WorldWideScience

Sample records for model scientific inquiry

  1. EFFECT SCIENTIFIC INQUIRY TEACHING MODELS AND SCIENTIFIC ATTITUDE TO PHYSICS STUDENT OUTCOMES

    OpenAIRE

    Dian Clara Natalia Sihotang

    2014-01-01

    The objectives of this study were to determine whether: (1) the student’s achievement taught by using Scientific Inquiry Teaching Models is better than that of taught by using Direct Instruction; (2) the student’s achievement who have a high scientific attitude is better than student who have low scientific attitude; and (3) there is interaction between Scientific Inquiry Teaching Models and scientific attitude for the student’s achievement. The results of research are: (1) the student’s achi...

  2. Peningkatan Keterlibatan Dalam Perkuliahan Scientific Writing Menggunakan Model Pengajaran Social Inquiry

    Directory of Open Access Journals (Sweden)

    Suwartono Suwartono

    2016-02-01

    Full Text Available This research aimed to solve student low involvement in Scientific Writing classes.The method used in this research was Classroom Action Research (CAR. The planned action was Social Inquiry teaching model, i.e. an autonomous instruction in which students do inquiries for facts (new knowledge on scientific writings along with the linguistic aspects of writings and exercises in communicating the inquiry results within the classroom society are prioritized. The CAR employed Lewin's cyclic model. The model procedures are: (1 identification, evaluation and formulation of the problem; (2 fact finding; (3 review of literature; (4 information gathering to test hypothesis; (5 selection of the planned action procedures; (6 implementation; and (7 interpretation of the data and overall evaluation. The CAR's result has shown that teaching Scientific Writing using Social Inquiry can promote student involvement in scientific writing class activities.

  3. The Classroom Sandbox: A Physical Model for Scientific Inquiry

    Science.gov (United States)

    Feldman, Allan; Cooke, Michele L.; Ellsworth, Mary S.

    2010-01-01

    For scientists, the sandbox serves as an analog for faulting in Earth's crust. Here, the large, slow processes within the crust can be scaled to the size of a table, and time scales are directly observable. This makes it a useful tool for demonstrating the role of inquiry in science. For this reason, the sandbox is also helpful for learning…

  4. Development and Evaluation of a Model-Supported Scientific Inquiry Training Program for Elementary Teachers in Indonesia

    Science.gov (United States)

    Ertikanto, Chandra; Herpratiwi; Yunarti, Tina; Saputra, Andrian

    2017-01-01

    A teacher training program, named Model-Supported Scientific Inquiry Training Program (MSSITP) has been successfully developed to improve the inquiry skills of Indonesian elementary teachers. The skills enhanced by MSSITP are defining problems, formulating hypotheses, planning and doing investigations, drawing conclusions, and communicating the…

  5. Scientific Inquiry Training for High School Students: Experimental Evaluation of a Model Program

    Science.gov (United States)

    Peterson, Kenneth D.

    1978-01-01

    Fifty-nine secondary school physics students were assigned to treatment groups: (1) Project Physics units, (2) Project Physics and verbal learning unit, and (3) a training program in scientific inquiry. Posttest results revealed that, on most aspects of a science inquiry test, treatments 2 and 3 had significantly greater effect on achievement than…

  6. THE EFFECT OF MODEL SCIENTIFIC INQUIRY USING MEDIA PhET TOWARD SKILLS PROCESS OF SCIENCE VIEWED FROM CRITICAL THINKING SKILLS

    OpenAIRE

    Nanda Safarati

    2017-01-01

    The purpose of research to analyse: the science process skills that are taught in a model of scientific inquiry using the media PhET better than students taught by learning direct instruction, science process skills of physics students who has the critical thinking skills using a model of scientific inquiry than average -rata better than students who have critical thinking skills using a direct model of instruction above average, the interaction of scientific inquiry learning model using PhET...

  7. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    Science.gov (United States)

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  8. Computational Scientific Inquiry with Virtual Worlds and Agent-Based Models: New Ways of Doing Science to Learn Science

    Science.gov (United States)

    Jacobson, Michael J.; Taylor, Charlotte E.; Richards, Deborah

    2016-01-01

    In this paper, we propose computational scientific inquiry (CSI) as an innovative model for learning important scientific knowledge and new practices for "doing" science. This approach involves the use of a "game-like" virtual world for students to experience virtual biological fieldwork in conjunction with using an agent-based…

  9. ANALYZE CRITICAL THINKING SKILLS AND SCIENTIFIC ATTITUDE IN PHYSICS LEARNING USED INQUIRY TRAINING AND DIRECT INSTRUCTION LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Dede Parsaoran Damanik

    2013-06-01

    Full Text Available This study was aimed to determine the differences: (1 the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2 The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3 To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which students of private junior high school Two Raya Kahean District Simalungun. Population choose random sample of each class. Instrument used consisted of: (1 test the scientific attitude of students through a questionnaire with 25 statements questionnaire number (2 test the critical thinking skills in the form of descriptions by 9 questions. The data were analyzed according to ANAVA. It showed that: (1 There are differences in students' critical thinking of skills achievement Inquiry Training model and Direct Instruction model, (2 there was a difference of students' critical thinking in scientific attitude at high is better than who thought there is a difference of students' critical thinking in scientific attitude at low. (3 There was no interaction between Inquiry Training model and Direct Instruction with the scientific attitude students' to increase student’s critical thinking of skills.

  10. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes

    Science.gov (United States)

    Achmad, Maulana; Suhandi, Andi

    2017-05-01

    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  11. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  12. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  13. Development and Evaluation of a Model-Supported Scientific Inquiry Training Program for Elementary Teachers in Indonesia

    Directory of Open Access Journals (Sweden)

    Chandra Ertikanto

    2017-07-01

    Full Text Available A teacher training program, named Model-Supported Scientific Inquiry Training Program (MSSITP has been successfully developed to improve the inquiry skills of Indonesian elementary teachers. The skills enhanced by MSSITP are defining problems, formulating hypotheses, planning and doing investigations, drawing conclusions, and communicating the results. This teacher training program was evaluated by 48 teachers selected by stratified random sampling technique from 48 elementary schools in Bandar Lampung City, Lampung Province, Indonesia. The program was designed to follow Bandura’s stages of social learning: attention, retention, production, and motivation. The impact of MSSITP was evaluated in three ways. First, by analyzing the improvements of inquiry skills compared to conventional SITP through pretest and posttest control group design. Second, by using an inquiry questionnaire to describe teachers’ perceptions of inquiry learning. Last, by using a response instrument to elicit teachers’ opinions of the program. The results indicate a significant difference (sig 0.00 in teachers’ skills acquired from the two different training programs. Mean posttest scores, varying from 34.7 to 56.9 for the control group and 58.3 to 98.6 for the experimental group, confirmed the effectiveness of MSSITP.

  14. THE EFFECT OF MODEL SCIENTIFIC INQUIRY USING MEDIA PhET TOWARD SKILLS PROCESS OF SCIENCE VIEWED FROM CRITICAL THINKING SKILLS

    Directory of Open Access Journals (Sweden)

    Nanda Safarati

    2017-06-01

    Full Text Available The purpose of research to analyse: the science process skills that are taught in a model of scientific inquiry using the media PhET better than students taught by learning direct instruction, science process skills of physics students who has the critical thinking skills using a model of scientific inquiry than average -rata better than students who have critical thinking skills using a direct model of instruction above average, the interaction of scientific inquiry learning model using PhET media with critical thinking skills of students in improving students' science process skills. This research is quasi experimental. Technique that used to gain a sample is random cluster sampling. The instrument used is the science process skills test and test critical thinking skills. The results of this study concluded that: the science process skills of students who are taught by the model of scientific inquiry using the media PhET better than students taught by learning direct instruction, science process skills of physics students who have the critical thinking skills using a model of scientific inquiry over average better than students who have critical thinking skills using a direct model of instruction above average, there is interaction scientific inquiry model using the media PhET with critical thinking skills of students in improving students' science process skills.

  15. Authentic Scientific Inquiry and School Science

    Science.gov (United States)

    Hume, Anne

    2009-01-01

    Scientific literacy goals feature strongly in the rhetoric of most forward-looking science curricula. Many science educators believe that a key means of attaining these goals is through the engagement of students in "authentic scientific inquiry". For students to experience such learning it is critical that teachers understand and appreciate what…

  16. EcoCasting: Using NetLogo models of aquatic ecosystems to teach scientific inquiry

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2010-12-01

    The EcoCasting project from the Office of STEM Education Partnerships (OSEP) at Northwestern University has developed a computer model-based curriculum for high school environmental science classes to study complexity in aquatic ecosystems. EcoCasting aims to deliver cutting edge scientific research on bioaccumulation in invaded Great Lakes food webs to high school classes. Scientists and environmental engineers at Northwestern are investigating unusual bioaccumulation patterns in invaded food webs of the Great Lakes. High school students are exploring this authentic data to understand what is causing the anomalies in the data. Students use a series of NetLogo agent-based models of an aquatic ecosystem to study how toxins accumulate in the food web. Using these models, students learn about predator-prey relationships, bioaccumulation, and invasive species. Students are confronted with contradictory data collected by scientists and investigate alternative food web mechanisms at work. By studying the individual variables, students learn common scientific principles. When multiple variables are combined in a unifying model, students learn that the interactions lead to unexpected outcomes. Students learn about the complexity of the ecosystem and gain proficiency interpreting computer models and scientific data collection in this curriculum. Model of aquatic food chain

  17. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    Science.gov (United States)

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  18. Art as a Probe of Scientific Inquiry.

    Science.gov (United States)

    Rakow, Steven J.

    This study investigates the development of an understanding of scientific inquiry by preservice teachers as a result of their participation in a five-week elementary science methods class. The study was done in response to changes in state standards for teacher education in Texas and focuses on the effectiveness of a one-hour methods course in…

  19. Developmental Change in Notetaking during Scientific Inquiry

    Science.gov (United States)

    Garcia-Mila, Merce; Andersen, Christopher

    2007-01-01

    This paper addresses the development in children's and adults' awareness of the benefits of writing through the analysis of change in notetaking while engaged in scientific inquiry over 10 weeks. Participants were given a notebook that they could choose to use. Our results indicate consistent differences between the performance of adults versus…

  20. Exploring Korean Middle School Students' View about Scientific Inquiry

    Science.gov (United States)

    Yang, Il-Ho; Park, Sang-Woo; Shin, Jung-Yun; Lim, Sung-Man

    2017-01-01

    The aim of this study is to examine Korean middle school students' view about scientific inquiry with the Views about Scientific Inquiry (VASI) questionnaire, an instrument that deals with eight aspects of scientific inquiry. 282 Korean middle school students participated in this study, and their responses were classified as informed, mixed, and…

  1. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    Science.gov (United States)

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  2. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    Science.gov (United States)

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  3. Improving Science Student Teachers' Self-Perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    Science.gov (United States)

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-01-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68…

  4. Improving Science Student Teachers' Self-Perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    Science.gov (United States)

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-01-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68…

  5. Science Teachers’ Understanding of Scientific Inquiry In Teacher Professional Development

    Science.gov (United States)

    Adisendjaja, Y. H.; Rustaman, N. Y.; Redjeki, S.; Satori, D.

