WorldWideScience

Sample records for model sediment transport

  1. A Sediment Transport Model for Sewers

    DEFF Research Database (Denmark)

    Mark, Ole; Larsson, Johan; Larsen, Torben

    1993-01-01

    This paper describes a mathematical model for transport processes in sewers. The model consists of three sub models, a surface model for the description of the buildup and the washoff of sediment particles from the surface area, a morphological model and an advection-dispersion model. The model...

  2. Modelling of sediment transport at Muria peninsula coastal, Jepara

    International Nuclear Information System (INIS)

    Heni Susiati; Yarianto SBS; Wahyu Pandoe; Eko Kusratmoko; Aris Poniman

    2010-01-01

    Modelling of transport sediment modelling at Muria Peninsula have been done. In this study we had been used mathematical model that consist of hydrodynamics and sediment transport . Data input for modelling has been used tidal, monsoon wind, and river debit. Simulation result of sediment transport modelling showed that tides pattern and seasonal variations are the main causes of variations in the suspended sediment distribution in Muria Peninsula. (author)

  3. Modelling sediment clasts transport during landscape evolution

    Science.gov (United States)

    Carretier, Sébastien; Martinod, Pierre; Reich, Martin; Godderis, Yves

    2016-03-01

    Over thousands to millions of years, the landscape evolution is predicted by models based on fluxes of eroded, transported and deposited material. The laws describing these fluxes, corresponding to averages over many years, are difficult to prove with the available data. On the other hand, sediment dynamics are often tackled by studying the distribution of certain grain properties in the field (e.g. heavy metals, detrital zircons, 10Be in gravel, magnetic tracers). There is a gap between landscape evolution models based on fluxes and these field data on individual clasts, which prevent the latter from being used to calibrate the former. Here we propose an algorithm coupling the landscape evolution with mobile clasts. Our landscape evolution model predicts local erosion, deposition and transfer fluxes resulting from hillslope and river processes. Clasts of any size are initially spread in the basement and are detached, moved and deposited according to probabilities using these fluxes. Several river and hillslope laws are studied. Although the resulting mean transport rate of the clasts does not depend on the time step or the model cell size, our approach is limited by the fact that their scattering rate is cell-size-dependent. Nevertheless, both their mean transport rate and the shape of the scattering-time curves fit the predictions. Different erosion-transport laws generate different clast movements. These differences show that studying the tracers in the field may provide a way to establish these laws on the hillslopes and in the rivers. Possible applications include the interpretation of cosmogenic nuclides in individual gravel deposits, provenance analyses, placers, sediment coarsening or fining, the relationship between magnetic tracers in rivers and the river planform, and the tracing of weathered sediment.

  4. System Identification Theory Approach to Cohesive Sediment Transport Modelling

    OpenAIRE

    CHEN, HUIXIN

    1997-01-01

    Two aspects of the modelling sediment transport are investigated. One is the univariate time series modelling the current velocity dynamics. The other is the multivariate time series modelling the suspended sediment concentration dynamics. Cohesive sediment dynamics and numerical sediment transport model are reviewed and investigated. The system identification theory and time series analysis method are developed and applied to set up the time series model for current velocity a...

  5. A combined model of sediment production, supply and transport

    Directory of Open Access Journals (Sweden)

    M. Fujita

    2015-03-01

    Full Text Available In previous sediment-runoff models, the sediment production rates of mountain slopes, and the sediment supply rates to streams typically have been developed using empirical methods. A process-based model for sediment production and supply is, however, required for more exact simulations of sediment runoff. In this study, we develop a method to calculate the sediment production rate due to both freeze-thaw action and the sediment supply rate (i.e. erosion rate of talus. These numerical models were then connected to an existing sediment transport model. The integrated model presented here was applied to a small mountainous watershed. We found that the calculated sediment production rate was within the range of values typically observed for this region. Additionally, the estimated annual sediment discharge using the model agreed with observational results. Lastly, we found that the model can be used to qualitatively characterize typical features of the actual sediment routine in mountainous watersheds.

  6. Sediment Transport Model for a Surface Irrigation System

    OpenAIRE

    Mailapalli, Damodhara R.; Raghuwanshi, Narendra S.; Singh, Rajendra

    2013-01-01

    Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in fur...

  7. Sediment Transport Model for a Surface Irrigation System

    Directory of Open Access Journals (Sweden)

    Damodhara R. Mailapalli

    2013-01-01

    Full Text Available Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields.

  8. Modeling transport and deposition of the Mekong River sediment

    Science.gov (United States)

    Xue, Zuo; He, Ruoying; Liu, J. Paul; Warner, John C.

    2012-01-01

    A Coupled Wave–Ocean–SedimentTransport Model was used to hindcast coastal circulation and fine sedimenttransport on the Mekong shelf in southeastern Asian in 2005. Comparisons with limited observations showed that the model simulation captured the regional patterns and temporal variability of surface wave, sea level, and suspended sediment concentration reasonably well. Significant seasonality in sedimenttransport was revealed. In summer, a large amount of fluvial sediments was delivered and deposited near the MekongRiver mouth. In the following winter, strong ocean mixing, and coastal current lead to resuspension and southwestward dispersal of a small fraction of previously deposited sediments. Model sensitivity experiments (with reduced physics) were performed to investigate the impact of tides, waves, and remotely forced ambient currents on the transport and dispersal of the fluvial sediment. Strong wave mixing and downwelling-favorable coastal current associated with the more energetic northeast monsoon in the winter season are the main factors controlling the southwestward along-shelf transport.

  9. Sediment Transport

    DEFF Research Database (Denmark)

    Liu, Zhou

    Flow and sediment transport are important in relation to several engineering topics, e.g. erosion around structures, backfilling of dredged channels and nearshore morphological change. The purpose of the present book is to describe both the basic hydrodynamics and the basic sediment transport...... mechanics. Chapter 1 deals with fundamentals in fluid mechanics with emphasis on bed shear stress by currents, while chapter 3 discusses wave boundary layer theory. They are both written with a view to sediment transport. Sediment transport in rivers, cross-shore and longshore are dealt with in chapters 2...

  10. Consistency between 2D-3D Sediment Transport models

    Science.gov (United States)

    Villaret, Catherine; Jodeau, Magali

    2017-04-01

    Sediment transport models have been developed and applied by the engineering community to estimate transport rates and morphodynamic bed evolutions in river flows, coastal and estuarine conditions. Environmental modelling systems like the open-source Telemac modelling system include a hierarchy of models from 1D (Mascaret), 2D (Telemac-2D/Sisyphe) and 3D (Telemac-3D/Sedi-3D) and include a wide range of processes to represent sediment flow interactions under more and more complex situations (cohesive, non-cohesive and mixed sediment). Despite some tremendous progresses in the numerical techniques and computing resources, the quality/accuracy of model results mainly depend on the numerous choices and skills of the modeler. In complex situations involving stratification effects, complex geometry, recirculating flows… 2D model assumptions are no longer valid. A full 3D turbulent flow model is then required in order to capture the vertical mixing processes and to represent accurately the coupled flow/sediment distribution. However a number of theoretical and numerical difficulties arise when dealing with sediment transport modelling in 3D which will be high-lighted : (1) Dependency of model results to the vertical grid refinement and choice of boundary conditions and numerical scheme (2) The choice of turbulence model determines also the sediment vertical distribution which is governed by a balance between the downward settling term and upward turbulent diffusion. (3) The use of different numerical schemes for both hydrodynamics (mean and turbulent flow) and sediment transport modelling can lead to some inconsistency including a mismatch in the definition of numerical cells and definition of boundary conditions. We discuss here those present issues and present some detailed comparison between 2D and 3D simulations on a set of validation test cases which are available in the Telemac 7.2 release using both cohesive and non-cohesive sediments.

  11. Modelling of Sediment Transport in Beris Fishery Port

    Directory of Open Access Journals (Sweden)

    Samira Ardani

    2015-06-01

    Full Text Available In this paper, the large amount of sedimentation and the resultant shoreline advancements at the breakwaters of Beris Fishery Port are studied. A series of numerical modeling of waves, sediment transport, and shoreline changes were conducted to predict the complicated equilibrium shoreline. The outputs show that the nearshore directions of wave components are not perpendicular to the coast which reveals the existence of longshore currents and consequently sediment transport along the bay. Considering the dynamic equilibrium condition of the bay, the effect of the existing sediment resources in the studied area is also investigated. The study also shows that in spite of the change of the diffraction point of Beris Bay after the construction of the fishery port, the bay is approaching its dynamic equilibrium condition, and the shoreline advancement behind secondary breakwater will stop before blocking the entrance of the port. The probable solutions to overcome the sedimentation problem at the main breakwater are also discussed.

  12. Longshore sediment transport model for the Indian west coast

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B

    Longshore sediment transport rates for the Indian west coast from Cochin to Porbandar are estimated from ship observed wave data (1968 to 1986). The sediment transport rate is relatively high during the southwest monsoon period from June...

  13. Incorporation of Fine-Grained Sediment Erodibility Measurements into Sediment Transport Modeling, Capitol Lake, Washington

    Science.gov (United States)

    Stevens, Andrew W.; Gelfenbaum, Guy; Elias, Edwin; Jones, Craig

    2008-01-01

    Capitol Lake was created in 1951 with the construction of a concrete dam and control gate that prevented salt-water intrusion into the newly formed lake and regulated flow of the Deschutes River into southern Puget Sound. Physical processes associated with the former tidally dominated estuary were altered, and the dam structure itself likely caused an increase in retention of sediment flowing into the lake from the Deschutes River. Several efforts to manage sediment accumulation in the lake, including dredging and the construction of sediment traps upriver, failed to stop the lake from filling with sediment. The Deschutes Estuary Feasibility Study (DEFS) was carried out to evaluate the possibility of removing the dam and restoring estuarine processes as an alternative ongoing lake management. An important component of DEFS was the creation of a hydrodynamic and sediment transport model of the restored Deschutes Estuary. Results from model simulations indicated that estuarine processes would be restored under each of four restoration alternatives, and that over time, the restored estuary would have morphological features similar to the predam estuary. The model also predicted that after dam-removal, a large portion of the sediment eroded from the lake bottom would be deposited near the Port of Olympia and a marina located in lower Budd Inlet seaward of the present dam. The volume of sediment transported downstream was a critical piece of information that managers needed to estimate the total cost of the proposed restoration project. However, the ability of the model to predict the magnitude of sediment transport in general and, in particular, the volume of sediment deposition in the port and marina was limited by a lack of information on the erodibility of fine-grained sediments in Capitol Lake. Cores at several sites throughout Capitol Lake were collected between October 31 and November 1, 2007. The erodibility of sediments in the cores was later determined in the

  14. Interactive 4D Visualization of Sediment Transport Models

    Science.gov (United States)

    Butkiewicz, T.; Englert, C. M.

    2013-12-01

    Coastal sediment transport models simulate the effects that waves, currents, and tides have on near-shore bathymetry and features such as beaches and barrier islands. Understanding these dynamic processes is integral to the study of coastline stability, beach erosion, and environmental contamination. Furthermore, analyzing the results of these simulations is a critical task in the design, placement, and engineering of coastal structures such as seawalls, jetties, support pilings for wind turbines, etc. Despite the importance of these models, there is a lack of available visualization software that allows users to explore and perform analysis on these datasets in an intuitive and effective manner. Existing visualization interfaces for these datasets often present only one variable at a time, using two dimensional plan or cross-sectional views. These visual restrictions limit the ability to observe the contents in the proper overall context, both in spatial and multi-dimensional terms. To improve upon these limitations, we use 3D rendering and particle system based illustration techniques to show water column/flow data across all depths simultaneously. We can also encode multiple variables across different perceptual channels (color, texture, motion, etc.) to enrich surfaces with multi-dimensional information. Interactive tools are provided, which can be used to explore the dataset and find regions-of-interest for further investigation. Our visualization package provides an intuitive 4D (3D, time-varying) visualization of sediment transport model output. In addition, we are also integrating real world observations with the simulated data to support analysis of the impact from major sediment transport events. In particular, we have been focusing on the effects of Superstorm Sandy on the Redbird Artificial Reef Site, offshore of Delaware Bay. Based on our pre- and post-storm high-resolution sonar surveys, there has significant scour and bedform migration around the

  15. A combined model of sediment production, supply and transport

    OpenAIRE

    M. Fujita; K. Yamanoi; H. Izumiyama

    2015-01-01

    In previous sediment-runoff models, the sediment production rates of mountain slopes, and the sediment supply rates to streams typically have been developed using empirical methods. A process-based model for sediment production and supply is, however, required for more exact simulations of sediment runoff. In this study, we develop a method to calculate the sediment production rate due to both freeze-thaw action and the sediment supply rate (i.e. erosion rate of talus). These numerical models...

  16. Glider observations and modeling of sediment transport in Hurricane Sandy

    Science.gov (United States)

    Miles, Travis; Seroka, Greg; Kohut, Josh; Schofield, Oscar; Glenn, Scott

    2015-03-01

    Regional sediment resuspension and transport are examined as Hurricane Sandy made landfall on the Mid-Atlantic Bight (MAB) in October 2012. A Teledyne-Webb Slocum glider, equipped with a Nortek Aquadopp current profiler, was deployed on the continental shelf ahead of the storm, and is used to validate sediment transport routines coupled to the Regional Ocean Modeling System (ROMS). The glider was deployed on 25 October, 5 days before Sandy made landfall in southern New Jersey (NJ) and flew along the 40 m isobath south of the Hudson Shelf Valley. We used optical and acoustic backscatter to compare with two modeled size classes along the glider track, 0.1 and 0.4 mm sand, respectively. Observations and modeling revealed full water column resuspension for both size classes for over 24 h during peak waves and currents, with transport oriented along-shelf toward the southwest. Regional model predictions showed over 3 cm of sediment eroded on the northern portion of the NJ shelf where waves and currents were the highest. As the storm passed and winds reversed from onshore to offshore on the southern portion of the domain waves and subsequently orbital velocities necessary for resuspension were reduced leading to over 3 cm of deposition across the entire shelf, just north of Delaware Bay. This study highlights the utility of gliders as a new asset in support of the development and verification of regional sediment resuspension and transport models, particularly during large tropical and extratropical cyclones when in situ data sets are not readily available.

  17. Numerical modeling of episodic sediment supply events to headwater channels and subsequent fluvial sediment transport

    Science.gov (United States)

    Müller, T.; Hassan, M. A.

    2014-12-01

    In steep headwater catchments episodic events can rapidly contribute large amounts of sediment to the channel network. The fluvial system may react to this input in different ways, ranging from a swift evacuation of the contributed material to a long term morphological adjustment of the channel. How this response affects fluvial sediment transport is poorly understood and is scope of our study. We set up a numerical model to investigate how different magnitudes, frequencies and grain size distributions (GSD) of sediment supply events influence the sediment dynamics in the fluvial system. We used a randomized time series of disturbances and simulated subsequent fluvial reworking using a bed load transport model. Besides tracking the volume of stored sediment, we investigate changes in the GSD of the channel. In our model, the GSD of the fluvial channel approaches the GSD of the sediment input under high supply conditions, in which large quantities of material are supplied by a high frequency of events. This results in an exceedance of the ability of the fluvial system to significantly evacuate the supply. On the other hand, if the fluvial system is given enough time to rework the input material, the GSD of the channel gets coarser with time, as the smaller grain sizes are transported away. We further analyze the conditions under which the system is stable or more sensitive to changes in the magnitude or frequency of sediment supply. Our model shows how the combination of episodic time scales of disturbances and constant time scales of fluvial reworking results in temporal patterns of fluvial sediment transport.

  18. Wave Induced Mine Burial and Sediment Transport in Coastal Environment: Wave and Sediment Transport Modeling Studies

    Science.gov (United States)

    2007-01-01

    predicting ripple and dune formation and evolution (e.g., Voropayev et al., 1999). In a larger context, this work will yield an experimentally...Engng. (in revision). Voropayev, S.I., McEachern, G.B., Boyer, D.L. and Fernando, H.J.S. (1999). “Dynamics of sand ripples and burial/scouring of...changes, in coastal and estuarine environments of active sediment transport (e.g., ripple migration). OBJECTIVE In the past year, our objective

  19. Sediment and radionuclide transport in rivers: radionuclide transport modeling for Cattaraugus and Buttermilk Creeks, New York

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.; Skaggs, R.L.; Walters, W.H.

    1982-12-01

    SERATRA, a transient, two-dimensional (laterally-averaged) computer model of sediment-contaminant transport in rivers, satisfactorily resolved the distribution of sediment and radionuclide concentrations in the Cattaraugus Creek stream system in New York. By modeling the physical processes of advection, diffusion, erosion, deposition, and bed armoring, SERATRA routed three sediment size fractions, including cohesive soils, to simulate three dynamic flow events. In conjunction with the sediment transport, SERATRA computed radionuclide levels in dissolved, suspended sediment, and bed sediment forms for four radionuclides ( 137 Cs, 90 Sr, 239 240 Pu, and 3 H). By accounting for time-dependent sediment-radionuclide interaction in the water column and bed, SERATA is a physically explicit model of radionuclide fate and migration. Sediment and radionuclide concentrations calculated by SERATA in the Cattaraugus Creek stream system are in reasonable agreement with measured values. SERATRA is in the field performance phase of an extensive testing program designed to establish the utility of the model as a site assessment tool. The model handles not only radionuclides but other contaminants such as pesticides, heavy metals and other toxic chemicals. Now that the model has been applied to four field sites, including the latest study of the Cattaraugus Creek stream system, it is recommended that a final model be validated through comparison of predicted results with field data from a carefully controlled tracer test at a field site. It is also recommended that a detailed laboratory flume be tested to study cohesive sediment transport, deposition, and erosion characteristics. The lack of current understanding of these characteristics is one of the weakest areas hindering the accurate assessment of the migration of radionuclides sorbed by fine sediments of silt and clay

  20. Sediment Transport and erosion modeling at Heaundae Beach in Korea.

    Science.gov (United States)

    Do, K.; Yoo, J.; McCall, R. T.

    2016-12-01

    The sand pocket beaches with two headlands are global features, but it's not easy to predict berm and dune erosion due to alongshore variation of water depth. This study investigates the sediment transport and morphological change using available wave and beach profile data, as well as to assess the applicability of the XBeach morphological model (Roelvink et al., 2009). The Haeundae is small pocket beach, 1.4 km long, located in the southern corner of the Korean Peninsula. The Korea Institute of Ocean Science and Technology (KIOST) measured beach profile along 27 survey lines. The beach profiles were surveyed five times from 17 June 2014 to 10 October 2014. For this duration, a wave gauge (AWAC) was installed at a depth about 23 m off the coast of Haeundae Beach. Severe four storms attacked Haeundae Beach for this duration and these storms lasted about 1 2 days with a peak significant wave height of 2.5 4.0 m. The placed sand is fairly sorted and its median diameter is 0.23 mm. 2DH coastal morphological model, XBeach developed to simulate dune erosion due to storm impacts. The model is based on the nonlinear shallow water equation and resolves nearshore hydrodynamics by employing a 2DH description of wave groups and infragravity motions. In this study, the numerical model XBeach was compared with the field data and used to estimate the sediment transport pattern on the sand pocket beach. The numerical model resulted in a comparable prediction in the west-part, but the east-part cannot reproduce the erosion and accretion of the sand, partly due to complex bathymetry and the lack of sediment. This limitation needs to be improved to use measured sand thickness data in future study

  1. Multispecies reactive transport modelling of electrokinetic remediation of harbour sediments.

    Science.gov (United States)

    Masi, Matteo; Ceccarini, Alessio; Iannelli, Renato

    2017-03-15

    We implemented a numerical model to simulate transport of multiple species and geochemical reactions occurring during electrokinetic remediation of metal-contaminated porous media. The main phenomena described by the model were: (1) species transport by diffusion, electromigration and electroosmosis, (2) pH-dependent buffering of H + , (3) adsorption of metals onto particle surfaces, (4) aqueous speciation, (5) formation and dissolution of solid precipitates. The model was applied to simulate the electrokinetic extraction of heavy metals (Pb, Zn and Ni) from marine harbour sediments, characterized by a heterogeneous solid matrix, high buffering capacity and aged pollution. A good agreement was found between simulations of pH, electroosmotic flow and experimental results. The predicted residual metal concentrations in the sediment were also close to experimental profiles for all of the investigated metals. Some removal overestimation was observed in the regions close to the anode, possibly due to the significant metal content bound to residual fraction. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Complexities in coastal sediment transport studies by numerical modelling

    Digital Repository Service at National Institute of Oceanography (India)

    Ilangovan, D.; ManiMurali, R.

    authors have tried to convey the complexities involved in accurate prediction of coastal sediment transport studies by numerical methods due to some unpredictable variations in the input parameters pertaining to the challenging coastal environments...

  3. Modeling sediment transport with an integrated view of the biofilm effects

    Science.gov (United States)

    Fang, H. W.; Lai, H. J.; Cheng, W.; Huang, L.; He, G. J.

    2017-09-01

    Most natural sediment is invariably covered by biofilms in reservoirs and lakes, which have significant influence on bed form dynamics and sediment transport, and also play a crucial role in natural river evolution, pollutant transport, and habitat changes. However, most models for sediment transport are based on experiments using clean sediments without biological materials. In this study, a three-dimensional mathematical model of hydrodynamics and sediment transport is presented with a comprehensive consideration of the biofilm effects. The changes of the bed resistance mainly due to the different bed form dynamics of the biofilm-coated sediment (biosediment), which affect the hydrodynamic characteristics, are considered. Moreover, the variations of parameters related to sediment transport after the biofilm growth are integrated, including the significant changes of the incipient velocity, settling velocity, reference concentration, and equilibrium bed load transport rate. The proposed model is applied to evaluate the effects of biofilms on the hydrodynamic characteristics and sediment transport in laboratory experiments. Results indicate that the mean velocity increases after the biofilm growth, and the turbulence intensity near the river bed decreases under the same flow condition. Meanwhile, biofilm inhibits sediment from moving independently. Thus, the moderate erosion is observed for biosediment resulting in smaller suspended sediment concentrations. The proposed model can reasonably reflect these sediment transport characteristics with biofilms, and the approach to integration of the biological impact could also be used in other modeling of sediment transport, which can be further applied to provide references for the integrated management of natural aqueous systems.

  4. Modelling of Cohesive Sediment Transport in the Maasmond Area

    NARCIS (Netherlands)

    Wang, L.

    2006-01-01

    In the Dutch coastal zone, where the marine environment is highly dynamic owing to tidal currents, wind-driven, wave-driven, and density-driven currents and waves, the cohesive sediment dynamics is always a great concern to transportation authority and coastal managers. So far, a lot research has

  5. Improving Sediment Transport Prediction by Assimilating Satellite Images in a Tidal Bay Model of Hong Kong

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Numerical models being one of the major tools for sediment dynamic studies in complex coastal waters are now benefitting from remote sensing images that are easily available for model inputs. The present study explored various methods of integrating remote sensing ocean color data into a numerical model to improve sediment transport prediction in a tide-dominated bay in Hong Kong, Deep Bay. Two sea surface sediment datasets delineated from satellite images from the Moderate Resolution Imaging Spectra-radiometer (MODIS were assimilated into a coastal ocean model of the bay for one tidal cycle. It was found that remote sensing sediment information enhanced the sediment transport model ability by validating the model results with in situ measurements. Model results showed that root mean square errors of forecast sediment both at the surface layer and the vertical layers from the model with satellite sediment assimilation are reduced by at least 36% over the model without assimilation.

  6. A Tidally Averaged Sediment-Transport Model for San Francisco Bay, California

    Science.gov (United States)

    Lionberger, Megan A.; Schoellhamer, David H.

    2009-01-01

    A tidally averaged sediment-transport model of San Francisco Bay was incorporated into a tidally averaged salinity box model previously developed and calibrated using salinity, a conservative tracer (Uncles and Peterson, 1995; Knowles, 1996). The Bay is represented in the model by 50 segments composed of two layers: one representing the channel (>5-meter depth) and the other the shallows (0- to 5-meter depth). Calculations are made using a daily time step and simulations can be made on the decadal time scale. The sediment-transport model includes an erosion-deposition algorithm, a bed-sediment algorithm, and sediment boundary conditions. Erosion and deposition of bed sediments are calculated explicitly, and suspended sediment is transported by implicitly solving the advection-dispersion equation. The bed-sediment model simulates the increase in bed strength with depth, owing to consolidation of fine sediments that make up San Francisco Bay mud. The model is calibrated to either net sedimentation calculated from bathymetric-change data or measured suspended-sediment concentration. Specified boundary conditions are the tributary fluxes of suspended sediment and suspended-sediment concentration in the Pacific Ocean. Results of model calibration and validation show that the model simulates the trends in suspended-sediment concentration associated with tidal fluctuations, residual velocity, and wind stress well, although the spring neap tidal suspended-sediment concentration variability was consistently underestimated. Model validation also showed poor simulation of seasonal sediment pulses from the Sacramento-San Joaquin River Delta at Point San Pablo because the pulses enter the Bay over only a few days and the fate of the pulses is determined by intra-tidal deposition and resuspension that are not included in this tidally averaged model. The model was calibrated to net-basin sedimentation to calculate budgets of sediment and sediment-associated contaminants. While

  7. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications.

    Science.gov (United States)

    Hajigholizadeh, Mohammad; Melesse, Assefa M; Fuentes, Hector R

    2018-03-14

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability.

  8. Erosion and Sediment Transport Modelling in Shallow Waters: A Review on Approaches, Models and Applications

    Science.gov (United States)

    Fuentes, Hector R.

    2018-01-01

    The erosion and sediment transport processes in shallow waters, which are discussed in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by the consequent rainfall-runoff process determines the amount of generated sediment that can be transferred downslope. Many significant studies and models are performed to investigate these processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model structure and the manner that these processes represent. This paper attempts to review the related literature concerning sediment transport modelling in shallow waters. A classification based on the representational processes of the soil erosion and sediment transport models (empirical, conceptual, physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed. This review is expected to be of interest to researchers and soil and water conservation managers who are working on erosion and sediment transport phenomena in shallow waters. The paper format should be helpful for practitioners to identify and generally characterize the types of available models, their strengths and their basic scope of applicability. PMID:29538335

  9. EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM

    Science.gov (United States)

    Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...

  10. Distribution of longshore sediment transport along the Indian coast based on empirical model

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.

    An empirical sediment transport model has been developed based on longshore energy flux equation. Study indicates that annual gross sediment transport rate is high (1.5 x 10 super(6) cubic meters to 2.0 x 10 super(6) cubic meters) along the coasts...

  11. A hybrid model of swash-zone longshore sediment transport on refelctive beaches

    NARCIS (Netherlands)

    Jiang, A.W.; Hughes, M.; Cowell, P.; Gordon, A.; Savioli, J.C.; Ranasinghe, R.W.M.R.J.B.

    2010-01-01

    The hydrodynamics and sediment transport in the swash zone is currently outside the domain of coastal-area models, which is a significant limitation in obtaining littoral sediment-transport estimates, especially on steep reflective beaches where the waves practically break on the beachface. In this

  12. Quasi-Three-Dimensional Mathematical Modeling of Morphological Processes Based on Equilibrium Sediment Transport

    Science.gov (United States)

    Charafi, My. M.; Sadok, A.; Kamal, A.; Menai, A.

    A quasi-three-dimensional mathematical model has been developed to study the morphological processes based on equilibrium sediment transport method. The flow velocities are computed by a two-dimensional horizontal depth-averaged flow model (H2D) in combination with logarithmic velocity profiles. The transport of sediment particles by a flow water has been considered in the form of bed load and suspended load. The bed load transport rate is defined as the transport of particles by rolling and saltating along the bed surface and is given by the Van Rijn relationship (1987). The equilibrium suspended load transport is described in terms of an equilibrium sediment concentration profile (ce) and a logarithmic velocity (u). Based on the equilibrium transport, the bed change rate is given by integration of the sediment mass-balance equation. The model results have been compared with a Van Rijn results (equilibrium approach) and good agreement has been found.

  13. Modified finite element transport model, FETRA, for sediment and radionuclide migration in open coastal waters

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Mayer, D.W.

    1979-08-01

    The finite element model, FETRA, simulates transport of sediment and radionuclides (and other contaminants, such as heavy metals, pesticides, and other toxic substances) in surface water bodies. The model is an unsteady, two-dimensional (longitudinal and lateral) model which consists of the following three submodels coupled to include sediment-contaminant interactions: (1) sediment transport submodel, (2) dissolved contaminant transport submodel, and (3) particulate contaminant (contaminant adsorbed by sediment) transport submodel. Under the current phase of the study, FETRA was modified to include sediment-wave interaction in order to extend the applicability of the model to coastal zones and large lakes (e.g., the Great Lakes) where wave actions can be one of the dominant mechanisms to transport sediment and toxic contaminant. FETRA was further modified to handle both linear and quadratic approximations to velocity and depth distributions in order to be compatible with various finite element hydrodynamic models (e.g., RMA II and CAFE) which supply hydrodynamic input data to FETRA. The next step is to apply FETRA to coastal zones to simulate transport of sediment and radionuclides with their interactions in order to test and verify the model under marine and large lacustrine environments

  14. A phase resolving cross-shore sediment transport model for beach profile evolution

    DEFF Research Database (Denmark)

    Rakha, Karim A.; Deigaard, Rolf; Brøker, Ida

    1997-01-01

    -wave sediment concentrations are calculated. The net sediment transport rates are calculated, and the equation for conservation of sediment is solved to predict the beach profile evolution, The results of the present paper showed that the undertow contribution to the sediment transport rates is not dominating...... in all parts of the surf zone, even for eroding beaches, suggesting that other contributions should not be neglected. The present model also showed that for the same offshore wave energy the time series of the oscillatory motion is important and that the effect of wave groups cannot be disregarded. (C...

  15. Deschutes estuary feasibility study: hydrodynamics and sediment transport modeling

    Science.gov (United States)

    George, Douglas A.; Gelfenbaum, Guy; Lesser, Giles; Stevens, Andrew W.

    2006-01-01

    Continual sediment accumulation in Capitol Lake since the damming of the Deschutes River in 1951 has altered the initial morphology of the basin. As part of the Deschutes River Estuary Feasibility Study (DEFS), the United States Geological Survey (USGS) was tasked to model how tidal and storm processes will influence the river, lake and lower Budd Inlet should estuary restoration occur. Understanding these mechanisms will assist in developing a scientifically sound assessment on the feasibility of restoring the estuary. The goals of the DEFS are as follows. - Increase understanding of the estuary alternative to the same level as managing the lake environment.

  16. Modeling sediment transport after ditch network maintenance of a forested peatland

    Science.gov (United States)

    Haahti, K.; Marttila, H.; Warsta, L.; Kokkonen, T.; Finér, L.; Koivusalo, H.

    2016-11-01

    Elevated suspended sediment (SS) loads released from peatlands after drainage operations and the resulting negative effect on the ecological status of the receiving water bodies have been widely recognized. Understanding the processes controlling erosion and sediment transport within the ditch network forms a prerequisite for adequate sediment control. While numerous experimental studies have been reported in this field, model based assessments are rare. This study presents a modeling approach to investigate sediment transport in a peatland ditch network. The transport model describes bed erosion, rain-induced bank erosion, floc deposition, and consolidation of the bed. Coupled to a distributed hydrological model, sediment transport was simulated in a 5.2 ha forestry-drained peatland catchment for 2 years after ditch cleaning. Comparing simulation results to measured SS concentrations suggested that the loose peat material, produced during excavation, contributed markedly to elevated SS concentrations immediately after ditch cleaning. Both snowmelt and summer rainstorms contributed critically to annual loads. Springtime peat erosion during snowmelt was driven by ditch flow whereas during summer rainfalls, bank erosion by raindrop impact was identified as an important process. Relating modeling results to observed spatial topographic changes in the ditch network was challenging and the results were difficult to verify. Nevertheless, the model has potential to identify risk areas for erosion. The results demonstrate that modeling is effective in separating the importance of different processes and complements pure experimental approaches. Modeling results can aid planning and designing efficient sediment control measures and guide the focus of experimental studies.

  17. Conceptual Site Model for Newark Bay—Hydrodynamics and Sediment Transport

    Directory of Open Access Journals (Sweden)

    Parmeshwar L. Shrestha

    2014-02-01

    Full Text Available A conceptual site model (CSM has been developed for the Newark Bay Study Area (NBSA as part of the Remedial Investigation/Feasibility Study (RI/FS for this New Jersey site. The CSM is an evolving document that describes the influence of physical, chemical and biological processes on contaminant fate and transport. The CSM is initiated at the start of a project, updated during site activities, and used to inform sampling and remediation planning. This paper describes the hydrodynamic and sediment transport components of the CSM for the NBSA. Hydrodynamic processes are influenced by freshwater inflows, astronomical forcing through two tidal straits, meteorological conditions, and anthropogenic activities such as navigational dredging. Sediment dynamics are driven by hydrodynamics, waves, sediment loading from freshwater sources and the tidal straits, sediment size gradation, sediment bed properties, and particle-to-particle interactions. Cohesive sediment transport is governed by advection, dispersion, aggregation, settling, consolidation, and erosion. Noncohesive sediment transport is governed by advection, dispersion, settling, armoring, and transport in suspension and along the bed. The CSM will inform the development and application of a numerical model that accounts for all key variables to adequately describe the NBSA’s historical, current, and future physical conditions.

  18. Critical review: Radionuclide transport, sediment transport, and water quality mathematical modeling; and radionuclide adsorption/desorption mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Y.; Serne, R.J.; Arnold, E.M.; Cowan, C.E.; Thompson, F.L. [Pacific Northwest Lab., Richland, WA (United States)

    1981-01-01

    This report describes the results of a detailed literature review of radionuclide transport models applicable to rivers, estuaries, coastal waters, the Great Lakes, and impoundments. Some representatives sediment transport and water quality models were also reviewed to evaluate if they can be readily adapted to radionuclide transport modeling. The review showed that most available transport models were developed for dissolved radionuclide in rivers. These models include the mechanisms of advection, dispersion, and radionuclide decay. Since the models do not include sediment and radionuclide interactions, they are best suited for simulating short-term radionuclide migration where: (1) radionuclides have small distribution coefficients; (2) sediment concentrations in receiving water bodies are very low. Only 5 of the reviewed models include full sediment and radionuclide interactions: CHMSED developed by Fields; FETRA SERATRA, and TODAM developed by Onishi et al, and a model developed by Shull and Gloyna. The 5 models are applicable to cases where: (1) the distribution coefficient is large; (2) sediment concentrations are high; or (3) long-term migration and accumulation are under consideration. The report also discusses radionuclide absorption/desorption distribution ratios and addresses adsorption/desorption mechanisms and their controlling processes for 25 elements under surface water conditions. These elements are: Am, Sb, C, Ce, Cm, Co, Cr, Cs, Eu, I, Fe, Mn, Np, P, Pu, Pm, Ra, Ru, Sr, Tc, Th, {sup 3}H, U, Zn and Zr.

  19. Simulating Landscape Sediment Transport Capacity by Using a Modified SWAT Model.

    Science.gov (United States)

    Bonumá, Nadia B; Rossi, Colleen G; Arnold, Jeffrey G; Reichert, José M; Minella, Jean P; Allen, Peter M; Volk, Martin

    2014-01-01

    Sediment delivery from hillslopes to rivers is spatially variable and may lead to long-term delays between initial erosion and related sediment yield at the watershed outlet. Consideration of spatial variability is important for developing sound strategies for water quality improvement and soil protection at the watershed scale. Hence, the Soil and Water Assessment Tool (SWAT) was modified and tested in this study to simulate the landscape transport capacity of sediment. The study area was the steeply sloped Arroio Lino watershed in southern Brazil. Observed sediment yield data at the watershed outlet were used to calibrate and validate a modified SWAT model. For the calibration period, the modified model performed better than the unaltered SWAT2009 version; the models achieved Nash-Sutcliffe efficiency (NSE) values of 0.7 and -0.1, respectively. Nash-Sutcliffe efficiencies were less for the validation period, but the modified model's NSE was higher than the unaltered model (-1.4 and -12.1, respectively). Despite the relatively low NSE values, the results of this first test are promising because the model modifications lowered the percent bias in sediment yield from 73 to 18%. Simulation results for the modified model indicated that approximately 60% of the mobilized soil is deposited along the landscape before it reaches the river channels. This research demonstrates the modified model's ability to simulate sediment yield in watersheds with steep slopes. The results suggest that integration of the sediment deposition routine in SWAT increases accuracy in steeper areas while significantly improving its ability to predict the spatial distribution of sediment deposition areas. Further work is needed regarding (i) improved strategies for spatially distributed sediment transport measurements (for improving process knowledge and model evaluation) and (ii) extensive model tests in other well instrumented experimental watersheds with differing topographic configurations

  20. Modeling flow, sediment transport and morphodynamics in rivers

    Science.gov (United States)

    Nelson, Jonathan M.; McDonald, Richard R.; Shimizu, Yasuyuki; Kimura, Ichiro; Nabi, Mohamed; Asahi, Kazutake

    2016-01-01

    Predicting the response of natural or man-made channels to imposed supplies of water and sediment is one of the difficult practical problems commonly addressed by fluvial geomorphologists. This problem typically arises in three situations. In the first situation, geomorphologists are attempting to understand why a channel or class of channels has a certain general form; in a sense, this is the central goal of fluvial geomorphology. In the second situation, geomorphologists are trying to understand and explain how and why a specific channel will evolve or has evolved in response to altered or unusual sediment and water supplies to that channel. For example, this would include explaining the short-term response of a channel to an unusually large flood or predicting the response of a channel to long-term changes in flow or sediment supply due to various human activities such as damming or diversions. Finally, geomorphologists may be called upon to design or assess the design of proposed man-made channels that must carry a certain range of flows and sediment loads in a stable or at least quasi-stable manner. In each of these three situations, the problem is really the same: geomorphologists must understand and predict the interaction of the flow field in the channel, the sediment movement in the channel and the geometry of the channel bed and banks. In general, the flow field, the movement of sediment making up the bed and the morphology of the bed are intricately linked; the flow moves the sediment, the bed is altered by erosion and deposition of sediment and the shape of the bed is critically important for predicting the flow. This complex linkage is precisely what makes understanding channel form and process such a difficult and interesting challenge.

  1. Longshore sediment transport along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Nayak, B.U.

    An empirical sediment transport model has been developed based on longshore energy flux equation. Ship reported waves, published in Indian Daily Weather Reports, are compiled for 19 y and used for estimation of sediment transport. Annual gross...

  2. State-of-the-art in modeling solute and sediment transport in rivers

    International Nuclear Information System (INIS)

    Sayre, W.W.

    1980-01-01

    This overview is structured around a comprehensive general model based on the conservation of mass principle as applied to dissolved and particulate constituents in rivers, with a few restricted but more specific examples that illustrate the state-of-the-art in modeling typical physical, chemical, and biological processes undergone by selected constituents in rivers. These examples include: simplified one- and two-dimensional formulations focusing on the hydrodynamic advection and dispersion mechanisms; a two-dimensional biochemial oxygen demand-dissolved oxygen model; a one-dimensional polychlorinated biphenyl model that includes uptake and release of constituent by suspended sediment, and deposition and erosion of contaminated particles; and a one-dimensional sediment transport model that accounts for interactions between the flow and the bed, and is capable of tracking dispersing slugs of sediment through cycles of erosion, entrainment, transport in suspension and as bed load, and burial and storage in the bed

  3. Modeling of Sediment Transport and Self-Cleansing in Sea Outfalls

    DEFF Research Database (Denmark)

    Larsen, Torben; Ibro, I.

    2011-01-01

    The paper describes an on-going project on modeling of sediment transport in outfalls with special focus on the self-cleansing problem occurring due to the daily flow variations seen in outfalls. The two central elements of the project is the development of the numerical model and a matching phys...

  4. Pesticide transport to tile-drained fields in SWAT model – macropore flow and sediment

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Blicher-Mathiesen, Gitte

    2015-01-01

    Tool (SWAT) to simulate transport of both mobile (e.g. Bentazon) and strongly sorbed (e.g. Diuron) pesticides in tile drains. Macropore flow is initiated when soil water content exceeds a threshold and rainfall intensity exceeds infiltration capacity. The amount of macropore flow is calculated...... as a fraction of effective rainfall and transported to the tile drains directly. Macropore sediment transport is calculated similarly to the MACRO model (Jarvis et al., 1999). Mobile pesticide transport is calculated with a decay function with the flow, whereas sorbed pesticides transport is associated...

  5. Sediment transport and deposition on a river-dominated tidal flat: An idealized model study

    Science.gov (United States)

    Sherwood, Christopher R.; Chen, Shih-Nan; Geyer, W. Rockwell; Ralston, David K.

    2010-01-01

    A 3-D hydrodynamic model is used to investigate how different size classes of river-derived sediment are transported, exported and trapped on an idealized, river-dominated tidal flat. The model is composed of a river channel flanked by sloping tidal flats, a configuration motivated by the intertidal region of the Skagit River mouth in Washington State, United States. It is forced by mixed tides and a pulse of freshwater and sediment with various settling velocities. In this system, the river not only influences stratification but also contributes a significant cross-shore transport. As a result, the bottom stress is strongly ebb-dominated in the channel because of the seaward advance of strong river flow as the tidal flats drain during ebbs. Sediment deposition patterns and mass budgets are sensitive to settling velocity. The lateral sediment spreading scales with an advective distance (settling time multiplied by lateral flow speed), thereby confining the fast settling sediment classes in the channel. Residual sediment transport is landward on the flats, because of settling lag, but is strongly seaward in the channel. The seaward transport mainly occurs during big ebbs and is controlled by a length scale ratio Ld/XWL, where Ld is a cross-shore advective distance (settling time multiplied by river outlet velocity), and XWL is the immersed cross-shore length of the intertidal zone. Sediment trapping requires Ld/XWL stratification and reducing tidal range both favor sediment trapping, whereas varying channel geometries and asymmetry of tides has relatively small impacts. Implications of the modeling results on the south Skagit intertidal region are discussed.

  6. Numerical Modelling of Suspended Transport and Deposition of Highway Deposited Sediments

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby; Larsen, Torben; Bach, Christine

    Good data for calibration and validation of numerical models are of high importance. In the natural environment data can be hard to archive and the stochastic nature have governing influence on the data archived. Hence for modelling of suspended transport and deposition of particles, originating...... from the highway surfaces, in highway detention ponds, four experiments are carried out. To simplify the complexity of a real pond and for easy control and measurement the sediment transports where carried out in two rectangular channels....

  7. Modeling chemical accumulation in sediment of small waterbodies accounting for sediment transport and water-sediment exchange processes over long periods.

    Science.gov (United States)

    Patterson, David Albert; Strehmel, Alexander; Erzgräber, Beate; Hammel, Klaus

    2017-12-01

    In a recent scientific opinion of the European Food Safety Authority it is argued that the accumulation of plant protection products in sediments over long time periods may be an environmentally significant process. Therefore, the European Food Safety Authority proposed a calculation to account for plant protection product accumulation. This calculation, however, considers plant protection product degradation within sediment as the only dissipation route, and does not account for sediment dynamics or back-diffusion into the water column. The hydraulic model Hydrologic Engineering Center-River Analysis System (HEC-RAS; US Army Corps of Engineers) was parameterized to assess sediment transport and deposition dynamics within the FOrum for Co-ordination of pesticide fate models and their USe (FOCUS) scenarios in simulations spanning 20 yr. The results show that only 10 to 50% of incoming sediment would be deposited. The remaining portion of sediment particles is transported across the downstream boundary. For a generic plant protection product substance this resulted in deposition of only 20 to 50% of incoming plant protection product substance. In a separate analysis, the FOCUS TOXSWA model was utilized to examine the relative importance of degradation versus back-diffusion as loss processes from the sediment compartment for a diverse range of generic plant protection products. In simulations spanning 20 yr, it was shown that back-diffusion was generally the dominant dissipation process. The results of the present study show that sediment dynamics and back-diffusion should be considered when calculating long-term plant protection product accumulation in sediment. Neglecting these may lead to a systematic overestimation of accumulation. Environ Toxicol Chem 2017;36:3223-3231. © 2017 SETAC. © 2017 SETAC.

  8. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel

    International Nuclear Information System (INIS)

    Blanpain, O.

    2009-10-01

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  9. Hillslope sediment and soil carbon transport: can we model their movement?

    Science.gov (United States)

    Hancock, Greg; Kunkel, Veikko; Dever, Chris; Braggins, Matthew; Willgoose, Garry

    2016-04-01

    Quantifying and predicting the movement of hillslope sediment and soil organic carbon (SOC) is of huge scientific, agronomic and economic benefit. In particular, the movement and fate of SOC has attracted considerable recent attention. However, the reliable modelling and prediction of sediment and SOC movement has proved elusive. Here we examine the movement of sediment and SOC along a grazing hillslope in south-eastern Australia. The slope is linear, uniformly managed and has consistent vegetation (grassland). We quantify sediment and SOC transport using the environmental tracer 137-Ceasium. However, here we collect field samples using the conventional soil cores but also shallow samples to quantify the dynamics of the near surface. We also model the movement of sediment and SOC using a numerically based soil erosion and landscape evolution model. Our results show that the hillslope is erosional which is supported by field observation. However, there was no relationship between SOC and 137-Caesium suggesting that SOC and their movement and fate are not related. Significant relationships were observed between soil texture and SOC for the near surface but not for the deeper cores suggesting any movement and fate of SOC is more controlled by soil particle size at the near surface. The SIBERIA sediment transport model was calibrated and run for the site. Comparing the field derived erosion and SOC data with model prediction found no significant relationship. However, the numerical model was able to predict the cyclic pattern of 137-Ceasium and SOC as well as overall trends. Our findings demonstrate that the movement and fate of sediment and SOC is complex.

  10. Modeling Input Errors to Improve Uncertainty Estimates for Sediment Transport Model Predictions

    Science.gov (United States)

    Jung, J. Y.; Niemann, J. D.; Greimann, B. P.

    2016-12-01

    Bayesian methods using Markov chain Monte Carlo algorithms have recently been applied to sediment transport models to assess the uncertainty in the model predictions due to the parameter values. Unfortunately, the existing approaches can only attribute overall uncertainty to the parameters. This limitation is critical because no model can produce accurate forecasts if forced with inaccurate input data, even if the model is well founded in physical theory. In this research, an existing Bayesian method is modified to consider the potential errors in input data during the uncertainty evaluation process. The input error is modeled using Gaussian distributions, and the means and standard deviations are treated as uncertain parameters. The proposed approach is tested by coupling it to the Sedimentation and River Hydraulics - One Dimension (SRH-1D) model and simulating a 23-km reach of the Tachia River in Taiwan. The Wu equation in SRH-1D is used for computing the transport capacity for a bed material load of non-cohesive material. Three types of input data are considered uncertain: (1) the input flowrate at the upstream boundary, (2) the water surface elevation at the downstream boundary, and (3) the water surface elevation at a hydraulic structure in the middle of the reach. The benefits of modeling the input errors in the uncertainty analysis are evaluated by comparing the accuracy of the most likely forecast and the coverage of the observed data by the credible intervals to those of the existing method. The results indicate that the internal boundary condition has the largest uncertainty among those considered. Overall, the uncertainty estimates from the new method are notably different from those of the existing method for both the calibration and forecast periods.

  11. Modeling of sediment transport along Mangalore coast using mike 21

    Digital Repository Service at National Institute of Oceanography (India)

    Babu, K.S.; Dwarakish, G.S.; Jayakumar, S.

    manmade constructions in particular with in the simulation period. 1. INTRODUCTION The coastal zone continuously changes due to natural processes and human interference. The importance of the coastal zone, with respect to safety, ecology, economy..., Goa, for having permitted to use MIKE 21 for this work. We are also grateful to the authorities ofNMPT, Mangalore for sharing the wave and wind data. REFERENCES (1] Bijker E.W. (1971), "Longshore Transport Computations", 10urnal of the Waterways...

  12. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    Science.gov (United States)

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  13. Sensitivity and uncertainty analysis of a sediment transport model: a global approach

    Science.gov (United States)

    Chang, C.; Yang, J.; Tung, Y.

    1993-12-01

    Computerized sediment transport models are frequently employed to quantitatively simulate the movement of sediment materials in rivers. In spite of the deterministic nature of the models, the outputs are subject to uncertainty due to the inherent variability of many input parameters in time and in space, along with the lack of complete understanding of the involved processes. The commonly used first-order method for sensitivity and uncertainty analyses is to approximate a model by linear expansion at a selected point. Conclusions from the first-order method could be of limited use if the model responses drastically vary at different points in parameter space. To obtain the global sensitivity and uncertainty features of a sediment transport model over a larger input parameter space, the Latin hypercubic sampling technique along with regression procedures were employed. For the purpose of illustrating the methodologies, the computer model HEC2-SR was selected in this study. Through an example application, the results about the parameters sensitivity and uncertainty of water surface, bed elevation and sediment discharge were discussed.

  14. BeachWin: Modelling groundwater effects on swash sediment transport and beach profile changes

    OpenAIRE

    Li, L.; Barry, D. A.; Pattiaratchi, C. B.; Masselink, G.

    2002-01-01

    Field and laboratory observations have shown that a relatively low beach groundwater table enhances beach accretion. These observations have led to the beach dewatering technique (artificially lowering the beach water table) for combating beach erosion. Here we present a process-based numerical model that simulates the interacting wave motion on the beach, coastal groundwater flow, swash sediment transport and beach profile changes. Results of model...

  15. Evaluation of 10 cross-shore sediment transport morphological models

    CSIR Research Space (South Africa)

    Schoonees, JS

    1995-05-01

    Full Text Available different purpose another model may be better. Data are generally lacking for accretionary events and for erosion cases where the significant wave heights exceed 2.5 m. Aspects presently usually not included in these models are also listed. Without direct...

  16. Aeolian Sediment Availability and Transport

    NARCIS (Netherlands)

    Hoonhout, B.M.

    2017-01-01

    This thesis explores the nature of aeolian sediment availability and its influence on aeolian sediment transport. The aim is to improve large scale and long term aeolian sediment transport estimates in (nourished) coastal environments. The generally poor performance of aeolian sediment transport

  17. Modelling of Sediment Transport of the Mehadica River, Caras Severin County, Romania

    Science.gov (United States)

    Grozav, Adia; Beilicci, Robert; Beilicci, Erika

    2017-10-01

    Study case is situated in Caras-Severin County. Every sediment transport model application is different both in terms of time and space scale, study objectives, required accuracy, allocated resources, background of the study team etc. For sediment transport modelling, it is necessary to know the characteristics of the sediment in the river bed. Therefore, it is recommended to collect a number of bed sediment grap samples. These samples should be analysing in terms of grain size distribution. To solve theoretical problems of movement of water in the river Mehadica, it requires modelling of water flow in this case. Numerical modelling was performed using the program MIKE11. MIKE 11 is a user-friendly, fully dynamic, one-dimensional modelling tool for the detailed analysis, design, management and operation of both simple and complex river and channel systems. With its exceptional flexibility, speed and user friendly environment, MIKE 11 provides a complete and effective design environment for engineering, water resources, water quality management and planning applications. The Hydrodynamic (HD) module is the nucleus of the MIKE 11 modelling system and forms the basis for most modules including Flood Forecasting, Advection- Dispersion, Water Quality and Non-cohesive sediment transport modules. The MIKE 11 HD module solves the vertically integrated equations for the conservation of mass and momentum, i.e. the Saint-Venant equations. The input data are: area plan with location of cross sections; cross sections topographical data and roughness of river bed; flood discharge hydrograph. Advanced computational modules are included for description of flow over hydraulic structures, including possibilities to describe structure operation.

  18. Hybrid sediment transport model for the “linguado” channel, state of Santa Catarina, Brazil

    Directory of Open Access Journals (Sweden)

    Edison Conde Perez dos Santos

    2017-12-01

    Full Text Available This study involves an assessment of various artificial intelligence-related techniques which aim to produce a more robust system for sediment transport modeling. The intelligent systems developed in this research are directly applicable to academic knowledge and use data from a report on "water circulation assessment in the “Linguado” Channel and Babitonga Bay ,”Santa Catarina”, Brazil, developed by  Military Engineering Institute (IME. The solution employed for sediment transport was built using an intelligent system from the conception of two hybrid models. The first was a Neuro-Fuzzy (ANFIS hybrid model for the study of hydrodynamic behavior, aiming to determine flow rate in the channel. The second was a fuzzy genetic model, able to assess sediment transport in the “Linguado” Channel. The study's conclusion compares the different effects involved in the dredging equilibrium in the “Linguado” Channel according to this hybrid model with the results obtained using a finite element model in the MIKE21® software.

  19. Sediment transport mechanics

    Science.gov (United States)

    Ballio, Francesco; Tait, Simon

    2012-12-01

    The Editor of Acta Geophysica and the Guest Editors wish to dedicate this Topical Issue on Sediment Transport Mechanics to the memory of Stephen Coleman, who died recently. During his career, Stephen had made an outstanding scientific contribution to the topic of Sediment Transport. The level of his contribution is demonstrated in the paper by Aberle, Coleman, and Nikora included in this issue, on which he started working before becoming aware of the illness that led to his untimely death. For scholars and colleagues Stephen remains an example of intellectual honesty and scientific insight.

  20. Preliminary study on performance of a coupled hydrodynamic and sediment transport model on small domain

    Science.gov (United States)

    Rasyif, Teuku M.; Kato, Shigeru; Syamsidik, Okabe, Takumi

    2017-10-01

    Numerical simulation is one of the useful tools to analyze natural phenomena in the earth such as the tsunami disaster. Several numerical models can simulate the tsunami wave from its generation, propagation, and inundation. However, most tsunami models do not include the sediment transport module. The tsunami wave actually induces a lot of sediment during the propagation in the coastal area. In the case of Indian Ocean Tsunami in 2004, massive morphological changes were caused by the tsunami waves around Sumatra coast. In Aceh, some areas eroded by the tsunami wave were living place for a local community. It is indispensable for the resident in the coastal area to estimate the risk of morphological changes due to a tsunami wave. Therefore, a model that can investigate the morphological changes due tsunami wave is necessary. The result of this model can be used to consider a countermeasure for tsunami wave impact in the coastal area, such as land-use management and planning. The COMCOT-SED model had been developed by several researchers. This model combines the hydrodynamic module and the sediment module. The aim of this study is to get general information about performance of the COMCOT-SED model and to modify the model for more accurate results. Firstly, the model was demonstrated in the ideal condition to confirm the model validity. Then, we evaluated the model performance comparing the model results and the laboratory experiment data which was conducted by other researcher. The authors found that the results of water level and bottom profile by the original model in the ideal condition are not suitable. The model modification will give us more suitable results. The modified model will be applied to simulate the tsunami wave and sediment transport in the small area.

  1. Modeling Swash zone sediment transport at Truc Vert beach

    NARCIS (Netherlands)

    Van Rooijen, A.; Reniers, A.; Van Thiel de Vries, J.S.M.; Blenkinsopp, C.; McCall, R.

    2012-01-01

    A one-dimensional hydrostatic version of the XBeach model (Roelvink et al., 2009) is applied to hindcast swash morphodynamics measured during an accretive, and an erosive tide at Le Truc Vert beach (France) in early spring 2008 (Masselink et. al, 2009; Blenkinsopp et al., 2011). Swash hydrodynamics

  2. Mechanics and modeling of flow, sediment transport and morphologic change in riverine lateral separation zones

    Science.gov (United States)

    Logan, Brandy L.; Nelson, Jonathan M.; McDonald, Richard R.; Wright, Scott A.

