claudie Charbonneau5 1Health Economic and Outcomes Research, Pharmerit International, Bethesda, MD, USA; 2Klinikum Hanau GmbH, Hanau, Germany; 3Health Technology Assessment and Outcomes Research, 4Anti-infectives, Pfizer, Berlin, Germany; 5Pfizer International Operations, Pfizer France, Paris, France Background: Across Europe, methicillin-resistant Staphylococcus aureus (MRSA is considered to be the primary cause of nosocomial pneumonia (NP. In Germany alone, approximately 14,000 cases of MRSA-associated NP occur annually, which may have a significant impact on health care resource use and associated economic costs. The objective of this study was to investigate the economic impact of linezolid compared with that of vancomycin in the treatment of hospitalized patients with MRSA-confirmed NP in the German health care system. Methods: A 4-week decision tree model incorporated published data and expert opinion on clinical parameters, resource use, and costs (2012 euros was constructed. The base case first-line treatment duration for patients with MRSA-confirmed NP was 10 days. Treatment success (survival, failure due to lack of efficacy, serious adverse events, and mortality were possible outcomes that could impact costs. Alternate scenarios were analyzed, such as varying treatment duration (7 or 14 days or treatment switch due to a serious adverse event/treatment failure (at day 5 or 10. Results: The model calculated total base case inpatient costs of €15,116 for linezolid and €15,239 for vancomycin. The incremental cost-effectiveness ratio favored linezolid (versus vancomycin, with marginally lower costs (by €123 and greater efficacy (+2.7% absolute difference in the proportion of patients successfully treated for MRSA NP. Approximately 85%–87% of the total treatment costs were attributed to hospital stay (primarily in the intensive care unit

  15. Modeling and simulation of matrix converter for wind power generation

    International Nuclear Information System (INIS)

    Masood, F.; Mahmood, T.; Choudhry, M.A.

    2013-01-01

    In this paper, a matrix converter structure is proposed which is suitable for wind power generation applications. The matrix converter (MC) is the most general converter type in the family of AC-AC converters. It is a single-stage converter which has an array of m x n bidirectional power switches to connect, directly, an m- phase voltage source to an n-Phase load. It does not have any DC-link circuit and does not need any large energy storage elements. The key element in a matrix converter is the fully controlled four quadrant bidirectional switch, which allows highfrequency operation. The proposed converter uses MOSFETs as bidirectional switches. The model has been implemented using MATLAB/SIMULINK. The results obtained are presented. The waveforms for input current and output voltage are sinusoidal with very low total harmonic distortion (THD). Low THD is an indication that the model is suitable for wind power generation applications. The simulation results confirm the reduction of conversion losses by 10% to 12% as compared to conventional two stage converters thereby increasing the overall conversion efficiency. The MOSFETs which have been used as switching devices have four to five times more switching frequency as compared to IGBTs thus improving the resulting wave shapes. (author)

  16. Vehicle Modeling for Future Generation Transportation Simulation

    Science.gov (United States)

    2009-05-10

    Recent development of inter-vehicular wireless communication technologies have motivated many innovative applications aiming at significantly increasing traffic throughput and improving highway safety. Powerful traffic simulation is an indispensable ...

  17. Stochastic models to simulate paratuberculosis in dairy herds

    DEFF Research Database (Denmark)

    Nielsen, Søren Saxmose; Weber, M.F.; Kudahl, Anne Margrethe Braad

    2011-01-01

    Stochastic simulation models are widely accepted as a means of assessing the impact of changes in daily management and the control of different diseases, such as paratuberculosis, in dairy herds. This paper summarises and discusses the assumptions of four stochastic simulation models and their use...... the models are somewhat different in their underlying principles and do put slightly different values on the different strategies, their overall findings are similar. Therefore, simulation models may be useful in planning paratuberculosis strategies in dairy herds, although as with all models caution...

  18. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of...

  19. A simulation model for forecasting downhill ski participation

    Science.gov (United States)

    Daniel J. Stynes; Daniel M. Spotts

    1980-01-01

    The purpose of this paper is to describe progress in the development of a general computer simulation model to forecast future levels of outdoor recreation participation. The model is applied and tested for downhill skiing in Michigan.

  20. Integrated Biosphere Simulator Model (IBIS), Version 2.5

    Data.gov (United States)

    National Aeronautics and Space Administration — The Integrated Biosphere Simulator (or IBIS) is designed to be a comprehensive model of the terrestrial biosphere. Tthe model represents a wide range of processes,...

  1. Simulation-based modeling of building complexes construction management

    Science.gov (United States)

    Shepelev, Aleksandr; Severova, Galina; Potashova, Irina

    2018-03-01

    The study reported here examines the experience in the development and implementation of business simulation games based on network planning and management of high-rise construction. Appropriate network models of different types and levels of detail have been developed; a simulation model including 51 blocks (11 stages combined in 4 units) is proposed.

  2. Analyzing Interaction Patterns to Verify a Simulation/Game Model

    Science.gov (United States)

    Myers, Rodney Dean

    2012-01-01

    In order for simulations and games to be effective for learning, instructional designers must verify that the underlying computational models being used have an appropriate degree of fidelity to the conceptual models of their real-world counterparts. A simulation/game that provides incorrect feedback is likely to promote misunderstanding and…

  3. Application of computer simulated persons in indoor environmental modeling

    DEFF Research Database (Denmark)

    Topp, C.; Nielsen, P. V.; Sørensen, Dan Nørtoft

    2002-01-01

    Computer simulated persons are often applied when the indoor environment is modeled by computational fluid dynamics. The computer simulated persons differ in size, shape, and level of geometrical complexity, ranging from simple box or cylinder shaped heat sources to more humanlike models. Little...

  4. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    International Nuclear Information System (INIS)

    D. E. Shropshire; W. H. West

    2005-01-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies

  5. Active site modeling in copper azurin molecular dynamics simulations

    NARCIS (Netherlands)

    Rizzuti, B; Swart, M; Sportelli, L; Guzzi, R

    Active site modeling in molecular dynamics simulations is investigated for the reduced state of copper azurin. Five simulation runs (5 ns each) were performed at room temperature to study the consequences of a mixed electrostatic/constrained modeling for the coordination between the metal and the

  6. New Simulation Models for Addressing Like X–Aircraft Responses ...

    African Journals Online (AJOL)

    New Simulation Models for Addressing Like X–Aircraft Responses. AS Mohammed, SO Abdulkareem. Abstract. The original Monte Carlo model was previously modified for use in simulating data that conform to certain resource flow constraints. Recent encounters in communication and controls render these data absolute ...

  7. Experimental Design for Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2001-01-01

    This introductory tutorial gives a survey on the use of statistical designs for what if-or sensitivity analysis in simulation.This analysis uses regression analysis to approximate the input/output transformation that is implied by the simulation model; the resulting regression model is also known as

  8. Object Oriented Toolbox for Modelling and Simulation of Dynamic Systems

    DEFF Research Database (Denmark)

    Thomsen, Per Grove; Poulsen, Mikael Zebbelin; Wagner, Falko Jens

    1999-01-01

    Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform.......Design and Implementation of a simulation toolbox based on Object Oriented modelling Techniques.Experimental implementation in C++ using the Godess ODE-solution platform....

  9. Exploiting Modelling and Simulation in Support of Cyber Defence

    NARCIS (Netherlands)

    Klaver, M.H.A.; Boltjes, B.; Croom-Jonson, S.; Jonat, F.; Çankaya, Y.

    2014-01-01

    The rapidly evolving environment of Cyber threats against the NATO Alliance has necessitated a renewed focus on the development of Cyber Defence policy and capabilities. The NATO Modelling and Simulation Group is looking for ways to leverage Modelling and Simulation experience in research, analysis

  10. Model simulations of rainfall over southern Africa and its eastern ...

    African Journals Online (AJOL)

    Rainfall simulations over southern and tropical Africa in the form of low-resolution Atmospheric Model Intercomparison Project (AMIP) simulations and higher resolution National Centre for Environmental Prediction (NCEP) reanalysis downscalings are presented and evaluated in this paper. The model used is the ...

  11. Dynamic wind turbine models in power system simulation tool

    DEFF Research Database (Denmark)

    Hansen, A.; Jauch, Clemens; Soerensen, P.

    The present report describes the dynamic wind turbine models implemented in the power system simulation tool DIgSILENT. The developed models are a part of the results of a national research project, whose overall objective is to create a model database in different simulation tools. The report...... provides a description of the wind turbine modelling, both at a component level and at a system level....

  12. Gender Confirmation Surgery: Guiding Principles.

    Science.gov (United States)

    Schechter, Loren S; D'Arpa, Salvatore; Cohen, Mimis N; Kocjancic, Ervin; Claes, Karel E Y; Monstrey, Stan

    2017-06-01

    At this time, no formal training or educational programs exist for surgeons or surgery residents interested in performing gender confirmation surgeries. To propose guiding principles designed to aid with the development of formal surgical training programs focused on gender confirmation surgery. We use expert opinion to provide a "first of its kind" framework for training surgeons to care for transgender and gender nonconforming individuals. We describe a multidisciplinary treatment model that describes an educational philosophy and the institution of quality parameters. This article represents the first step in the development of a structured educational program for surgical training in gender confirmation procedures. The World Professional Association for Transgender Health Board of Directors unanimously approved this article as the framework for surgical training. This article builds a framework for surgical training. It is designed to provide concepts that will likely be modified over time and based on additional data and evidence gathered through outcome measurements. We present an initial step in the formation of educational and technical guidelines for training surgeons in gender confirmation procedures. Schechter LS, D'Arpa S, Cohen MN, et al. Gender Confirmation Surgery: Guiding Principles. J Sex Med 2017;14:852-856. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.

  13. Coupled Monte Carlo simulation and Copula theory for uncertainty analysis of multiphase flow simulation models.

    Science.gov (United States)

    Jiang, Xue; Na, Jin; Lu, Wenxi; Zhang, Yu

    2017-11-01

    Simulation-optimization techniques are effective in identifying an optimal remediation strategy. Simulation models with uncertainty, primarily in the form of parameter uncertainty with different degrees of correlation, influence the reliability of the optimal remediation strategy. In this study, a coupled Monte Carlo simulation and Copula theory is proposed for uncertainty analysis of a simulation model when parameters are correlated. Using the self-adaptive weight particle swarm optimization Kriging method, a surrogate model was constructed to replace the simulation model and reduce the computational burden and time consumption resulting from repeated and multiple Monte Carlo simulations. The Akaike information criterion (AIC) and the Bayesian information criterion (BIC) were employed to identify whether the t Copula function or the Gaussian Copula is the optimal Copula function to match the relevant structure of the parameters. The results show that both the AIC and BIC values of the t Copula function are less than those of the Gaussian Copula function. This indicates that the t Copula function is the optimal function for matching the relevant structure of the parameters. The outputs of the simulation model when parameter correlation was considered and when it was ignored were compared. The results show that the amplitude of the fluctuation interval when parameter correlation was considered is less than the corresponding amplitude when parameter estimation was ignored. Moreover, it was demonstrated that considering the correlation among parameters is essential for uncertainty analysis of a simulation model, and the results of uncertainty analysis should be incorporated into the remediation strategy optimization process.

  14. Cooperatif Learning Models Simulation : From Abstract to Concrete

    Directory of Open Access Journals (Sweden)

    Agustini Ketut

    2018-01-01

    Full Text Available This study aimed to develop a simulation of cooperative learning model that used students as prospective teachers in improving the quality of learning, especially for preparedness in the classroom of the microteaching learning. A wider range of outcomes can be used more widely by teachers and lecturers in order to improve the professionalism as educators. The method used is research and development (R&D, using Dick & Carey development model. To produce as expected, there are several steps that must be done through global research, among others, do steps (a conduct in-depth theoretical study related to the simulation software that will be generated based on cooperative learning models to be developed , (b formulate figure simulation software system is based on the results of theoretical study and (c conduct a formative evaluation is done by content expert, design expert, and media expert to the validity of the simulation media, one to one student evaluation, small group evaluation and field trial evaluation. Simulation results showed that the Cooperative Learning Model can simulated three models by well. Student response through the simulation models is very positive by 60 % and 40% positive. The implication of this research result is that student of teacher candidate can apply cooperative learning model well when teaching real in training school hence student need to be given real simulation example how cooperative learning is implemented in class.

  15. MOVES (MOTOR VEHICLE EMISSION SIMULATOR) MODEL ...

    Science.gov (United States)

    A computer model, intended to eventually replace the MOBILE model and to incorporate the NONROAD model, that will provide the ability to estimate criteria and toxic air pollutant emission factors and emission inventories that are specific to the areas and time periods of interest, at scales ranging from local to national. Development of a new emission factor and inventory model for mobile source emissions. The model will be used by air pollution modelers within EPA, and at the State and local levels.

  16. Induction generator models in dynamic simulation tools

    DEFF Research Database (Denmark)

    Knudsen, Hans; Akhmatov, Vladislav

    1999-01-01

    For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained. It is fo......For AC network with large amount of induction generators (windmills) the paper demonstrates a significant discrepancy in the simulated voltage recovery after fault in weak networks when comparing dynamic and transient stability descriptions and the reasons of discrepancies are explained...... to a tunny generator through a shaft....

  17. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  18. The invaluable benefits of modeling and simulation in our lives

    Energy Technology Data Exchange (ETDEWEB)

    Lorencez, C., E-mail: carlos.lorencez@opg.com [Ontario Power Generation, Nuclear Safety Div., Pickering, Ontario (Canada)

    2015-07-01

    'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)

  19. The invaluable benefits of modeling and simulation in our lives

    International Nuclear Information System (INIS)

    Lorencez, C.

    2015-01-01

    'Full text:' In general terms, we associate the words 'modeling and simulation' with semi-ideal mathematical models reproducing complex Engineering problems. However, the use of modeling and simulation is much more extensive than that: it is applied on a daily basis in almost every front of Science, from sociology and biology to climate change, medicine, robotics, war strategies, etc. It is also being applied by our frontal lobe when we make decisions. The results of these exercises on modeling and simulation have had invaluable benefits on our well being, and we are just at the beginning. (author)

  20. Dynamic models of staged gasification processes. Documentation of gasification simulator; Dynamiske modeller a f trinopdelte forgasningsprocesser. Dokumentation til forgasser simulator

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-02-15

    In connection with the ERP project 'Dynamic modelling of staged gasification processes' a gasification simulator has been constructed. The simulator consists of: a mathematical model of the gasification process developed at Technical University of Denmark, a user interface programme, IGSS, and a communication interface between the two programmes. (BA)

  1. A study for production simulation model generation system based on data model at a shipyard

    Directory of Open Access Journals (Sweden)

    Myung-Gi Back

    2016-09-01

    Full Text Available Simulation technology is a type of shipbuilding product lifecycle management solution used to support production planning or decision-making. Normally, most shipbuilding processes are consisted of job shop production, and the modeling and simulation require professional skills and experience on shipbuilding. For these reasons, many shipbuilding companies have difficulties adapting simulation systems, regardless of the necessity for the technology. In this paper, the data model for shipyard production simulation model generation was defined by analyzing the iterative simulation modeling procedure. The shipyard production simulation data model defined in this study contains the information necessary for the conventional simulation modeling procedure and can serve as a basis for simulation model generation. The efficacy of the developed system was validated by applying it to the simulation model generation of the panel block production line. By implementing the initial simulation model generation process, which was performed in the past with a simulation modeler, the proposed system substantially reduced the modeling time. In addition, by reducing the difficulties posed by different modeler-dependent generation methods, the proposed system makes the standardization of the simulation model quality possible.

  2. Application of Hidden Markov Models in Biomolecular Simulations.

    Science.gov (United States)

    Shukla, Saurabh; Shamsi, Zahra; Moffett, Alexander S; Selvam, Balaji; Shukla, Diwakar

    2017-01-01

    Hidden Markov models (HMMs) provide a framework to analyze large trajectories of biomolecular simulation datasets. HMMs decompose the conformational space of a biological molecule into finite number of states that interconvert among each other with certain rates. HMMs simplify long timescale trajectories for human comprehension, and allow comparison of simulations with experimental data. In this chapter, we provide an overview of building HMMs for analyzing bimolecular simulation datasets. We demonstrate the procedure for building a Hidden Markov model for Met-enkephalin peptide simulation dataset and compare the timescales of the process.

  3. A View on Future Building System Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  4. Calibration of the simulation model of the VINCY cyclotron magnet

    Directory of Open Access Journals (Sweden)

    Ćirković Saša

    2002-01-01

    Full Text Available The MERMAID program will be used to isochronise the nominal magnetic field of the VINCY Cyclotron. This program simulates the response, i. e. calculates the magnetic field, of a previously defined model of a magnet. The accuracy of 3D field calculation depends on the density of the grid points in the simulation model grid. The size of the VINCY Cyclotron and the maximum number of grid points in the XY plane limited by MERMAID define the maximumobtainable accuracy of field calculations. Comparisons of the field simulated with maximum obtainable accuracy with the magnetic field measured in the first phase of the VINCY Cyclotron magnetic field measurements campaign has shown that the difference between these two fields is not as small as required. Further decrease of the difference between these fields is obtained by the simulation model calibration, i. e. by adjusting the current through the main coils in the simulation model.