    2017-02-01

    Inquiry is a main goal of science education reform around the world. This study investigated science teachers’ understanding of scientific inquiry in teacher professional development program. The content of the program was focused on the nature of science and scientific inquiry. The program was conducted once in a week, every Saturday for 4 weeks, so it took about 30 hours. Twenty five science teachers from 3 districts with 5-25 years’ experience were followed this program. Views About Scientific Inquiry modified was administered to all participants before and after TPD. VASI consists of 8 questions: 1) Scientific investigations all begin with a question and do not necessarily test a hypothesis, 2) There is no single set or sequence of steps followed in all investigations, 3) Inquiry procedures are guided by the question asked, 4) All scientists performing the same procedures may not get the same results, 5) Inquiry procedures can influence results, 6) Research conclusions must be consistent with the data collected, 7) Scientific data are not the same as scientific evidence, and 8) Explanations are developed from a combination of collected data and what is already known. Then, all responses are categorized as informed, partially informed, and naive. Results indicated that most of science teachers were not have good understanding of scientific inquiry. 30 hours teacher professional programs led to small measurable enhancements in teachers’ understanding of scientific inquiry. Based on these findings, preservice and in-service program should focus on science education reform include scientific inquiry.

  6. Secondary students' views about scientific inquiry

    Science.gov (United States)

    Galano, Silvia; Zappia, Alessandro; Smaldone, Luigi; Testa, Italo

    2016-05-01

    In this study we investigated the views about Scientific Inquiry (SI) of about 300 students at the beginning of the secondary school course (14-15years old). An adapted version of the Views On Scientific Inquiry (VOSI) questionnaire was used as research instrument. The questionnaire, focused on six specific aspects of SI, was submitted before and after a six-hours in-classroom delivery of a teaching-learning sequence (TLS) that targeted explicitly the six SI aspects. We first analyzed responses using a five-level categorization: a) informed view; b) mixed or partially correct view; c) naıve view; d) unclear; e) not given. Two independent researchers iteratively analyzed the data with a final inter-rater reliability of about 90%. Then, we collapsed the initial categories into three macro-categories: C1) informed/partial view; C2) naıve view; C3) unclear or not given; and calculated the shift in the macro-categorization between pre- and post-test. Finally, we investigated a possible relationship between how the TLSs were enacted and the students' achievements. Data show that the percentage of students' informed responses only slightly increased between pre- and post-test in the majority of the targeted aspects. Moreover, students' achievements seem to depend on how the teachers enacted the TLSs. Our results suggest that short inquiry-based teaching interventions are not sufficient to effectively teach SI aspects. Moreover, our results suggest to develop specific training courses aimed at improving teachers' own beliefs and practices about SI.

  7. Teacher Epistemology and Scientific Inquiry in Computerized Classroom Environments.

    Science.gov (United States)

    Maor, Dorit; Taylor, Peter Charles

    1995-01-01

    Interactions with a scientific database of 2 classes of grade 11 students were monitored and teachers' epistemologies were examined. Results suggest that the computer itself does not facilitate inquiry learning; the teacher's epistemology is a key mediating influence on students' use of the computer as a tool of scientific inquiry. (Author/MKR)

  8. Scientific Inquiry with Information Technologies: High School Students' Experiences

    Science.gov (United States)

    Ebenezer, Jazlin; Kaya, Osman Nafiz

    2007-01-01

    This initial study focused on high school students' experiences about their understanding of, and abilities necessary to do scientific inquiry, two foci emphasized by the National Science Education Standards in the strand on "science as inquiry". The research method consisted of Likert-scale survey with space provided for students' comments about…

  9. Designing for Real-World Scientific Inquiry in Virtual Environments

    Science.gov (United States)

    Ketelhut, Diane Jass; Nelson, Brian C.

    2010-01-01

    Background: Most policy doctrines promote the use of scientific inquiry in the K-12 classroom, but good inquiry is hard to implement, particularly for schools with fiscal and safety constraints and for teachers struggling with understanding how to do so. Purpose: In this paper, we present the design of a multi-user virtual environment (MUVE)…

  10. The Inquiry Flame: Scaffolding for Scientific Inquiry through Experimental Design

    Science.gov (United States)

    Pardo, Richard; Parker, Jennifer

    2010-01-01

    In the lesson presented in this article, students learn to organize their thinking and design their own inquiry experiments through careful observation of an object, situation, or event. They then conduct these experiments and report their findings in a lab report, poster, trifold board, slide, or video that follows the typical format of the…

  11. Collaborative Inquiry Learning: Models, tools, and challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-02-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  12. Teachers' Language on Scientific Inquiry: Methods of teaching or methods of inquiry?

    Science.gov (United States)

    Gyllenpalm, Jakob; Wickman, Per-Olof; Holmgren, Sven-Olof

    2010-06-01

    With a focus on the use of language related to scientific inquiry, this paper explores how 12 secondary school science teachers describe instances of students' practical work in their science classes. The purpose of the study was to shed light on the culture and traditions of secondary school science teaching related to inquiry as expressed in the use of language. Data consisted of semi-structured interviews about actual inquiry units used by the teachers. These were used to situate the discussion of their teaching in a real context. The theoretical background is socio-cultural and pragmatist views on the role of language in science learning. The analysis focuses on two concepts of scientific inquiry: hypothesis and experiment. It is shown that the teachers tend to use these terms with a pedagogical function thus conflating methods of teaching with methods of inquiry as part of an emphasis on teaching the children the correct explanation. The teachers did not prioritise an understanding of scientific inquiry as a knowledge goal. It discusses how learners' possibilities to learn about the characteristics of scientific inquiry and the nature of science are affected by an unreflective use of everyday discourse.

  13. Elementary Students' Laboratory Record Keeping during Scientific Inquiry

    Science.gov (United States)

    Garcia-Mila, Merce; Andersen, Christopher; Rojo, Nubia E.

    2011-01-01

    The present study examines the mutual interaction between students' writing and scientific reasoning among sixth-grade students (age 11-12 years) engaged in scientific inquiry. The experimental task was designed to promote spontaneous record keeping compared to previous task designs by increasing the saliency of task requirements, with the design…

  14. "Martian Boneyards": Sustained Scientific Inquiry in a Social Digital Game

    Science.gov (United States)

    Asbell-Clarke, Jordis

    Social digital gaming is an explosive phenomenon where youth and adults are engaged in inquiry for the sake of fun. The complexity of learning evidenced in social digital games is attracting the attention of educators. Martian Boneyards is a proof-of-concept game designed to study how a community of voluntary gamers can be enticed to engage in sustained, high-quality scientific inquiry. Science educators and game designers worked together to create an educational game with the polish and intrigue of a professional-level game, striving to attract a new audience to scientific inquiry. Martian Boneyards took place in the high-definition, massively multiplayer online environment, Blue Mars, where players spent an average of 30 hours in the game over the 4-month implementation period, with some exceeding 200 hours. Most of the players' time was spent in scientific inquiry activities and about 30% of the players' in-game interactions were in the analysis and theory-building phases of inquiry. Female players conducted most of the inquiry, in particular analysis and theory building. The quality of scientific inquiry processes, which included extensive information gathering by players, and the resulting content were judged to be very good by a team of independent scientists. This research suggests that a compelling storyline, a highly aesthetic environment, and the emergent social bonds among players and between players and the characters played by designers were all responsible for sustaining high quality inquiry among gamers in this free-choice experience. The gaming environment developed for Martian Boneyards is seen as an evolving ecosystem with interactions among design, players' activity, and players' progress.

  15. A "Theory Bite" on the Meaning of Scientific Inquiry: A Companion to Kuhn and Pease

    Science.gov (United States)

    diSessa, Andrea A.

    2008-01-01

    There are many meanings of "scientific reasoning" or "scientific inquiry" in use, and many corresponding orientations toward its enhancement and tracking. Deciding what these terms mean once and for all is an elusive and likely chimerical goal. However, setting down some core models might help in being clear on where different researchers stand…

  16. An Analysis of the Actual Processes of Physicists' Research and the Implications for Teaching Scientific Inquiry in School

    Science.gov (United States)

    Park, Jongwon; Jang, Kyoung-Ae; Kim, Ikgyun

    2009-01-01

    Investigation of scientists’ actual processes of conducting research can provide us with more realistic aspects of scientific inquiry. This study was performed to identify three aspects of scientists’ actual research: their motivations for scientific inquiry, the scientific inquiry skills they used, and the main types of results obtained from their research. To do this, we interviewed six prominent physicists about why and how they researched and what they obtained from their research results. We also analyzed their published papers. In the previous part of this study, types and features of the physicists’ research motivations were identified (Park and Jang, Journal of the Korean Physical Society, 47(3), 401-408, 2005). In this article, as the second part of the study, it was found: (1) Various inquiry skills including theoretical as well as experimental research skills and the social skills of scientific inquiry were used in physicists’ research. (2) New inventions, articulation of, and falsification of the previous findings were regarded as important research results. (3) Physicists’ research processes were often non-linear and cyclical. For each of these findings, implications for teaching scientific inquiry in schools were developed. Finally, we proposed a model of scientific inquiry process consisting of research motives, scientific inquiry skills, and results of inquiry.

  17. Learning Genetics through a Scientific Inquiry Game

    Science.gov (United States)

    Casanoves, Marina; Salvadó, Zoel; González, Ángel; Valls, Cristina; Novo, Maria Teresa

    2017-01-01

    In this paper we discuss an activity through which students learn basic concepts in genetics by taking part in a police investigation game. The activity, which we have called Recal, immerses students in a scientific-based scenario in which they play a role of a scientific assessor. Players have to develop and use scientific reasoning and…

  18. Using Peer Feedback to Improve Students' Scientific Inquiry

    Science.gov (United States)

    Tasker, Tammy Q.; Herrenkohl, Leslie Rupert

    2016-02-01

    This article examines a 7th grade teacher's pedagogical practices to support her students to provide peer feedback to one another using technology during scientific inquiry. This research is part of a larger study in which teachers in California and Washington and their classes engaged in inquiry projects using a Web-based system called Web of Inquiry. Videotapes of classroom lessons and artifacts such as student work were collected as part of the corpus of data. In the case examined, Ms. E supports her students to collectively define "meaningful feedback," thereby improving the quality of feedback that was provided in the future. This is especially timely, given the attention in Next Generation Science Standards to cross-cutting concepts and practices that require students discuss and debate ideas with each other in order to improve their understanding and their written inquiry reports (NGSS, 2013).