    2010-01-01

    Lateral separation zones or eddies in rivers are critically important features for sediment storage and for a variety of roles they play in riparian and aquatic ecology. As part of a larger effort to predict the morphology of lateral separation zones in the Colorado River in Grand Canyon for a selection of sediment supply and discharge scenarios, we evaluated the performance of two modeling techniques for predicting flow, sediment transport, and morphodynamics in eddies using field data. In order to understand the relative roles of various exchange mechanisms between the main channel and eddies, we applied two-dimensional unsteady and three-dimensional unsteady models in a reach containing a lateral separation zone. Both models were developed, calibrated, and evaluated using detailed field data comprising acoustic-Doppler velocity measurements, water-surface elevations, sediment concentration by size class, and bathymetry measured during a flood event in the Colorado River. Model results and measurements are used to develop a better understanding of the mechanics of water and sediment exchange between the eddy and the mainstem and other factors that control the morphology of the reach.

  3. A regional sediment transport modeling for fluvial influx and redistribution of suspended radionuclide in the Fukushima coast

    International Nuclear Information System (INIS)

    Uchiyama, Yusuke; Yamanishi, Takafumi; Tsumune, Daisuke; Miyazawa, Yasumasa

    2014-01-01

    Fluvial discharge from the rivers is viewed as a missing piece for the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant. The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended particles (sediments) that are transported quite differently to the dissolved matter in the ocean. We therefore develop a regional sediment transport model consisting of a multi-class non-cohesive sediment transport module, a wave-enhanced bed boundary layer model and a stratigraphy model proposed by Blaas et al. (2007) based on ROMS. (author)

  4. On integrated sediment transport modelling for flash events in mountain environments

    Science.gov (United States)

    Radice, Alessio; Giorgetti, Elisa; Brambilla, Davide; Longoni, Laura; Papini, Monica

    2012-02-01

    Sediment production and transport in mountain basins during short-term, intense events depend on a variety of processes. Available models typically consider a limited portion of the phenomenological chain, frequently either sediment supply or solid transport along the waterways. On the other hand, proper depiction of on-site processes requires ability to model all the process stages and suitable integration between different models. In this manuscript, an integrated modelling is attempted for small catchments in Italian Alpine foothills. The integrated approach has involved: (i) hydrologic estimation of peak discharge, (ii) evaluation of the volumetric sediment supply into the stream, and (iii) computation of the morphologic evolution of the river bed. The results are discussed focussing on: (i) the feasibility of a joint modelling like the one presented, in the light of all the limitations imposed by the different nature of hillslope-devoted and river-devoted models; and (ii) the sensitivity of the obtained results to some parameters, for an assessment of result reliability.

  5. Contaminated sediment transport during floods

    International Nuclear Information System (INIS)

    Fontaine, T.A.

    1992-01-01

    Over the past 48 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of parts of the White Oak Creek catchment. The contaminants presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in the White Oak Creek drainage system. The erosion of these sediments during floods can result in the transport of contaminants both within the catchment and off-site into the Clinch River. A data collection program and a modeling investigation are being used to evaluate the probability of contaminated sediment transport during floods and to develop strategies for controlling off-site transport under present and future conditions

  6. Regional Sediment Management (RSM) Modeling Tools: Integration of Advanced Sediment Transport Tools into HEC-RAS

    Science.gov (United States)

    2014-06-01

    channels using this function is depicted in Figure 5. Sluicing and dam removal features. Classical bed change assumptions (i.e., the veneer method where...are encouraged to contact the authors. REGIONAL SEDIMENT MANAGEMENT IMPLICATIONS: As USACE considers aging infrastructure, climate change, limited

  7. Assimilation of remote sensing observations into a sediment transport model of China's largest freshwater lake: spatial and temporal effects.

    Science.gov (United States)

    Zhang, Peng; Chen, Xiaoling; Lu, Jianzhong; Zhang, Wei

    2015-12-01

    Numerical models are important tools that are used in studies of sediment dynamics in inland and coastal waters, and these models can now benefit from the use of integrated remote sensing observations. This study explores a scheme for assimilating remotely sensed suspended sediment (from charge-coupled device (CCD) images obtained from the Huanjing (HJ) satellite) into a two-dimensional sediment transport model of Poyang Lake, the largest freshwater lake in China. Optimal interpolation is used as the assimilation method, and model predictions are obtained by combining four remote sensing images. The parameters for optimal interpolation are determined through a series of assimilation experiments evaluating the sediment predictions based on field measurements. The model with assimilation of remotely sensed sediment reduces the root-mean-square error of the predicted sediment concentrations by 39.4% relative to the model without assimilation, demonstrating the effectiveness of the assimilation scheme. The spatial effect of assimilation is explored by comparing model predictions with remotely sensed sediment, revealing that the model with assimilation generates reasonable spatial distribution patterns of suspended sediment. The temporal effect of assimilation on the model's predictive capabilities varies spatially, with an average temporal effect of approximately 10.8 days. The current velocities which dominate the rate and direction of sediment transport most likely result in spatial differences in the temporal effect of assimilation on model predictions.

  8. Testing the effects of in-stream sediment sources and sinks on simulated watershed sediment yield using the coupled U.S. Army Corps of Engineers GSSHA Model and SEDLIB Sediment Transport Library

    Science.gov (United States)

    Floyd, I. E.; Downer, C. W.; Brown, G.; Pradhan, N. R.

    2017-12-01

    The Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model is the US Army Corps of Engineers' (USACE)'s only fully coupled overland/in-stream sediment transport model. While the overland sediment transport formulation in GSSHA is considered state of the art, the existing in-stream sediment transport formulation is less robust. A major omission in the formulation of the existing GSSHA in-stream model is the lack of in-stream sources of fine materials. In this effort, we enhanced the in-stream sediment transport capacity of GSSHA by linking GSSHA to the SEDLIB sediment transport library. SEDLIB was developed at the Coastal and Hydraulics Laboratory (CHL) under the System Wide Water Resources Program (SWWRP) and Flood and Coastal (F&C) research program. It is designed to provide a library of sediment flux formulations for hydraulic and hydrologic models, such as GSSHA. This new version of GSSHA, with the updated in-stream sediment transport simulation capability afforded by the linkage to SEDLIB, was tested in against observations in an experimental watershed that had previously been used as a test bed for GSSHA. The results show a significant improvement in the ability to model in-stream sources of fine sediment. This improved capability will broaden the applicability of GSSHA to larger watersheds and watersheds with complex sediment dynamics, such as those subjected to fire hydrology.

  9. 3D Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2010-01-01

    concrete channel with width of 0.8m and a water depth of approximately 0.8m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved...... pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  10. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    Science.gov (United States)

    Li, Tao; Li, Tuan-Jie

    2018-04-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  11. Sediment transport processes in the Pearl River Estuary as revealed by grain-size end-member modeling and sediment trend analysis

    Science.gov (United States)

    Li, Tao; Li, Tuan-Jie

    2017-07-01

    The analysis of grain-size distribution enables us to decipher sediment transport processes and understand the causal relations between dynamic processes and grain-size distributions. In the present study, grain sizes were measured from surface sediments collected in the Pearl River Estuary and its adjacent coastal areas. End-member modeling analysis attempts to unmix the grain sizes into geologically meaningful populations. Six grain-size end-members were identified. Their dominant modes are 0 Φ, 1.5 Φ, 2.75 Φ, 4.5 Φ, 7 Φ, and 8 Φ, corresponding to coarse sand, medium sand, fine sand, very coarse silt, silt, and clay, respectively. The spatial distributions of the six end-members are influenced by sediment transport and depositional processes. The two coarsest end-members (coarse sand and medium sand) may reflect relict sediments deposited during the last glacial period. The fine sand end-member would be difficult to transport under fair weather conditions, and likely indicates storm deposits. The three remaining fine-grained end-members (very coarse silt, silt, and clay) are recognized as suspended particles transported by saltwater intrusion via the flood tidal current, the Guangdong Coastal Current, and riverine outflow. The grain-size trend analysis shows distinct transport patterns for the three fine-grained end-members. The landward transport of the very coarse silt end-member occurs in the eastern part of the estuary, the seaward transport of the silt end-member occurs in the western part, and the east-west transport of the clay end-member occurs in the coastal areas. The results show that grain-size end-member modeling analysis in combination with sediment trend analysis help to better understand sediment transport patterns and the associated transport mechanisms.

  12. Geological evidence and sediment transport modelling for the 1946 and 1960 tsunamis in Shinmachi, Hilo, Hawaii

    Science.gov (United States)

    Chagué, Catherine; Sugawara, Daisuke; Goto, Kazuhisa; Goff, James; Dudley, Walter; Gadd, Patricia

    2018-02-01

    The Japanese community of Shinmachi, established on low-lying land between downtown Hilo and Waiakea, Hawaii, was obliterated by the 1946 Aleutian tsunami but was rebuilt, only to be destroyed again by the 1960 Chilean tsunami. The aim of this study was to find out if any geological evidence of these well documented events had been preserved in the sedimentary record in Wailoa River State Park, which replaced Shinmachi after the 1960 tsunami. This was achieved by collecting cores in the park and performing sedimentological, chronological and geochemical analyses, the latter also processed by principal component analysis. Sediment transport modelling was carried out for both tsunamis, to infer the source of the sediment and areas of deposition on land. The field survey revealed two distinct units within peat and soil, a thin lower unit composed of weathered basalt fragments within mud (Unit 1) and an upper unit dominated by fine volcanic sand within fine silt exhibiting subtle upward fining and coarsening (Unit 2, consisting of Unit 2A and Unit 2B), although these two anomalous units only occur on the western shore of Waiakea Mill Pond. Analysis with an ITRAX core scanner shows that Unit 1 is characterised by high Mn, Fe, Rb, La and Ce counts, combined with elevated magnetic susceptibility. Based on its chemical and sedimentological characteristics, Unit 1 is attributed to a flood event in Wailoa River that occurred around 1520-1660 CE, most probably as a result of a tropical storm. The sharp lower contact of Unit 2 coincides with the appearance of arsenic, contemporaneous with an increase in Ca, Sr, Si, Ti, K, Zr, Mn, Fe, La and Ce. In this study, As is used as a chronological and source material marker, as it is known to have been released into Wailoa River Estuary and Waiakea Mill Pond by the Canec factory between 1932 and 1963. Thus, not only the chemical and sedimentological evidence but also sediment transport modelling, corroborating the historical record

  13. Simulation of the fate of faecal bacteria in estuarine and coastal waters based on a fractionated sediment transport model

    Science.gov (United States)

    Yang, Chen; Liu, Ying

    2017-08-01

    A two-dimensional depth-integrated numerical model is refined in this paper to simulate the hydrodynamics, graded sediment transport process and the fate of faecal bacteria in estuarine and coastal waters. The sediment mixture is divided into several fractions according to the grain size. A bed evolution model is adopted to simulate the processes of the bed elevation change and sediment grain size sorting. The faecal bacteria transport equation includes enhanced source and sink terms to represent bacterial kinetic transformation and disappearance or reappearance due to sediment deposition or re-suspension. A novel partition ratio and dynamic decay rates of faecal bacteria are adopted in the numerical model. The model has been applied to the turbid water environment in the Bristol Channel and Severn estuary, UK. The predictions by the present model are compared with field data and those by non-fractionated model.

  14. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model.

    Science.gov (United States)

    Kinouchi, Tsuyoshi; Yoshimura, Kazuya; Omata, Teppei

    2015-01-01

    The accident at the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) in March 2011 resulted in the deposition of large quantities of radionuclides, such as (134)Cs and (137)Cs, over parts of eastern Japan. Since then high levels of radioactive contamination have been detected in large areas, including forests, agricultural land, and residential areas. Due to the strong adsorption capability of radiocesium to soil particles, radiocesium migrates with eroded sediments, follows the surface flow paths, and is delivered to more populated downstream regions and eventually to the Pacific Ocean. It is therefore important to understand the transport of contaminated sediments in the hydrological system and to predict changes in the spatial distribution of radiocesium concentrations by taking the land-surface processes related to sediment migration into consideration. In this study, we developed a distributed model to simulate the transport of water and contaminated sediment in a watershed hydrological system, and applied this model to a partially forested mountain catchment located in an area highly contaminated by the radioactive fallout. Observed discharge, sediment concentration, and cesium concentration measured from June 2011 until December 2012 were used for calibration of model parameters. The simulated discharge and sediment concentration both agreed well with observed values, while the cesium concentration was underestimated in the initial period following the accident. This result suggests that the leaching of radiocesium from the forest canopy, which was not considered in the model, played a significant role in its transport from the catchment. Based on the simulation results, we quantified the long-term fate of radiocesium over the study area and estimated that the effective half-life of (137)Cs deposited in the study area will be approximately 22 y due to the export of contaminated sediment by land-surface processes, and the amount of (137)Cs remaining in the

  15. Sediment transport in forested head water catchments - Calibration and validation of a soil erosion and landscape evolution model

    Science.gov (United States)

    Hancock, G. R.; Webb, A. A.; Turner, L.

    2017-11-01

    Sediment transport and soil erosion can be determined by a variety of field and modelling approaches. Computer based soil erosion and landscape evolution models (LEMs) offer the potential to be reliable assessment and prediction tools. An advantage of such models is that they provide both erosion and deposition patterns as well as total catchment sediment output. However, before use, like all models they require calibration and validation. In recent years LEMs have been used for a variety of both natural and disturbed landscape assessment. However, these models have not been evaluated for their reliability in steep forested catchments. Here, the SIBERIA LEM is calibrated and evaluated for its reliability for two steep forested catchments in south-eastern Australia. The model is independently calibrated using two methods. Firstly, hydrology and sediment transport parameters are inferred from catchment geomorphology and soil properties and secondly from catchment sediment transport and discharge data. The results demonstrate that both calibration methods provide similar parameters and reliable modelled sediment transport output. A sensitivity study of the input parameters demonstrates the model's sensitivity to correct parameterisation and also how the model could be used to assess potential timber harvesting as well as the removal of vegetation by fire.

  16. SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport

    Directory of Open Access Journals (Sweden)

    J. Chauchat

    2017-11-01

    Full Text Available In this paper, a three-dimensional two-phase flow solver, SedFoam-2.0, is presented for sediment transport applications. The solver is extended from twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD (computational fluid dynamics toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver, two different intergranular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology μ(I. For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment transport: a simple mixing length model (one-dimensional configuration only, a k − ε, and a k − ω model. The numerical implementation is demonstrated on four test cases: sedimentation of suspended particles, laminar bed load, sheet flow, and scour at an apron. These test cases illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of intergranular stress and turbulence models.

  17. Hydrodynamic and Sediment Transport Modelling of Suralaya Coastal Area, Cilegon, Indonesia

    Science.gov (United States)

    Fattah, A. H.; Suntoyo; Damerianne, H. A.; Wahyudi

    2018-03-01

    The coastal zone of Suralaya is located in the district Pulomerak, Cilegon City, Province Banten. This region is a part of the Sunda Strait region that is very important area to support the ongoing activities such as, industries, power plant, ports, and tourism. However, those various activities will certainly give effect to the surrounding environment. To determine the environmental conditions of Suralaya Coast, it is necessary to study the hydrodynamics analysis and sediment transport modelling including the analysis of currents patterns. Tidal elevation observation was conducted for 15 days used to validate the water elevation simulation results, in which a good agreement between the observed data and the model result was obtained with the error value of 1.6%. The dominant current direction is from northeast in west season, while in the east season predominant current direction is from northwest with a speed average current 12,44 cm/s. The dominant wave direction is from the west. The average temperature is at 27°C and the bottom sediment dominant form is fine sand.

  18. Can Computational Sediment Transport Models Reproduce the Observed Variability of Channel Networks in Modern Deltas?

    Science.gov (United States)

    Nesvold, E.; Mukerji, T.

    2017-12-01

    River deltas display complex channel networks that can be characterized through the framework of graph theory, as shown by Tejedor et al. (2015). Deltaic patterns may also be useful in a Bayesian approach to uncertainty quantification of the subsurface, but this requires a prior distribution of the networks of ancient deltas. By considering subaerial deltas, one can at least obtain a snapshot in time of the channel network spectrum across deltas. In this study, the directed graph structure is semi-automatically extracted from satellite imagery using techniques from statistical processing and machine learning. Once the network is labeled with vertices and edges, spatial trends and width and sinuosity distributions can also be found easily. Since imagery is inherently 2D, computational sediment transport models can serve as a link between 2D network structure and 3D depositional elements; the numerous empirical rules and parameters built into such models makes it necessary to validate the output with field data. For this purpose we have used a set of 110 modern deltas, with average water discharge ranging from 10 - 200,000 m3/s, as a benchmark for natural variability. Both graph theoretic and more general distributions are established. A key question is whether it is possible to reproduce this deltaic network spectrum with computational models. Delft3D was used to solve the shallow water equations coupled with sediment transport. The experimental setup was relatively simple; incoming channelized flow onto a tilted plane, with varying wave and tidal energy, sediment types and grain size distributions, river discharge and a few other input parameters. Each realization was run until a delta had fully developed: between 50 and 500 years (with a morphology acceleration factor). It is shown that input parameters should not be sampled independently from the natural ranges, since this may result in deltaic output that falls well outside the natural spectrum. Since we are

  19. Investigating transport capacity equations in sediment yield modelling for the Cariri semi-arid region of Paraiba-PB/Brazil

    Directory of Open Access Journals (Sweden)

    E. E. De Figueiredo

    2015-03-01

    Full Text Available In the semi arid Cariri region of the state of Paraiba, Brazil, runoff is of the Hortonian type generated by excess of rainfall over infiltration capacity, and soil erosion is governed by rainfall intensity and sediment size. However, the governing sediment transport mechanism is not well understood. Sediment transport generally depends on the load of sediment provided by soil erosion and on the transport capacity of the flow. The latter is mainly governed by mechanisms such as water shear stress, or stream power. Accordingly, the load of sediment transported by the flow may vary depending on the mechanism involved in the equation of estimation. Investigation of the sediment transport capacity of the flow via a distributed physically-based model is an important and necessary task, but quite rare in semi-arid climates, and particularly in the Cariri region of the state of Paraíba/Brazil. In this study, the equations of Yalin, Engelund & Hansen, Laursen, DuBoys and Bagnold have been coupled with the MOSEE distributed physically based model aiming at identifying the mechanisms leading to the best model simulations when compared with data observed at various basin scales and land uses in the study region. The results obtained with the investigated methods were quite similar and satisfactory suggesting the feasibility of the mechanisms involved, but the observed values were better represented with Bagnold’s equation, which is physically grounded on the stream power, and we recommend it for simulations of similar climate, runoff generation mechanisms and sediment characteristics as in the study region.

  20. Modelling the cohesive sediment transport in the marine environment: the case of Thermaikos Gulf

    Directory of Open Access Journals (Sweden)

    Y. N. Krestenitis

    2007-01-01

    Full Text Available The transport of fine-grained sediments in the marine environment entails risks of pollutant intrusions from substances absorbed onto the cohesive flocks' surface, gradually released to the aquatic field. These substances include nutrients such as nitrate, phosphate and silicate compounds from drainage from fertilization of adjacent cultivated areas that enter the coastal areas through rivers and streams, or trace metals as remainders from urban and industrial activities. As a consequence, knowledge on the motion and distribution of sediment particles coming from a given pollutant source is expected to provide the 'bulk' information on pollutant distribution, necessary for determining the region of influence of the source and to estimate probable trophic levels of the seawater and potential environmental risks. In that aim a numerical model has been developed to predict the fate of the sediments introduced to the marine environment from different pollution sources, such as river outflows, erosion of the seabed, aeolian transported material and drainage systems. The proposed three-dimensional mathematical model is based on the particle tracking method, according to which matter concentration is expressed by particles, each representing a particular amount of sedimentary mass, passively advected and dispersed by the currents. The processes affecting characteristics and propagation of sedimentary material in the marine environment, incorporated in the parameterization, apart from advection and dispersion, include cohesive sediment and near-bed processes. The movement of the particles along with variations in sedimentary characteristics and state, carried by each particle as personal information, are traced with time. Specifically, concerning transport processes, the local seawater velocity and the particle's settling control advection, whereas the random Brownian motion due to turbulence simulates turbulent diffusion. The

  1. Particle Tracking Model for Suspended Sediment Transport and Streambed Clogging Under Losing and Gaining Conditions

    Science.gov (United States)

    Preziosi-Ribero, A.; Fox, A.; Packman, A. I.; Escobar-Vargas, J.; Donado-Garzon, L. D.; Li, A.; Arnon, S.

    2017-12-01

    Exchange of mass, momentum and energy between surface water and groundwater is a driving factor for the biology, ecology and chemistry of rivers and water bodies in general. Nonetheless, this exchange is dominated by different factors like topography, bed morphology, and large-scale hydraulic gradient. In the particular case of fine sediments like clay, conservative tracer modeling is impossible because they are trapped in river beds for long periods, thus the normal advection dispersion approach leads to errors and results do not agree with reality. This study proposes a numerical particle tracking model that represents the behavior of kaolinite in a sand flume, and how its deposition varies according to different flow conditions, namely losing and gaining flow. Since fine particles do not behave like solutes, kaolinite dynamics are represented using settling velocity and a filtration coefficient allowing the particles to be trapped in the bed. This approach allows us to use measurable parameters directly related with the fine particle features as size and shape, and hydraulic parameters. Results are then compared with experimental results from lab experiments obtained in a recirculating flume, in order to assess the impact of losing and gaining conditions on sediment transport and deposition. Furthermore, our model is able to identify the zones where kaolinite deposition concentrates over the flume due to the bed geometry, and later relate these results with clogging of the bed and hence changes in the bed's hydraulic conductivity. Our results suggest that kaolinite deposition is higher under losing conditions since the vertical velocity of the flow is added to the deposition velocity of the particles modeled. Moreover, the zones where kaolinite concentrates varies under different flow conditions due to the difference in pressure and velocity in the river bed.

  2. Validation of a combined sediment transport modelling approach for the morphodynamic simulation of the upper Hungarian Danube River

    Science.gov (United States)

    Török, Gergely T.; Baranya, Sándor; Rüther, Nils

    2017-04-01

    The reliable numerical modelling of morphological changes of rivers is still an unsolved problem, particularly in non-uniform river bed. Several sediment transport formulas were developed for mixed bed materials, however, none of them works well for any general case. For instance, a given non-uniform transport formula is expected and proved to calculate the bed armouring process well. On the other hand, it might estimate the movement and settling of the eroded finer particles less accurately. In order to overcome this issue the authors have elaborated and presented a combined approach implemented in a 3D numerical flow and sediment transport model. The combined approach means that the model applies two models at the same time but spatially differentiated based on the bed material conditions. Here, we use the sediment transport models of van Rijn (1984) and the Wilcock and Crowe (2003). Recent numerical model validation using laboratory data demonstrated the benefits of this novel method (Török et al., 2017). The main goal of this study is to prove the advantages of the combined approach for field environment. Thus, the upper Hungarian Danube River with non-uniform bed material was selected for morphodynamic modelling purposes. The morphological processes at this river reach are considerably complex, e.g. bed armouring process in the main channel, side gravel bar formation, silting up between the river training structures and sediment deposition in the floodplain caused by floods can be observed. Field measurement data provided hydrological and morphological data for the parameterization of a 3D CFD model. The effect of the historical flood wave in 2013 June was analysed. The results show that the combined approach resulted in a more accurate simulation of the morphological changes, compared to the separate application of the sediment transport formulas. The Wilcock and Crowe formula calculated reliably the armored bed surface in the main channel which resulted in

  3. Modelling the transport of sediments and plutonium from the Mururoa lagoon

    International Nuclear Information System (INIS)

    Rajar, R.; Zagar, D.

    1999-01-01

    The paper deals with the three-dimensional simulation of resuspension and transport of sediments from the Mururoa lagoon into the Pacific Ocean. These sediments were contaminated mainly by plutonium during French nuclear tests (from 1966 to 1996). Two cases were simulated: 'Normal conditions', taking into account permanent action of trade winds and tides and 'storm conditions', where the effect of a tropical cyclone with maximum wind velocity of 150 km/h and with a frequency of 1 storm per 10 years is simulated. The final results show, that the normal conditions cause an annual outflow of 8 x 10 4 tons of sediment and 8 GBq of plutonium, while one tropical cyclone would cause outflow of 3.9 x 10 6 tons of sediment and about 0.7 TBq of plutonium. (author)

  4. Modelling the transport of radioactive cesium released from the Fukushima Dai-ichi NPP with sediments through the hydrologic system

    Science.gov (United States)

    Kinouchi, T.; Omata, T.; Wei, L.; Liu, T.; Araya, M.

    2013-12-01

    Due to the accident of the Fukushima Dai-ichi Nuclear Power Plant on March 2011, a huge amount of radionuclides including Cesium-134 and Cesium-137 was deposited over the main island of Japan and the Pacific Ocean, resulting in further transfer and diffusion of Cesium through the atmospheric flow, watershed hydrological processes, and terrestrial ecosystem. Particularly, for the transfer of Cesium-134 and Cesium-137, sediments eroded and transported by the rainfall-runoff processes play an important role as Cesium tends to be strongly adsorbed to soil particles such as clay and silt. In this study, we focus on the transport of sediment and adsorbed Cesium in the watershed-scale hydrologic system to predict the long-term change of distribution of Cesium and its discharge to rivers and ocean. We coupled a physically-based distributed hydrological model with the modules of erosion and transport of sediments and adsorbed Cesium, and applied the coupled model to the Abukuma River watershed, which is located over the area of higher deposition of Cesium. In the model, complex land use and land cover distributions, and the effect of human activities such as irrigation, dam control and urban drainage system are taken into accounts. Simulation was conducted for the period of March 2011 until August 2012, with initial spatial distribution of Cesium-134 and Cesium-137 obtained by the airborne survey. Simulated flow rates and sediment concentrations agreed well with observed, and found that since the accident, two major storms in July and September 2011 transported about 50% of total sediments transported during the simulated periods. Cesium concentration in the sediment was reproduced well except for the difference in the initial periods. This difference is attributable to the uncertainty arisen from the initial distribution of Cesium in the soil and the transfer of Cesium from the forest canopy.

  5. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  6. A Geographic Information System approach to modeling nutrient and sediment transport

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.A. [Automated Sciences Group, Inc., Oak Ridge, TN (United States); Hunsaker, C.T.; Beauchamp, J.J. [Oak Ridge National Lab., TN (United States); Timmins, S.P. [Analysas Corp., Oak Ridge, TN (United States)

    1993-02-01

    The objective of this study was to develop a water quality model to quantify nonpoint-source (NPS) pollution that uses a geographic information system (GIS) to link statistical modeling of nutrient and sediment delivery with the spatial arrangement of the parameters that drive the model. The model predicts annual nutrient and sediment loading and was developed, calibrated, and tested on 12 watersheds within the Lake Ray Roberts drainage basin in north Texas. Three physiographic regions are represented by these watersheds, and model success, as measured by the accuracy of load estimates, was compared within and across these regions.

  7. Mathematical modelling of the bottom relief reformation on the basis of the 2D sediment transport model coupled with 3D hydrodynamics model

    Science.gov (United States)

    Sukhinov, Alexander; Chistyakov, Alexander; Alekseenko, Elena; Roux, Bernard; Chen, Paul Gang; Kharif, Christian

    2014-05-01

    A special place in terms of complexity and practical significance belongs to the processes associated with transport of sediments in coastal aquatic systems. Coastal dynamics and coastal bottom topography are largely determined by the nature of sediment transport in the coastal zone under the influence of waves and currents. In this work we concider a spatially two-dimensional model of sediment transport, taking into account the following physical parameters and processes: soil porosity, the critical shear stress at which sediment begins moving, turbulent exchange, dynamically changing geometry and function of the bottom elevation level, wind induced currents, bottom shear. Concidered sediment transport model coupled with 2D and 3D models of hydrodynamics Azov3D and implemented on a high performance machine. One of the main feature is that the built discrete model is absolutely stable and completely conservative, in particular, satisfies the law of mass conservation. The coupled model is numerically implemented on the basis of the pressure correction method taking into account nonhydrostatic approximation using the three equations of motion that allows to more adequately describe the hydrodynamic processes near the coastline and on the basis of finite volume method that uses a function of partially filled cells. Results of numerical experiments allow to analyze the dynamics of changes in the bottom geometry, structures and sediment formation, suspension transport, to predict the occurrence of marine ridges and their growth and transformation, to predict the change of the concentration field in the case of emissions from a source, and to predict siltage of navigable channels. The developed on the basis of the parallel programs for high performance system of SFedU model was applied to study the consequences of the naval channel digging in the docks of Arkhangelsk terminal.

  8. Laboratory And Lysimeter Experimentation And Transport Modeling Of Neptunium And Strontium In Savannah River Site Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel I.; Powell, B. A.; Miller, Todd J.

    2012-09-24

    existing data sets. The first data set used laboratory generated Np sorption data as a function of concentration (three orders of magnitude) and as a function of pH (four orders of magnitude of proton concentration). In this modeling exercise, a very simple solution was identified by assuming that all sorption occurred only to the iron oxides in the sediment and that all the added NpO{sub 4}{sup -} remained in the oxidized state and was not reduced to the Np(IV) state (as occurs rapidly with Pu(V)). With rather limited input data, very good agreement between experimental and modeling results was observed. This modeling approach would be easy to add to the PA with little additional data requirements. This model would be useful in a system where pH is expected to change greatly, such as directly beneath a grout or concrete structure. The second model discussed in the report was to derive strontium K{sub d} values from data collected in an 11-year-old field transport study. In this controlled lysimeter study, a sensitivity analysis was conducted of hydrological and chemical processes that influence contaminant transport, including diffusion coefficients, seepage velocity, and K{sub d} value. The best overall K{sub d} derived from the model fit to the data was 32 L kg{sup -1}, which was the same value that was previously measured in traditional laboratory batch sorption studies. This was an unexpected result given the differences in experimental conditions between the batch test and the lysimeter flow through test, in particular the differences between strontium adsorption and desorption processes occurring in the latter test and not in the former. There were some trends in the lysimeter strontium data that were not predicted by the K{sub d} model, which suggest that other geochemical processes are likely also controlling strontium transport. Strontium release and cation exchange are being evaluated. These results suggest that future modeling efforts (e.g., PAs) could be

  9. Numerical modeling of cohesive sediment transport and bed morphology in estuaries

    OpenAIRE

    Leupi, Célestin; Deville, Michel; Altinakar, Mustafa S.

    2007-01-01

    Two major lines of investigation have been pursued in this thesis: (1) More efficient, robust and realistic numerical techniques are designed for the simulation of complex turbulent fluid flows; (2) A new algorithm and its analysis is performed in the context of multiphasic fluid flow, for a cohesive fine-grained sediment (fluid mud) transport in estuaries. Estuaries exist between marine and freshwater system where waters of different physical, chemical and biological composition meet, combin...

  10. Numerical Simulation of Suspended Sediment Transportation Based on Particle Tracking Model

    Science.gov (United States)

    Yao, W. W.; Ying, C.; Mu, J. B.

    2017-08-01

    Coastal engineering that carried out on the muddy seabed were always accompanied by diffusion of suspended sediment, and that would impact on the surrounding marine environment. A 2-D tidal flow mathematical model of the Yueqing Bay was established based on the Lagrange particle tracking model, the diffusion of suspended sediment in pile foundation construction process of a new wharf in the Yueqing Bay was simulated through a continuous moving points method, the calculation results were compared with the one calculated by the traditional convection diffusion method, it showed that the results calculated from the two different methods were similar, therefore it proved the suitability of the Lagrange particle tracing model in the suspended sediment diffusion problems.

  11. Modeling sediment transport processes and residence times in the shallow coastal bay complex of the Virginia Coast Reserve

    Science.gov (United States)

    Safak, I.; Wiberg, P. L.

    2011-12-01

    Patterns of sediment transport and particle residence times influence the morphology and ecology of shallow coastal bays in important ways. The Virginia Coast Reserve (VCR), a barrier island-lagoon-marsh system on the Eastern Shore of Virginia, is typical of many shallow coastal bay complexes that lack a significant fluvial source of freshwater and sediment. Sediment redistribution within the bays in response to storms and sea-level rise, together with the dynamics of marsh and lagoon-bottom plants, largely governs the morphological evolution of this system. There are also important feedbacks between sediment and ecosystem dynamics. This is particularly true in the VCR, which is relatively unaffected by human activities. As a step towards evaluating the impact of hydrodynamics on sediment and ecological processes in the VCR, a single unified model that accounts for circulation, surface waves, wave-current interaction, and sediment processes is employed. This three-dimensional unstructured grid finite-volume coastal ocean model (FVCOM) is validated with field observations of wind- and tide-induced water flow (water level and current velocities) in Hog Island Bay, centrally located within the VCR. Here, the resulting patterns of sediment transport and particle residence times over event and seasonal time scales are presented. Water and particle exchange within the VCR and between the VCR and the ocean is examined with the Lagrangian particle-tracking module in FVCOM. We focus on three bays with strongly varying bathymetry and coastline geometry, which are also located along a gradient of nitrogen input to the system. The results indicate that residence time of particles within the system vary greatly depending on the location of particle release, bay morphology, and wind conditions. The implications for morphologic evolution and ecosystem response to climate and land-use changes are evaluated.

  12. Mathematical simulation of sediment and radionuclide transport in estuaries

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1982-11-01

    The finite element model LFESCOT (Flow, Energy, Salinity, Sediment and Contaminant Transport Model) was synthesized under this study to simulate radionuclide transport in estuaries to obtain accurate radionuclide distributions which are affected by these factors: time variance, three-dimensional flow, temperature, salinity, and sediments. Because sediment transport and radionuclide adsorption/desorption depend strongly on sizes or types of sediments, FLESCOT simulates sediment and a sediment-sorbed radionuclide for the total of three sediment-size fractions (or sediment types) of both cohesive and noncohesive sediments. It also calculates changes of estuarine bed conditions, including bed elevation changes due to sediment erosion/deposition, and three-dimensional distributions of three bed sediment sizes and sediment-sorbed radionuclides within the bed. Although the model was synthesized for radionuclide transport, it is general enough to also handle other contaminants such as heavy metals, pesticides, or toxic chemicals. The model was checked for its capability for flow, water surface elevation change, salinity, sediment and radionuclide transport under various simple conditions first, confirming the general validity of the model's computational schemes. These tests also revealed that FLESCOT can use large aspect ratios of computational cells, which are necessary in handling long estuarine study areas. After these simple tests, FLESCOT was applied to the Hudson River estuary between Chelsea and the mouth of the river to examine how well the model can predict radionuclide transport through simulating tidally influenced three-dimensional flow, salinity, sediment and radionuclide movements with their interactions

  13. Waste area Grouping 2 Phase I remedial investigation: Sediment and Cesium-137 transport modeling report

    International Nuclear Information System (INIS)

    Clapp, R.B.; Bao, Y.S.; Moore, T.D.; Brenkert, A.L.; Purucker, S.T.; Reece, D.K.; Burgoa, B.B.

    1996-06-01

    This report is one of five reports issued in 1996 that provide follow-up information to the Phase I Remedial Investigation (RI) Report for Waste Area Grouping (WAG) 2 at Oak Ridge National Laboratory (ORNL). The five reports address areas of concern that may present immediate risk to public health at the Clinch River and ecological risk within WAG 2 at ORNL. A sixth report, on groundwater, in the series documenting WAG 2 RI Phase I results were part of project activities conducted in FY 1996. The five reports that complete activities conducted as part of Phase I of the Remedial Investigation (RI) for WAG 2 are as follows: (1) Waste Area Grouping 2, Phase I Task Data Report: Seep Data Assessment, (2) Waste Area Grouping 2, Phase I Task Data Report: Tributaries Data Assessment, (3) Waste Area Grouping 2, Phase I Task Data Report: Ecological Risk Assessment, (4) Waste Area Grouping 2, Phase I Task Data Report: Human Health Risk Assessment, (5) Waste Area Grouping 2, Phase I Task Data Report: Sediment and 137 Cs Transport Modeling In December 1990, the Remedial Investigation Plan for Waste Area Grouping 2 at Oak Ridge National Laboratory was issued (ORNL 1990). The WAG 2 RI Plan was structured with a short-term component to be conducted while upgradient WAGs are investigated and remediated, and a long-term component that will complete the RI process for WAG 2 following remediation of upgradient WAGs. RI activities for the short-term component were initiated with the approval of the Environmental Protection Agency, Region IV (EPA), and the Tennessee Department of Environment and Conservation (TDEC). This report presents the results of an investigation of the risk associated with possible future releases of 137 Cs due to an extreme flood. The results are based on field measurements made during storms and computer model simulations

  14. EFDC1D - A ONE DIMENSIONAL HYDRODYNAMIC AND SEDIMENT TRANSPORT MODEL FOR RIVER AND STREAM NETWORKS: MODEL THEORY AND USERS GUIDE

    Science.gov (United States)

    This technical report describes the new one-dimensional (1D) hydrodynamic and sediment transport model EFDC1D. This model that can be applied to stream networks. The model code and two sample data sets are included on the distribution CD. EFDC1D can simulate bi-directional unstea...

  15. A modified QWASI model for fate and transport modeling of mercury between the water-ice-sediment in Lake Ulansuhai.

    Science.gov (United States)

    Liu, Yu; Li, Changyou; Anderson, Bruce; Zhang, Sheng; Shi, Xiaohong; Zhao, Shengnan

    2017-06-01

    Mercury contamination from industrial and agricultural drainage into lakes and rivers is a growing concern in Northern China. Lake Ulansuhai, located in Hetao irrigation district in Inner Mongolia, is the only sink for the all industrial and agricultural drainage and sole outlet for this district to the Yellow River, which is one of the main source of drinking water for the numerous cities and towns downstream. Because Ulansuahi is ice-covered during winter, the QWASI model was modified by adding an ice equation to get a more accurate understanding of the fate and transport of mercury within the lake. Both laboratory and field tests were carried out during the ice growth period. The aquivalence and mass balance approaches were used to develop the modified QWASI + ice model. The margins of error between the modelled and the measured average concentrations of Hg in ice, water, and sediment were 30%, 26.2%, and 19.8% respectively. These results suggest that the new QWASI + ice model could be used to more accurately represent the fate and transport of mercury in the seasonally ice-covered lakes, during the ice growth period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Numerical modeling of the impact of sea-level rise on fringing coral reef hydrodynamics and sediment transport

    Science.gov (United States)

    Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K.

    2011-01-01

    Most climate projections suggest that sea level may rise on the order of 0.5-1.0 m by 2100; it is not clear, however, how fluid flow and sediment dynamics on exposed fringing reefs might change in response to this rapid sea-level rise. Coupled hydrodynamic and sediment-transport numerical modeling is consistent with recent published results that suggest that an increase in water depth on the order of 0.5-1.0 m on a 1-2 m deep exposed fringing reef flat would result in larger significant wave heights and setup, further elevating water depths on the reef flat. Larger waves would generate higher near-bed shear stresses, which, in turn, would result in an increase in both the size and the quantity of sediment that can be resuspended from the seabed or eroded from adjacent coastal plain deposits. Greater wave- and wind-driven currents would develop with increasing water depth, increasing the alongshore and offshore flux of water and sediment from the inner reef flat to the outer reef flat and fore reef where coral growth is typically greatest. Sediment residence time on the fringing reef flat was modeled to decrease exponentially with increasing sea-level rise as the magnitude of sea-level rise approached the mean water depth over the reef flat. The model results presented here suggest that a 0.5-1.0 m rise in sea level will likely increase coastal erosion, mixing and circulation, the amount of sediment resuspended, and the duration of high turbidity on exposed reef flats, resulting in decreased light availability for photosynthesis, increased sediment-induced stress on the reef ecosystem, and potentially affecting a number of other ecological processes.

  17. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    have described the effective use of satellite remote sensing data in modelling sediment transport. Quillon et al. (2004) have coupled remote sens- ing data with in situ measurements to simulate suspended sediment transport in New Caledonia. Lagoon. Initial distribution of sediment concentrations are of critical importance ...

  18. Sediment transport under breaking waves

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Hjelmager Jensen, Jacob; Mayer, Stefan

    2000-01-01

    generated at the surface where the wave breaks as well as the turbulence generated near the bed due to the wave-motion and the undertow. In general, the levels of turbulent kinetic energy are found to be higher than experiments show. This results in an over prediction of the sediment transport. Nevertheless...

  19. The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport, bedrock erosion, and landscape evolution

    Science.gov (United States)

    Shobe, Charles M.; Tucker, Gregory E.; Barnhart, Katherine R.

    2017-12-01

    Models of landscape evolution by river erosion are often either transport-limited (sediment is always available but may or may not be transportable) or detachment-limited (sediment must be detached from the bed but is then always transportable). While several models incorporate elements of, or transition between, transport-limited and detachment-limited behavior, most require that either sediment or bedrock, but not both, are eroded at any given time. Modeling landscape evolution over large spatial and temporal scales requires a model that can (1) transition freely between transport-limited and detachment-limited behavior, (2) simultaneously treat sediment transport and bedrock erosion, and (3) run in 2-D over large grids and be coupled with other surface process models. We present SPACE (stream power with alluvium conservation and entrainment) 1.0, a new model for simultaneous evolution of an alluvium layer and a bedrock bed based on conservation of sediment mass both on the bed and in the water column. The model treats sediment transport and bedrock erosion simultaneously, embracing the reality that many rivers (even those commonly defined as bedrock rivers) flow over a partially alluviated bed. SPACE improves on previous models of bedrock-alluvial rivers by explicitly calculating sediment erosion and deposition rather than relying on a flux-divergence (Exner) approach. The SPACE model is a component of the Landlab modeling toolkit, a Python-language library used to create models of Earth surface processes. Landlab allows efficient coupling between the SPACE model and components simulating basin hydrology, hillslope evolution, weathering, lithospheric flexure, and other surface processes. Here, we first derive the governing equations of the SPACE model from existing sediment transport and bedrock erosion formulations and explore the behavior of local analytical solutions for sediment flux and alluvium thickness. We derive steady-state analytical solutions for

  20. Numerical model of turbulence, sediment transport, and morphodynamics tested in the Colorado River at Grand Canyon

    Science.gov (United States)

    Alvarez, L. V.; Grams, P.

    2017-12-01

    We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the

  1. Modeling and measuring the relationships between sediment transport processes, alluvial bedforms and channel-scale morphodynamics in sandy braided rivers.

    Science.gov (United States)

    Nicholas, A. P.; Ashworth, P. J.; Best, J.; Lane, S. N.; Parsons, D. R.; Sambrook Smith, G.; Simpson, C.; Strick, R. J. P.; Unsworth, C. A.

    2017-12-01

    Recent years have seen significant advances in the development and application of morphodynamic models to simulate river evolution. Despite this progress, significant challenges remain to be overcome before such models can provide realistic simulations of river response to environmental change, or be used to determine the controls on alluvial channel patterns and deposits with confidence. This impasse reflects a wide range of factors, not least the fact that many of the processes that control river behaviour operate at spatial scales that cannot be resolved by such models. For example, sand-bed rivers are characterised by multiple scales of topography (e.g., dunes, bars, channels), the finest of which must often by parameterized, rather than represented explicitly in morphodynamic models. We examine these issues using a combination of numerical modeling and field observations. High-resolution aerial imagery and Digital Elevation Models obtained for the sandy braided South Saskatchewan River in Canada are used to quantify dune, bar and channel morphology and their response to changing flow discharge. Numerical simulations are carried out using an existing morphodynamic model based on the 2D shallow water equations, coupled with new parameterisations of the evolution and influence of alluvial bedforms. We quantify the spatial patterns of sediment flux using repeat images of dune migration and bar evolution. These data are used to evaluate model predictions of sediment transport and morphological change, and to assess the degree to which model performance is controlled by the parametrization of roughness and sediment transport phenomena linked to subgrid-scale bedforms (dunes). The capacity of such models to replicate the characteristic multi-scale morphology of bars in sand-bed rivers, and the contrasting morphodynamic signatures of braiding during low and high flow conditions, is also assessed.

  2. 3D Numerical Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in Wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2009-01-01

    concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants...... and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  3. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling

    DEFF Research Database (Denmark)

    Dale, A.W.; Regnier, P.; Knab, N.J.

    2008-01-01

    A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction...... methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ...

  4. Sedimentation models

    International Nuclear Information System (INIS)

    Rector, D.R.; Bunker, B.C.

    1995-09-01

    The nuclear wastes currently stored in tanks at the Hanford site contain complex mixtures of insoluble sludge particles, salts, and supernatant liquids. Treatment and ultimate disposal of these tank wastes will require that the complex solid-liquid mixtures be dispersed in aqueous solutions for retrieval and transport. The mixtures will then require pretreatment steps that will ultimately require the isolation of insoluble particles from supernatant liquids via solid-liquid separation steps such as settle-decant operations, centrifugation, or filtration. There is a perception that sludge treatment in general, and solid-liquid separations in particular, are relatively trivial operations that can easily be transferred to private industry to initiate tank cleanup. Experiences gained over the past few years at Hanford suggest that waste processing is not as trivial as it seems

  5. Analysis of the flood inundation maps in a two-dimensional hydrodynamic model coupled with sediment transport: A case study of Darby Creek, PA

    Science.gov (United States)

    Hosseiny, S. M. H.; Smith, V. B.; Zarzar, C.

    2016-12-01

    Darby Creek, in metro-Philadelphia, PA, has been subject hydrologic engineering since the late 17th century. Today, this urbanized creek is considered one of the most flood-prone in the U.S. [Philadelphia Inquirer, 2012]. The creek channel and floodplain are predominately composed of alluvial sediments. During flood events sediment transport increases, geomorphically altering the channel and floodplain. However, most flood inundation mapping does not consider water-sediment interaction and the geomorphic implications. To address the potential uncertainty embedded in neglecting geomorphic processes, this study aims to analyze flood inundation maps through describing the flow velocity field and sediment transport. This study uses LiDAR and bathymetric data in the International River Interface Cooperative software (iRIC) with FaSTMECH (a two-dimensional quasi unsteady flow solver) to calculate sediment transport relative to hydraulic characteristics of the flow. A flood event April 30th, 2014 is modeled and tested based on stage and discharge data from an upstream USGS gage. For model validation the boundary conditions were set using the USGS gage in combination with two NOAA stream gages on the Delaware River near the outlet of Darby Creek. The results from this study demonstrate how to incorporate sediment transport in flood inundation maps and can ultimately be used to gain a deeper understanding of sediment transport and sediment storage in the floodplain.

  6. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 121; Issue 5 ... Suspended sediment concentrations; OCM; sediment transport model; tide. ... Optimization of the model mud parameters, like settling velocity and critical shear stress for erosion are realized with respect to the sediment size distribution and the bottom ...

  7. Application of the Geophysical Scale Multi-Block Transport Modeling System to Hydrodynamic Forcing of Dredged Material Placement Sediment Transport within the James River Estuary

    Science.gov (United States)

    Kim, S. C.; Hayter, E. J.; Pruhs, R.; Luong, P.; Lackey, T. C.

    2016-12-01

    The geophysical scale circulation of the Mid Atlantic Bight and hydrologic inputs from adjacent Chesapeake Bay watersheds and tributaries influences the hydrodynamics and transport of the James River estuary. Both barotropic and baroclinic transport govern the hydrodynamics of this partially stratified estuary. Modeling the placement of dredged sediment requires accommodating this wide spectrum of atmospheric and hydrodynamic scales. The Geophysical Scale Multi-Block (GSMB) Transport Modeling System is a collection of multiple well established and USACE approved process models. Taking advantage of the parallel computing capability of multi-block modeling, we performed one year three-dimensional modeling of hydrodynamics in supporting simulation of dredged sediment placements transport and morphology changes. Model forcing includes spatially and temporally varying meteorological conditions and hydrological inputs from the watershed. Surface heat flux estimates were derived from the National Solar Radiation Database (NSRDB). The open water boundary condition for water level was obtained from an ADCIRC model application of the U. S. East Coast. Temperature-salinity boundary conditions were obtained from the Environmental Protection Agency (EPA) Chesapeake Bay Program (CBP) long-term monitoring stations database. Simulated water levels were calibrated and verified by comparison with National Oceanic and Atmospheric Administration (NOAA) tide gage locations. A harmonic analysis of the modeled tides was performed and compared with NOAA tide prediction data. In addition, project specific circulation was verified using US Army Corps of Engineers (USACE) drogue data. Salinity and temperature transport was verified at seven CBP long term monitoring stations along the navigation channel. Simulation and analysis of model results suggest that GSMB is capable of resolving the long duration, multi-scale processes inherent to practical engineering problems such as dredged material

  8. Sediment transport patterns in the San Francisco Bay Coastal System from cross-validation of bedform asymmetry and modeled residual flux

    Science.gov (United States)

    Barnard, Patrick L.; Erikson, Li H.; Elias, Edwin P.L.; Dartnell, Peter; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    The morphology of ~ 45,000 bedforms from 13 multibeam bathymetry surveys was used as a proxy for identifying net bedload sediment transport directions and pathways throughout the San Francisco Bay estuary and adjacent outer coast. The spatially-averaged shape asymmetry of the bedforms reveals distinct pathways of ebb and flood transport. Additionally, the region-wide, ebb-oriented asymmetry of 5% suggests net seaward-directed transport within the estuarine-coastal system, with significant seaward asymmetry at the mouth of San Francisco Bay (11%), through the northern reaches of the Bay (7–8%), and among the largest bedforms (21% for λ > 50 m). This general indication for the net transport of sand to the open coast strongly suggests that anthropogenic removal of sediment from the estuary, particularly along clearly defined seaward transport pathways, will limit the supply of sand to chronically eroding, open-coast beaches. The bedform asymmetry measurements significantly agree (up to ~ 76%) with modeled annual residual transport directions derived from a hydrodynamically-calibrated numerical model, and the orientation of adjacent, flow-sculpted seafloor features such as mega-flute structures, providing a comprehensive validation of the technique. The methods described in this paper to determine well-defined, cross-validated sediment transport pathways can be applied to estuarine-coastal systems globally where bedforms are present. The results can inform and improve regional sediment management practices to more efficiently utilize often limited sediment resources and mitigate current and future sediment supply-related impacts.

  9. Toward a community coastal sediment transport modeling system: the second workshop

    Science.gov (United States)

    Sherwood, Christopher R.; Harris, Courtney K.; Geyer, W. Rockwell; Butman, Bradford

    2002-01-01

    Models for transport and the long-term fate of particles in coastal waters are essential for a variety of applications related to commerce, defense, public health, and the quality of the marine environment. Examples include: analysis of waste disposal and transport and the fate of contaminated materials; evaluation of burial rates for naval mines or archaeological artifacts; prediction of water-column optical properties; analysis of transport and the fate of biological particles; prediction of coastal flooding and coastal erosion; evaluation of impacts of sea-level or wave-climate changes and coastal development; planning for construction and maintenance of navigable waterways; evaluation of habitat for commercial fisheries; evaluation of impacts of natural or anthropogenic changes in coastal conditions on recreational activities; and design of intakes and outfalls for sewage treatment, cooling systems, and desalination plants.

  10. A longshore sediment transport estimation for the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Nayak, B.U.; Chandramohan, P.

    An empirical sediment transport model has been developed based on longshore energy flux equation. Study indicates that annual gross sediment transport rate is high (1.5 x 10 super(6) m super(3) to 2.0 x 10 super(6) m super(3)) along the coasts...

  11. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    Science.gov (United States)

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  12. Effect of roughness formulation on the performance of a coupled wave, hydrodynamic, and sediment transport model

    Science.gov (United States)

    Ganju, Neil K.; Sherwood, Christopher R.

    2010-01-01

    A variety of algorithms are available for parameterizing the hydrodynamic bottom roughness associated with grain size, saltation, bedforms, and wave–current interaction in coastal ocean models. These parameterizations give rise to spatially and temporally variable bottom-drag coefficients that ostensibly provide better representations of physical processes than uniform and constant coefficients. However, few studies have been performed to determine whether improved representation of these variable bottom roughness components translates into measurable improvements in model skill. We test the hypothesis that improved representation of variable bottom roughness improves performance with respect to near-bed circulation, bottom stresses, or turbulence dissipation. The inner shelf south of Martha’s Vineyard, Massachusetts, is the site of sorted grain-size features which exhibit sharp alongshore variations in grain size and ripple geometry over gentle bathymetric relief; this area provides a suitable testing ground for roughness parameterizations. We first establish the skill of a nested regional model for currents, waves, stresses, and turbulent quantities using a uniform and constant roughness; we then gauge model skill with various parameterization of roughness, which account for the influence of the wave-boundary layer, grain size, saltation, and rippled bedforms. We find that commonly used representations of ripple-induced roughness, when combined with a wave–current interaction routine, do not significantly improve skill for circulation, and significantly decrease skill with respect to stresses and turbulence dissipation. Ripple orientation with respect to dominant currents and ripple shape may be responsible for complicating a straightforward estimate of the roughness contribution from ripples. In addition, sediment-induced stratification may be responsible for lower stresses than predicted by the wave–current interaction model.

  13. The use of modeling and suspended sediment concentration measurements for quantifying net suspended sediment transport through a large tidally dominated inlet

    Science.gov (United States)

    Erikson, Li H.; Wright, Scott A.; Elias, Edwin; Hanes, Daniel M.; Schoellhamer, David H.; Largier, John; Barnard, P.L.; Jaffee, B.E.; Schoellhamer, D.H.

    2013-01-01

    Sediment exchange at large energetic inlets is often difficult to quantify due complex flows, massive amounts of water and sediment exchange, and environmental conditions limiting long-term data collection. In an effort to better quantify such exchange this study investigated the use of suspended sediment concentrations (SSC) measured at an offsite location as a surrogate for sediment exchange at the tidally dominated Golden Gate inlet in San Francisco, CA. A numerical model was calibrated and validated against water and suspended sediment flux measured during a spring–neap tide cycle across the Golden Gate. The model was then run for five months and net exchange was calculated on a tidal time-scale and compared to SSC measurements at the Alcatraz monitoring site located in Central San Francisco Bay ~ 5 km from the Golden Gate. Numerically modeled tide averaged flux across the Golden Gate compared well (r2 = 0.86, p-value

  14. Sediment transport drives tidewater glacier periodicity.

    Science.gov (United States)

    Brinkerhoff, Douglas; Truffer, Martin; Aschwanden, Andy

    2017-07-21

    Most of Earth's glaciers are retreating, but some tidewater glaciers are advancing despite increasing temperatures and contrary to their neighbors. This can be explained by the coupling of ice and sediment dynamics: a shoal forms at the glacier terminus, reducing ice discharge and causing advance towards an unstable configuration followed by abrupt retreat, in a process known as the tidewater glacier cycle. Here we use a numerical model calibrated with observations to show that interactions between ice flow, glacial erosion, and sediment transport drive these cycles, which occur independent of climate variations. Water availability controls cycle period and amplitude, and enhanced melt from future warming could trigger advance even in glaciers that are steady or retreating, complicating interpretations of glacier response to climate change. The resulting shifts in sediment and meltwater delivery from changes in glacier configuration may impact interpretations of marine sediments, fjord geochemistry, and marine ecosystems.The reason some of the Earth's tidewater glaciers are advancing despite increasing temperatures is not entirely clear. Here, using a numerical model that simulates both ice and sediment dynamics, the authors show that internal dynamics drive glacier variability independent of climate.

  15. Modelling Hydrology and Sediment Transport in a Semi-Arid and Anthropized Catchment Using the SWAT Model: The Case of the Tafna River (Northwest Algeria

    Directory of Open Access Journals (Sweden)

    Amin Zettam

    2017-03-01

    Full Text Available Sediment deposits in North African catchments contribute to around 2%–5% of the yearly loss in the water storage capacity of dams. Despite its semi-arid climate, the Tafna River plays an important role in Algeria’s water self-sufficiency. There is continuous pressure on the Tafna’s dams to respond to the demand for water. The Soil and Water Assessment Tool (SWAT was used to evaluate the contribution of different compartments in the basin to surface water and the dams’ impact on water and sediment storage and its flux to the sea in order to develop reservoir management. The hydrological modelling fitted well with the observed data (Nash varying between 0.42 and 0.75 and R2 varying between 0.25 and 0.84. A large proportion of the surface water came from surface runoff (59% and lateral flow (40%, while the contribution of groundwater was insignificant (1%. SWAT was used to predict sediments in all the gauging stations. Tafna River carries an average annual quantity of 2942 t·yr−1 to the Mediterranean Sea. A large amount of water was stored in reservoirs (49%, which affected the irrigated agricultural zone downstream of the basin. As the dams contain a large amount of sediment, in excess of 27,000 t·yr−1 (90% of the sediment transported by Tafna, storage of sediment reduces the lifetime of reservoirs.