  5. Methodology of modeling and measuring computer architectures for plasma simulations

    Science.gov (United States)

    Wang, L. P. T.

    1977-01-01

    A brief introduction to plasma simulation using computers and the difficulties on currently available computers is given. Through the use of an analyzing and measuring methodology - SARA, the control flow and data flow of a particle simulation model REM2-1/2D are exemplified. After recursive refinements the total execution time may be greatly shortened and a fully parallel data flow can be obtained. From this data flow, a matched computer architecture or organization could be configured to achieve the computation bound of an application problem. A sequential type simulation model, an array/pipeline type simulation model, and a fully parallel simulation model of a code REM2-1/2D are proposed and analyzed. This methodology can be applied to other application problems which have implicitly parallel nature.

  6. MODELING AND SIMULATION OF INDUSTRIAL FORMALDEHYDE ABSORBERS

    NARCIS (Netherlands)

    WINKELMAN, JGM; SIJBRING, H; BEENACKERS, AACM; DEVRIES, ET

    1992-01-01

    The industrially important process of formaldehyde absorption in water constitutes a case of multicomponent mass transfer with multiple reactions and considerable heat effects. A stable solution algorithm is developed to simulate the performance of industrial absorbers for this process using a

  7. Modelling and simulation of surface water waves

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Westhuis, J.H.

    2002-01-01

    The evolution of waves on the surface of a layer of fluid is governed by non-linear effects from surface deformations and dispersive effects from the interaction with the interior fluid motion. Several simulation tools are described in this paper and compared with real life experiments in large

  8. Model and simulation of Krause model in dynamic open network

    Science.gov (United States)

    Zhu, Meixia; Xie, Guangqiang

    2017-08-01

    The construction of the concept of evolution is an effective way to reveal the formation of group consensus. This study is based on the modeling paradigm of the HK model (Hegsekmann-Krause). This paper analyzes the evolution of multi - agent opinion in dynamic open networks with member mobility. The results of the simulation show that when the number of agents is constant, the interval distribution of the initial distribution will affect the number of the final view, The greater the distribution of opinions, the more the number of views formed eventually; The trust threshold has a decisive effect on the number of views, and there is a negative correlation between the trust threshold and the number of opinions clusters. The higher the connectivity of the initial activity group, the more easily the subjective opinion in the evolution of opinion to achieve rapid convergence. The more open the network is more conducive to the unity of view, increase and reduce the number of agents will not affect the consistency of the group effect, but not conducive to stability.

  9. MODELING OF HIGH STORAGE SHEET DEPOT WITH PLANT SIMULATION

    Directory of Open Access Journals (Sweden)

    Andrzej Jardzioch

    2013-03-01

    Full Text Available Manufacturing processes are becoming increasingly automated. Introduction of innovative solutions often necessitate processing very large number of signals from various devices. Correctness tests of the components configuration becomes a compiled operation requiring vast expenditure of time and knowledge. The models may be a mathematical reflection of the actual object. Many actions can be computer-assisted to varying degree. One example is construction of simulation models. These can also be simulation models developed in advanced software. The stages of creating a model may be purely random. This paper aims at a closer analysis of the simulation model based on the high storage sheet depot modeling using Plant Simulation software. The results of analysis can be used for optimization, but this stage is a separate issue.

  10. A New Double Digestion Ligation Mediated Suppression PCR Method for Simultaneous Bacteria DNA-Typing and Confirmation of Species: An Acinetobacter sp. Model

    Science.gov (United States)

    Stojowska, Karolina; Krawczyk, Beata

    2014-01-01

    We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR) method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s), while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR), whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR). The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal “band-based” results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb) complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3′ recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5′ rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided. PMID:25522278

  11. A new double digestion ligation mediated suppression PCR method for simultaneous bacteria DNA-typing and confirmation of species: an Acinetobacter sp. model.

    Directory of Open Access Journals (Sweden)

    Karolina Stojowska

    Full Text Available We have designed a new ddLMS PCR (double digestion Ligation Mediated Suppression PCR method based on restriction site polymorphism upstream from the specific target sequence for the simultaneous identification and differentiation of bacterial strains. The ddLMS PCR combines a simple PCR used for species or genus identification and the LM PCR strategy for strain differentiation. The bacterial identification is confirmed in the form of the PCR product(s, while the length of the PCR product makes it possible to differentiate between bacterial strains. If there is a single copy of the target sequence within genomic DNA, one specific PCR product is created (simplex ddLMS PCR, whereas for multiple copies of the gene the fingerprinting patterns can be obtained (multiplex ddLMS PCR. The described ddLMS PCR method is designed for rapid and specific strain differentiation in medical and microbiological studies. In comparison to other LM PCR it has substantial advantages: enables specific species' DNA-typing without the need for pure bacterial culture selection, is not sensitive to contamination with other cells or genomic DNA, and gives univocal "band-based" results, which are easy to interpret. The utility of ddLMS PCR was shown for Acinetobacter calcoaceticus-baumannii (Acb complex, the genetically closely related and phenotypically similar species and also important nosocomial pathogens, for which currently, there are no recommended methods for screening, typing and identification. In this article two models are proposed: 3' recA-ddLMS PCR-MaeII/RsaI for Acb complex interspecific typing and 5' rrn-ddLMS PCR-HindIII/ApaI for Acinetobacter baumannii intraspecific typing. ddLMS PCR allows not only for DNA-typing but also for confirmation of species in one reaction. Also, practical guidelines for designing a diagnostic test based on ddLMS PCR for genotyping different species of bacteria are provided.

  12. Kinetic modeling and exploratory numerical simulation of chloroplastic starch degradation

    Directory of Open Access Journals (Sweden)

    Nag Ambarish

    2011-06-01

    Full Text Available Abstract Background Higher plants and algae are able to fix atmospheric carbon dioxide through photosynthesis and store this fixed carbon in large quantities as starch, which can be hydrolyzed into sugars serving as feedstock for fermentation to biofuels and precursors. Rational engineering of carbon flow in plant cells requires a greater understanding of how starch breakdown fluxes respond to variations in enzyme concentrations, kinetic parameters, and metabolite concentrations. We have therefore developed and simulated a detailed kinetic ordinary differential equation model of the degradation pathways for starch synthesized in plants and green algae, which to our knowledge is the most complete such model reported to date. Results Simulation with 9 internal metabolites and 8 external metabolites, the concentrations of the latter fixed at reasonable biochemical values, leads to a single reference solution showing β-amylase activity to be the rate-limiting step in carbon flow from starch degradation. Additionally, the response coefficients for stromal glucose to the glucose transporter kcat and KM are substantial, whereas those for cytosolic glucose are not, consistent with a kinetic bottleneck due to transport. Response coefficient norms show stromal maltopentaose and cytosolic glucosylated arabinogalactan to be the most and least globally sensitive metabolites, respectively, and β-amylase kcat and KM for starch to be the kinetic parameters with the largest aggregate effect on metabolite concentrations as a whole. The latter kinetic parameters, together with those for glucose transport, have the greatest effect on stromal glucose, which is a precursor for biofuel synthetic pathways. Exploration of the steady-state solution space with respect to concentrations of 6 external metabolites and 8 dynamic metabolite concentrations show that stromal metabolism is strongly coupled to starch levels, and that transport between compartments serves to

  13. Modelling of thermalhydraulics and reactor physics in simulators

    International Nuclear Information System (INIS)

    Miettinen, J.

    1994-01-01

    The evolution of thermalhydraulic analysis methods for analysis and simulator purposes has brought closer the thermohydraulic models in both application areas. In large analysis codes like RELAP5, TRAC, CATHARE and ATHLET the accuracy for calculating complicated phenomena has been emphasized, but in spite of large development efforts many generic problems remain unsolved. For simulator purposes fast running codes have been developed and these include only limited assessment efforts. But these codes have more simulator friendly features than large codes, like portability and modular code structure. In this respect the simulator experiences with SMABRE code are discussed. Both large analysis codes and special simulator codes have their advances in simulator applications. The evolution of reactor physical calculation methods in simulator applications has started from simple point kinetic models. For analysis purposes accurate 1-D and 3-D codes have been developed being capable for fast and complicated transients. For simulator purposes capability for simulation of instruments has been emphasized, but the dynamic simulation capability has been less significant. The approaches for 3-dimensionality in simulators requires still quite much development, before the analysis accuracy is reached. (orig.) (8 refs., 2 figs., 2 tabs.)

  14. FISHRENT; Bio-economic simulation and optimisation model

    NARCIS (Netherlands)

    Salz, P.; Buisman, F.C.; Soma, K.; Frost, H.; Accadia, P.; Prellezo, R.

    2011-01-01

    Key findings: The FISHRENT model is a major step forward in bio-economic model-ling, combining features that have not been fully integrated in earlier models: 1- Incorporation of any number of species (or stock) and/or fleets 2- Integration of simulation and optimisation over a period of 25 years 3-

  15. Tuning hydrological models for ecological modeling - improving simulations of low flows critical to stream ecology

    DEFF Research Database (Denmark)

    Olsen, Martin; Troldborg, Lars; Boegh, Eva

    2008-01-01

    The consequences of using simulated discharge from a conventional hydrological model as input in stream physical habitat modelling was investigated using output from the Danish national hydrological model and a physical habitat model of three small streams. It was found that low flow simulation...... errors could have large impact on simulation of physical habitat conditions. If these two models are to be used to assess groundwater abstraction impact on physical habitat conditions the hydrological model should be tuned to the purpose...

  16. Tuning hydrological models for ecological modeling – improving simulations of low flows critical to stream ecology

    DEFF Research Database (Denmark)

    Olsen, Martin; Troldborg, Lars; Boegh, Eva

    2008-01-01

    The consequences of using simulated discharge from a conventional hydrological model as input in stream physical habitat modelling was investigated using output from the Danish national hydrological model and a physical habitat model of three small streams. It was found that low flow simulation...... errors could have large impact on simulation of physical habitat conditions. If these two models are to be used to assess groundwater abstraction impact on physical habitat conditions the hydrological model should be tuned to the purpose...

  17. MR imaging of model drug distribution in simulated vitreous

    Directory of Open Access Journals (Sweden)

    Stein Sandra

    2015-09-01

    Full Text Available The in vitro and in vivo characterization of intravitreal injections plays an important role in developing innovative therapy approaches. Using the established vitreous model (VM and eye movement system (EyeMoS the distribution of contrast agents with different molecular weight was studied in vitro. The impact of the simulated age-related vitreal liquefaction (VL on drug distribution in VM was examined either with injection through the gel phase or through the liquid phase. For comparison the distribution was studied ex vivo in the porcine vitreous. The studies were performed in a magnetic resonance (MR scanner. As expected, with increasing molecular weight the diffusion velocity and the visual distribution of the injected substances decreased. Similar drug distribution was observed in VM and in porcine eye. VL causes enhanced convective flow and faster distribution in VM. Confirming the importance of the injection technique in progress of VL, injection through gelatinous phase caused faster distribution into peripheral regions of the VM than following injection through liquefied phase. VM and MR scanner in combination present a new approach for the in vitro characterization of drug release and distribution of intravitreal dosage forms.

  18. Improving hydrological simulations by incorporating GRACE data for model calibration

    Science.gov (United States)

    Bai, Peng; Liu, Xiaomang; Liu, Changming

    2018-02-01

    Hydrological model parameters are typically calibrated by observed streamflow data. This calibration strategy is questioned when the simulated hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE)-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. In this study, a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations was compared with the traditional single-objective calibration scheme based on only streamflow simulations. Two hydrological models were employed on 22 catchments in China with different climatic conditions. The model evaluations were performed using observed streamflows, GRACE-derived TWSC, and actual evapotranspiration (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration scheme provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. The improvement in TWSC and ET simulations was more significant in relatively dry catchments than in relatively wet catchments. In addition, hydrological models calibrated using GRACE-derived TWSC data alone cannot obtain accurate runoff simulations in ungauged catchments. This study highlights the importance of including additional constraints in addition to streamflow observations to improve performances of hydrological models.

  19. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    Energy Technology Data Exchange (ETDEWEB)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  20. Opinion Dynamics with Confirmation Bias

    Science.gov (United States)

    Allahverdyan, Armen E.; Galstyan, Aram

    2014-01-01

    Background Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. Methodology/Principal Findings We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect–when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) –and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. Conclusions The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development. PMID:25007078

  1. Simulator for candu600 fuel handling system. the experimental model

    International Nuclear Information System (INIS)

    Marinescu, N.; Predescu, D.; Valeca, S.

    2013-01-01

    A main way to increase the nuclear plant safety is related to selection and continuous training of the operation staff. In this order, the computer programs for training, testing and evaluation of the knowledge get, or training simulators including the advanced analytical models of the technological systems are using. The Institute for Nuclear Research from Pitesti, Romania intend to design and build an Fuel Handling Simulator at his F/M Head Test Rig facility, that will be used for training of operating personnel. This paper presents simulated system, advantages to use the simulator, and the experimental model of simulator, that has been built to allows setting of the requirements and fabrication details, especially for the software kit that will be designed and implement on main simulator. (authors)

  2. Nonlinear mirror mode dynamics: Simulations and modeling

    Czech Academy of Sciences Publication Activity Database

    Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel

    2008-01-01

    Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  3. Simulation Model of Traffic Jam at Crossroads

    OpenAIRE

    Mladen Kalajžić; Katica Miloš; Mirela Muić

    2002-01-01

    Traffic congestion is one of the major problems in most cities.It is the consequence of unavoidable motorization, butalso, in many cases, of improper solutions considering constructionof roads or organisation of traffic.This paper deals with one problematic crossroad in thetown of Zadar in which traffic jams occur due to poor organisationof traffic. Using mathematical simulation, the first partproves that traffic jams will certainly occur, and in the secondpart, crossroads signalling is consi...

  4. Phase Equilibrium Modeling for Shale Production Simulation

    DEFF Research Database (Denmark)

    Sandoval Lemus, Diego Rolando

    calculation tools for phase equilibrium in porous media with capillary pressure and adsorption effects. Analysis using these tools have shown that capillary pressure and adsorption have non-negligible effects on phase equilibrium in shale. As general tools, they can be used to calculate phase equilibrium...... in other porous media as well. The compositional simulator with added capillary pressure effects on phase equilibrium can be used for evaluating the effects in dynamic and more complex scenarios....

  5. Modelling and simulating fire tube boiler performance

    DEFF Research Database (Denmark)

    Sørensen, K.; Condra, T.; Houbak, Niels

    2003-01-01

    : a zone submerged in water and a zone covered by steam), a model for the material in the boiler (the steel) and 2 models for resp. the water/steam zone (the boiling) and the steam. The dynamic model has been developed as a number of Differential-Algebraic-Equation system (DAE). Subsequently Mat...

  6. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  7. Systems modeling and simulation applications for critical care medicine.

    Science.gov (United States)

    Dong, Yue; Chbat, Nicolas W; Gupta, Ashish; Hadzikadic, Mirsad; Gajic, Ognjen

    2012-06-15

    Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area.

  8. Simulation of finite size effects of the fiber bundle model

    Science.gov (United States)

    Hao, Da-Peng; Tang, Gang; Xun, Zhi-Peng; Xia, Hui; Han, Kui

    2018-01-01

    In theory, the macroscopic fracture of materials should correspond with the thermodynamic limit of the fiber bundle model. However, the simulation of a fiber bundle model with an infinite size is unrealistic. To study the finite size effects of the fiber bundle model, fiber bundle models of various size are simulated in detail. The effects of system size on the constitutive behavior, critical stress, maximum avalanche size, avalanche size distribution, and increased step number of external load are explored. The simulation results imply that there is no feature size or cut size for macroscopic mechanical and statistical properties of the model. The constitutive curves near the macroscopic failure for various system size can collapse well with a simple scaling relationship. Simultaneously, the introduction of a simple extrapolation method facilitates the acquisition of more accurate simulation results in a large-limit system, which is better for comparison with theoretical results.

  9. Modelling and simulation of superalloys. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Rogal, Jutta; Hammerschmidt, Thomas; Drautz, Ralf (eds.)

    2014-07-01

    Superalloys are multi-component materials with complex microstructures that offer unique properties for high-temperature applications. The complexity of the superalloy materials makes it particularly challenging to obtain fundamental insight into their behaviour from the atomic structure to turbine blades. Recent advances in modelling and simulation of superalloys contribute to a better understanding and prediction of materials properties and therefore offer guidance for the development of new alloys. This workshop will give an overview of recent progress in modelling and simulation of materials for superalloys, with a focus on single crystal Ni-base and Co-base alloys. Topics will include electronic structure methods, atomistic simulations, microstructure modelling and modelling of microstructural evolution, solidification and process simulation as well as the modelling of phase stability and thermodynamics.

  10. Robust Design of Motor PWM Control using Modeling and Simulation

    Science.gov (United States)

    Zhan, Wei

    A robust design method is developed for Pulse Width Modulation (PWM) motor speed control. A first principle model for DC permanent magnetic motor is used to build a Simulink model for simulation and analysis. Based on the simulation result, the main factors that contributed to the average speed variation are identified using Design of Experiment (DOE). A robust solution is derived to reduce the aver age speed control variation using Response Surface Method (RSM). The robustness of the new design is verified using the simulation model.