  19. Epistemology of scientific inquiry and computer-supported collaborative learning

    Science.gov (United States)

    Hakkarainen, Kai Pekka Juhani

    1998-12-01

    The problem addressed in the study was whether 10- and 11-year-old children, collaborating within a computer-supported classroom, could learn a process of inquiry that represented certain principal features of scientific inquiry, namely (1) engagement in increasingly deep levels of explanation, (2) progressive generation of subordinate questions, and (3) collaborative effort to advance explanations. Technical infrastructure for the study was provided by the Computer-Supported Intentional Learning Environments, CSILE. The study was entirely based on qualitative content analysis of students' written productions posted to CSILE's database. Five studies were carried out to analyze CSILE students' process of inquiry. The first two studies aimed at analyzing changes in CSILE students' culture of inquiry in two CSILE classrooms across a three-year period. The results of the studies indicate that the classroom culture changed over three years following the introduction of CSILE. The explanatory level of knowledge produced by the students became increasingly deeper in tracking from the first to third year representing the first principal feature of scientific inquiry. Moreover, between-student communication increasingly focused on facilitating advancement of explanation (the third principal feature). These effects were substantial only in one classroom; the teacher of this class provided strong pedagogical support and epistemological guidance for the students. Detailed analysis of this classroom's inquiry, carried out in the last three studies, indicated that with teacher's guidance the students were able to produce meaningful intuitive explanations as well as go beyond the functional and empirical nature of their intuitive explanations and appropriate theoretical scientific explanations (the first principal feature). Advancement of the students' inquiry appeared to be closely associated with generation of new subordinate questions (the second principal feature) and peer

  20. Comparing the perceptions of scientific inquiry between experts and practitioners

    Science.gov (United States)

    Gooding, Julia Terese Chembars

    The purpose of this study was to determine if there was a difference in the perception of scientific inquiry between experts and practitioners, and, if a difference was shown to exist, to analyze those perceptions in order to better understand the extent of that difference or gap. A disconnect was found between how experts and practitioners perceived scientific inquiry. The practitioners differed from both the experts and the literature in three key areas. First, although the teachers indicated that students would be manipulating materials, there was no direct reference to this manipulation actually being performed for the purpose of investigating. Second, the practitioners implied active physical engagement with materials, but they did not tie this to active mental engagement or direct involvement in their own learning. Third, teachers omitted their role in laying the foundation for inquiry. Though classroom teachers lacked a complete understanding of true inquiry and its place in the K-12 classroom, most of them actually believed they were practicing the art of teaching via inquiry. Additionally, two other points of interest arose. First, an examination of the national standards for a number of curricular areas established that the process skills of scientific inquiry are mirrored in those standards, implying that inquiry is not limited to the sciences. Second, a definition of inquiry was formulated based upon interviews with experts in the field. Although the literature and the experts were in unison in their definition, there was a disparity between the accepted definition and that provided by the teachers. The struggle for a comprehensive understanding of inquiry continues to this day. It might very well be that the concept still remains elusive partly because the teacher behaviors associated with it run counter to more traditional methods of instruction...methods that most teachers have experienced throughout their own educational careers. The most pervasive

  1. Contribution of Meta-Strategic Knowledge to Scientific Inquiry Learning

    Science.gov (United States)

    Ben-David, Adi; Zohar, Anat

    2009-01-01

    The aim of the present study is to explore the effects of Meta-strategic Knowledge (MSK) on scientific inquiry learning. MSK is a subcomponent of metacognition defined as general, explicit knowledge about thinking strategies. Following earlier studies that showed considerable effects of explicit instruction of MSK regarding the strategy of…

  2. Using the Internet to Develop Students' Capacity for Scientific Inquiry

    Science.gov (United States)

    Hsu, Ying-Shao

    2004-01-01

    In this study, an interactive process in a Web-based learning environment was planned for the cultivation of students' cooperative learning skills and capacity for scientific inquiry. Based on detailed analyses of students' computer protocols, interview protocols, and test scores, this project sought to analyze the changes in students' scientific…

  3. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    Science.gov (United States)

    Cakir, Mustafa

    their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.

  4. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    Science.gov (United States)

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  5. Re-Visions of Psychology: Feminism as a Paradigm of Scientific Inquiry.

    Science.gov (United States)

    Brownell, Arlene

    An intellectual revolution is described in which the logic-centered, value-free model that has served as the foundation for paradigms in psychology is being reevaluated. As part of the intellectual revolution, feminism is presented as a paradigm of scientific inquiry meeting Thomas Kuhn's definition. The question is posed of whether psychologists…

  6. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    OpenAIRE

    Jamie S. Foster; Lemus, Judith D.

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build c...

  7. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  8. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  9. Development and Validation of a Multimedia-based Assessment of Scientific Inquiry Abilities

    Science.gov (United States)

    Kuo, Che-Yu; Wu, Hsin-Kai; Jen, Tsung-Hau; Hsu, Ying-Shao

    2015-09-01

    The potential of computer-based assessments for capturing complex learning outcomes has been discussed; however, relatively little is understood about how to leverage such potential for summative and accountability purposes. The aim of this study is to develop and validate a multimedia-based assessment of scientific inquiry abilities (MASIA) to cover a more comprehensive construct of inquiry abilities and target secondary school students in different grades while this potential is leveraged. We implemented five steps derived from the construct modeling approach to design MASIA. During the implementation, multiple sources of evidence were collected in the steps of pilot testing and Rasch modeling to support the validity of MASIA. Particularly, through the participation of 1,066 8th and 11th graders, MASIA showed satisfactory psychometric properties to discriminate students with different levels of inquiry abilities in 101 items in 29 tasks when Rasch models were applied. Additionally, the Wright map indicated that MASIA offered accurate information about students' inquiry abilities because of the comparability of the distributions of student abilities and item difficulties. The analysis results also suggested that MASIA offered precise measures of inquiry abilities when the components (questioning, experimenting, analyzing, and explaining) were regarded as a coherent construct. Finally, the increased mean difficulty thresholds of item responses along with three performance levels across all sub-abilities supported the alignment between our scoring rubrics and our inquiry framework. Together with other sources of validity in the pilot testing, the results offered evidence to support the validity of MASIA.

  10. An Investigation into Teacher Support of Scientific Explanation in High School Science Inquiry Units

    Science.gov (United States)

    Hoffenberg, Rebecca

    The Framework for K-12 Science Education, the foundation for the Next Generation Science Standards, identifies scientific explanation as one of the eight practices "essential for learning science." In order to design professional development to help teachers implement these new standards, we need to assess students' current skill level in explanation construction, characterize current teacher practice surrounding it, and identify best practices for supporting students in explanation construction. This multiple-case study investigated teacher practice in eight high school science inquiry units in the Portland metro area and the scientific explanations the students produced in their work samples. T eacher Instructional Portfolios (TIPs) were analyzed with a TIP rubric based on best practices in teaching science inquiry and a qualitative coding scheme. Written scientific explanations were analyzed with an explanation rubric and qualitative codes. Relationships between instructional practices and explanation quality were examined. The study found that students struggle to produce high quality explanations. They have the most difficulty including adequate reasoning with science content. Also, teachers need to be familiar with the components of explanation and use a variety of pedagogical techniques to support students' explanation construction. Finally, the topic of the science inquiry activity should be strongly connected to the content in the unit, and students need a firm grasp of the scientific theory or model on which their research questions are based to adequately explain their inquiry results.

  11. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    Science.gov (United States)

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  12. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  13. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  14. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    Science.gov (United States)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  15. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  16. Implementing Web-Based Scientific Inquiry in Preservice Science Methods Courses

    Science.gov (United States)

    Bodzin, Alec M.

    2005-01-01

    This paper describes how the Web-based Inquiry for Learning Science (WBI) instrument was used with preservice elementary and secondary science teachers in science methods courses to enhance their understanding of Web-based scientific inquiry. The WBI instrument is designed to help teachers identify Web-based inquiry activities for learning science…

  17. The Power of Balance: Transforming Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2010-03-01

    Full Text Available The “power of balance” as conceived by Torbert represents an integral paradigm of principles, theory, and praxis. Deployed, the paradigm is one that can indeed inform and shape the development of self, society, and scientific inquiry. To explicate that fulsome vision, the book’s fifteen chapters develop the themes of three sections: Theory and Strategy, Heart and Practice, and Vision and Method. Here, we have excerpted from several chapters in Theory and Strategy, and from one chapter in Vision and Method. This means, of course, that we present but a small fraction of this integral classic, leaving out all of the rich, in-depth illustrations, including the author’s learning practice as he first attempted to enact the principles. Yet, we hope even this abbreviated form of The Power of Balance supports at least two goals: to offer deployable insights and practices for developing politics and the political; and to take root as part of a foundational canon for integral political thought, research, and praxis. How we readers deploy these principles in our own actions will determine the degree to which self, society, and scientific inquiry transform.

  18. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    Science.gov (United States)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student

  19. OPASS: An Online Portfolio Assessment and Diagnosis Scheme to Support Web-Based Scientific Inquiry Experiments

    Science.gov (United States)

    Su, Jun-Ming; Lin, Huan-Yu; Tseng, Shian-Shyong; Lu, Chia-Jung

    2011-01-01

    Promoting the development of students' scientific inquiry capabilities is a major learning objective in science education. As a result, teachers require effective assessment approaches to evaluate students' scientific inquiry-related performance. Teachers must also be able to offer appropriate supplementary instructions, as needed, to students.…

  20. Searching for a Common Ground--A Literature Review of Empirical Research on Scientific Inquiry Activities

    Science.gov (United States)

    Rönnebeck, Silke; Bernholt, Sascha; Ropohl, Mathias

    2016-01-01

    Despite the importance of scientific inquiry in science education, researchers and educators disagree considerably regarding what features define this instructional approach. While a large body of literature addresses theoretical considerations, numerous empirical studies investigate scientific inquiry on quite different levels of detail and also…

  1. Exploring English Language Learners (ELL) Experiences with Scientific Language and Inquiry within a Real Life Context

    OpenAIRE

    Algee, Lisa M.

    2012-01-01

    Abstract Exploring English Language Learners (ELL) Experiences with Scientific Language and Inquiry within a Real Life Context Lisa M. Algee English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by socioc...

  2. Enactment of Scientific Inquiry: Observation of Two Cases at Different Grade Levels in China Mainland

    Science.gov (United States)

    Wang, Lei; Zhang, Ronghui; Clarke, David; Wang, Weizhen

    2014-04-01

    Enactment of scientific inquiry in classroom has attracted a great attention of science educators around the world. In this study, we examined two competent teachers' (one Grade 9 chemistry teacher and one Grade 4 science teacher) enactment of scientific inquiry in selected teaching units to reveal the characteristics of enacted inquiry at different grade levels by analyzing lesson sequence videos. The coding schemes for enacted inquiry consist of ontological properties and instructional practices. Pre-topic and post-topic teacher interviews and the two teachers' responses to a questionnaire were adopted to identify the factors influencing teacher's enactment. The results indicate that the two case teachers' enactment involved a range of inquiry activities. The enacted inquiry at fourth-grade level covered all the inquiry elements, tending to engage students in the whole procedure of inquiry. The ninth-grade chemistry class placed emphasis on the elements "making plans" to solve problems in authentic context. Important factors influencing the enactment include teacher's understanding about scientific inquiry, textbooks, assessment, students and resource. Implications for inquiry enactment and instruction improvement have been provided.

  3. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  4. Teaching Nature of Scientific Inquiry in Chemistry: How Do German Chemistry Teachers Use Labwork to Teach NOSO?

    Science.gov (United States)

    Strippel, C. G.; Sommer, K.