  16. Hydrodynamic and Sediment Transport, Mill Cove, St. Johns River, Florida: Numerical Modeling Study

    National Research Council Canada - National Science Library

    Sanchez, Jose

    1997-01-01

    The U.S. Army Engineer District, Jacksonville, is investigating how to improve tidal flushing in Mill Cove, lower St Johns River, Florida, to maintain water quality and to prevent excessive sedimentation...

  17. Longshore sediment transport at Golden Sands (Bulgaria

    Directory of Open Access Journals (Sweden)

    Hristo Nikolov

    2006-09-01

    Full Text Available The paper presents the results of studies on the qualitative and quantitative features of the littoral drift at Golden Sands (Bulgaria, carried out jointly by Polish and Bulgarian researchers. The mathematical modelling of physical coastal processes took wave transformation (wave diffraction and refraction; the effects of shoaling and wave breaking and longshore sediment transport into account. The computations were carried out for the mean statistical annual wave climate, determined on the basis of IO BAS wave data, simulated using the WAM method from long-term Black Sea wind data. The results of sediment transport computations clearly show that its direction off the Golden Sands shore is from north to south.

  18. Multi-dimensional rheology-based two-phase model for sediment transport and applications to sheet flow and pipeline scour

    International Nuclear Information System (INIS)

    Lee, Cheng-Hsien; Low, Ying Min; Chiew, Yee-Meng

    2016-01-01

    Sediment transport is fundamentally a two-phase phenomenon involving fluid and sediments; however, many existing numerical models are one-phase approaches, which are unable to capture the complex fluid-particle and inter-particle interactions. In the last decade, two-phase models have gained traction; however, there are still many limitations in these models. For example, several existing two-phase models are confined to one-dimensional problems; in addition, the existing two-dimensional models simulate only the region outside the sand bed. This paper develops a new three-dimensional two-phase model for simulating sediment transport in the sheet flow condition, incorporating recently published rheological characteristics of sediments. The enduring-contact, inertial, and fluid viscosity effects are considered in determining sediment pressure and stresses, enabling the model to be applicable to a wide range of particle Reynolds number. A k − ε turbulence model is adopted to compute the Reynolds stresses. In addition, a novel numerical scheme is proposed, thus avoiding numerical instability caused by high sediment concentration and allowing the sediment dynamics to be computed both within and outside the sand bed. The present model is applied to two classical problems, namely, sheet flow and scour under a pipeline with favorable results. For sheet flow, the computed velocity is consistent with measured data reported in the literature. For pipeline scour, the computed scour rate beneath the pipeline agrees with previous experimental observations. However, the present model is unable to capture vortex shedding; consequently, the sediment deposition behind the pipeline is overestimated. Sensitivity analyses reveal that model parameters associated with turbulence have strong influence on the computed results.

  19. Investigation of vertical size segregation in bedload sediment transport with a coupled fluid-discrete element model

    Directory of Open Access Journals (Sweden)

    Frey Philippe

    2017-01-01

    Full Text Available In order to gain understanding of kinetic sieving-type segregation in bedload sediment transport, numerical experiments of two-size particle mixtures were carried out, using a validated coupled fluid-discrete element model developed at Irstea. A 3D 10% steep domain consisting at initial time of a given number of layers of 4 mm particles deposited on top of a coarser 6 mm particle bed, was submitted to a turbulent and supercritical fluid shear flow (Shields numbers of 0.1 and 0.3. The elevation of the centre of mass of the infiltrated fine particles is observed to follow the same logarithmic decrease with time, whatever the initial number of fine layers. This decrease is steeper for a higher Shields number. The main result is that this typical behaviour is related at first order to the shear rate depth profile.

  20. Parameter estimation for a cohesive sediment transport model by assimilating satellite observations in the Hangzhou Bay: Temporal variations and spatial distributions

    Science.gov (United States)

    Wang, Daosheng; Zhang, Jicai; He, Xianqiang; Chu, Dongdong; Lv, Xianqing; Wang, Ya Ping; Yang, Yang; Fan, Daidu; Gao, Shu

    2018-01-01

    Model parameters in the suspended cohesive sediment transport models are critical for the accurate simulation of suspended sediment concentrations (SSCs). Difficulties in estimating the model parameters still prevent numerical modeling of the sediment transport from achieving a high level of predictability. Based on a three-dimensional cohesive sediment transport model and its adjoint model, the satellite remote sensing data of SSCs during both spring tide and neap tide, retrieved from Geostationary Ocean Color Imager (GOCI), are assimilated to synchronously estimate four spatially and temporally varying parameters in the Hangzhou Bay in China, including settling velocity, resuspension rate, inflow open boundary conditions and initial conditions. After data assimilation, the model performance is significantly improved. Through several sensitivity experiments, the spatial and temporal variation tendencies of the estimated model parameters are verified to be robust and not affected by model settings. The pattern for the variations of the estimated parameters is analyzed and summarized. The temporal variations and spatial distributions of the estimated settling velocity are negatively correlated with current speed, which can be explained using the combination of flocculation process and Stokes' law. The temporal variations and spatial distributions of the estimated resuspension rate are also negatively correlated with current speed, which are related to the grain size of the seabed sediments under different current velocities. Besides, the estimated inflow open boundary conditions reach the local maximum values near the low water slack conditions and the estimated initial conditions are negatively correlated with water depth, which is consistent with the general understanding. The relationships between the estimated parameters and the hydrodynamic fields can be suggestive for improving the parameterization in cohesive sediment transport models.

  1. How to bridge the gap between "unresolved" model and "resolved" model in CFD-DEM coupled method for sediment transport?

    Science.gov (United States)

    Liu, D.; Fu, X.; Liu, X.

    2016-12-01

    In nature, granular materials exist widely in water bodies. Understanding the fundamentals of solid-liquid two-phase flow, such as turbulent sediment-laden flow, is of importance for a wide range of applications. A coupling method combining computational fluid dynamics (CFD) and discrete element method (DEM) is now widely used for modeling such flows. In this method, when particles are significantly larger than the CFD cells, the fluid field around each particle should be fully resolved. On the other hand, the "unresolved" model is designed for the situation where particles are significantly smaller than the mesh cells. Using "unresolved" model, large amount of particles can be simulated simultaneously. However, there is a gap between these two situations when the size of DEM particles and CFD cell is in the same order of magnitude. In this work, the most commonly used void fraction models are tested with numerical sedimentation experiments. The range of applicability for each model is presented. Based on this, a new void fraction model, i.e., a modified version of "tri-linear" model, is proposed. Particular attention is paid to the smooth function of void fraction in order to avoid numerical instability. The results show good agreement with the experimental data and analytical solution for both single-particle motion and also group-particle motion, indicating great potential of the new void fraction model.

  2. Sediment transport patterns at Kuala Sungai Kemaman, Terengganu

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak

    2004-01-01

    The objective of this study is to determine the transport rate and transport direction of the offshore sand of Kg Kuala Kema man and Kg Geliga coastline using both hydraulic data and radioactive tracers. the result would demonstrate if the offshore sand contributes to the sedimentation at the Kuala Kemaman LKIM jetty. It will also be used to assist coastal engineering Division, Jabatan Pengairan dan Saliran Malaysia in calibrating their mathematical model for sediment transport. (Author)

  3. Modeling large scale cohesive sediment transport affected by small scale biological activity

    NARCIS (Netherlands)

    Borsje, Bastiaan Wijnand; de Vries, Mindert; Hulscher, Suzanne J.M.H.; de Boer, Gerben J.

    2008-01-01

    Biological activity on the bottom of the seabed is known to have significant influence on the dynamics of cohesive sediment on a small spatial and temporal scale. In this study, we aim to understand the large-scale effects of small-scale biological activity. Hereto, effects of biology are

  4. Modeling soil erosion and sediment transport from fires in forested watersheds of the South Carolina Piedmont

    Science.gov (United States)

    Tyler Crumbley; Ge Sun; Steve McNulty

    2008-01-01

    Forested watersheds in the Southeastern U.S. provide high quality water vital to ecosystem integrity and downstream aquatic resources. Excessive sedimentation from human activities in forest streams is of concern to responsible land managers. Prescribed fire is a common treatment applied to Southeastern piedmont forests and the risk of wildfire is becoming increasingly...

  5. Modelling of Cohesive Sediment Transportation, Deposition and Resuspension in the Haringvliet Mouth.

    NARCIS (Netherlands)

    Qinghua, Y.

    2006-01-01

    In the Dutch coastal zone, where the marine environment is characterized by shallow depths and highly energetic hydrodynamic conditions, the cohesive sediments, or mud, play an important role in the local morphology. For instance, mud deposits and high concentrations of suspended particulate matter

  6. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  7. Cross-Shore Numerical Model CSHORE for Waves, Currents, Sediment Transport and Beach Profile Evolution

    Science.gov (United States)

    2012-09-01

    wave overwash of dunes constructed of fine sand . For these tests, suspended load was computed to be dominant. To account for the wave overtopping...Holman, M. Merrifield, and G. Pawlak. 2007. Video-based observations of nearshore sand ripples and ripple migration. Journal of Geophysical Research...Gralher, and V. Iranzo. 2010. “Wave-Induced Overwash and Destruction of Sand Dunes .” Proceedings of 32nd Coastal Engineering Conference, Sediment, 34, 1

  8. On extracting sediment transport information from measurements of luminescence in river sediment

    Science.gov (United States)

    Gray, Harrison J.; Tucker, Gregory E.; Mahan, Shannon; McGuire, Chris; Rhodes, Edward J.

    2017-01-01

    Accurately quantifying sediment transport rates in rivers remains an important goal for geomorphologists, hydraulic engineers, and environmental scientists. However, current techniques for measuring long-time scale (102–106 years) transport rates are laborious, and formulae to predict transport are notoriously inaccurate. Here we attempt to estimate sediment transport rates by using luminescence, a property of common sedimentary minerals that is used by the geoscience community for geochronology. This method is advantageous because of the ease of measurement on ubiquitous quartz and feldspar sand. We develop a model from first principles by using conservation of energy and sediment mass to explain the downstream pattern of luminescence in river channel sediment. We show that the model can accurately reproduce the luminescence observed in previously published field measurements from two rivers with very different sediment transport styles. The model demonstrates that the downstream pattern of river sand luminescence should show exponential-like decay in the headwaters which asymptotes to a constant value with further downstream distance. The parameters from the model can then be used to estimate the time-averaged virtual velocity, characteristic transport lengthscale, storage time scale, and floodplain exchange rate of fine sand-sized sediment in a fluvial system. The sediment transport values predicted from the luminescence method show a broader range than those reported in the literature, but the results are nonetheless encouraging and suggest that luminescence demonstrates potential as a sediment transport indicator. However, caution is warranted when applying the model as the complex nature of sediment transport can sometimes invalidate underlying simplifications.

  9. Sediment transport, light and algal growth in the Markermeer : a two-dimensional water quality model for a shallow lake

    NARCIS (Netherlands)

    Duin, van E.H.S.

    1992-01-01

    This thesis reports on a study of the water quality in the Markermeer, focusing on the relationships between sediment transport, the light field and the growth of Oscillatoria agardhii . The study comprises two aspects: an extensive data collection program with the data

  10. Experimental observation and modelling of roughness variation due to supply-limited sediment transport in uni-directional flow

    NARCIS (Netherlands)

    Tuijnder, Arjan; Ribberink, Jan S.

    2012-01-01

    This paper presents a study on the relationship between supply-limited bedform formation and the hydraulic roughness of the riverbed. The results of several new sets of flume experiments with supply-limited or partial transport conditions with bimodal sediment are presented. The results show that

  11. Sediment transport modelling in the Gulf of Lion with the perspective of studying the fate of radionuclides originated by the Rhone River

    International Nuclear Information System (INIS)

    Dufois, Francois

    2008-01-01

    Among the various contaminants introduced in the environment, artificial radionuclides appear particularly important to consider because of their chemical toxicity and / or of their radio-toxicity. Some radionuclides present a high affinity with particles so that the study of the sediment dynamics is a useful preliminary to the study of their dispersion on the open sea. This thesis is focused on the fate of sediments in the Gulf of Lion (NW Mediterranean sea) and in particular on the impact of the Rhone River, which is the main source of particulate matter in the Gulf of Lion. In order to study the sediment transport mechanisms on various space and time scales, this thesis is based on mathematical modelling. The hydro-sedimentary model set up in the Gulf of Lion, which takes into account the gathered effect of waves and currents, was supported by recent hydro-sedimentary data analyses. CARMA (winter 2006/2007) and SCOPE (winter 2007/2008) experiments were used to better understand the physical processes which control the sediment transport on the Rhone pro-delta and to validate the model. The period of the centennial Rhone River flood of December 2003 was also simulated in order to determine the impact of such extreme events on the fate of sediments. Both observations and simulations of the studied periods highlight the high capacity of erosion and transport induced by south-eastern storms on the pro-delta

  12. Sediment Transport Over Run-of-River Dams

    Science.gov (United States)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  13. Fluvial sediment transport: Analytical techniques for measuring sediment load

    International Nuclear Information System (INIS)

    2005-07-01

    Sediment transport data are often used for the evaluation of land surface erosion, reservoir sedimentation, ecological habitat quality and coastal sediment budgets. Sediment transport by rivers is usually considered to occur in two major ways: (1) in the flow as a suspended load and (2) along the bed as a bed load. This publication provides guidance on selected techniques for the measurement of particles moving in both modes in the fluvial environment. The relative importance of the transport mode is variable and depends on the hydraulic and sedimentary conditions. The potential user is directed in the selection of an appropriate technique through the presentation of operating principles, application guidelines and estimated costs. Techniques which require laboratory analysis are grab sample, pump sample, depth sample, point integrated and radioactive tracers. Techniques which will continuously record data are optical backscattering, nuclear transmission, single frequency acoustic and laser diffraction

  14. Storm and tsunami induced sediment transport and morphology changes in vicinity of tidal inlets

    Digital Repository Service at National Institute of Oceanography (India)

    Jayakumar, S.; ManiMurali, R.

    . Satellite images before and after the storm were used to study the morphology changes. Sediment transport is estimated utilising available sediment transport formulae and the hydrodynamics forcing obtained from a depth averaged hydrodynamic model...

  15. Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity

    Science.gov (United States)

    Garcia, M. H.

    2016-12-01

    Modeling Sediment Transport Using a Lagrangian Particle Tracking Algorithm Coupled with High-Resolution Large Eddy Simulations: a Critical Analysis of Model Limits and Sensitivity Som Dutta1, Paul Fischer2, Marcelo H. Garcia11Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 2Department of Computer Science and Department of MechSE, University of Illinois at Urbana-Champaign, Urbana, Il, 61801 Since the seminal work of Niño and Garcia [1994], one-way coupled Lagrangian particle tracking has been used extensively for modeling sediment transport. Over time, the Lagrangian particle tracking method has been coupled with Eulerian flow simulations, ranging from Reynolds Averaged Navier-Stokes (RANS) based models to Detached Eddy Simulations (DES) [Escauriaza and Sotiropoulos, 2011]. Advent of high performance computing (HPC) platforms and faster algorithms have resulted in the work of Dutta et al. [2016], where Lagrangian particle tracking was coupled with high-resolution Large Eddy Simulations (LES) to model the complex and highly non-linear phenomenon of Bulle-Effect at diversions. Despite all the advancements in using Lagrangian particle tracking, there has not been a study that looks in detail at the limits of the model in the context of sediment transport, and also analyzes the sensitivity of the various force formulation in the force balance equation of the particles. Niño and Garcia [1994] did a similar analysis, but the vertical flow velocity distribution was modeled as the log-law. The current study extends the analysis by modeling the flow using high-resolution LES at a Reynolds number comparable to experiments of Niño et al. [1994]. Dutta et al., (2016), Large Eddy Simulation (LES) of flow and bedload transport at an idealized 90-degree diversion: insight into Bulle-Effect, River Flow 2016 - Constantinescu, Garcia & Hanes (Eds), Taylor & Francis Group, London, 101-109. Escauriaza and Sotiropoulos

  16. Simulation of suspended sediment transport initialized with satellite ...

    Indian Academy of Sciences (India)

    vations are inadequate to understand the sedi- ment dispersion by the alternating tidal currents in regions like Gulf of Kachchh, while numerical. Keywords. Suspended sediment concentrations; OCM; sediment transport model; tide. J. Earth Syst. Sci. 121, No. 5, October 2012, pp. 1201–1213. cO Indian Academy of Sciences.

  17. Sediment transport in the area of the Sopot pier

    Science.gov (United States)

    Przyborska, Anna; Jakacki, Jaromir; Andrzejewski, Jan

    2017-04-01

    Coastal sediment transport is a natural process that appears when energy of waves is sufficient for moving solid particles from the bottom. Sediment transport rate depends on the median diameter of local sand and it is compatible with the direction of wave propagation. Also it is natural, that any protruded from the beach construction disturbs continuity of beach transport caused by waves. The Sopot pier has been built over 100 years ago and it is the longest wooden pier on the Baltic Sea coast, it is about half kilometre long. The pier is located at the end of the Monte Casino street and it is one of the biggest attractions of the city as well as in the country. In the past and now we have observed the disturbed sediment transport in the area of the Sopot pier. But during recent years, this process has gained greater momentum. The beach at the Sopot pier has been growing by several meters. All indicates that the cause of the observed phenomenon is the marina. The marina structure which is in some distance from the shore, has been acting as a powerful, emerged breakwater boundary. As a tool the sediment transport model was implemented for Sopot pier area. The implemented numerical forecasting sediment transport model in the area of the Sopot pier reflects well the deposit growth rate for the archived data from 2010 to 2015. On the basis of differences in bathymetry data provided by the Maritime office and the analysis the model results the average deposits in accumulation in the pear area was determined to be about 16,000 m3 / year for the assumed area of analysis, the model have shown similar result. The analysis suggests that strong winds generating significant waves as well as meaningful sediment transport dominate in the autumn and winter. You cannot, however, rule out strong waves in summer. Under moderate waves the sediment transport is insignificant. The most intense movement of the sediment is observed in the vicinity of the shoreline, it disappears with

  18. Modeling Nitrogen Fate and Transport at the Sediment-Water Interface

    Science.gov (United States)

    Diffusive mass transfer at media interfaces exerts control on the fate and transport of pollutants originating from agricultural and urban landscapes and affects the con-ditions of water bodies. Diffusion is essentially a physical process affecting the distribution and fate of va...

  19. Assessment of existing sediment transport models for sand barrier dynamics under wave and currents

    Digital Repository Service at National Institute of Oceanography (India)

    Thuy, T.T.V.; Nghiem, L.T.; Jayakumar, S.; Nielsen, P.

    model, the heuristic model, the grab and dump model of Nielsen (1988), Ribberink & Al-Salem (1994) and Nielsen’s (2006) were tested against experimental data. The results illustrate the challenges related to complicated vertical velocity distributions...

  20. Simulation of contaminated sediment transport in White Oak Creek basin

    International Nuclear Information System (INIS)

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-01-01

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ( 137 Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of 137 Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies

  1. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    Science.gov (United States)

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  2. Sediment Transport and Vegetative Controls on Delta Channel Networks

    Science.gov (United States)

    Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.

    2016-02-01

    As they are governed by complex interactions between coastal, wetland, and fluvial processes, many of the controls on delta evolution are not well understood. The interactions between sediment transport processes and vegetative controls which shape the flow of water on a delta is one such poorly understood process. On deltas dominated by sediment transport, flow is characterized by rapid lateral migration and frequent switching of active channels and resembles a braided stream system. On the other hand, vegetation can reduce channel migration rates and strengthen existing channel banks, resulting in well-developed, localized flow patterns like dendritic or distributary channel networks. Previous work has shown through modeling (i.e. Murray and Paola 1994, 1997) and flume experiments (i.e. Gran and Paola 2001) that interactions between vegetation and sediment which allow or prohibit lateral transport of sediment is fundamental in explaining the morphology of fluvial systems, but many delta modeling efforts assume conditions like those of a vegetated delta. In fact, deltas introduce additional variables like sea level rise, subsidence, the creation of new land, and variable deposition rates, all of which will influence vegetation growth and sediment transport. Here we present a new numerical model designed to generate basic understanding of the processes controlling delta channel formation by examining the factors influencing whether sediment transport or vegetative controls dominate. Model development is informed by laboratory flume experiment at U T Austin. A novel synthesis building on past approaches to modeling braided-stream systems (the Murray and Paola model) and vegetated deltas (DeltaRCM; Liang et al 2015), the new model explores the effects of sea level rise, subsidence, sediment and water discharge, vegetation growth, and sediment properties (including here effects of vegetation) on delta channel morphology.

  3. Sediment transport on the Palos Verdes shelf, California

    Science.gov (United States)

    Ferre, B.; Sherwood, C.R.; Wiberg, P.L.

    2010-01-01

    Sediment transport and the potential for erosion or deposition have been investigated on the Palos Verdes (PV) and San Pedro shelves in southern California to help assess the fate of an effluent-affected deposit contaminated with DDT and PCBs. Bottom boundary layer measurements at two 60-m sites in spring 2004 were used to set model parameters and evaluate a one-dimensional (vertical) model of local, steady-state resuspension, and suspended-sediment transport. The model demonstrated skill (Brier scores up to 0.75) reproducing the magnitudes of bottom shear stress, current speeds, and suspended-sediment concentrations measured during an April transport event, but the model tended to underpredict observed rotation in the bottom-boundary layer, possibly because the model did not account for the effects of temperature-salinity stratification. The model was run with wave input estimated from a nearby buoy and current input from four to six years of measurements at thirteen sites on the 35- and 65-m isobaths on the PV and San Pedro shelves. Sediment characteristics and erodibility were based on gentle wet-sieve analysis and erosion-chamber measurements. Modeled flow and sediment transport were mostly alongshelf toward the northwest on the PV shelf with a significant offshore component. The 95th percentile of bottom shear stresses ranged from 0.09 to 0.16 Pa at the 65-m sites, and the lowest values were in the middle of the PV shelf, near the Whites Point sewage outfalls where the effluent-affected layer is thickest. Long-term mean transport rates varied from 0.9 to 4.8 metric tons m-1 yr-1 along the 65-m isobaths on the PV shelf, and were much higher at the 35-m sites. Gradients in modeled alongshore transport rates suggest that, in the absence of a supply of sediment from the outfalls or PV coast, erosion at rates of ???0.2 mm yr-1 might occur in the region southeast of the outfalls. These rates are small compared to some estimates of background natural sedimentation

  4. Suspended sediment transport in the Gulf of Lions (NW Mediterranean): Impact of extreme storms and floods

    NARCIS (Netherlands)

    Ulses, C.; Estournel, C.; Durrieu de Madron, X.; Palanques, A.

    2008-01-01

    In situ observations were combined with 3D modeling to gain understanding of and to quantify the suspended sediment transport in the Gulf of Lions (NW Mediterranean Sea). The outputs of a hydrodynamic–sediment transport coupled model were compared to near-bottom current and suspended sediment

  5. Modeling of flows and sediment transport in riverbeds associated with the production of non-ore materials

    Science.gov (United States)

    Parshakova, Yanina; Lyubimova, Tatyana; Ivantsov, Andrey; Lepikhin, Anatoly

    2014-05-01

    Growth of capital and road construction in Russia promotes the dynamic development of the non-ore materials market. Its growth rate corresponds to the total construction market growth; it is about 10-15% per year. Non-ore construction materials industry has the following peculiarities: large number of the sandpits with wide variety of their performances - from tens of thousands to several million cubic meters of natural resources and strong connection of mining operations with the processing of natural resources at the sandpit. Most of the sandpits are located along the riverbeds, this makes important the development of the models of the bottom sandpits behavior for the successful planning, implementation and use of new mining sites of non-ore materials accounting for the hydrological and hydrochemical characteristics of the river body. The description of the above processes using traditional two-dimensional hydrodynamic models based on the shallow water equations is not correct since the horizontal and vertical dimensions of the bottom sandpits are comparable. That is why, the solution of these problems within the framework of the shallow water equations is appropriate only for estimate of the change in the velocity of main current and for very rough estimate of the intensity of sandpit spreading. For the correct modeling of the described problems we need to develop the three-dimensional models of flows and sediment transport in rivers. The paper presents the results of the numerical modeling of the processes associated with the production of non-ore materials under complex hydrochemical river regime. The simulation of flows arising in the presence of a sandpit is performed for various values of the river depth and the characteristic dimensions of the sandpit. The characteristics of vortices arising in the pit are determined for various dimensions of the pit and flow velocities. Numerical data on temporal evolution of the sandpit in the water body are obtained

  6. Anthropogenic Impact on Sediment Transport in the Mississippi River

    Science.gov (United States)

    Gregory, Brittney; Herrmann, Achim; Clift, Peter

    2017-04-01

    Many of the most prominent deltas in the world are suffering from sediment starvation and subsidence due to human alteration of the upper catchments. The Mississippi River Delta is not immune to these problems which are accentuated by the addition of dams and artificial levees diverting sediment from the delta and coast throughout the last century. The Missouri, Ohio, and Arkansas Rivers have historically supplied most of the suspended sediment load to the Lower Mississippi over the last 60 years, with the Missouri being the largest single contributor. While suspended sediment load plays an important role in floodplain and delta construction, the transport of coarser sediment is also important to a healthy coastline. Very little data exists to constrain how coarser sediment is mixed and transported down the Mississippi despite its invaluable importance to the coastal beaches and barrier islands. Using traditional provenance tools it is possible to study both the coarse and fine load of the modern Mississippi River to quantify transportation and mixing models. This, in turn, will demonstrate human impact on both the suspended and bedload of the Mississippi and its tributaries. This study uses apatite rare earth element geochemistry and zircon U-Pb dating in conjunction with Sr-Nd isotope ratios and clay mineralogy to interpret the transportation of both fine and coarse sediment within the modern Mississippi and its tributaries. These data are preliminary and are part of a larger study that will determine anthropogenic impact on the aggradation of the modern delta floodplain over the last 1000 years.

  7. Mesoscale eddies transport deep-sea sediments.

    Science.gov (United States)

    Zhang, Yanwei; Liu, Zhifei; Zhao, Yulong; Wang, Wenguang; Li, Jianru; Xu, Jingping

    2014-08-04

    Mesoscale eddies, which contribute to long-distance water mass transport and biogeochemical budget in the upper ocean, have recently been taken into assessment of the deep-sea hydrodynamic variability. However, how such eddies influence sediment movement in the deepwater environment has not been explored. Here for the first time we observed deep-sea sediment transport processes driven by mesoscale eddies in the northern South China Sea via a full-water column mooring system located at 2100 m water depth. Two southwestward propagating, deep-reaching anticyclonic eddies passed by the study site during January to March 2012 and November 2012 to January 2013, respectively. Our multiple moored instruments recorded simultaneous or lagging enhancement of suspended sediment concentration with full-water column velocity and temperature anomalies. We interpret these suspended sediments to have been trapped and transported from the southwest of Taiwan by the mesoscale eddies. The net near-bottom southwestward sediment transport by the two events is estimated up to one million tons. Our study highlights the significance of surface-generated mesoscale eddies on the deepwater sedimentary dynamic process.

  8. Sediment transport via needle ice: a new method for diffusive transport on laboratory-scale hillslopes

    Science.gov (United States)

    Sweeney, K. E.; Roering, J. J.; Rempel, A. W.

    2012-12-01

    controlled by systematically varying the frequency and/or duration of temperature perturbations. The rate of sediment transport on soil mantled hillslopes depends on topographic slope and transport occurs in an "active layer", i.e., the soil mantle. We show that needle ice transports sediment diffusively and has great potential as a method for laboratory simulation of a soil-mantled hillslope since transport is confined to a layer only a few millimeters from the surface. Furthermore, while past experiments are limited to modeling landscape response to precipitation or uplift, our method to systematically control the vigor of hillslope processes will enable us to model potential climate-driven changes in hillslope transport efficiency.

  9. Sediment transport and morphodynamics of the Douro River estuary

    Science.gov (United States)

    Portela, Luís Ivens

    2008-04-01

    A combination of dredging data, hydrographic surveys and numerical modelling has been used to assess morphological change and sediment transport in the Douro River estuary. The system is dominated by sand- and gravel-sized sediments and confined by resistant rock types. The evolution of the bed in the last 20 years has been strongly influenced by the opening of a navigation channel. According to the data available to date, the average maintenance dredging volume has been of the order of 0.4 × 106 m3 year-1. Comparisons of hydrographic surveys reveal a rate of volume loss of the same magnitude. Apparently, maintenance dredging mainly involves local material, transported into the channel from shallower areas of the estuary. The results of numerical modelling indicate that the sediment transport capacity due to tidal currents is very limited. River flood events increase the transport capacity by several orders of magnitude, thus playing a critical role in sediment redistribution and supply to the coast. The average sediment transport capacity is estimated to be of the order of 0.1 × 106 m3 year-1 in most of the estuary and 0.5 × 106 m3 year-1 at the inlet, with a large uncertainty. It is concluded that, if morphological stability is set as an environmental objective, the dredged material should not be removed from the system but rather be used to nourish the estuarine beaches and the barrier spit.

  10. A Field Exercise in Fluvial Sediment Transport.

    Science.gov (United States)

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

  11. Sediment transport in an active erodible channel bend of ...

    Indian Academy of Sciences (India)

    Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, and is compared against various sediment transport functions. Results show that the sediment transport function ...

  12. Formation and development of a breaker bar under regular waves. Part 2: Sediment transport and morphology

    DEFF Research Database (Denmark)

    Jacobsen, Niels Gjøl; Fredsøe, Jørgen

    2014-01-01

    In Part 2 of this work, the hydrodynamic model described in Part 1 is applied for the simulation of sediment transport and the associated morphological development of breaker bars. The sediment description is split into bed load and suspended load, and like the hydrodynamics the sediment transport...... is phase-resolved in order to get on- and offshore directed contributions to the sediment transport from phase lags between the suspended sediment and the hydrodynamics.First, the sediment transport over a morphologically fixed bed of a constant slope is considered, and the transport rates are discussed......) is discussed relative to the reference simulation.The coupling between sediment transport rate and morphology is analysed and discussed. © 2014 Elsevier B.V....

  13. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Sediment transport in an active erodible channel bend of ...

    Indian Academy of Sciences (India)

    and sediment transport modelling in a curved channel (Chang 1988). ... spiral motion of the flow directed normal to the main flow and the super-elevation of the water surface. The secondary current, which develops upon entering a channel bend, will eventually ... from flume studies and calibrated using the river data.

  15. On the influence of suspended sediment transport on the generation of offshore sand waves

    NARCIS (Netherlands)

    Sterlini-Van der Meer, Fenneke; Hulscher, Suzanne J.M.H.; van den Berg, J.; Geurts, Bernardus J.; Clercx, H.J.H.; Uijttewaal, Wim

    2007-01-01

    Sand waves are bed-forms occurring in shallow seas. Although their characteristics are mainly affected by bed load transport, during rough weather suspended sediment transport can influence their characteristics. As a first step to model these influences, we added suspended sediment transport to a

  16. Modeling river discharge and sediment transport in the Wax Lake-Atchafalaya basin with remote sensing parametrization.

    Science.gov (United States)

    Simard, M.; Liu, K.; Denbina, M. W.; Jensen, D.; Rodriguez, E.; Liao, T. H.; Christensen, A.; Jones, C. E.; Twilley, R.; Lamb, M. P.; Thomas, N. A.

    2017-12-01

    Our goal is to estimate the fluxes of water and sediments throughout the Wax Lake-Atchafalaya basin. This was achieved by parametrization of a set of 1D (HEC-RAS) and 2D (DELFT3D) hydrology models with state of the art remote sensing measurements of water surface elevation, water surface slope and total suspended sediment (TSS) concentrations. The model implementations are spatially explicit, simulating river currents, lateral flows to distributaries and marshes, and spatial variations of sediment concentrations. Three remote sensing instruments were flown simultaneously to collect data over the Wax Lake-Atchafalaya basin, and along with in situ field data. A Riegl Lidar was used to measure water surface elevation and slope, while the UAVSAR L-band radar collected data in repeat-pass interferometric mode to measure water level change within adjacent marshes and islands. These data were collected several times as the tide rose and fell. AVRIS-NG instruments measured water surface reflectance spectra, used to estimate TSS. Bathymetry was obtained from sonar transects and water level changes were recorded by 19 water level pressure transducers. We used several Acoustic Doppler Current Profiler (ADCP) transects to estimate river discharge. The remotely sensed measurements of water surface slope were small ( 1cm/km) and varied slightly along the channel, especially at the confluence with bayous and the intra-coastal waterway. The slope also underwent significant changes during the tidal cycle. Lateral fluxes to island marshes were mainly observed by UAVSAR close to the distributaries. The extensive remote sensing measurements showed significant disparity with the hydrology model outputs. Observed variations in water surface slopes were unmatched by the model and tidal wave propagation was much faster than gauge measurements. The slope variations were compensated for in the models by tuning local lateral fluxes, bathymetry and riverbed friction. Overall, the simpler 1D

  17. Rotina computacional e equação simplificada para modelar o transporte de sedimentos num Latossolo Vermelho Distrófico Computational routine and simplified equation for modeling sediment transport capacity in a Dystrophic Hapludox

    Directory of Open Access Journals (Sweden)

    Gilmar E. Cerquetani

    2006-08-01

    Full Text Available Os objetivos do presente trabalho foram desenvolver rotina computacional para a solução da equação de Yalin e do diagrama de Shields e avaliar uma equação simplificada para modelar a capacidade de transporte de sedimento num Latossolo Vermelho Distrófico que possa ser utilizada no Water Erosion Prediction Project - WEPP, assim como em outros modelos de predição da erosão do solo. A capacidade de transporte de sedimento para o fluxo superficial foi representada como função-potência da tensão cisalhante, a qual revelou ser aproximação da equação de Yalin. Essa equação simplificada pôde ser aplicada em resultados experimentais oriundos de topografia complexa. A equação simplificada demonstrou acuracidade em relação à equação de Yalin, quando calibrada utilizando-se da tensão média cisalhante. Testes de validação com dados independentes demonstraram que a equação simplificada foi eficiente para estimar a capacidade de transporte de sedimento.The objectives of the present work were to develop a computational routine to solve Yalin equation and Shield diagram and to evaluate a simplified equation for modeling sediment transport capacity in a Dystrophic Hapludox that could be used in the Water Erosion Prediction Project - WEPP, as well as other soil erosion models. Sediment transport capacity for shallow overland flow was represented as a power function of the hydraulic shear stress and which showed to be an approximation to the Yalin equation for sediment transport capacity. The simplified equation for sediment transport could be applied to experimental data from a complex topography. The simplified equation accurately approximated the Yalin equation when calibrated using the mean hydraulic shear stress. Validation tests using independent data showed that the simplified equation had a good performance in predicting sediment transport capacity.

  18. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    International Nuclear Information System (INIS)

    Whicker, Jeffrey J.; Kirchner, Thomas B.; Breshears, David D.; Field, Jason P.

    2012-01-01

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  19. Modeling Aeolian Transport of Contaminated Sediments at Los Alamos National Laboratory, Technical Area 54, Area G: Sensitivities to Succession, Disturbance, and Future Climate

    Energy Technology Data Exchange (ETDEWEB)

    Whicker, Jeffrey J. [Los Alamos National Laboratory; Kirchner, Thomas B. [New Mexico State University; Breshears, David D. [University of Arizona; Field, Jason P. [University of Arizona

    2012-03-27

    The Technical Area 54 (TA-54) Area G disposal facility is used for the disposal of radioactive waste at Los Alamos National Laboratory (LANL). U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety and the environment. In compliance with that requirement, DOE field sites must prepare and maintain site-specific radiological performance assessments for facilities that receive waste after September 26, 1988. Sites are also required to conduct composite analyses for facilities that receive waste after this date; these analyses account for the cumulative impacts of all waste that has been (and will be) disposed of at the facilities and other sources of radioactive material that may interact with these facilities. LANL issued Revision 4 of the Area G performance assessment and composite analysis in 2008. In support of those analyses, vertical and horizontal sediment flux data were collected at two analog sites, each with different dominant vegetation characteristics, and used to estimate rates of vertical resuspension and wind erosion for Area G. The results of that investigation indicated that there was no net loss of soil at the disposal site due to wind erosion, and suggested minimal impacts of wind on the long-term performance of the facility. However, that study did not evaluate the potential for contaminant transport caused by the horizontal movement of soil particles over long time frames. Since that time, additional field data have been collected to estimate wind threshold velocities for initiating sediment transport due to saltation and rates of sediment transport once those thresholds are reached. Data such as these have been used in the development of the Vegetation Modified Transport (VMTran) model. This model is designed to estimate patterns and long-term rates of contaminant redistribution caused by winds at the site, taking into account the impacts of plant

  20. Sedimentation and transportation of mud rock material

    Science.gov (United States)

    Lin, J.; Ochiai, S.

    2008-12-01

    This research focuses on the transportation and sedimentation of mud rock slope at Niupu, southern Taiwan. The main purpose of this research is trying to identify the mechanism of erosion and sedimentation rate of the mud rock from the slope into the lake. By using regular sonar surveying and rainfall data, it is possible to identify a high erosion rate on mud rock area. The cementation of Miocene mud rock is loose and slope at 40-45 degree which is highly sensitive to the rainfall. It is also vulnerable to the erosion processes. There are some interesting characters related to the observation and surveying. The erosion processes are highly related to amounts of rainfall. When there is typhoon, tropical storm, there is high erosion. The erosion could occur when there is rainfall more than 10 mm/event and the surface of the mud rock could be incised up to 3 cm after 30 mm rainfall. The sedimentation rate could also as high as 0.5 m when there are two typhoons which attacked to this area within three months. This research also demonstrates that the high erosion on mud rock area will generate high sedimentation and high denudation rate. However the comparison of the rate of erosion and deposition is identified in this presentation. For hazard mitigation purpose, it is necessary to reduce the bared mud rock slope area to prevent the further erosion.

  1. RANS-based simulation of wave-induced sheet-flow transport of graded sediments

    DEFF Research Database (Denmark)

    Calistan, Ugur; Fuhrman, David R.

    2017-01-01

    A one-dimensional vertical (1DV) turbulence-closure flow model, coupled with sediment transport capabilities,is extended to incorporate graded sediment mixtures. The hydrodynamic model solves the horizontalcomponent of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations coupled...... with k–ωturbulence closure. The sediment transport description includes both bed and suspended load descriptions. Socalledhigh-concentration effects (turbulence damping and hindered settling velocities) are likewise included.The sediment transport model treats the bed and suspended load individually....... The sediment transport model is validated against sheet-flow experimentaloscillatory tunnel measurements beneath velocity-skewed wave signals, and demonstrates similar accuracy(transport rates generally within a factor of two) for both graded and uniform sands. The model is likewisevalidated against...

  2. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    Science.gov (United States)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  3. Experimental and numerical investigation of the coupling of turbulence and sediment transport over dunes

    Science.gov (United States)

    Schmeeckle, M. W.; Leary, K. P.

    2016-12-01

    We investigate the spatiotemporal coupling of sediment transport over dunes using a turbulence- and particle-resolving numerical model and high-speed video in a laboratory flume. The model utilizes the Large Eddy Simulation (LES) for the fluid turbulence and a Discrete Element Method (DEM) simulation for the sediment. Previous experiments assessing the effects of flow separation on downstream fluid turbulent structures and bedload transport suggest that localized, intermittent, high-magnitude transport events, called permeable splat events, play an important role in both downstream and cross-stream transport near flow reattachment. The flume was lined with 17 concrete ripples that had a 2 cm high crest and were 30 cm long. A high-speed camera observed sediment transport along the entirety of the bedform at 250 Hz. Downstream and vertical fluid velocity was observed at 1mm and 3 mm above the bed using Laser Doppler Velocitmetry (LDV) at 15 distances along bedform profile. As observed in our previous backward-facing step experiments and simulations, mean downstream fluid velocity increases nonlinearly with increasing distance along the ripple. Observed sediment transport, however, increases linearly with increasing distance along the ripple with an exception at the crest of the bedform, where both mean downstream fluid velocity and sediment transport decrease significantly. Previous experiments assessing only the effect of flow separation showed that calculating sediment transport as a function of boundary shear stress using a Meyer-Peter Müller type equation, produced a zone of underestimated transport near flow reattachment. Results reported here show that calculating sediment transport in this way underestimates observed sediment transport along the entire profile of the bedform, not just near flow reattachment. Preliminary sediment transport time-series data show a zone of high-magnitude cross-stream transport near flow reattachment, suggesting that permeable

  4. Sediment transport along the Goa-north Karnataka Coast, western India

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    of sediment transport. Although sediment-transport direction is bi-directional, net major sediment transport is southward. The geomorphic study identified possible sediment sources and sinks. Contributions of sources and losses due to sinks are assessed...

  5. Oscillatory infragravity wave contribution to surf zone sediment transport

    DEFF Research Database (Denmark)

    Aagaard, Troels; Greenwood, Brian

    2008-01-01

    Field measurements reported in the literature demonstrate that suspended sediment transport due to infragravity wave motions can sometimes be very large and dominate the net sediment transport at a given measurement location within the surf zone. At other times, however, this transport component...

  6. Rans-Based Numerical Simulation of Wave-Induced Sheet-Flow Transport of Graded Sediments

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Caliskan, Ugur

    An existing one-dimensional vertical (1DV) turbulence-closure flow model, coupled with sediment transport capabilities, is extended to incorporate graded sediment mixtures. The hydrodynamic model solves the horizontal component of the incompressible Reynolds-averaged Navier–Stokes (RANS) equations...... coupled with k–ω turbulence closure. In addition to standard bed and suspended load descriptions, the sediment transport model incorporates so-called high-concentration effects (turbulence damping and hindered settling velocities). The sediment transport model treats the bed and suspended load......, and then translated to a common level, which conveniently enables use of a single computational grid for the simulation of suspended sediments. Parametric study shows that these effects combine to help alleviate an otherwise systematic tendency towards over- and under- predicted transport rates for fine and coarse...

  7. Sediment transport simulation in an armoured stream

    Science.gov (United States)

    Milhous, Robert T.; Bradley, Jeffrey B.; Loeffler, Cindy L.

    1986-01-01

    Improved methods of calculating bed material stability and transport must be developed for a gravel bed stream having an armoured surface in order to use the HEC-6 model to examine channel change. Good possibilities exist for use of a two layer model based on the Schoklitsch and the Einstein-Brown transport equations. In Einstein-Brown the D35 of the armour is used for stabilities and the D50 of the bed (sub-surface) is used for transport. Data on the armour and sub-surface size distribution needs to be obtained as part of a bed material study in a gravel bed river; a "shovel" sample is not adequate. The Meyer-Peter, Muller equation should not be applied to a gravel bed stream with an armoured surface to estimate the initiation of transport or for calculation of transport at low effective bed shear stress.

  8. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips - Part 2: model coupling, application, factor importance, and uncertainty

    Science.gov (United States)

    Lauvernet, Claire; Muñoz-Carpena, Rafael

    2018-01-01

    Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT) could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018), we developed a physically based numerical algorithm (SWINGO) that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate), where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA) was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil) and hydraulic loading (rainfall + incoming runoff) at each site. The presence of WT introduced more complex responses dominated by strong interactions in

  9. Shallow water table effects on water, sediment, and pesticide transport in vegetative filter strips – Part 2: model coupling, application, factor importance, and uncertainty

    Directory of Open Access Journals (Sweden)

    C. Lauvernet

    2018-01-01

    Full Text Available Vegetative filter strips are often used for protecting surface waters from pollution transferred by surface runoff in agricultural watersheds. In Europe, they are often prescribed along the stream banks, where a seasonal shallow water table (WT could decrease the buffer zone efficiency. In spite of this potentially important effect, there are no systematic experimental or theoretical studies on the effect of this soil boundary condition on the VFS efficiency. In the companion paper (Muñoz-Carpena et al., 2018, we developed a physically based numerical algorithm (SWINGO that allows the representation of soil infiltration with a shallow water table. Here we present the dynamic coupling of SWINGO with VFSMOD, an overland flow and transport mathematical model to study the WT influence on VFS efficiency in terms of reductions of overland flow, sediment, and pesticide transport. This new version of VFSMOD was applied to two contrasted benchmark field studies in France (sandy-loam soil in a Mediterranean semicontinental climate, and silty clay in a temperate oceanic climate, where limited testing of the model with field data on one of the sites showed promising results. The application showed that for the conditions of the studies, VFS efficiency decreases markedly when the water table is 0 to 1.5 m from the surface. In order to evaluate the relative importance of WT among other input factors controlling VFS efficiency, global sensitivity and uncertainty analysis (GSA was applied on the benchmark studies. The most important factors found for VFS overland flow reduction were saturated hydraulic conductivity and WT depth, added to sediment characteristics and VFS dimensions for sediment and pesticide reductions. The relative importance of WT varied as a function of soil type (most important at the silty-clay soil and hydraulic loading (rainfall + incoming runoff at each site. The presence of WT introduced more complex responses dominated by strong

  10. Harmonize input selection for sediment transport prediction

    Science.gov (United States)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  11. Sediment transport in an active erodible channel bend

    Indian Academy of Sciences (India)

    Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar formation. Vertical distribution of suspended sediment concentration follows a power function with normalized depth. Average bed-material concentration at the reach level is computed from observed sediment profiles, ...

  12. "Smart pebble" designs for sediment transport monitoring

    Science.gov (United States)

    Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars

    2015-04-01

    Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.

  13. Distribution and transportation of suspended sediment

    International Nuclear Information System (INIS)

    Schubel, J.R.

    1975-01-01

    A number of studies of the distribution and character of suspended matter in the waters of the Atlantic shelf have documented the variations in the concentration of total suspended matter in both time and space. Very little is known, however, about the ultimate sources of inorganic suspended matter, and even less is known about the routes and rates of suspended sediment transport in shelf waters. Suspended particulate matter constitutes a potential vehicle for the transfer of energy-associated contaminants, radionuclides and oil, back to the coast and therefore to man. The concentrations of total suspended matter in shelf waters are typically so low, however, that the mechanism is ineffective. Studies of suspended particulate matter have a high scientific priority, but in this investigator's opinion the state of knowledge is adequate for preparation of the environmental impact statements that would be required for siting of offshore nuclear power plants and for oil drilling on the Atlantic Continental Shelf

  14. Modelling sediment export, retention and reservoir sedimentation in drylands with the WASA-SED model

    Directory of Open Access Journals (Sweden)

    E. N. Mueller

    2010-04-01

    Full Text Available Current soil erosion and reservoir sedimentation modelling at the meso-scale is still faced with intrinsic problems with regard to open scaling questions, data demand, computational efficiency and deficient implementations of retention and re-mobilisation processes for the river and reservoir networks. To overcome some limitations of current modelling approaches, the semi-process-based, spatially semi-distributed modelling framework WASA-SED (Vers. 1 was developed for water and sediment transport in large dryland catchments. The WASA-SED model simulates the runoff and erosion processes at the hillslope scale, the transport and retention processes of suspended and bedload fluxes in the river reaches and the retention and remobilisation processes of sediments in reservoirs. The modelling tool enables the evaluation of management options both for sustainable land-use change scenarios to reduce erosion in the headwater catchments as well as adequate reservoir management options to lessen sedimentation in large reservoirs and reservoir networks. The model concept, its spatial discretisation scheme and the numerical components of the hillslope, river and reservoir processes are described and a model application for the meso-scale dryland catchment Isábena in the Spanish Pre-Pyrenees (445 km2 is presented to demonstrate the capabilities, strengths and limits of the model framework. The example application showed that the model was able to reproduce runoff and sediment transport dynamics of highly erodible headwater badlands, the transient storage of sediments in the dryland river system, the bed elevation changes of the 93 hm3 Barasona reservoir due to sedimentation as well as the life expectancy of the reservoir under different management options.

  15. Uncertanity Analysis in Parameter Estimation of Coupled Bacteria-Sediment Fate and Transport in Streams

    Science.gov (United States)

    Massoudieh, A.; Le, T.; Pachepsky, Y. A.

    2014-12-01

    E. coli is widely used as an fecal indicator bacteria in streams. It has been shown that the interaction between sediments and the bacteria is an important factor in determining its fate and transport in water bodies. In this presentation parameter estimation and uncertainty analysis of a mechanistic model of bacteria-sediment interaction respectively using a hybrid genetic algorithm and Makov-Chain Monte Carlo (MCMC) approach will be presented. The physically-based model considers the advective-dispersive transport of sediments as well as both free-floating and sediment-associated bacteria in the water column and also the fate and transport of bacteria in the bed sediments in a small stream. The bed sediments are treated as a distributed system which allows modeling the evolution of the vertical distribution of bacteria as a result of sedimentation and resuspension, diffusion and bioturbation in the sediments. One-dimensional St. Venant's equation is used to model flow in the stream. The model is applied to sediment and E. coli concentration data collected during a high flow event in a small stream historically receiving agricultural runoff. Measured total suspended sediments and total E. coli concentrations in the water column at three sections of the stream are used for the parameter estimation. The data on the initial distribution of E. coli in the sediments was available and was used as the initial conditions. The MCMC method is used to estimate the joint probability distribution of model parameters including sediment deposition and erosion rates, critical shear stress for deposition and erosion, attachment and detachment rate constants of E. coli to/from sediments and also the effective diffusion coefficients of E. coli in the bed sediments. The uncertainties associated with the estimated parameters are quantified via the MCMC approach and the correlation between the posterior distribution of parameters have been used to assess the model adequacy and

  16. Sediment transport in an active erodible channel bend of ...

    Indian Academy of Sciences (India)

    Spatial variation of sediment transport in an alluvial sand-bed river bend needs to be understood with ... Local variation of sediment transport is primarily controlled by active bank erosion, land spur and sand bar ..... of Water, Environment, Energy and Society (WEES)-2009, New Delhi, India, 1670–1676. Karmaker T, Dutta S ...

  17. Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications

    Science.gov (United States)

    Kumar, Nirnimesh; Voulgaris, George; Warner, John C.; Olabarrieta, Maitane

    2012-01-01

    The coupled ocean-atmosphere-wave-sediment transport modeling system (COAWST) enables simulations that integrate oceanic, atmospheric, wave and morphological processes in the coastal ocean. Within the modeling system, the three-dimensional ocean circulation module (ROMS) is coupled with the wave generation and propagation model (SWAN) to allow full integration of the effect of waves on circulation and vice versa. The existing wave-current coupling component utilizes a depth dependent radiation stress approach. In here we present a new approach that uses the vortex force formalism. The formulation adopted and the various parameterizations used in the model as well as their numerical implementation are presented in detail. The performance of the new system is examined through the presentation of four test cases. These include obliquely incident waves on a synthetic planar beach and a natural barred beach (DUCK' 94); normal incident waves on a nearshore barred morphology with rip channels; and wave-induced mean flows outside the surf zone at the Martha's Vineyard Coastal Observatory (MVCO).

  18. The algal lift: Buoyancy-mediated sediment transport

    Science.gov (United States)

    Mendoza-Lera, Clara; Federlein, Laura L.; Knie, Matthias; Mutz, Michael

    2016-01-01

    The role of benthic algae as biostabilizers of sediments is well-known, however, their potential to lift and transport sediments remains unclear. Under low-flow conditions, matured algal mats may detach from the bed and may lift up sediment, thereby causing disturbance to the uppermost streambed sediment. We tested the potential of algal mats to lift sediments in 12 indoor flumes filled with sand (0.2 - 0.8 mm), gravel (2 - 8 mm) or a sand-gravel mixture (25/75% mass). After four weeks, the algal mats covered about 50% of the flumes area. Due to the accumulation of oxygen gas bubbles in the mats, that developed from high primary production at 4.5 weeks, about half of the algal mats detached from the bed carrying entangled sediments. Both the area covered by algal mats and detached area were similar among sediment types, but the amount of sediment transported tended to be higher for sand and sand-gravel mixture compared to gravel. Our results reveal that biologically mediated sediment transport mainly depends on the development of a dense filamentous algal matrix, that traps gas bubbles, increasing the mats buoyancy. This novel mechanism of sediment transport will occur in shallow ecosystems during low-flow periods, with the highest impact for sandy sediments.

  19. Measurements of Sediment Erosion and Transport with the ASSET Flume

    Science.gov (United States)

    Jepsen, R. A.; Roberts, J. D.; James, S. C.

    2003-12-01

    Soil and sediments play an important role in water management and water quality. Issues such as water turbidity, associated contaminants, reservoir sedimentation, undesirable erosion and scour, and aquatic habitat are all linked to sediment properties and behaviors. In situ analysis is necessary to develop an understanding of the erosion and transport of sediments. Sandia National Laboratories has recently patented the ASSET Flume that quantifies in situ erosion of a sediment core with depth while affording simultaneous examination of transport modes (bedload vs. suspended load) of the eroded material. Core erosion rates and ratios of bedload to suspended load transport of quartz sediments were studied with the ASSET Flume. The erosion and transport of a fine-grained natural cohesive sediment were also observed. Experiments using quartz sands revealed that the ratio of suspended load to bedload sediment transport is a function of grain diameter and shear stress at the sediment surface. Data collected from the ASSET Flume were used to formulate a novel empirical relation for predicting the ratio of bedload to suspended load as a function of shear stress and grain diameter for non-cohesive sediments.

  20. Impact of urban effluents on summer hypoxia in the highly turbid Gironde Estuary, applying a 3D model coupling hydrodynamics, sediment transport and biogeochemical processes

    Science.gov (United States)

    Lajaunie-Salla, Katixa; Wild-Allen, Karen; Sottolichio, Aldo; Thouvenin, Bénédicte; Litrico, Xavier; Abril, Gwenaël

    2017-10-01

    Estuaries are increasingly degraded due to coastal urban development and are prone to hypoxia problems. The macro-tidal Gironde Estuary is characterized by a highly concentrated turbidity maximum zone (TMZ). Field observations show that hypoxia occurs in summer in the TMZ at low river flow and a few days after the spring tide peak. In situ data highlight lower dissolved oxygen (DO) concentrations around the city of Bordeaux, located in the upper estuary. Interactions between multiple factors limit the understanding of the processes controlling the dynamics of hypoxia. A 3D biogeochemical model was developed, coupled with hydrodynamics and a sediment transport model, to assess the contribution of the TMZ and the impact of urban effluents through wastewater treatment plants (WWTPs) and sewage overflows (SOs) on hypoxia. Our model describes the transport of solutes and suspended material and the biogeochemical mechanisms impacting oxygen: primary production, degradation of all organic matter (i.e. including phytoplankton respiration, degradation of river and urban watershed matter), nitrification and gas exchange. The composition and the degradation rates of each variable were characterized by in situ measurements and experimental data from the study area. The DO model was validated against observations in Bordeaux City. The simulated DO concentrations show good agreement with field observations and satisfactorily reproduce the seasonal and neap-spring time scale variations around the city of Bordeaux. Simulations show a spatial and temporal correlation between the formation of summer hypoxia and the location of the TMZ, with minimum DO centered in the vicinity of Bordeaux. To understand the contribution of the urban watershed forcing, different simulations with the presence or absence of urban effluents were compared. Our results show that in summer, a reduction of POC from SO would increase the DO minimum in the vicinity of Bordeaux by 3% of saturation. Omitting

  1. Size graded sediment dynamics: from the processes characterization to the transport modelling in the English Channel; Dynamique sedimentaire multiclasse: de l'etude des processus a la modelisation en Manche

    Energy Technology Data Exchange (ETDEWEB)

    Blanpain, O.