  11. Simulation and Modeling Capability for Standard Modular Hydropower Technology

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Kevin M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Brennan T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Witt, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeNeale, Scott T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bevelhimer, Mark S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pries, Jason L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burress, Timothy A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kao, Shih-Chieh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mobley, Miles H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Kyutae [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Curd, Shelaine L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tsakiris, Achilleas [Univ. of Tennessee, Knoxville, TN (United States); Mooneyham, Christian [Univ. of Tennessee, Knoxville, TN (United States); Papanicolaou, Thanos [Univ. of Tennessee, Knoxville, TN (United States); Ekici, Kivanc [Univ. of Tennessee, Knoxville, TN (United States); Whisenant, Matthew J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Welch, Tim [US Department of Energy, Washington, DC (United States); Rabon, Daniel [US Department of Energy, Washington, DC (United States)

    2017-08-01

    Grounded in the stakeholder-validated framework established in Oak Ridge National Laboratory’s SMH Exemplary Design Envelope Specification, this report on Simulation and Modeling Capability for Standard Modular Hydropower (SMH) Technology provides insight into the concepts, use cases, needs, gaps, and challenges associated with modeling and simulating SMH technologies. The SMH concept envisions a network of generation, passage, and foundation modules that achieve environmentally compatible, cost-optimized hydropower using standardization and modularity. The development of standardized modeling approaches and simulation techniques for SMH (as described in this report) will pave the way for reliable, cost-effective methods for technology evaluation, optimization, and verification.

  12. MODELING OF ANIMATED SIMULATIONS BY MAXIMA PROGRAM TOOLS

    Directory of Open Access Journals (Sweden)

    Nataliya O. Bugayets

    2015-06-01

    Full Text Available The article deals with the methodical features in training of computer simulation of systems and processes using animation. In the article the importance of visibility of educational material that combines sensory and thinking sides of cognition is noted. The concept of modeling and the process of building models has been revealed. Attention is paid to the development of skills that are essential for effective learning of animated simulation by visual aids. The graphical environment tools of the computer mathematics system Maxima for animated simulation are described. The examples of creation of models animated visual aids and their use for the development of research skills are presented.

  13. Impact of reactive settler models on simulated WWTP performance.

    Science.gov (United States)

    Gernaey, K V; Jeppsson, U; Batstone, D J; Ingildsen, P

    2006-01-01

    Including a reactive settler model in a wastewater treatment plant model allows representation of the biological reactions taking place in the sludge blanket in the settler, something that is neglected in many simulation studies. The idea of including a reactive settler model is investigated for an ASM1 case study. Simulations with a whole plant model including the non-reactive Takács settler model are used as a reference, and are compared to simulation results considering two reactive settler models. The first is a return sludge model block removing oxygen and a user-defined fraction of nitrate, combined with a non-reactive Takács settler. The second is a fully reactive ASM1 Takács settler model. Simulations with the ASM1 reactive settler model predicted a 15.3% and 7.4% improvement of the simulated N removal performance, for constant (steady-state) and dynamic influent conditions respectively. The oxygen/nitrate return sludge model block predicts a 10% improvement of N removal performance under dynamic conditions, and might be the better modelling option for ASM1 plants: it is computationally more efficient and it will not overrate the importance of decay processes in the settler.

  14. Comprehensive Simulation Lifecycle Management for High Performance Computing Modeling and Simulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are significant logistical barriers to entry-level high performance computing (HPC) modeling and simulation (M IllinoisRocstar) sets up the infrastructure for...

  15. Simulation-Based Internal Models for Safer Robots

    Directory of Open Access Journals (Sweden)

    Christian Blum

    2018-01-01

    Full Text Available In this paper, we explore the potential of mobile robots with simulation-based internal models for safety in highly dynamic environments. We propose a robot with a simulation of itself, other dynamic actors and its environment, inside itself. Operating in real time, this simulation-based internal model is able to look ahead and predict the consequences of both the robot’s own actions and those of the other dynamic actors in its vicinity. Hence, the robot continuously modifies its own actions in order to actively maintain its own safety while also achieving its goal. Inspired by the problem of how mobile robots could move quickly and safely through crowds of moving humans, we present experimental results which compare the performance of our internal simulation-based controller with a purely reactive approach as a proof-of-concept study for the practical use of simulation-based internal models.

  16. Modeling and simulation of Si crystal growth from melt

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lijun; Liu, Xin; Li, Zaoyang [National Engineering Research Center for Fluid Machinery and Compressors, School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Miyazawa, Hiroaki; Nakano, Satoshi; Kakimoto, Koichi [Research Institute for Applied Mechanics, Kyushu University, Kasuga 816-8580 (Japan)

    2009-07-01

    A numerical simulator was developed with a global model of heat transfer for any crystal growth taking place at high temperature. Convective, conductive and radiative heat transfers in the furnace are solved together in a conjugated way by a finite volume method. A three-dimensional (3D) global model was especially developed for simulation of heat transfer in any crystal growth with 3D features. The model enables 3D global simulation be conducted with moderate requirement of computer resources. The application of this numerical simulator to a CZ growth and a directional solidification process for Si crystals, the two major production methods for crystalline Si for solar cells, was introduced. Some typical results were presented, showing the importance and effectiveness of numerical simulation in analyzing and improving these kinds of Si crystal growth processes from melt. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. COMPARISON OF RF CAVITY TRANSPORT MODELS FOR BBU SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin,Byung Yunn,Todd Satogata,Shahid Ahmed

    2011-03-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  18. Comparison Of RF Cavity Transport Models For BBU Simulations

    International Nuclear Information System (INIS)

    Shin, Ilkyoung; Yunn, Byung; Satogata, Todd; Ahmed, Shahid

    2011-01-01

    The transverse focusing effect in RF cavities plays a considerable role in beam dynamics for low-energy beamline sections and can contribute to beam breakup (BBU) instability. The purpose of this analysis is to examine RF cavity models in simulation codes which will be used for BBU experiments at Jefferson Lab and improve BBU simulation results. We review two RF cavity models in the simulation codes elegant and TDBBU (a BBU simulation code developed at Jefferson Lab). elegant can include the Rosenzweig-Serafini (R-S) model for the RF focusing effect. Whereas TDBBU uses a model from the code TRANSPORT which considers the adiabatic damping effect, but not the RF focusing effect. Quantitative comparisons are discussed for the CEBAF beamline. We also compare the R-S model with the results from numerical simulations for a CEBAF-type 5-cell superconducting cavity to validate the use of the R-S model as an improved low-energy RF cavity transport model in TDBBU. We have implemented the R-S model in TDBBU. It will improve BBU simulation results to be more matched with analytic calculations and experimental results.

  19. Regularization modeling for large-eddy simulation of diffusion flames

    NARCIS (Netherlands)

    Geurts, Bernardus J.; Wesseling, P.; Oñate, E.; Périaux, J.

    We analyze the evolution of a diffusion flame in a turbulent mixing layer using large-eddy simulation. The large-eddy simulation includes Leray regularization of the convective transport and approximate inverse filtering to represent the chemical source terms. The Leray model is compared to the more

  20. Computer Simulation (Microcultures): An Effective Model for Multicultural Education.

    Science.gov (United States)

    Nelson, Jorge O.

    This paper presents a rationale for using high-fidelity computer simulation in planning for and implementing effective multicultural education strategies. Using computer simulation, educators can begin to understand and plan for the concept of cultural sensitivity in delivering instruction. The model promises to emphasize teachers' understanding…

  1. Simulation models for food separation by adsorption process

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  2. Modelling of non-linear elastic tissues for surgical simulation

    NARCIS (Netherlands)

    Misra, Sarthak; Ramesh, K.T.; Okamura, Allison M.

    2010-01-01

    Realistic modelling of the interaction between surgical instruments and human organs has been recognised as a key requirement in the development of high-fidelity surgical simulators. Primarily due to computational considerations, most of the past real-time surgical simulation research has assumed

  3. Flood simulation model using XP-SWMM along Terengganu River ...

    African Journals Online (AJOL)

    Malaysia is one of the tropical countries in the world with heavy rainfall throughout the year and floods are the most common disaster in Malaysia. Flood simulation model was carried out along Terengganu River for dry and rainy seasons. The result of the simulation shows the water level reached its maximum level at the 1st ...

  4. Application of wildfire simulation models for risk analysis

    Science.gov (United States)

    Alan A. Ager; Mark A. Finney

    2009-01-01

    Wildfire simulation models are being widely used by fire and fuels specialists in the U.S. to support tactical and strategic decisions related to the mitigation of wildfire risk. Much of this application has resulted from the development of a minimum travel time (MTT) fire spread algorithm (M. Finney) that makes it computationally feasible to simulate thousands of...

  5. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    Science.gov (United States)

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  6. Communicating Insights from Complex Simulation Models: A Gaming Approach.

    Science.gov (United States)

    Vennix, Jac A. M.; Geurts, Jac L. A.

    1987-01-01

    Describes design principles followed in developing an interactive microcomputer-based simulation to study financial and economic aspects of the Dutch social security system. The main goals are to improve participants' insights into the formal simulation model, and to improve policy development skills. Plans for future research are also discussed.…

  7. Reliability modelling and simulation of switched linear system ...

    African Journals Online (AJOL)

    Thus, constructing a subsystem Markov model and matching its parameters with the specified safety factors provides the basis for the entire system analysis. For the system simulation, temporal databases and predictive control algorithm are designed. The simulation results are analyzed to assess the reliability of the system ...

  8. Simulation models for food separation by adsorption process | Aoyi ...

    African Journals Online (AJOL)

    Separation of simulated industrial food products, by method of adsorption, has been studied. A thermodynamic approach has been applied to study the liquid adsorption where benzene and cyclohexane have been used to simulate edible oils in a system that employs silica gel as the adsorbent. Different models suggested ...

  9. Overview of Computer Simulation Modeling Approaches and Methods

    Science.gov (United States)

    Robert E. Manning; Robert M. Itami; David N. Cole; Randy Gimblett

    2005-01-01

    The field of simulation modeling has grown greatly with recent advances in computer hardware and software. Much of this work has involved large scientific and industrial applications for which substantial financial resources are available. However, advances in object-oriented programming and simulation methodology, concurrent with dramatic increases in computer...

  10. Wind model for offshore power simulation

    OpenAIRE

    Hervada Sala, Carme; Jarauta Bragulat, Eusebio; Gibergans Baguena, José; Buenestado Caballero, Pablo

    2015-01-01

    Offshore wind energy is an alternative energy source of increased interest. A large offshore wind farms have been planned or under construction, mainly in northern Europe. One of the points needed to be able to implement offshore projects is to characterize and model the wind for marine generation. Models are needed for the design of the most appropriate control strategies. Some attempts have been done to do so; recently these models are implemented under a wind turbine block set in Matlab/Si...

  11. A simulation of water pollution model parameter estimation

    Science.gov (United States)

    Kibler, J. F.

    1976-01-01

    A parameter estimation procedure for a water pollution transport model is elaborated. A two-dimensional instantaneous-release shear-diffusion model serves as representative of a simple transport process. Pollution concentration levels are arrived at via modeling of a remote-sensing system. The remote-sensed data are simulated by adding Gaussian noise to the concentration level values generated via the transport model. Model parameters are estimated from the simulated data using a least-squares batch processor. Resolution, sensor array size, and number and location of sensor readings can be found from the accuracies of the parameter estimates.

  12. Space Station Solar Dynamic Module modelling and simulation

    Science.gov (United States)

    Tylim, A.

    1989-01-01

    Efforts to model and simulate the Solar Dynamic Power Module (SDPM) for the Space Station are discussed. The SDPM configuration is given and the SDPM subsytems are described, including the concentrator assembly, the fine pointing and tracking system, the power generation system, the heat rejection assembly, the electrical equipment, the interface structure and integration hardware, and the beta gimbal assembly. Performance requirements and design considerations are given. The development of models to simulate the SDPM is examined, noting research on models such as the Electric Power System Transient Analysis Model, the Electric Power System on Orbit Performance model, and a spatial flux distribution function.

  13. A quantum energy transport model for semiconductor device simulation

    Energy Technology Data Exchange (ETDEWEB)

    Sho, Shohiro, E-mail: shoshohiro@gmail.com [Graduate School of Information Science and Technology, Osaka University, Osaka (Japan); Odanaka, Shinji [Computer Assisted Science Division, Cybermedia Center, Osaka University, Osaka (Japan)

    2013-02-15

    This paper describes numerical methods for a quantum energy transport (QET) model in semiconductors, which is derived by using a diffusion scaling in the quantum hydrodynamic (QHD) model. We newly drive a four-moments QET model similar with a classical ET model. Space discretization is performed by a new set of unknown variables. Numerical stability and convergence are obtained by developing numerical schemes and an iterative solution method with a relaxation method. Numerical simulations of electron transport in a scaled MOSFET device are discussed. The QET model allows simulations of quantum confinement transport, and nonlocal and hot-carrier effects in scaled MOSFETs.

  14. Simulation Model of Traffic Jam at Crossroads

    Directory of Open Access Journals (Sweden)

    Mladen Kalajžić

    2002-11-01

    Full Text Available Traffic congestion is one of the major problems in most cities.It is the consequence of unavoidable motorization, butalso, in many cases, of improper solutions considering constructionof roads or organisation of traffic.This paper deals with one problematic crossroad in thetown of Zadar in which traffic jams occur due to poor organisationof traffic. Using mathematical simulation, the first partproves that traffic jams will certainly occur, and in the secondpart, crossroads signalling is considered as a possible solutionwhich, if combined with intelligent control could significantlyimprove the organisation of traffic at this crossroads.

  15. Multiscale Modeling and Simulation of Material Processing

    Science.gov (United States)

    2006-07-01

    2 eysmtti) oesoplasficity ai Ms a te a s nm -9 Quantum I_ _ A erh ni Ins _me A _.-I 1 el’ -•-~~~i I da yea I , . . ’ ’’’ " lps I rLi I Its I l ms Is...deposition ( CVD ) of carbon dimers on a diamond (100) surface. The data generated by the simulations have been used to train and test neural networks. The...Mathanagopalan, Siva, "A Neural Network and Molecular Dynamics (MD) Approach for Event Probability Prediction during Chemical Vapor Deposition ( CVD ) of

  16. Simulation platform to model, optimize and design wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Iov, F.; Hansen, A.D.; Soerensen, P.; Blaabjerg, F.

    2004-03-01

    This report is a general overview of the results obtained in the project 'Electrical Design and Control. Simulation Platform to Model, Optimize and Design Wind Turbines'. The motivation for this research project is the ever-increasing wind energy penetration into the power network. Therefore, the project has the main goal to create a model database in different simulation tools for a system optimization of the wind turbine systems. Using this model database a simultaneous optimization of the aerodynamic, mechanical, electrical and control systems over the whole range of wind speeds and grid characteristics can be achieved. The report is structured in six chapters. First, the background of this project and the main goals as well as the structure of the simulation platform is given. The main topologies for wind turbines, which have been taken into account during the project, are briefly presented. Then, the considered simulation tools namely: HAWC, DIgSILENT, Saber and Matlab/Simulink have been used in this simulation platform are described. The focus here is on the modelling and simulation time scale aspects. The abilities of these tools are complementary and they can together cover all the modelling aspects of the wind turbines e.g. mechanical loads, power quality, switching, control and grid faults. However, other simulation packages e.g PSCAD/EMTDC can easily be added in the simulation platform. New models and new control algorithms for wind turbine systems have been developed and tested in these tools. All these models are collected in dedicated libraries in Matlab/Simulink as well as in Saber. Some simulation results from the considered tools are presented for MW wind turbines. These simulation results focuses on fixed-speed and variable speed/pitch wind turbines. A good agreement with the real behaviour of these systems is obtained for each simulation tool. These models can easily be extended to model different kinds of wind turbines or large wind

  17. Coarse grained model for semiquantitative lipid simulations

    NARCIS (Netherlands)

    Marrink, SJ; de Vries, AH; Mark, AE

    2004-01-01

    This paper describes the parametrization of a new coarse grained (CG) model for lipid and surfactant systems. Reduction of the number of degrees of freedom together with the use of short range potentials makes it computationally very efficient. Compared to atomistic models a gain of 3-4 orders of

  18. NUMERICAL SIMULATION AND MODELING OF UNSTEADY FLOW ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... It was resolved the Navier-Stokes Reynolds averaged using a single closed equation, which models the Reynolds stress (-ρ (u_i U_j) ̅) by solving the transport equation for the turbulent kinematic viscosity this model proposed by Spalart-. Allmaras. The equations of continuity and Navier-Stokes Reynolds ...

  19. Modeling, simulation and performance evaluation of parabolic ...

    African Journals Online (AJOL)

    Model of a parabolic trough power plant, taking into consideration the different losses associated with collection of the solar irradiance and thermal losses is presented. MATLAB software is employed to model the power plant at reference state points. The code is then used to find the different reference values which are ...