    2015-01-01

    Learning about scientific inquiry (SI) is an important aspect of scientific literacy and there is a solid international consensus of what should be learned about it. Learning about SI comprises both the doing of science (process) and knowledge about the nature of scientific inquiry (NOSI). German reform documents promote inquiry generally but do…

  5. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    Science.gov (United States)

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  6. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    Science.gov (United States)

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  7. A Case Study of Increasing Vocational High School Teachers Practices in Designing Interdisciplinary Use of Scientific Inquiry in Curriculum Design

    Science.gov (United States)

    Chang, Yu-Liang; Wu, Huan-Hung

    2015-01-01

    The primary objective of this study was to determine how experience in learning to teach scientific inquiry using a practical approach affected teacher's attitudes, evaluations of use of inquiry and their actual design of inquiry based instruction. The methodology included the use an approach incorporating inquiry methodology combined with a…

  8. The Art of Teacher Talk: Examining Intersections of the Strands of Scientific Proficiencies and Inquiry

    Science.gov (United States)

    LeBlanc, Jennifer K.; Cavlazoglu, Baki; Scogin, Stephen C.; Stuessy, Carol L.

    2017-01-01

    This research examined how a teacher's discussion of the strands of scientific proficiencies changed over the course of an inquiry cycle as students engaged in a complex, technology-enhanced inquiry learning environment called "PlantingScience" (PS). Our research is descriptive in nature and attempts to deconstruct the complexity of…

  9. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  10. Promoting Student Development of Models and Scientific Inquiry Skills in Acid-Base Chemistry: An Important Skill Development in Preparation for AP Chemistry

    Science.gov (United States)

    Hale-Hanes, Cara

    2015-01-01

    In this study, two groups of 11th grade chemistry students (n = 210) performed a sequence of hands-on and virtual laboratories that were progressively more inquiry-based. One-half of the students did the laboratory sequence with the addition of a teacher-led discussion connecting student data to student-generated visual representations of…

  11. Promoting Student Development of Models and Scientific Inquiry Skills in Acid-Base Chemistry: An Important Skill Development in Preparation for AP Chemistry

    Science.gov (United States)

    Hale-Hanes, Cara

    2015-01-01

    In this study, two groups of 11th grade chemistry students (n = 210) performed a sequence of hands-on and virtual laboratories that were progressively more inquiry-based. One-half of the students did the laboratory sequence with the addition of a teacher-led discussion connecting student data to student-generated visual representations of…

  12. Analysis of the Actual Scientific Inquiries of Physicists I -- Focused on research motivation

    CERN Document Server

    Jang, J P K

    2005-01-01

    This study was investigated to understand the in-depth features and processes of physicists' scientific inquiries. At first, research motives were investigated by interviewing six physicists who were prominent worldwide. As a result, three main types - incompleteness, discovery, and conflict - and nine subtypes of research motivation, were identified. Six additional background factors were found which might affect the design and start of research. Based on these findings, implications for teaching scientific inquiries to students were discussed.

  13. Using Technology to Engage Preservice Elementary Teachers in Learning about Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    James R. MacArthur

    2011-01-01

    Full Text Available Elementary teachers are often required to teach inquiry in their classrooms despite having had little exposure to inquiry learning themselves. In a capstone undergraduate science course preservice elementary teachers experience scientific inquiry through the completion of group projects, activities, readings and discussion, in order to develop a sense of how inquiry learning takes place. At the same time, they learn science content necessary for teacher licensure. The course exposes students to different pathways of scientific discovery and to the use of the computer both as a tool for conducting inquiry-based investigations and as a means of collecting and sharing student opinions. The students involved have many misconceptions about science and it is often difficult for them to distinguish science from pseudoscience. Computer simulations are used to help students understand that difference. In addition, a classroom response system using “clickers” is used to poll studentopinions on controversial issues and to stimulate discussion.

  14. Interrogative Model of Inquiry and Computer-Supported Collaborative Learning.

    Science.gov (United States)

    Hakkarainen, Kai; Sintonen, Matti

    2002-01-01

    Examines how the Interrogative Model of Inquiry (I-Model), developed for the purposes of epistemology and philosophy of science, could be applied to analyze elementary school students' process of inquiry in computer-supported learning. Suggests that the interrogative approach to inquiry can be productively applied for conceptualizing inquiry in…

  15. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    Science.gov (United States)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  16. The Interrogative Model of Inquiry and Computer-Supported Collaborative Learning

    Science.gov (United States)

    Hakkarainen, Kai; Sintonen, Matti

    The purpose of the study was to examine how the Interrogative Modelof Inquiry (I-Model), developed by Jaakko Hintikka and Matti Sintonenfor the purposes of epistemology and philosophy of science, could be applied to analyze elementary schoolstudents'' process of inquiry in computer-supported learning. We review the basic assumptions of I-Model,report results of empirical investigation of the model in the context of computer-supportedcollaborative learning, and discuss pedagogical implications of the model. The results of the studyfurnished evidence that elementary school students were able to transform initially vagueexplanation-seeking question to a series of more specific subordinate questions while pursuing theirknowledge-seeking inquiry. The evidence presented indicates that, in an appropriate environment, it is entirelypossible for young students, with computer-supportfor collaborative learning, to engage in sophisticatedknowledge seeking analogous to scientific inquiry. We argue that the interrogative approach to inquiry canproductively be applied for conceptualizing inquiry in the context of computer-supported learning.

  17. Science by design: How teachers support scientific inquiry through design projects

    Science.gov (United States)

    Baumgartner, Eric James

    This dissertation explores the viability of engineering design contexts as venues for engaging students in scientific inquiry. Successful scientific inquiry is defined as generating productive research questions, planning comparative investigations, using evidence to reason about claims, and pursuing scientific explanations. I argue that design contexts offer several affordances for supporting student inquiry, but must be structured in certain ways to support inquiry successfully. I describe a particular instructional approach called inquiry through design (ITD) that is intended to support student inquiry within design contexts. This approach guided the development of several curricular modules and was iteratively refined over the course of several curricular trials. It uses introductory staging activities to provide background information and a motivating design challenge to encourage students to build and test their own design ideas. Design investigations are structured as scientific experiments, where students build and test a series of design variants in order to isolate the effect of particular variables. Finally, iterative redesign allows students to apply what they have learned to improve their designs and provides additional opportunities for students to engage in inquiry practices. To examine the impact and nature of ITD in classroom settings, I conducted three classroom studies. These studies, which detail student engagement in design and inquiry, provide evidence to show that students were able to engage successfully in challenging aspects of inquiry. The success of the inquiry through design approach is portrayed as a collaboration among the students, the teacher, and the instructional materials in specific classroom settings. I describe how the teacher shapes the classroom context and supports student inquiry during project work. I document and contextualize teachers' strategic decisions in terms of their experience, goals, and expectations for the

  18. Measuring the Level of Complexity of Scientific Inquiries: The LCSI Index

    Science.gov (United States)

    Eilam, Efrat

    2015-01-01

    The study developed and applied an index for measuring the level of complexity of full authentic scientific inquiry. Complexity is a fundamental attribute of real life scientific research. The level of complexity is an overall reflection of complex cognitive and metacognitive processes which are required for navigating the authentic inquiry…

  19. Exploring the Assessment of and Relationship between Elementary Students' Scientific Creativity and Science Inquiry

    Science.gov (United States)

    Yang, Kuay-Keng; Lin, Shu-Fen; Hong, Zuway-R; Lin, Huann-shyang

    2016-01-01

    The purposes of this study were to (a) develop and validate instruments to assess elementary students' scientific creativity and science inquiry, (b) investigate the relationship between the two competencies, and (c) compare the two competencies among different grade level students. The scientific creativity test was composed of 7 open-ended items…

  20. An investigation of the practice of scientific inquiry in secondary science and agriculture courses

    Science.gov (United States)

    Grady, Julie R.

    The purpose of this exploratory qualitative study was to investigate the practice of scientific inquiry in two secondary biology classes and one agriculture class from different schools in different communities. The focus was on teachers' interests and intentions for the students' participation in inquiry, the voices contributing to the inquiry, and students' opportunities to confront their conceptions of the nature of science (NOS). The Partnership for Research and Education in Plants (PREP) served as the context by providing students with opportunities to design and conduct original experiments to help elucidate the function(s) of a disabled gene in Arabidopsis thaliana . Transcripts of teacher and student semi-structured interviews, field notes of classroom observations and classroom conversations, and documents (e.g., student work, teacher handouts, school websites, PREP materials) were analyzed for evidence of the practice of scientific inquiry. Teachers were interested in implementing inquiry because of potential student learning about scientific research and because PREP supports course content and is connected to a larger scientific project outside of the school. Teachers' intentions regarding the implementation of inquiry reflected the complexity of their courses and the students' previous experiences. All inquiries were student-directed. The biology students' participation more closely mirrored the practice of scientists, while the agriculture students were more involved with the procedural display of scientific inquiry. All experiences could have been enhanced from additional knowledge-centered activities regarding scientific reasoning. No activities brought explicit attention to NOS. Biology activities tended to implicitly support NOS while the agriculture class activities tended to implicitly contradict NOS. Scientists' interactions contributed to implied support of the NOS. There were missed opportunities for explicit attention to NOS in all classes

  1. Using Scientific Inquiry to Teach Students about Water Quality

    Science.gov (United States)

    Puche, Helena; Holt, Jame

    2012-01-01

    This semi-guided inquiry activity explores the macroinvertebrate fauna in water sources affected by different levels of pollution. Students develop their ability to identify macroinvertebrates, compare aquatic fauna from different sources of water samples, evaluate water quality using an index, document and analyze data, raise questions and…

  2. Using Scientific Inquiry to Teach Students about Water Quality

    Science.gov (United States)

    Puche, Helena; Holt, Jame

    2012-01-01

    This semi-guided inquiry activity explores the macroinvertebrate fauna in water sources affected by different levels of pollution. Students develop their ability to identify macroinvertebrates, compare aquatic fauna from different sources of water samples, evaluate water quality using an index, document and analyze data, raise questions and…

  3. Effectiveness of a scaffolded approach for teaching students to design scientific inquiries

    Science.gov (United States)

    Gabel, Connie

    Teaching students to design their own science experiments has perplexed science educators for over a hundred years. Throughout the years, a number of approaches have been tried with little success. As the new millennium opens, current curriculum reform efforts are stressing science inquiry and science for all students, but methods for teaching science inquiry have remained elusive. Teaching science inquiry is a complex process that requires students to perform multiple tasks well in order for them to be able to conduct a meaningful scientific investigation. The merging of knowledge gained from the field of educational psychology with advancements made in pedagogy were found to be key factors in successfully teaching students to design their own scientific inquiries. The findings from this research study indicate that a scaffolded approach in all pedagogical aspects contributes to a successful performance from the students in designing their own scientific investigations. A schema using the following steps: question, prior knowledge, design of experiment, gathering data, analysis, and conclusion was found to be effective. Students also exhibited a gain in science inquiry skills and maintained a positive attitude toward science. This method was successful with both genders and both minority and non-minority students. A quasi-experimental research design with three independent variables: teaching method, gender, and ethnicity and three dependent variables: science inquiry skills, ability to design an experiment, and attitude toward science was utilized in this research study.

  4. Mapping to know: The effects of representational guidance and reflective assessment on scientific inquiry

    Science.gov (United States)

    Erdosne Toth, Eva; Suthers, Daniel D.; Lesgold, Alan M.