    2009-10-15

    The purpose of this work is the implementation of a sediment transport model in the English Channel. The design of such a model requires the identification of the physical processes, their modelling and their in-situ validation. Because of the sedimentary particularities of the study area, modelling of the mechanical behaviour of a non uniform mixture of sediments and particularly of the fine grains within a coarse matrix is required. This study focused on the characterization of the relevant processes by acquisition of experimental and in-situ data. Data acquired in hydro-sedimentary conditions comparable to those found in the English Channel are scarce. A new instrument and image processing technique were specifically conceived and implemented in-situ to observe and measure, with a high temporal resolution, the dynamics of a strongly heterogeneous mixture of particles in a grain-size scale. The data collected compared well with several existing formulations. One of these formulations was chosen to be adapted. The transfer dynamics of fine grains in coarse sediments and their depth of penetration were acquired from stratigraphic samples. The sediment transport model deals with multi-size grains and multi sedimentary layers, it is forced by swell and currents, and accounts for bead load and suspended load transports. It was applied to realistic scenarios for the English Channel. (author)

  2. Transport and distribution of bottom sediments at Pirita Beach

    Directory of Open Access Journals (Sweden)

    Soomere, Tarmo

    2007-12-01

    Full Text Available The basic factors affecting sediment supply for and transport processes at Pirita Beach, a sandy section of the south­eastern coast of Tallinn Bay, are analysed. Observations of bathymetry, sediment properties and sources, sediment transport processes and their changes arising from coastal engineering activities are reported. The mean grain size is about 0.12 mm, with the fine sand fraction (0.063–0.125 mm accounting for about 77% of the sediments. Coarse sand dominates only along the waterline. The content of coarser sediments is greater in the northern part of the beach. A number of coastal engineering structures have blocked natural sediment supplies. The beach suffers from sediment deficit now and has lost about 400 m3 of sand annually from the dry beach between 1997 and 2005.

  3. Input-variable sensitivity assessment for sediment transport relations

    Science.gov (United States)

    Fernández, Roberto; Garcia, Marcelo H.

    2017-09-01

    A methodology to assess input-variable sensitivity for sediment transport relations is presented. The Mean Value First Order Second Moment Method (MVFOSM) is applied to two bed load transport equations showing that it may be used to rank all input variables in terms of how their specific variance affects the overall variance of the sediment transport estimation. In sites where data are scarce or nonexistent, the results obtained may be used to (i) determine what variables would have the largest impact when estimating sediment loads in the absence of field observations and (ii) design field campaigns to specifically measure those variables for which a given transport equation is most sensitive; in sites where data are readily available, the results would allow quantifying the effect that the variance associated with each input variable has on the variance of the sediment transport estimates. An application of the method to two transport relations using data from a tropical mountain river in Costa Rica is implemented to exemplify the potential of the method in places where input data are limited. Results are compared against Monte Carlo simulations to assess the reliability of the method and validate its results. For both of the sediment transport relations used in the sensitivity analysis, accurate knowledge of sediment size was found to have more impact on sediment transport predictions than precise knowledge of other input variables such as channel slope and flow discharge.

  4. Rainfall, runoff and sediment transport in a Mediterranean mountainous catchment.

    Science.gov (United States)

    Tuset, J; Vericat, D; Batalla, R J

    2016-01-01

    The relation between rainfall, runoff, erosion and sediment transport is highly variable in Mediterranean catchments. Their relation can be modified by land use changes and climate oscillations that, ultimately, will control water and sediment yields. This paper analyses rainfall, runoff and sediment transport relations in a meso-scale Mediterranean mountain catchment, the Ribera Salada (NE Iberian Peninsula). A total of 73 floods recorded between November 2005 and November 2008 at the Inglabaga Sediment Transport Station (114.5 km(2)) have been analysed. Suspended sediment transport and flow discharge were measured continuously. Rainfall data was obtained by means of direct rain gauges and daily rainfall reconstructions from radar information. Results indicate that the annual sediment yield (2.3 t km(-1) y(-1) on average) and the flood-based runoff coefficients (4.1% on average) are low. The Ribera Salada presents a low geomorphological and hydrological activity compared with other Mediterranean mountain catchments. Pearson correlations between rainfall, runoff and sediment transport variables were obtained. The hydrological response of the catchment is controlled by the base flows. The magnitude of suspended sediment concentrations is largely correlated with flood magnitude, while sediment load is correlated with the amount of direct runoff. Multivariate analysis shows that total suspended load can be predicted by integrating rainfall and runoff variables. The total direct runoff is the variable with more weight in the equation. Finally, three main hydro-sedimentary phases within the hydrological year are defined in this catchment: (a) Winter, where the catchment produces only water and very little sediment; (b) Spring, where the majority of water and sediment is produced; and (c) Summer-Autumn, when little runoff is produced but significant amount of sediments is exported out of the catchment. Results show as land use and climate change may have an important

  5. Sediment transport and deposition during extreme sea storm events at the Salerno Bay (Tyrrhenian Sea: comparison of field data with numerical model results

    Directory of Open Access Journals (Sweden)

    F. Budillon

    2006-01-01

    Full Text Available Seismic stratigraphy and core litho-stratigraphy in the Salerno Bay inner shelf (Southern Tyrrhenian Sea reveal significant storm deposition episodes over the last 1 ky. Three major events are preserved as decimetre thick silt/sand layers bounded at their base by erosional surfaces and sealed in the muddy marine sequences between 25 and 60 m of depth. Geochronology and chrono-stratigraphy on core sediment point towards a recurrence of major sea storms between 0.1 and 0.3 ky and put the last significant event in the 19th century, when no local meteorological time series is available. A modelling of extreme sea-storms with a return period of about 0.1 ky is here proposed based on historical hindcast and aims at explaining the occurrence of such unusual deep and thick sand deposits in the northern sector of the bay. Results highlight the vulnerability of the northern coast of the Salerno Bay to the south western sea storms which can drive waves up to about 8 m high and wave period of about 13 s. With these conditions an intense combined flow current is formed and might account for winnowing fine sand down to the depth of 40 m at least. The numerical model thus confirms a possible sand transport in the bottom boundary layer due to wave-current interaction and could corroborate the interpretation of the most recent sand layers, included in the cores, as being generated under extreme sea storm conditions.

  6. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    Directory of Open Access Journals (Sweden)

    R. Bolaños

    2010-06-01

    Full Text Available The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, http://www.bodc.ac.uk/ which is the formal British organization for looking after and distributing data concerning the marine environment.

  7. Measuring hydrodynamics and sediment transport processes in the Dee Estuary

    Science.gov (United States)

    Bolaños, R.; Souza, A.

    2010-06-01

    The capability of monitoring and prediction in the marine environment provides information that may allow sustainable development of coastal and offshore regions. Therefore, the continuous measurement of environmental processes becomes an important source of information. The present paper shows data collected during 6 years, and in particular during 2008, in the Dee Estuary. The aim of the data collection is to improve the observations of the mobile sediments in coastal areas and its forcing hydrodynamics and turbulence. Data includes information from the deployment of instrumented rigs measuring sediment in suspension, currents, waves, sea level, sediment size and bedforms as well as cruise work including grab sampling, CTD profiles and side-scan sonar. The data cover flood and ebb tides during spring and neap periods with moderate and mild wave events, thus, having a good coverage of the processes needed to improve knowledge of sediment transport and the parameterizations used in numerical modelling. The data, in raw and treated, are being banked at BODC (British Oceanographic Data Centre, blank">http://www.bodc.ac.uk/) which is the formal British organization for looking after and distributing data concerning the marine environment.

  8. Sediment transport capacity and its response to hydraulic parameters in experimental rill flow on steep slope

    NARCIS (Netherlands)

    Wang, Z.; Yang, X.; Liu, J.; Yuan, Y.

    2015-01-01

    Sediment transport capacity must be considered when developing physical models of soil erosion. The effects of related hydraulic parameters (e.g., flow discharge, slope gradient, and flow velocity), and of force predictors (e.g., shear stress, stream power, and unit stream power) on sediment

  9. Study of Sediment Transportation in the Gulf of Kachchh, using 3D Hydro-dynamic Model Simulation and Satellite Data

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    friction boundary, discharge from river boundary and Gulf-open ocean (open) boundary are defined and used. Programs constituting the COSMOS model were executed along with initial input cards to simulate the model using an Alpher mini-computer system...

  10. Transport zonation limits coupled nitrification-denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Kessler, Adam J.; Glud, Ronnie N.; Cardenas, M. Bayani

    2013-01-01

    into the coupling between ammonification, nitrification and denitrification in stationary sand ripples, we combined the diffusion equilibrium thin layer (DET) gel technique with a computational reactive transport biogeochemical model. The former approach provided high-resolution two-dimensional distributions of NO3......- and N-15-N-2 gas. The measured two-dimensional profiles correlate with computational model simulations, showing a deep pool of N-2 gas forming, and being advected to the surface below ripple peaks. Further isotope pairing calculations on these data indicate that coupled nitrification-denitrification......Measurement of biogeochemical processes in permeable sediments (including the hyporheic zone) is difficult because of complex multidimensional advective transport. This is especially the case for nitrogen cycling, which involves several coupled redox-sensitive reactions. To provide detailed insight...

  11. Ion transport in deep-sea sediments

    International Nuclear Information System (INIS)

    Heath, G.R.

    1979-01-01

    Initial assessment of the ability of deep-sea clays to contain nuclear waste is optimistic. Yet, the investigators have no delusions about the complexity of the natural geochemical system and the perturbations that may result from emplacement of thermally-hot waste cannisters. Even though they may never be able to predict the exact nature of all these perturbations, containment of the nuclides by the waste form/cannister system until most of the heat has decayed, and burial of the waste to a sufficient depth that the altered zone can be treated as a black box source of dissolved nuclides to the enclosing unperturbed sediment, encourage them to believe that ion migration in the deep seabed can be modeled accurately and that our preliminary estimates of migration rates are likely to be reasonably realistic

  12. Implications of sediment transport by subglacial water flow for interpreting contemporary glacial erosion rates

    Science.gov (United States)

    Beaud, Flavien; Flowers, Gwenn E.; Venditti, Jeremy G.

    2017-04-01

    The role of glaciers in landscape evolution is central to the interactions between climate and tectonic forces at high latitudes and in mountainous regions. Sediment yields from glacierized basins are used to quantify contemporary erosion rates on seasonal to decadal timescales, often under the assumption that subglacial water flow is the main contributor to these yields. Two recent studies have furthermore used such sediment fluxes to calibrate a glacial erosion rule, where erosion rate scales with ice sliding speed raised to a power greater than one. Subglacial sediment transport by water flow has however seldom been studied, thus the controls on sediment yield from glacierized basins remain enigmatic. To bridge this gap, we develop a 1-D model of morphodynamics in semi-circular bedrock-floored subglacial channels. We adapt a sediment conservation law from the fluvial literature, developed for both mixed bedrock / alluvial and alluvial conditions, to subglacial channels. Channel evolution is a function of the traditional melt-opening due to viscous heat dissipation from the water flow, and creep closure of the overlying ice, to which we add the closure or enlargement due to sediment deposition or removal, respectively. Using a simple ice geometry representing a land-terminating glacier, we find that the shear stresses produced by the water flow on the bed decrease significantly near the terminus. As the ice thins, creep closure decreases and large hydraulic potential gradients cannot be sustained. The resulting gradients in sediment transport lead to a bottleneck, and sediment accumulates if the sediment supply is adequate. A similar bottleneck occurs if a channel is well established and water discharge drops. Whether such constriction happens in space of time, in the presence of a sufficiently large sediment supply sediment accumulates temporarily near the terminus, followed shortly thereafter by enhanced sediment transport. Reduction in the cross-sectional area

  13. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  14. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    Energy Technology Data Exchange (ETDEWEB)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI&SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI&SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI&SI. Together, the general HASP for the WAG 2 RI&SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI&SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations.

  15. WAG 2 remedial investigation and site investigation site-specific work plan/health and safety checklist for the sediment transport modeling task

    International Nuclear Information System (INIS)

    Holt, V.L.; Baron, L.A.

    1994-05-01

    This site-specific Work Plan/Health and Safety Checklist (WP/HSC) is a supplement to the general health and safety plan (HASP) for Waste Area Grouping (WAG) 2 remedial investigation and site investigation (WAG 2 RI ampersand SI) activities [Health and Safety Plan for the Remedial Investigation and Site Investigation of Waste Area Grouping 2 at the Oak Ridge National Laboratory, Oak Ridge, Tennessee (ORNL/ER-169)] and provides specific details and requirements for the WAG 2 RI ampersand SI Sediment Transport Modeling Task. This WP/HSC identifies specific site operations, site hazards, and any recommendations by Oak Ridge National Laboratory (ORNL) health and safety organizations [i.e., Industrial Hygiene (IH), Health Physics (HP), and/or Industrial Safety] that would contribute to the safe completion of the WAG 2 RI ampersand SI. Together, the general HASP for the WAG 2 RI ampersand SI (ORNL/ER-169) and the completed site-specific WP/HSC meet the health and safety planning requirements specified by 29 CFR 1910.120 and the ORNL Hazardous Waste Operations and Emergency Response (HAZWOPER) Program Manual. In addition to the health and safety information provided in the general HASP for the WAG 2 RI ampersand SI, details concerning the site-specific task are elaborated in this site-specific WP/HSC, and both documents, as well as all pertinent procedures referenced therein, will be reviewed by all field personnel prior to beginning operations

  16. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  17. Impact of bacterial NO3- transport on sediment biogeochemistry

    DEFF Research Database (Denmark)

    Sayama, Mikio; Risgaard-Petersen, Nils; Nielsen, Lars Peter

    2005-01-01

    Experiments demonstrated that Beggiatoa could induce a H2S-depleted suboxic zone of more than 10 mm in marine sediments and cause a divergence in sediment NO3– reduction from denitrification to dissimilatory NO3– reduction to ammonium. pH, O2, and H2S profiles indicated that the bacteria oxidized......2S with NO3– and transported S0 to the sediment surface for aerobic oxidation....

  18. Impact of Bacterial NO3- Transport on Sediment Biogeochemistry

    DEFF Research Database (Denmark)

    Nielsen, Lars Peter

    2005-01-01

    Experiments demonstrated that Beggiatoa could induce a H2S-depleted suboxic zone of more than 10 mm in marine sediments and cause a divergence in sediment NO3- reduction from denitrification to dissimilatory NO3- reduction to ammonium. pH, O2, and H2S profiles indicated that the bacteria oxidized......2S with NO3- and transported S0 to the sediment surface for aerobic oxidation....

  19. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    Science.gov (United States)

    Colby, B.R.

    1963-01-01

    This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly

  20. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  1. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-;atmosphere–wave–sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor'Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor'easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor'Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  2. Hydrodynamic Drivers of Sediment Transport Across a Fringing Reef

    NARCIS (Netherlands)

    Bodde, W.P.; Pomeroy, A.W.M.; Van Dongeren, A.R.; Lowe, R.; van Thiel de Vries, J.S.M.

    2014-01-01

    Coral reefs are highly valuable ecosystems, which are under an increasing number of environmental pressures. Sedimentation and sediment transport patterns are among key physical drivers of coral reefs, so it is important to improve our understanding of these poorly studied dynamics on reefs. To this

  3. Bankfull discharge and sediment transport in northwestern California

    Science.gov (United States)

    K. M. Nolan; T. E. Lisle; H. M. Kelsey

    1987-01-01

    Abstract - High-magnitude, low-frequency discharges are more responsible for transporting suspended sediment and forming channels in northwestern California than in previously studied areas. Bankfull discharge and the magnitude and frequency of suspended sediment discharge were determined at five gaging stations in northwestern California. Although discharges below...

  4. Verification of the Hydrodynamic and Sediment Transport Hybrid Modeling System for Cumberland Sound and Kings Bay Navigation Channel, Georgia

    Science.gov (United States)

    1989-07-01

    different loca- tions and should not be directly evaluated. These data are provided for 72 8’ 0�PHSICAL MODEL 0*0NUMERICAL MODEL E HIGH WATER LE 6...TII. JM~ls a. Station 843 MIODEL. VERIFICATION - 1985 GEOMSETRY tt m •u - FIELD 61*110K le 4. a." -- 0 . 0 p-iOi" Plate \\1. is. in. 14. 1. Is. U. 94...STOTION 3n 4. a. L 0 MODE VEIICTO 195GOMTYw"" l -. L I 31 -6. 10. In. 14. 18. 18. a. *. 14. MIEL TIM. HMES a. Station 396 MI’ODEL VERIFICATION - 1985

  5. Neural network-genetic programming for sediment transport

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.K.; Deo, M.C.; SanilKumar, V.

    The planning, operation, design and maintenance of almost all harbour and coastal engineering facilities call for an estimation of the longshore sediment transport rate. This is currently and popularly done with the help of empirical equations...

  6. Sediment carbon fate in phreatic karst (Part 2): Numerical model development and application

    Science.gov (United States)

    Husic, A.; Fox, J.; Ford, W.; Agouridis, C.; Currens, J.; Taylor, C.

    2017-06-01

    The authors develop a numerical model to elucidate time-distributed processes controlling sediment carbon fate in phreatic karst. Sediment carbon processes simulated in the new numerical model include in-conduit erosion and deposition, sediment carbon transport, surficial fine grained laminae evolution, carbon pool mixing, microbial oxidation, and the understudied process of sediment carbon exchange during equilibrium transport. The authors perform a model evaluation procedure that includes generalized likelihood uncertainty estimation to quantify uncertainty of the model results. Modeling results suggest that phreatic karst conduits sustain sediment transport activity long after surface storm events cease. The sustained sediment transport has the potential to shift the baseflow sediment yield of the phreatic karst to be on par with stormflow sediment yield. The sustained activity is suggested to promote the exchange of sediment carbon between the water column and subsurface karst deposits during equilibrium sediment transport conditions. In turn, the sediment carbon exchange impacts the mixing of new and old carbon pools and the flux of carbon from phreatic karst. Integrated numerical model results from this study support the concept that phreatic karst act as a biologically active conveyor of sediment carbon that temporarily stores sediment, turns over carbon at higher rates than surface streams, and recharges degraded carbon back to the fluvial system. The numerical modeling method adopted in this paper shows the efficacy of coupling carbon isotope fingerprinting with water quality modeling to study sediment carbon in phreatic karst.

  7. Comparing Two Numerical Models in Simulating Hydrodynamics and Sediment Transport at a Dual Inlet System, West-Central Florida

    Science.gov (United States)

    2015-05-15

    Pass, the Willmott skill was 0.989 for CMS and 0.938 for DELFT3D. Qualitatively, as compared to flow field measurements using a ship- mounted ADCP , both...offshore, providing boundary conditions for the numerical models. Several methods were used to measure the flow field. An upward-looking ADCP was...deployed in the main channel of each inlet to measured current profiles. A side-looking ADCP was deployed at each inlet to measured cross-channel

  8. Tailings dam-break flow - Analysis of sediment transport

    Science.gov (United States)

    Aleixo, Rui; Altinakar, Mustafa

    2015-04-01

    A common solution to store mining debris is to build tailings dams near the mining site. These dams are usually built with local materials such as mining debris and are more vulnerable than concrete dams (Rico et al. 2008). of The tailings and the pond water generally contain heavy metals and various toxic chemicals used in ore extraction. Thus, the release of tailings due to a dam-break can have severe ecological consequences in the environment. A tailings dam-break has many similarities with a common dam-break flow. It is highly transient and can be severely descructive. However, a significant difference is that the released sediment-water mixture will behave as a non-Newtonian flow. Existing numerical models used to simulate dam-break flows do not represent correctly the non-Newtonian behavior of tailings under a dam-break flow and may lead to unrealistic and incorrect results. The need for experiments to extract both qualitative and quantitative information regarding these flows is therefore real and actual. The present paper explores an existing experimental data base presented in Aleixo et al. (2014a,b) to further characterize the sediment transport under conditions of a severe transient flow and to extract quantitative information regarding sediment flow rate, sediment velocity, sediment-sediment interactions a among others. Different features of the flow are also described and analyzed in detail. The analysis is made by means of imaging techniques such as Particle Image Velocimetry and Particle Tracking Velocimetry that allow extracting not only the velocity field but the Lagrangian description of the sediments as well. An analysis of the results is presented and the limitations of the presented experimental approach are discussed. References Rico, M., Benito, G., Salgueiro, AR, Diez-Herrero, A. and Pereira, H.G. (2008) Reported tailings dam failures: A review of the European incidents in the worldwide context , Journal of Hazardous Materials, 152, 846

  9. Combining sediment fingerprinting and a conceptual model for erosion and sediment transfer to explore sediment sources in an Alpine catchment

    Science.gov (United States)

    Costa, A.; Stutenbecker, L.; Anghileri, D.; Bakker, M.; Lane, S. N.; Molnar, P.; Schlunegger, F.

    2017-12-01

    In Alpine basins, sediment production and transfer is increasingly affected by climate change and human activities, specifically hydropower exploitation. Changes in sediment sources and pathways significantly influence basin management, biodiversity and landscape evolution. We explore the dynamics of sediment sources in a partially glaciated and highly regulated Alpine basin, the Borgne basin, by combining geochemical fingerprinting with the modelling of erosion and sediment transfer. The Borgne basin in southwest Switzerland is composed of three main litho-tectonic units, which we characterised following a tributary-sampling approach from lithologically characteristic sub-basins. We analysed bulk geochemistry using lithium borate fusion coupled with ICP-ES, and we used it to discriminate the three lithologic sources using statistical methods. Finally, we applied a mixing model to estimate the relative contributions of the three sources to the sediment sampled at the outlet. We combine results of the sediment fingerprinting with simulations of a spatially distributed conceptual model for erosion and transport of fine sediment. The model expresses sediment erosion by differentiating the contributions of erosional processes driven by erosive rainfall, snowmelt, and icemelt. Soil erodibility is accounted for as function of land-use and sediment fluxes are linearly convoluted to the outlet by sediment transfer rates for hillslope and river cells, which are a function of sediment connectivity. Sediment connectivity is estimated on the basis of topographic-hydraulic connectivity, flow duration associated with hydropower flow abstraction and permanent storage in hydropower reservoirs. Sediment fingerprinting at the outlet of the Borgne shows a consistent dominance (68-89%) of material derived from the uppermost, highly glaciated reaches, while contributions of the lower part (10-25%) and middle part (1-16%), where rainfall erosion is predominant, are minor. This result is

  10. Three-Dimensional Numerical Modelling of Flow and Sediment Transport for Field Scale Application of Stream Barbs at Sawmill Creek, Ottawa

    Science.gov (United States)

    Jamieson, E. C.; Rennie, C. D.; Townsend, R. D.

    2009-05-01

    towards the centre of the channel, away from the outside bank. Sawmill Creek has the added complexity of having predominately clay bed and banks. The erosional behaviour of cohesive sediments such as clay is difficult to model correctly, due to the complex site-specific physio- chemical properties of clay particles. Following the construction of the proposed barbs at our field test site this summer (2009), and data collection the following spring and summer, we hope to advance the current knowledge of cohesive sediment transport processes in a complicated three-dimensional turbulent flow field. For the present modelling effort, erodibility of the consolidated clay bed and bank material was estimated based on establishing an entrainment threshold at near-bankfull conditions. The focus of this research is on (i) the unique site conditions and environmental protection requirements, (ii) design methodology, and (iii) results of the numerical simulation. The three-dimensional numerical model was capable of reproducing the expected distribution of secondary flow in a channel bend, the unique three- dimensional flow field resulting from a series of submerged structures and the associated patterns of soil erosion and deposition. The numerical modelling also demonstrated to be a useful tool for optimizing barb design for stream bank protection at the proposed field test site. Modelling results confirmed that in the vicinity of the barbs, the addition of the proposed barb layout achieved substantial reduction in erosion (up to 98 %), bed shear stress (up to 59 %) and streamwise velocity (up to 51 %).

  11. Radiotracer investigations for sediment transport in ports of India

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Goswami, Sunil; Singh, Gursharan

    2013-01-01

    The knowledge of mixing and transport of sediments in coastal region is of vital importance for evaluating suitability of dumping site for dredged sediments produced during maintenance of shipping channels, expansion of existing projects and construction of new projects. Gamma-emitting radiotracers are commonly used for investigation of movement of sediments on seabed using Scandium-46 (scandium glass powder) as radiotracer. The radiotracer is injected on seabed at a desired location and its movement followed over a period of time using waterproof NaI(Tl) scintillation detectors. The recorded data is analyzed to obtain transport parameters and utilized for assessing the suitability of the dumping sites and optimization of the dredging operations. About 70 large-scale investigations have been carried out in different ports in India leading to significant economical benefits to the Ports. Present paper discusses various aspects of the radiotracer technique for sediment transport, methodology of data analysis and a specific case study. (author)

  12. The sediment and phosphorus transport in a large scale study

    Science.gov (United States)

    Bauer, Miroslav; Krása, Josef; Dostál, Tomáš; Jáchymová, Barbora

    2017-04-01

    In the name of the Water framework directive (2000/60/ES), there exists the demand to improve quality of water bodies. Basically, pollution of the flowing or stagnant water bodies comes from point and diffuse sources. To find the balance of point (mainly urban areas) and diffuse sources (drainage - N and soil erosion and sediment transport - P) in the scale of Moldau catchment is the task of the project. The area of interest is Moldau river catchment (29.500 km2) has been modelled with fully distributed approach of the WaTEM/SEDEM model. The model estimates the soil erosion as well as sediment a phosphorus transport through the river network. The results are combined with estimation of bounded nitrogen originated from drainage systems in agricultural landscape. The modelling has been done within three levels of accuracy. The simulation scale itself is defined by 10 m elements resolution with critical points net each approximately 300m in the river net (116.000 points). Subsequently, results were aggregated for sub-catchments of 4th order (ca 5 - 15 km2 each = almost 3000 individual sub-catchments) and sub-catchments of 3rd order = ca 400 sub-catchments). Each water reservoir in the system (larger than 0.25 hectares in the area) has been included, which count more than 12.000 reservoirs. The presented approach will be further use by Moldau river catchment managers for the planning of protection and elimination of the pollution in Moldau river catchment. This will lead to localize 3000 highly endangered hot spots which threaten the water bodies significantly. In this localities a detailed modelling and designing of the protection will be done. The research activities had been supported by QJ330118, SGS14/180/OHK1/3T/11, SGS17/090/OHK1/3T/11 grants.

  13. Modelling the landslide area and sediment discharge in landslide-dominated region, Taiwan

    Science.gov (United States)

    Teng, Tse-Yang; Huang, -Chuan, Jr.; Lee, Tsung-Yu; Chen, Yi-Chin; Jan, Ming-Young; Liu, Cheng-Chien

    2016-04-01

    Many studies have indicated the magnified increase of rainfall intensification, landsliding and subsequent sediment discharge due to the global warming effect. However, a few works synthesized the "chain reaction" from rainfall, landsliding to sediment discharge at the same time because of the limited observations of landslide area and sediment discharge during episodes. Besides, the sediment transport strongly depends on the sediment supply and stream power which interact conditionally. In this study, our goal is to build a model that can simulate time-series landslide area and subsequent sediment discharge. The synthesized model would be applied onto Tsengwen Reservoir watershed in southern Taiwan, where lots of landslides occur every year. Unlike other studies, our landslide model considers not only rainfall effect but also previous landslide status, which may be applied to landslide-dominated regions and explains the irrelevant relationship between typhoon rainfall and landslide area. Furthermore, our sediment transport model considers the sediment budget which couples transport- and supply-limited of sediment. The result shows that the simulated time-series landslide area and the sediment transport agree with the observation and the R2 are 0.88 and 0.56, respectively. Reactivated ratio of previous landslide area is 72.7% which indicates the high reoccurrence of historical landslide in landslide-dominated regions. We divided nine historical typhoons into three periods to demonstrate the effect of sediment supply/supply-limited condition upon sediment transport. For instance, the rainfall is smaller in period 3 than in period 1 but the sediment transport is higher in period 3 due to the catastrophic landslide (typhoon Morakot) during period 2. We argue that quantifying sediment transport should couple not only with water discharge but sediment budget, which is rarely considered in calculating sediment transport. Moreover, the parameterization of the controlling

  14. Bead-Based Microfluidic Sediment Analogues: Fabrication and Colloid Transport.

    Science.gov (United States)

    Guo, Yang; Huang, Jingwei; Xiao, Feng; Yin, Xiaolong; Chun, Jaehun; Um, Wooyong; Neeves, Keith B; Wu, Ning

    2016-09-13

    Mobile colloids can act as carriers for low-solubility contaminants in the environment. However, the dominant mechanism for this colloid-facilitated transport of chemicals is unclear. Therefore, we developed a bead-based microfluidic platform of sediment analogues and measured both single and population transport of model colloids. The porous medium is assembled through a bead-by-bead injection method. This approach has the versatility to build both electrostatically homogeneous and heterogeneous media at the pore scale. A T-junction at the exit also allowed for encapsulation and enumeration of colloids effluent at single particle resolution to give population dynamics. Tortuosity calculated from pore-scale trajectory analysis and its comparison with lattice Boltzmann simulations revealed that transport of colloids was influenced by the size exclusion effect. The porous media packed by positively and negatively charged beads into two layers showed distinctive colloidal particle retention and significant remobilization and re-adsorption of particles during water flushing. We demonstrated the potential of our method to fabricate porous media with surface heterogeneities at the pore scale. With both single and population dynamics measurement, our platform has the potential to connect pore-scale and macroscale colloid transport on a lab scale and to quantify the impact of grain surface heterogeneities that are natural in the subsurface environment.

  15. Effects of Hydrograph Shape on Sediment Transport and Size

    Science.gov (United States)

    Feehan, S.; Hempel, L. A.; Grant, G.

    2017-12-01

    Very few studies have investigated the effects of differently shaped hydrographs on sediment transport and size, and those that have, largely focused on sediment transport dynamics in fixed-width flumes with armored streambeds. To better understand how hydrograph shape controls transport dynamics in a more complex channel, we conducted a set of Froude-scaled physical experiments in an adjustable width flume with an un-armored bed that developed a meandering planform pattern with pool-riffle morphology. Experiments were conducted in a 12.2m long, 1.5m wide stream table at the University of British Columbia. Sediment size range from fine sand to small gravel, with a median grain size of 1.5mm. While hydrographs had different shapes, magnitudes, and durations, we kept total equilibrium feed mass equivalent among experiments. Sediment was fed at a constant rate at the inlet and, due to the adjustable boundary design, was continuously recruited from channel banks so that the channel was never supply limited. Sediment was collected at the outlet; sediment mass was measured every 10-15 minutes and grain size was sampled every 30 minutes. We found that sediment transport pattern reflects the rate of channel evolution and excavation over the course of the hydrograph. We introduce a new metric, cumulative sediment concentration, to evaluate temporal trends in sediment transport rate. Cumulative sediment concentration increased during rates of rapid channel excavation, particularly during the rising limb of the hydrograph as curvature developed, and decreased during periods of slow or no morphologic change. Slowly rising hydrographs had multiple peaks in the cumulative sediment concentration curve that reflected rapid channel excavation, then stability, following an increase in flow, whereas quickly rising hydrographs had cumulative sediment concentration curves that continuously increased. The latter suggests that during quickly rising hydrographs, the flow rises faster than

  16. Sediment Transport Time Scales and Trapping Efficiency in a Tidal River

    Science.gov (United States)

    Ralston, David K.; Geyer, W. Rockwell

    2017-11-01

    Observations and a numerical model are used to characterize sediment transport in the tidal Hudson River. A sediment budget over 11 years including major discharge events indicates the tidal fresh region traps about 40% of the sediment input from the watershed. Sediment input scales with the river discharge cubed, while seaward transport in the tidal river scales linearly, so the tidal river accumulates sediment during the highest discharge events. Sediment pulses associated with discharge events dissipate moving seaward and lag the advection speed of the river by a factor of 1.5 to 3. Idealized model simulations with a range of discharge and settling velocity were used to evaluate the trapping efficiency, transport rate, and mean age of sediment input from the watershed. The seaward transport of suspended sediment scales linearly with discharge but lags the river velocity by a factor that is linear with settling velocity. The lag factor is 30-40 times the settling velocity (mm s-1), so transport speeds vary by orders of magnitude from clay (0.01 mm s-1) to coarse silt (1 mm s-1). Deposition along the tidal river depends strongly on settling velocity, and a simple advection-reaction equation represents the loss due to settling on depositional shoals. The long-term discharge record is used to represent statistically the distribution of transport times, and time scales for settling velocities of 0.1 mm s-1 and 1 mm s-1 range from several months to several years for transport through the tidal river and several years to several decades through the estuary.

  17. Sediment supply versus local hydraulic controls on sediment transport and storage in a river with large sediment loads

    Science.gov (United States)

    Dean, David J.; Topping, David J.; Schmidt, John C.; Griffiths, Ronald E.; Sabol, Thomas A.

    2016-01-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, undergoes rapid geomorphic changes as a result of its large sediment supply and variable hydrology; thus, it is a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling alluvial channel change. We analyzed a suite of sediment transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically based analyses suggest that channel change in the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by substantial deposition of sediment supplied to the Rio Grande during tributary-sourced flash floods. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem have the capacity to enlarge the Rio Grande, and these floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment transport analyses show that the locations and rates of sand erosion and deposition during long-duration floods are most strongly controlled by spatial changes in flow strength, largely through changes in channel slope. However, spatial differences in the in-channel sediment supply regulate sediment evacuation or accumulation over time in long reaches (greater than a kilometer).

  18. Estimation of 1 km Grid-based WATEM/SEDEM Sediment Transport Capacity Using 1 Minute Rainfall Data and SWAT Semi-distributed Sediment Transport Capacity Results for Han River Basin of South Korea

    OpenAIRE

    Jung, Chung-Gil; Jang, Won-Jin; Kim, Seongjoon

    2017-01-01

    When assessing the total sediment yield of a watershed through sediment transport from soil erosion process, the ratio of sediment delivery is a critical and uncertain factor during modelling. This study is to estimate watershed scale sediment yield distribution of 1 km by 1 km spatial resolution with the evaluation of RUSLE (Revised Universal Soil Loss Equation) rain erosivity (R factor) for 14 years (2000–2013) using 1 minute data from 16 rainfall gauging stations...

  19. Quantifying fluvial sediment transport in a mountain catchment (Schöttlbach, Styria) using sediment impact sensors

    Science.gov (United States)

    Stangl, Johannes; Sass, Oliver; Schneider, Josef; Harb, Gabriele

    2013-04-01

    Sediment transport in river systems, being the output of geomorphic processes in the catchment, is a recurrent problem for geomorphological sediment budget studies, natural hazard assessment and river engineering. Sediment budgets of alpine catchments are likely to be modified by changing total precipitation and the probability of heavy precipitation events in the context of climate change, even if projections of precipitation change for Austria and the entire Alpine region are still very uncertain. Effective sediment management requires profound knowledge on the sediment cascade in the head-waters. However, bedload measurements at alpine rivers or torrents are rare; in Styria, they are altogether missing. Due to a three hour heavy rainfall event on 07-Jul 2011, which caused cata-strophic flooding with massive damage in the city of Oberwölz and its surrounding, we chose the catchment area of the Schöttlbach in the upper Mur river valley in Styria (Austria) as our study area. In the framework of the ClimCatch project, we intend to develop a conceptual model of coupled and decoupled sediment routing to quantify the most prominent sediment fluxes and sediment sinks, combining up-to-date geomorphological and river engineering techniques. Repeated Airborne Laser Scans will provide an overview of ongoing processes, diachronous TLS surveys (cut-and-fill analysis), ground-penetrating radar and 2D-geoelectric surveys should quantity the most important mass fluxes on the slopes and in the channels and derive a quantitative sediment budget, including the volume of temporary sediment stores. Besides quantifying slope processes, sediment sinks and total sediment output, the sediment trans-port in the torrents is of particular interest. We use sediment impact sensors (SIS) which were in-stalled in several river sections in the main stretch of the Schöttlbach and in its tributaries. The SIS mainly consists of two parts connected by a coated cable, the steel shell with the

  20. Modelling a century of soil redistribution processes and carbon delivery from small watersheds using a multi-class sediment transport model

    Science.gov (United States)

    Wilken, Florian; Fiener, Peter; Van Oost, Kristof

    2017-02-01

    Over the last few decades, soil erosion and carbon redistribution modelling has received a lot of attention due to large uncertainties and conflicting results. For a physically based representation of event dynamics, coupled soil and carbon erosion models have been developed. However, there is a lack of research utilizing models which physically represent preferential erosion and transport of different carbon fractions (i.e. mineral bound carbon, carbon encapsulated by aggregates and particulate organic carbon). Furthermore, most of the models that have a high temporal resolution are applied to relatively short time series (agricultural catchment (3 ha) located in the Belgium loess belt about 15 km southwest of Leuven, with a rolling topography of slopes up to 14 %. Our modelling analysis indicates (i) that interrill erosion is a selective process which entrains primary particles, while (ii) rill erosion is non-selective and entrains aggregates, (iii) that particulate organic matter is predominantly encapsulated in aggregates, and (iv) that the export enrichment in carbon is highest during events dominated by interrill erosion and decreases with event size.

  1. RANS-based simulation of turbulent wave boundary layer and sheet-flow sediment transport processes

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Schløer, Signe; Sterner, Johanna

    2013-01-01

    with bed and suspended load descriptions, the latter based on an unsteady turbulent-diffusion equation, for simulation of sheet-flow sediment transport processes. In addition to standard features common within such RANS-based approaches, the present model includes: (1) hindered settling velocities at high...... of a number of local factors important within cross-shore wave boundary layer and sediment transport dynamics. The hydrodynamic model is validated for both hydraulically smooth and rough conditions, based on wave friction factor diagrams and boundary layer streaming profiles, with the results in excellent...... agreement with experimental and/or previous numerical work. The sediment transport model is likewise validated against oscillatory tunnel experiments involving both velocity-skewed and acceleration-skewed flows, as well as against measurements beneath real progressive waves.Model capabilities are exploited...

  2. Abundance, composition, and vertical transport of PAHs in marsh sediments.

    Science.gov (United States)

    White, Helen K; Xu, Li; Lima, Ana Lúcia C; Eglinton, Timothy I; Reddy, Christopher M

    2005-11-01

    Petroleum-derived hydrocarbons continue to persist in Wild Harbor, West Falmouth, MA, following a spill of No. 2 fuel oil in 1969 from the barge Florida. Recent analysis of marsh sediments revealed that residues of degraded oil are present with concentrations of total petroleum hydrocarbons as high as approximately 9 mg g(-1). Polycyclic aromatic hydrocarbons (PAHs) constitute only a minor fraction of these residues with maximum concentrations of 134 mirog g(-1), but their fate is of interest because of their potential toxicity to organisms. As compared to typical unweathered No. 2 fuel oil, the current distribution of PAHs in the sediments reflects substantial weathering by abiotic and biotic processes, specifically a preferential loss of naphthalenes relative to phenanthrenes, as well as isomer-specific biodegradation of alkylated PAHs. Based on comparison to results from an earlier study, it appears that little or no change has occurred to the distribution of PAHs since 1989, indicating that weathering at this site has stalled or is now proceeding at a significantly slower rate. To assess whether sediment-water partitioning and molecular diffusion in the interstitial medium are now the dominant processes controlling the vertical distribution of PAHs, downcore profiles were compared to a numerical model. While in some cases the model accurately reproduced the measured data, there were instances where the distribution of PAHs was slightly under or overestimated. Reasons for these discrepancies are discussed and are likely due to bioturbation, colloid-facilitated transport, or both. Assessment of the influence of these processes on the spilled oil expands our understanding of the overall fate of these compounds and their potential long-term effects on the environment.

  3. Aeolian particle transport inferred using a ~150-year sediment record from Sayram Lake, arid northwest China

    Directory of Open Access Journals (Sweden)

    Long Ma

    2015-05-01

    Full Text Available We studied sediment cores from Sayram Lake in the Tianshan Mountains of northwest China to evaluate variations in aeolian transport processes over the past ~150 years. Using an end-member modeling algorithm of particle size data, we interpreted end members with a strong bimodal distribution as having been transported by aeolian processes, whereas other end members were interpreted to have been transported by fluvial processes. The aeolian fraction accounted for an average of 27% of the terrigenous components in the core. We used the ratio of aeolian to fluvial content in the Sayram Lake sediments as an index of past intensity of aeolian transport in the Tianshan Mountains. During the interval 1910-1930, the index was high, reflecting the fact that dry climate provided optimal conditions for aeolian dust transport. From 1930-1980, the intensity of aeolian transport was weak. From the 1980s to the 2000s, aeolian transport to Sayram Lake increased. Although climate in northwest China became more humid in the mid-1980s, human activity had by that time altered the impact of climate on the landscape, leading to enhanced surface erosion, which provided more transportable material for dust storms. Comparison of the Lake Sayram sediment record with sediment records from other lakes in the region indicates synchronous intervals of enhanced aeolian transport from 1910 to 1930 and 1980 to 2000.

  4. Relaxation approximation to bed-load sediment transport

    Science.gov (United States)

    Delis, A. I.; Papoglou, I.

    2008-04-01

    In this work we propose and apply a numerical method based on finite volume relaxation approximation for computing the bed-load sediment transport in shallow water flows, in one and two space dimensions. The water flow is modeled by the well-known nonlinear shallow water equations which are coupled with a bed updating equation. Using a relaxation approximation, the nonlinear set of equations (and for two different formulations) is transformed to a semilinear diagonalizable problem with linear characteristic variablesE A second order MUSCL-TVD method is used for the advection stage while an implicit-explicit Runge-Kutta scheme solves the relaxation stage. The main advantages of this approach are that neither Riemann problem solvers nor nonlinear iterations are required during the solution process. For the two different formulations, the applicability and effectiveness of the presented scheme is verified by comparing numerical results obtained for several benchmark test problems.

  5. Uranium Transport Modeling

    International Nuclear Information System (INIS)

    Bostick, William D.

    2008-01-01

    Uranium contamination is prevalent at many of the U.S. DOE facilities and at several civilian sites that have supported the nuclear fuel cycle. The potential off-site mobility of uranium depends on the partitioning of uranium between aqueous and solid (soil and sediment) phases. Hexavalent U (as uranyl, UO 2 2+ ) is relatively mobile, forming strong complexes with ubiquitous carbonate ion which renders it appreciably soluble even under mild reducing conditions. In the presence of carbonate, partition of uranyl to ferri-hydrate and select other mineral phases is usually maximum in the near-neutral pH range ∼ 5-8. The surface complexation reaction of uranyl with iron-containing minerals has been used as one means to model subsurface migration, used in conjunction with information on the site water chemistry and hydrology. Partitioning of uranium is often studied by short-term batch 'equilibrium' or long-term soil column testing ; MCLinc has performed both of these methodologies, with selection of method depending upon the requirements of the client or regulatory authority. Speciation of uranium in soil may be determined directly by instrumental techniques (e.g., x-ray photoelectron spectroscopy, XPS; x-ray diffraction, XRD; etc.) or by inference drawn from operational estimates. Often, the technique of choice for evaluating low-level radionuclide partitioning in soils and sediments is the sequential extraction approach. This methodology applies operationally-defined chemical treatments to selectively dissolve specific classes of macro-scale soil or sediment components. These methods recognize that total soil metal inventory is of limited use in understanding bioavailability or metal mobility, and that it is useful to estimate the amount of metal present in different solid-phase forms. Despite some drawbacks, the sequential extraction method can provide a valuable tool to distinguish among trace element fractions of different solubility related to mineral phases

  6. Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress

    Science.gov (United States)

    Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.

    2017-12-01

    Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of

  7. Modelling of Transport Phenomena

    OpenAIRE

    K., Itoh; S.-I., Itoh; A., Fukuyama

    1993-01-01

    In this review article, we discuss key features of the transport phenomena and theoretical modelling to understand them. Experimental observations have revealed the nature of anomalous transport, i.e., the enhancement of the transport coefficients by the gradients of the plasma profiles, the pinch phenomena, the radial profile of the apomalous transport coefficients, the variation of the transport among the Bohm diffusion, Pseudo-classical confinement, L-mode and variety of improved confineme...

  8. Preliminary Results on Sediment Sorting Under Intense Bedload Transport

    Science.gov (United States)

    Hernandez Moreira, R. R.; Vautin, D.; Mathews, S. L.; Kuprenas, R.; Viparelli, E.

    2014-12-01

    Previous experiments show that parallel-laminated deposits are emplaced under upper plane bed regime by the migration of small-amplitude, long-wavelength bedforms. The present research focuses on how sediment is sorted under upper plane bed and sheet flow transport regimes, and whether parallel-lamination is inhibited during sheet flow transport. The problem of studying the sorting of sediment under so intense transport conditions is plagued by the uncertainties related to flow resistances and bedload transport rates. We simplify the problem by first running the experiments with uniform sediment, to establish a baseline that will aid in the design of the experiments with poorly sorted material. We are running experiments at the Hydraulics Laboratory of the Department of Civil and Environmental Engineering at the University of South Carolina in Columbia, in a unidirectional sediment-feed flume, 9 meters long by 0.2 meters wide, of which 7 meters are used as test section. During the experiments, water surface and bed elevations are periodically measured to characterize the global parameters of the flow, e.g. mean flow velocity and bed shear stress. When the flow and the sediment transport reach conditions of mobile bed equilibrium, bed elevation fluctuations are measured with ultrasonic transducer systems at six fixed locations. Channel bed aggradation is then induced by slowly raising the tail gate of the flume such that there is no change in transport regime, as confirmed by additional measurements of water surface and bed elevation and bed elevation fluctuations. Preliminary observations under upper plane bed regime show the formation of the small-amplitude and long-wavelength bedforms, as well as hints of parallel lamination in the deposits. In the near future we aim to achieve sheet flow transport conditions with both uniform and non-uniform grain size distributions to look at the internal structure of the emplaced deposit.

  9. Sediment Connectivity and Transport Pathways in Tidal Inlets: a Conceptual Framework with Application to Ameland Inlet

    Science.gov (United States)

    Pearson, S.; van Prooijen, B. C.; Zheng Bing, W.; Bak, J.

    2017-12-01

    Predicting the response of tidal inlets and adjacent coastlines to sea level rise and anthropogenic interventions (e.g. sand nourishments) requires understanding of sediment transport pathways. These pathways are strongly dependent on hydrodynamic forcing, grain size, underlying morphology, and the timescale considered. To map and describe these pathways, we considered the concept of sediment connectivity, which quantifies the degree to which sediment transport pathways link sources to receptors. In this study we established a framework for understanding sediment transport pathways in coastal environments, using Ameland Inlet in the Dutch Wadden Sea as a basis. We used the Delft3D morphodynamic model to assess the fate of sediment as it moved between specific morphological units defined in the model domain. Simulation data was synthesized in a graphical network and then graph theory used to analyze connectivity at different space and time scales. At decadal time scales, fine and very fine sand (250μm) shows lower connectivity, even in more energetic areas. Greater sediment connectivity was found under the influence of wind and waves when compared to purely tidal forcing. Connectivity shows considerable spatial variation in cross shore and alongshore directions, depending on proximity to the inlet and dominant wave direction. Furthermore, connectivity generally increases at longer timescales. Asymmetries in connectivity (i.e. unidirectional transport) can be used to explain long-term erosional or depositional trends. As such, an understanding of sediment connectivity as a function of grain size could yield useful insights for resolving sediment transport pathways and the fate of a nourishment in coastal environments.

  10. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: Laboratory studies and reactive transport modeling

    Science.gov (United States)

    Holden, A. A.; Haque, S. E.; Mayer, K. U.; Ulrich, A. C.

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840 × 106 m3 and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~ 375 mg L- 1) and Na (~ 575 mg L- 1) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides — in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  11. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  12. Radiotracer and Sealed Source Applications in Sediment Transport Studies

    International Nuclear Information System (INIS)

    2014-01-01

    The investigation of sediment transport in seas and rivers is crucial for civil engineering and littoral protection and management. Coastlines and seabeds are dynamic regions, with sediments undergoing periods of erosion, transport, sedimentation and consolidation. The main causes for erosion in beaches include storms and human actions such as the construction of seawalls, jetties and the dredging of stream mouths. Each of these human actions disrupts the natural flow of sand. Current policies and practices are accelerating the beach erosion process. However, there are viable options available to mitigate this damage and to provide for sustainable coastlines. Radioactive methods can help in investigating sediment dynamics, providing important parameters for better designing, maintaining and optimizing civil engineering structures. Radioisotopes as tracers and sealed sources have been useful and often irreplaceable tools for sediment transport studies. The training course material is based on lecture notes and practical works delivered by many experts in IAEA supported activities. Lectures and case studies were reviewed by a number of specialists in this field

  13. Quantifying postfire aeolian sediment transport using rare earth element tracers

    Science.gov (United States)

    Dukes, David; Gonzales, Howell B.; Ravi, Sujith; Grandstaff, David E.; Van Pelt, R. Scott; Li, Junran; Wang, Guan; Sankey, Joel B.

    2018-01-01

    Grasslands, which provide fundamental ecosystem services in many arid and semiarid regions of the world, are undergoing rapid increases in fire activity and are highly susceptible to postfire-accelerated soil erosion by wind. A quantitative assessment of physical processes that integrates fire-wind erosion feedbacks is therefore needed relative to vegetation change, soil biogeochemical cycling, air quality, and landscape evolution. We investigated the applicability of a novel tracer technique—the use of multiple rare earth elements (REE)—to quantify soil transport by wind and to identify sources and sinks of wind-blown sediments in both burned and unburned shrub-grass transition zone in the Chihuahuan Desert, NM, USA. Results indicate that the horizontal mass flux of wind-borne sediment increased approximately threefold following the fire. The REE tracer analysis of wind-borne sediments shows that the source of the horizontal mass flux in the unburned site was derived from bare microsites (88.5%), while in the burned site it was primarily sourced from shrub (42.3%) and bare (39.1%) microsites. Vegetated microsites which were predominantly sinks of aeolian sediments in the unburned areas became sediment sources following the fire. The burned areas showed a spatial homogenization of sediment tracers, highlighting a potential negative feedback on landscape heterogeneity induced by shrub encroachment into grasslands. Though fires are known to increase aeolian sediment transport, accompanying changes in the sources and sinks of wind-borne sediments may influence biogeochemical cycling and land degradation dynamics. Furthermore, our experiment demonstrated that REEs can be used as reliable tracers for field-scale aeolian studies.

  14. Annual variation in the net longshore sediment transport rate

    CSIR Research Space (South Africa)

    Schoonees, JS

    2000-05-01

    Full Text Available The annual variation in the net long shore sediment transport rates at three South African and at one North African site is investigated. The net rates at these sites, given in the first table, showed large variations. It was found that measurements...

  15. Jokulhlaups and sediment transport in Watson River, Kangerlussuaq, West Greenland

    DEFF Research Database (Denmark)

    Mikkelsen, A. B.; Hasholt, Bent; Knudsen, N. T.

    2013-01-01

    For 3 years, during a 4-year observation period (2007-2010), jokulhlaups were observed from a lake at the northern margin of Russells Gletscher. At a gauging station located on a bedrock sill near the outlet of Watson River into Sdr Stromfjord, discharge and sediment transport was monitored during...

  16. Hydrology, sediment transport dynamics and geomorphology of a ...

    African Journals Online (AJOL)

    ... a large catchment size, a seasonal climate of a dry winter and wet summer, evergreen vegetation in the catchment, variable precipitation and the occurrence of regionally pervasive climatic oscillations. This research aimed to address how streamflow variability impacted upon sediment transport and thus, geomorphology.

  17. Sediment transport and channel morphology of small, forested streams.

    Science.gov (United States)

    Marwan A. Hassan; Michael Church; Thomas E. Lisle; Francesco Brardinoni; Lee Benda; Gordon E. Grant

    2005-01-01

    This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by...

  18. Sediment Transport Capacity and Channel Processes in a Humid Tropical Montane River - Rio Pacuare, Costa Rica

    Science.gov (United States)

    Lind, P.; McDowell, P. F.

    2017-12-01

    Investigating sediment transport capacity as well as the spatial and temporal variations of sediment flux are critical component of river research, especially for applications in resource management and conservation, hazards assessment and planning, and riverine ecology. The bedload fraction of sediment transported through montane rivers often defines channel and bed form processes. It is understood that humid tropical montane rivers are capable of producing some of the largest quantities of sediment per unit drainage area. Bedload flux reported on a few Southeast Asian humid tropical montane rivers show that bedload constituted 16-75% of the total sediment load - this is notably higher than the generally accepted 10% of a channel's sediment load. However, to date almost all of the research done on sediment transport in humid tropical systems has focused on suspended load. This study presents annual bedload transport rate estimates for six field sites distributed within 45 river kilometers (Rkm) of the montane portion of the Rio Pacuare, located in the Talamanca Mountains of Costa Rica. This research reveals that flows capable of mobilizing the D84 occur on average at least once but often multiple times a year in this river system. The Rio Pacuare has a sufficient supply of sediment to meet its high transport capacity needs. As a result, large active bars composed of imbricated boulders define channel form at moderate and low flows throughout the study area. Differences in the magnitude, as well as the spatial and temporal variations of sediment flux at each field site are discussed in relation to stream power, and annual/inter-annual precipitation patterns. A unique mix of field and remote sensing techniques were applied to address these questions and to overcome some of the challenges of tropical river research. For example, due to the large grain size and high stream energy, grain mobilization and validation of modeled shear stress requirements for transport

  19. Fate and transport modeling with American Petroleum Institute decision support system applied in a site assessment for residual crude oil in unconsolidated sediments: Case study in Kern County, California

    International Nuclear Information System (INIS)

    Klinchuch, L.A.; Waldron, J.M.

    1996-01-01

    Historical crude oil leaks from a pipeline affected unconsolidated alluvial sediments near a sensitive groundwater recharge area in Kern County, California. The residual crude oil is confined to the vadose zone and occurs from ∼3 m below ground surface (BGS) to a maximum depth of 24 m BGS. The water table beneath the affected sediments is currently 46 m BGS. The site is irrigated regularly for agriculture. To date, the residual crude oil has not impacted groundwater quality. Future groundwater recharge plans may raise the water table to 15 m BGS in the area affected by the crude oil. Fate and transport modeling using site-specific data shows that the existing hydrocarbons in the subsurface do not pose a significant risk to groundwater quality. The computer models selected for this project are incorporated as modules in the American Petroleum Institute's Exposure and Risk Assessment Decision Support System. Transport of benzene, toluene, ethylbenzene, and xylenes (BTEX) is modeled using Seasonal Soil (SESOIL) for the unsaturated zone coupled with AT123D for the saturated zone. The SESOIL model is calibrated using actual soil moisture measurements and groundwater recharge estimates based on applied irrigation. Peak BTEX concentrations in groundwater predicted for the site are well below maximum contaminant levels. A sensitivity analysis confirms that aerobic biodegradation significantly reduces BTEX compounds. Due to the high availability of dissolved oxygen in groundwater at this site, natural attenuation may be the most favorable mechanism to remediate BTEX in the subsurface

  20. Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and sensitivity to global change

    NARCIS (Netherlands)

    Krumins, V.; Gehlen, M.; Arndt, S.; Van Cappellen, P.; Regnier, P.