  20. A hybrid society model for simulating residential electricity consumption

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)

    2008-12-15

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  1. A hybrid society model for simulating residential electricity consumption

    International Nuclear Information System (INIS)

    Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui

    2008-01-01

    In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)

  2. Analysis, Modeling, and Simulation (AMS) testbed initial screening report.

    Science.gov (United States)

    2013-11-01

    Analysis Modeling and Simulation (AMS) Testbeds can make significant contributions in identifying the benefits of more effective, more active systems management, resulting from integrating transformative applications enabled by new data from wireless...

  3. Modeling and simulation of bulk gallium nitride power semiconductor devices

    Directory of Open Access Journals (Sweden)

    G. Sabui

    2016-05-01

    Full Text Available Bulk gallium nitride (GaN power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  4. Modeling and simulation of bulk gallium nitride power semiconductor devices

    Science.gov (United States)

    Sabui, G.; Parbrook, P. J.; Arredondo-Arechavala, M.; Shen, Z. J.

    2016-05-01

    Bulk gallium nitride (GaN) power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD) simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  5. Error and Uncertainty Analysis for Ecological Modeling and Simulation

    National Research Council Canada - National Science Library

    Gertner, George

    1998-01-01

    The main objectives of this project are a) to develop a general methodology for conducting sensitivity and uncertainty analysis and building error budgets in simulation modeling over space and time; and b...

  6. Microcanonical simulation of a toy model with vacuum seizing

    International Nuclear Information System (INIS)

    Stone, M.

    1984-01-01

    Tested was a newly developed method for simulating field theories with fermionic degrees of freedom on a simple quantum mechanical model which still has enough structure to exhibit symmetry breaking and other effects due to anomalies

  7. Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:It is the mission of the Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory to provide a means by which to virtually duplicate products...

  8. Atomic scale simulations for improved CRUD and fuel performance modeling

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cooper, Michael William Donald [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    A more mechanistic description of fuel performance codes can be achieved by deriving models and parameters from atomistic scale simulations rather than fitting models empirically to experimental data. The same argument applies to modeling deposition of corrosion products on fuel rods (CRUD). Here are some results from publications in 2016 carried out using the CASL allocation at LANL.

  9. Impact of reactive settler models on simulated WWTP performance

    DEFF Research Database (Denmark)

    Gernaey, Krist; Jeppsson, Ulf; Batstone, Damien J.

    2006-01-01

    Including a reactive settler model in a wastewater treatment plant model allows representation of the biological reactions taking place in the sludge blanket in the settler, something that is neglected in many simulation studies. The idea of including a reactive settler model is investigated for ...

  10. Simulating tidal turbines with mesh optimisation and RANS turbulence models

    NARCIS (Netherlands)

    Abolghasemi, A.; Piggott, M.D.; Spinneken, J.; Vire, A.; Cotter, C.J.

    2015-01-01

    A versatile numerical model for the simulation of flow past horizontal axis tidal turbines has been developed. Currently most large-scale marine models employed to study marine energy use the shallow water equations and therefore can fail to account for important turbulent physics. The model

  11. Dynamic Modelling and Simulation of Citric Acid Production from ...

    African Journals Online (AJOL)

    The modelling of batch production of citric acid from corn starch hydrolysate using Aspergillus niger ATCC 9142 was carried out in this work. A validated mathematical model was developed to describe the process. Four kinetic models, Monod, Haldane, logistic and hyperbolic for simulating the growth of the Aspergillus ...

  12. Sensitivity of fire behavior simulations to fuel model variations

    Science.gov (United States)

    Lucy A. Salazar

    1985-01-01

    Stylized fuel models, or numerical descriptions of fuel arrays, are used as inputs to fire behavior simulation models. These fuel models are often chosen on the basis of generalized fuel descriptions, which are related to field observations. Site-specific observations of fuels or fire behavior in the field are not readily available or necessary for most fire management...

  13. NASA Standard for Models and Simulations: Philosophy and Requirements Overview

    Science.gov (United States)

    Blattnig, Steve R.; Luckring, James M.; Morrison, Joseph H.; Sylvester, Andre J.; Tripathi, Ram K.; Zang, Thomas A.

    2013-01-01

    Following the Columbia Accident Investigation Board report, the NASA Administrator chartered an executive team (known as the Diaz Team) to identify those CAIB report elements with NASA-wide applicability and to develop corrective measures to address each element. One such measure was the development of a standard for the development, documentation, and operation of models and simulations. This report describes the philosophy and requirements overview of the resulting NASA Standard for Models and Simulations.

  14. The Rebound Effect: A Simulation Model of Telecommuting

    OpenAIRE

    Reitan, Fredrik Aadne

    2014-01-01

    This thesis aims to highlight the relationship between telecommuting and the rebound effect with respect to greenhouse gas emissions. This was done by gathering and analyzing the latest research from various fields that could provide information about telecommuting and the rebound effect. By surveying these fields, an informative and well-documented framework for modeling telecommuting and the rebound effect was made possible. The simulation model simulated the adoption of telecommuting in Lo...

  15. Platform for Modeling and Simulation of Photovoltaic Generation Systems

    Directory of Open Access Journals (Sweden)

    Anny A. Arroyave-Berrio

    2013-11-01

    Full Text Available A platform for modeling and simulation using Matlab is presented. The platform has four models of photovoltaic panels. It identifies the parameters of each one, for a given solar panel, based on experimental data of voltage, current and environmental conditions. Also the platform generates four blocks, for using in Matlab-Simulink and Psim simulation tools. The experimental validation of the platform was made using the PV panels of the Metropolitan Technological Institute (ITM Lab.

  16. A dynamic styrofoam-ball model for simulating molecular motion

    Science.gov (United States)

    Mak, Se-yuen; Cheung, Derek

    2001-01-01

    In this paper we introduce a simple styrofoam-ball model that can be used for simulating molecular motion in all three states. As the foam balls are driven by a vibrator that is in turn driven by a signal generator, the frequency and the amplitude of vibration can be adjusted independently. Thus, the model is appropriate for simulating molecular motion in the liquid state, which is a combination of vibration and meandering motion.

  17. Modeling and Simulation for Safeguards and Nonproliferation Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan, Kimberly V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kirk, Bernadette Lugue [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The Modeling and Simulation for Safeguards and Nonproliferation Workshop was held December 15–18, 2014, at Oak Ridge National Laboratory. This workshop was made possible by the Next Generation Safeguards Initiative Human Capital Development (NGSI HCD) Program. The idea of the workshop was to move beyond the tried-and-true boot camp training of nonproliferation concepts to spend several days on the unique perspective of applying modeling and simulation (M&S) solutions to safeguards challenges.

  18. Validity of microgravity simulation models on earth

    DEFF Research Database (Denmark)

    Regnard, J; Heer, M; Drummer, C

    2001-01-01

    incomplete knowledge of the characteristics inherent to each model. During water immersion, the hydrostatic pressure lowers the peripheral vascular capacity and causes increased thoracic blood volume and high vascular perfusion. In turn, these changes lead to high urinary flow, low vasomotor tone, and a high...... a negative pressure around the body. The differences in renal function between space and experimental models appear to be explained by the physical forces affecting tissues and hemodynamics as well as by the changes secondary to these forces. These differences may help in selecting experimental models...

  19. LR-Spring Mass Model for Cardiac Surgical Simulation

    DEFF Research Database (Denmark)

    Mosegaard, Jesper

    2004-01-01

    The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination with a d......The purpose of the research conducted was to develop a real-time surgical simulator for preoperative planning of surgery in congenital heart disease. The main problem simulating procedures on cardiac morphology is the need for a large degree of detail and simulation speed. In combination...... with a demand for physically realistic real-time behaviour this gives us tradeoffs not easily balanced. The LR-Spring Mass model handles these constraints by the use of domain specific knowledge....

  20. Automatic Modeling and Simulation of Modular Robots

    Science.gov (United States)

    Jiang, C.; Wei, H.; Zhang, Y.

    2018-03-01

    The ability of reconfiguration makes modular robots have the ability of adaptable, low-cost, self-healing and fault-tolerant. It can also be applied to a variety of mission situations. In this manuscript, a robot platform which relied on the module library was designed, based on the screw theory and module theory. Then, the configuration design method of the modular robot was proposed. And the different configurations of modular robot system have been built, including industrial mechanical arms, the mobile platform, six-legged robot and 3D exoskeleton manipulator. Finally, the simulation and verification of one system among them have been made, using the analyses of screw kinematics and polynomial planning. The results of experiments demonstrate the feasibility and superiority of this modular system.

  1. Adaptive Modeling and Real-Time Simulation

    Science.gov (United States)

    1984-01-01

    34 Artificial Inteligence , Vol. 13, pp. 27-39 (1980). Describes circumscription which is just the assumption that everything that is known to have a particular... Artificial Intelligence Truth Maintenance Planning Resolution Modeling Wcrld Models ~ .. ~2.. ASSTR AT (Coninue n evrse sieIf necesaran Identfy by...represents a marriage of (1) the procedural-network st, planning technology developed in artificial intelligence with (2) the PERT/CPM technology developed in

  2. Pre-operative simulation of periacetabular osteotomy via a three-dimensional model constructed from salt

    Directory of Open Access Journals (Sweden)

    Fukushima Kensuke

    2017-01-01

    Full Text Available Introduction: Periacetabular osteotomy (PAO is an effective joint-preserving procedure for young adults with developmental dysplasia of the hip. Although PAO provides excellent radiographic and clinical results, it is a technically demanding procedure with a distinct learning curve that requires careful 3D planning and, above all, has a number of potential complications. We therefore developed a pre-operative simulation method for PAO via creation of a new full-scale model. Methods: The model was prepared from the patient’s Digital Imaging and Communications in Medicine (DICOM formatted data from computed tomography (CT, for construction and assembly using 3D printing technology. A major feature of our model is that it is constructed from salt. In contrast to conventional models, our model provides a more accurate representation, at a lower manufacturing cost, and requires a shorter production time. Furthermore, our model realized simulated operation normally with using a chisel and drill without easy breakage or fissure. We were able to easily simulate the line of osteotomy and confirm acetabular version and coverage after moving to the osteotomized fragment. Additionally, this model allowed a dynamic assessment that avoided anterior impingement following the osteotomy. Results: Our models clearly reflected the anatomical shape of the patient’s hip. Our models allowed for surgical simulation, making realistic use of the chisel and drill. Our method of pre-operative simulation for PAO allowed for the assessment of accurate osteotomy line, determination of the position of the osteotomized fragment, and prevented anterior impingement after the operation. Conclusion: Our method of pre-operative simulation might improve the safety, accuracy, and results of PAO.

  3. Role of subgrid-scale modeling in large eddy simulation of wind turbine wake interactions

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Meneveau, C.; Sørensen, Jens Nørkær

    2015-01-01

    A series of simulations are carried out to evaluate specific features of the Large Eddy Simulation (LES) technique in wind turbine wake interactions. We aim to model wake interactions of two aligned model rotors. The effects of the rotor resolution, actuator line force filter size, and Reynolds...... number are investigated at certain tip speed ratios. The numerical results are validated against wind tunnel measurements in terms of the mean velocity, turbulence intensity and the power and thrust coefficients. Special emphasis is placed on the role played by subgrid scale (SGS) models in affecting...... the flow structures and turbine loading, as this has been studied less in prior investigations. It is found that, compared with the effects of rotor resolution and force kernel size, the SGS models have only a minor impact on the wake and predicted power performance. These observations confirm the usual...

  4. Comparison of Engineering Wake Models with CFD Simulations

    DEFF Research Database (Denmark)

    Andersen, Søren Juhl; Sørensen, Jens Nørkær; Ivanell, S.

    2014-01-01

    The engineering wake models by Jensen [1] and Frandsen et al. [2] are assessed for different scenarios simulated using Large Eddy Simulation and the Actuator Line method implemented in the Navier-Stokes equations. The scenarios include the far wake behind a single wind turbine, a long row...... of turbines in an atmospheric boundary layer, idealised cases of an infinitely long row of wind turbines and infinite wind farms with three different spacings. Both models include a wake expansion factor, which is calibrated to fit the simulated wake velocities. The analysis highlights physical deficiencies...

  5. Modelling, simulation and visualisation for electromagnetic non-destructive testing

    International Nuclear Information System (INIS)

    Ilham Mukriz Zainal Abidin; Abdul Razak Hamzah

    2010-01-01

    This paper reviews the state-of-the art and the recent development of modelling, simulation and visualization for eddy current Non-Destructive Testing (NDT) technique. Simulation and visualization has aid in the design and development of electromagnetic sensors and imaging techniques and systems for Electromagnetic Non-Destructive Testing (ENDT); feature extraction and inverse problems for Quantitative Non-Destructive Testing (QNDT). After reviewing the state-of-the art of electromagnetic modelling and simulation, case studies of Research and Development in eddy current NDT technique via magnetic field mapping and thermography for eddy current distribution are discussed. (author)

  6. Modeling and simulation for micro DC motor based on simulink

    Science.gov (United States)

    Shen, Hanxin; Lei, Qiao; Chen, Wenxiang

    2017-09-01

    The micro DC motor has a large market demand but there is a lack of theoretical research for it. Through detailed analysis of the commutation process of micro DC motor commutator, based on micro DC motor electromagnetic torque equation and mechanical torque equation, with the help of Simulink toolkit, a triangle connection micro DC motor simulation model is established. By using the model, a sample micro DC motor are simulated, and an experimental measurements has been carried on the sample micro DC motor. It is found that the simulation results are consistent with theoretical analysis and experimental results.

  7. PRODUCTION SYSTEM MODELING AND SIMULATION USING DEVS FORMALISM

    Directory of Open Access Journals (Sweden)

    Darío Amaya Hurtado

    Full Text Available This article presents the Discrete Event System Specification (DEVS formalism, in their atomic and coupled configurations; it is used for discrete event systems modeling and simulation. Initially this work describes the analysis of discrete event systems concepts and its applicability. Then a comprehensive description of the DEVS formalism structure is presented, in order to model and simulate an industrial process, taking into account changes in parameters such as process service time, each station storage systems structure and process tasks coupling. For the MatLab® simulation, the Simevents Toolbox was used for theoretical developments validation.

  8. Abdominal surgery process modeling framework for simulation using spreadsheets.

    Science.gov (United States)

    Boshkoska, Biljana Mileva; Damij, Talib; Jelenc, Franc; Damij, Nadja

    2015-08-01

    We provide a continuation of the existing Activity Table Modeling methodology with a modular spreadsheets simulation. The simulation model developed is comprised of 28 modeling elements for the abdominal surgery cycle process. The simulation of a two-week patient flow in an abdominal clinic with 75 beds demonstrates the applicability of the methodology. The simulation does not include macros, thus programming experience is not essential for replication or upgrading the model. Unlike the existing methods, the proposed solution employs a modular approach for modeling the activities that ensures better readability, the possibility of easily upgrading the model with other activities, and its easy extension and connectives with other similar models. We propose a first-in-first-served approach for simulation of servicing multiple patients. The uncertain time duration of the activities is modeled using the function "rand()". The patients movements from one activity to the next one is tracked with nested "if()" functions, thus allowing easy re-creation of the process without the need of complex programming. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. A satellite simulator for TRMM PR applied to climate model simulations

    Science.gov (United States)

    Spangehl, T.; Schroeder, M.; Bodas-Salcedo, A.; Hollmann, R.; Riley Dellaripa, E. M.; Schumacher, C.

    2017-12-01

    Climate model simulations have to be compared against observation based datasets in order to assess their skill in representing precipitation characteristics. Here we use a satellite simulator for TRMM PR in order to evaluate simulations performed with MPI-ESM (Earth system model of the Max Planck Institute for Meteorology in Hamburg, Germany) performed within the MiKlip project (https://www.fona-miklip.de/, funded by Federal Ministry of Education and Research in Germany). While classical evaluation methods focus on geophysical parameters such as precipitation amounts, the application of the satellite simulator enables an evaluation in the instrument's parameter space thereby reducing uncertainties on the reference side. The CFMIP Observation Simulator Package (COSP) provides a framework for the application of satellite simulators to climate model simulations. The approach requires the introduction of sub-grid cloud and precipitation variability. Radar reflectivities are obtained by applying Mie theory, with the microphysical assumptions being chosen to match the atmosphere component of MPI-ESM (ECHAM6). The results are found to be sensitive to the methods used to distribute the convective precipitation over the sub-grid boxes. Simple parameterization methods are used to introduce sub-grid variability of convective clouds and precipitation. In order to constrain uncertainties a comprehensive comparison with sub-grid scale convective precipitation variability which is deduced from TRMM PR observations is carried out.

  10. Managing health care decisions and improvement through simulation modeling.

    Science.gov (United States)

    Forsberg, Helena Hvitfeldt; Aronsson, Håkan; Keller, Christina; Lindblad, Staffan

    2011-01-01

    Simulation modeling is a way to test changes in a computerized environment to give ideas for improvements before implementation. This article reviews research literature on simulation modeling as support for health care decision making. The aim is to investigate the experience and potential value of such decision support and quality of articles retrieved. A literature search was conducted, and the selection criteria yielded 59 articles derived from diverse applications and methods. Most met the stated research-quality criteria. This review identified how simulation can facilitate decision making and that it may induce learning. Furthermore, simulation offers immediate feedback about proposed changes, allows analysis of scenarios, and promotes communication on building a shared system view and understanding of how a complex system works. However, only 14 of the 59 articles reported on implementation experiences, including how decision making was supported. On the basis of these articles, we proposed steps essential for the success of simulation projects, not just in the computer, but also in clinical reality. We also presented a novel concept combining simulation modeling with the established plan-do-study-act cycle for improvement. Future scientific inquiries concerning implementation, impact, and the value for health care management are needed to realize the full potential of simulation modeling.