    2002-03-01

    This study documents an instructional methodology to teach a fundamental reasoning skill during scientific inquiry: the evaluation of empirical evidence against multiple hypotheses. Using the design experiment approach, with iterative cycles we developed an instructional framework that lends itself to authentic scientific inquiry by providing a nontraditional approach to three aspects of learning: the activities students are engaged in during scientific inquiry, the tools students use while constructing knowledge, and the assessment of learning outcomes. The present article focuses on the contribution of two components of this instructional framework: the effect of technology-based knowledge-representation tools and the effect of reflective assessment on learning to act and think scientifically. The technological tools of the framework allowed students to represent their developing knowledge of natural phenomena with either graphical mapping or with word-processed prose. The reflective assessment we used was a form of inquiry rubrics that provided clear expectations for optimal progress throughout the entire process of inquiry by indicating specific assessment criteria for the various components of scientific inquiry. The results indicated that in real-life-like classroom investigations designed to teach students how to evaluate data in relation to theories, the use of evidence mapping is superior to prose writing. Furthermore, this superior effect of evidence mapping was greatly enhanced by the use of reflective assessment throughout the inquiry process. Modes of representational guidance explain both the superior effect of evidence mapping as well as the discrepancy between the effects of explicit reflection on evidence mapping compared to prose writing. These results have fundamental implications for the development of cognitively-based classroom learning environments and for the design of further research on learning.

  5. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    Science.gov (United States)

    French, Debbie Ann

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.

  6. Leveraging Educational Data Mining for Real-Time Performance Assessment of Scientific Inquiry Skills within Microworlds

    Science.gov (United States)

    Gobert, Janice D.; Sao Pedro, Michael A.; Baker, Ryan S. J. D.; Toto, Ermal; Montalvo, Orlando

    2012-01-01

    We present "Science Assistments," an interactive environment, which assesses students' inquiry skills as they engage in inquiry using science microworlds. We frame our variables, tasks, assessments, and methods of analyzing data in terms of "evidence-centered design." Specifically, we focus on the "student model," the…

  7. Effectiveness of the scientific inquiry approach in teaching natural science to first-year college students in a Philippine university

    Science.gov (United States)

    Jimenez, Luzviminda Miano

    Student-centered approaches to learning are aligned with the Constructivist Model and have been the focus of much recent science education research in the United States. It is based on the premise that students learn better when they are actively engaged and given the opportunity to construct their own knowledge. In addition, the search continues for effective science curricular and pedagogical approaches that will provide adequate understanding of the nature of science and development of positive attitudes. This study investigated the effectiveness of the scientific inquiry approach, which is a student-centered style of teaching, in improving students' attitudes and understanding of the nature of science. The scientific inquiry approach was used in the teaching of Natural Science in a Philippine university. Pre- and post-surveys on attitude and views about science were administered to 767 first year college students enrolled in the course. The results of the surveys revealed significant differences in both students' views and their attitudes before and after instruction. The overall trend of respondents' answers was changed from a mixed-folk (unscientific) direction to a mixed-expert (scientific) direction. Thus, the study concludes that the scientific inquiry style of teaching makes a significant impact in changing or improving students' attitudes and understanding about the nature of science. This study also showed a positive correlation between students' views and their attitudes toward science.

  8. Predicting Students' Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables

    Science.gov (United States)

    Nehring, Andreas; Nowak, Kathrin H.; Belzen, Annette Upmeier zu; Tiemann, Rüdiger

    2015-06-01

    Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to investigate to which extent multiple student characteristics contribute to skills of scientific inquiry. Based on a theoretical framework describing nine epistemological acts, we constructed and administered a multiple-choice test that assesses these skills in lower and upper secondary school level (n = 780). The test items contained problem-solving situations that occur during chemical investigations in school and had to be solved by choosing an appropriate inquiry procedure. We collected further data on 12 cognitive, motivational, and sociodemographic variables such as conceptual knowledge, enjoyment of chemistry, or language spoken at home. Plausible values were drawn to quantify students' inquiry skills. The results show that students' characteristics predict their inquiry skills to a large extent (55%), whereas 9 out of 12 variables contribute significantly on a multivariate level. The influence of sociodemographic traits such as gender or the social background becomes non-significant after controlling for cognitive and motivational variables. Furthermore, the performance advance of students from upper secondary school level can be explained by controlling for cognitive covariates. We discuss our findings with regard to curricular aspects and raise the question whether the inquiry skills can be considered as an autonomous trait in science education research.

  9. Development and use of an instrument to measure scientific inquiry and related factors

    Science.gov (United States)

    Dunbar, Terry Frank

    The use of the scientific inquiry method of teaching science was investigated in one district's elementary schools. The study generated data directly from Albuquerque Public Schools fourth- and fifth-grade teachers through a mail-out survey and through observation. Two forms of an inquiry evaluation research instrument (Elementary Science Inquiry Survey - ESIS) were created. The ESIS-A is a classroom observation tool. The ESIS-B is a survey questionnaire designed to collect information from teachers. The study was designed first to establish reliability and validity for both forms of the instrument. The study made use of multiple regression and exploratory factor analysis. Sources used to establish the instruments' reliability and validity included: (1) Input from an international panel (qualitative analysis of comments sent by raters and quantitative analysis of numerical ratings sent by raters); (2) Cronbach's alpha; (3) Results of factor analysis; (4) Survey respondents' comments (qualitative analysis); (5) Teacher observation data. Cronbach's alpha for the data set was .8955. Inquiry practices were reported to occur between twice per week and three times per week. Teachers' comments regarding inquiry were reported. The ESIS was used to collect inquiry self-report data and teacher background data. The teacher background data included teacher science knowledge and information about their standards awareness and implementation. The following teacher knowledge factors were positively correlated with inquiry use: semesters of college science, science workshops taken, conducted scientific research, and SIMSE (NSF institute) participation. The following standards awareness and implementation factors were positively correlated with inquiry use: familiarity with the National Science Education Standards, familiarity with New Mexico science standards, state or national standards as a curriculum selection factor, student interest as a curriculum selection factor, and "no

  10. A Review of the Scientific Misconduct Inquiry Process, Ankara Chamber of Medicine, Turkey.

    Science.gov (United States)

    Gökçay, Banu; Arda, Berna

    2016-11-28

    The aim of this study is to review the inquiry process used in scientific misconduct cases in the Ankara Chamber of Medicine between the years 1998 and 2012. The violations of the "Disciplinary Regulations of the Turkish Medical Association" have been examined by keeping the names of the people, institutions, associations and journals secret. In total, 31 files have been studied and 11 of these files have been identified as related to scientific misconduct. The methods of inquiry, the decisions about the need for an investigation process, the types of scientific misconduct, and the adjudication processes have all been reported. Furthermore, the motives of researchers who made allegations, the study approaches of investigators, and the objections to the decisions about guilt and innocence have also been examined. Based on the findings obtained, the reasons for scientific misconduct and the distribution of responsibilities among the people in the inquiry process have been discussed. A major conclusion is the need to standardize the process of conducting inquiries about scientific misconduct cases for the regional chambers of medicine in Turkey.

  11. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    Science.gov (United States)

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-01-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an…

  12. High School Chemistry Students' Scientific Epistemologies and Perceptions of the Nature of Laboratory Inquiry

    Science.gov (United States)

    Vhurumuku, Elaosi

    2011-01-01

    This quantitative study investigated the relationship between Chemistry students' scientific epistemologies and their perceptions of the nature of laboratory inquiry. Seventy-two Advanced Level Chemistry students were surveyed. The students were sampled from twelve schools in three of Zimbabwe's nine administrative provinces. Students' scientific…

  13. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    Science.gov (United States)

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…

  14. A Context-Aware Ubiquitous Learning Approach to Conducting Scientific Inquiry Activities in a Science Park

    Science.gov (United States)

    Hwang, Gwo-Jen; Tsai, Chin-Chung; Chu, Hui-Chun; Kinshuk; Chen, Chieh-Yuan

    2012-01-01

    Fostering students' scientific inquiry competence has been recognised as being an important and challenging objective of science education. To strengthen the understanding of science theories or notations, researchers have suggested conducting some learning activities in the field via operating relevant devices. In a traditional infield scientific…

  15. The Texture of Educational Inquiry: An Exploration of George Herbert Mead's Concept of the Scientific.

    Science.gov (United States)

    Franzosa, Susan Douglas

    1984-01-01

    Explores the implications of Mead's philosophic social psychology for current disputes concerning the nature of the scientific in educational studies. Mead's contextualization of the knower and the known are found to be compatible with a contemporary critique of positivist paradigms and a critical reconceptualization of educational inquiry.…

  16. Primary pre-service teachers' skills in planning a guided scientific inquiry

    Science.gov (United States)

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2017-10-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive-interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

  17. Primary pre-service teachers' skills in planning a guided scientific inquiry

    Science.gov (United States)

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2016-08-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive-interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

  18. Bringing Scientific Inquiry Alive Using Real Grass Shrimp Research

    Science.gov (United States)

    Aultman, Terry; Curran, Mary Carla; Partridge, Michael

    2010-01-01

    This lesson was developed for middle school students using actual research on grass shrimp ("Palaemonetes pugio") to illustrate the process of a scientific investigation. The research was conducted at Savannah State University and funded by the National Oceanic and Atmospheric Administration (NOAA) Office of Education through the Living Marine…

  19. Bringing Scientific Inquiry Alive Using Real Grass Shrimp Research

    Science.gov (United States)

    Aultman, Terry; Curran, Mary Carla; Partridge, Michael

    2010-01-01

    This lesson was developed for middle school students using actual research on grass shrimp ("Palaemonetes pugio") to illustrate the process of a scientific investigation. The research was conducted at Savannah State University and funded by the National Oceanic and Atmospheric Administration (NOAA) Office of Education through the Living Marine…

  20. Exploring English Language Learners (ELL) experiences with scientific language and inquiry within a real life context

    Science.gov (United States)

    Algee, Lisa M.