    2013-01-01

    We present a one-dimensional reactive transport model to estimate benthic fluxes of dissolved inorganic carbon (DIC) and alkalinity (AT) from coastal marine sediments. The model incorporates the transport processes of sediment accumulation, molecular diffusion, bioturbation and bioirrigation,

  1. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    Science.gov (United States)

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present

  2. Runoff and sediment transport in a degraded area

    Directory of Open Access Journals (Sweden)

    Edivaldo Lopes Thomaz

    2012-02-01

    Full Text Available Gully erosion occurs by the combined action of splash, sheetwash and rill-wash (interrill and rill erosion. These erosion processes have a great capacity for both sediment production and sediment transport. The objectives of this experiment were to evaluate hydrological and sediment transport in a degraded area, severely dissected by gullies; to assess the hydraulic flow characteristics and their aggregate transport capacity; and to measure the initial splash erosion rate. In the study area in Guarapuava, State of Paraná, Brazil (lat 25º 24' S; long 51º24' W; 1034 m asl, the soil was classified as Cambissolo Húmico alumínico, with the following particle-size composition: sand 0.116 kg kg-1; silt 0.180 kg kg-1; and clay 0.704 kg kg-1. The approach of this research was based on microcatchments formed in the ground, to study the hydrological response and sediment transport. A total of eight rill systems were simulated with dry and wet soil. An average rainfall of 33.7 ± 4.0 mm was produced for 35 to 54 min by a rainfall simulator. The equipment was installed, and a trough was placed at the end of the rill to collect sediments and water. During the simulation, the following variables were measured: time to runoff, time to ponding, time of recession, flow velocity, depth, ratio of the initial splash and grain size. The rainsplash of dry topsoil was more than twice as high as under moist conditions (5 g m-2 min-1 and 2 g m-2 min-1, respectively. The characteristics of the flow hydraulics indicate transition from laminar to turbulent flow [Re (Reynolds number 1000-2000]. In addition, it was observed that a flow velocity of 0.12 m s-1 was the threshold for turbulent flow (Re > 2000, especially at the end of the rainfall simulation. The rill flow tended to be subcritical [Fr (Froude Number < 1.0]. The variation in hydrological attributes (infiltration and runoff was lower, while the sediment yield was variable. The erosion in the rill systems was

  3. Field Observations of Hydrodynamics, Sediment Transport, and Water and Sediment Quality in the Hudson-Raritan Estuary

    Science.gov (United States)

    Bruno, M. S.; Glenn, S.; Chant, R.; Rankin, K.; Korfiatis, G.; Dimou, N.; Creed, E.; Fullerton, B.; Pence, A.; Burke, P.; Haldeman, C.; Hires, R.; Hunter, E.

    2002-12-01

    The New York-New Jersey Harbor estuary system is of enormous ecological and economic importance to the region. The presence of toxic chemicals in the water and sediments results in reduced water quality, fisheries restrictions/advisories, and general adverse impacts to the estuarine ecosystem. The Port of New York and New Jersey is central to the economy of the region. However, in recent years, problems associated with the management of contaminated dredged material, including high costs and the lack of suitable disposal/use alternatives, have threatened to impact the volume of shipping in the Harbor. Sources of contaminants include atmospheric deposition, municipal and industrial wastewater treatment facilities, combined sewer and stormwater outfalls, and rainfall-induced runoff (non-point sources). In addition, Harbor sediments can act as a continuing source as they are re-suspended and moved throughout the system by both natural and man-made means. As part of the New Jersey Toxics Reduction Workplan, Stevens Institute of Technology and Rutgers University are conducting hydrodynamic, sediment transport, and water and suspended sediment quality measurements in Newark Bay, the Arthur Kill and the Kill van Kull. The goals of the project include: (1) collection of high resolution (event-driven and long-term) hydrodynamic, sediment transport and water and suspended sediment quality measurements for use in the assessment of the dominant physics of the system and in the development of a combined hydrodynamic-sediment transport-water/sediment quality model for the region. (2) identification of those tributaries to NY-NJ Harbor that are significant sources of the chemicals of concern, and evaluation of the importance of non-point sources and existing contaminated bottom sediments as sources of the chemicals of concern. (3) identification of point discharges that represent significant sources of the chemicals of concern. Observations were obtained over a two-year period

  4. How tides and waves enhance aeolian sediment transport at the sand motor mega-nourishment

    NARCIS (Netherlands)

    Hoonhout, B.M.; Luijendijk, A.P.; de Vries, S.; Roelvink, D.; Aagaard, T.; Deigaard, R.; Fuhrman, D.

    2017-01-01

    Expanding knowledge concerning the close entanglement between subtidal and subaerial processes in coastal environments initiated the development of the open-source Windsurf modeling framework that enables us to simulate
    multi-fraction sediment transport due to subtidal and subaerial processes

  5. Effect of vortex formation on sediment transport at dual pipe intakes

    Indian Academy of Sciences (India)

    /fulltext/sadh/041/09/1055-1061 ... The effect of vortex formation on rate of sediment transport at coastal dual pipe intakes was investigated using a scaled physical model. Experiments were performed on dual pipe intakes at three common ...

  6. Flow and sediment transport across oblique channels

    DEFF Research Database (Denmark)

    Hjelmager Jensen, Jacob; Madsen, Erik Østergaard; Fredsøe, Jørgen

    1998-01-01

    A 3D numerical investigation of flow across channels aligned obliquely to the main flow direction has been conducted. The applied numerical model solves the Reynolds-averaged Navier-Stokes equations using the k-ε model for turbulence closure on a curvilinear grid. Three momentum equations...... are solved, but the computational domain is 2D due to a uniformity along the channel alignment. Two important flow features arise when the flow crosses the channel: (i) the flow will be refracted in the direction of the channel alignment. This may be described by a depth-averaged model. (ii) due to shear...

  7. A Numerical Study of Hydrodynamics and Sediment Transport in Fourleague Bay, Louisiana

    Science.gov (United States)

    Hu, K.; Chen, Q. J.; Xu, K.; Bentley, S. J.; WANG, J.

    2017-12-01

    Fourleague Bay is a shallow and vertically well-mixed estuary in south-central Louisiana. This estuary is highly impacted by wind (e.g., cold fronts and tropical storms), river discharge from the Atchafalaya River and tides from the Gulf of Mexico, and is being used as an analog site to study impacts of sediment-diversion restoration strategies in the Mississippi River Delta. In this study, a coupled flow-wave Delft3D model was setup and applied to study hydrodynamics and sediment transport in this area. The model grid size is 1071x631 with a 50-m resolution in the bay. Vegetation is considered by rigid cylinders in both flow and wave modules. The offshore water level boundary conditions were provided by a Gulf-scale Delft3D model. Model parameters, especially for cohesive sediment transport such as settling velocity, erosion rate and critical bottom shear stress, were calibrated using the field observation data during three seasons from May 2015 to March 2016. The modeled water levels, currents, significant wave heights and suspended sediment concentrations agreed fairly well with measurements, which suggests a reasonable model performance. Seasonal variations were analyzed based on different scenarios. A series of numerical experiments were set up to quantify the contributions of different factors, such as river discharge, tides and waves to sediment transport in this area. This model will be further applied to be part of a landscape ecosystem model to test landscape and population change over time with manipulations to sediment delivery. This study was funded by the National Science Foundation (SEES-1427389 and CCF-1539567).

  8. Sediment Transport Study in Haeundae Beach using Radioisotope Labelled Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Seop; Kim, Jong Bum; Jung, Sung Hee [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Lee, Jong Sup [Pukyong National Univ., Busan (Korea, Republic of)

    2005-07-01

    Haeundae beach is one of the most famous resorts in Korea and plays an important role as a special tourism district. However, the length and width of the beach are being reduced continuously, which would have bad influence on the regional economy and be the financial burden to the local authority considering that a large amount of budget is spent in the beach nourishment annually. Hence, it is necessary to understand the dynamic behavior of sediments in the coast for the systematic preservation plan of coastal environment. Lately a monitoring system using radioactive isotope as tracers is considered as a novel technique in understanding the dynamic transport of sediments. The objective of this study is to investigate the possible variations in sedimentary distribution and quantify the characteristics of sediments using radiotracer.

  9. Sediment Transport Study in Haeundae Beach using Radioisotope Labelled Compound

    International Nuclear Information System (INIS)

    Kim, Jin Seop; Kim, Jong Bum; Jung, Sung Hee; Lee, Jong Sup

    2005-01-01

    Haeundae beach is one of the most famous resorts in Korea and plays an important role as a special tourism district. However, the length and width of the beach are being reduced continuously, which would have bad influence on the regional economy and be the financial burden to the local authority considering that a large amount of budget is spent in the beach nourishment annually. Hence, it is necessary to understand the dynamic behavior of sediments in the coast for the systematic preservation plan of coastal environment. Lately a monitoring system using radioactive isotope as tracers is considered as a novel technique in understanding the dynamic transport of sediments. The objective of this study is to investigate the possible variations in sedimentary distribution and quantify the characteristics of sediments using radiotracer

  10. Effect of Vegetation on Sediment Transport across Salt Marshes

    Science.gov (United States)

    Coleman, D. J.; Kirwan, M. L.; Guntenspergen, G. R.; Ganju, N. K.

    2016-12-01

    Salt marshes are a classic example of ecogeomorphology where interactions between plants and sediment transport govern the stability of a rapidly evolving ecosystem. In particular, plants slow water velocities which facilitates deposition of mineral sediment, and the resulting change in soil elevation influences the growth and species distribution of plants. The ability of a salt marsh to withstand sea level rise (SLR) is therefore dependent, among other factors, on the availability of mineral sediment. Here we measure suspended sediment concentrations (SSC) along a transect from tidal channel to marsh interior, exploring the role biomass plays in regulating the magnitude and spatial variability in vertical accretion. Our study was conducted in Spartina alterniflora dominated salt marshes along the Atlantic Coast from Massachusetts to Georgia. At each site, we deployed and calibrated optical back scatter turbidity probes to measure SSC in 15 minute intervals in a tidal channel, on the marsh edge, and in the marsh interior. We visited each site monthly to measure plant biomass via clip plots and vertical accretion via two types of sediment tiles. Preliminary results confirm classic observations that biomass is highest at the marsh edge, and that SSC and vertical accretion decrease across the marsh platform with distance from the channel. We expect that when biomass is higher, such as in southern sites like Georgia and months late in the growing season, SSC will decay more rapidly with distance into the marsh. Higher biomass will likely also correspond to increased vertical accretion, with the greatest effect at marsh edge locations. Our study will likely demonstrate how salt marsh plants interact with sediment transport dynamics to control marsh morphology and thus contribute to marsh resilience to SLR.

  11. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  12. Design of a fuzzy differential evolution algorithm to predict non-deposition sediment transport

    Science.gov (United States)

    Ebtehaj, Isa; Bonakdari, Hossein

    2017-12-01

    Since the flow entering a sewer contains solid matter, deposition at the bottom of the channel is inevitable. It is difficult to understand the complex, three-dimensional mechanism of sediment transport in sewer pipelines. Therefore, a method to estimate the limiting velocity is necessary for optimal designs. Due to the inability of gradient-based algorithms to train Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for non-deposition sediment transport prediction, a new hybrid ANFIS method based on a differential evolutionary algorithm (ANFIS-DE) is developed. The training and testing performance of ANFIS-DE is evaluated using a wide range of dimensionless parameters gathered from the literature. The input combination used to estimate the densimetric Froude number ( Fr) parameters includes the volumetric sediment concentration ( C V ), ratio of median particle diameter to hydraulic radius ( d/R), ratio of median particle diameter to pipe diameter ( d/D) and overall friction factor of sediment ( λ s ). The testing results are compared with the ANFIS model and regression-based equation results. The ANFIS-DE technique predicted sediment transport at limit of deposition with lower root mean square error (RMSE = 0.323) and mean absolute percentage of error (MAPE = 0.065) and higher accuracy ( R 2 = 0.965) than the ANFIS model and regression-based equations.

  13. Sediment cascade modelling for stochastic torrential sediment transfers forecasting in a changing alpine climate

    Science.gov (United States)

    Rudaz, Benjamin; Bardou, Eric; Jaboyedoff, Michel

    2015-04-01

    Alpine ephemeral streams act as links between high altitude erosional processes, slope movements and valley-floor fluvial systems or fan storage. Anticipating future mass wasting from these systems is crucial for hazard mitigation measures. Torrential activity is highly stochastic, with punctual transfers separating long periods of calm, during which the system evolves internally and recharges. Changes can originate from diffuse (rock faces, sheet erosion of bared moraines), concentrated external sources (rock glacier front, slope instabilities) or internal transfers (bed incision or aggradation). The proposed sediment cascade model takes into account those different processes and calculates sediment transfer from the slope to the channel reaches, and then propagates sediments downstream. The two controlling parameters are precipitation series (generated from existing rain gauge data using Gumbel and Extreme Probability Distribution functions) and temperature (generated from local meteorological stations data and IPCC scenarios). Snow accumulation and melting, and thus runoff can then be determined for each subsystem, to account for different altitudes and expositions. External stocks and sediment sources have each a specific response to temperature and precipitation. For instance, production from rock faces is dependent on frost-thaw cycles, in addition to precipitations. On the other hand, landslide velocity, and thus sediment production is linked to precipitations over longer periods of time. Finally, rock glaciers react to long-term temperature trends, but are also prone to sudden release of material during extreme rain events. All those modules feed the main sediment cascade model, constructed around homogeneous torrent reaches, to and from which sediments are transported by debris flows and bedload transport events. These events are determined using a runoff/erosion curve, with a threshold determining the occurrence of debris flows in the system. If a debris

  14. Assessing Sediment Transport at Navy Facilities (User’s Guide)

    Science.gov (United States)

    2007-09-01

    move along the channel as a series of bedforms (for example, ripples , dunes , and antidunes). Direct measurement of bedload transport is so difficult...are particle sizes that make up the sediment beds of common aquatic systems, sands , and silts. Table 1 describes the typical ranges of particle (or...type. For example, a mixture of a small amount of sand with clay can be called a sandy clay, and a smaller amount of silt with sand might be called

  15. Miocene mass-transport sediments, Troodos Massif, Cyprus

    Science.gov (United States)

    Lord, A.R.; Harrison, R.W.; BouDagher-Fadel, M.; Stone, B.D.; Varol, O.

    2009-01-01

    Sediment mass-transport layers of submarine origin on the northern and southern flanks of the Troodos ophiolitic massif are dated biostratigraphically as early Miocene and late Miocene, respectively and therefore represent different seismogenic events in the uplift and erosional history of the Troodos terrane. Analysis of such events has potential for documenting Miocene seismic and uplift events regionally in the context of changing stress field directions and plate vectors through time. ?? 2009 The Geologists' Association.

  16. Capabilities of the Large-Scale Sediment Transport Facility

    Science.gov (United States)

    2016-04-01

    respectively). There were only minor changes in output voltage within a 9 0C (48 0F) temperature change and exhibited little short -term drift ±0.04% of range ...longshore sand transport rate generated under obliquely incident waves. The LSTF instrumentation includes acoustic Doppler velocimeters (ADVs), wave gauges...pump flow meters, sediment trap weigh tanks, and beach profiling lidar . A detailed discussion of the original LSTF features and capabilities can be

  17. Working Toward a Common Strategy for U.K. Sediment Transport Research

    Science.gov (United States)

    Souza, Alejandro J.; Bell, Paul S.; Amoudry, Laurent

    2010-02-01

    U.K. Sediment Initiative 2009: Developing Multidisciplinary Sediment Dynamics Research in a Strategic Context;Liverpool, United Kingdom, 27-29 April 2009; A workshop funded by the U.K. Natural Environment Research Council (NERC) brought together U.K.-based researchers, stakeholders, and policy makers with an interest in sediment processes to foster collaborative links and to help NERC theme leaders develop future Theme Action Plans (TAPs). This could be achieved only by identifying gaps in knowledge and prioritizing research needs toward formulating a U.K. sediment transport research strategy. More than 50 participants from NERC research and collaborative centers, U.K. higher education institution researchers, industry consultants, and government departments and agencies attended the workshop. The workshop was divided into three parts. First, in an introduction, guest speakers discussed the importance of sediment transport from different perspectives. The speakers included Darius Campbell (U.K. Department for Environment, Food, and Rural Affairs) on policy drivers, Richard Whitehouse (HR Wallingford, Ltd.) and David Lambkin (ABPMer, Ltd.) on industry needs, John Rees (NERC theme leader) on the NERC TAPs and possible funding opportunities, Alan Davies (University of Bangor) on the academic research perspective, and Chris Sherwood (U.S. Geological Survey) on international insight on large sediment transport projects and on developments of the U.S. National Community Sediment Transport Model project. Second, in a series of breakout sessions, participants considered the stakeholders’ needs, the different dynamic areas of the coastal ocean, and the process time scales. Third, the workshop group discussed possible funding streams and ways to better formulate a concerted research plan for presentation to funding bodies.

  18. Ensemble Modeling of Suspended Sediment in Steep Mountain Catchments

    Science.gov (United States)

    Stewart, J.; Raseman, W. J.; Kasprzyk, J. R.; Livneh, B.

    2016-12-01

    Climatic and land cover changes present important uncertainties into the rates of soil erosion and sedimentation in watersheds. Soil erosion adds constituents to streams, altering water chemistry and streambed morphology, which can adversely affect aquatic life and poses a critical challenge for water treatment and reservoir management. The goal of this research is to establish estimates of sediment transport within large-scale mountainous catchments (>1000 km2). As sedimentation rates are impacted by numerous physical processes including soil, land cover, slope and climate; the results from seven models will be presented to quantify uncertainty and improve predictability. A broader inquiry made here is into the efficacy of model structure under different conditions. We present the results from empirical, stochastic, conceptual and physical models. These include empirical models: monovariate rating curve, multivariate regression and the Modified Universal Soil Loss Equation (MUSLE), to models with conceptual components: Soil Water Assessment Tool (SWAT) to more physically based models: Water Erosion Prediction Project (WEPP), Precipitation Runoff Modeling System (PRMS) and Distributed Hydrology Soil Vegetation Model (DHSVM). Key uncertainties will be characterized resulting from forcing inputs, parameter selection, scale discretization, and model structure. Calibration results from a multi-objective optimization routine will be presented that optimize parameters and identify performance trade-offs that will be used to develop uncertainty estimates in both streamflow and sediment projections. The outcomes of this research will highlight critical issues relevant to large-scale hydrologic and suspended sediment prediction initiatives.

  19. Sediment transport in the aftermath of the 2008 Wenchuan earthquake: constraints from landslide mapping, photo-sieving and reservoir accumulation

    Science.gov (United States)

    Li, G.; West, A. J.; Hammond, D. E.; Xiao, Z.; Okaya, D. A.; Densmore, A. L.; Hilton, R. G.; Jin, Z.; Zhang, F.; Wang, J.

    2014-12-01

    Understanding post-seismic sediment transport is important for assessing crustal mass redistribution by earthquakes and for managing seismically-induced geohazards, including channel aggradation and flooding. The 2008 Wenchuan earthquake (Mw 7.9) triggered over 60,000 landslides in the Longmen Shan range of the eastern Tibetan Plateau. Records from hydrometric gauging show enhanced regional suspended sediment fluxes following the earthquake, resulting from evacuation of the landslide sediment (Wang et al., in revision). In addition to the insights into suspended sediment dynamics from gauging stations, this large-magnitude seismic event provides an opportunity to study bedload sediment transport after a large earthquake. Here we present primary results from a comprehensive investigation of the Min Jiang river system following the Wenchuan earthquake. Using a landslide inventory map (Li et al., 2014) and a DEM-based river network, we mapped landslide-river network connectivity. With photo-sieving techniques, we estimated the grain size distribution of medium-grained (mm to cm scale) landslide deposits. These data provide constraints on sediment sources. The mass of sediment in transport has been estimated from river sediment quartz 10Be measurements (West et al., 2014), supplemented here by constraints from rates of sediment infill in a downstream reservoir, determined by bathymetric profiling and analysis of sediment cores. Together with hydrometric data, this dataset provides the basic parameters for modeling sediment transport in the Min Jiang river system after the Wenchuan earthquake and promises insight into the mechanisms controlling post-earthquake sediment transport. References Li et al., 2014 , Geochem. Geophys. Geosyst., 15, 833-844, Wang et al., in revision West et al., 2014, Earth Planet Sc. Lett., 396, 143-153

  20. Slope, grain size, and roughness controls on dry sediment transport and storage on steep hillslopes

    Science.gov (United States)

    DiBiase, Roman A.; Lamb, Michael P.; Ganti, Vamsi; Booth, Adam M.

    2017-04-01

    Existing hillslope sediment transport models developed for low-relief, soil-mantled landscapes are poorly suited to explain the coupling between steep rocky hillslopes and headwater channels. Here we address this knowledge gap using a series of field and numerical experiments to inform a particle-based model of sediment transport by dry ravel—a mechanism of granular transport characteristic of steep hillslopes. We find that particle travel distance increases as a function of the ratio of particle diameter to fine-scale (1 m) topographic variability associated with rocky landscapes. Applying a 2-D dry-ravel-routing model to lidar-derived surface topography, we show how spatial patterns of local and nonlocal transport control connectivity between hillslopes and steep headwater channels that generate debris flows through failure of ravel-filled channels following wildfire. Our results corroborate field observations of a patchy transition from soil-mantled to bedrock landscapes and suggest that there is a dynamic interplay between sediment storage, roughness, grain sorting, and transport even on hillslopes that well exceed the angle of repose.

  1. Surficial sediment distribution and net sediment transport pattern in İzmir Bay, western Turkey

    Science.gov (United States)

    Duman, Muhammet; Avcı, Mert; Duman, Şükriye; Demirkurt, Erkan; Düzbastılar, Musa Kazım

    2004-06-01

    İzmir Bay, a microtidal bay in the eastern Aegean Sea, is an area of fine-grained sediment. The surficial sediments may be subdivided into seven zones based on their grain size. The western part of the outer bay is covered by silty and muddy sand, whilst the eastern part of the outer bay is covered with silt and mud. Most of the central bay is covered with sandy silt containing up to 50% carbonate and the area between the central and inner bay is floored by silt. Total organic carbon concentrations of the surface sediments vary between 0.40% and 3.12%, and increase in proportion to silt content. Accumulation of organic matter in the inner bay is probably produced by the inflow from raw sewage outfalls. The grain size trends are analyzed in conjunction with information on hydrodynamics, mineralogy and geochemistry, to derive sediment movement patterns. The pattern gives a preliminary idea of sediment transport directions together with the main areas of deposition and the possible dispersal patterns of contaminants in the İzmir Bay environment.

  2. System Model of Daily Sediment Yield

    Science.gov (United States)

    Sharma, T. C.; Dickinson, W. T.

    1980-06-01

    Input-output systems concepts have been applied to the modeling of daily runoff-sediment yield of the Thames River in southern Ontario, Canada. Spectral and correlation techniques have been used to construct a parsimonious model of daily sediment yields. It is shown that a linear discrete dynamic model is possible in terms of the log-transformed daily runoff and sediment yield sequences. The fluvial system of the Thames River watershed exhibits a weak memory on a daily basis, and the noise component corrupting the watershed fluvial system resembles a white noise process.

  3. Technetium-99m: From nuclear medicine applications to fine sediment transport studies

    Directory of Open Access Journals (Sweden)

    Bandeira Jefferson V.

    2017-12-01

    Full Text Available The present work is a contribution to rescue the history of development of the application of 99mTc, widely used in nuclear medicine, to its use as tracer for the study of the transport of fine sediment in suspension, in water environment. It addresses the usefulness of its application in obtaining important parameters in environmental studies, illustrating them with some applications already performed and the results obtained. This kind of study, when associated with information on hydrodynamic parameters, for example, river, tidal, wind and wave currents, are powerful tools for the understanding and quantification of fine sediment transport in suspension. Fine sediment is an important vector in the transportation of heavy metals, organic matter and nutrients in water environment, and the quantitative knowledge of its behaviour is mandatory for studies of environmental impacts. Fine sediment labelled with 99mTc, can also be used to study the effect of human interventions, such as dredging of reservoirs, access channels and harbours, and the dumping of dredged materials in water bodies. Besides that, it can be used to optimize dredging works, evaluating the technical and economic feasibility of dumping sites and their environmental impact. It is a valuable support in the calibration and validation of mathematical models for sediment dynamics.

  4. Sediment transport in headwaters of a volcanic catchment—Kamchatka Peninsula case study

    Science.gov (United States)

    Chalov, Sergey R.; Tsyplenkov, Anatolii S.; Pietron, Jan; Chalova, Aleksandra S.; Shkolnyi, Danila I.; Jarsjö, Jerker; Maerker, Michael

    2017-09-01

    Due to specific environmental conditions, headwater catchments located on volcanic slopes and valleys are characterized by distinctive hydrology and sediment transport patterns. However, lack of sufficient monitoring causes that the governing processes and patterns in these areas are rarely well understood. In this study, spatiotemporal water discharge and sediment transport from upstream sources was investigated in one of the numerous headwater catchments located in the lahar valleys of the Kamchatka Peninsula Sukhaya Elizovskaya River near Avachinskii and Koryakskii volcanoes. Three different subcatchments and corresponding channel types (wandering rivers within lahar valleys, mountain rivers within volcanic slopes and rivers within submountain terrains) were identified in the studied area. Our measurements from different periods of observations between years 2012-2014 showed that the studied catchment was characterized by extreme diurnal fluctuation of water discharges and sediment loads that were influenced by snowmelt patterns and high infiltration rates of the easily erodible lahar deposits. The highest recorded sediment loads were up to 9•104 mg/L which was related to an increase of two orders of magnitude within a one day of observations. Additionally, to get a quantitative estimate of the spatial distribution of the eroded material in the volcanic substrates we applied an empirical soil erosion and sediment yield model-modified universal soil loss equation (MUSLE). The modeling results showed that even if the applications of the universal erosion model to different non-agricultural areas (e.g., volcanic catchments) can lead to irrelevant results, the MUSLE model delivered might be acceptable for non-lahar areas of the studied volcanic catchment. Overall the results of our study increase our understanding of the hydrology and associated sediment transport for prediction of risk management within headwater volcanic catchments.

  5. A Spatially Distributed Conceptual Model for Estimating Suspended Sediment Yield in Alpine catchments

    Science.gov (United States)

    Costa, Anna; Molnar, Peter; Anghileri, Daniela

    2017-04-01

    Suspended sediment is associated with nutrient and contaminant transport in water courses. Estimating suspended sediment load is relevant for water-quality assessment, recreational activities, reservoir sedimentation issues, and ecological habitat assessment. Suspended sediment concentration (SSC) along channels is usually reproduced by suspended sediment rating curves, which relate SSC to discharge with a power law equation. Large uncertainty characterizes rating curves based only on discharge, because sediment supply is not explicitly accounted for. The aim of this work is to develop a source-oriented formulation of suspended sediment dynamics and to estimate suspended sediment yield at the outlet of a large Alpine catchment (upper Rhône basin, Switzerland). We propose a novel modelling approach for suspended sediment which accounts for sediment supply by taking into account the variety of sediment sources in an Alpine environment, i.e. the spatial location of sediment sources (e.g. distance from the outlet and lithology) and the different processes of sediment production and transport (e.g. by rainfall, overland flow, snowmelt). Four main sediment sources, typical of Alpine environments, are included in our model: glacial erosion, hillslope erosion, channel erosion and erosion by mass wasting processes. The predictive model is based on gridded datasets of precipitation and air temperature which drive spatially distributed degree-day models to simulate snowmelt and ice-melt, and determine erosive rainfall. A mass balance at the grid scale determines daily runoff. Each cell belongs to a different sediment source (e.g. hillslope, channel, glacier cell). The amount of sediment entrained and transported in suspension is simulated through non-linear functions of runoff, specific for sediment production and transport processes occurring at the grid scale (e.g. rainfall erosion, snowmelt-driven overland flow). Erodibility factors identify different lithological units

  6. Sediment transport dynamics in steep, tropical volcanic catchments

    Science.gov (United States)

    Birkel, Christian; Solano Rivera, Vanessa; Granados Bolaños, Sebastian; Brenes Cambronero, Liz; Sánchez Murillo, Ricardo; Geris, Josie

    2017-04-01

    How volcanic landforms in tropical mountainous regions are eroded, and how eroded materials move through these mostly steep landscapes from the headwaters to affect sediment fluxes are critical to water resources management in their downstream rivers. Volcanic landscapes are of particular importance because of the short timescales (70%) and sediments to downstream rivers. At the catchment outlet (Figure 1C) of the San Lorencito stream, we established high temporal resolution (5min) water quantity and sediment monitoring (turbidity). We also surveyed the river network on various occasions to characterize fluvial geomorphology including material properties. We could show that the rainfall-runoff-sediment relationships and their characteristic hysteresis patterns are directly linked to variations in the climatic input (storm intensity and duration) and the size, form and mineralogy of the transported material. Such a relationship allowed us to gain the following insights: (i) periodic landslides contribute significant volumes of material (> 100m3 per year) to the stream network, (ii) rainfall events that exceed a threshold of around 30mm/h rain intensity activate superficial flow pathways with associated mobilization of sediments (laminar erosion). However, the erosion processes are spatially very heterogeneous and mostly linked to finer material properties of the soils that mostly developed on more highly weathered bedrock. (iii) extreme events (return period > 50 years) mainly erode the streambed and banks cutting deeper into the bedrock and re-distribute massive amounts of material in the form of removed old alluvial deposits and new deposits created elsewhere, (iv) recovery after such extreme events in the form of fine material transport even during low intensity rainfall towards pre-event rainfall intensity thresholds takes only about two to three months. We conclude that the study catchment geomorphologically represents a low-resistance, but highly resilient

  7. Stochastic Modelling of the Hydraulic Anisotropy of Ash Impoundment Sediment

    Science.gov (United States)

    Slávik, Ivan

    2017-12-01

    In the case reported here the impoundments of a 400 MW coal heated power plant with an annual production of about 1.5 million tons of fuel ash are of the cross-valley type, operated by the simple and cheap „upstream method”. The aim of the research was to determine overall and local values of the permeability in horizontal as well as in vertical direction and the anisotropy of the thin-layered sedimented ash. The coal ashes are hydraulically transported through pipelines in form of a slurry and periodically floated on the beach of the impoundment. The ashes are deposited in the form of a thin-layered sediment, with random alternation of layers with a coarser or finer granularity. The ash impoundment sediment is anthropogenic sediment with horizontally laminated texture. Therefore, the sediment is anisotropic from the viewpoint of water seepage. The knowledge of the permeability and the seepage anisotropy of the sediment is a basic requirement for the design of an appropriate dewatering system. The seepage anisotropy of the ash sediment has been checked by means of stochastic modelling, based on the correlation between the effective grain diameter and the coefficient of permeability of the ash: the effective grain diameter and the thickness of individual layers have been proposed to be random events.

  8. Uptake, translocation, and elimination in sediment-rooted macrophytes: a model-supported analysis of whole sediment test data.

    Science.gov (United States)

    Diepens, Noël J; Arts, Gertie H P; Focks, Andreas; Koelmans, Albert A

    2014-10-21

    Understanding bioaccumulation in sediment-rooted macrophytes is crucial for the development of sediment toxicity tests using macrophytes. Here, we explore bioaccumulation in sediment-rooted macrophytes by tracking and modeling chemical flows of chlorpyrifos, linuron, and six PCBs in water-sediment-macrophyte systems. Chemical fluxes across the interfaces between pore water, overlying water, shoots, and roots were modeled using a novel multicompartment model. The modeling yielded the first mass-transfer parameter set reported for bioaccumulation by sediment-rooted macrophytes, with satisfactory narrow confidence limits for more than half of the estimated parameters. Exposure via the water column led to rapid uptake by Elodea canadensis and Myriophyllum spicatum shoots, followed by transport to the roots within 1-3 days, after which tissue concentrations gradually declined. Translocation played an important role in the exchange between shoots and roots. Exposure via spiked sediment led to gradual uptake by the roots, but subsequent transport to the shoots and overlying water remained limited for the chemicals studied. These contrasting patterns show that exposure is sensitive to test set up, chemical properties, and species traits. Although field-concentrations in water and sediment will differ from those in the tests, the model parameters can be assumed applicable for modeling exposure to macrophytes in the field.

  9. Sediment transport patterns and climate change: the downstream Tuul River case study, Northern Mongolia.

    Science.gov (United States)

    Pietroń, Jan; Jarsjö, Jerker

    2014-05-01

    Ongoing changes in the Central Asian climate including increasing temperatures can influence the hydrological regimes of rivers and the waterborne transport of sediments. Changes in the latter, especially in combination with adverse human activities, may severely impact water quality and aquatic ecosystems. However, waterborne transport of sediments is a result of complex processes and varies considerably between, and even within, river systems. There is therefore a need to increase our general knowledge about sediment transport under changing climate conditions. The Tuul River, the case site of this study, is located in the upper part of the basin of the Selenga River that is the main tributary to Lake Baikal, a UNESCO World Heritage Site. Like many other rivers located in the steppes of Northern Mongolia, the Tuul River is characterized by a hydrological regime that is not disturbed by engineered structures such as reservoirs and dams. However, the water quality of the downstream Tuul River is increasingly affected by adverse human activities - including placer gold mining. The largest contribution to the annual river discharge occurs during the relatively warm period in May to August. Typically, there are numerous rainfall events during this period that cause considerable river flow peaks. Parallel work has furthermore shown that due to climate change, the daily variability of discharge and numbers of peak flow events in the Tuul River Basin has increased during the past 60 years. This trend is expected to continue. We here aim at increasing our understanding of future sediment transport patterns in the Tuul River, specifically considering the scenario that peak flow events may become more frequent due to climate change. We use a one-dimensional sediment transport model of the downstream reach of the river to simulate natural patterns of sediment transport for a recent hydrological year. In general, the results show that sediment transport varies considerably

  10. Sediment transport analysis at event scale in a semi-arid basin of Southern-Italy

    Science.gov (United States)

    Bisantino, T.; Gentile, F.; Milillo, F.; Romano, G.; Trisorio Liuzzi, G.

    2009-04-01

    Erosion at basin scale is a main issue in nowadays research since it plays a role of first level in sustainable management of natural resources (land and water). In particular, in arid and semi-arid regions natural vegetative cover is sparse and runoff events cause high rates of sediment transport, while long periods of drought can be observed. Several types of erosion phenomena affect the torrents in the north-western area of the Puglia Region (Southern-Italy) where flood events are characterised by a considerable amount of suspended solids. In this area the solid load was monitored until 1989 by the National Hydrographic Service using manual sampling. To accurately estimate the sediment transport during flood events and in order to improve the methodologies to assess and predict soil erosion, a watershed representative of the area (Carapelle torrent) was selected, where an experimental station was set up for the continuous measuring of suspended solids. The station is equipped with a dual function infrared sensor (turbidity/suspended solids), a remote data acquisition system, an electromechanical and an ultrasound stage meter. A laboratory test of the turbidity sensor was preliminary performed to evaluate the dual functionality of the instrument (turbidity and suspended sediment concentration) in relation to the variations of sediment concentration and grain size distribution. Successively a field calibration was carried out to determine the relationship between optical and gravimetric data and to check the housing device. Afterwards, the high temporal resolution data collected over a 3-years period (2007-2009) were used to analyze the sediment transport dynamics. The aim of the study is to investigate the relationships in unsteady flows between the sediment concentration and the discharge, and to analyze the relationships at event scale between the sediment budget and some hydrological variables, in order to select the model that best represents the local

  11. Application of tracer techniques in studies of sediment transport in Vietnam

    International Nuclear Information System (INIS)

    Hai, P.S.; Quang, N.H.; Xuan, N.M.; Chuong, P.N.; Hien, P.Z.

    1997-01-01

    As a consequence of intensive erosion processes typical of the humid tropical one, as well as of human activities destroying tropical forests, grasslands and protective mangrove swamps, etc, most navigable estuaries in Vietnam suffer seriously from sedimentation. In order to maintain the necessary depth for the 7.000 ton vessels entering and leaving ports, a large amount of money is spent annually on dredging operation. A lot of hydraulic and sedimentary surveys were carried out in the past by different groups of researchers. However, owing to the complexity of sediment processes in estuarine areas under the hydrometeorological conditions typical of the southwest Pacific, the use of just any modelling approach is not suitable. In many cases, the conclusions inferred from mathematical models have been the controversial matter. The tracer techniques, which have been employed in the country since 1991, have provided a very efficient tool to obtain a dynamic idea of sediment transport. Many investigations of bedload transport using Sc-46 labelled glass and Ir-192 glass as radioactive tracers were carried out from 1992 to 1996 at Haiphong harbour area. Bedload transport rates under effect of northeast monsoon and southeast monsoon at 5 zones located on both sides of the navigation channel were estimated. In bedload transport studies, apart from conventional methods for assessment of transport thickness, a new method using the ratio of photoelectric peak to Compton region of spectra acquired directly on the sea bed was put forward and applied. The influence of dredging materials at two dumping sites under different tidal phases on in fill rate in the access channel was assessed by radioactive tracers. The qualitative and quantitative information on sediment transport at some experimental sites given by tracers was used by modelling specialists who have undertaken hydraulic and sedimentary surveys in this region

  12. Sediment plume model-a comparison between use of measured turbidity data and satellite images for model calibration.

    Science.gov (United States)

    Sadeghian, Amir; Hudson, Jeff; Wheater, Howard; Lindenschmidt, Karl-Erich

    2017-08-01

    In this study, we built a two-dimensional sediment transport model of Lake Diefenbaker, Saskatchewan, Canada. It was calibrated by using measured turbidity data from stations along the reservoir and satellite images based on a flood event in 2013. In June 2013, there was heavy rainfall for two consecutive days on the frozen and snow-covered ground in the higher elevations of western Alberta, Canada. The runoff from the rainfall and the melted snow caused one of the largest recorded inflows to the headwaters of the South Saskatchewan River and Lake Diefenbaker downstream. An estimated discharge peak of over 5200 m 3 /s arrived at the reservoir inlet with a thick sediment front within a few days. The sediment plume moved quickly through the entire reservoir and remained visible from satellite images for over 2 weeks along most of the reservoir, leading to concerns regarding water quality. The aims of this study are to compare, quantitatively and qualitatively, the efficacy of using turbidity data and satellite images for sediment transport model calibration and to determine how accurately a sediment transport model can simulate sediment transport based on each of them. Both turbidity data and satellite images were very useful for calibrating the sediment transport model quantitatively and qualitatively. Model predictions and turbidity measurements show that the flood water and suspended sediments entered upstream fairly well mixed and moved downstream as overflow with a sharp gradient at the plume front. The model results suggest that the settling and resuspension rates of sediment are directly proportional to flow characteristics and that the use of constant coefficients leads to model underestimation or overestimation unless more data on sediment formation become available. Hence, this study reiterates the significance of the availability of data on sediment distribution and characteristics for building a robust and reliable sediment transport model.

  13. Effects of Vegetative Buffers on Sediment and its Associated Pollutants Transport and Deposition

    Science.gov (United States)

    Akram, S.; Yu, B.

    2016-12-01

    Grass buffer strips impact overland flow hydraulics and consequently sediment delivery from hillslopes. Mathematical models facilitate the evaluation of performance of grass strips in reducing sediment delivery by simulating and predicting flow characteristics and sediment transport adjacent to and within grass strips. GUSED-VBS 2 model is developed to simulate flow, erosion and deposition processes in the upstream area and within grass strips. The model is capable of estimating proportion and amount of different sediment size classes in the outflow. The modified Green-Ampt equation was used to simulate infiltration. Gradually varied flow and a kinematic wave approximation were used to simulate flow characteristics upstream and within grass strips. The GUEST model was modified in order to use its basic approaches in the sediment transport module for grass strips. Model predictions agree well with measured data from two sets of controlled experiments. The sensitivity analysis showed that the initial soil moisture and flow rate were the most sensitive parameters in predicting runoff loss. Increasing the slope steepness and flow rate dramatically decreased the efficiency of grass strips in reducing sediment concentration and sediment delivery. Comparing the results of the model simulations for different prevalent scenarios showed that the backwater region upstream of dense grass strips is the main region for sediment deposition on low slopes. In agreement with the experimental observations, the model predicted the proportion of coarse particles to be higher in the deposited material upstream of grass strips compared with the deposited material within the grass strip. The efficiency of grass strips in reducing the concentration of sediment is much higher for coarser than finer particles. Grass strips can substantially decrease the delivery of fine particles if a significant reduction in runoff (i.e. infiltration) occurs within the strip. As no backwater forms on high

  14. Check dams effects on sediment transport in steep slope flume

    Science.gov (United States)

    Piton, Guillaume; Recking, Alain

    2014-05-01

    Depending on many influences (geology, relief, hydrology, land use, etc.) some mountainous watershed are prone to cause casualties and facilities damages. Large amounts of sediments episodically released by torrents are often the biggest problem in torrent related hazard mitigation. Series of transversal structures as check dams and ground sills are often used in the panel of risk mitigation technics. A large literature exits on check dams and it mainly concerns engineering design, e.g. toe scouring, stability stress diagram, changes in upper and lower reaches equilibrium slopes. Check dams in steep slope rivers constitute fixed points in the bed profile and prevent general bed incision. However their influence on sediment transport once they are filled is not yet clear. Two flume test campaigns, synthetize in Table 1, were performed to investigate this question: Table 1 : experiment plan Run (duration) Ref1 (50h)CD1a (30h)CD1b (30h)Ref2 (92h)CD2 (18h) Solid feeding discharge (g.s^-1) 44 44 44 60 60 Number of check dams none 1 3 none 2 A nearly 5-m-long, 10-cm-wide and 12%-steep flume was used. The water discharge was set to 0,55 l/s in all runs. A mixture of poorly sorted natural sediments with diameters between 0.8 and 40 mm was used. An open solid-discharge-feeding circuit kept the inlet sediment flux constant during all experiments. As both feeding rates did not present variation, changes in outlet solid discharge were assumed to be due to bed variations in the bed storage. We observed strong fluctuations of solid flux and slope in each reaches of all runs between: (i) steep aggradating armoured bed and (ii) less steep and finer bed releasing bedload sheets during erosion events and inducing bedload pulses. All experiments showed consistent results: transported volume associated with erosion event decreased with the length between two subsequent check dams. Solid transversal structures shorten the upstream erosion-propagation and avoid downstream change in the

  15. Sediment transport primer: estimating bed-material transport in gravel-bed rivers

    Science.gov (United States)

    Peter Wilcock; John Pitlick; Yantao Cui

    2009-01-01

    This primer accompanies the release of BAGS, software developed to calculate sediment transport rate in gravel-bed rivers. BAGS and other programs facilitate calculation and can reduce some errors, but cannot ensure that calculations are accurate or relevant. This primer was written to help the software user define relevant and tractable problems, select appropriate...

  16. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    Science.gov (United States)

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    Sedimentation is an ongoing maintenance problem for reservoirs, limiting reservoir storage capacity and navigation. Because Lower Granite Reservoir in Washington is the most upstream of the four U.S. Army Corps of Engineers reservoirs on the lower Snake River, it receives and retains the largest amount of sediment. In 2008, in cooperation with the U.S. Army Corps of Engineers, the U.S. Geological Survey began a study to quantify sediment transport to Lower Granite Reservoir. Samples of suspended sediment and bedload were collected from streamgaging stations on the Snake River near Anatone, Washington, and the Clearwater River at Spalding, Idaho. Both streamgages were equipped with an acoustic Doppler velocity meter to evaluate the efficacy of acoustic backscatter for estimating suspended-sediment concentrations and transport. In 2009, sediment sampling was extended to 10 additional locations in tributary watersheds to help identify the dominant source areas for sediment delivery to Lower Granite Reservoir. Suspended-sediment samples were collected 9–15 times per year at each location to encompass a range of streamflow conditions and to capture significant hydrologic events such as peak snowmelt runoff and rain-on-snow. Bedload samples were collected at a subset of stations where the stream conditions were conducive for sampling, and when streamflow was sufficiently high for bedload transport. At most sampling locations, the concentration of suspended sediment varied by 3–5 orders of magnitude with concentrations directly correlated to streamflow. The largest median concentrations of suspended sediment (100 and 94 mg/L) were in samples collected from stations on the Palouse River at Hooper, Washington, and the Salmon River at White Bird, Idaho, respectively. The smallest median concentrations were in samples collected from the Selway River near Lowell, Idaho (11 mg/L), the Lochsa River near Lowell, Idaho (11 mg/L), the Clearwater River at Orofino, Idaho (13 mg

  17. Temperature coefficient for modeling denitrification in surface water sediments using the mass transfer coefficient

    Science.gov (United States)

    T.W. Appelboom; G.M. Chescheir; F. Birgand; R.W. Skaggs; J.W. Gilliam; D. Amatya

    2010-01-01

    Watershed modeling has become an important tool for researchers. Modeling nitrate transport within drainage networks requires quantifying the denitrification within the sediments in canals and streams. In a previous study, several of the authors developed an equation using a term called a mass transfer coefficient to mathematically describe sediment denitrification....

  18. Temperature Coefficient for Modeling Denitrification in Surface Water Sediments Using the Mass Transfer Coefficient

    Science.gov (United States)

    T. W. Appelboom; G. M. Chescheir; R. W. Skaggs; J. W. Gilliam; Devendra M. Amatya

    2006-01-01

    Watershed modeling has become an important tool for researchers with the high costs of water quality monitoring. When modeling nitrate transport within drainage networks, denitrification within the sediments needs to be accounted for. Birgand et. al. developed an equation using a term called a mass transfer coefficient to mathematically describe sediment...

  19. Sediment transport and depth variation study of the Gulf of Kutch using remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Wagle, B.G.; Sugimori, Y.

    of actual data and principal components were generated to study sediment transport, depth variation and associated processes by mapping coastal and underwater geomorphic features and suspended sediment plumes. Submerged shoals, located as deep as 20 m below...

  20. Influence of turbulence on bed load sediment transport

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Chua, L.; Cheng, N. S.

    2003-01-01

    -bed experiments and the ripple-covered-bed experiments. In the former case, the flow in the presence of the turbulence generator was adjusted so that the mean bed shear stress was the same as in the case without the turbulence generator in order to single out the effect of the external turbulence on the sediment...... transport. In the ripple-covered-bed case, the mean and turbulence quantities of the streamwise component of the velocity were measured, and the Shields parameter, due to skin friction, was determined. The Shields parameter, together with the r.m.s. value of the streamwise velocity fluctuations, were...

  1. Nonlocal Sediment Transport on Steep Lateral Moraines, Eastern Sierra Nevada, California, USA

    Science.gov (United States)

    Doane, Tyler H.; Furbish, David Jon; Roering, Joshua J.; Schumer, Rina; Morgan, Daniel J.

    2018-01-01

    Recent work has highlighted the significance of long-distance particle motions in hillslope sediment transport. Such motions imply that the flux at a given hillslope position is appropriately described as a weighted function of surrounding conditions that influence motions reaching the given position. Although the idea of nonlocal sediment transport is well grounded in theory, limited field evidence has been provided. We test local and nonlocal formulations of the flux and compare their ability to reproduce land surface profiles of steep moraines in California. We show that nonlocal and nonlinear models better reproduce evolved land surface profiles, notably the amount of lowering and concavity near the moraine crest and the lengthening and straightening of the depositional apron. The analysis provides the first estimates of key parameters that set sediment entrainment rates and travel distances in nonlocal formulations and highlights the importance of correctly specifying the entrainment rate when modeling land surface evolution. Moraine evolution associated with nonlocal and nonlinear transport formulations, when described in terms of the evolution of the Fourier transform of the moraine surface, displays a distinct behavior involving growth of certain wave numbers, in contrast to the decay of all wave numbers associated with linear transport. Nonlinear and nonlocal formulations share key mathematical elements yielding a nonlinear relation between the flux and the land surface slope.

  2. Evaluating sediment transport in flood-driven ephemeral tributaries using direct and acoustic methods.

    Science.gov (United States)

    Stark, K.

    2017-12-01

    One common source of uncertainty in sediment transport modeling of large semi-arid rivers is sediment influx delivered by ephemeral, flood-driven tributaries. Large variations in sediment delivery are associated with these regimes due to the highly variable nature of flows within them. While there are many sediment transport equations, they are typically developed for perennial streams and can be inaccurate for ephemeral channels. Discrete, manual sampling is labor intensive and requires personnel to be on site during flooding. In addition, flooding within these tributaries typically last on the order of hours, making it difficult to be present during an event. To better understand these regimes, automated systems are needed to continuously sample bedload and suspended load. In preparation for the pending installation of an automated site on the Arroyo de los Piños in New Mexico, manual sediment and flow samples have been collected over the summer monsoon season of 2017, in spite of the logistical challenges. These data include suspended and bedload sediment samples at the basin outlet, and stage and precipitation data from throughout the basin. Data indicate a complex system; flow is generated primarily in areas of exposed bedrock in the center and higher elevations of the watershed. Bedload samples show a large coarse-grained fraction, with 50% >2 mm and 25% >6 mm, which is compatible with acoustic measuring techniques. These data will be used to inform future site operations, which will combine direct sediment measurement from Reid-type slot samplers and non-invasive acoustic measuring methods. Bedload will be indirectly monitored using pipe-style microphones, plate-style geophones, channel hydrophones, and seismometers. These instruments record vibrations and acoustic signals from bedload impacts and movement. Indirect methods for measuring of bedload have never been extensively evaluated in ephemeral channels in the southwest United States. Once calibrated

  3. Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow

    Science.gov (United States)

    Cherrey, Kelly D.; Flury, Markus; Harsh, James B.

    2003-06-01

    At the U.S. Department of Energy's Hanford Reservation, colloid-facilitated transport is a potential mechanism for accelerated movement of radionuclides like Cs-137. Here we investigate the transport of colloids through Hanford sediments under steady state, unsaturated flow conditions. We isolated colloids from Hanford sediments by dispersion and sedimentation and determined colloid breakthrough curves in packed sediment columns. A column system was developed with which we could control volumetric water contents with accuracy better than 0.01 effective saturation and the water potentials to better than 0.06 cm-H2O. Inflow and outflow boundary conditions had to be meticulously controlled to ensure uniformity of water contents and water potentials inside the column. Colloid breakthrough curves were determined under a series of water contents ranging from 0.2 to 1.0 effective saturation. Colloids were mobile under all water saturations, but the total amount of colloids transported decreased with decreasing water saturation. Colloid behavior was described with the mobile-immobile model concept, including first-order deposition from the mobile phase only.

  4. A Spatial Model of Erosion and Sedimentation on Continental Margins

    National Research Council Canada - National Science Library

    Pratson, Lincoln

    1999-01-01

    .... A computer model that simulates the evolution of continental slope morphology under the interaction of sedimentation, slope failure, and sediment flow erosion has been constructed and validated...

  5. What drives nearshore sediment transport controls on the depletion of beach placers at Manavalakurichi, Southwest Coast of India?.

    Digital Repository Service at National Institute of Oceanography (India)

    DineshKumar, P.K.; ManiMurali, R.; Babu, M.T.; Sudheesh, K.; Vethamony, P.; NaveenKumar, K.R.

    ,2008). However, the processes of sediment transport controls for this phenomenon are less explained and less understood. Numerical modelling of coastal processes, validated with field studies has great potential to assist with the understanding... with the prominent southward currents, owing to the lack of an effective physiographic feature to inhibit the southward movement of sediment. From the results obtained, it appears that numerical modeling of coastal processes has great potential to assist...

  6. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  7. The role of suspension events in cross-shore and longshore suspended sediment transport in the surf zone

    Science.gov (United States)

    Jaffe, Bruce E.

    2015-01-01

    Suspension of sand in the surf zone is intermittent. Especially striking in a time series of concentration are periods of intense suspension, suspension events, when the water column suspended sediment concentration is an order of magnitude greater than the mean concentration. The prevalence, timing, and contribution of suspension events to cross-shore and longshore suspended sediment transport are explored using field data collected in the inner half of the surf zone during a large storm at Duck, NC. Suspension events are defined as periods when the concentration is above a threshold. Events tended to occur during onshore flow under the wave crest, resulting in an onshore contribution to the suspended sediment transport. Even though large events occurred less than 10 percent of the total time, at some locations onshore transport associated with suspension events was greater than mean-current driven offshore-directed transport during non-event periods, causing the net suspended sediment transport to be onshore. Events and fluctuations in longshore velocity were not correlated. However, events did increase the longshore suspended sediment transport by approximately the amount they increase the mean concentration, which can be up to 35%. Because of the lack of correlation, the longshore suspended sediment transport can be modeled without considering the details of the intensity and time of events as the vertical integration of the product of the time-averaged longshore velocity and an event-augmented time-averaged concentration. However, to accurately model cross-shore suspended sediment transport, the timing and intensity of suspension events must be reproduced.

  8. Net sediment transport in tidal basins: quantifying the tidal barotropic mechanisms in a unified framework

    Science.gov (United States)

    Gatto, Vincenzo Marco; van Prooijen, Bram Christiaan; Wang, Zheng Bing

    2017-11-01

    Net sediment transport in tidal basins is a subtle imbalance between large fluxes produced by the flood/ebb alternation. The imbalance arises from several mechanisms of suspended transport. Lag effects and tidal asymmetries are regarded as dominant, but defined in different frames of reference (Lagrangian and Eulerian, respectively). A quantitative ranking of their effectiveness is therefore missing. Furthermore, although wind waves are recognized as crucial for tidal flats' morphodynamics, a systematic analysis of the interaction with tidal mechanisms has not been carried out so far. We review the tide-induced barotropic mechanisms and discuss the shortcomings of their current classification for numerical process-based models. Hence, we conceive a unified Eulerian framework accounting for wave-induced resuspension. A new methodology is proposed to decompose the sediment fluxes accordingly, which is applicable without needing (semi-) analytical approximations. The approach is tested with a one-dimensional model of the Vlie basin, Wadden Sea (The Netherlands). Results show that lag-driven transport is dominant for the finer fractions (silt and mud). In absence of waves, net sediment fluxes are landward and spatial (advective) lag effects are dominant. In presence of waves, sediment can be exported from the tidal flats and temporal (local) lag effects are dominant. Conversely, sand transport is dominated by the asymmetry of peak ebb/flood velocities. We show that the direction of lag-driven transport can be estimated by the gradient of hydrodynamic energy. In agreement with previous studies, our results support the conceptualization of tidal flats' equilibrium as a simplified balance between tidal mechanisms and wave resuspension.

  9. Distribution of clay minerals in marine sediments off Chennai, Bay of Bengal, India: Indicators of sediment sources and transport processes .

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Venkatachalapathy, R.; Ramkumar, T.

    . Due to the presence of man-made breakwaters and the naturally formed offshore shoals along the Chennai coast with a series of alternating zones of erosion and deposition caused. Rangarao et al. (2009) estimated the sediment transport along Ennore...

  10. Sediment transport processes and their resulting stratigraphy: informing science and society

    Science.gov (United States)

    Nittrouer, J. A.

    2013-12-01

    decades, there have been numerous scientific advances pertaining to the coupling of sediment transport and hydrodynamics. This research has produced new theory about how sediments accumulating in many unique environments shape the stratigraphic record. Recent studies have taken advantage of novel methods for acquiring observational data, which in turn have been used to advance numerical modeling schemes as well as experimental designs. As an example, consider fluvial deltas: here, hydrodynamics are constantly evolving over space and time. Patterns of sediment deposition and erosion (from dune to delta-lobe scales), resolved using high-resolution 3-D acoustic data, are used as input data to construct models that further show how channel dynamics (e.g., avulsions) and kinematics (e.g., lateral migration) evolve due to sediment and hydrodynamic coupling. This information is used to propose new theories of delta stratigraphy, which are then tested by examining ancient fluvial-delta systems. Finally, research efforts evaluating modern sediment-transport and depositional processes offer significant benefits to society. For example, fluvial deltas are heavily relied upon for societal welfare and yet are among the most dynamic landscapes on Earth's surface. Therefore, research examining the evolution of these landscapes not only advances basic science, but also doubles as an exercise in applied geomorphology.

  11. Predicting uncertainty in sediment transport and landscape evolution - the influence of initial surface conditions

    Science.gov (United States)

    Hancock, G. R.; Coulthard, T. J.; Lowry, J. B. C.