  11. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...

  12. Responsive supply chain: modeling and simulation

    Directory of Open Access Journals (Sweden)

    Amit Kumar Sinha

    2015-06-01

    Full Text Available Unexpected occurrence like natural calamity, abruptly change in customer demands, upgradation of technologies, necessity of compatible suppliers etc. is the most challenging issues even for efficient global supply chain management. Therefore, modeling of responsive supply chain is an emerging technology for sustaining any firm/industry in future competitive environment. In this paper, an attempt has been made to not only analyze the performance of efficient supply chain management but also how to improve the performance of existing supply chain with the objective of developing a modeling of responsive supply chain management. The complexity of the model is also highlighted with the help of numerical example. This paper also explores the possibility to mathematical modeling of the responsive supply chain which will be an emerging topic for researchers and practitioners. The modeling of responsive supply chain can be employed as a competitive strategy for e-commerce, green supply chain, and compatible supplier selection problem. The another salient feature of this paper is that a distinct comparative literature review of the lean, agile, efficient, and responsive supply chain management has been presented.

  13. Off-gas Adsorption Model and Simulation - OSPREY

    Energy Technology Data Exchange (ETDEWEB)

    Veronica J Rutledge

    2013-10-01

    The absence of industrial scale nuclear fuel reprocessing in the U.S. has precluded the necessary driver for developing the advanced simulation capability now prevalent in so many other countries. Thus, it is essential to model complex series of unit operations to simulate, understand, and predict inherent transient behavior. A capability of accurately simulating the dynamic behavior of advanced fuel cycle separation processes is expected to provide substantial cost savings and many technical benefits. To support this capability, a modeling effort focused on the off-gas treatment system of a used nuclear fuel recycling facility is in progress. The off-gas separation consists of a series of scrubbers and adsorption beds to capture constituents of interest. Dynamic models are being developed to simulate each unit operation involved so each unit operation can be used as a stand-alone model and in series with multiple others. Currently, an adsorption model has been developed within Multi-physics Object Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Off-gas Separation and REcoverY (OSPREY) models the adsorption of offgas constituents for dispersed plug flow in a packed bed under non-isothermal and non-isobaric conditions. Inputs to the model include gas composition, sorbent and column properties, equilibrium and kinetic data, and inlet conditions. The simulation outputs component concentrations along the column length as a function of time from which breakthrough data can be obtained. The breakthrough data can be used to determine bed capacity, which in turn can be used to size columns. In addition to concentration data, the model predicts temperature along the column length as a function of time and pressure drop along the column length. A description of the OSPREY model, results from krypton adsorption modeling and plans for modeling the behavior of iodine, xenon, and tritium will be discussed.

  14. Tutorial: Parallel Computing of Simulation Models for Risk Analysis.

    Science.gov (United States)

    Reilly, Allison C; Staid, Andrea; Gao, Michael; Guikema, Seth D

    2016-10-01

    Simulation models are widely used in risk analysis to study the effects of uncertainties on outcomes of interest in complex problems. Often, these models are computationally complex and time consuming to run. This latter point may be at odds with time-sensitive evaluations or may limit the number of parameters that are considered. In this article, we give an introductory tutorial focused on parallelizing simulation code to better leverage modern computing hardware, enabling risk analysts to better utilize simulation-based methods for quantifying uncertainty in practice. This article is aimed primarily at risk analysts who use simulation methods but do not yet utilize parallelization to decrease the computational burden of these models. The discussion is focused on conceptual aspects of embarrassingly parallel computer code and software considerations. Two complementary examples are shown using the languages MATLAB and R. A brief discussion of hardware considerations is located in the Appendix. © 2016 Society for Risk Analysis.

  15. Statistical 3D damage accumulation model for ion implant simulators

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided

  16. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  17. Distributed collaborative environments for 21st century modeling and simulation

    Science.gov (United States)

    McQuay, William K.

    2001-09-01

    Distributed collaboration is an emerging technology that will significantly change how modeling and simulation is employed in 21st century organizations. Modeling and simulation (M&S) is already an integral part of how many organizations conduct business and, in the future, will continue to spread throughout government and industry enterprises and across many domains from research and development to logistics to training to operations. This paper reviews research that is focusing on the open standards agent-based framework, product and process modeling, structural architecture, and the integration technologies - the glue to integrate the software components. A distributed collaborative environment is the underlying infrastructure that makes communication between diverse simulations and other assets possible and manages the overall flow of a simulation based experiment. The AFRL Collaborative Environment concept will foster a major cultural change in how the acquisition, training, and operational communities employ M&S.

  18. Simulation Model of Bus Rapid Transit

    Directory of Open Access Journals (Sweden)

    Gunawan Fergyanto E.

    2014-03-01

    Full Text Available Bus rapid transit system is modern solution for mass transportation system. The system, in comparison to the rail-based transportation system, is significantly cheaper and requires shorter development time, but lower performance. The BRT system performance strongly depends on variables related to station design and infrastructure. A numerical model offers an effective and efficient means to evaluate the system performance. This article offers a detailed numerical model on the basis of the discrete-event approach and demonstrates its application.

  19. Simulation Modeling of Space Missions Using the High Level Architecture

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2013-01-01

    Full Text Available This paper discusses an environment being developed to model a mission of the Space Launch System (SLS and the Multipurpose Crew Vehicle (MPCV being launched from Kennedy Space Center (KSC to the International Space Station (ISS. Several models representing different phases of the mission such as the ground operations processes, engineered systems, and range components such as failure tree, blast, gas dispersion, and debris modeling are explained. These models are built using different simulation paradigms such as continuous, system dynamics, discrete-event, and agent-based simulation modeling. The High Level Architecture (HLA is the backbone of this distributed simulation. The different design decisions and the information fusion scheme of this unique environment are explained in detail for decision-making. This can also help in the development of exploration missions beyond the International Space Station.

  20. A Network Contention Model for the Extreme-scale Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Engelmann, Christian [ORNL; Naughton III, Thomas J [ORNL

    2015-01-01

    The Extreme-scale Simulator (xSim) is a performance investigation toolkit for high-performance computing (HPC) hardware/software co-design. It permits running a HPC application with millions of concurrent execution threads, while observing its performance in a simulated extreme-scale system. This paper details a newly developed network modeling feature for xSim, eliminating the shortcomings of the existing network modeling capabilities. The approach takes a different path for implementing network contention and bandwidth capacity modeling using a less synchronous and accurate enough model design. With the new network modeling feature, xSim is able to simulate on-chip and on-node networks with reasonable accuracy and overheads.

  1. A Multiagent Modeling Environment for Simulating Work Practice in Organizations

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron

    2004-01-01

    In this paper we position Brahms as a tool for simulating organizational processes. Brahms is a modeling and simulation environment for analyzing human work practice, and for using such models to develop intelligent software agents to support the work practice in organizations. Brahms is the result of more than ten years of research at the Institute for Research on Learning (IRL), NYNEX Science & Technology (the former R&D institute of the Baby Bell telephone company in New York, now Verizon), and for the last six years at NASA Ames Research Center, in the Work Systems Design and Evaluation group, part of the Computational Sciences Division (Code IC). Brahms has been used on more than ten modeling and simulation research projects, and recently has been used as a distributed multiagent development environment for developing work practice support tools for human in-situ science exploration on planetary surfaces, in particular a human mission to Mars. Brahms was originally conceived of as a business process modeling and simulation tool that incorporates the social systems of work, by illuminating how formal process flow descriptions relate to people s actual located activities in the workplace. Our research started in the early nineties as a reaction to experiences with work process modeling and simulation . Although an effective tool for convincing management of the potential cost-savings of the newly designed work processes, the modeling and simulation environment was only able to describe work as a normative workflow. However, the social systems, uncovered in work practices studied by the design team played a significant role in how work actually got done-actual lived work. Multi- tasking, informal assistance and circumstantial work interactions could not easily be represented in a tool with a strict workflow modeling paradigm. In response, we began to develop a tool that would have the benefits of work process modeling and simulation, but be distinctively able to

  2. Fracture network modeling and GoldSim simulation support

    International Nuclear Information System (INIS)

    Sugita, Kenichirou; Dershowitz, W.

    2005-01-01

    During Heisei-16, Golder Associates provided support for JNC Tokai through discrete fracture network data analysis and simulation of the Mizunami Underground Research Laboratory (MIU), participation in Task 6 of the AEspoe Task Force on Modeling of Groundwater Flow and Transport, and development of methodologies for analysis of repository site characterization strategies and safety assessment. MIU support during H-16 involved updating the H-15 FracMan discrete fracture network (DFN) models for the MIU shaft region, and developing improved simulation procedures. Updates to the conceptual model included incorporation of 'Step2' (2004) versions of the deterministic structures, and revision of background fractures to be consistent with conductive structure data from the DH-2 borehole. Golder developed improved simulation procedures for these models through the use of hybrid discrete fracture network (DFN), equivalent porous medium (EPM), and nested DFN/EPM approaches. For each of these models, procedures were documented for the entire modeling process including model implementation, MMP simulation, and shaft grouting simulation. Golder supported JNC participation in Task 6AB, 6D and 6E of the AEspoe Task Force on Modeling of Groundwater Flow and Transport during H-16. For Task 6AB, Golder developed a new technique to evaluate the role of grout in performance assessment time-scale transport. For Task 6D, Golder submitted a report of H-15 simulations to SKB. For Task 6E, Golder carried out safety assessment time-scale simulations at the block scale, using the Laplace Transform Galerkin method. During H-16, Golder supported JNC's Total System Performance Assessment (TSPA) strategy by developing technologies for the analysis of the use site characterization data in safety assessment. This approach will aid in the understanding of the use of site characterization to progressively reduce site characterization uncertainty. (author)

  3. Simulating Climate Change in Ireland using a Regional Climate Model Approach

    Science.gov (United States)

    Nolan, Paul; Lynch, Peter

    2010-05-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at 7km resolution. The RCM models were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven at the lateral boundaries by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCM models exhibit reasonable and realistic features as documented in the historical data record. Validation results will be presented for wind, temperature and precipitation. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 global climate model data using the COSMO-CLM RCM. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B & B1 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in wind speeds for the future winter months and a decrease during the summer months. The projected changes for summer and winter were found to be statistically significant over most of Ireland. Future projections for temperature and precipitation will also be presented.

  4. Simulation model for transcervical laryngeal injection providing real-time feedback.

    Science.gov (United States)

    Ainsworth, Tiffiny A; Kobler, James B; Loan, Gregory J; Burns, James A

    2014-12-01

    This study aimed to develop and evaluate a model for teaching transcervical laryngeal injections. A 3-dimensional printer was used to create a laryngotracheal framework based on de-identified computed tomography images of a human larynx. The arytenoid cartilages and intrinsic laryngeal musculature were created in silicone from clay casts and thermoplastic molds. The thyroarytenoid (TA) muscle was created with electrically conductive silicone using metallic filaments embedded in silicone. Wires connected TA muscles to an electrical circuit incorporating a cell phone and speaker. A needle electrode completed the circuit when inserted in the TA during simulated injection, providing real-time feedback of successful needle placement by producing an audible sound. Face validation by the senior author confirmed appropriate tactile feedback and anatomical realism. Otolaryngologists pilot tested the model and completed presimulation and postsimulation questionnaires. The high-fidelity simulation model provided tactile and audio feedback during needle placement, simulating transcervical vocal fold injections. Otolaryngology residents demonstrated higher comfort levels with transcervical thyroarytenoid injection on postsimulation questionnaires. This is the first study to describe a simulator for developing transcervical vocal fold injection skills. The model provides real-time tactile and auditory feedback that aids in skill acquisition. Otolaryngologists reported increased confidence with transcervical injection after using the simulator. © The Author(s) 2014.

  5. Validation of Simulation Model for Full Scale Wave Simulator and Discrete Fuild Power PTO System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Hansen, Rico Hjerm

    2014-01-01

    In controller development for large scale machinery a good simulation model may serve as a time and money saving factor as well as a safety precaution. Having good models enables the developer to design and test control strategies in a safe and possibly less time consuming environment...

  6. Validation of Simulation Model for Full Scale Wave Simulator and Discrete Fuild Power PTO System

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Hansen, Rico Hjerm

    2014-01-01

    In controller development for large scale machinery a good simulation model may serve as a time and money saving factor as well as a safety precaution. Having good models enables the developer to design and test control strategies in a safe and possibly less time consuming environment. For applic...

  7. Calibration and simulation of Heston model

    Directory of Open Access Journals (Sweden)

    Mrázek Milan

    2017-05-01

    Full Text Available We calibrate Heston stochastic volatility model to real market data using several optimization techniques. We compare both global and local optimizers for different weights showing remarkable differences even for data (DAX options from two consecutive days. We provide a novel calibration procedure that incorporates the usage of approximation formula and outperforms significantly other existing calibration methods.

  8. Modeling and Analytical Simulation of a Smouldering ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: Modeling of pyrolysis and combustion in a smouldering fuel bed requires the solution of flow, heat and mass transfer through porous media. ..... eAt v g. RT. E gp φρ ρ σ. −. = Analytical Solution. We solve equations (10) – (14) using parameter- expanding method (where details can be found in. (He, 2006)) and ...

  9. Unit testing, model validation, and biological simulation.

    Science.gov (United States)

    Sarma, Gopal P; Jacobs, Travis W; Watts, Mark D; Ghayoomie, S Vahid; Larson, Stephen D; Gerkin, Richard C

    2016-01-01

    The growth of the software industry has gone hand in hand with the development of tools and cultural practices for ensuring the reliability of complex pieces of software. These tools and practices are now acknowledged to be essential to the management of modern software. As computational models and methods have become increasingly common in the biological sciences, it is important to examine how these practices can accelerate biological software development and improve research quality. In this article, we give a focused case study of our experience with the practices of unit testing and test-driven development in OpenWorm, an open-science project aimed at modeling Caenorhabditis elegans. We identify and discuss the challenges of incorporating test-driven development into a heterogeneous, data-driven project, as well as the role of model validation tests, a category of tests unique to software which expresses scientific models.

  10. Developing a CAI Graphics Simulation Model: Guidelines.

    Science.gov (United States)

    Strickland, R. Mack; Poe, Stephen E.

    1989-01-01

    Discusses producing effective instructional software using a balance of course content and technological capabilities. Describes six phases of an instructional development model: discovery, design, development, coding, documentation, and delivery. Notes that good instructional design should have learner/computer interaction, sequencing of…

  11. Numerical modeling and simulation in various processes

    Directory of Open Access Journals (Sweden)

    Eliza Consuela ISBĂŞOIU

    2011-12-01

    The economic modeling offers the manager the rigorous side of his actions, multiple chances in order to connect existing resources with the objectives pursued for a certain period of time, offering the possibility of a better and faster thinking and deciding process, without deforming the reality.

  12. Survey of chemically amplified resist models and simulator algorithms

    Science.gov (United States)

    Croffie, Ebo H.; Yuan, Lei; Cheng, Mosong; Neureuther, Andrew R.

    2001-08-01

    Modeling has become indespensable tool for chemically amplified resist (CAR) evaluations. It has been used extensively to study acid diffusion and its effects on resist image formation. Several commercial and academic simulators have been developed for CAR process simulation. For commercial simulators such as PROLITH (Finle Technologies) and Solid-C (Sigma-C), the user is allowed to choose between an empirical model or a concentration dependant diffusion model. The empirical model is faster but not very accurate for 2-dimension resist simulations. In this case there is a trade off between the speed of the simulator and the accuracy of the results. An academic simulator such as STORM (U.C. Berkeley) gives the user a choice of different algorithms including Fast Imaging 2nd order finite difference algorithm and Moving Boundary finite element algorithm. A user interested in simulating the volume shrinkage and polymer stress effects during post exposure bake will need the Moving Boundary algorithm whereas a user interested in the latent image formation without polymer deformations will find the Fast Imaging algorithm more appropriate. The Fast Imaging algorithm is generally faster and requires less computer memory. This choice of algorithm presents a trade off between speed and level of detail in resist profile prediction. This paper surveys the different models and simulator algorithms available in the literature. Contributions in the field of CAR modeling including contributions to characterization of CAR exposure and post exposure bake (PEB) processes for different resist systems. Several numerical algorithms and their performances will also be discussed in this paper.

  13. Simulation and similarity using models to understand the world

    CERN Document Server

    Weisberg, Michael

    2013-01-01

    In the 1950s, John Reber convinced many Californians that the best way to solve the state's water shortage problem was to dam up the San Francisco Bay. Against massive political pressure, Reber's opponents persuaded lawmakers that doing so would lead to disaster. They did this not by empirical measurement alone, but also through the construction of a model. Simulation and Similarity explains why this was a good strategy while simultaneously providing an account of modeling and idealization in modern scientific practice. Michael Weisberg focuses on concrete, mathematical, and computational models in his consideration of the nature of models, the practice of modeling, and nature of the relationship between models and real-world phenomena. In addition to a careful analysis of physical, computational, and mathematical models, Simulation and Similarity offers a novel account of the model/world relationship. Breaking with the dominant tradition, which favors the analysis of this relation through logical notions suc...