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on student learning and science teaching for ELL. A qualitative, case study was used to explore students' learning experiences. Data from multiple sources was collected: student interviews, science letters, an assessment in another context, field-notes, student presentations, inquiry assessment, instructional group conversations, parent interviews, parent letters, parent homework, teacher-researcher evaluation, teacher-researcher reflective journal, and student ratings of learning activities. These data sources informed the following research questions: (1) Does participation in an out-of-school contextualized inquiry science project increase ELL use of scientific language? (2) Does participation in an out-of-school contextualized inquiry science project increase ELL understanding of scientific inquiry and their motivation to learn? (3) What are parents' funds of knowledge about the local ecology and does this inform students' experiences in the science project? All data sources concerning students were analyzed for similar patterns and trends and triangulation was sought through the use of these data sources. The remaining data sources concerning the teacher-researcher were used to inform and assess whether the pedagogical and research practices were in alignment with the proposed theoretical framework. Data sources concerning parental participation accessed funds of knowledge, which informed the curriculum in order to create continuity and connections between home and school. To ensure accuracy in the researchers' interpretations of student and parent responses during interviews, member checking was employed. The findings

  1. An Inquiry-Based Laboratory Module to Promote Understanding of the Scientific Method and Bacterial Conjugation

    Directory of Open Access Journals (Sweden)

    Melanie B. Berkmen

    2014-08-01

    Full Text Available Students are engaged and improve their critical thinking skills in laboratory courses when they have the opportunity to design and conduct inquiry-based experiments that generate novel results. A discovery-driven project for a microbiology, genetics, or multidisciplinary research laboratory course was developed to familiarize students with the scientific method. In this multi-lab module, students determine whether their chosen stress conditions induce conjugation and/or cell death of the model BSL-1 Gram-positive bacterium Bacillus subtilis. Through consultation of the primary literature, students identify conditions or chemicals that can elicit DNA damage, the SOS response, and/or cellular stress.  In groups, students discuss their selected conditions, develop their hypotheses and experimental plans, and formulate their positive and negative controls. Students then subject the B. subtilis donor cells to the stress conditions, mix donors with recipients to allow mating, and plate serial dilutions of the mixtures on selective plates to measure how the treatments affect conjugation frequency and donor cell viability.  Finally, students analyze and discuss their collective data in light of their controls. The goals of this module are to encourage students to be actively involved in the scientific process while contributing to our understanding of the conditions that stimulate horizontal gene transfer in bacteria.

  2. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices Within an E-Learning Environment

    Science.gov (United States)

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-02-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n = 26), which received an inquiry-based curriculum with a combination of cognitive and metacognitive prompts, was compared to the other class, the comparison group (n = 25), which received only cognitive prompts in the same curriculum. Data sources included a test of inquiry practices, a questionnaire of metacognition, and worksheets. The results showed that the mixed cognitive and metacognitive prompts had significant impacts on the students' inquiry practices, especially their planning and analyzing abilities. Furthermore, the mixed prompts appeared to have a differential effect on those students with lower level metacognition, who showed significant improvement in their inquiry abilities. A combination of cognitive and metacognitive prompts during an inquiry cycle was found to promote students' inquiry practices.

  3. Unraveling the development of scientific literacy: Domain-specific inquiry support in a system of cognitive and social interactions

    Science.gov (United States)

    Tabak, Iris Ellen

    The goal of this dissertation was to study how to harness technological tools in service of establishing a climate of inquiry in science classrooms. The research is a design experiment drawing on sociocultural and cognitive theory. As part of the BGuILE project, I developed software to support observational research of natural selection, and a complementary high school unit on evolution. Focusing on urban schools, I employed interpretive methods to examine learning as it unfolds in the classroom. I present design principles for realizing a climate of inquiry in technology-infused classrooms. This research contributes to technology design, teaching practice and educational and cognitive research. My pedagogical approach, Domain-Specific Strategic Support (DSSS), helps students analyze and synthesize primary data by making experts' considerations of content knowledge explicit. Students query data by constructing questions from a selection of comparison and variable types that are privileged in the domain. Students organize their data according to evidence categories that comprise a natural selection argument. I compared the inquiry process of contrastive cases: an honor group, a regular group and a lower track group. DSSS enabled students at different achievement levels to set up systematic comparisons, and construct empirically-based explanations. Prior knowledge and inquiry experience influenced spontaneous strategy use. Teacher guidance compensated for lack of experience, and enabled regular level students to employ strategies as frequently as honor students. I extend earlier research by proposing a taxonomy of both general and domain-specific reflective inquiry strategies. I argue that software, teacher and curriculum work in concert to sustain a climate of inquiry. Teachers help realize the potential that technological tools invite. Teachers reinforce software supports by encouraging students utilize technological tools, and by modeling their use. They also

  4. Science Inquiry as Knowledge Transformation: Investigating Metacognitive and Self-regulation Strategies to Assist Students in Writing about Scientific Inquiry Tasks

    Science.gov (United States)

    Collins, Timothy A.

    2011-12-01

    Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry

  5. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices within an E-Learning Environment

    Science.gov (United States)

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-01-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n?=?26), which received an inquiry-based curriculum with a combination of cognitive and…

  6. The Effects of Inquiry-Based Computer Simulation with Cooperative Learning on Scientific Thinking and Conceptual Understanding of Gas Laws

    Science.gov (United States)

    Abdullah, Sopiah; Shariff, Adilah

    2008-01-01

    The purpose of the study was to investigate the effects of inquiry-based computer simulation with heterogeneous-ability cooperative learning (HACL) and inquiry-based computer simulation with friendship cooperative learning (FCL) on (a) scientific reasoning (SR) and (b) conceptual understanding (CU) among Form Four students in Malaysian Smart…

  7. The Effects of Metacognitive Instruction Embedded within an Asynchronous Learning Network on Scientific Inquiry Skills. Research Report

    Science.gov (United States)

    Zion, Michal; Michalsky, Tova; Mevarech, Zemira R.

    2005-01-01

    The study is aimed at investigating the effects of four learning methods on students' scientific inquiry skills. The four learning methods are: (a) metacognitive-guided inquiry within asynchronous learning networked technology (MINT); (b) an asynchronous learning network (ALN) with no metacognitive guidance; (c) metacognitive-guided inquiry…

  8. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  9. Scientific research and human rights: a response to Kitcher on the limitations of inquiry.

    Science.gov (United States)

    Victor, Elizabeth

    2014-12-01

    In his recent work exploring the role of science in democratic societies Kitcher (Science in a democratic society. Prometheus Books, New York, 2011) claims that scientists ought to have a prominent role in setting the agenda for and limits to research. Against the backdrop of the claim that the proper limits of scientific inquiry is John Stuart Mill’s Harm Principle (Kitcher in Science, truth, and democracy. Oxford University Press, New York, 2001), he identifies the limits of inquiry as the point where the outcomes of research could cause harm to already vulnerable populations. Nonetheless, Kitcher argues against explicit limitations on unscrupulous research on the grounds that restrictions would exacerbate underlying social problems. I show that Kitcher’s argument in favor of dissuading inquiry through conventional standards is problematic and falls prey to the same critique he offers in opposition to official bans. I expand the conversation of limiting scientific research by recognizing that the actions that count as ‘science’ are located in the space between ‘thinking’ and ‘doing’. In this space, we often attempt to balance freedom of research, as scientific speech, against the disparate impact citizens might experience in light of such research. I end by exploring if such disparate impact justifies limiting research, within the context of the United States, under Title VII of the Civil Rights Act of 1964 or under international human rights standards more generally.

  10. Using Science Teaching Case Narratives to Evaluate the Level of Acceptance of Scientific Inquiry Teaching in Preservice Elementary Teachers

    Science.gov (United States)

    Wagler, Ron

    2010-03-01

    The National Science Education Standards have outlined flexible processes children perform when engaging in scientific inquiry. Cases narratives are a common component of many university science education courses but rarely are they used as a tool to evaluate the preservice teachers within these courses. This article describes the construction of a positive and negative science teaching case narrative. These case narratives can be used to evaluate the level of acceptance of scientific inquiry teaching in preservice elementary teachers.

  11. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    Science.gov (United States)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  12. Developing students' understanding of scientific modeling

    Science.gov (United States)

    Schwarz, Christine Virginia

    Teaching students to create and use scientific models as well as to understand their nature has become an increasingly important goal in science education. This thesis reports on the evaluation of the Model-Enhanced ThinkerTools curriculum, a ten and a half week physics curriculum designed to develop students' understanding of scientific modeling. In the curricular trials, eight classes of seventh grade students participated in model-oriented activities such as creating non-Newtonian computer microworlds to embody their conceptual models of force and motion, evaluating the accuracy and plausibility of their models, and reflecting on the nature of models. Analysis of pre- and post-curricular assessments as well as student research books, project reports, and in-depth interviews indicate that students had a significantly better understanding of the nature and utility of models after completing the Model-Enhanced ThinkerTools curriculum. Students also gained an understanding of a number of processes for developing and evaluating models. While interacting with the software and engaging in reflective discussions about the nature of models, students learned that models can include abstract representations and that models are useful for predicting events and testing ideas. Students also demonstrated sophisticated understanding of models in their interviews several months after the curriculum, particularly about the nature and. utility of models. Further, the curriculum developed students' conceptual models of force and motion as well as their inquiry skills and epistemological beliefs about the nature of scientific knowledge and learning. Correlations among the four pre/post curricular assessments suggest that modeling knowledge may play a role in the acquisition of the other types of knowledge. These results indicate that, while modeling knowledge may be difficult to develop, progress can be made by engaging students in generating and reflecting on the nature of models

  13. A Descriptive Study of Pre-Service Science Teachers' Conceptual Understanding of Scientific Inquiry using Concept Maps

    Science.gov (United States)

    Zak, Kevin M.

    Future science teachers serve a critical role in creating a scientifically literate citizenry. Their knowledge and understanding of the process by which science works, scientific inquiry, is fundamental to this goal of science education. This descriptive research study investigated pre-service secondary science teachers' conceptual understanding of scientific inquiry using concept maps. Thirty participants constructed concept maps describing the interrelationships among twelve scientific inquiry concepts. The concept maps were analyzed to determine how participants structured, organized, associated, and described the relationships between these concepts. The majority of participants did organize and associate a chain of inquiry concepts with one another into a scientific method series. Participants displayed an overall low number of associations between the twelve inquiry concepts. Of the concept pairs that were associated with one another, there was a lack of consistency in the linking words used to describe the relationship between them. Implications for science educators in the development and design of teaching about inquiry in pre-service teacher education programs and professional development opportunities are examined. Recommendations for further study into the conceptual understanding of beginning science teachers are also discussed.

  14. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  15. Designing a Web-Based Science Learning Environment for Model-Based Collaborative Inquiry

    Science.gov (United States)

    Sun, Daner; Looi, Chee-Kit

    2013-01-01

    The paper traces a research process in the design and development of a science learning environment called WiMVT (web-based inquirer with modeling and visualization technology). The WiMVT system is designed to help secondary school students build a sophisticated understanding of scientific conceptions, and the science inquiry process, as well as…

  16. Developing Multimedia-assisted Inquiry Learning Instruments for Basic Biology Intended to Foster Students’ Scientific Inquiry

    Science.gov (United States)

    Cahyani, R.

    2017-04-01

    Seasonal Influenza is one of disease that outbreaks periodically at least once every year. This disease caused many people hospitalized. Many hospitalized people as employers would infect production quantities, distribution time, and some economic aspects. It will infect economic growth. Infected people need treatments to reduce infection period and cure the infection. In this paper, we discussed a mathematical model of seasonal influenza with treatment. Factually, the disease was held in short period, less than one year. Hence, we can assume that the population is constant at the disease outbreak time. In this paper, we analyzed the existence of the equilibrium points of the model and their stability. We also give some simulation to give a geometric image about the results of the analysis process.

  17. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    Science.gov (United States)

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research…

  18. Toward Pragmatically Naturalized Transcendental Philosophy of Scientific Inquiry And Pragmatic Scientific Realism

    Directory of Open Access Journals (Sweden)

    Sami Pihlström

    2012-12-01

    Full Text Available This paper seeks to show that the turn toward local scientific practices in the philosophy of science is not a turn away from transcendental investigations. On the contrary, a pragmatist approach can very well be (reconnected with Kantian transcendental examination of the necessary conditions for the possibility of scientific representation and cognition, insofar as the a priori conditions that transcendental philosophy of science examines are understood as historically relative and thus potentially changing. The issue of scientific realism will be considered from this perspective, with special emphasis on Thomas Kuhn's conception of paradigms as frameworks making truth-valued scientific statements possible and on Charles S. Peirce's realism about "real generals".