    2016-05-01

    Numerical landscape evolution models were initially developed to examine natural catchment hydrology and geomorphology and have become a common tool to examine geomorphic behaviour over a range of time and space scales. These models all use a digital elevation model (DEM) as a representation of the landscape surface and a significant issue is the quality and resolution of this surface. Here we focus on how subtle perturbations or roughness on the DEM surface can produce alternative model results. This study is carried out by randomly varying the elevations of the DEM surface and examining the effect on sediment transport rates and geomorphology for a proposed rehabilitation design for a post-mining landscape using multiple landscape realisations with increasing magnitudes of random changes. We show that an increasing magnitude of random surface variability does not appear to have any significant effect on sediment transport over millennial time scales. However, the random surface variability greatly changes the temporal pattern or delivery of sediment output. A significant finding is that all simulations at the end of the 10,000 year modelled period are geomorphologically similar and present a geomorphological equifinality. However, the individual patterns of erosion and deposition were different for repeat simulations with a different sequence of random perturbations. The alternative positions of random perturbations strongly influence local patterns of hillslope erosion and evolution together with the pattern and behaviour of deposition. The findings demonstrate the complex feedbacks that occur even within a simple modelled system.

  12. Release of Aged Contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon [Univ. of Arizona, Tucson, AZ (United States); Perdrial, Nico [Univ. of Arizona, Tucson, AZ (United States); Mueller, Karl [Pennsylvania State Univ., University Park, PA (United States); Strepka, Caleb [Pennsylvania State Univ., University Park, PA (United States); O' Day, Peggy [Univ. of California, Merced, CA (United States); Rivera, Nelson [Univ. of California, Merced, CA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Chang, Hyun-Shik [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Steefel, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thompson, Aaron [Univ. of Georgia, Athens, GA (United States)

    2012-08-14

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake (Chorover et al., 2008). In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. Below, we provide some detailed descriptions of our results from this three year study, recently completed following a one-year no cost extension.

  13. Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Chorover, Jon; Perdrial, Nico; Mueller, Karl; Strepka, Caleb; O’Day, Peggy; Rivera, Nelson; Um, Wooyong; Chang, Hyun-Shik; Steefel, Carl; Thompson, Aaron

    2012-11-05

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided thorough characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, partial pressure of carbon dioxide, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions. In this final report, we provide detailed descriptions of our results from this three-year study, completed in 2012 following a one-year no cost extension.

  14. Characterizing long-term hydrologic-response and sediment-transport for the R-5 catchment.

    Science.gov (United States)

    Heppner, Christopher S; Loague, Keith

    2008-01-01

    Recently there have been several calls to establish long-term data collection networks to monitor near-surface hydrologic response and landscape evolution. The focus of this paper is a long-term dataset from the International Hydrologic Decade (1965-1974). The small upland catchment, known as R-5, located near Chickasha, Olahoma, has been the subject of considerable attention within the event-based hydrologic modeling community for more than 30 yr. Here, for the first time, 8 yr of continuous near-surface hydrologic-response and sediment-transport data are analyzed to show trends in the catchment's long-term behavior. The datasets include precipitation, temperature, solar radiation, soil-water content, infiltration, water discharge, and sediment discharge. Potential and actual evapotranspiration rates were estimated and used to calculate an average annual water balance for the catchment. Findings include, for example, that rainfall intensity rarely exceeds the threshold for Horton-type runoff, soil-water content is both spatially and temporally variable, and the water and sediment discharge rates are positively correlated. The R-5 data provide a unique opportunity to test (and refine) process-based models of continuous hydrologic response and sediment transport at the catchment scale for applications in the emerging fields of hydroecology and hydrogeomorphology.

  15. Suspended sediment transport in the Deepwater Navigation Channel, Yangtze River Estuary, China, in the dry season 2009: 2. Numerical simulations

    Science.gov (United States)

    Song, Dehai; Wang, Xiao Hua

    2013-10-01

    A three-dimensional wave-current-sediment coupled numerical model with wetting and drying process is developed to understand hydrodynamics and sediment transport dynamics in the Deepwater Navigation Channel (DNC), the North Passage of the Yangtze River Estuary (YRE), China. The model results are in good agreement with observed data, and statistics show good model skill scores and correlation coefficients. The model well reproduces the spring-neap variation between a well-mixed estuary and a highly stratified estuary. Model results indicate that the estuarine gravitational circulation plays the most important role in the estuarine turbidity maximum (ETM) formation in the DNC. The upstream nonlocal sediment intrusion through the spillover mechanism is a major source of sediment trapping in the North Passage after the morphological changes. Numerical studies are conducted to show scenarios in the YRE under the effects of different forcings (river discharges, waves, and winds). Between these study cases, surface-wave-breaking relieves the sediment trapping and bottom-wave-current-interaction aggravates the bed erosion and elevates the SSC in the ETM; the former and the latter have the least and largest influence on the suspended sediment transport in the DNC. The wind effects have a greater influence on sediment trapping than the river discharges, and the steady northwesterly wind condition favors the siltation in the DNC most. The significance of density-driven turbidity current is also assessed, which can enhance the saline-water intrusion and suppress the turbulent mixing in the bottom boundary layer.

  16. Bengal Fan sediment transport activity and response to climate forcing inferred from sediment physical properties

    Science.gov (United States)

    Weber, M. E.; Wiedicke-Hombach, M.; Kudrass, H. R.; Erlenkeuser, H.

    2003-02-01

    We obtained sediment physical properties and geochemical data from 47 piston and gravity cores located in the Bay of Bengal, to study the complex history of the Late Pleistocene run-off from the Ganges and Brahmaputra rivers and its imprint on the Bengal Fan. Grain-size parameters were predicted from core logs of density and velocity to infer sediment transport energy and to distinguish different environments along the 3000-km-long transport path from the delta platform to the lower fan. On the shelf, 27 cores indicate rapidly prograding delta foresets today that contain primarily mud, whereas outer shelf sediment has 25% higher silt contents, indicative of stronger and more stable transport regime, which prevent deposition and expose a Late Pleistocene relic surface. Deposition is currently directed towards the shelf canyon 'Swatch of No Ground', where turbidites are released to the only channel-levee system that is active on the fan during the Holocene. Active growth of the channel-levee system occurred throughout sea-level rise and highstand with a distinct growth phase at the end of the Younger Dryas. Coarse-grained material bypasses the upper fan and upper parts of the middle fan, where particle flow is enhanced as a result of flow-restriction in well-defined channels. Sandier material is deposited mainly as sheet-flow deposits on turbidite-dominated plains at the lower fan. The currently most active part of the fan with 10-40-cm-thick turbidites is documented for the central channel including inner levees (e.g., site 40). Site 47 from the lower fan far to the east of the active channel-levee system indicates the end of turbidite sedimentation at 300 ka for that location. That time corresponds to the sea-level lowering during late isotopic stage 9 when sediment supply to the fan increased and led to channel avulsion farther upstream, probably indicating a close relation of climate variability and fan activity. Pelagic deep-sea sites 22 and 28 contain a 630

  17. Numerical modelling of hydro-morphological processes dominated by fine suspended sediment in a stormwater pond

    Science.gov (United States)

    Guan, Mingfu; Ahilan, Sangaralingam; Yu, Dapeng; Peng, Yong; Wright, Nigel

    2018-01-01

    Fine sediment plays crucial and multiple roles in the hydrological, ecological and geomorphological functioning of river systems. This study employs a two-dimensional (2D) numerical model to track the hydro-morphological processes dominated by fine suspended sediment, including the prediction of sediment concentration in flow bodies, and erosion and deposition caused by sediment transport. The model is governed by 2D full shallow water equations with which an advection-diffusion equation for fine sediment is coupled. Bed erosion and sedimentation are updated by a bed deformation model based on local sediment entrainment and settling flux in flow bodies. The model is initially validated with the three laboratory-scale experimental events where suspended load plays a dominant role. Satisfactory simulation results confirm the model's capability in capturing hydro-morphodynamic processes dominated by fine suspended sediment at laboratory-scale. Applications to sedimentation in a stormwater pond are conducted to develop the process-based understanding of fine sediment dynamics over a variety of flow conditions. Urban flows with 5-year, 30-year and 100-year return period and the extreme flood event in 2012 are simulated. The modelled results deliver a step change in understanding fine sediment dynamics in stormwater ponds. The model is capable of quantitatively simulating and qualitatively assessing the performance of a stormwater pond in managing urban water quantity and quality.

  18. Final Project Report: Release of aged contaminants from weathered sediments: Effects of sorbate speciation on scaling of reactive transport

    Energy Technology Data Exchange (ETDEWEB)

    Jon Chorover, University of Arizona; Peggy O' €™Day, University of California, Merced; Karl Mueller, Penn State University; Wooyong Um, Pacific Northwest National Laboratory; Carl Steefel, Lawrence Berkeley National Laboratory

    2012-10-01

    Hanford sediments impacted by hyperalkaline high level radioactive waste have undergone incongruent silicate mineral weathering concurrent with contaminant uptake. In this project, we studied the impact of background pore water (BPW) on strontium, cesium and iodine desorption and transport in Hanford sediments that were experimentally weathered by contact with simulated hyperalkaline tank waste leachate (STWL) solutions. Using those lab-weathered Hanford sediments (HS) and model precipitates formed during nucleation from homogeneous STWL solutions (HN), we (i) provided detailed characterization of reaction products over a matrix of field-relevant gradients in contaminant concentration, PCO2, and reaction time; (ii) improved molecular-scale understanding of how sorbate speciation controls contaminant desorption from weathered sediments upon removal of caustic sources; and (iii) developed a mechanistic, predictive model of meso- to field-scale contaminant reactive transport under these conditions.

  19. Sediment yield model implementation based on check dam infill stratigraphy in a semiarid Mediterranean catchment

    Directory of Open Access Journals (Sweden)

    G. Bussi

    2013-08-01

    Full Text Available Soil loss and sediment transport in Mediterranean areas are driven by complex non-linear processes which have been only partially understood. Distributed models can be very helpful tools for understanding the catchment-scale phenomena which lead to soil erosion and sediment transport. In this study, a modelling approach is proposed to reproduce and evaluate erosion and sediment yield processes in a Mediterranean catchment (Rambla del Poyo, Valencia, Spain. Due to the lack of sediment transport records for model calibration and validation, a detailed description of the alluvial stratigraphy infilling a check dam that drains a 12.9 km2 sub-catchment was used as indirect information of sediment yield data. These dam infill sediments showed evidences of at least 15 depositional events (floods over the time period 1990–2009. The TETIS model, a distributed conceptual hydrological and sediment model, was coupled to the Sediment Trap Efficiency for Small Ponds (STEP model for reproducing reservoir retention, and it was calibrated and validated using the sedimentation volume estimated for the depositional units associated with discrete runoff events. The results show relatively low net erosion rates compared to other Mediterranean catchments (0.136 Mg ha−1 yr−1, probably due to the extensive outcrops of limestone bedrock, thin soils and rather homogeneous vegetation cover. The simulated sediment production and transport rates offer model satisfactory results, further supported by in-site palaeohydrological evidences and spatial validation using additional check dams, showing the great potential of the presented data assimilation methodology for the quantitative analysis of sediment dynamics in ungauged Mediterranean basins.

  20. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  1. Application of a hydrodynamic and sediment transport model for guidance of response efforts related to the Deepwater Horizon oil spill in the Northern Gulf of Mexico along the coast of Alabama and Florida

    Science.gov (United States)

    Plant, Nathaniel G.; Long, Joseph W.; Dalyander, P. Soupy; Thompson, David M.; Raabe, Ellen A.

    2013-01-01

    U.S. Geological Survey (USGS) scientists have provided a model-based assessment of transport and deposition of residual Deepwater Horizon oil along the shoreline within the northern Gulf of Mexico in the form of mixtures of sand and weathered oil, known as surface residual balls (SRBs). The results of this USGS research, in combination with results from other components of the overall study, will inform operational decisionmaking. The results will provide guidance for response activities and data collection needs during future oil spills. In May 2012 the U.S. Coast Guard, acting as the Deepwater Horizon Federal on-scene coordinator, chartered an operational science advisory team to provide a science-based review of data collected and to conduct additional directed studies and sampling. The goal was to characterize typical shoreline profiles and morphology in the northern Gulf of Mexico to identify likely sources of residual oil and to evaluate mechanisms whereby reoiling phenomena may be occurring (for example, burial and exhumation and alongshore transport). A steering committee cochaired by British Petroleum Corporation (BP) and the National Oceanic and Atmospheric Administration (NOAA) is overseeing the project and includes State on-scene coordinators from four States (Alabama, Florida, Louisiana, and Mississippi), trustees of the U.S. Department of the Interior (DOI), and representatives from the U.S. Coast Guard. This report presents the results of hydrodynamic and sediment transport models and developed techniques for analyzing potential SRB movement and burial and exhumation along the coastline of Alabama and Florida. Results from these modeling efforts are being used to explain the complexity of reoiling in the nearshore environment and to broaden consideration of the different scenarios and difficulties that are being faced in identifying and removing residual oil. For instance, modeling results suggest that larger SRBs are not, under the most commonly

  2. Compositon of sediments transported by the wind at different heights

    Science.gov (United States)

    Iturri, Antonela; Funk, Roger; Leue, Martin; Sommer, Michael; Buschiazzo, Daniel

    2017-04-01

    Wind erosion (WE) is one of the most important degradation process of soils in arid- and semiarid environments in the world, affecting soil properties and adjacent ecosystems, including human health. Estimations about the amount of eroded soil are available in Argentina and in the world, but the quality of the eroded sediments, particularly the sorting effects in agricultural soils, has been scarcely studied. The trend of the different mineral and organic soil compounds, which enrich in different size classes, can define height distribution profiles. Therefore, the uppermost 2.5 cm of four agricultural loess soils that differ in granulometric composition were used for WE simulations in a wind tunnel. Particles with a diameter smaller than 10 µm (PM10) were collected with a laboratory dust generator. The bulk soil and all the sediment samples were characterized by the granulometric composition, the soil organic carbon (SOC) content and the mineral and organic functional groups. Despite different texture, the soils were subjected to similar sorting processes in height, but differed depending on their granulometry. There was a separation between coarser and finer soil particles in coarser textured soils, while finer textured soils were more homogeneous in all heights. This correlated with the preferential transport of Si-O from quartz and C-H, C=O and C-C from soil organic matter (SOM), which were transported in larger and/or denser particles at lower heights. O-H from clay minerals and C-O-C and C-O from polysaccharides, carbohydrates and derivatives from SOM were transported in higher heights. Despite similar SOC content in the bulk soils, both the amount and composition in the PM10 fractions was different. The SOC transported at higher heights was mostly composed of polysaccharides, carbohydrates and derivatives associated with clay minerals. The SOC in PM10 fractions of coarser-textured soils was dominated by labile C-H groups. According to the determined height

  3. The effect of tides and storm surges on sediment transport during overwash events

    Science.gov (United States)

    Wesselman, Daan; de Winter, Renske; Hoekstra, Piet; Oost, Albert; McCall, Robert; van der Vegt, Maarten

    2017-04-01

    Storm events generally result in elevated water levels at the meso-tidal Wadden Sea coast, the Netherlands. This can lead to overwash and inundation of parts of the barrier islands. Currently, large parts of the Dutch barriers are closed off by artificial dunes which prevent overwash during storms. In view of future sea-level rise measures to heighten the hinterland of the barriers island are investigated. A hypothesis is that on the long term the cross-shore sediment transport, caused by overwash and inundation events, can contribute to the vertical accretion of the barriers. Therefore, the partial re-opening of the dunes on the barrier island is considered by the Dutch management authorities. We identify the dominant cross-shore hydrodynamic and sediment transport processes during an overwash event to study the potential long-term sediment transport. In addition, we focus on the role of the back-barrier basin on overwash dynamics. An XBeach model was set-up and validated against field data collected during overwash on East-Schiermonnikoog, a non-vegetated tip of a barrier island. The simulated wave heights, periods, water levels and flow velocities agree well with the field data. With the validated XBeach model, simulations are executed for a wide variety of storm and tidal characteristics. From the model simulations we conclude that: (1) The erosion and transport of sediment across the beach crest is mainly driven by the cross-shore currents. Infragravity waves and short waves are less important for the sediment transport over the barrier island. (2) Maximum onshore transport occurs during more gentle storms (storm surge level of 1.5-2.0 m) instead of severe storms (storm surge level of 2.5-3.0 m). (3) For mixed-energy, meso-tidal barrier systems like the Wadden Sea, the dynamics of the back-barrier basin have to be taken into account. Water level gradients across the barrier island are strongly influenced by the tidal phase propagation and the difference in

  4. Sediment Transport on Continental Shelves: Storm Bed Formation and Preservation in Heterogeneous Sediments

    Science.gov (United States)

    2012-01-01

    extends from fair-weather wave base to the beach berm or coastal dune . Observations and modelling studies show that some sand is removed from the...deposit. The top is wave rippled and overlain by fine sediment. (B) Example of hummocky cross stratification (HCS) from the Ferron Sand - stone in Utah...xDept. of Earth Science, Memorial University of Newfoundland, St. Johns, Newfoundland, Canada ABSTRACT Many storm beds are constructed of silt/ sand

  5. Generation of a Design Flood-Event Scenario for a Mountain River with Intense Sediment Transport

    Directory of Open Access Journals (Sweden)

    Alessio Radice

    2016-12-01

    Full Text Available International directives encourage the incorporation of sediment transport analyses into flood risk assessment, in recognition of the significant role played by sediment in flood hazard. However, examples of risk analysis frameworks incorporating the effect of sediment transport are still not widespread in the literature, resulting in a lack of clear guidelines. This manuscript considers a study site in the Italian Alps and presents a hydro-morphologic model for generation of flood scenarios towards hazard assessment. The analysis is concentrated on a design flood event with 100-year return period, for which an outflowing discharge is computed as a result of the river modeling. However, it is also argued how suitable model input parameter values can be obtained from analyses of river flows in a yearly duration curve. Modeling tools are discussed with respect to their capabilities and limitations. The results of the analysis are site-specific, but the proposed methodology can be exported to other hydro-graphic basins.

  6. Sediment Supply Versus Local Hydraulic Controls on Sediment Transport and Storage in the Rio Grande in the Big Bend Region

    Science.gov (United States)

    Dean, D. J.; Topping, D. J.; Schmidt, J. C.

    2015-12-01

    The Rio Grande in the Big Bend region of Texas, USA, and Chihuahua and Coahuila, Mexico, has a large sediment supply, and a variable hydrology resulting in rapid channel narrowing during years of low mean and peak flow, and channel widening during rare, large-magnitude floods. This dynamic nature makes the Rio Grande a useful natural laboratory to investigate the relative importance of flow strength and sediment supply in controlling channel change. We analyzed a suite of sediment-transport and geomorphic data to determine the cumulative influence of different flood types on changing channel form. In this study, physically-based analyses suggest that channel change on the Rio Grande is controlled by both changes in flow strength and sediment supply over different spatial and temporal scales. Channel narrowing is primarily caused by sediment supplied to the Rio Grande during flash floods on desert tributaries. Tributary floods have large suspended-sediment concentrations, occur for short durations, and attenuate rapidly downstream in the Rio Grande, depositing much of their sediment in downstream reaches. Long-duration floods on the mainstem are the only floods that have the capacity to enlarge the Rio Grande. These floods, released from upstream dams, can either erode or deposit sediment in the Rio Grande depending upon the antecedent in-channel sediment supply and the magnitude and duration of the flood. Geomorphic and sediment-transport analyses show that sand erosion and deposition during long-duration floods are most strongly controlled by the spatial distribution of flow strength as governed by channel slope. However, temporal changes in the grain size and amount of available sand within the channel, as inferred from comprehensive analyses of suspended-sediment concentration and grain size, control the degree of sediment evacuation or accumulation over large spatial scales.

  7. Freshwater discharge and sediment transport to Kangerlussuaq Fjord, West Greenland

    DEFF Research Database (Denmark)

    Mikkelsen, Andreas Peter Bech

    surface albedo that amplified surface melt. This unprecedented amount of proglacial discharge would only be possible if the runoff was generated from the lower accumulation zone, where runoff is usually buffered by the air-filled pore space in the firn. This means that the water melted in the lower...... called firn zone are studied. Geomorphological processes studied are: Mass transfer from the glacial system and into the nearby fjord and delta systems. As a part of this glacial erosion rates are deduced. Extensive discharge and sediment transport measurements provided the basis for gaining insight...... accumulation zone of the GrIS is able to runoff directly and contribute to sea-level rise....

  8. Regional Sediment Analysis of Mississippi River Sediment Transport and Hydrographic Survey Data

    National Research Council Canada - National Science Library

    Thorne, Colin

    2002-01-01

    ...s. Sediments generated through channel instability are carried downstream to cause sedimentation problems in flood control channels, destroy wetlands and lakes, adversely impact fish and wildlife...

  9. A pre-dam-removal assessment of sediment transport for four dams on the Kalamazoo River between Plainwell and Allegan, Michigan

    Science.gov (United States)

    Syed, Atiq U.; Bennett, James P.; Rachol, Cynthia M.

    2005-01-01

    Four dams on the Kalamazoo River between the cities of Plainwell and Allegan, Mich., are in varying states of disrepair. The Michigan Department of Environmental Quality (MDEQ) and U.S. Environmental Protection Agency (USEPA) are considering removing these dams to restore the river channels to pre-dam conditions. This study was initiated to identify sediment characteristics, monitor sediment transport, and predict sediment resuspension and deposition under varying hydraulic conditions. The mathematical model SEDMOD was used to simulate streamflow and sediment transport using three modeling scenarios: (1) sediment transport simulations for 730 days (Jan. 2001 to Dec. 2002), with existing dam structures, (2) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with existing dam structures, and (3) sediment transport simulations based on flows from the 1947 flood at the Kalamazoo River with dams removed. Sediment transport simulations based on the 1947 flood hydrograph provide an estimate of sediment transport rates under maximum flow conditions. These scenarios can be used as an assessment of the sediment load that may erode from the study reach at this flow magnitude during a dam failure. The model was calibrated using suspended sediment as a calibration parameter and root mean squared error (RMSE) as an objective function. Analyses of the calibrated model show a slight bias in the model results at flows higher than 75 m3/s; this means that the model-simulated suspended-sediment transport rates are higher than the observed rates; however, the overall calibrated model results show close agreement between simulated and measured values of suspended sediment. Simulation results show that the Kalamazoo River sediment transport mechanism is in a dynamic equilibrium state. Model results during the 730-day simulations indicate significant sediment erosion from the study reach at flow rates higher than 55 m3/s. Similarly, significant

  10. Spatio-temporal scaling effects on longshore sediment transport pattern along the nearshore zone

    Science.gov (United States)

    Khorram, Saeed; Ergil, Mustafa

    2018-03-01

    A measure of uncertainties, entropy has been employed in such different applications as coastal engineering probability inferences. Entropy sediment transport integration theories present novel visions in coastal analyses/modeling the application and development of which are still far-reaching. Effort has been made in the present paper to propose a method that needs an entropy-power index for spatio-temporal patterns analyses. Results have shown that the index is suitable for marine/hydrological ecosystem components analyses based on a beach area case study. The method makes use of six Makran Coastal monthly data (1970-2015) and studies variables such as spatio-temporal patterns, LSTR (long-shore sediment transport rate), wind speed, and wave height all of which are time-dependent and play considerable roles in terrestrial coastal investigations; the mentioned variables show meaningful spatio-temporal variability most of the time, but explanation of their combined performance is not easy. Accordingly, the use of an entropy-power index can show considerable signals that facilitate the evaluation of water resources and will provide an insight regarding hydrological parameters' interactions at scales as large as beach areas. Results have revealed that an STDDPI (entropy based spatio-temporal disorder dynamics power index) can simulate wave, long-shore sediment transport rate, and wind when granulometry, concentration, and flow conditions vary.

  11. MODELLING OF SEDIMENTS CONCENTRATION DISTRIBUTION IN DREDGED CANALS OF THE NIGER DELTA ESTUARINE REGION, NIGERIA

    Directory of Open Access Journals (Sweden)

    Charles Chizom Dike

    2013-01-01

    Full Text Available Previous sediments concentration distributi on models used in the study of sediment characteristics of the dredged canals in the Niger-Delta estuarine region, Nigeria; did not take into consideration the lateral in flow due to tidal effects, which affects tremendously, the sediment intake into the estuarine waters. In the current research, existing models are modified by incorpora ting the missing lateral inflow parameters, which are peculiar to the Niger Delta environment, to obtain more accurate model results. Details are given herein, of the deve lopment and application of a 3-dimensional numerical model (EKU 2.8 Models to predict sediment concentration distribution (total suspended sediment & bed sediment load s in the Niger Delta estuarine canals, with Ekulama well 19 access canal as a case study. The approach in this paper involved coupling a sediment transport equation (w ith the inclusion of lateral inflow parameters, with an estuarine hydro-dy namics equation to generate a generic 3- dimensional sediment concentration distribu tion model, using deterministic approach. Predicted results using this model compar ed favorably with measured field results. Average sediment concentration of 29mg/l was obtained compared with 31mg/l measured in the field for bed sediment loads. Finally, the predicted sediment concentration distribution (TSS, when comp ared with field results, gave average correlation coefficient of 0.9.; hence, the present model will assist in generating adequate information /data on sediment ch aracteristics and transport mechanism, required for effective design of canals to redu ce rate of siltation. The application of the above knowledge/parameters generated from this model to effectively design canals to reduce siltation will be treated in subsequent articles.

  12. Suspended-sediment transport from the Green-Duwamish River to the Lower Duwamish Waterway, Seattle, Washington, 2013–17

    Science.gov (United States)

    Senter, Craig A.; Conn, Kathleen E.; Black, Robert W.; Peterson, Norman; Vanderpool-Kimura, Ann M.; Foreman, James R.

    2018-02-28

    The Green-Duwamish River transports watershed-derived sediment to the Lower Duwamish Waterway Superfund site near Seattle, Washington. Understanding the amount of sediment transported by the river is essential to the bed sediment cleanup process. Turbidity, discharge, suspended-sediment concentration (SSC), and particle-size data were collected by the U.S. Geological Survey (USGS) from February 2013 to January 2017 at the Duwamish River, Washington, within the tidal influence at river kilometer 16.7 (USGS streamgage 12113390; Duwamish River at Golf Course at Tukwila, WA). This report quantifies the timing and magnitude of suspended-sediment transported in the Duwamish River. Regression models were developed between SSC and turbidity and SSC and discharge to estimate 15- minute SSC. Suspended-sediment loads were calculated from the computed SSC and time-series discharge data for every 15-minute interval during the study period. The 2014–16 average annual suspended-sediment load computed was 117,246 tons (106,364 metric tons), of which 73.5 percent or (86,191 tons; 78,191 metric tons) was fine particle (less than 0.0625 millimeter in diameter) suspended sediment. The seasonality of this site is apparent when you divide the year into "wet" (October 16– April 15) and "dry" (April 16–October 15) seasons. Most (97 percent) of the annual suspended sediment was transported during the wet season, when brief periods of intense precipitation from storms, large releases from the Howard Hanson Dam, or a combination of both were much more frequent.

  13. Unravelling mixed sediment signals in the floodplains of the Rhine catchment using end member modelling of grain size distributions

    NARCIS (Netherlands)

    Erkens, G.; Toonen, W.H.J.; Cohen, K.M.; Prins, M.A.

    2013-01-01

    During sediment transport downstream, river systems mix sediments from different parts of their catchments. During deposition, sediments are often unmixed again in different depositional environments (facies). During fluvial transport, between erosion and deposition of sediment, the sediment is

  14. Realistic representation of grain shapes in CFD-DEM simulations of sediment transport with a bonded-sphere approach

    Science.gov (United States)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2017-09-01

    Development of algorithms and growth of computational resources in the past decades have enabled simulations of sediment transport processes with unprecedented fidelities. The Computational Fluid Dynamics-Discrete Element Method (CFD-DEM) is one of the high-fidelity approaches, where the motions of and collisions among the sediment grains as well as their interactions with surrounding fluids are resolved. In most DEM solvers the particles are modeled as soft spheres due to computational efficiency and implementation complexity considerations, although natural sediments are usually a mixture of non-spherical (e.g., disk-, blade-, and rod-shaped) particles. Previous attempts to extend sphere-based DEM to treat irregular particles neglected fluid-induced torques on particles, and the method lacked flexibility to handle sediments with an arbitrary mixture of particle shapes. In this contribution we proposed a simple, efficient approach to representing common sediment grain shapes with bonded spheres, where the fluid forces are computed and applied on each sphere. The proposed approach overcomes the aforementioned limitations of existing methods and has improved efficiency and flexibility over existing approaches. We use numerical simulations to demonstrate the merits and capability of the proposed method in predicting the falling characteristics, terminal velocity, threshold of incipient motion, and transport rate of natural sediments. The simulations show that the proposed method is a promising approach for faithful representation of natural sediment, which leads to accurate simulations of their transport dynamics. While this work focuses on non-cohesive sediments, the proposed method also opens the possibility for first-principle-based simulations of the flocculation and sedimentation dynamics of cohesive sediments. Elucidation of these physical mechanisms can provide much needed improvement on the prediction capability and physical understanding of muddy coast

  15. The dynamics of channel slope, width, and sediment transport in tectonically actively river systems

    Science.gov (United States)

    Yanites, B.

    2016-12-01

    River profiles form the framework of mountainous landscapes. As such, their dynamics constitute a vital link in the interaction among the atmosphere, lithosphere, and biosphere as they control the topographic response to tectonics and climate. River dynamics in such regions are a result of the interactions of tectonics, rock-type, water discharge, and sediment. Here I present a new method for modeling the influence of channel width and sediment supply on river profile evolution. The approach balances computational efficiency with the complexities of channel geometry-sediment transport tradeoffs by utilizing a channel optimization algorithm coupled with a 1-D river profile model. Through a series of numerical experiments, I show that current models quantifying river dynamics to tectonic and climatic changes likely over predict the topographic response in a number of mountainous landscapes, especially if sediment is an important control on river dynamics. The main model experiment quantifies the impact of a 5-fold increase in rock-uplift on river profile and channel geometry for three erosion models: (1) a shear-stress detachment limited model, (2) a sediment cover-shear stress model, and (3) a saltation abrasion model. The detachment limited model shows the greatest sensitivity to rock-uplift, showing a 4-fold increase in fluvial relief following the increase in rock-uplift. If channel width is held static and not allowed to change in repsonse to the transient adjustment, the relief increases by 5-fold. For the sediment cover model, fluvial relief increases only 2.5 fold. The reason for the reduced topographic response is that channel width changes increase both the erosion potential (i.e. shear stress) as well as the frequency of bedrock exposure. The saltation abrasion model results in a 1.5-fold increase in fluvial relief. Further model experiments explore the morphological predictions of a river flowing over a fold showing diagnostic signatures in the morphology

  16. Calibration suspended sediment model Markermeer

    NARCIS (Netherlands)

    Boderie, P.; Van Kessel, T.; De Boer, G.

    2009-01-01

    In deze studie is een computermodel voor het Markermeer opgezet, ingeregeld en gevalideerd. Het model beschrijft dynamsch de stroming van water, waterpeilen, golven en slib in het water en in de bodem. Het model is gecalibreerd voorde periode augustus 2007 - april 2008 en gevalideerd voor de periode

  17. The Impact of Urbanization on Temporal Changes in Sediment Transport in a Gravel Bed Channel in Southern Ontario, Canada

    Science.gov (United States)

    Plumb, B. D.; Annable, W. K.; Thompson, P. J.; Hassan, M. A.

    2017-10-01

    A field investigation has been undertaken to characterize the event-based bed load transport dynamics of a highly urbanized gravel bed stream. A combination of direct bed load and tracer particle measurements were taken over a 3 year period during which time approximately 30 sediment mobilizing events occurred. Sediment transport measurements were used to calibrate a fractional bed load transport model and combined with hydrometric data which represent four different land use conditions (ranging from rural to highly urbanized) to analyze the differences in discharge magnitude and frequency and its impact on sediment transport. Fractional transport analysis of the bed load measurements indicates that frequent intermediate discharge events can mobilize sand and fine gravel to an approximate equally mobile condition, however, the transport rates at these discharges exhibit greater variability than at discharges above the bankfull discharge. Path lengths of the coarse fraction, measured using tracer clasts, are insensitive to peak discharge, and instead transport at distances less than those reported in other gravel bed channels, which is attributed to the shorter duration discharge events common to urban streams. The magnitude-frequency analysis reveals that the frequency, time, and volume of competent sediment mobilizing events are increasing with urbanization. Variability in effective discharges suggests that a range of discharges, spanning between frequent, low magnitude events to less frequent, high magnitude events are geomorphically significant. However, trends in the different land use scenarios suggest that urbanization is shifting the geomorphic significance toward more frequent, lower magnitude events.

  18. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  19. Linking Arenicola marina irrigation behavior to oxygen transport and dynamics in sandy sediments

    DEFF Research Database (Denmark)

    Timmermann, Karen; Banta, Gary T.; Glud, Ronnie Nøhr

    2007-01-01

    In this study we examine how the irrigation behavior of the common lugworm Arenicola marina affects the distribution, transport and dynamics of oxygen in sediments using microelectrodes, planar optodes and diagenetic modeling. The irrigation pattern was characterized by a regular recurring periods....... Model results indicated that oxygen consumption also was higher in the feeding pocket/funnel compared to the activity in surface sediments. An oxygen budget revealed that 49% of the oxygen pumped into the burrow during lugworm irrigation was consumed by the worm itself while 23% supported the diffusive...... of active irrigation lasting approximately 15 min separated by a 15 min rest period. The mean pumping rate during irrigation was 52 ml h-1. Oxygen dynamics and distribution around the tail shaft was closely related to irrigation pattern but independent of pumping rate. During irrigation the oxygen...

  20. Coarse and fine sediment transportation patterns and causes downstream of the Three Gorges Dam

    Science.gov (United States)

    Li, Songzhe; Yang, Yunping; Zhang, Mingjin; Sun, Zhaohua; Zhu, Lingling; You, Xingying; Li, Kanyu

    2017-11-01

    Reservoir construction within a basin affects the process of water and sediment transport downstream of the dam. The Three Gorges Reservoir (TGR) affects the sediment transport downstream of the dam. The impoundment of the TGR reduced total downstream sediment. The sediment group d≤0.125 mm (fine particle) increased along the path, but the average was still below what existed before the reservoir impoundment. The sediments group d>0.125 mm (coarse particle) was recharged in the Yichang to Jianli reach, but showed a deposition trend downstream of Jianli. The coarse sediment in the Yichang to Jianli section in 2003 to 2007 was above the value before the TGR impoundment. However, the increase of both coarse and fine sediments in 2008 to 2014 was less than that in 2003 to 2007. The sediment retained in the dam is the major reason for the sediment reduction downstream. However, the retention in different river reaches is affected by riverbed coarsening, discharge, flow process, and conditions of lake functioning and recharging from the tributaries. The main conclusions derived from our study are as follows: 1) The riverbed in the Yichang to Shashi section was relatively coarse, thereby limiting the supply of fine and coarse sediments. The fine sediment supply was mainly controlled by TGR discharge, whereas the coarse sediment supply was controlled by the duration of high flow and its magnitude. 2) The supply of both coarse and fine sediments in the Shashi to Jianli section was controlled by the amount of total discharge. The sediment supply from the riverbed was higher in flood years than that in the dry years. The coarse sediment tended to deposit, and the deposition in the dry years was larger than that in the flood years. 3) The feeding of the fine sediment in the Luoshan to Hankou section was mainly from the riverbed. The supply in 2008 to 2014 was more than that in 2003 to 2007. Around 2010, the coarse sediments transited from depositing to scouring that was

  1. Transport of Sr 2+ and SrEDTA 2- in partially-saturated and heterogeneous sediments

    Science.gov (United States)

    Pace, M. N.; Mayes, M. A.; Jardine, P. M.; McKay, L. D.; Yin, X. L.; Mehlhorn, T. L.; Liu, Q.; Gürleyük, H.

    2007-05-01

    Strontium-90 has migrated deep into the unsaturated subsurface beneath leaking storage tanks in the Waste Management Areas (WMA) at the U.S. Department of Energy's (DOE) Hanford Reservation. Faster than expected transport of contaminants in the vadose zone is typically attributed to either physical hydrologic processes such as development of preferential flow pathways, or to geochemical processes such as the formation of stable, anionic complexes with organic chelates, e.g., ethylenediaminetetraacetic acid (EDTA). The goal of this paper is to determine whether hydrological processes in the Hanford sediments can influence the geochemistry of the system and hence control transport of Sr 2+ and SrEDTA 2-. The study used batch isotherms, saturated packed column experiments, and an unsaturated transport experiment in an undisturbed core. Isotherms and repacked column experiments suggested that the SrEDTA 2- complex was unstable in the presence of Hanford sediments, resulting in dissociation and transport of Sr 2+ as a divalent cation. A decrease in sorption with increasing solid:solution ratio for Sr 2+ and SrEDTA 2- suggested mineral dissolution resulted in competition for sorption sites and the formation of stable aqueous complexes. This was confirmed by detection of MgEDTA 2-, MnEDTA 2-, PbEDTA 2-, and unidentified Sr and Ca complexes. Displacement of Sr 2+ through a partially-saturated undisturbed core resulted in less retardation and more irreversible sorption than was observed in the saturated repacked columns, and model results suggested a significant reservoir (49%) of immobile water was present during transport through the heterogeneous layered sediments. The undisturbed core was subsequently disassembled along distinct bedding planes and subjected to sequential extractions. Strontium was unequally distributed between carbonates (49%), ion exchange sites (37%), and the oxide (14%) fraction. An inverse relationship between mass wetness and Sr suggested that

  2. Size segregation in bedload sediment transport at the particle scale

    Science.gov (United States)

    Frey, P.; Martin, T.

    2011-12-01

    Bedload, the larger material that is transported in stream channels, has major consequences, for the management of water resources, for environmental sustainability, and for flooding alleviation. Most particularly, in mountains, steep slopes drive intense transport of a wide range of grain sizes. Our ability to compute local and even bulk quantities such as the sediment flux in rivers is poor. One important reason is that grain-grain interactions in stream channels may have been neglected. An arguably most important difficulty pertains to the very wide range of grain size leading to grain size sorting or segregation. This phenomenon largely modifies fluxes and results in patterns that can be seen ubiquitously in nature such as armoring or downstream fining. Most studies have concerned the spontaneous percolation of fine grains into immobile gravels, because of implications for salmonid spawning beds, or stratigraphical interpretation. However when the substrate is moving, the segregation process is different as statistically void openings permit downward percolation of larger particles. This process also named "kinetic sieving" has been studied in industrial contexts where segregation of granular or powder materials is often non-desirable. We present an experimental study of two-size mixtures of coarse spherical glass beads entrained by a shallow turbulent and supercritical water flow down a steep channel with a mobile bed. The particle diameters were 4 and 6mm, the channel width 6.5mm and the channel inclination ranged from 7.5 to 12.5%. The water flow rate and the particle rate were kept constant at the upstream entrance. First only the coarser particle rate was input and adjusted to obtain bed load equilibrium, that is, neither bed degradation nor aggradation over sufficiently long time intervals. Then a low rate of smaller particles (about 1% of the total sediment rate) was introduced to study the spatial and temporal evolution of segregating smaller particles

  3. Continental-scale transport of sediments by the Baltic Ice Stream elucidated by coupled grain size and Nd provenance analyses

    Science.gov (United States)

    Boswell, Steven M.; Toucanne, Samuel; Creyts, Timothy T.; Hemming, Sidney R.

    2018-05-01

    We introduce a methodology for determining the transport distance of subglacially comminuted and entrained sediments. We pilot this method on sediments from the terminal margin of the Baltic Ice Stream, the largest ice stream of the Fennoscandian Ice Sheet during the Last Glacial Maximum. A strong correlation (R2 = 0.83) between the εNd and latitudes of circum-Baltic river sediments enables us to use εNd as a calibrated measure of distance. The proportion of subglacially transported sediments in a sample is estimated from grain size ratios in the silt fraction (Stream sediments located near the Åland sill, more than 850 km upstream from the terminal moraines. This result is in agreement with both numerical modeling and geomorphological investigations of Fennoscandinavian erosion, and is consistent with rapid ice flow into the Baltic basins prior to the Last Glacial Maximum. The methodology introduced here could be used to infer the distances of glacigenic sediment transport from Late Pleistocene and earlier glaciations.

  4. Near shore waves, long-shore currents and sediment transport along micro-tidal beaches, central west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Philip, C.S.; SanilKumar, V.; Dora, G.U.; Johnson, G.

    breaker parameters are estimated at two micro-tidal beaches along central west coast of India. Model results are validated with measured values. From the breaker parameters, long-shore current and long-shore sediment transport rates (LSTR) are computed...

  5. SIMULATION OF SEDIMENT TRANSPORT IN THE JEZIORO KOWALSKIE RESERVOIR LOCATED IN THE GLOWNA RIVER

    Directory of Open Access Journals (Sweden)

    Joanna Jaskuła

    2015-07-01

    Full Text Available The purpose of the presented research is the analysis of bed elevation changes caused by sediment accumulation in the Jezioro Kowalskie reservoir. The Jezioro Kowalskie reservoir is a two stage reservoir constructed in such a way that the upper preliminary zone is separated from the main part of the reservoir. The split of the reservoir parts is done with a small pre-dam, located in Jerzykowo town. The analysis of such a construction impact on changes of bed elevations in the reservoir in different flow conditions is presented. The HEC-RAS 5.0 Beta model is used for simulations. The sediment transport intensity is calculated from England-Hansen and Meyer-Peter and Muller formulae. The results showed the processes of sediment accumulation and slight erosion occuring in the preliminary zone of the reservoir. The choice of the flow intensity does not have a huge importance. Similar results are obtained for low as well as high flows. The results confirm, that two stage construction with separated preliminary zone is effective method preventing from the sedimentation of the reservoir.

  6. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  7. Analysis of Sediment Transport for Rivers in South Korea based on Data Mining technique

    Science.gov (United States)

    Jang, Eun-kyung; Ji, Un; Yeo, Woonkwang

    2017-04-01

    The purpose of this study is to calculate of sediment discharge assessment using data mining in South Korea. The Model Tree was selected for this study which is the most suitable technique to explicitly analyze the relationship between input and output variables in various and diverse databases among the Data Mining. In order to derive the sediment discharge equation using the Model Tree of Data Mining used the dimensionless variables used in Engelund and Hansen, Ackers and White, Brownlie and van Rijn equations as the analytical condition. In addition, total of 14 analytical conditions were set considering the conditions dimensional variables and the combination conditions of the dimensionless variables and the dimensional variables according to the relationship between the flow and the sediment transport. For each case, the analysis results were analyzed by mean of discrepancy ratio, root mean square error, mean absolute percent error, correlation coefficient. The results showed that the best fit was obtained by using five dimensional variables such as velocity, depth, slope, width and Median Diameter. And closest approximation to the best goodness-of-fit was estimated from the depth, slope, width, main grain size of bed material and dimensionless tractive force and except for the slope in the single variable. In addition, the three types of Model Tree that are most appropriate are compared with the Ackers and White equation which is the best fit among the existing equations, the mean discrepancy ration and the correlation coefficient of the Model Tree are improved compared to the Ackers and White equation.

  8. Impacts of Cropland Changes on Water Balance, Sediment and Nutrient Transport in Eden River, UK

    Science.gov (United States)

    Huang, Yumei; Quinn, Paul; Liang, Qiuhua; Adams, Russell

    2017-04-01

    Water is the key to food and human life. Farming is the main part of economic and society in Eden, with approximately 2000 farms which covers 95% of under crops. However, with the growth of farming practice and global climate changes, Eden has presented great challenges and bringing uncertainty in the water quality caused by the agricultural diffuse pollution. This expected to reduce negative impacts of the water diffuse pollution from agriculture in Eden. Therefore, there is a high need to ensure effective water resource management to enhance water quality, to address the flow pathways and sediment transport in different farming practice and cropland changes. Hence we need to understand nutrient and the hydrological flow pathways from soil to Hillslope to channel. The aim of this research is to evaluate the impacts of different cropland changes on water balance, sediment and nutrient transport. By using the hydrological models Soil and Water Assessment Tool (SWAT) and the Catchment Runoff Attenuation Flux Tool (CRAFT), it can show the sediment and nutrient export from the load for each flow pathways (overland flow, soil water flow and ground water flow). We will show results from a small research catchment (10km2) area to the whole of Eden (800km2) at a daily time step.

  9. Mud, models, and managers: Reaching consensus on a watershed strategy for sediment load reduction

    Science.gov (United States)

    Wilcock, P. R.; Cho, S. J.; Gran, K.; Belmont, P.; Hobbs, B. F.; Heitkamp, B.; Marr, J. D.

    2017-12-01

    Agricultural nonpoint source sediment pollution is a leading cause of impairment of U.S. waters. Sediment sources are often on private land, such that solutions require not only considerable investment, but broad acceptance among landowners. We present the story of a participatory modeling exercise whose goal was to develop a consensus strategy for reducing sediment loading from the Greater Blue Earth River Basin, a large (9,200 km2) watershed in southern Minnesota dominated by row crop agriculture. The Collaborative for Sediment Source Reduction was a stakeholder group of farmers, industry representatives, conservation groups, and regulatory agencies. We used a participatory modeling approach to promote understanding of the problem, to define the scope of solutions acceptable to farmers, to develop confidence in a watershed model, and to reach consensus on a watershed strategy. We found that no existing watershed model could provide a reliable estimate of sediment response to management actions and developed a purpose-built model that could provide reliable, transparent, and fast answers. Because increased stream flow was identified as an important driver of sediment loading, the model and solutions included both hydrologic and sediment transport components. The model was based on an annual sediment budget with management actions serving to proportionally reduce both sediment sources and sediment delivery. Importantly, the model was developed in collaboration with stakeholders, such that a shared understanding emerged regarding of the modeling challenges and the reliability of information used to strongly constrain model output. The simplicity of the modeling approach supported stakeholder engagement and understanding, thereby lowering the social barrier between expert modeler and concerned stakeholder. The consensus strategy focused on water storage higher in the watershed in order to reduce river discharge and the large supply of sediment from near

  10. Transport modelling in coastal waters using stochastic differential equations

    NARCIS (Netherlands)

    Charles, W.M.

    2007-01-01

    In this thesis, the particle model that takes into account the short term correlation behaviour of pollutants dispersion has been developed. An efficient particle model for sediment transport has been developed. We have modified the existing particle model by adding extra equations for the

  11. Unified theory of non-suspended sediment transport mediated by a Newtonian fluid

    Science.gov (United States)

    Pähtz, Thomas; Durán, Orencio

    2017-04-01

    We present a unified theory of steady, homogeneous, non-suspended transport of nearly uniform spheres mediated by an arbitrary Newtonian fluid. The theory consists of elements that are rigorously derived from Newton's axioms and of semi-empirical elements that well describe simulation data, obtained using a coupled DEM/RANS numerical model of sediment transport in a Newtonian fluid (Durán et al., POF 103306, 2012), for the entire simulated range of the particle-fluid-density ratio s=ρ_p/ρ_f, particle Reynolds number Re_p=√{(s-1)gd^3}/ν, and Shields number Θ=τ/[(ρ_p-ρ_f)gd], where g is the gravitational constant, d the mean particle diameter, and ν the kinematic viscosity. The theory takes into account our recent numerical finding that the mode of entrainment of bed sediment is controlled by the `impact number' Im=Re_p√{s+0.5} (https://arxiv.org/abs/1605.07306), with entrainment through particle-bed impacts dominating most conditions (including turbulent bedload transport). Despite not being fitted to experimental data, the theory simultaneously reproduces measurements in air (s≈2100) and liquids (s≈1{-}5) of the transport cessation threshold Θ^ext (https://arxiv.org/abs/1602.07079), obtained from extrapolation to vanishing transport, and the dimensionless value Q^\\ast=Q/(ρ_p√{(s-1)gd^3}) of the sediment transport rate Q. From the theory and simulations, we learn that considering added-mass, lubrication, fluid lift, and/or history forces is not required to quantitatively reproduce measurements. However, collisions between transported particles cannot be neglected as they are strongly influencing the scaling of Q_\\ast with Θ. We find such collisions are behind the asymptotic scaling Q_\\ast∝Θ^3Rep measured for transport in viscous liquids and also indirectly behind a transition from a linear scaling Q_\\ast∝√{Θ^ex_t}(Θ-Θ^ex_t) to a non-linear scaling Q_\\ast∝√{Θ}(Θ-Θ^ex_t) of the transport rate in turbulent bedload and

  12. Radionuclide particle transport, sedimentation and resuspension in the Forsmark and Laxemar coastal regions

    Energy Technology Data Exchange (ETDEWEB)

    Kling, Hanna; Doeoes, Kristofer (Dept. of Meteorology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    In the safety assessment of a potential repository for spent nuclear fuel, it is important to assess the consequences of a hypothetical leak of radionuclides through the seabed and into a waterborne transport phase. Radionuclides adsorbed to sediment particles may be transported great distances through the processes of sedimentation and resuspension. This study investigates the transport patterns of sediment particles of two different sizes, released in the Forsmark and Laxemar area. The results show that the closed waters around Forsmark to a higher degree makes the particles stay in the area close to the release points

  13. Sediment-driven mercury transport in post-fire storm runoff

    Science.gov (United States)

    Burke, M. P.; Ferreira, M.; Hogue, T. S.; Jay, J.; Rademacher, L. K.

    2009-12-01

    increase was measured in both the total Hg and TSS concentrations. Though the total Hg and TSS concentrations were not as well correlated in the 2007-08 storms, it is clear that the sediment flux controls the Hg delivery to terrestrial waters in this burned, semi-arid watershed. The ultimate goal of this study is to elucidate the total Hg /TSS relationship in the post-fire runoff of Piru Creek and to model Hg delivery as a function of soil erosion and sediment transport.

  14. Interactions Between Channel Topography and Hydrokinetic Turbines: Sediment Transport, Turbine Performance, and Wake Characteristics

    Science.gov (United States)

    Hill, Craig Steven

    Accelerating marine hydrokinetic (MHK) renewable energy development towards commercial viability requires investigating interactions between the engineered environment and its surrounding physical and biological environments. Complex and energetic hydrodynamic and morphodynamic environments desired for such energy conversion installations present difficulties for designing efficient yet robust sustainable devices, while permitting agency uncertainties regarding MHK device environmental interactions result in lengthy and costly processes prior to installing and demonstrating emerging technologies. A research program at St. Anthony Falls Laboratory (SAFL), University of Minnesota, utilized multi-scale physical experiments to study the interactions between axial-flow hydrokinetic turbines, turbulent open channel flow, sediment transport, turbulent turbine wakes, and complex hydro-morphodynamic processes in channels. Model axial-flow current-driven three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. Device-induced local scour was monitored over several hydraulic conditions and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. Complimentary experiments were performed in a realistic meandering outdoor research channel with active sediment transport to investigate device interactions with bedform migration and secondary turbulent flow patterns in asymmetric channel environments. The suite of experiments undertaken during this research program at SAFL in multiple channels with stationary and mobile substrates under a variety of turbine configurations provides an in-depth investigation into how axial-flow hydrokinetic devices respond to turbulent channel flow and topographic complexity, and how they impact local and far-field sediment transport characteristics

  15. Sediment budgets, transport, and depositional trends in a large tidal delta

    Science.gov (United States)

    Morgan, Tara; Wright, Scott A.

    2016-01-01

    sediment supply (Wright and Schoellhamer, 2004). Today, one concern is whether the volume of sediment supplied from the upper watershed is sufficient to support ecological function and sustain the Delta landscape and ecosystem in the face of climate change, sea level rise, and proposed restoration associated with the Bay Delta Conservation Plan (http://baydeltaconservationplan.com). Ecosystem health is a management focus and 150,000 acres of restoration is currently proposed, therefore it is of increasingly important to understand the quantity of sediment available for marsh and wetland restoration throughout the Bay Delta Estuary. It is also important to understand the pathways for sediment transport and the sediment budget into each of three Delta regions (figure 1) to guide restoration planning, modeling, and management.

  16. Channel responses to varying sediment input: A flume experiment modeled after Redwood Creek, California

    Science.gov (United States)

    Madej, M.A.; Sutherland, D.G.; Lisle, T.E.; Pryor, B.

    2009-01-01

    At the reach scale, a channel adjusts to sediment supply and flow through mutual interactions among channel form, bed particle size, and flow dynamics that govern river bed mobility. Sediment can impair the beneficial uses of a river, but the timescales for studying recovery following high sediment loading in the field setting make flume experiments appealing. We use a flume experiment, coupled with field measurements in a gravel-bed river, to explore sediment transport, storage, and mobility relations under various sediment supply conditions. Our flume experiment modeled adjustments of channel morphology, slope, and armoring in a gravel-bed channel. Under moderate sediment increases, channel bed elevation increased and sediment output increased, but channel planform remained similar to pre-feed conditions. During the following degradational cycle, most of the excess sediment was evacuated from the flume and the bed became armored. Under high sediment feed, channel bed elevation increased, the bed became smoother, mid-channel bars and bedload sheets formed, and water surface slope increased. Concurrently, output increased and became more poorly sorted. During the last degradational cycle, the channel became armored and channel incision ceased before all excess sediment was removed. Selective transport of finer material was evident throughout the aggradational cycles and became more pronounced during degradational cycles as the bed became armored. Our flume results of changes in bed elevation, sediment storage, channel morphology, and bed texture parallel those from field surveys of Redwood Creek, northern California, which has exhibited channel bed degradation for 30??years following a large aggradation event in the 1970s. The flume experiment suggested that channel recovery in terms of reestablishing a specific morphology may not occur, but the channel may return to a state of balancing sediment supply and transport capacity.

  17. The erythrocyte sedimentation rates: some model experiments.

    Science.gov (United States)

    Cerny, L C; Cerny, E L; Granley, C R; Compolo, F; Vogels, M

    1988-01-01

    In order to obtain a better understanding of the erythrocyte sedimentation rate (ESR), several models are presented. The first directs attention to the importance of geometrical models to represent the structure of mixtures. Here it is our intention to understand the effect of the structure on the packing of red blood cells. In this part of the study, "Cheerios" (trademark General Mills) are used as a macroscopic model. It is interesting that a random sampling of "Cheerios" has the same volume distribution curve that is found for erythrocytes with a Coulter Sizing Apparatus. In order to examine the effect of rouleaux formation, the "Cheerios" are stacked one on top of another and then glued. Rouleaux of 2,3,4,5, 7 and 10 discs were used. In order to examine a more realistic biological model, the experiments of Dintenfass were used. These investigations were performed in a split-capillary photo viscometer using whole blood from patients with a variety of diseases. The novel part of this research is the fact that the work was performed at 1g and at near zero gravity in the space shuttle "Discovery." The size of the aggregates and/or rouleaux clearly showed a dependence upon the gravity of the experiment. The purpose of this model was to examine the condition of self-similarity and fractal behavior. Calculations are reported which clearly indicate that there is general agreement in the magnitude of the fractal dimension from the "Cheerios" model, the "Discovery" experiment with those determined with the automatic sedimentimeter. The final aspect of this work examines the surface texture of the sedimention tube. A series of tubes were designed with "roughened" interiors. A comparison of the sedimentation rates clearly indicates a more rapid settling in "roughened" tubes than in ones with a smooth interior surface.

  18. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.