  14. Statistical Modeling, Simulation, and Experimental Verification of Wideband Indoor Mobile Radio Channels

    Directory of Open Access Journals (Sweden)

    Yuanyuan Ma

    2018-01-01

    Full Text Available This paper focuses on the modeling, simulation, and experimental verification of wideband single-input single-output (SISO mobile fading channels for indoor propagation environments. The indoor reference channel model is derived from a geometrical rectangle scattering model, which consists of an infinite number of scatterers. It is assumed that the scatterers are exponentially distributed over the two-dimensional (2D horizontal plane of a rectangular room. Analytical expressions are derived for the probability density function (PDF of the angle of arrival (AOA, the PDF of the propagation path length, the power delay profile (PDP, and the frequency correlation function (FCF. An efficient sum-of-cisoids (SOC channel simulator is derived from the nonrealizable reference model by employing the SOC principle. It is shown that the SOC channel simulator approximates closely the reference model with respect to the FCF. The SOC channel simulator enables the performance evaluation of wideband indoor wireless communication systems with reduced realization expenditure. Moreover, the rationality and usefulness of the derived indoor channel model is confirmed by various measurements at 2.4, 5, and 60 GHz.

  15. A Compact Synchronous Cellular Model of Nonlinear Calcium Dynamics: Simulation and FPGA Synthesis Results.

    Science.gov (United States)

    Soleimani, Hamid; Drakakis, Emmanuel M

    2017-06-01

    Recent studies have demonstrated that calcium is a widespread intracellular ion that controls a wide range of temporal dynamics in the mammalian body. The simulation and validation of such studies using experimental data would benefit from a fast large scale simulation and modelling tool. This paper presents a compact and fully reconfigurable cellular calcium model capable of mimicking Hopf bifurcation phenomenon and various nonlinear responses of the biological calcium dynamics. The proposed cellular model is synthesized on a digital platform for a single unit and a network model. Hardware synthesis, physical implementation on FPGA, and theoretical analysis confirm that the proposed cellular model can mimic the biological calcium behaviors with considerably low hardware overhead. The approach has the potential to speed up large-scale simulations of slow intracellular dynamics by sharing more cellular units in real-time. To this end, various networks constructed by pipelining 10 k to 40 k cellular calcium units are compared with an equivalent simulation run on a standard PC workstation. Results show that the cellular hardware model is, on average, 83 times faster than the CPU version.

  16. Potts-model grain growth simulations: Parallel algorithms and applications

    Energy Technology Data Exchange (ETDEWEB)

    Wright, S.A.; Plimpton, S.J.; Swiler, T.P. [and others

    1997-08-01

    Microstructural morphology and grain boundary properties often control the service properties of engineered materials. This report uses the Potts-model to simulate the development of microstructures in realistic materials. Three areas of microstructural morphology simulations were studied. They include the development of massively parallel algorithms for Potts-model grain grow simulations, modeling of mass transport via diffusion in these simulated microstructures, and the development of a gradient-dependent Hamiltonian to simulate columnar grain growth. Potts grain growth models for massively parallel supercomputers were developed for the conventional Potts-model in both two and three dimensions. Simulations using these parallel codes showed self similar grain growth and no finite size effects for previously unapproachable large scale problems. In addition, new enhancements to the conventional Metropolis algorithm used in the Potts-model were developed to accelerate the calculations. These techniques enable both the sequential and parallel algorithms to run faster and use essentially an infinite number of grain orientation values to avoid non-physical grain coalescence events. Mass transport phenomena in polycrystalline materials were studied in two dimensions using numerical diffusion techniques on microstructures generated using the Potts-model. The results of the mass transport modeling showed excellent quantitative agreement with one dimensional diffusion problems, however the results also suggest that transient multi-dimension diffusion effects cannot be parameterized as the product of the grain boundary diffusion coefficient and the grain boundary width. Instead, both properties are required. Gradient-dependent grain growth mechanisms were included in the Potts-model by adding an extra term to the Hamiltonian. Under normal grain growth, the primary driving term is the curvature of the grain boundary, which is included in the standard Potts-model Hamiltonian.

  17. Influence of rainfall spatial variability on rainfall-runoff modelling: Benefit of a simulation approach?

    Science.gov (United States)

    Emmanuel, I.; Andrieu, H.; Leblois, E.; Janey, N.; Payrastre, O.

    2015-12-01

    No consensus has yet been reached regarding the influence of rainfall spatial variability on runoff modelling at catchment outlets. To eliminate modelling and measurement errors, in addition to controlling rainfall variability and both the characteristics and hydrological behaviour of catchments, we propose to proceed by simulation. We have developed a simulation chain that combines a stream network model, a rainfall simulator and a distributed hydrological model (with four production functions and a distributed transfer function). Our objective here is to use this simulation chain as a simplified test bed in order to better understand the impact of the spatial variability of rainfall forcing. We applied the chain to contrasted situations involving catchments ranging from a few tens to several hundreds of square km2, thus corresponding to urban and peri-urban catchments for which surface runoff constitutes the dominant process. The results obtained confirm that the proposed simulation approach is helpful to better understand the influence of rainfall spatial variability on the catchment response. We have shown that significant dispersion exists not only between the various simulation scenarios (defined by a rainfall configuration and a catchment configuration), but also within each simulation scenario. These results show that the organisation of rainfall during the study event over the study catchment plays an important role, leading us to examine rainfall variability indexes capable of summarising the influence of rainfall spatial organisation on the catchment response. Thanks to the simulation chain, we have tested the variability indexes of Zoccatelli et al. (2010) and improved them by proposing two other indexes.

  18. A Simulation and Modeling Framework for Space Situational Awareness

    Science.gov (United States)

    Olivier, S.

    This paper describes the development and initial demonstration of a new, integrated modeling and simulation framework, encompassing the space situational awareness enterprise, for quantitatively assessing the benefit of specific sensor systems, technologies and data analysis techniques. This framework includes detailed models for threat scenarios, signatures, sensors, observables and knowledge extraction algorithms. The framework is based on a flexible, scalable architecture to enable efficient simulation of the current SSA enterprise, and to accommodate future advancements in SSA systems. In particular, the code is designed to take advantage of massively parallel computer systems available, for example, at Lawrence Livermore National Laboratory. We will describe the details of the modeling and simulation framework, including hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, radar cross section calculations, optical and infra-red brightness calculations, generic radar system models, generic optical and infra-red system models, specific Space Surveillance Network models, object detection algorithms, orbit determination algorithms, and visualization tools. The specific modeling of the Space Surveillance Network is performed in collaboration with the Air Force Space Command Space Control Group. We will demonstrate the use of this integrated simulation and modeling framework on specific threat scenarios, including space debris and satellite maneuvers, and we will examine the results of case studies involving the addition of new sensor systems, used in conjunction with the Space Surveillance Network, for improving space situational awareness.

  19. Knowledge-enhanced network simulation modeling of the nuclear power plant operator

    International Nuclear Information System (INIS)

    Schryver, J.C.; Palko, L.E.

    1988-01-01

    Simulation models of the human operator of advanced control systems must provide an adequate account of the cognitive processes required to control these systems. The Integrated Reactor Operator/System (INTEROPS) prototype model was developed at Oak Ridge National Laboratory (ORNL) to demonstrate the feasibility of dynamically integrating a cognitive operator model and a continuous plant process model (ARIES-P) to provide predictions of the total response of a nuclear power plant during upset/emergency conditions. The model consists of a SAINT network of cognitive tasks enhanced with expertise provided by a knowledge-based fault diagnosis model. The INTEROPS prototype has been implemented in both closed and open loop modes. The prototype model is shown to be cognitively relevant by accounting for cognitive tunneling, confirmation bias, evidence chunking, intentional error, and forgetting

  20. Partial Differential Equations Modeling and Numerical Simulation

    CERN Document Server

    Glowinski, Roland

    2008-01-01

    This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...

  1. Developing Soil Models for Dynamic Impact Simulations

    Science.gov (United States)

    Fasanella, Edwin L.; Lyle, Karen H.; Jackson, Karen E.

    2009-01-01

    This paper describes fundamental soils characterization work performed at NASA Langley Research Center in support of the Subsonic Rotary Wing (SRW) Aeronautics Program and the Orion Landing System (LS) Advanced Development Program (ADP). LS-DYNA(Registered TradeMark)1 soil impact model development and test-analysis correlation results are presented for: (1) a 38-ft/s vertical drop test of a composite fuselage section, outfitted with four blocks of deployable energy absorbers (DEA), onto sand, and (2) a series of impact tests of a 1/2-scale geometric boilerplate Orion capsule onto soil. In addition, the paper will discuss LS-DYNA contact analysis at the soil/structure interface, methods used to estimate frictional forces, and the sensitivity of the model to density, moisture, and compaction.

  2. Simulation

    DEFF Research Database (Denmark)

    Gould, Derek A; Chalmers, Nicholas; Johnson, Sheena J

    2012-01-01

    Recognition of the many limitations of traditional apprenticeship training is driving new approaches to learning medical procedural skills. Among simulation technologies and methods available today, computer-based systems are topical and bring the benefits of automated, repeatable, and reliable...... performance assessments. Human factors research is central to simulator model development that is relevant to real-world imaging-guided interventional tasks and to the credentialing programs in which it would be used....

  3. Catalog of Wargaming and Military Simulation Models

    Science.gov (United States)

    1992-02-07

    produces a LOS data file and target summary file. The target summary file rec9rds possible component interferences and errors encountered in procesoing ...links, messages, and monitors. SimMaster simulacion models are constructed from these object-oriented build- blocks. SiiuM(ster’s Radiation Monitor...Required for decisions as plan is built. Time Procesoing : Plan is static. Treatment of Randomness: Plan is deterministic, using expected value

  4. Catalog of Wargaming and Military Simulation Models

    Science.gov (United States)

    1989-09-01

    Department, Naval War College. POINT OF CONTACT: Micromodels Manager, (401) 841-3276, AV 948-3276. PURPOSE: AAR models air combat sustainability and...reactive only via system iterations. LIMITATIONS: Airborne intercepts are not factored into assessment algorithm. No on-beard/standoff jamming (land...vectoring, and recovery ); Airbase (fighter basing, rcfueling, and rearming); and fighter (remote air patrol, target detection, flyout, arrival, and engagement

  5. Computational Modeling and Simulation of Developmental ...

    Science.gov (United States)

    Developmental and Reproductive Toxicity (DART) testing is important for assessing the potential consequences of drug and chemical exposure on human health and well-being. Complexity of pregnancy and the reproductive cycle makes DART testing challenging and costly for traditional (animal-based) methods. A compendium of in vitro data from ToxCast/Tox21 high-throughput screening (HTS) programs is available for predictive toxicology. ‘Predictive DART’ will require an integrative strategy that mobilizes HTS data into in silico models that capture the relevant embryology. This lecture addresses progress on EPA's 'virtual embryo'. The question of how tissues and organs are shaped during development is crucial for understanding (and predicting) human birth defects. While ToxCast HTS data may predict developmental toxicity with reasonable accuracy, mechanistic models are still necessary to capture the relevant biology. Subtle microscopic changes induced chemically may amplify to an adverse outcome but coarse changes may override lesion propagation in any complex adaptive system. Modeling system dynamics in a developing tissue is a multiscale problem that challenges our ability to predict toxicity from in vitro profiling data (ToxCast/Tox21). (DISCLAIMER: The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the US EPA). This was an invited seminar presentation to the National Institute for Public H

  6. Simulation of large-scale rule-based models

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek, William S [Los Alamos National Laboratory; Monnie, Michael I [Los Alamos National Laboratory; Colvin, Joshua [NON LANL; Faseder, James [NON LANL

    2008-01-01

    Interactions of molecules, such as signaling proteins, with multiple binding sites and/or multiple sites of post-translational covalent modification can be modeled using reaction rules. Rules comprehensively, but implicitly, define the individual chemical species and reactions that molecular interactions can potentially generate. Although rules can be automatically processed to define a biochemical reaction network, the network implied by a set of rules is often too large to generate completely or to simulate using conventional procedures. To address this problem, we present DYNSTOC, a general-purpose tool for simulating rule-based models. DYNSTOC implements a null-event algorithm for simulating chemical reactions in a homogenous reaction compartment. The simulation method does not require that a reaction network be specified explicitly in advance, but rather takes advantage of the availability of the reaction rules in a rule-based specification of a network to determine if a randomly selected set of molecular components participates in a reaction during a time step. DYNSTOC reads reaction rules written in the BioNetGen language which is useful for modeling protein-protein interactions involved in signal transduction. The method of DYNSTOC is closely related to that of STOCHSIM. DYNSTOC differs from STOCHSIM by allowing for model specification in terms of BNGL, which extends the range of protein complexes that can be considered in a model. DYNSTOC enables the simulation of rule-based models that cannot be simulated by conventional methods. We demonstrate the ability of DYNSTOC to simulate models accounting for multisite phosphorylation and multivalent binding processes that are characterized by large numbers of reactions. DYNSTOC is free for non-commercial use. The C source code, supporting documentation and example input files are available at .

  7. SIMULATION MODEL BASED ON REGIONAL DEVELOPMENT AND VIRTUAL CHANGES

    Directory of Open Access Journals (Sweden)

    Petr Dlask

    2015-10-01

    Full Text Available This paper reports on change as an indicator that can be provide more focused goals in studies of development. The paper offers an answer to the question: How might management gain information from a simulation model and thus influence reality through pragmatic changes. We focus on where and when to influence, manage, and control basic technical-economic proposals. These proposals are mostly formed as simulation models. Unfortunately, however, they do not always provide an explanation of formation changes. A wide variety of simulation tools have become available, e.g. Simulink, Wolfram SystemModeler, VisSim, SystemBuild, STELLA, Adams, SIMSCRIPT, COMSOL Multiphysics, etc. However, there is only limited support for the construction of simulation models of a technical-economic nature. Mathematics has developed the concept of differentiation. Economics has developed the concept of marginality. Technical-economic design has yet to develop an equivalent methodology. This paper discusses an,alternative approach that uses the phenomenon of change, and provides a way from professional knowledge, which can be seen as a purer kind of information, to a more dynamic computing model (a simulation model that interprets changes as method. The validation of changes, as a result for use in managerial decision making, and condition for managerial decision making, can thus be improved.

  8. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures.

    Science.gov (United States)

    Kerrien, E; Yureidini, A; Dequidt, J; Duriez, C; Anxionnat, R; Cotin, S

    2017-01-01

    Endovascular interventions can benefit from interactive simulation in their training phase but also during pre-operative and intra-operative phases if simulation scenarios are based on patient data. A key feature in this context is the ability to extract, from patient images, models of blood vessels that impede neither the realism nor the performance of simulation. This paper addresses both the segmentation and reconstruction of the vasculature from 3D Rotational Angiography data, and adapted to simulation: An original tracking algorithm is proposed to segment the vessel tree while filtering points extracted at the vessel surface in the vicinity of each point on the centerline; then an automatic procedure is described to reconstruct each local unstructured point set as a skeleton-based implicit surface (blobby model). The output of successively applying both algorithms is a new model of vasculature as a tree of local implicit models. The segmentation algorithm is compared with Multiple Hypothesis Testing (MHT) algorithm (Friman et al., 2010) on patient data, showing its greater ability to track blood vessels. The reconstruction algorithm is evaluated on both synthetic and patient data and demonstrate its ability to fit points with a subvoxel precision. Various tests are also reported where our model is used to simulate catheter navigation in interventional neuroradiology. An excellent realism, and much lower computational costs are reported when compared to triangular mesh surface models. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Simulation model of a twin-tail, high performance airplane

    Science.gov (United States)

    Buttrill, Carey S.; Arbuckle, P. Douglas; Hoffler, Keith D.

    1992-01-01

    The mathematical model and associated computer program to simulate a twin-tailed high performance fighter airplane (McDonnell Douglas F/A-18) are described. The simulation program is written in the Advanced Continuous Simulation Language. The simulation math model includes the nonlinear six degree-of-freedom rigid-body equations, an engine model, sensors, and first order actuators with rate and position limiting. A simplified form of the F/A-18 digital control laws (version 8.3.3) are implemented. The simulated control law includes only inner loop augmentation in the up and away flight mode. The aerodynamic forces and moments are calculated from a wind-tunnel-derived database using table look-ups with linear interpolation. The aerodynamic database has an angle-of-attack range of -10 to +90 and a sideslip range of -20 to +20 degrees. The effects of elastic deformation are incorporated in a quasi-static-elastic manner. Elastic degrees of freedom are not actively simulated. In the engine model, the throttle-commanded steady-state thrust level and the dynamic response characteristics of the engine are based on airflow rate as determined from a table look-up. Afterburner dynamics are switched in at a threshold based on the engine airflow and commanded thrust.