  19. Integrated argument-based inquiry with multiple representation approach to promote scientific argumentation skill

    Science.gov (United States)

    Suminar, Iin; Muslim, Liliawati, Winny

    2017-05-01

    The purpose of this research was to identify student's written argument embedded in scientific inqury investigation and argumentation skill using integrated argument-based inquiry with multiple representation approach. This research was using quasi experimental method with the nonequivalent pretest-posttest control group design. Sample ot this research was 10th grade students at one of High School in Bandung using two classes, they were 26 students of experiment class and 26 students of control class. Experiment class using integrated argument-based inquiry with multiple representation approach, while control class using argument-based inquiry. This study was using argumentation worksheet and argumentation test. Argumentation worksheet encouraged students to formulate research questions, design experiment, observe experiment and explain the data as evidence, construct claim, warrant, embedded multiple modus representation and reflection. Argumentation testinclude problem which asks students to explain evidence, warrants, and backings support of each claim. The result of this research show experiment class students's argumentation skill performed better than control class students that of experiment class was 0.47 and control class was 0.31. The results of unequal variance t-test for independent means show that students'sargumentationskill of experiment class performed better significantly than students'sargumentationskill of control class.

  20. Teacher argumentation in the secondary science classroom: Images of two modes of scientific inquiry

    Science.gov (United States)

    Gray, Ron E.

    The purpose of this exploratory study was to examine scientific arguments constructed by secondary science teachers during instruction. The analysis focused on how arguments constructed by teachers differed based on the mode of inquiry underlying the topic. Specifically, how did the structure and content of arguments differ between experimentally and historically based topics? In addition, what factors mediate these differences? Four highly experienced high school science teachers were observed daily during instructional units for both experimental and historical science topics. Data sources include classroom observations, field notes, reflective memos, classroom artifacts, a nature of science survey, and teacher interviews. The arguments were analyzed for structure and content using Toulmin's argumentation pattern and Walton's schemes for presumptive reasoning revealing specific patterns of use between the two modes of inquiry. Interview data was analyzed to determine possible factors mediating these patterns. The results of this study reveal that highly experienced teachers present arguments to their students that, while simple in structure, reveal authentic images of science based on experimental and historical modes of inquiry. Structural analysis of the data revealed a common trend toward a greater amount of scientific data used to evidence knowledge claims in the historical science units. The presumptive reasoning analysis revealed that, while some presumptive reasoning schemes remained stable across the two units (e.g. 'causal inferences' and 'sign' schemes), others revealed different patterns of use including the 'analogy', 'evidence to hypothesis', 'example', and 'expert opinion' schemes. Finally, examination of the interview and survey data revealed five specific factors mediating the arguments constructed by the teachers: view of the nature of science, nature of the topic, teacher personal factors, view of students, and pedagogical decisions. These

  1. Learning genetic inquiry through the use, revision, and justification of explanatory models

    Science.gov (United States)

    Cartier, Jennifer Lorraine

    Central to the process of inquiry in science is the construction and assessment of models that can be used to explain (and in some cases, predict) natural phenomena. This dissertation is a qualitative study of student learning in a high school biology course that was designed to give students opportunities to learn about genetic inquiry in part by providing them with authentic experiences doing inquiry in the discipline. With the aid of a computer program that generates populations of "fruit flies", the students in this class worked in groups structured like scientific communities to build, revise, and defend explanatory models for various inheritance phenomena. Analysis of the ways in which the first cohort of students assessed their inheritance models revealed that all students assessed models based upon empirical fit (data/model match). However, in contrast to the practice of scientists and despite explicit instruction, students did not consistently apply conceptual assessment criteria to their models. That is, they didn't seek consistency between underlying concepts or processes in their models and those of other important genetic models, such as meiosis. This is perhaps in part because they lacked an understanding of models as conceptual rather than physical entities. Subsequently, the genetics curriculum was altered in order to create more opportunities for students to address epistemological issues associated with model assessment throughout the course. The second cohort of students' understanding of models changed over the nine-week period: initially the majority of students equated scientific models with "proof" (generally physical) of "theories"; at the end of the course, most students demonstrated understanding of the conceptual nature of scientific models and the need to justify such knowledge according to both its empirical utility and conceptual consistency. Through model construction and assessment (i.e. scientific inquiry), students were able to

  2. Empirical grounding of the nature of scientific inquiry: A study of developing researchers

    Science.gov (United States)

    Stucky, Amy Preece

    This work uses grounded theory methodology for developing theory about the nature of authentic scientific inquiry that occurs on a day-to-day basis in an academic research laboratory. Symbolic interaction and situated learning provide a theoretical framework. Data were collected from field notes, over 100 hours of videotape of researchers working in a chemical research laboratory, and interviews with participants. The phenomena of a research laboratory suggest that authentic daily work stretches scientists in three learning modalities: cognitive, affective and motivational beliefs and goals, which influence action to promote learning. A laboratory's line of research is divided into individual, thematic projects. Researchers are enabled in a specialized laboratory environment with sets of unique artifacts, substances, people and theoretical concepts to facilitate production of significant research goals. The work itself consists of chemical and mechanical processes facilitated by human actions, appropriate mental states, and theoretical explanations. The cognitive, affective (emotional), and conative (motivational) stretching then leads to explicit learning as well as implicit learning in the gain of experience and tacit knowledge. Implications of these findings about the nature of authentic scientific research on a day-to-day basis are applied to inquiry in science education in undergraduate and graduate education.

  3. Listening into the Dark: An Essay Testing the Validity and Efficacy of Collaborative Developmental Action Inquiry for Describing and Encouraging Transformations of Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2013-06-01

    Full Text Available Collaborative Developmental Action Inquiry (CDAI is introduced as a meta-paradigmatic approach to social science and social action that encompasses seven other more familiar paradigms (e.g., Behaviorism, Empirical Positivism, and Postmodern Interpretivism and that triangulates among third-person, objectivity-seeking social scientific inquiry, second-person, transformational, mutuality-seeking political inquiry, and first-person, adult, spiritual inquiry and consciousness development in the emerging present. CDAI tests findings, not only against third-person criteria of validity as do quantitative, positivist studies and qualitative, interpretive studies, but also against first- and second-person criteria of validity, as well as criteria of efficacy in action. CDAI introduces the possibility of treating, not just formal third-person studies, but any and all activities in one’s daily life in an inquiring manner. The aim of this differently-scientific approach is not only theoretical, generalizable knowledge, but also knowledge that generates increasingly timely action in particular cases in the relationships that mean the most to the inquirer. To illustrate and explain why the CDAI approach can explain unusually high percentages of the variance in whether or not organizations actually transform, all three types of validity-testing are applied to a specific study of intended transformation in ten organizations. The ten organization study found that adding together the performance of each organization’s CEO and lead consultant pn a reliable, well-validated measure of developmental action-logic, predicted 59% of the variance, beyond the .01 level, in whether and how the organization transformed (as rated by three scorers who achieved between .90 and 1.0 reliability. The essay concludes with a comparison between the Empirical Positivist paradigm of inquiry and the Collaborative Developmental Action Inquiry paradigm.

  4. Using online media to promote scientific discourse and support science inquiry learning and teaching of practicing elementary teachers

    Science.gov (United States)

    Accalogoun, Lea Brigitte

    The purpose of this study was to investigate the extent to which the use of online media to engage practicing elementary teachers in scientific discourse supports their learning to teach inquiry-based science. Twenty-eight practicing elementary teachers enrolled in 4 weeks of intensive graduate elementary science methods were involved in the study. The teachers were provided with opportunities to experience inquiry-based activities, develop good explanations for their claims, and engage in online discourse for negotiations of ideas concerning the claims. The findings reported a significant improvement (p portfolios showed that most participants, prior to the online use, had difficulty in developing good arguments for discussion. The results of the study supported a correlation between teachers' improvement in beliefs about science inquiry and science inquiry teaching and their planning to carry out inquiry-based science in the classroom. This study provides insights about the challenges of helping elementary teachers to engage in science inquiry beyond the initial stages of question posing, data collection and analysis, and drawing conclusions---they need to also engage in sharing results, peer review, and revision of outcomes. The study describes challenges of using online resources to support the process of scientific argumentation and offers suggestions for the design of online portfolios and teacher development activities using online interactions.

  5. Creating A Culture Of Scientific Inquiry Through Research Experiences For Teachers And Students

    Science.gov (United States)

    Kanjorski, N.; Hall, M.

    2006-12-01

    Creating A Culture Of Scientific Inquiry (CACOSI) is a National Science Foundation funded pilot project designed to help middle and high school teachers and students achieve a scientific understanding of their world through authentic short and long-term classroom and field research experiences. Throughout the past year CACOSI had reached out to several Northern New Mexico minority-serving schools to implement inquiry- based projects in 6th, 7th, and 8th grade classrooms such as weather, earthquake, and schoolyard ecosystem monitoring. Professional scientists were also introduced into the classroom to act as teachers and mentors of the science process and help expose students to scientific career opportunities. Additionally, CACOSI has developed a one-week residential Summer Science Camp to introduce the students and teachers to hands-on Earth and environmental science investigations with the assistance of professional scientists in the field. Development of this camp significantly strengthened and expanded the partnerships that have been created over the past three years and will allow us to expand the CACOSI project to include more field-based exploration during the 2006-2007 school year across two school systems. Throughout this project we have found that consistent teacher support is required to implement authentic research projects in the classroom. The summer science camp was particularly helpful to the teachers in developing their comfort with the inherent unpredictability of hands-on field research projects. This year we are working with the schools to take the students and teachers out of the classroom setting into the field for one day each month with professional scientists' assistance. This will allow us to explore more intensive field investigations and overcome some of the barriers created by the classroom structure and schedule.

  6. Teaching Nature of Scientific Inquiry in Chemistry: How do German chemistry teachers use labwork to teach NOSI?

    Science.gov (United States)

    Strippel, C. G.; Sommer, K.

    2015-12-01

    Learning about scientific inquiry (SI) is an important aspect of scientific literacy and there is a solid international consensus of what should be learned about it. Learning about SI comprises both the doing of science (process) and knowledge about the nature of scientific inquiry (NOSI). German reform documents promote inquiry generally but do not equally address these two sides of inquiry. This study explores how teachers incorporate learning about SI into laboratory work in the Chemistry classroom. Semi-structured interviews were conducted with 14 secondary school Chemistry teachers (8 of them holding a Ph.D. in Chemistry) from Germany. The results indicate that teaching NOSI is not a primary goal for teachers. Still, some aspects of NOSI seem to be more easily incorporated in the Chemistry classroom, for example, critical testing and hypothesis and prediction. Teachers state 2 main criteria to identify suitable chemical laboratory work for teaching NOSI: adaptable parameters and low level of required content knowledge. Surprisingly, differences can be found between Ph.D. and non-Ph.D. teachers' views on teaching inquiry. The findings of this study can be used to (a) select opportunities for targeted research on teaching NOSI in the Chemistry classroom, (b) inform curriculum material development and (c) give impetus to science teacher education and professional development.