    2017-11-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability. Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  19. Importance of measuring discharge and sediment transport in lesser tributaries when closing sediment budgets

    Science.gov (United States)

    Griffiths, Ronald; Topping, David

    2017-01-01

    Sediment budgets are an important tool for understanding how riverine ecosystems respond to perturbations. Changes in the quantity and grain size distribution of sediment within river systems affect the channel morphology and related habitat resources. It is therefore important for resource managers to know if a river reach is in a state of sediment accumulation, deficit or stasis. Many sediment-budget studies have estimated the sediment loads of ungaged tributaries using regional sediment-yield equations or other similar techniques. While these approaches may be valid in regions where rainfall and geology are uniform over large areas, use of sediment-yield equations may lead to poor estimations of loads in regions where rainfall events, contributing geology, and vegetation have large spatial and/or temporal variability.Previous estimates of the combined mean-annual sediment load of all ungaged tributaries to the Colorado River downstream from Glen Canyon Dam vary by over a factor of three; this range in estimated sediment loads has resulted in different researchers reaching opposite conclusions on the sign (accumulation or deficit) of the sediment budget for particular reaches of the Colorado River. To better evaluate the supply of fine sediment (sand, silt, and clay) from these tributaries to the Colorado River, eight gages were established on previously ungaged tributaries in Glen, Marble, and Grand canyons. Results from this sediment-monitoring network show that previous estimates of the annual sediment loads of these tributaries were too high and that the sediment budget for the Colorado River below Glen Canyon Dam is more negative than previously calculated by most researchers. As a result of locally intense rainfall events with footprints smaller than the receiving basin, floods from a single tributary in semi-arid regions can have large (≥ 10 ×) differences in sediment concentrations between equal magnitude flows. Because sediment loads do not

  20. Sediment Transport into the Swinomish Navigation Channel, Puget Sound—Habitat Restoration versus Navigation Maintenance Needs

    Directory of Open Access Journals (Sweden)

    Tarang Khangaonkar

    2017-04-01

    Full Text Available The 11 mile (1.6 km Swinomish Federal Navigation Channel provides a safe and short passage to fishing and recreational craft in and out of Northern Puget Sound by connecting Skagit and Padilla Bays, US State abbrev., USA. A network of dikes and jetties were constructed through the Swinomish corridor between 1893 and 1936 to improve navigation functionality. Over the years, these river training dikes and jetties designed to minimize sedimentation in the channel have deteriorated, resulting in reduced protection of the channel. The need to repair or modify dikes/jetties for channel maintenance, however, may conflict with salmon habitat restoration goals aimed at improving access, connectivity and brackish water habitat. Several restoration projects have been proposed in the Skagit delta involving breaching, lowering, or removal of dikes. To assess relative merits of the available alternatives, a hydrodynamic model of the Skagit River estuary was developed using the Finite Volume Community Ocean Model (FVCOM. In this paper, we present the refinement and calibration of the model using oceanographic data collected from the years 2006 and 2009 with a focus on the sediment and brackish water transport from the river and Skagit Bay tide flats to the Swinomish Channel. The model was applied to assess the feasibility of achieving the desired dual outcome of (a reducing sedimentation and shoaling in the Swinomish Channel and (b providing a direct migration pathway and improved conveyance of freshwater into the Swinomish Channel. The potential reduction in shoaling through site-specific structure repairs is evaluated. Similarly, the potential to significantly improve of brackish water habitat through dike breach restoration actions using the McGlinn Causeway project example, along with its impacts on sediment deposition in the Swinomish Navigation Channel, is examined.

  1. Assessment of bridge abutment scour and sediment transport under various flow conditions

    Science.gov (United States)

    Gilja, Gordon; Valyrakis, Manousos; Michalis, Panagiotis; Bekić, Damir; Kuspilić, Neven; McKeogh, Eamon

    2017-04-01

    Safety of bridges over watercourses can be compromised by flow characteristics and bridge hydraulics. Scour process around bridge foundations can develop rapidly during low-recurrence interval floods when structural elements are exposed to increased flows. Variations in riverbed geometry, as a result of sediment removal and deposition processes, can increase flood-induced hazard at bridge sites with catastrophic failures and destructive consequences for civil infrastructure. The quantification of flood induced hazard on bridge safety generally involves coupled hydrodynamic and sediment transport models (i.e. 2D numerical or physical models) for a range of hydrological events covering both high and low flows. Modelled boundary conditions are usually estimated for their probability of occurrence using frequency analysis of long-term recordings at gauging stations. At smaller rivers gauging station records are scarce, especially in upper courses of rivers where weirs, drops and rapids are common elements of river bathymetry. As a result, boundary conditions that accurately represent flow patterns on modelled river reach cannot be often reliably acquired. Sediment transport process is also more complicated to describe due to its complexity and dependence to local flow field making scour hazard assessment a particularly challenging issue. This study investigates the influence of flow characteristics to the development of scour and sedimentation processes around bridge abutments of a single span masonry arch bridge in south Ireland. The impact of downstream weirs on bridge hydraulics through variation of downstream model domain type is also considered in this study. The numerical model is established based on detailed bathymetry data surveyed along a rectangular grid of 50cm spacing. Acquired data also consist of riverbed morphology and water level variations which are monitored continuously on bridge site. The obtained data are then used to compare and calibrate

  2. An approximate analytical solution for describing surface runoff and sediment transport over hillslope

    Science.gov (United States)

    Tao, Wanghai; Wang, Quanjiu; Lin, Henry

    2018-03-01

    Soil and water loss from farmland causes land degradation and water pollution, thus continued efforts are needed to establish mathematical model for quantitative analysis of relevant processes and mechanisms. In this study, an approximate analytical solution has been developed for overland flow model and sediment transport model, offering a simple and effective means to predict overland flow and erosion under natural rainfall conditions. In the overland flow model, the flow regime was considered to be transitional with the value of parameter β (in the kinematic wave model) approximately two. The change rate of unit discharge with distance was assumed to be constant and equal to the runoff rate at the outlet of the plane. The excess rainfall was considered to be constant under uniform rainfall conditions. The overland flow model developed can be further applied to natural rainfall conditions by treating excess rainfall intensity as constant over a small time interval. For the sediment model, the recommended values of the runoff erosion calibration constant (cr) and the splash erosion calibration constant (cf) have been given in this study so that it is easier to use the model. These recommended values are 0.15 and 0.12, respectively. Comparisons with observed results were carried out to validate the proposed analytical solution. The results showed that the approximate analytical solution developed in this paper closely matches the observed data, thus providing an alternative method of predicting runoff generation and sediment yield, and offering a more convenient method of analyzing the quantitative relationships between variables. Furthermore, the model developed in this study can be used as a theoretical basis for developing runoff and erosion control methods.

  3. Bottom Boundary Layer Sediment Transport Processes in Fourleague Bay of Louisiana and Their Implication to Sediment Diversion and Coastal Restoration

    Science.gov (United States)

    Wang, J.; Xu, K.; Bentley, S. J.; Restreppo, G. A.

    2016-02-01

    Building land with a rising sea is a challenging problem in many major deltaic systems around the world. The Atchafalaya deltaic area is one of only a few growing sites in Louisiana coast. The sediment delivered to this deltaic area is mainly from three reservoirs: (1) sediment derived from ongoing fluvial delivery; (2) mobile sediment delivered to the coastal basin during the past year by cold fronts, tropical cyclones, and others; (3) more consolidated sediment stored in the seabed or bay floor for more than 12 months. In order to better understand the far-field dispersal and deposition of fine sediments in the Atchafalaya system, two tripods were used to study the hydrodynamics and sediment dynamics at two stations in Fourleague Bay, which are 15 km southeast of Atchafalaya Delta. One tripod was located at the middle of the bay, and the other was near the marsh edge. Six sensors including OBS (Optical Backscatter Sensor) 3A, OBS 5+, ADV (Acoustic Doppler Velocimeter) Ocean, Argonaut ADV, and two wave gauges were planned to deploy in the early summer and winter of 2015 for a month, respectively. Our study was focused on the near-bed sediment transport from each of the above three reservoirs to wetlands under fair weather and event condition. Based on the seasonal surface suspended sediment concentration (SSC), salinity, as well as turbidity, wave and current data, we have investigated the bottom boundary layer sediment dynamics, in order to illustrate sediment deposition and erosion processes under fair weather and energetic conditions in the bay. During an energetic event in early summer 2015, strong southeasterly wind waves carried salty water from inner Louisiana shelf northwestward into the bay, and led to increasing wave height, bottom shear stress, salinity, and near-bed turbidity. After the event, there was apparent decreasing of these parameters. SSC data in the bay showed an increasing trend since April, which is probably related to the fine sediment

  4. Nearshore waves and longshore sediment transport along Rameshwaram Island off the east coast of India

    Directory of Open Access Journals (Sweden)

    Rajamanickam Gowthaman

    2015-11-01

    Full Text Available Wave-induced Longshore Sediment Transport (LST play an important role in the dynamics of the Dhanushkodi sandspit located southeast of Rameshwaram. The LST along the Dhanushkodi coast is studied based on data collected simultaneously in Gulf of Mannar (GoM and Palk Bay (PB using directional waverider buoys. The numerical model REF/DIF1 was used to calculate the nearshore waves and the LST rate was estimated using three different formulae. The model validation was done based on the measured nearshore waves using InterOcean S4DW. Numerical model LITPACK was also used for simulating non-cohesive sediment transport and the LITLINE module was used to study the shoreline evolution over 5 years. Low net annual LST along PB (~0.01 × 106 m3 compared to the GoM region (0.3 × 106 m3 were due to the weak waves. Accretion in the region led to growth of the Dhanushkodi sandspit by 65 m during the period 2010-2015.

  5. Linking Meander Initation to Instability in the Cross-Sectional Sediment Transport Field

    Science.gov (United States)

    Eaton, B. C.

    2005-12-01

    Recent theoretical and experimental work on reach-scale channel dynamics suggests that stream channel response to changes in the discharge or sediment supply regime produce adjustments that are consistent with the optimality criteria (or extremal hypotheses) proposed by rational regime modellers. However, a general form of the optimality criteria based on the maximization of system-scale flow resistance permits multiple channel responses to the same imposed change, and is thus inadequate for predicting channel response, absent additional information. The way forward is to identify the geomorphic processes that produce various possible channel responses, and to develop an understanding of the conditions under which these processes may or may not be effective. Using a simple analytic model relating local sediment transport capacity to variance in the transverse shear stress distribution I develop a physically based conceptual model of the initiation of meandering in straight, bedload dominated streams as a result of a feedback mechanism. This corresponds to a channel response that is dominated by changes the energy slope, which appears to be dominant in channels having relatively erodible banks and transporting their bed material load at conditions near the threshold for entrainment. The feedback maximizes the cross sectional shear stress variance and, in order to achieve stability, minimizes the energy slope at repeated locations along the channel. These locations develop into pools in a fully developed meandering channel; they represent attractor states wherein sediment continuity is satisfied using the least possible energy expenditure per unit length of channel. Between two successive pools, a stream occupies a metastable, higher energy state (corresponding to a riffle) that requires greater energy expenditure per unit length of channel to transport the same volume of sediment. The model links processes at the scale of a channel width to adjustments of the

  6. A study of sediment transport in the Herbert River, Australia, using plutonium AMS

    International Nuclear Information System (INIS)

    Everett, S.E.; Tims, S.G.; Fifield, L.K.; Hancock, G.J.

    2005-01-01

    The ANU and CSIRO have begun a new collaboration to study the human impacts of sediment transport into the Great Barrier Reef (GBR) lagoon. The project aims to use fallout plutonium for essentially the first time, as an isotopic tracer of soil and sediment movement. The study aims to assess how recent human activity in the river catchments that feed the GBR lagoon is influencing the distribution and quantity of sediment entering the lagoon. 2 figs

  7. Sediment transport capacity of concentrated flows on steep loessial slope with erodible beds.

    Science.gov (United States)

    Xiao, Hai; Liu, Gang; Liu, Puling; Zheng, Fenli; Zhang, Jiaqiong; Hu, Feinan

    2017-05-24

    Previous research on sediment transport capacity has been inadequate and incomplete in describing the detachment and transport process of concentrated flows on slope farmlands during rill development. An indoor concentrated flow scouring experiment was carried out on steep loessial soil slope with erodible bed to investigate the sediment transport capacity under different flow rates and slope gradients. The results indicated that the sediment transport capacity increases with increasing flow rate and slope gradient, and these relationships can be described by power functions and exponential functions, respectively. Multivariate, nonlinear regression analysis showed that sediment transport capacity was more sensitive to slope gradient than to flow rate, and it was more sensitive to unit discharge per unit width than to slope gradient for sediment transport capacity in this study. When similar soil was used, the results were similar to those of previous research conducted under both erodible and non-erodible bed conditions. However, the equation derived from previous research under non-erodible bed conditions with for river bed sand tends to overestimate sediment transport capacity in our experiment.

  8. Longshore suspended sediment transport and its implications for submarine erosion off the Yangtze River Estuary

    Science.gov (United States)

    Deng, Bing; Wu, Hui; Yang, Shilun; Zhang, Jing

    2017-05-01

    Coastal currents that originate from large rivers play a key role in delivering sediment to shelf regions. Quantifying their transport capability is therefore essential to understanding the sediment budgets and the consequent deposition or erosion of coastal areas. In February 2012, we observed the sediment transport carried by the Min-Zhe Coastal Current that originates from the Yangtze River mouth and calculated a flux of 18.7 tons per second on a cross-shore section. In this period the coastal current was at a typical status, which allowed us to estimate a total annual sediment transport of 0.27billion tons southward. This result was more than three times the present annual Yangtze River sediment discharge, suggesting that considerable net sediment removal occurs in the coastal regions. The sediment transport 0.27 billion tons/year is probably the deposition/erosion threshold for the East China Sea coast north of our study site. Analysis of historical Yangtze River sediment influx records showed, that the onset and acceleration of coastal erosion was closely linked with the operation of the Three Gorges Dam (TGD) upstream of the Yangtze River.

  9. The role of geology in sediment supply and bedload transport patterns in coarse-grained streams

    Science.gov (United States)

    Sandra E. Ryan

    2007-01-01

    This paper compares gross differences in rates of bedload sediment moved at bankfull discharges in 19 channels on national forests in the Middle and Southern Rocky Mountains. Each stream has its own "bedload signal," in that the rate and size of materials transported at bankfull discharge largely reflect the nature of flow and sediment particular to that...

  10. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components.

    Science.gov (United States)

    Cai, Zhengqing; Fu, Jie; Liu, Wen; Fu, Kunming; O'Reilly, S E; Zhao, Dongye

    2017-01-15

    This work investigated effects of three model oil dispersants (Corexit EC9527A, Corexit EC9500A and SPC1000) on settling of fine sediment particles and particle-facilitated distribution and transport of oil components in sediment-seawater systems. All three dispersants enhanced settling of sediment particles. The nonionic surfactants (Tween 80 and Tween 85) play key roles in promoting particle aggregation. Yet, the effects varied with environmental factors (pH, salinity, DOM, and temperature). Strongest dispersant effect was observed at neutral or alkaline pH and in salinity range of 0-3.5wt%. The presence of water accommodated oil and dispersed oil accelerated settling of the particles. Total petroleum hydrocarbons in the sediment phase were increased from 6.9% to 90.1% in the presence of Corexit EC9527A, and from 11.4% to 86.7% for PAHs. The information is useful for understanding roles of oil dispersants in formation of oil-sediment aggregates and in sediment-facilitated transport of oil and PAHs in marine eco-systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sediment transport in a large impounded river: The lower Ebro, NE Iberian Peninsula

    Science.gov (United States)

    Vericat, Damia; Batalla, Ramon J.

    2006-09-01

    The sediment transport of the highly regulated lower Ebro River is estimated on the basis of a measuring programme carried out between 2002 and 2004. Total sediment transport, including both suspended load and bedload, was measured upstream and downstream from the Mequinenza and Riba-roja reservoirs, with special attention to the transport during floods. Annual total load upstream from the dams is estimated at around 1.64·10 6 t, of which at least 99% is transported in suspension. Annual total load downstream from the dams is estimated at around 0.45·10 6 t, of which 60% is transported in suspension and the remaining 40% as bedload (mean D50-bl in the range of 32 mm). Total load represents 3% of what was transported at the beginning of the 20th century in the delta plain. Sediment yield is three to four times lower below the dams, a fact that is caused by the trapping of sediment within the reservoirs (around 90% in the case of suspended sediment and 100% in the case of bedload). As a consequence, sediment that is transported downstream from the dams is all entrained from the riverbed and eroded from the banks. The sediment deficit causes a mean riverbed incision of 30 mm per year, as estimated from bedload measurements and by means of scour chains and painted pebbles located between the lowermost dam and the measuring section 28 km downstream. Since floods have been reduced on average by 25% but sediment supply from upstream has been reduced to almost nothing, the river channel of the lower Ebro River will continue exporting sediment both during floods (> 2000 m 3/s, mostly bedload) and frequent high flows (1000 m 3/s to 2000 m 3/s), making the incision progressive unless restoration steps are taken.

  12. Long-distance electron transport by cable bacteria in mangrove sediments

    NARCIS (Netherlands)

    Burdorf, L.D.; Hidalgo-Martinez, S.; Cook, P.L.M.C.; Meysman, F.

    2016-01-01

    Cable bacteria are long, filamentoussulphur-oxidizing bacteria that induce long-distanceelectron transport in aquatic sediments. They turnthe seafloor into an electro-active environment, characterizedby currents and electrical fields, and whenpresent, they exert a strong impact on the

  13. Studies on sediment transport along Kerala Coast, south west coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Sajeev, R.; Chandramohan, P.; Josanto, V.; Sanakaranarayanan, V.N.

    Longshore sediment transport characteristics of the Kerala Coast have been examined to delineate various physical processes affecting the different coastal environments. Monthly averages of the daily LEO (Littoral Environmental Observation) data...

  14. A systematic study of wave conditions and sediment transport near Mormugao harbour

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, M.P.M.

    Wave conditions and the nature of sediment transport in the Mormugao Harbour area have been evaluated in view of the proposed development project of this harbour It has been found from this study that generally high waves will be experienced...

  15. Nearshore waves and longshore sediment transport along Rameshwaram Island off the east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Gowthaman, R.; SanilKumar, V.; Dwarakish, G.S.; Shanas, P.R.; Jena, B.K.; Singh, J.

    Wave-induced Longshore Sediment Transport (LST) play an important role in the dynamics of the Dhanushkodi sandspit located southeast of Rameshwaram. The LST along the Dhanushkodi coast is studied based on data collected simultaneously in Gulf...

  16. Two-phase modeling of turbulence in dilute sediment-laden, open-channel flows

    OpenAIRE

    Jha, Sanjeev K.; Bombardelli, Fabián A.

    2009-01-01

    In this paper, we focus on assessing the performance of diverse turbulence closures in the simulation of dilute sediment-laden, open-channel flows. To that end, we base our analysis on a framework developed in a companion paper of this special issue, which puts forward a standard sediment transport model (SSTM), a partial two-fluid model (PTFM) and a complete two-fluid model (CTFM), in three- and one-dimensional (3D and 1D) versions. First, we propose in this paper extensions of the transport...

  17. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  18. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    Science.gov (United States)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  19. Sediment interactions in a new ocean model

    International Nuclear Information System (INIS)

    Camplin, W.C.; Gurbutt, P.A.

    1986-01-01

    A new ocean model has been developed jointly by the Ministry of Agriculture, Fisheries and Food (MAFF) and the National Radiological Protection Board (NRPB). It has been used in 1985 for the Nuclear Energy Agency (NEA) review of the NE Atlantic site for low-level radioactive waste disposal. The circulation model, which covers the world's oceans, is overlaid with a sediment model, which includes particle interactions in the ocean interior and in the seabed. The ocean interior processes feature movements with water, two particle size ranges, equilibrium distribution coefficients, gravitational settling and dissolution during descent. In the seabed there is a stack of compartments consisting of an interface between bottom waters and the seabed surface, a well mixed or bioturbated layer, a diffusive layer and a sediment sink from which activity does not return. The processes connecting the seabed compartments are burial, bioturbation and pore water diffusion. Model predictions for an arbitrary release from the dump site are presented. Distribution coefficients are shown to be an important factor in determining water concentrations. (author)

  20. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  1. An approach for modeling sediment budgets in supply-limited rivers

    Science.gov (United States)

    Wright, Scott A.; Topping, David J.; Rubin, David M.; Melis, Theodore S.

    2010-01-01

    Reliable predictions of sediment transport and river morphology in response to variations in natural and human-induced drivers are necessary for river engineering and management. Because engineering and management applications may span a wide range of space and time scales, a broad spectrum of modeling approaches has been developed, ranging from suspended-sediment "rating curves" to complex three-dimensional morphodynamic models. Suspended sediment rating curves are an attractive approach for evaluating changes in multi-year sediment budgets resulting from changes in flow regimes because they are simple to implement, computationally efficient, and the empirical parameters can be estimated from quantities that are commonly measured in the field (i.e., suspended sediment concentration and water discharge). However, the standard rating curve approach assumes a unique suspended sediment concentration for a given water discharge. This assumption is not valid in rivers where sediment supply varies enough to cause changes in particle size or changes in areal coverage of sediment on the bed; both of these changes cause variations in suspended sediment concentration for a given water discharge. More complex numerical models of hydraulics and morphodynamics have been developed to address such physical changes of the bed. This additional complexity comes at a cost in terms of computations as well as the type and amount of data required for model setup, calibration, and testing. Moreover, application of the resulting sediment-transport models may require observations of bed-sediment boundary conditions that require extensive (and expensive) observations or, alternatively, require the use of an additional model (subject to its own errors) merely to predict the bed-sediment boundary conditions for use by the transport model. In this paper we present a hybrid approach that combines aspects of the rating curve method and the more complex morphodynamic models. Our primary objective

  2. ANALYSIS OF POTENTIAL INTENSITY OF SEDIMENT TRANSPORT ON SELECTED REACH OF THE NER RIVER

    Directory of Open Access Journals (Sweden)

    Ewelina Szałkiewicz

    2015-11-01

    Full Text Available The aim of this study was to perform a simulation of sediment transport for the section of the river Ner, while also utilizing GIS tools. Using the ArcGIS numerical model of channel and stream valleys were developed, and motion simulations and sediment transport set for 5 ten-year periods were performed in HEC-RAS. Updated geometries after the simulations were created using the tools of RAS Mapper. ArcGIS was used again for analysing the results. It was used to generate ordinates of bottom in the initial state and final. The difference between them illustrated the magnitude of erosion and accumulation. The process of erosion occurred in 13 sections of the analysed model (the standard differential ordinates negative, while the accumulation in 53 sections. The maximum value of shallowing bottom was 1.24 m (cross-section at km 18 + 868, while the largest deepening occurred at km 8 + 654 (– 0.76 m. All values, using ArcGIS, were marked on othophotomap.

  3. The Community Sediment Transport Modeling System

    Science.gov (United States)

    2008-01-01

    Hole Oceanographic Institution R. Geyer J. Trowbridge P. Traykovski X X X U.S. Geological Survey Coastal and Marine Geology Program C...higher concentration suspensions. For lower concentration conditions, the fractal dimension for flocs is the key variable controlling the dynamics. At...this time the fractal dimension of flocs needs to be specified empirically, and there are few data sets with which to constrain such estimates

  4. Goods Transport Modelling, Vol 1

    DEFF Research Database (Denmark)

    Petersen, Morten Steen (red.); Kristiansen, Jørgen

    The report is a study of data requirements and methodologies for goods transport. The study is intended to provide the basis for general discussion about the application of goods transport models in Denmark. The report provides an overview of different types of models and data availability....

  5. Uptake, translocation and elimination in sediment-rooted macrophytes: A model-supported analysis of whole sediment toxicity test data

    NARCIS (Netherlands)

    Diepens, N.J.; Arts, G.H.P.; Focks, A.; Koelmans, A.A.

    2014-01-01

    Understanding bioaccumulation in sediment-rooted macrophytes is crucial for the development of sediment toxicity tests using macrophytes. Here we explore bioaccumulation in sediment-rooted macrophytes by tracking and modelling chemical flows of chlorpyrifos, linuron, and six PCBs in

  6. Numerical simulation of sediment transport from Ba Lat Mouth and the process of coastal morphology

    International Nuclear Information System (INIS)

    Chung, Dang Huu

    2008-01-01

    This paper presents an application of a 3D numerical model to simulate one vertical layer sediment transport and coastal morphodynamical process for the Hai Hau coastal area located in the north of Vietnam, where a very large amount of suspended sediment is carried into the sea from Ba Lat Mouth every year. Four simulations are based on the real data of waves supplied by the observation station close to Ba Lat Mouth. The conditions of wind and suspended sand concentration at Ba Lat Mouth are basically assumed from practice. The computed results show that the hydrodynamic factors strongly depend on the wind condition and these factors govern the direction and the range of suspended sand transport, especially in the shallow-water region. In the deep-water region this influence is not really clear when the wind force is not strong enough to modify the tidal current. In the area close to Ba Lat Mouth the flow velocity is very large with the maximum flood flow about 2.6 m s −1 and the maximum ebb flow about 1 m s −1 at the mouth, and this is one of the reasons for strong erosion. In the case of tidal flow only, the suspended sand concentration decreases resulting in local deposition. Therefore, the area influenced by suspended transport is small, about 12 km from the mouth. In the condition of wind and waves, the suspended sand transport reaches the end of the computation area within a few days, especially the cases with wind from the north-east-north. Through these simulation results, a common tendency of sediment movement from the north to the south is specified for the Hai Hau coastal area. In addition, the results also show that the coast suffers from strong erosion, especially the region near Ba Lat Mouth. From the simulation results it can be seen that the movement of the Red River sand along the Vietnamese coast is quite possible, which is an answer to a long-standing question. Furthermore, although the suspended sediment concentration is quite large, it is

  7. Observations and modeling of fjord sedimentation during the 30 year retreat of Columbia Glacier, AK

    Science.gov (United States)

    Love, Katherine B; Hallet, Bernard; Pratt, Thomas L.; O'Neel, Shad

    2016-01-01

    To explore links between glacier dynamics, sediment yields and the accumulation of glacial sediments in a temperate setting, we use extensive glaciological observations for Columbia Glacier, Alaska, and new oceanographic data from the fjord exposed during its retreat. High-resolution seismic data indicate that 3.2 × 108 m3 of sediment has accumulated in Columbia Fjord over the past three decades, which corresponds to ~5 mm a−1 of erosion averaged over the glaciated area. We develop a general model to infer the sediment-flux history from the glacier that is compatible with the observed retreat history, and the thickness and architecture of the fjord sediment deposits. Results reveal a fivefold increase in sediment flux from 1997 to 2000, which is not correlated with concurrent changes in ice flux or retreat rate. We suggest the flux increase resulted from an increase in the sediment transport capacity of the subglacial hydraulic system due to the retreat-related steepening of the glacier surface over a known subglacial deep basin. Because variations in subglacial sediment storage can impact glacial sediment flux, in addition to changes in climate, erosion rate and glacier dynamics, the interpretation of climatic changes based on the sediment record is more complex than generally assumed.

  8. Summertime Suspended Sediment Transport Patterns in the Partially-mixed Changjiang Estuary

    Science.gov (United States)

    Niroomandi, A.; Ma, G.

    2016-02-01

    Sediment deposition in the Northern Passage of the Changjiang Estuary, where the Deepwater Navigation Channel (DNC) is located, has been a major concern in the past decades. To understand the sediment transport patterns and sediment sources in the navigational channel, field data on tidal flow and suspended sediment concentration are collected and analyzed in this study. It is shown that sediment transport processes are dominated by ebb currents. As a result, the total sediment flux is generally toward the ocean and the maximum value is found to be in the middle of the passage. At the mouth of the estuary, the total sediment flux is toward the river in the lower layer of the water column confirming a two-layer tide-averaged flow pattern in this region. The effects of sediment on stratification and mixing in the northern passage is examined by calculating eddy viscosity. Results show that strong mixing occurs during ebb in the upper reach of the passage where river discharge has high influence on the estuary. Suspended sediment can dampen turbulence and reduce mixing in the water column. To reveal the major suspended sediment sources, bed shear stresses over the entire passage are calculated. It is found that, during ebb, the bed shear stress is generally larger than the critical value for sediment suspension. Sediment in the water column is suspended from the bed. During flood, the suspended sediment in the northern passage are likely coming from a neighboring shoal, where the water depth is shallow and bed shear stress is large.

  9. Hydrodynamic and Sediment Modelling within a Macro Tidal Estuary: Port Curtis Estuary, Australia

    Directory of Open Access Journals (Sweden)

    Ryan J. K. Dunn

    2015-07-01

    Full Text Available An understanding of sediment transport processes and resultant concentration dynamics in estuaries is of great importance to engineering design awareness and the management of these environments. Predictive modelling approaches provide an opportunity to investigate and address potential system responses to nominated events, changes, or conditions of interest, often on high temporal and spatial resolution scales. In this study, a three-dimensional hydrodynamic model and wave model were validated and applied to generate forcing conditions for input into a sediment transport model for the period 7 May 2010–30 October 2010 within a macro tidal estuary, Port Curtis estuary (Australia. The hydrodynamic model was verified against surface and near-bottom current measurements. The model accurately reproduced the variations of surface and near-bottom currents at both a mid-estuary and upper-estuary location. Sediment transport model predictions were performed under varying meteorological conditions and tidal forcing over a 180-day period and were validated against turbidity data collected at six stations within Port Curtis estuary. The sediment transport model was able to predict both the magnitudes of the turbidity levels and the modulation induced by the neap and spring tides and wind-wave variations. The model-predicted (converted turbidity levels compared favourably with the measured surface water turbidity levels at all six stations. The study results have useful practical application for Port Curtis estuary, including providing predictive capabilities to support the selection of locations for monitoring/compliance sites.

  10. Hydrodynamics and sediment transport at Muria Peninsula NPP Site

    International Nuclear Information System (INIS)

    Heni Susiati; Berni A Subki; Harman A

    2011-01-01

    Coastal along the coast of the Muria Peninsula, particularly the location of the Muria NPP site candidate is a dynamic region, the interaction between physical oceanographic factors such as currents, waves and tides in the coastal sediments cause abrasion or accretion. Interactions have resulted in coastal dynamics needs to be considered in siting NPP is essential in order to plan. Capacity of hydro-oceanographic data is essential in order to plan the development of the Muria NPP. The process of selecting a safe site for hydro-oceanographic aspects carried out according to IAEA safety standards on site selection. For the evaluation stage of hydro oceanographic potential site (site survey stage), the analysis is more focused on the tidal along the northern coast, bathymetry, potential water resources and hydrologic systems in the Muria NPP siting locations, Jepara. The method used is a secondary, confirmation of field data collection and interpretation of modeling results. The results showed that the preparation for the construction of NPP need to be evaluated further to coastal conditions with respect to the increase coastal erosion in the area of prospective NPP siting. (author)

  11. Study of sediment transport in Semarang coastal water using 198 Au radioactive tracer

    International Nuclear Information System (INIS)

    Supriatna, Dadang; Sukarmadijaya, Harun; Barokah

    2000-01-01

    Most nearshore aquatic system adjacent to urban centers are characterized by contaminated fine sediment deposits that were brought in from variety sources. Banjir Kanal Timur, Tambak Lorok and Tenggang are rivers that across of Semarang city and have a mouth at same location, that location are potential pollutant sources for Semarang coastal water, so the knowledge of sediment transport in Semarang coastal is very important for management and sustainable that area. One techniques to understand transport of sediment is radioactive tracer have several major advantages, high detection sensitivity, unique possibility of being measured in situ providu information in the shortest possible time. Specific gravity and particle size distribution analysis indicate that there was on differences between nature sediment compare whit labelled sediment. Contour of movement pattern of radiotracer shows sediment towards North, while disressing moved to left and right direction with mean velocity of 5.65 m/day. Sediment transport rate was calculated of 780.7 kg/m/day with the thickness of the mobile layer sediment 5.2 cm

  12. A model for sedimentation in inhomogeneous media. I. Dynamic density gradients from sedimenting co-solutes.

    Science.gov (United States)

    Schuck, Peter

    2004-03-01

    Macromolecular sedimentation in inhomogeneous media is of great practical importance. Dynamic density gradients have a long tradition in analytical ultracentrifugation, and are frequently used in preparative ultracentrifugation. In this paper, a new theoretical model for sedimentation in inhomogeneous media is presented, based on finite element solutions of the Lamm equation with spatial and temporal variation of the local solvent density and viscosity. It is applied to macromolecular sedimentation in the presence of a dynamic density gradient formed by the sedimentation of a co-solute at high concentration. It is implemented in the software SEDFIT for the analysis of experimental macromolecular concentration distributions. The model agrees well with the measured sedimentation profiles of a protein in a dynamic cesium chloride gradient, and may provide a measure for the effects of hydration or preferential solvation parameters. General features of protein sedimentation in dynamic density gradients are described.

  13. Aquatic sediments

    International Nuclear Information System (INIS)

    Bonner, J.S.; Autenrieth, R.L.; Schreiber, L.

    1990-01-01

    The authors present a literature review concerning sediment properties, interactions, and conditions. Topics of discussion include the following: biological activity and toxicity; nutrients; metals; organic compounds; dredging; radionuclides; oxygen demand and organic carbon; mathematical modeling; sediment transport and suspension; and paleolimnology

  14. System Convergence in Transport Modelling

    DEFF Research Database (Denmark)

    Rich, Jeppe; Nielsen, Otto Anker; Cantarella, Guilio E.

    2010-01-01

    A fundamental premise of most applied transport models is the existence and uniqueness of an equilibrium solution that balances demand x(t) and supply t(x). The demand consists of the people that travel in the transport system and on the defined network, whereas the supply consists of the resulting...... level-of-service attributes (e.g., travel time and cost) offered to travellers. An important source of complexity is the congestion, which causes increasing demand to affect travel time in a non-linear way. Transport models most often involve separate models for traffic assignment and demand modelling...

  15. Assessing saltmarsh resilience to sea-level rise by examining sediment transport trends in the Great Marsh, MA.

    Science.gov (United States)

    Hughes, Z. J.; Georgiou, I. Y.; Gaweesh, A.; Hanegan, K.; FitzGerald, D.; Hein, C. J.

    2017-12-01

    Under accelerating sea-level rise (SLR), marshes are vulnerable to increased inundation, dependent on their ability to accrete vertically or expand into upland areas. Accretion is a function of organic and inorganic contributions from plant biomass and suspended sediment deposition, respectively. Along the east coast of the US, present rates of SLR are higher than they have been for over 1000 years and are expected to increase in the near future. To predict the resilience of saltmarshes, we urgently need improved understanding of spatial patterns of sediment transport and deposition within these systems. This study examines time-series of suspended sediment concentration and flow collected using ADCP-OBS units, deployed throughout the Great Marsh System. We compare the data to model results and observations of short and long term deposition throughout the system. Field observations show that tidal amplitude and phase vary throughout the Great Marsh. Tidal asymmetry increases inland from the estuary mouth, and the maximum phase lag is 2 hours. This effect is strongest during low slack tide; with a delay of only 30-45 minutes at high tide. Tidal velocities exhibit strong asymmetry, reflected in pulses of sediment movement. Sediment transport initiates at mid ebb, peaking 1.5-2.5 hours later, decreasing through low slack tide for 7-9 hours until high slack tide. The results have broad implications for the potential input of inorganic sediment to the marsh platform. Results from a validated Delft3D model reproduce field observations and expand spatial sediment transport trends. We experiment by releasing sediment in different parts of the estuary, mimicking marsh edge or tidal flat erosion, and tracking mud and sand transport trajectories. Sands remains proximal to the erosion site, whereas mud is more mobile and travels farther, reaching the inlet within days of erosion. Longer simulations suggest that despite higher mobility, muds remain mostly in the channels and

  16. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    Science.gov (United States)

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  17. Suspended sediment transport trough a large fluvial-tidal channel network

    Science.gov (United States)

    Wright, Scott A.; Morgan-King, Tara L.

    2015-01-01

    The confluence of the Sacramento and San Joaquin Rivers, CA, forms a large network of interconnected channels, referred to as the Sacramento-San Joaquin Delta (the Delta). The Delta comprises the transition zone from the fluvial influences of the upstream rivers and tidal influences of San Francisco Bay downstream. Formerly an extensive tidal marsh, the hydrodynamics and geomorphology of Delta have been substantially modified by humans to support agriculture, navigation, and water supply. These modifications, including construction of new channels, diking and draining of tidal wetlands, dredging of navigation channels, and the operation of large pumping facilities for distribution of freshwater from the Delta to other parts of the state, have had a dramatic impact on the physical and ecological processes within the Delta. To better understand the current physical processes, and their linkages to ecological processes, the USGS maintains an extensive network of flow, sediment, and water quality gages in the Delta. Flow gaging is accomplished through use of the index-velocity method, and sediment monitoring uses turbidity as a surrogate for suspended-sediment concentration. Herein, we present analyses of the transport and dispersal of suspended sediment through the complex network of channels in the Delta. The primary source of sediment to the Delta is the Sacramento River, which delivers pulses of sediment primarily during winter and spring runoff events. Upon reaching the Delta, the sediment pulses move through the fluvial-tidal transition while also encountering numerous channel junctions as the Sacramento River branches into several distributary channels. The monitoring network allows us to track these pulses through the network and document the dominant transport pathways for suspended sediment. Further, the flow gaging allows for an assessment of the relative effects of advection (the fluvial signal) and dispersion (from the tides) on the sediment pulses as they

  18. Transport and deposition of plutonium in the ocean: Evidence from Gulf of Mexico sediments

    International Nuclear Information System (INIS)

    Scott, M.R.; Salter, P.F.; Halverson, J.E.

    1983-01-01

    A study of sediments in the Gulf of Mexico shows dramatic gradients in Pu content and isotope ratios from the continental shelf to the Sigsbee Abyssal Plain. In terms of predicted direct fallout inventory of Pu, one shelf core contains 745% of the predicted inventory, while abyssal plain sediments contain only 15-20% of the predicted value. Absolute Pu concentrations of shelf sediments are also conspicuously high, up to 110 dpm/kg, compared to 13.5 dpm/kg in Mississippi River suspended sediment. There is no evidence of Pu remobilization in Gulf of Mexico shelf sediments, based on comparison of Pu profiles with Mn/Al and Fe/Al profiles. Horizontal transport of fallout nuclides from the open ocean to removal sites in ocean margin sediments is concluded to be the source of both the high concentrations and high inventories of Pu reported here. The shelf sediments show 240 Pu/ 239 Pu ratios close to 0.179, the average stratospheric fallout value, but the ratios decrease progressively across the Gulf to low values of 0.06 in abyssal plain sediments. The source of low-ratio Pu in deep-water sediments may be debris from low yield tests transported in the troposphere. Alternatively, it may represent a fraction of the Pu from global stratospheric fallout which has been separated in the water column from the remainder of the Pu in the ocean. In either case, the low-ratio material must have been removed rapidly to the sea floor where it composes a major fraction of the Pu in abyssal plain sediments. Pu delivered by global atmospheric fallout from the stratosphere has apparently remained for the most part in the water or has been transported horizontally and removed into shallow-water sediments. (orig.)

  19. Sediment transport off Bangladesh: the power of tropical cyclones recorded in a submarine canyon

    Science.gov (United States)

    Meyer, I.; Kudrass, H.; Palamenghi, L.

    2011-12-01

    Marine sediments offshore Bangladesh are mainly supplied by the Ganges-Brahmaputra river system and are accumulated on the shelf of Bangladesh. The average sediment discharge of the world's biggest river system is estimated to be 0.8-1 billion tons per year. The shallow shelf is cut by a steep and up to 1000 m deep anaerobic canyon, called the "Swatch of No Ground", which acts as a sediment trap. An extremely high annual sedimentation flux of 20-45 cm was determined for the last 50 years by 137Cs and 210Pb measurements. In order to investigate the sediment transport in the Bay of Bengal a marine sediment core was taken from the mid-part of the Swatch of No Ground (21°18N/89°34E) and analyzed for element composition and grain-size distributions. Results show a sequence of graded fine-sand-silt-clay layers. These sequences can be directly related to the historical record of tropical storms, which move across the northern Bay of Bengal during pre- and post-monsoon flood peak and mobilize huge amounts of the shallow marine and coastal sediments into turbid hyperpycnal water masses. Due to the anti-clockwise rotation of the cyclones and their northward path the main transport direction is westward. The coarse grained sediment, remobilized by storm waves, is supported by cyclone-induced currents toward the canyon while the fine grained fraction follows afterward supported by the storm swell plus the semi-diurnal tidal component. Despite the high riverine input the amount of sediment mobilized during normal weather conditions is minimal compared to the sediment mobilized by the cyclonic high-energy input. Similar cyclone-induced sediment transport probably also governs erosion and deposition in most tropical shelf areas affected by the monsoon regime.

  20. Discrete element modelling of sediment falling in water.

    Science.gov (United States)

    Wang, Dong; Ho-Minh, Dao; Tan, Danielle S

    2016-11-01

    The Discrete Element Method (DEM) is a discrete, particle-based method commonly used in studies involving granular media, e.g. sediment transport, and geomechanics. It is heavily dependent on particle properties, and one important component is the force model, which relates the relative positions and velocities of the simulated particles to the forces they experience. In this paper we model a collection of lightly compacted granular material, released at a short distance above a flat base in a quiescent fluid --similar to the process whereby sediment tailings are released back into the sea during nodule harvesting. We employ different typical force models, and consider how their varying components affect the simulated outcome. The results are compared with a physical experiment of similar dimensions. We find that a realistic simulation is achieved when the force model considers the local solid fraction in the drag force, and incorporates the hydrodynamic effect of neighbouring particles. The added mass effect increases the accuracy of the outcome, but does not contribute significantly in a qualitative sense.

  1. Fluid dynamics, sediment transport and turbulent mixing at large confluences of the Amazon River

    Science.gov (United States)

    Trevethan, Mark; Gualtieri, Carlo; Filizola, Naziano; Ianniruberto, Marco

    2014-05-01

    Negro and Rio Solimões. The primary objective of this study is to develop a conceptual model for flow dynamics and sediment transport about such large confluences through analysis of field data, to assist with general objectives of the Clim-Amazon Project and improve general understanding of large confluence dynamics. While another objective is to apply CFD methods based on field measurements to improve the understanding of the dynamical processes that determine water quality parameters and sediment transport, mixing and accumulation at the confluences of large rivers such as the Amazon River. Therefore the main focus of this presentation will be the proposed field methodology for collecting hydrodynamic, sediment transport, water quality and bathymetric data about these large confluences within the study region of the Amazon River. As well as how the data collected during these field measurements will be analysed and used to develop conceptual and numerical models of such large confluences.

  2. Sources of suspended-sediment flux in streams of the chesapeake bay watershed: A regional application of the sparrow model

    Science.gov (United States)

    Brakebill, J.W.; Ator, S.W.; Schwarz, G.E.

    2010-01-01

    We describe the sources and transport of fluvial suspended sediment in nontidal streams of the Chesapeake Bay watershed and vicinity. We applied SPAtially Referenced Regressions on Watershed attributes, which spatially correlates estimated mean annual flux of suspended sediment in nontidal streams with sources of suspended sediment and transport factors. According to our model, urban development generates on average the greatest amount of suspended sediment per unit area (3,928 Mg/km2/year), although agriculture is much more widespread and is the greatest overall source of suspended sediment (57 Mg/km2/year). Factors affecting sediment transport from uplands to streams include mean basin slope, reservoirs, physiography, and soil permeability. On average, 59% of upland suspended sediment generated is temporarily stored along large rivers draining the Coastal Plain or in reservoirs throughout the watershed. Applying erosion and sediment controls from agriculture and urban development in areas of the northern Piedmont close to the upper Bay, where the combined effects of watershed characteristics on sediment transport have the greatest influence may be most helpful in mitigating sedimentation in the bay and its tributaries. Stream restoration efforts addressing floodplain and bank stabilization and incision may be more effective in smaller, headwater streams outside of the Coastal Plain. ?? 2010 American Water Resources Association. No claim to original U.S. government works.

  3. The influence of sediment transport rate on the development of structure in gravel bed rivers

    Science.gov (United States)

    Ockelford, Annie; Rice, Steve; Powell, Mark; Reid, Ian; Nguyen, Thao; Tate, Nick; Wood, Jo

    2013-04-01

    Although adjustments of surface grain size are known to be strongly influenced by sediment transport rate little work has systematically explored how different transport rates can affect the development of surface structure in gravel bed rivers. Specifically, it has been well established that the transport of mixed sized sediments leads to the development of a coarser surface or armour layer which occurs over larger areas of the gravel bed. Armour layer development is known to moderate overall sediment transport rate as well as being extremely sensitive to changes in applied shear stress. However, during this armouring process a bed is created where, smaller gain scale changes, to the bed surface are also apparent such as the development of pebble clusters and imbricate structures. Although these smaller scale changes affect the overall surface grain size distribution very little their presence has the ability to significantly increase the surface stability and hence alter overall sediment transport rates. Consequently, the interplay between the moderation of transport rate as a function of surface coarsening at a larger scale and moderation of transport rate as a function of the development of structure on the bed surface at the smaller scale is complicated and warrants further investigation. During experiments a unimodal grain size distribution (σg = 1.30, D50 = 8.8mm) was exposed to 3 different levels of constant discharge that produced sediment transport conditions ranging from marginal transport to conditions approaching full mobility of all size fractions. Sediment was re-circulated during the experiments surface grain size distribution bed load and fractional transport rates were measured at a high temporal resolution such that the time evolution of the beds could be fully described. Discussion concentrates on analysing the effects of the evolving bed condition sediment transport rate (capacity) and transported grain size (competence). The outcome of this

  4. Long-term environmental and health implications of morphological change and sediment transport with respect to contaminants

    Science.gov (United States)

    Sneddon, Christopher; Copplestone, David; Tyler, Andrew; Hunter, Peter; Smith, Nick

    2014-05-01

    The EPSRC-funded Adaptation and Resilience of Coastal Energy Supply (ARCoES) project encompasses four research strands, involving 14 institutions and six PhD studentships. ARCoES aims to determine the threats posed to future energy generation and the distribution network by flooding and erosion, changing patterns of coastal sedimentation, water temperature and the distribution of plants and animals in the coastal zone. Whilst this research has direct benefits for the operation of coastal power stations, ARCoES aims to have a wider stakeholder engagement through assessing how the resilience of coastal communities may be altered by five hundred years of coastal evolution. Coastal evolution will have substantial implications for the energy sector of the North West of England as former waste storage sites are eroded and remobilised within the intertidal environment. The current intertidal environmental stores of radioactivity will also experience reworking as ocean chemistry changes and saltmarsh chronologies are reworked in response to rising sea levels. There is a duel requirement to understand mass sediment movement along the North West coast of England as understanding the sediment transport dynamics is key to modelling long term coastal change and understanding how the environmental store of radioactivity will be reworked. The University of Stirling is researching the long-term environmental and health implications of remobilisation and transport of contaminated sediments around the UK coastline. Using a synergy of hyperspectral and topographic information the mobilisation of sediment bound contaminants within the coastal environment will be investigated. Potential hazards posed by contaminants are determined by a set of environmental impact test criteria which evaluate the bio-accessibility and ionising dose of contaminants. These test criteria will be used to comment on the likely environmental impact of modelled sediment transport and anticipated changes in

  5. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  6. Probabilistic transport models for fusion

    International Nuclear Information System (INIS)

    Milligen, B.Ph. van; Carreras, B.A.; Lynch, V.E.; Sanchez, R.

    2005-01-01

    A generalization of diffusive (Fickian) transport is considered, in which particle motion is described by probability distributions. We design a simple model that includes a critical mechanism to switch between two transport channels, and show that it exhibits various interesting characteristics, suggesting that the ideas of probabilistic transport might provide a framework for the description of a range of unusual transport phenomena observed in fusion plasmas. The model produces power degradation and profile consistency, as well as a scaling of the confinement time with system size reminiscent of the gyro-Bohm/Bohm scalings observed in fusion plasmas, and rapid propagation of disturbances. In the present work we show how this model may also produce on-axis peaking of the profiles with off-axis fuelling. It is important to note that the fluid limit of a simple model like this, characterized by two transport channels, does not correspond to the usual (Fickian) transport models commonly used for modelling transport in fusion plasmas, and behaves in a fundamentally different way. (author)

  7. Transport and fate of viruses in sediment and stormwater from a Managed Aquifer Recharge site

    Science.gov (United States)

    Sasidharan, Salini; Bradford, Scott A.; Šimůnek, Jiří; Torkzaban, Saeed; Vanderzalm, Joanne

    2017-12-01

    Enteric viruses are one of the major concerns in water reclamation and reuse at Managed Aquifer Recharge (MAR) sites. In this study, the transport and fate of bacteriophages MS2, PRD1, and ΦX174 were studied in sediment and stormwater (SW) collected from a MAR site in Parafield, Australia. Column experiments were conducted using SW, stormwater in equilibrium with the aquifer sediment (EQ-SW), and two pore-water velocities (1 and 5 m day-1) to encompass expected behavior at the MAR site. The aquifer sediment removed >92.3% of these viruses under all of the considered MAR conditions. However, much greater virus removal (4.6 logs) occurred at the lower pore-water velocity and in EQ-SW that had a higher ionic strength and Ca2+ concentration. Virus removal was greatest for MS2, followed by PRD1, and then ΦX174 for a given physicochemical condition. The vast majority of the attached viruses were irreversibly attached or inactivated on the solid phase, and injection of Milli-Q water or beef extract at pH = 10 only mobilized a small fraction of attached viruses (Virus breakthrough curves (BTCs) were successfully simulated using an advective-dispersive model that accounted for rates of attachment (katt), detachment (kdet), irreversible attachment or solid phase inactivation (μs), and blocking. Existing MAR guidelines only consider the removal of viruses via liquid phase inactivation (μl). However, our results indicated that katt > μs > kdet > μl, and katt was several orders of magnitude greater than μl. Therefore, current microbial risk assessment methods in the MAR guideline may be overly conservative in some instances. Interestingly, virus BTCs exhibited blocking behavior and the calculated solid surface area that contributed to the attachment was very small. Additional research is therefore warranted to study the potential influence of blocking on virus transport and potential implications for MAR guidelines.

  8. Residual fluxes and suspended sediment transport in the lower reaches of Muvattupuzha River, southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Revichandran, C.; Balachandran, K.K.; Xavier, J.K.; Rejendran, N.C.

    Spatial and seasonal variation of different physical processes governing the transport of salt and sediment of the Muvattupuzha River, in Kerala, India are discussed. Salt and suspended sediment due to tidal pumping was directed upstream, salt...

  9. Sediment and Fecal Indicator Bacteria Loading in a Mixed Land Use Watershed: Contributions from Suspended and Bed Load Transport

    Science.gov (United States)

    Water quality studies that quantify sediment and fecal bacteria loading commonly focus on suspended contaminants transported during high flows. Fecal contaminants in bed sediments are typically ignored and need to be considered because of their potential to increase pathogen load...

  10. Dam-break flows with resistance as agents of sediment transport

    Science.gov (United States)

    Emmett, M.; Moodie, T. B.

    2008-08-01

    When a semi-infinite body of fluid initially at rest behind a vertical retaining wall is suddenly released by the removal of the barrier, the resulting flow over either a horizontal or a sloping bed is referred to as a dam-break flow. When resistance to the flow is neglected, the exact solution in the case of a horizontal bed with or without "tail water" may be obtained on the basis of shallow-water theory via the method of characteristics, and the results are well known. The inclusion of the effects of resistance in the form of basal friction that are needed in order to bring the mathematical solutions into closer harmony with the experimental results modifies the wave speed and flow profile near the head of the wave significantly and the simple exact solution of the shallow-water equations can no longer be employed as a reasonable description of the flow field. It is our intention here to study dam-break flows as agents of sediment transport taking into account basal friction and the attendant changes in depth profiles near the head, as well as the effects of particle concentrations on the flow dynamics including both erosion and deposition of particles arising through the interaction of the flow with the bed material. We shall consider shallow flows over dry beds and investigate the effects of changes in the depositional and erosional models employed as well as in the nature of the drag acting on the flow. These models offer some insight into the transport of sediment in the worst case scenario of complete and instantaneous collapse of a dam. They are also anticipated to provide information on other sheet flow events where particle transport plays a significant role in the flow dynamics.

  11. Coupling climate conditions, sediment sources and sediment transport in an alpine basin

    Science.gov (United States)

    Rainato, Riccardo; Picco, Lorenzo; Cavalli, Marco; Mao, Luca; Neverman, Andrew J.; Tarolli, Paolo

    2017-04-01

    In a fluvial system, mountain basins control sediment export to the lowland rivers. Hence, the analysis of the erosion processes and sediment delivery patterns that act in mountain basins is important. Several studies have investigated the alterations triggered by recent climatic change on the hydrological regime, whilst only a few works have explored the consequences on the sediment dynamics. Here we combined and analyzed the quasi-unique dataset of climatic conditions, landscape response, and sediment export produced, since 1986 in the Rio Cordon basin (5 km2, Eastern Italian Alps) to examine the sediment delivery processes occurring in the last three decades. The temperature, precipitation, and fluvial sediment fluxes in the basin were analyzed using continuous measurement executed by a permanent monitoring station, while the landscape evolution was investigated by three sediment source inventories established in 1994, 2006, and 2016. Thus, the analysis focused on the trends exhibited during the periods 1986-1993, 1994-2006, and 2007-2015. In terms of climatic conditions, three distinct climate forcing stages can be observed in the periods analyzed: a relatively stable phase (1986-1993), a period characterized by temperature and rainfall fluctuations (1994-2006), and a more recent warmer and wetter phase (2007-2015). In the 1986-1993 period, the fluvial sediment fluxes reflected the stable trend exhibited by the climatic conditions. In the subsequent 1994-2006 period, the average temperature and precipitation were in line with that previously observed, although with higher interannual variability. Notwithstanding the climate forcing and the occurrence of high magnitude/low frequency floods that strongly influenced the source areas, between 1994 and 2006 the Rio Cordon basin showed relatively limited erosion activity. Hence, the climatic conditions and the landscape response can only partially explain the strong increase of sediment export recorded in the 1994

  12. Effect of hydraulic parameters on sediment transport capacity in overland flow over erodible beds

    NARCIS (Netherlands)

    Ali, M.; Sterk, G.; Seeger, K.M.; Boersema, M.P.; Peters, P.D.

    2012-01-01

    Sediment transport is an important component of the soil erosion process, which depends on several hydraulic parameters like unit discharge, mean flow velocity, and slope gradient. In most of the previous studies, the impact of these hydraulic parameters on transport capacity was studied for

  13. Review of the Field-Data Base for Longshore Sediment Transport

    CSIR Research Space (South Africa)

    Schoonees, JS

    1993-02-01

    Full Text Available A literature search was undertaken to collect field data on longshore sediment transport. This yielded a large number of data sets (273 points for bulk transport rates) from a variety of sites around the world. Data are especially lacking...

  14. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    Science.gov (United States)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  15. Climate change and the impact of increased rainfall variability on sediment transport and catchment scale water quality

    Science.gov (United States)

    Hancock, G. R.; Willgoose, G. R.; Cohen, S.

    2009-12-01

    Recently there has been recognition that changing climate will affect rainfall and storm patterns with research directed to examine how the global hydrological cycle will respond to climate change. This study investigates the effect of different rainfall patterns on erosion and resultant water quality for a well studied tropical monsoonal catchment that is undisturbed by Europeans in the Northern Territory, Australia. Water quality has a large affect on a range of aquatic flora and fauna and a significant change in sediment could have impacts on the aquatic ecosystems. There have been several studies of the effect of climate change on rainfall patterns in the study area with projections indicating a significant increase in storm activity. Therefore it is important that the impact of this variability be assessed in terms of catchment hydrology, sediment transport and water quality. Here a numerical model of erosion and hydrology (CAESAR) is used to assess several different rainfall scenarios over a 1000 year modelled period. The results show that that increased rainfall amount and intensity increases sediment transport rates but predicted water quality was variable and non-linear but within the range of measured field data for the catchment and region. Therefore an assessment of sediment transport and water quality is a significant and complex issue that requires further understandings of the role of biophysical feedbacks such as vegetation as well as the role of humans in managing landscapes (i.e. controlled and uncontrolled fire). The study provides a robust methodology for assessing the impact of enhanced climate variability on sediment transport and water quality.

  16. Deposition and flux of sediment from the Po River, Italy: An idealized and wintertime numerical modeling study

    Science.gov (United States)

    Bever, A.J.; Harris, C.K.; Sherwood, C.R.; Signell, R.P.