  10. Advanced Chemical Modeling for Turbulent Combustion Simulations

    Science.gov (United States)

    2012-05-03

    Bunsen flame. Proc. Comb. Inst., 31:1291–1298, 2007. [48] J.-H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao...turbulent combustion. Combust. Flame, 143:587–598, 2005. [50] J. A. van Oijen, F. A. Lammers, and L. P. H. de Goey. Modeling of complex premixed burner ... bunsen flames using flamelet-generated manifold reduction. Int. J. of Hydrogen Energy, 34:2778–2788, 2009. [53] K.-J. Nogenmyr, P. Petersson, X. S. Bai

  11. Dynamic modeling, simulation and control of energy generation

    CERN Document Server

    Vepa, Ranjan

    2013-01-01

    This book addresses the core issues involved in the dynamic modeling, simulation and control of a selection of energy systems such as gas turbines, wind turbines, fuel cells and batteries. The principles of modeling and control could be applied to other non-convention methods of energy generation such as solar energy and wave energy.A central feature of Dynamic Modeling, Simulation and Control of Energy Generation is that it brings together diverse topics in thermodynamics, fluid mechanics, heat transfer, electro-chemistry, electrical networks and electrical machines and focuses on their appli

  12. MUDMAP: Simulation model for releases from offshore platforms

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The present article deals with a Norwegian developed simulation model dubbed MUDMAP. MUDMAP is a numerical model that simulates releases of drill muds and cuttings, produced water and other substances from offshore platforms. The model is envisioned as an advanced tool to assist in the rapid design and placement of intakes and release pipes on platforms, as well as in evaluating potential long-term impacts in the water and on the sea floor. MUDMAP allows rapid visual/graphical analysis of potential alternative solutions under various realistic environmental conditions, and for planning and executing platform monitoring projects. 4 figs

  13. Modeling and simulation the computer science of illusion

    CERN Document Server

    Raczynski, Stanislaw

    2006-01-01

    Simulation is the art of using tools - physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion of uncertainty, such as social, economic or commercial systems. These new applications make the discipline of modelling and simulation a field of dynamic growth and new research. Stanislaw Raczynski outlines the considerable and promising research that is being conducted to counter the problems of

  14. Suppressing correlations in massively parallel simulations of lattice models

    Science.gov (United States)

    Kelling, Jeffrey; Ódor, Géza; Gemming, Sibylle

    2017-11-01

    For lattice Monte Carlo simulations parallelization is crucial to make studies of large systems and long simulation time feasible, while sequential simulations remain the gold-standard for correlation-free dynamics. Here, various domain decomposition schemes are compared, concluding with one which delivers virtually correlation-free simulations on GPUs. Extensive simulations of the octahedron model for 2 + 1 dimensional Kardar-Parisi-Zhang surface growth, which is very sensitive to correlation in the site-selection dynamics, were performed to show self-consistency of the parallel runs and agreement with the sequential algorithm. We present a GPU implementation providing a speedup of about 30 × over a parallel CPU implementation on a single socket and at least 180 × with respect to the sequential reference.

  15. Modelling and use of the STUDS nuclear power plant simulator

    International Nuclear Information System (INIS)

    Blomberg, P.E.; Espefaelt, R.; Josefsson, R.; Schuch, N.

    1979-02-01

    The simulator models, belonging to the STUDS-family, which have been developed at Studsvik in cooperation with the Swedish utilities, are briefly described. The scope of the simulation is presented and the fundamental equations used are indicated. Different needs have led to a number of STUDS-versions for BWR and PWR type plants, primarily intended for application in the following fields: 1) transient analysis, 2) system design verification, 3) control system development, 4) testing of new on-line techniques for disturbance analysis, noise analysis, man-machine communication, etc, 5) training of power plant operators, 6) operational planning. The simulator was initially implemented on a hybrid computer system but more recent work has led to pure digital simulations maintaining the real time feature and adding features like snapshot and backtrack. The latest version for PWR is used at the Halden Project and in the general purpose COMPACT SIMULATOR: developed at Studsvik and made commercially available. (author)

  16. Mixing characteristics of sludge simulant in a model anaerobic digester.

    Science.gov (United States)

    Low, Siew Cheng; Eshtiaghi, Nicky; Slatter, Paul; Baudez, Jean-Christophe; Parthasarathy, Rajarathinam

    2016-03-01

    This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid-base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The 'cavern' shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number.

  17. A naturalistic decision making model for simulated human combatants

    International Nuclear Information System (INIS)

    HUNTER, KEITH O.; HART, WILLIAM E.; FORSYTHE, JAMES C.

    2000-01-01

    The authors describe a naturalistic behavioral model for the simulation of small unit combat. This model, Klein's recognition-primed decision making (RPD) model, is driven by situational awareness rather than a rational process of selecting from a set of action options. They argue that simulated combatants modeled with RPD will have more flexible and realistic responses to a broad range of small-scale combat scenarios. Furthermore, they note that the predictability of a simulation using an RPD framework can be easily controlled to provide multiple evaluations of a given combat scenario. Finally, they discuss computational issues for building an RPD-based behavior engine for fully automated combatants in small conflict scenarios, which are being investigated within Sandia's Next Generation Site Security project

  18. Modelling, simulation and validation of the industrial robot

    Directory of Open Access Journals (Sweden)

    Aleksandrov Slobodan Č.

    2014-01-01

    Full Text Available In this paper, a DH model of industrial robot, with anthropomorphic configuration and five degrees of freedom - Mitsubishi RV2AJ, is developed. The model is verified on the example robot Mitsubishi RV2AJ. In paper detailed represented the complete mathematical model of the robot and the parameters of the programming. On the basis of this model, simulation of robot motion from point to point is performed, as well as the continuous movement of the pre-defined path. Also, programming of industrial robots identical to simulation programs is made, and comparative analysis of real and simulated experiment is shown. In the final section, a detailed analysis of robot motion is described.

  19. Smart modeling and simulation for complex systems practice and theory

    CERN Document Server

    Ren, Fenghui; Zhang, Minjie; Ito, Takayuki; Tang, Xijin

    2015-01-01

    This book aims to provide a description of these new Artificial Intelligence technologies and approaches to the modeling and simulation of complex systems, as well as an overview of the latest scientific efforts in this field such as the platforms and/or the software tools for smart modeling and simulating complex systems. These tasks are difficult to accomplish using traditional computational approaches due to the complex relationships of components and distributed features of resources, as well as the dynamic work environments. In order to effectively model the complex systems, intelligent technologies such as multi-agent systems and smart grids are employed to model and simulate the complex systems in the areas of ecosystem, social and economic organization, web-based grid service, transportation systems, power systems and evacuation systems.

  20. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    International Nuclear Information System (INIS)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-01-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a ''living document'' that will be modified over the course of the execution of this work

  1. Prediction of ultrasonic probe characteristics through modeling and simulation

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohamad Pauzi Ismail; Suhairy Sani

    2004-01-01

    One of the main component in an ultrasonic probe is piezoelectric material. It converts electrical energy supplied to it into mechanical energy (i.e. sound waves) and vice versa. In industrial application, the characteristic of ultrasonic probes is important as it will affect the results obtained. The probes fabricated must possess the characteristics suitable to the intended application. Through modeling and simulation, we can predict the characteristics of the probes. Mason equivalent circuit is used to make a model and simulation of the probes. In this model, the probes will be treated and simplified as a one dimensional electrical line. From simulation, the electrical properties such as impedance, operating frequency bandwidth and others can be predicted. From this model, the correct material to be used for actual probe construction can be obtained. The limitation of this method is details such as bond line between layers is not taken into consideration. (Author)

  2. Evaluation of a simulation model for predicting soil-water ...

    African Journals Online (AJOL)

    The soils particle size distribution (specifically, percent clay and sand) and organic matter contents were inputted into the model to simulate soil moisture status at ... with observed parameters from laboratory tests using root mean square error (RMSE), coefficient of variation (CV), modeling efficiency (BF) and coefficient of ...

  3. A fire management simulation model using stochastic arrival times

    Science.gov (United States)

    Eric L. Smith

    1987-01-01

    Fire management simulation models are used to predict the impact of changes in the fire management program on fire outcomes. As with all models, the goal is to abstract reality without seriously distorting relationships between variables of interest. One important variable of fire organization performance is the length of time it takes to get suppression units to the...

  4. Thermodynamic Models from Fluctuation Solution Theory Analysis of Molecular Simulations

    DEFF Research Database (Denmark)

    Christensen, Steen; Peters, Günther H.j.; Hansen, Flemming Yssing

    2007-01-01

    Fluctuation solution theory (FST) is employed to analyze results of molecular dynamics (MD) simulations of liquid mixtures. The objective is to generate parameters for macroscopic GE-models, here the modified Margules model. We present a strategy for choosing the number of parameters included...

  5. Modelling and Simulating multi-echelon food systems

    NARCIS (Netherlands)

    Vorst, van der J.G.A.J.; Beulens, A.J.M.; Beek, van P.

    2000-01-01

    This paper presents a method for modelling the dynamic behaviour of food supply chains and evaluating alternative designs of the supply chain by applying discrete-event simulation. The modelling method is based on the concepts of business processes, design variables at strategic and operational

  6. Simulating an elastic bipedal robot based on musculoskeletal modeling

    NARCIS (Netherlands)

    Bortoletto, Roberto; Sartori, Massimo; He, Fuben; Pagello, Enrico

    2012-01-01

    Many of the processes involved into the synthesis of human motion have much in common with problems found in robotics research. This paper describes the modeling and the simulation of a novel bipedal robot based on series elastic actuators [1]. The robot model takes in- spiration from the human

  7. Event-based Simulation Model for Quantum Optics Experiments

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jaeger, G; Khrennikov, A; Schlosshauer, M; Weihs, G

    2011-01-01

    We present a corpuscular simulation model of optical phenomena that does not require the knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one-by-one. The event-based corpuscular model gives a unified

  8. Identifying the important factors in simulation models with many factors

    NARCIS (Netherlands)

    Bettonvil, B.; Kleijnen, J.P.C.

    1994-01-01

    Simulation models may have many parameters and input variables (together called factors), while only a few factors are really important (parsimony principle). For such models this paper presents an effective and efficient screening technique to identify and estimate those important factors. The

  9. Modelling and Simulation of the Batch Hydrolysis of Acetic ...

    African Journals Online (AJOL)

    The kinetic modelling of the batch synthesis of acetic acid from acetic anhydride was investigated. The kinetic data of the reaction was obtained by conducting the hydrolysis reaction in a batch reactor. A dynamic model was formulated for this process and simulation was carried out using gPROMS® an advanced process ...

  10. Modeling and analytical simulation of a smouldering carbonaceous ...

    African Journals Online (AJOL)

    Modeling and analytical simulation of a smouldering carbonaceous rod. A.A. Mohammed, R.O. Olayiwola, M Eseyin, A.A. Wachin. Abstract. Modeling of pyrolysis and combustion in a smouldering fuel bed requires the solution of flow, heat and mass transfer through porous media. This paper presents an analytical method ...

  11. An Individual-based Probabilistic Model for Fish Stock Simulation

    Directory of Open Access Journals (Sweden)

    Federico Buti

    2010-08-01

    Full Text Available We define an individual-based probabilistic model of a sole (Solea solea behaviour. The individual model is given in terms of an Extended Probabilistic Discrete Timed Automaton (EPDTA, a new formalism that is introduced in the paper and that is shown to be interpretable as a Markov decision process. A given EPDTA model can be probabilistically model-checked by giving a suitable translation into syntax accepted by existing model-checkers. In order to simulate the dynamics of a given population of soles in different environmental scenarios, an agent-based simulation environment is defined in which each agent implements the behaviour of the given EPDTA model. By varying the probabilities and the characteristic functions embedded in the EPDTA model it is possible to represent different scenarios and to tune the model itself by comparing the results of the simulations with real data about the sole stock in the North Adriatic sea, available from the recent project SoleMon. The simulator is presented and made available for its adaptation to other species.

  12. The behavior of adaptive bone-remodeling simulation models

    NARCIS (Netherlands)

    H.H. Weinans (Harrie); R. Huiskes (Rik); H.J. Grootenboer

    1992-01-01

    textabstractThe process of adaptive bone remodeling can be described mathematically and simulated in a computer model, integrated with the finite element method. In the model discussed here, cortical and trabecular bone are described as continuous materials with variable density. The remodeling rule

  13. Monte Carlo simulation models of breeding-population advancement.

    Science.gov (United States)

    J.N. King; G.R. Johnson

    1993-01-01

    Five generations of population improvement were modeled using Monte Carlo simulations. The model was designed to address questions that are important to the development of an advanced generation breeding population. Specifically we addressed the effects on both gain and effective population size of different mating schemes when creating a recombinant population for...

  14. Simulation Tools for Electrical Machines Modelling: Teaching and ...

    African Journals Online (AJOL)

    Simulation tools are used both for research and teaching to allow a good comprehension of the systems under study before practical implementations. This paper illustrates the way MATLAB is used to model non-linearites in synchronous machine. The machine is modeled in rotor reference frame with currents as state ...

  15. Simulation cobweb model of price formation with delayed supply

    Directory of Open Access Journals (Sweden)

    Yatsenko Roman Nikolaevich

    2013-03-01

    Full Text Available The article presents a simulation cobweb model of price formation with delayed supply. It considers cases with absence and availability of random factors. Randomness is presented in the model as a concept of games with nature with the use of Markov chains. The article studies activity of the retail link in the described environment.

  16. Arctic Ocean freshwater: How robust are model simulations?

    NARCIS (Netherlands)

    Jahn, A.; Aksenov, Y.; de Cuevas, B.A.; de Steur, L.; Häkkinen, S.; Hansen, E.; Herbaut, C.; Houssais, M.N.; Karcher, M.; Kauker, F.; Lique, C.; Nguyen, A.; Pemberton, P.; Worthen, D.; Zhang, J.

    2012-01-01

    The Arctic freshwater (FW) has been the focus of many modeling studies, due to the potential impact of Arctic FW on the deep water formation in the North Atlantic. A comparison of the hindcasts from ten ocean-sea ice models shows that the simulation of the Arctic FW budget is quite different in the

  17. Powering stochastic reliability models by discrete event simulation

    DEFF Research Database (Denmark)

    Kozine, Igor; Wang, Xiaoyun

    2012-01-01

    it difficult to find a solution to the problem. The power of modern computers and recent developments in discrete-event simulation (DES) software enable to diminish some of the drawbacks of stochastic models. In this paper we describe the insights we have gained based on using both Markov and DES models...

  18. Computer simulation study of water using a fluctuating charge model

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Hydrogen bonding in small water clusters is studied through computer simulation methods using a sophisticated, empirical model of interaction developed by Rick et al (S W Rick, S J Stuart and B J Berne 1994 J. Chem. Phys. 101 6141) and others. The model allows for the charges on the interacting sites to ...

  19. Models Robustness for Simulating Drainage and NO3-N Fluxes

    Science.gov (United States)

    Jabro, Jay; Jabro, Ann

    2013-04-01

    Computer models simulate and forecast appropriate agricultural practices to reduce environmental impact. The objectives of this study were to assess and compare robustness and performance of three models -- LEACHM, NCSWAP, and SOIL-SOILN--for simulating drainage and NO3-N leaching fluxes in an intense pasture system without recalibration. A 3-yr study was conducted on a Hagerstown silt loam to measure drainage and NO3-N fluxes below 1 m depth from N-fertilized orchardgrass using intact core lysimeters. Five N-fertilizer treatments were replicated five times in a randomized complete block experimental design. The models were validated under orchardgrass using soil, water and N transformation rate parameters and C pools fractionation derived from a previous study conducted on similar soils under corn. The model efficiency (MEF) of drainage and NO3-N fluxes were 0.53, 0.69 for LEACHM; 0.75, 0.39 for NCSWAP; and 0.94, 0.91for SOIL-SOILN. The models failed to produce reasonable simulations of drainage and NO3-N fluxes in January, February and March due to limited water movement associated with frozen soil and snow accumulation and melt. The differences between simulated and measured NO3-N leaching and among models' performances may also be related to soil N and C transformation processes embedded in the models These results are a monumental progression in the validation of computer models which will lead to continued diffusion across diverse stakeholders.

  20. Models for simulation of transient events in a wind farm

    DEFF Research Database (Denmark)

    Sørensen, P.; Hansen, A. D.; Bindner, H.

    2002-01-01

    with different tools with each other and with measurements. This present paper limits to describe the models including our reflections on which effects we expect to be essential for obtaining useful simulation results. The models comprise the substation, where the wind farm is connected, the power collection...

  1. WDM Systems and Networks Modeling, Simulation, Design and Engineering

    CERN Document Server

    Ellinas, Georgios; Roudas, Ioannis

    2012-01-01

    WDM Systems and Networks: Modeling, Simulation, Design and Engineering provides readers with the basic skills, concepts, and design techniques used to begin design and engineering of optical communication systems and networks at various layers. The latest semi-analytical system simulation techniques are applied to optical WDM systems and networks, and a review of the various current areas of optical communications is presented. Simulation is mixed with experimental verification and engineering to present the industry as well as state-of-the-art research. This contributed volume is divided into three parts, accommodating different readers interested in various types of networks and applications. The first part of the book presents modeling approaches and simulation tools mainly for the physical layer including transmission effects, devices, subsystems, and systems), whereas the second part features more engineering/design issues for various types of optical systems including ULH, access, and in-building system...

  2. Calibration of microscopic traffic simulation models using metaheuristic algorithms

    Directory of Open Access Journals (Sweden)

    Miao Yu

    2017-06-01

    Full Text Available This paper presents several metaheuristic algorithms to calibrate a microscopic traffic simulation model. The genetic algorithm (GA, Tabu Search (TS, and a combination of the GA and TS (i.e., warmed GA and warmed TS are implemented and compared. A set of traffic data collected from the I-5 Freeway, Los Angles, California, is used. Objective functions are defined to minimize the difference between simulated and field traffic data which are built based on the flow and speed. Several car-following parameters in VISSIM, which can significantly affect the simulation outputs, are selected to calibrate. A better match to the field measurements is reached with the GA, TS, and warmed GA and TS when comparing with that only using the default parameters in VISSIM. Overall, TS performs very well and can be used to calibrate parameters. Combining metaheuristic algorithms clearly performs better and therefore is highly recommended for calibrating microscopic traffic simulation models.

  3. A practical guide for operational validation of discrete simulation models

    Directory of Open Access Journals (Sweden)

    Fabiano Leal

    2011-04-01

    Full Text Available As the number of simulation experiments increases, the necessity for validation and verification of these models demands special attention on the part of the simulation practitioners. By analyzing the current scientific literature, it is observed that the operational validation description presented in many papers does not agree on the importance designated to this process and about its applied techniques, subjective or objective. With the expectation of orienting professionals, researchers and students in simulation, this article aims to elaborate a practical guide through the compilation of statistical techniques in the operational validation of discrete simulation models. Finally, the guide's applicability was evaluated by using two study objects, which represent two manufacturing cells, one from the automobile industry and the other from a Brazilian tech company. For each application, the guide identified distinct steps, due to the different aspects that characterize the analyzed distributions

  4. Rejection-free stochastic simulation of BNGL-encoded models

    Energy Technology Data Exchange (ETDEWEB)

    Hlavacek, William S [Los Alamos National Laboratory; Monine, Michael I [Los Alamos National Laboratory; Colvin, Joshua [TRANSLATIONAL GENOM; Posner, Richard G [NORTHERN ARIZONA UNIV.; Von Hoff, Daniel D [TRANSLATIONAL GENOMICS RESEARCH INSTIT.

    2009-01-01

    Formal rules encoded using the BioNetGen language (BNGL) can be used to represent the system-level dynamics of molecular interactions. Rules allow one to compactly and implicitly specify the reaction network implied by a set of molecules and their interactions. Typically, the reaction network implied by a set of rules is large, which makes generation of the underlying rule-defined network expensive. Moreover, the cost of conventional simulation methods typically depends on network size. Together these factors have limited application of the rule-based modeling approach. To overcome this limitation, several methods have recently been developed for determining the reaction dynamics implied by rules while avoiding the expensive step of network generation. The cost of these 'network-free' simulation methods is independent of the number of reactions implied by rules. Software implementing such methods is needed for the analysis of rule-based models of biochemical systems. Here, we present a software tool called RuleMonkey that implements a network-free stochastic simulation method for rule-based models. The method is rejection free, unlike other network-free methods that introduce null events (i.e., steps in the simulation procedure that do not change the state of the reaction system being simulated), and the software is capable of simulating models encoded in BNGL, a general-purpose model-specification language. We verify that RuleMonkey produces correct simulation results, and we compare its performance against DYNSTOC, another BNGL-compliant general-purpose simulator for rule-based models, as well as various problem-specific codes that implement network-free simulation methods. RuleMonkey enables the simulation of models defined by rule sets that imply large-scale reaction networks. It is faster than DYNSTOC for stiff problems, although it requires the use of more computer memory. RuleMonkey is freely available for non-commercial use as a stand

  5. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    Science.gov (United States)

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  6. Characterisation and modelling of brain tissue for surgical simulation.

    Science.gov (United States)

    Mendizabal, A; Aguinaga, I; Sánchez, E

    2015-05-01

    Interactive surgical simulators capable of providing a realistic visual and haptic feedback to users are a promising technology for medical training and surgery planification. However, modelling the physical behaviour of human organs and tissues for surgery simulation remains a challenge. On the one hand, this is due to the difficulty to characterise the physical properties of biological soft tissues. On the other hand, the challenge still remains in the computation time requirements of real-time simulation required in interactive systems. Real-time surgical simulation and medical training must employ a sufficiently accurate and simple model of soft tissues in order to provide a realistic haptic and visual response. This study attempts to characterise the brain tissue at similar conditions to those that take place on surgical procedures. With this aim, porcine brain tissue is characterised, as a surrogate of human brain, on a rotational rheometer at low strain rates and large strains. In order to model the brain tissue with an adequate level of accuracy and simplicity, linear elastic, hyperelastic and quasi-linear viscoelastic models are defined. These models are simulated using the ABAQUS finite element platform and compared with the obtained experimental data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. MODELING THE Ly α FOREST IN COLLISIONLESS SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Sorini, Daniele; Oñorbe, José; Hennawi, Joseph F. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Lukić, Zarija, E-mail: sorini@mpia-hd.mpg.de [Lawrence Berkeley National Laboratory, CA 94720-8139 (United States)

    2016-08-20

    Cosmological hydrodynamic simulations can accurately predict the properties of the intergalactic medium (IGM), but only under the condition of retaining the high spatial resolution necessary to resolve density fluctuations in the IGM. This resolution constraint prohibits simulating large volumes, such as those probed by BOSS and future surveys, like DESI and 4MOST. To overcome this limitation, we present “Iteratively Matched Statistics” (IMS), a novel method to accurately model the Ly α forest with collisionless N -body simulations, where the relevant density fluctuations are unresolved. We use a small-box, high-resolution hydrodynamic simulation to obtain the probability distribution function (PDF) and the power spectrum of the real-space Ly α forest flux. These two statistics are iteratively mapped onto a pseudo-flux field of an N -body simulation, which we construct from the matter density. We demonstrate that our method can reproduce the PDF, line of sight and 3D power spectra of the Ly α forest with good accuracy (7%, 4%, and 7% respectively). We quantify the performance of the commonly used Gaussian smoothing technique and show that it has significantly lower accuracy (20%–80%), especially for N -body simulations with achievable mean inter-particle separations in large-volume simulations. In addition, we show that IMS produces reasonable and smooth spectra, making it a powerful tool for modeling the IGM in large cosmological volumes and for producing realistic “mock” skies for Ly α forest surveys.

  8. Blast Load Simulator Experiments for Computational Model Validation Report 3

    Science.gov (United States)

    2017-07-01

    establish confidence in the simulation results specific to their intended use. One method for providing experimental data for computational model...walls, to higher blast pressures required to evaluate the performance of protective construction methods . Figure 1. ERDC Blast Load Simulator (BLS... Instrumentation included 3 pressure gauges mounted on the steel calibration plate, 2 pressure gauges mounted in the wall of the BLS, and 25 pressure gauges

  9. Mathematical and Simulation Model Development of Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    S. V. Aleksandrovsky

    2011-01-01

    Full Text Available The switched reluctance motor (SRM represents a great interest while being applied in various fields as an alternative to asynchronous motors with a short-circuit rotor. A SRM disadvantage is a nonlinearity of its characteristics. Due to this reason it is desirable to execute investigations using a developed simulation model. The simulation results (electromagnetic torque and current are in good agreement with those values studied in the literature.

  10. Simulation model of an active stall wind turbine controller

    Energy Technology Data Exchange (ETDEWEB)

    Jauch, C.; Hansen, A.D.; Soerensen, P. [Risoe National Lab., Wind Energy Dept., Rosilde (Denmark); Blaabjerg, F. [Aalborg Univ., Inst. of Energy Technology (Denmark)

    2004-07-01

    This paper describes an active stall wind turbine controller. The objective is to develop a general model of an active stall controller in order to simulate the operation of grid connected active stall wind turbines. The active stall turbine concept and its control strategies are presented and evaluated on the basis of simulations. The presented controller is described for continuous operation under all wind speeds from start-up wind speed to shut doven wind speed. Due to its parametric implementation it is general i.e. it can represent different active stall wind turbine controllers and can be implemented in different simulation tools. (au)

  11. Global Solar Dynamo Models: Simulations and Predictions Mausumi ...

    Indian Academy of Sciences (India)

    predict mean solar cycle features by assimilating magnetic field data from previous cycles. Key words. Sun—magnetic fields: .... recently published the steps for building such a model (see Fig. 2) and re-confirmed the results of the calibrated .... with different or time-varying meridional circulation, but that remains for the future.

  12. Modeling and Simulation Tools for Heavy Lift Airships

    Science.gov (United States)

    Hochstetler, Ron; Chachad, Girish; Hardy, Gordon; Blanken, Matthew; Melton, John

    2016-01-01

    For conventional fixed wing and rotary wing aircraft a variety of modeling and simulation tools have been developed to provide designers the means to thoroughly investigate proposed designs and operational concepts. However, lighter-than-air (LTA) airships, hybrid air vehicles, and aerostats have some important aspects that are different from heavier-than-air (HTA) vehicles. In order to account for these differences, modifications are required to the standard design tools to fully characterize the LTA vehicle design and performance parameters.. To address these LTA design and operational factors, LTA development organizations have created unique proprietary modeling tools, often at their own expense. An expansion of this limited LTA tool set could be accomplished by leveraging existing modeling and simulation capabilities available in the National laboratories and public research centers. Development of an expanded set of publicly available LTA modeling and simulation tools for LTA developers would mitigate the reliance on proprietary LTA design tools in use today. A set of well researched, open source, high fidelity LTA design modeling and simulation tools would advance LTA vehicle development and also provide the analytical basis for accurate LTA operational cost assessments. This paper will present the modeling and analysis tool capabilities required for LTA vehicle design, analysis of operations, and full life-cycle support. A survey of the tools currently available will be assessed to identify the gaps between their capabilities and the LTA industry's needs. Options for development of new modeling and analysis capabilities to supplement contemporary tools will also be presented.

  13. Simulation Speed Analysis and Improvements of Modelica Models for Building Energy Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Jorissen, Filip; Wetter, Michael; Helsen, Lieve

    2015-09-21

    This paper presents an approach for speeding up Modelica models. Insight is provided into how Modelica models are solved and what determines the tool’s computational speed. Aspects such as algebraic loops, code efficiency and integrator choice are discussed. This is illustrated using simple building simulation examples and Dymola. The generality of the work is in some cases verified using OpenModelica. Using this approach, a medium sized office building including building envelope, heating ventilation and air conditioning (HVAC) systems and control strategy can be simulated at a speed five hundred times faster than real time.

  14. Evaluation of a proposed optimization method for discrete-event simulation models

    Directory of Open Access Journals (Sweden)

    Alexandre Ferreira de Pinho

    2012-12-01

    Full Text Available Optimization methods combined with computer-based simulation have been utilized in a wide range of manufacturing applications. However, in terms of current technology, these methods exhibit low performance levels which are only able to manipulate a single decision variable at a time. Thus, the objective of this article is to evaluate a proposed optimization method for discrete-event simulation models based on genetic algorithms which exhibits more efficiency in relation to computational time when compared to software packages on the market. It should be emphasized that the variable's response quality will not be altered; that is, the proposed method will maintain the solutions' effectiveness. Thus, the study draws a comparison between the proposed method and that of a simulation instrument already available on the market and has been examined in academic literature. Conclusions are presented, confirming the proposed optimization method's efficiency.

  15. Simple model of surface roughness for binary collision sputtering simulations

    International Nuclear Information System (INIS)

    Lindsey, Sloan J.; Hobler, Gerhard; Maciążek, Dawid; Postawa, Zbigniew

    2017-01-01

    Highlights: • A simple model of surface roughness is proposed. • Its key feature is a linearly varying target density at the surface. • The model can be used in 1D/2D/3D Monte Carlo binary collision simulations. • The model fits well experimental glancing incidence sputtering yield data. - Abstract: It has been shown that surface roughness can strongly influence the sputtering yield – especially at glancing incidence angles where the inclusion of surface roughness leads to an increase in sputtering yields. In this work, we propose a simple one-parameter model (the “density gradient model”) which imitates surface roughness effects. In the model, the target’s atomic density is assumed to vary linearly between the actual material density and zero. The layer width is the sole model parameter. The model has been implemented in the binary collision simulator IMSIL and has been evaluated against various geometric surface models for 5 keV Ga ions impinging an amorphous Si target. To aid the construction of a realistic rough surface topography, we have performed MD simulations of sequential 5 keV Ga impacts on an initially crystalline Si target. We show that our new model effectively reproduces the sputtering yield, with only minor variations in the energy and angular distributions of sputtered particles. The success of the density gradient model is attributed to a reduction of the reflection coefficient – leading to increased sputtering yields, similar in effect to surface roughness.

  16. [Modeling the eye based on simulated refractive surgery].

    Science.gov (United States)

    Lamard, M; Cochener, B

    2001-10-01

    To achieve three-dimensional modelizing of the eyeball (morphological and mechanical behavior) in order to simulate the impact of various refractive surgery techniques and to study the normal and pathological states of the eye. Rebuilding the ocular shell is based on different kinds of imaging (MRI, ultrasound) including information provided by video topography. Image data are treated using suitable numerized filters that allow automatic segmentations of ocular globus edges. Reconstruction is based on specific mathematical functions (B-splines). The mechanical behavior of a reconstructed model is simulated by solving equations of linearized elasticity with the finitude elements method. Numerous simulations mimmed different refractive surgical techniques and, then validated the model. In addition, simulations of various pathologies allowed us to verify certain clinical hypotheses. This work, although still experimental, demonstrates the advantages of such simulations and will allow novice physicians an easier approach to different surgical techniques and will help them understand their effect. Furthermore, it might be useful for simulation of new surgical concepts even before their in vivo evaluation.

  17. Dynamic information architecture system (DIAS) : multiple model simulation management.

    Energy Technology Data Exchange (ETDEWEB)

    Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.

    2002-05-13

    Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers

  18. Dynamic information architecture system (DIAS) : multiple model simulation management

    International Nuclear Information System (INIS)

    Simunich, K. L.; Sydelko, P.; Dolph, J.; Christiansen, J.

    2002-01-01

    Dynamic Information Architecture System (DIAS) is a flexible, extensible, object-based framework for developing and maintaining complex multidisciplinary simulations of a wide variety of application contexts. The modeling domain of a specific DIAS-based simulation is determined by (1) software Entity (domain-specific) objects that represent the real-world entities that comprise the problem space (atmosphere, watershed, human), and (2) simulation models and other data processing applications that express the dynamic behaviors of the domain entities. In DIAS, models communicate only with Entity objects, never with each other. Each Entity object has a number of Parameter and Aspect (of behavior) objects associated with it. The Parameter objects contain the state properties of the Entity object. The Aspect objects represent the behaviors of the Entity object and how it interacts with other objects. DIAS extends the ''Object'' paradigm by abstraction of the object's dynamic behaviors, separating the ''WHAT'' from the ''HOW.'' DIAS object class definitions contain an abstract description of the various aspects of the object's behavior (the WHAT), but no implementation details (the HOW). Separate DIAS models/applications carry the implementation of object behaviors (the HOW). Any model deemed appropriate, including existing legacy-type models written in other languages, can drive entity object behavior. The DIAS design promotes plug-and-play of alternative models, with minimal recoding of existing applications. The DIAS Context Builder object builds a constructs or scenario for the simulation, based on developer specification and user inputs. Because DIAS is a discrete event simulation system, there is a Simulation Manager object with which all events are processed. Any class that registers to receive events must implement an event handler (method) to process the event during execution. Event handlers can schedule other events; create or remove Entities from the

  19. Structural modeling and molecular dynamics simulation of the actin filament.

    Science.gov (United States)

    Splettstoesser, Thomas; Holmes, Kenneth C; Noé, Frank; Smith, Jeremy C

    2011-07-01

    Actin is a major structural protein of the eukaryotic cytoskeleton and enables cell motility. Here, we present a model of the actin filament (F-actin) that not only incorporates the global structure of the recently published model by Oda et al. but also conserves internal stereochemistry. A comparison is made using molecular dynamics simulation of the model with other recent F-actin models. A number of structural determents such as the protomer propeller angle, the number of hydrogen bonds, and the structural variation among the protomers are analyzed. The MD comparison is found to reflect the evolution in quality of actin models over the last 6 years. In addition, simulations of the model are carried out in states with both ADP or ATP bound and local hydrogen-bonding differences characterized. Copyright © 2011 Wiley-Liss, Inc.

  20. A geostationary Earth orbit satellite model using Easy Java Simulation

    Science.gov (United States)

    Wee, Loo Kang; Hwee Goh, Giam

    2013-01-01

    We develop an Easy Java Simulation (EJS) model for students to visualize geostationary orbits near Earth, modelled using a Java 3D implementation of the EJS 3D library. The simplified physics model is described and simulated using a simple constant angular velocity equation. We discuss four computer model design ideas: (1) a simple and realistic 3D view and associated learning in the real world; (2) comparative visualization of permanent geostationary satellites; (3) examples of non-geostationary orbits of different rotation senses, periods and planes; and (4) an incorrect physics model for conceptual discourse. General feedback from the students has been relatively positive, and we hope teachers will find the computer model useful in their own classes.