    2009-01-01

    Recent studies of sediment dynamics and clinoform development in the northern Adriatic Sea focused on winter 2002-2003 and provided the data and motivation for development of a detailed sediment-transport model for the area near the Po River delta. We used both idealized test cases and more realistic simulations to improve our understanding of seasonal sediment dynamics there. We also investigated the relationship between physical processes and the observed depositional products; e.g. the accumulation of sediment very near the Po River distributary mouths. Sediment transport near the Po River was evaluated using a three-dimensional ocean model coupled to sediment-transport calculations that included wave- and current-induced resuspension, suspended-sediment transport, multiple grain classes, and fluvial input from the Po River. High-resolution estimates from available meteorological and wave models were used to specify wind, wave, and meteorological forcing. Model results indicated that more than half of the discharged sediment remained within 15??km of the Po River distributary mouths, even after two months of intensive reworking by winter storms. During floods of the Po River, transport in the middle to upper water column dominated sediment fluxes. Otherwise, sediment fluxes from the subaqueous portion of the delta were confined to the bottom few meters of the water column, and correlated with increases in current speed and wave energy. Spatial and temporal variation in wind velocities determined depositional patterns and the directions of sediment transport. Northeasterly Bora winds produced relatively more eastward transport, while southwesterly Sirocco winds generated fluxes towards both the north and the south. Eastward transport accounted for the majority of the sediment exported from the subaqueous delta, most likely due to the frequent occurrence of Bora conditions. Progradation of the Po River delta into the Adriatic Sea may restrict the formation of the

  17. Anthropogenic disturbance on sediment transport processes in the tidal power plant

    Science.gov (United States)

    Ha, Ho Kyung; Kim, Jong-wook; Woo, Seung-Buhm; Kwon, Hyo Keun

    2017-04-01

    A series of in-situ mooring observations have been conducted to investigate the anthropogenic disturbance of sediment transport processes in the Sihwa tidal power plant (TPP). The mooring data show that the profiels of velocity and suspended sediment concentration (SSC) were significantly disturbed over the various time scales. On the short-term (flood-ebb) time scale, resuspension of bottom sediment is mainly controlled by the strong jet-flow (>2 m/s) and anticlockwise rotating vortex associated with the artificial discharge. During ebb phase, the strong flow resulted in suspension of high-concentration near-bed sediment and seaward transport of the suspended sediment. After turning to flood phase, the vortex produced secondary SSC peaks, transporting the suspended sediment toward the TPP. The most active suspension of bottom sediment predominantly occurred during 1-2 hr immediately after the start of artificial discharge. On the fortnightly (spring-neap) time scale, SSC during spring tide was approximately 2-5 times higher than that during neap tide. During the presentation, it will be discussed how the periodic artificial discharge can disturb the responses of SSC in the TPP.

  18. Morphodynamic Modeling of the Lower Yellow River, China: Flux (Equilibrium) Form or Entrainment (Nonequilibrium) Form of Sediment Mass Conservation?

    Science.gov (United States)

    An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.

    2017-12-01

    Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the

  19. Sediment Transport, Complex Topography, and Hydrokinetic Turbines: Bedform Dynamics, Local Scour, and the Effect on Turbine Performance.

    Science.gov (United States)

    Guala, M.; Hill, C.; Kozarek, J. L.; Sotiropoulos, F.

    2015-12-01

    Multi-scale experiments on the interactions between axial-flow marine hydrokinetic (MHK) turbines, sediment transport and complex channel topography were performed at St. Anthony Falls Laboratory (SAFL), University of Minnesota. Model axial-flow three-bladed turbines (rotor diameters, dT = 0.15m and 0.5m) were installed in open channel flumes with both erodible and non-erodible substrates. In erodible channels, device-induced local scour was monitored over several hydraulic conditions (clear water vs. live bedload transport) and material sizes. Synchronous velocity, bed elevation and turbine performance measurements provide an indication into the effect channel topography has on device performance. A novel data acquisition imaging system provided methods for monitoring the dynamics of bedform transport as they approached and migrated past an operating axial-flow turbine. Experiments were also performed in a realistic meandering outdoor research channel with active sediment transport to investigate MHK turbine interactions with bedform migration and turbulent flow in asymmetric channels, providing new insight into turbine-sediment interactions and turbine wake behavior in curving channels. Results provide the foundation for investigating advanced turbine control strategies for optimal power production in non-stationary environments, while also providing robust data for computational model validation enabling further investigations into the interactions between energy conversion devices and the physical environment.

  20. Constraining denitrification in permeable wave-influenced marine sediment using linked hydrodynamic and biogeochemical modeling

    Science.gov (United States)

    Cardenas, M. B.; Cook, P. L.; Jiang, H.; Traykovski, P.

    2009-12-01

    Permeable marine sediment are ubiquitous complex environments, the biogeochemistry of which are strongly coupled to hydrodynamic process above and within the sediment. The biogeochemical processes in these settings have global scale implications but are poorly understood and challenging to quantify. We present the first simulation of linked turbulent oscillatory flow of the water column, porous media flow, and solute transport in the sediment with oxygen consumption, nitrification, denitrification, and ammonification, informed by field- and/ or experimentally-derived parameters. Nitrification and denitrification were significantly impacted by advective pore water exchange between the sediment and the water column. Denitrification rates showed a maximum at intermediate permeabilities, and were negligible at high permeabilities. Denitrification rates were low, with only ~15% of total N mineralized being denitrified, although this may be increased temporarily following sediment resuspension events. Our model-estimated denitrification rates are about half of previous estimates which do not consider solute advection through the sediment. Given the critical role of sediment permeability, topography, and bottom currents in controlling denitrification rates, an improved knowledge of these factors is vital for obtaining better estimates of denitrification taking place on shelf sediment. Broad application of our approach to myriad conditions will lead to improved predictive capacity, better informed experimental and sampling design, and more holistic understanding of the biogeochemistry of permeable sediment.

  1. Estimating reservoir sedimentation using bathymetric differencing and hydrologic modeling in data scarce Koga watershed, Upper Blue Nile

    Directory of Open Access Journals (Sweden)

    Demesew Alemaw Mhiret

    2016-12-01

    Full Text Available ABSTRACT Modeling sediment accumulation in constructed reservoirs is hampered by lack of historic sediment concentration data in developing countries. Existing models simulate sediment concentration using data generated from sediment rating curves usually defined as a power function of the form S = aQb This often results in residual errors that are not identically distributed throughout the range of stream flow values adding to uncertainty in sediment modeling practices. This research measure accumulated sediment in Koga dam in the upper Blue Nile Basin and use the result to validate a Soil and Water Assessment Tool (SWAT sediment model that uses sediment data from rating curves. Bathymetric differencing of the original and current storage digital elevation models (DEMs indicate that the sediment was accumulating at a rate of 5 ton/ha/year while a calibrated SWAT model resulted in 8.6 ton/ha/year. Given the complicated sediment transport processes that are not fully understood and comparable rates reported in recent studies these results are satisfactory. Keywords: Reservoir sedimentation, Koga reservoir, bathymetry

  2. Sources, Transport, and Storage of Sediment at Selected Sites in the Chesapeake Bay Watershed

    Science.gov (United States)

    Gellis, Allen C.; Hupp, Cliff R.; Pavich, Milan J.; Landwehr, Jurate M.; Banks, William S.L.; Hubbard, Bernard E.; Langland, Michael J.; Ritchie, Jerry C.; Reuter, Joanna M.

    2009-01-01

    The Chesapeake Bay Watershed covers 165,800 square kilometers and is supplied with water and sediment from five major physiographic provinces: Appalachian Plateau, Blue Ridge, Coastal Plain, Piedmont, and the Valley and Ridge. Suspended-sediment loads measured in the Chesapeake Bay Watershed showed that the Piedmont Physiographic Province has the highest rates of modern (20th Century) sediment yields, measured at U.S. Geological Survey streamflow-gaging stations, and the lowest rates of background or geologic rates of erosion (~10,000 years) measured with in situ beryllium-10. In the agricultural and urbanizing Little Conestoga Creek Watershed, a Piedmont watershed, sources of sediment using the 'sediment-fingerprinting' approach showed that streambanks were the most important source (63 percent), followed by cropland (37 percent). Cesium-137 inventories, which quantify erosion rates over a 40-year period, showed average cropland erosion of 19.39 megagrams per hectare per year in the Little Conestoga Creek Watershed. If this erosion rate is extrapolated to the 13 percent of the watershed that is in cropland, then cropland could contribute almost four times the measured suspended-sediment load transported out of the watershed (27,600 megagrams per hectare per year), indicating that much of the eroded sediment is being deposited in channel and upland storage. The Piedmont has had centuries of land-use change, from forest to agriculture, to suburban and urban areas, and in some areas, back to forest. These land-use changes mobilized a large percentage of sediment that was deposited in upland and channel storage, and behind thousands of mill dams. The effects of these land-use changes on erosion and sediment transport are still being observed today as stored sediment in streambanks is a source of sediment. Cropland is also an important source of sediment. The Coastal Plain Physiographic Province has had the lowest sediment yields in the 20th Century and with sandy

  3. Isotopic provenance analysis and terrane tectonics: a warning about sediment transport distances

    International Nuclear Information System (INIS)

    Bassett, K.N.

    1999-01-01

    Full text: In the last 10 years the field of provenance analysis has undergone a revolution with the development of single-crystal isotopic dating techniques, the most common being U/Pb zircon and 40Ar/39Ar techniques. These have allowed age determination of single crystals thus providing more detail about probable provenance of each individual grain rather than an averaged population of grains. The usefulness for resolving complex terrane accretion and translation histories was immediately obvious and there have been many studies in many different regions aimed at tracking terrane motions by provenance of individual grains upward through the stratigraphy of a basin. Recent research in the North American Cordilleran terranes and in the New Zealand Torlesse Superterrane show how widely used and powerful these provenance analysis techniques are. However, isotopic provenance analysis has often been presented as key information to resolve controversies around terrane translation histories with very little discussion of the context of sedimentary facies and sediment transport mechanisms. An example is the recent use of U/Pb detrital zircon ages as the supposedly controversy-ending evidence for the amount of lateral translation of the Insular Superterrane in British Columbia (Baja BC) (Mahoney et al., 1999). The zircon grains were separated from fine-grained turbidite deposits and could easily have been transported over very large distances by a variety of mechanisms; yet they were presented as definitively resolving the Baja BC controversy. Modern examples illustrate the problem of using the provenance of fine grained sediment to constrain terrane tectonics. Sediment in the tip of the Bengal submarine fan was transported ∼3000 km from source, first by fluvial processes then by sediment gravity flow in the submarine fan. The detrital isotopic ages of single grains are the same as the depositional ages indicating a very rapid unroofing and transport rate with minimal

  4. Predicting Coarse Sediment Transport from Patchy Beds in Ephemeral Channels

    Science.gov (United States)

    2012-04-01

    basin fill of Plio-Pleistocene plutonic or volcanic clasts approaching 900 m in thickness. Surficial ERDC/GSL TR-12-17 7 sediments were likely...flow velocity, D84 is grain size in which 84% of the channel bed grains are finer. The variable a is a channel shape factor defined as h R a D

  5. Influence of turbulence on bed load sediment transport

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Chua, L.; Cheng, N. S.

    2003-01-01

    -bed experiments and the ripple-covered-bed experiments. In the former case, the flow in the presence of the turbulence generator was adjusted so that the mean bed shear stress was the same as in the case without the turbulence generator in order to single out the effect of the external turbulence on the sediment...

  6. Mechanics of flow and sediment transport in delta distributary channels

    Science.gov (United States)

    Nelson, Jonathan M.; Kinzel, Paul J.; Duc Toan, Duong; Shimizu, Yasuyuki; McDonald, Richard R.

    2011-01-01

    Predicting the planform and dimensions of a channel downstream from a confluence of two smaller channels with known sediment and water supplies is a fundamental, well-studied problem in geomorphology and engineering. An analogous but less well understood problem is found

  7. Influence of basin connectivity on sediment source, transport, and storage within the Mkabela Basin, South Africa

    Directory of Open Access Journals (Sweden)

    J. R. Miller

    2013-02-01

    Full Text Available The management of sediment and other non-point source (NPS pollution has proven difficult, and requires a sound understanding of particle movement through the drainage system. The primary objective of this investigation was to obtain an understanding of NPS sediment source(s, transport, and storage within the Mkabela Basin, a representative agricultural catchment within the KwaZulu–Natal Midlands of eastern South Africa, by combining geomorphic, hydrologic and geochemical fingerprinting analyses.

    The Mkabela Basin can be subdivided into three distinct subcatchments that differ in their ability to transport and store sediment along the axial valley. Headwater (upper catchment areas are characterized by extensive wetlands that act as significant sediment sinks. Mid-catchment areas, characterized by higher relief and valley gradients, exhibit few wetlands, but rather are dominated by a combination of alluvial and bedrock channels that are conducive to sediment transport. The lower catchment exhibits a low-gradient alluvial channel that is boarded by extensive riparian wetlands that accumulate large quantities of sediment (and NPS pollutants.

    Fingerprinting studies suggest that silt- and clay-rich layers found within wetland and reservoir deposits of the upper and upper-mid subcatchments are derived from the erosion of fine-grained, valley bottom soils frequently utilized as vegetable fields. Coarser-grained deposits within these wetlands and reservoirs result from the erosion of sandier hillslope soils extensively utilized for sugar cane, during relatively high magnitude runoff events that are capable of transporting sand-sized sediment off the slopes. Thus, the source of sediment to the axial valley varies as a function of sediment size and runoff magnitude. Sediment export from upper to lower catchment areas was limited until the early 1990s, in part because the upper catchment wetlands were hydrologically disconnected from

  8. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    Science.gov (United States)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  9. Shifting sources and transport paths for the late Quaternary Escanaba Trough sediment fill (northeast Pacific)

    Science.gov (United States)

    Zuffa, G.G.; De Rosa, R.; Normark, W.R.

    1997-01-01

    Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.

  10. Unusual Sediment Transportation Processes Under Low Pressure Environments and Implications For Gullies and Recurring Slope Lineae (RSL)

    Science.gov (United States)

    Raack, J.; Herny, C.; Conway, S. J.; Balme, M. R.; Carpy, S.; Patel, M.

    2017-12-01

    Recently and presently active mass wasting features such as gullies and recurring slope lineae (RSL) are common on the surface of Mars, but their origin and triggering mechanisms are under intense debate. While several active mass wasting features have been linked to sublimation of CO2ice, dry granular flows (avalanches), or a combination of both effects, others have been more closely linked to liquid water or briny outflows (e.g. for RSL). However, liquid water on the surface of Mars is unstable under present-day low pressures and surface temperatures. Nevertheless, numerical modeling and remote sensing data have shown that maximum surface temperatures can exceed the frost point of water and that liquid water could exist on the surface of actual Mars in a transient state. But to explain the observed spatial extent of RSL and recent modification of gullies, it is estimated that relatively large amounts of liquid water are necessary. It is proving challenging to generate such quantities from the atmosphere. In this contribution we explore the potential effects of boiling water (boiling occurs at martian pressures slightly above the frost point of 273 K) on sediment transport. We will present the outcomes of a series of experiments under low surface and water temperatures (between 278 and 297 K, analogous to surface temperatures observed near RSL) and low pressures (between 8 and 11 mbar). We simulate sediment transport by boiling liquid water over a sloping bed of unconsolidated sediment. Our results reveal a suite of unusual and very reactive sediment transportation processes, which are not produced under terrestrial pressures. We will discuss the impact of these unusual sediment transport processes on estimates of water budgets for active mass wasting processes.

  11. Sediment processes and mercury transport in a frozen freshwater fluvial lake (Lake St. Louis, QC, Canada).

    Science.gov (United States)

    Canário, João; Poissant, Laurier; O'Driscoll, Nelson; Vale, Carlos; Pilote, Martin; Lean, David

    2009-04-01

    An open-bottom and a closed-bottom mesocosm were developed to investigate the release of mercury from sediments to the water column in a frozen freshwater lake. The mesoscosms were deployed in a hole in the ice and particulate mercury (Hg(P)) and total dissolved mercury (TDHg) were measured in sediments and in water column vertical profiles. In addition, dissolved gaseous mercury (DGM) in water and mercury water/airflux were quantified. Concentrations of TDHg, DGM, and mercury flux were all higher in the open-bottom mesocosm than in the closed-bottom mesocosm. In this paper we focus on the molecular diffusion of mercury from the sediment in comparison with the TDHg accumulation in the water column. We conclude that the molecular diffusion and sediment resuspension play a minor role in mercury release from sediments suggesting that solute release during ebullition is an important transport process for mercury in the lake.

  12. Managing erosion, sediment transport and water quality in drained peatland catchments

    OpenAIRE

    Marttila, H. (Hannu)

    2011-01-01

    Abstract Peatland drainage changes catchment conditions and increases the transport of suspended solids (SS) and nutrients. New knowledge and management methods are needed to reduce SS loading from these areas. This thesis examines sediment delivery and erosion processes in a number of peatland drainage areas and catchments in order to determine the effects of drainage on sediment and erosion dynamics and mechanics. Results from studies performed in peat mining, peatland forestry and distu...

  13. Inferring tidal wetland stability from channel sediment fluxes: Observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-12-01

    and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.

  14. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model

    Science.gov (United States)

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-01-01

    Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and

  15. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  16. Storm-driven delivery of sediment to the continental slope: Numerical modeling for the northern Gulf of Mexico

    Science.gov (United States)

    Harris, C. K.; Kniskern, T. A.; Arango, H.

    2016-02-01

    The supply of sediment from the continental shelf to deeper waters is of critical importance for building continental margin repositories of sediment, and may also factor into episodic events on the continental slope such as turbidity currents and slope failures. While numerical sediment transport models have been developed for coastal and continental shelf areas, they have not often been used to infer sediment delivery to deeper waters. A three-dimensional coupled hydrodynamic - suspended sediment transport model for the northern Gulf of Mexico has been developed and run to evaluate the types of conditions that are associated with delivery of suspended sediment to the continental slope. Accounting for sediment delivery by riverine plumes and for sediment resuspension by energetic waves and currents, the sediment transport calculations were implemented within the Regional Ocean Modeling System (ROMS). The model domain represents the northern Gulf of Mexico shelf and slope including the Mississippi birdfoot delta and the Mississippi and DeSoto Canyons. To investigate the role of storms in driving down-slope sediment fluxes, model runs that encompassed fall, 2007 through late summer, 2008 the summer and fall of 2008 were analyzed. This time period included several winter storms, and the passage of two hurricanes (Ike and Gustav) over the study area. Preliminary results indicated that sediment delivery to the continental slope was triggered by the passage of these storm events, and focused at certain locations, such as submarine canyons. Additionally, a climatological analysis indicates that storm track influences both the wind-driven currents and wave energy on the shelf, and as such plays an important role in determining which storms trigger delivery of suspended continental shelf sediment to the adjacent slope.

  17. Flow and sediment transport induced by a plunging solitary wave

    DEFF Research Database (Denmark)

    Sumer, B. Mutlu; Sen, M.Berke; Karagali, Ioanna

    2011-01-01

    affected, by as much as a factor of 2, in the runup and hydraulic jump stages. The pore-water pressure measurements showed that the sediment at (or near) the surface of the bed experiences upward-directed pressure gradient forces during the downrush phase. The magnitude of this force can reach values......Two parallel experiments involving the evolution and runup of plunging solitary waves on a sloping bed were conducted: (1) a rigid-bed experiment, allowing direct (hot film) measurements of bed shear stresses, and (2) a sediment-bed experiment, allowing for the measurement of pore-water pressures...... is explained qualitatively in terms of the measured bed shear stress and the pressure gradient forces....

  18. Temporal dynamics of suspended sediment transport in a glacierized Andean basin

    Science.gov (United States)

    Mao, Luca; Carrillo, Ricardo

    2017-06-01

    Suspended sediment transport can affect water quality and aquatic ecosystems, and its quantification is of the highest importance for river and watershed management. Suspended sediment concentration (SSC) and discharge were measured at two locations in the Estero Morales, a Chilean Andean stream draining a small basin (27 km2) hosting glacierized areas of about 1.8 km2. Approximately half of the suspended sediment yield (470 t year- 1 km- 2) was transported during the snowmelt period and half during glacier melting. The hysteresis patterns between discharge and SSC were calculated for each daily hydrograph and were analysed to shed light on the location and activity of different sediment sources at the basin scale. During snowmelt, an unlimited supply of fine sediments is provided in the lower and middle part of the basin and hysteresis patterns tend to be clockwise as the peaks in SSC precede the peak of discharge in daily hydrographs. Instead, during glacier melting the source of fine sediments is the proglacial area, producing counterclockwise hysteresis. It is suggested that the analysis of hysteretic patterns over time provides a simple concept for interpreting variability of location and activity of sediment sources at the basin scale.

  19. Transport of Gas and Solutes in Permeable Estuarine Sediments

    Science.gov (United States)

    2010-09-30

    the orientation of the core. − Mapping of the spatial and temporal distribution of high sedimentary photosynthetic production and oxygen...used to map areas of benthic photosynthetic oxygen production . − Determination of gas content, distribution and migration in the surface sediment...generated by microalgae in the surface layer of submerged sand can be detected non-invasively with our acoustic method. The working hypothesis was that our

  20. Modeling suspended sediment discharge from the Waipaoa River system, New Zealand : The last 3000 years

    NARCIS (Netherlands)

    Kettner, A.J.; Gomez, B.; Syvitski, J.P.M.

    2007-01-01

    HydroTrend, a hydrologic-transport model, is used to simulate the water and suspended sediment discharge of the Waipaoa River system over the last 3 Kyr, a time period in which a well-documented sequence of natural events and anthropogenic activities that profoundly impacted drainage basin processes

  1. 3D CFD Modeling of Local Scouring, Bed Armoring and Sediment Deposition

    Directory of Open Access Journals (Sweden)

    Gergely T. Török

    2017-01-01

    Full Text Available 3D numerical models are increasingly used to simulate flow, sediment transport and morphological changes of rivers. For the simulation of bedload transport, the numerical flow model is generally coupled with an empirical sediment transport model. The application range of the most widely used empirical models is, however, often limited in terms of hydraulic and sedimentological features and therefore the numerical model can hardly be applied to complex situations where different kinds of morphological processes take place at the same time, such as local scouring, bed armoring and aggradation of finer particles. As a possible solution method for this issue, we present the combined application of two bedload transport formulas that widens the application range and thus gives more appropriate simulation results. An example of this technique is presented in the paper by combining two bedload transport formulas. For model validation, the results of a laboratory experiment, where bed armoring, local scouring and local sediment deposition processes occurred, were used. The results showed that the combined application method can improve the reliability of the numerical simulations.

  2. Analysis of diffusion ion transport in ocean sediments: subseafloor disposal of radioactive waste

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Ray, A.K.; Davis, E.J.

    1981-01-01

    Diffusion-controlled transport of radioactive ions through seabed sediments is analyzed to determine the rates of transport between a buried canister releasing radioactive waste and the ocean floor. The general solution of the unsteady-state diffusion problem is obtained for an arbitrary release rate from the canister, and analytical solutions are obtained for two special cases: 1. instantaneous release of the ionic species; and 2. a constant discharge rate. The former case for a material with an infinite half-life represents the worst case condition. The analytical expressions for the ion concentration distributions, ionic flux to the ocean floor, total release rate to the ocean floor, and bio-loading show that the sediment thickness, canister depth, effective diffusivity, and ion half-life affect the transport rates, but the rates are insensitive to sediment porosity and bulk density over the narrow ranges in which they might be expected to vary

  3. A spatially explicit suspended-sediment load model for western Oregon

    Science.gov (United States)

    Wise, Daniel R.; O'Connor, Jim

    2016-06-27

    We calibrated the watershed model SPARROW (Spatially Referenced Regressions on Watershed attributes) to give estimates of suspended-sediment loads for western Oregon and parts of northwestern California. Estimates of suspended-sediment loads were derived from a nonlinear least squares regression that related explanatory variables representing landscape and transport conditions to measured suspended-sediment loads at 68 measurement stations. The model gives estimates of model coefficients and their uncertainty within a spatial framework defined by the National Hydrography Dataset Plus hydrologic network. The resulting model explained 64 percent of the variability in suspended-sediment yield and had a root mean squared error value of 0.737. The predictor variables selected for the final model were (1) generalized lithologic province, (2) mean annual precipitation, and (3) burned area (by recent wildfire). Other landscape characteristics also were considered, but they were not significant predictors of sediment transport, were strongly correlated with another predictor variable, or were not as significant as the predictors selected for the final model.

  4. Next Generation Transport Phenomenology Model

    Science.gov (United States)

    Strickland, Douglas J.; Knight, Harold; Evans, J. Scott

    2004-01-01

    This report describes the progress made in Quarter 3 of Contract Year 3 on the development of Aeronomy Phenomenology Modeling Tool (APMT), an open-source, component-based, client-server architecture for distributed modeling, analysis, and simulation activities focused on electron and photon transport for general atmospheres. In the past quarter, column emission rate computations were implemented in Java, preexisting Fortran programs for computing synthetic spectra were embedded into APMT through Java wrappers, and work began on a web-based user interface for setting input parameters and running the photoelectron and auroral electron transport models.

  5. Methods for testing transport models

    International Nuclear Information System (INIS)

    Singer, C.; Cox, D.

    1991-01-01

    Substantial progress has been made over the past year on six aspects of the work supported by this grant. As a result, we have in hand for the first time a fairly complete set of transport models and improved statistical methods for testing them against large databases. We also have initial results of such tests. These results indicate that careful application of presently available transport theories can reasonably well produce a remarkably wide variety of tokamak data

  6. Experiment on temporal variation of bed load transport in response to changes in sediment supply in streams

    Science.gov (United States)

    Elgueta-Astaburuaga, Maria A.; Hassan, Marwan A.

    2017-01-01

    A flume experiment was conducted to study channel adjustment to episodic sediment supply in mountain streams. The bulk sediment used for the bed and feed included grain sizes 0.5-64 mm with geometric mean Dg>(bulk>) of 5.7 mm. Water discharge was held constant for 40 h, and 300 kg of sediment was supplied through a range of scenarios. Bed slope, sediment storage, sediment transport, and bed surface texture responded to sediment supply. During the first of seven runs, bed slope decreased from 0.022 m/m (flume slope) to 0.018 m/m due to sediment starvation. Bed slope increased beginning in the second run as the bed aggraded due to preferential storage of grains >8 mm. Transport rate and bed-surface particle size were significantly affected by magnitude-frequency of sediment feed. Under constant feed, transport rate increased gradually and Dg >(surface>) ranged between 12 and 15 mm. Instead, sediment pulses caused a pronounced increase in sediment transport rate and surface fining, trends that were inverted as sediment evacuated. At the run scale, sediment transport and storage behaved as with constant feed if pulse relaxation time exceeded time between pulses. The increase in transport rate and surface fining were proportional to pulse size. After the 300 kg pulse, transport rate reached 100 g m-1 s-1 and Dg >(surface>) was g >(surface>) was >12 mm. Textural differences on the initial bed surface influenced the patterns of sediment transport. Channel adjustment was controlled by magnitude-frequency of sediment feed and not by total feed.

  7. Granulometric characterization of sediments transported by surface runoff generated by moving storms

    Directory of Open Access Journals (Sweden)

    J. L. M. P. de Lima

    2008-12-01

    Full Text Available Due to the combined effect of wind and rain, the importance of storm movement to surface flow has long been recognized, at scales ranging from headwater scales to large basins. This study presents the results of laboratory experiments designed to investigate the influence of moving rainfall storms on the dynamics of sediment transport by surface runoff. Experiments were carried out, using a rain simulator and a soil flume. The movement of rainfall was generated by moving the rain simulator at a constant speed in the upstream and downstream directions along the flume. The main objective of the study was to characterize, in laboratory conditions, the distribution of sediment grain-size transported by rainfall-induced overland flow and its temporal evolution. Grain-size distribution of the eroded material is governed by the capacity of flow that transports sediments. Granulometric curves were constructed using conventional hand sieving and a laser diffraction particle size analyser (material below 0.250 mm for overland flow and sediment deliveries collected at the flume outlet. Surface slope was set at 2%, 7% and 14%. Rainstorms were moved with a constant speed, upslope and downslope, along the flume or were kept static. The results of laboratory experiments show that storm movement, affecting the spatial and temporal distribution of rainfall, has a marked influence on the grain-size characteristics of sediments transported by overland flow. The downstream-moving rainfall storms have higher stream power than do other storm types.

  8. Modelling pollutant transport

    International Nuclear Information System (INIS)

    Gopinath, D.V.

    1994-01-01

    An attempt has been made here to present a brief outline of the major processes and problems in the environmental modelling with special reference to radionuclide migration in surface waters. The intention has been only to provide a bird's eye view of this fertile and socially relevant area of scientific pursuit. (author). 2 figs., 4 tabs

  9. Fun at Antarctic grounding lines: Ice-shelf channels and sediment transport

    Science.gov (United States)

    Drews, Reinhard; Mayer, Christoph; Eisen, Olaf; Helm, Veit; Ehlers, Todd A.; Pattyn, Frank; Berger, Sophie; Favier, Lionel; Hewitt, Ian H.; Ng, Felix; Fürst, Johannes J.; Gillet-Chaulet, Fabien; Bergeot, Nicolas; Matsuoka, Kenichi

    2017-04-01

    Meltwater beneath the polar ice sheets drains, in part, through subglacial conduits. Landforms created by such drainages are abundant in areas formerly covered by ice sheets during the last glacial maximum. However, observations of subglacial conduit dynamics under a contemporary ice sheet are lacking. We present results from ice-penetrating radar to infer the existence of subglacial conduits upstream of the grounding line of Roi Baudouin Ice Shelf, Antarctica. The conduits are aligned with ice-shelf channels, and underlain by esker ridges formed from sediment deposition due to reduced water outflow speed near the grounding line. In turn, the eskers modify local ice flow to initiate the bottom topography of the ice-shelf channels, and create small surface ridges extending onto the shelf. Relict features on the shelf are interpreted to indicate a history of these interactions and variability of past subglacial drainages. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation, and ice-shelf stability. To investigate the role of sediment transport beneath ice sheets further, we model the sheet-shelf system of the Ekstömisen catchment, Antarctica. A 3D finite element model (Elmer/ICE) is used to solve the transients full Stokes equation for isotropic, isothermal ice with a dynamic grounding line. We initialize the model with surface topography from the TanDEM-X satellites and by inverting simultaneously for ice viscosity and basal drag using present-day surface velocities. Results produce a flow field which is consitent with sattelite and on-site observations. Solving the age-depth relationship allows comparison with radar isochrones from airborne data, and gives information about the atmospheric/dynamic history of this sector. The flow field will eventually be used to identify potential sediment sources and sinks which we compare with more than 400 km of

  10. A 2-D process-based model for suspended sediment dynamics: A first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-01-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  11. A 2-D process-based model for suspended sediment dynamics: a first step towards ecological modeling

    Science.gov (United States)

    Achete, F. M.; van der Wegen, M.; Roelvink, D.; Jaffe, B.

    2015-06-01

    In estuaries suspended sediment concentration (SSC) is one of the most important contributors to turbidity, which influences habitat conditions and ecological functions of the system. Sediment dynamics differs depending on sediment supply and hydrodynamic forcing conditions that vary over space and over time. A robust sediment transport model is a first step in developing a chain of models enabling simulations of contaminants, phytoplankton and habitat conditions. This works aims to determine turbidity levels in the complex-geometry delta of the San Francisco estuary using a process-based approach (Delft3D Flexible Mesh software). Our approach includes a detailed calibration against measured SSC levels, a sensitivity analysis on model parameters and the determination of a yearly sediment budget as well as an assessment of model results in terms of turbidity levels for a single year, water year (WY) 2011. Model results show that our process-based approach is a valuable tool in assessing sediment dynamics and their related ecological parameters over a range of spatial and temporal scales. The model may act as the base model for a chain of ecological models assessing the impact of climate change and management scenarios. Here we present a modeling approach that, with limited data, produces reliable predictions and can be useful for estuaries without a large amount of processes data.

  12. Event-based total suspended sediment particle size distribution model

    Science.gov (United States)

    Thompson, Jennifer; Sattar, Ahmed M. A.; Gharabaghi, Bahram; Warner, Richard C.

    2016-05-01

    One of the most challenging modelling tasks in hydrology is prediction of the total suspended sediment particle size distribution (TSS-PSD) in stormwater runoff generated from exposed soil surfaces at active construction sites and surface mining operations. The main objective of this study is to employ gene expression programming (GEP) and artificial neural networks (ANN) to develop a new model with the ability to more accurately predict the TSS-PSD by taking advantage of both event-specific and site-specific factors in the model. To compile the data for this study, laboratory scale experiments using rainfall simulators were conducted on fourteen different soils to obtain TSS-PSD. This data is supplemented with field data from three construction sites in Ontario over a period of two years to capture the effect of transport and deposition within the site. The combined data sets provide a wide range of key overlooked site-specific and storm event-specific factors. Both parent soil and TSS-PSD in runoff are quantified by fitting each to a lognormal distribution. Compared to existing regression models, the developed model more accurately predicted the TSS-PSD using a more comprehensive list of key model input parameters. Employment of the new model will increase the efficiency of deployment of required best management practices, designed based on TSS-PSD, to minimize potential adverse effects of construction site runoff on aquatic life in the receiving watercourses.

  13. Organic sediments of the equatorial east Atlantic: Effects of origin, transport, diagenesis, and climate

    International Nuclear Information System (INIS)

    Westerhausen, L.

    1992-01-01

    The origins and diagenesis of organic matter in recent sediments of the equatorial Eastern Atlantic are assessed on the basis of the 13 C/ 12 C composition of the organic carbon (δ 13 C TOC ), the C/N ratio, and molecular biomarkers from terrigenic and marine sources. Also investigated was the effect of global climate on the 13 C/ 12 C ratios of marine organic carbon and on the origins of organic matter on sedimentary cores. The terrigenic fraction of organic carbon is calculated using a binary δ 13 C TOC mixing model. To begin with, the δ 13 C TOC values were standardized to a uniform surface water temperature and water depth. The calculated terrigenic TOC fractions amount to more than 60% for shelf sediments off the coast of Eastern Liberia, Ivory Coast, and the continental shelf of Gabun. The higher terrigenic TOC fractions of up to 20% in recent sediments on the continental shelf along the coast of Guinea to Ivory Coast are interpreted in terms of a transport of terrigenic substances in down hill direction and parallel to the coast. The effects of the global climate on the TOC accumulation rates and on the 13 C/ 12 C ratio of organic carbon were investigated in a pelogic sedimentary core (M16772) from the tropical Eastern Atlantic. Prior to this, the δ 13 C TOC values were standardized to a uniform surface temperature and a uniform 13 C/ 12 C ratio of the dissolved inorganic carbon using the UK 37 index and the δ 13 C values of G.ruber. During the cold periods the export production increases, which - together with the low CO 2 partial pressure in the atmosphere, and thus also in the surface water -induces 13 C accumulation in the marine organic carbon. There is nothing to suggest an effect of 13 C-accumulating phytoplancton, e.g. dinoflagellats, on the 13 C/ 12 C ratio. (orig./KW). 32 figs., 8 tabs [de

  14. The contribution of bank and surface sediments to fluvial sediment ...

    African Journals Online (AJOL)

    Sediment source studies involving a simple mixing model was undertaken in the Pra River Basin in Ghana using a single tracer 210Pb to determine the relative contribution of surface and bank sediments to the fluvial sediment transport. Sediment source tracing was performed on the basis of sub-basins by comparing the ...

  15. The relative contribution of near-bed vs. intragravel horizontal transport to fine sediment accumulation processes in river gravel beds

    Science.gov (United States)

    Casas-Mulet, Roser; Lakhanpal, Garima; Stewardson, Michael J.

    2018-02-01

    Understanding flow-sediment interactions is important for comprehending river functioning. Fine sediment accumulation processes, in particular, have key implications for ecosystem health. However, the amount of fines generated by intragravel flows and later accumulated in gravel streambeds may have been underestimated, as the hydraulic-related driving transport mechanisms in play are not clearly identified. Specifically, the relative contribution of fines from upper vs. lower sediment layers in gravel beds is not well understood. By recreating flooded and dewatered conditions in an experimental flume filled with natural sediment, we estimated such contributions by observing and collecting intragravel transported fines that were later accumulated into a void in the middle of the sediment matrix. Near-bed transport in the upper sediment layers (named Brinkman load) during flooded conditions accounted for most (90%) of the accumulated fines. Intragravel transport in the lower sediment layers (named Interstitial load) was the sole source of transport and accumulation during dewatered conditions with steeper hydraulic gradients. Interstitial load accounted for 10% of the total transport during flooded conditions. Although small, such estimations demonstrate that hydraulic-gradient transport in the lower sediment layers occurs in spite of the contradicting analytical assessments. We provide a case study to challenge the traditional approaches of assessing intragravel transport, and a useful framework to understand the origin and relative contribution of fine sediment accumulation in gravel beds. Such knowledge will be highly useful for the design of monitoring programs aiding river management, particularly in regulated rivers.

  16. Transport and Sources of Suspended Sediment in the Mill Creek Watershed, Johnson County, Northeast Kansas, 2006-07

    Science.gov (United States)

    Lee, Casey J.; Rasmussen, Patrick P.; Ziegler, Andrew C.; Fuller, Christopher C.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Johnson County Stormwater Management Program, evaluated suspended-sediment transport and sources in the urbanizing, 57.4 mi2 Mill Creek watershed from February 2006 through June 2007. Sediment transport and sources were assessed spatially by continuous monitoring of streamflow and turbidity as well as sampling of suspended sediment at nine sites in the watershed. Within Mill Creek subwatersheds (2.8-16.9 mi2), sediment loads at sites downstream from increased construction activity were substantially larger (per unit area) than those at sites downstream from mature urban areas or less-developed watersheds. Sediment transport downstream from construction sites primarily was limited by transport capacity (streamflow), whereas availability of sediment supplies primarily influenced transport downstream from mature urban areas. Downstream sampling sites typically had smaller sediment loads (per unit area) than headwater sites, likely because of sediment deposition in larger, less sloping stream channels. Among similarly sized storms, those with increased precipitation intensity transported more sediment at eight of the nine monitoring sites. Storms following periods of increased sediment loading transported less sediment at two of the nine monitoring sites. In addition to monitoring performed in the Mill Creek watershed, sediment loads were computed for the four other largest watersheds (48.6-65.7 mi2) in Johnson County (Blue River, Cedar, Indian, and Kill Creeks) during the study period. In contrast with results from smaller watersheds in Mill Creek, sediment load (per unit area) from the most urbanized watershed in Johnson County (Indian Creek) was more than double that of other large watersheds. Potential sources of this sediment include legacy sediment from earlier urban construction, accelerated stream-channel erosion, or erosion from specific construction sites, such as stream-channel disturbance during bridge

  17. Ecosystem element transport model for Lake Eckarfjaerden

    Energy Technology Data Exchange (ETDEWEB)

    Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)

    2014-07-01

    The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)

  18. Numerical modelling of landscape and sediment flux response to precipitation rate change

    Directory of Open Access Journals (Sweden)

    J. J. Armitage

    2018-02-01

    Full Text Available Laboratory-scale experiments of erosion have demonstrated that landscapes have a natural (or intrinsic response time to a change in precipitation rate. In the last few decades there has been growth in the development of numerical models that attempt to capture landscape evolution over long timescales. However, there is still an uncertainty regarding the validity of the basic assumptions of mass transport that are made in deriving these models. In this contribution we therefore return to a principal assumption of sediment transport within the mass balance for surface processes; we explore the sensitivity of the classic end-member landscape evolution models and the sediment fluxes they produce to a change in precipitation rates. One end-member model takes the mathematical form of a kinetic wave equation and is known as the stream power model, in which sediment is assumed to be transported immediately out of the model domain. The second end-member model is the transport model and it takes the form of a diffusion equation, assuming that the sediment flux is a function of the water flux and slope. We find that both of these end-member models have a response time that has a proportionality to the precipitation rate that follows a negative power law. However, for the stream power model the exponent on the water flux term must be less than one, and for the transport model the exponent must be greater than one, in order to match the observed concavity of natural systems. This difference in exponent means that the transport model generally responds more rapidly to an increase in precipitation rates, on the order of 105 years for post-perturbation sediment fluxes to return to within 50 % of their initial values, for theoretical landscapes with a scale of 100×100 km. Additionally from the same starting conditions, the amplitude of the sediment flux perturbation in the transport model is greater, with much larger sensitivity to catchment size. An

  19. Numerical modelling of landscape and sediment flux response to precipitation rate change

    Science.gov (United States)

    Armitage, John J.; Whittaker, Alexander C.; Zakari, Mustapha; Campforts, Benjamin

    2018-02-01

    Laboratory-scale experiments of erosion have demonstrated that landscapes have a natural (or intrinsic) response time to a change in precipitation rate. In the last few decades there has been growth in the development of numerical models that attempt to capture landscape evolution over long timescales. However, there is still an uncertainty regarding the validity of the basic assumptions of mass transport that are made in deriving these models. In this contribution we therefore return to a principal assumption of sediment transport within the mass balance for surface processes; we explore the sensitivity of the classic end-member landscape evolution models and the sediment fluxes they produce to a change in precipitation rates. One end-member model takes the mathematical form of a kinetic wave equation and is known as the stream power model, in which sediment is assumed to be transported immediately out of the model domain. The second end-member model is the transport model and it takes the form of a diffusion equation, assuming that the sediment flux is a function of the water flux and slope. We find that both of these end-member models have a response time that has a proportionality to the precipitation rate that follows a negative power law. However, for the stream power model the exponent on the water flux term must be less than one, and for the transport model the exponent must be greater than one, in order to match the observed concavity of natural systems. This difference in exponent means that the transport model generally responds more rapidly to an increase in precipitation rates, on the order of 105 years for post-perturbation sediment fluxes to return to within 50 % of their initial values, for theoretical landscapes with a scale of 100×100 km. Additionally from the same starting conditions, the amplitude of the sediment flux perturbation in the transport model is greater, with much larger sensitivity to catchment size. An important finding is that

  20. Near-bed observations of high-concentration sediment transport in the Changjiang Estuary

    Science.gov (United States)

    Zhou, Z.; Ge, J.; Ding, P.

    2017-12-01

    The North Passage, the core of turbidity maximum in the Changjiang Estuary, is now under the strong sedimentation due to the abundant sediment supply from the upstream Changjiang River and the river-tide interacted dynamics. Recent studies suggested that strong siltation could be attributed to bottom high-concentration sediment transport, which however is very difficult to be detected and observed by vessel-anchored survey methods. To better understand the mechanisms of sediment transport and deposition in the channel region of the North Passage and its adjacent areas, we conducted continuous field observations which covered spring and neap tide period in the wintertime of 2016, the summertime of 2015 and 2017, focusing on near-bottom sediment transport. Tripods mounted with multiple instruments, including up-looking and down-looking Acoustic Doppler Current Profilers(ADCP), Vector Current Meter(ADV), Optical Backscatter Sensor(OBS), ASM, ALEC and RBR were used to observe the near-bottom physical process and its induced sediment dynamics. Results of these observations clearly described the current-wave-sediment interaction, which produced different patterns of bottom mud suspension at different tripods. Both hydrodynamic features and suspended sediment showed variations between spring and neap tide. Taking data of 2016 as an example, averaged suspended sediment concentration(SSC) at two tripods was 1.52 g/L and 2.13 g/L during the neap tide, 4.51 g/L and 5.75 g/L with the peak value reaching 25 g/L during the spring tide. At the tripod which was closer to the channel region, three peaks of SSC during the spring tide occurred near the flood slack with notable salinity increase, indicating the impact of saltwater intrusion on the bottom hydrodynamics. The results showed the occurrence of high-concentration suspended sediment was probably related to combined effects of bottom salinity intrusion, turbulent kinetic energy(TKE) and local stratification due to density

  1. Lack of cross-shelf transport of sediments on the western margin of India: Evidence from clay mineralogy

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaswamy, V.; Nair, R.R.

    transported long distances along the shelf, cross-shelf transport appears to be minimal. Confirmatory evidence of qualitative differences in outer and inner shelf clays is provided by sediment trap clay mineralogy on the outer shelf. Clay bound pollutant...

  2. Flood risk analysis for flood control and sediment transportation in sandy regions: A case study in the Loess Plateau, China

    Science.gov (United States)

    Guo, Aijun; Chang, Jianxia; Wang, Yimin; Huang, Qiang; Zhou, Shuai

    2018-05-01

    Traditional flood risk analysis focuses on the probability of flood events exceeding the design flood of downstream hydraulic structures while neglecting the influence of sedimentation in river channels on regional flood control systems. This work advances traditional flood risk analysis by proposing a univariate and copula-based bivariate hydrological risk framework which incorporates both flood control and sediment transport. In developing the framework, the conditional probabilities of different flood events under various extreme precipitation scenarios are estimated by exploiting the copula-based model. Moreover, a Monte Carlo-based algorithm is designed to quantify the sampling uncertainty associated with univariate and bivariate hydrological risk analyses. Two catchments located on the Loess plateau are selected as study regions: the upper catchments of the Xianyang and Huaxian stations (denoted as UCX and UCH, respectively). The univariate and bivariate return periods, risk and reliability in the context of uncertainty for the purposes of flood control and sediment transport are assessed for the study regions. The results indicate that sedimentation triggers higher risks of damaging the safety of local flood control systems compared with the event that AMF exceeds the design flood of downstream hydraulic structures in the UCX and UCH. Moreover, there is considerable sampling uncertainty affecting the univariate and bivariate hydrologic risk evaluation, which greatly challenges measures of future flood mitigation. In addition, results also confirm that the developed framework can estimate conditional probabilities associated with different flood events under various extreme precipitation scenarios aiming for flood control and sediment transport. The proposed hydrological risk framework offers a promising technical reference for flood risk analysis in sandy regions worldwide.

  3. Interactions of Flow, Sediment Transport, and Vegetation in the Long-Term Evolution of Arroyos

    Science.gov (United States)

    Perignon, M. C.; Griffin, E. R.; Tucker, G. E.; Friedman, J. M.; Overeem, I.

    2014-12-01

    Arroyos in the Southwestern United States have experienced multiple cut-and-fill cycles in the late Quaternary. Extensive studies fo the Lower Rio Puerco, New Mexico, USA, show that it has most recently progressed from an (1) unincised state with a broad floodplain in the mid 1800s, through a period of (2) incision, forming a deep gully with steep walls by the early 1900s, and to the (3) present-day stage of arroyo widening and filling. The arroyo cycle is driven by a combination of autogenic processes and external forcings, although the relative influence of each process is under debate. We use the morphodynamic model ANUGA to explore the influences of discharge, sediment transport, and vegetation on the geomorphic evolution of the Lower Rio Puerco through the arroyo cycle. The predictive power of the numerical model is first established by using it to hind-cast the morphologic evolution of a reach of the river during a large flood in 2006, and comparing the model predictions to real-world magnitudes and patterns of topographic change recorded for this event by multi-temporal airborne lidar. The morphodynamic model is then used to simulate the response of this stream to floods in the past. A comprehensive dataset of the topography and hydrology of the Lower Rio Puerco since the 1920s is used to reproduce the morphology of the arroyo at multiple points in time, and historical descriptions serve to extrapolate these into the 19th century. We test the sensitivity of the reconstructed landscapes to changes in peak discharge, sediment supply, and the distribution and characteristics of vegetation in order to determine the relative influence of each forcing in the evolution of the stream, and to understand how the interactions of different processes could drive its progression through the arroyo cycle.

  4. A general mixture model for sediment laden flows

    Science.gov (United States)

    Liang, Lixin; Yu, Xiping; Bombardelli, Fabián

    2017-09-01

    A mixture model for general description of sediment-laden flows is developed based on an Eulerian-Eulerian two-phase flow theory, with the aim at gaining computational speed in the prediction, but preserving the accuracy of the complete two-fluid model. The basic equations of the model include the mass and momentum conservation equations for the sediment-water mixture, and the mass conservation equation for sediment. However, a newly-obtained expression for the slip velocity between phases allows for the computation of the sediment motion, without the need of solving the momentum equation for sediment. The turbulent motion is represented for both the fluid and the particulate phases. A modified k-ε model is used to describe the fluid turbulence while an algebraic model is adopted for turbulent motion of particles. A two-dimensional finite difference method based on the SMAC scheme was used to numerically solve the mathematical model. The model is validated through simulations of fluid and suspended sediment motion in steady open-channel flows, both in equilibrium and non-equilibrium states, as well as in oscillatory flows. The computed sediment concentrations, horizontal velocity and turbulent kinetic energy of the mixture are all shown to be in good agreement with available experimental data, and importantly, this is done at a fraction of the computational efforts required by the complete two-fluid model.

  5. The Role of Grain Dynamics in the Onset of Sediment Transport

    Science.gov (United States)

    Clark, A., IV; Shattuck, M. D.; Ouellette, N. T.; O'Hern, C.

    2016-12-01

    Despite decades of research, the grain-scale mechanisms that control the onset of sediment transport are still not well understood. A large collection of data, known as the Shields curve, shows that Θ c, which is the minimum dimensionless shear stress at the bed for grains to move, is primarily a function of the shear Reynolds number Re*. To understand this collapse, it is typically assumed that the onset of grain motion is determined by the conditions at which fluid forces violate static equilibrium for surface grains. Re* compares the grain size to the size of the viscous sublayer in the fluid flow, so the relevant fluid lift and drag forces vary with Re*. A complimentary approach, which remains relatively unexplored, is to ask instead when mobilized grains can stop. In this case, Re* is the ratio of two important time scales related to grain motion: (1) the time for a grain to equilibrate to the fluid flow and (2) the time for the shear stress to accelerate a grain over the characteristic bed roughness. Thus, Re* controls whether grains are accelerated significantly between collisions with the bed. To test how this effect relates to the Shields curve, we perform simulations of granular beds sheared by a model fluid flow, where Re* is varied only through the fluid-grain coupling, which alters the grain dynamics. We find good qualitative agreement with the Shields curve, and the quantitative discrepancies are consistent with lift forces calculations at varying Re*. Our results suggest that the onset of sediment transport may be better described as when mobile grains are able to stop, which varies significantly with Re*, and theoretical descriptions that account for this effect may be more successful than those that consider only static equilibrium.

  6. Sediment transport to and from small impoundments in northeast Kansas, March 2009 through September 2011

    Science.gov (United States)

    Foster, Guy M.; Lee, Casey J.; Ziegler, Andrew C.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Kansas Water Office, investigated sediment transport to and from three small impoundments (average surface area of 0.1 to 0.8 square miles) in northeast Kansas during March 2009 through September 2011. Streamgages and continuous turbidity sensors were operated upstream and downstream from Atchison County, Banner Creek, and Centralia Lakes to study the effect of varied watershed characteristics and agricultural practices on sediment transport in small watersheds in northeast Kansas. Atchison County Lake is located in a predominantly agricultural basin of row crops, with wide riparian buffers along streams, a substantial amount of tile drainage, and numerous small impoundments (less than 0.05 square miles; hereafter referred to as “ponds”). Banner Creek Lake is a predominantly grassland basin with numerous small ponds located in the watershed, and wide riparian buffers along streams. Centralia Lake is a predominantly agricultural basin of row crops with few ponds, few riparian buffers along streams, and minimal tile drainage. Upstream from Atchison County, Banner Creek, and Centralia Lakes 24, 38, and 32 percent, respectively, of the total load was transported during less than 0.1 percent (approximately 0.9 days) of the time. Despite less streamflow in 2011, larger sediment loads during that year indicate that not all storm events transport the same amount of sediment; larger, extreme storms during the spring may transport much larger sediment loads in small Kansas watersheds. Annual sediment yields were 360, 400, and 970 tons per square mile per year at Atchison County, Banner, and Centralia Lake watersheds, respectively, which were less than estimated yields for this area of Kansas (between 2,000 and 5,000 tons per square mile per year). Although Centralia and Atchison County Lakes had similar percentages of agricultural land use, mean annual sediment yields upstream from Centralia Lake were about 2.7 times

  7. Monitoring and statistical modelling of sedimentation in gully pots

    NARCIS (Netherlands)

    Post, J.A.B.; Pothof, I.W.M.; Dirksen, J.; Baars, E. J.; Langeveld, J.G.; Clemens, F.H.L.R.

    2016-01-01

    Gully pots are essential assets designed to relief the downstream system by trapping solids and attached pollutants suspended in runoff. This study applied a methodology to develop a quantitative gully pot sedimentation and blockage model. To this end, sediment bed level time series from 300

  8. Design and modeling of reservoir operation strategies for sediment management

    NARCIS (Netherlands)

    Sloff, C.J.; Omer, A.Y.A.; Heynert, K.V.; Mohamed, Y.A.

    2015-01-01

    Appropriate operation strategies that allow for sediment flushing and sluicing (sediment routing) can reduce rapid storage losses of (hydropower and water-supply) reservoirs. In this study we have shown, using field observations and computational models, that the efficiency of these operations

  9. Variations in the Wave Climate and Sediment Transport Due to Climate Change along the Coast of Vietnam

    Directory of Open Access Journals (Sweden)

    Ali Dastgheib

    2016-12-01

    Full Text Available This study quantifies the climate change (CC-driven variations in wave characteristics and the resulting variations in potential longshore sediment transport rate along the ~2000 km mainland coast of Vietnam. Wind fields derived from global circulation models (GCM for current and future (2041–2060 and 2081–2100 climate conditions are used to force a numerical wave model (MIKE21 SW to derive the deep water wave climate. The offshore wave climate is translated to nearshore wave conditions using another numerical model (Simulating WAves Nearshore—SWAN and finally, a sediment transport model (GENEralized model for Simulating Shoreline Change—GENESIS is used to estimate potential sediment transport for current and future climate conditions. Results indicate that CC effects are substantially different in the northern, central and southern parts of the coast of Vietnam. The 2081–2100 mean significant wave height along the northern coast is estimated to be up to 8 cm lower (relative to 1981–2000, while projections for central and southern coasts of Vietnam indicate slightly higher (increases of up to 5 cm and 7 cm respectively. Wave direction along the northern coast of Vietnam is projected to shift by up to 4° towards the south (clockwise by 2081–2100 (relative to 1981–2000, up to 6° clockwise along the central coast and by up to 8° anti-clockwise (to the north along the southern coast. The projected potential longshore sediment transport rates show very substantial and spatially variable future changes in net transport rates along the coast of Vietnam, with increases of up to 0.5 million m3/year at some locations (by 2081–2100 relative to 1981–2000, implying major changes in future coastline position and/or orientation. The vicinity of the highly developed city of Da Nang is likely to be particularly subject to coastline changes, with potentially an additional 875,000 m3 of sand being transported away from the area per year by

  10. Physical and logistical considerations of using ultrasonic anemometers in aeolian sediment transport research

    Science.gov (United States)

    Walker, Ian J.

    2005-05-01

    Recently, ultrasonic anemometers (UAs) have become available for precise, high-frequency measurement of three-dimensional velocity and turbulence properties. Except for a few wind tunnel and computational fluid dynamics (CFD) simulations, advances in aeolian sediment transport and bedform research have been limited to field studies using instrumentation that is either incapable of measuring turbulence (e.g., cup anemometers) or unable to withstand sediment-laden airflow (e.g., hotfilms). In contrast, extensive progress has occurred in fluvial research where turbulence instrumentation has been available for some time. This paper provides a pragmatic discussion on using UAs in aeolian research. Recent advances using this technology are reviewed and key physical and logistical considerations for measuring airflow properties and near-surface shear stress using UAs over complex terrain are discussed. Physical considerations include limitations of applying boundary layer theory to flow over natural surfaces such as non-logarithmic velocity profiles resulting from roughness- and topographically induced effects and the inability of instrumentation to measure within the thin constant-stress region. These constraints hinder accurate shear velocity ( u*), shear stress and sand transport estimation. UAs allow measurement of turbulent Reynolds stress (RS) that, in theory, should equal profile-derived shear stress. Discrepancies often exist between these quantities however due to three-dimensional (spanwise) flow components and rapid distortion effects (i.e., unbalanced production and dissipation of turbulence) common in flow over complex terrain. While the RS approach yields information on turbulent contributions to near-surface stress generation, little evidence exists showing that RS is a better measure of forces respons