  7. Just Do It? Impact of a Science Apprenticeship Program on High School Students' Understandings of the Nature of Science and Scientific Inquiry.

    Science.gov (United States)

    Bell, Randy L.; Blair, Lesley M.; Crawford, Barbara A.; Lederman, Norman G.

    2003-01-01

    Explicates the impact of an 8-week science apprenticeship program on a group of high-ability secondary students' understanding of the nature of science and scientific inquiry. Reports that although most students did appear to gain knowledge about the process of scientific inquiry, their conceptions about key aspects of the nature of science…

  8. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    Science.gov (United States)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of

  9. Inquiry

    DEFF Research Database (Denmark)

    Alrø, Helle; Johnsen-Høines, Marit

    2012-01-01

    in inquiring questions, and what other ways of communicating may have an inquiring function in learning conversations? The intention is to develop and frame the concept of ’inquiry’ in learning conversations, and this is the focus of analysis of an authentic classroom situation, where teacher and pupils......This article discusses what inquiry conversations could mean when learning mathematics.3 Referring to Gadamar’s distinction of true and apparent questions it is discussed what it takes to be inquiring and if this attitude necessarily includes posing questions. Which qualities are expressed...... are exploring the concept of ’volume’. Further, this analysis informs a discussion of listening as an important element of an inquiring learning conversation....

  10. Effect of Technology-Embedded Scientific Inquiry on Senior Science Student Teachers' Self-Efficacy

    Science.gov (United States)

    Calik, Muammer

    2013-01-01

    The aim of this study was to investigate the effect of technology-embedded scientific inquiry (TESI) on senior science student teachers' (SSSTs) self-efficacy. The sample consisted of 117 SSSTs (68 females and 49 males aged 21-23 years) enrolled in an Environmental Chemistry elective course. Within a quasi-experimental design, the…

  11. Effect of Technology-Embedded Scientific Inquiry on Senior Science Student Teachers' Self-Efficacy

    Science.gov (United States)

    Calik, Muammer

    2013-01-01

    The aim of this study was to investigate the effect of technology-embedded scientific inquiry (TESI) on senior science student teachers' (SSSTs) self-efficacy. The sample consisted of 117 SSSTs (68 females and 49 males aged 21-23 years) enrolled in an Environmental Chemistry elective course. Within a quasi-experimental design, the…

  12. Mendelian Genetics as a Platform for Teaching about Nature of Science and Scientific Inquiry: The Value of Textbooks

    Science.gov (United States)

    Campanile, Megan F.; Lederman, Norman G.; Kampourakis, Kostas

    2015-01-01

    The purpose of this study was to analyze seven widely used high school biology textbooks in order to assess the nature of science knowledge (NOS) and scientific inquiry (SI) aspects they, explicitly or implicitly, conveyed in the Mendelian genetics sections. Textbook excerpts that directly and/or fully matched our statements about NOS and SI were…

  13. The New Chemistry Curriculum is Inseparable from Scientific Inquiry%化学新课改离不开科学探究

    Institute of Scientific and Technical Information of China (English)

    周静玲

    2014-01-01

    The best way to learn science is involved in scientific inquiry. Scientific inquiry is based,learning science is the central link of scientific inquiry. Students explore the development of science and scientific literacy plays an irreplaceable role.%学习科学的最好方法就是参与科学探究。科学是以探究为基础的,学科学的中心环节就是科学探究。科学探究对发展学生科学素养具有不可替代的作用。

  14. From Scientific Practice to High School Science Classrooms: Transfer of Scientific Technologies and Realizations of Authentic Inquiry

    Science.gov (United States)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2011-01-01

    The Biology Workbench (BW) is a web-based tool enabling scientists to search a wide array of protein and nucleic acid sequence databases with integrated access to a variety of analysis and modeling tools. The present study examined the development of this scientific tool and its consequent adoption into the context of high school science teaching…

  15. From Scientific Practice to High School Science Classrooms: Transfer of Scientific Technologies and Realizations of Authentic Inquiry

    Science.gov (United States)

    Waight, Noemi; Abd-El-Khalick, Fouad

    2011-01-01

    The Biology Workbench (BW) is a web-based tool enabling scientists to search a wide array of protein and nucleic acid sequence databases with integrated access to a variety of analysis and modeling tools. The present study examined the development of this scientific tool and its consequent adoption into the context of high school science teaching…

  16. Building scientific literacy/(ies): A cross-case analysis of how multimodal representations are used to make meaning during scientific inquiry

    Science.gov (United States)

    Shannon, Christa L.

    This study used a Social Semiotic framework to describe the nature of multimodal textual representations created by fourth grade students in a small rural Texas school district south of Dallas in order to answer the question: What is the nature of the multimodal textual representations created by fourth grade students during the scientific inquiry process? Results of the cross case-analysis of the students' digitally recorded reflections, their multimodal representations, and my field notes and personal reflections as a teacher-researcher were indicative of five major themes. Representations created by the students: (a) were supported by scientific learning communities; (b) demonstrated varying abilities to collect both qualitative and quantitative observations; (c) utilized a variety of graphic organizers to communicate/represent scientific information; (d) were influenced by previous instruction and experience; and (e) showed development over time. These findings suggested the need for changes in the learning environment and pedagogy of science as teachers provide environments that support the development of learning communities; provide multiple opportunities for students to make both qualitative and quantitative observations during scientific inquiry; provide explicit instruction into the semiotic tools used by professional scientists to communicate/represent meaning; and allow students the opportunity to reflect, critique, and discuss their representations so that they can learn to be more competent and fluent representors of scientific knowledge. Recommendations for future research included: learning more about the way learning communities scaffold the learning process during scientific inquiry; understanding the best practices for helping students to learn how to make qualitative and quantitative observations of the world around them; describing the best practices for teaching students to be multimodal designers of scientific knowledge;examining the effect

  17. Inquiry based learning as didactic model in distant learning

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.

    2015-01-01

    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves quest

  18. Transforming Scientific Inquiry: Tapping Into Digital Data by Building a Culture of Transparency and Consent.

    Science.gov (United States)

    Smith, Robert J; Grande, David; Merchant, Raina M

    2016-04-01

    With over 1.7 billion individuals engaged in social media, patients and consumers share more about their lives than ever before through wearable devices, smartphone applications, and social media outlets. This cornucopia of data offers significant opportunity for health researchers and clinicians to track and explore how digital presence contributes to patients' health outcomes and use of health care resources. While patients readily share their information with online communities, it is imperative that they maintain a sense of autonomy over who has access to such data. Recent data breaches of major insurance companies and retailers illustrate the challenges and vulnerabilities related to information safety and privacy. Many Web sites and mobile apps require users to agree to data policies, but how those data are mined, protected, used, and externally shared is frequently nontransparent, resulting in a climate of fear and distrust around all forums of digital information sharing. Although such skepticism is perhaps justified, it should not deter health researchers from attempting to collect and analyze these novel data for the purpose of designing unique health interventions. By clarifying intent around digital data acquisition, simplifying consent procedures, and affirming a commitment to privacy, the authors contend that health researchers can partner with patients to transform the boundaries of scientific inquiry.

  19. Steps to Opening Scientific Inquiry: Pre-Service Teachers' Practicum Experiences with a New Support Framework

    Science.gov (United States)

    Rees, Carol; Pardo, Richard; Parker, Jennifer

    2013-01-01

    This qualitative multiple-comparative case study investigates (1) The reported experiences and impressions of four pre-service teachers (PTs) on practicum placement in four different classrooms (grades 1-9) where a new Steps to Inquiry (SI) framework was being utilized to support students conducting open inquiry; (2) The relative dispositions of…

  20. Inquiry-Based Learning and the Flipped Classroom Model

    Science.gov (United States)

    Love, Betty; Hodge, Angie; Corritore, Cynthia; Ernst, Dana C.

    2015-01-01

    The flipped classroom model of teaching can be an ideal venue for turning a traditional classroom into an engaging, inquiry-based learning (IBL) environment. In this paper, we discuss how two instructors at different universities made their classrooms come to life by moving the acquisition of basic course concepts outside the classroom and using…

  1. IMPLEMENTATION OF LEVELS OF INQUIRY ON SCIENCE LEARNING TO IMPROVE JUNIOR HIGH SCHOOL STUDENT’S SCIENTIFIC LITERACY

    Directory of Open Access Journals (Sweden)

    M. K. Arief

    2015-07-01

    Full Text Available Scientific literacy is the key learning  outcomes for all students. Based on observation, scientific literacy of student is less facilitated in science  learning.  Learning of levels of inquiry is one of  solution alternative to increase science literacy. So that, that aim of this study to improve scientific literacy for junior high school students through implementing levels of inquiry in science learning with the theme of global warming. This study used a weak experimental with one group pretest-posttest design. The sample in this study are 35 student at 7th  grade at junior high school in Second semester in academic year 2014/2015. The data of this study is taken by scientific literacy test. The results showed that explain phenomena scientifically competence and interpret data and evidence scientifically competence has increased significantly. Meanwhile, evaluate and design scientific enquiry competence is not significantly increased. In addition, the domain knowledge indicates that the three aspects of the knowledge which consist of content knowledge, procedural knowledge, and epistemic knowledge has increased significantly. Literasi sains merupakan hasil belajar kunci bagi semua siswa. Berdasarkan hasil observasi, literasi sains siswa kurang difasilitasi dalam proses pembelajaran IPA di kelas. Pembelajaran levels of inquiry merupakan salah satu alternatif solusi untuk meningkatkan literasi sains. Oleh karena itu, tujuan penelitian ini adalah untuk meningkatkan literasi sains siswa SMP melalui penerapan levels of inquiry pada pembelajaran IPA tema pemanasan global. Penelitian ini menggunakan metode eksperimen lemah dengan desain penelitian one group pretest-posttest. Sampel dalam penelitian ini adalah 35 siswa kelas VII SMP pada semester genap tahun pelajaran 2014/2015. Data penelitian diperoleh melalui tes literasi sains. Temuan dalam penelitian ini adalah kompetensi menjelaskan fenomena ilmiah dan kompetensi menginterpretasikan data

  2. How can Teachers Help Students Formulate Scientific Hypotheses? Some Strategies Found in Abductive Inquiry Activities of Earth Science

    Science.gov (United States)

    Oh, Phil Seok

    2010-03-01

    The purpose of this study was to find how the teacher could help students formulate scientific hypotheses. Data came from two microteaching episodes in which two groups of pre-service secondary science teachers taught high school students as they were engaged in abductive inquiry activities of earth science. Multiple data sources including video recordings of the microteaching, the pre-service teachers' oral and written reports, student worksheets, and instructional materials were examined. The analysis identified four categories of teaching strategies which could be used by science teachers to help students in hypothesis-generating inquiry. These included: (1) expanding and activating students' background knowledge, (2) providing analogies, (3) questioning, and (4) encouraging students to use alternative forms of representation. Implications for science education as well as for further research are suggested.

  3. Enhancing scientific reasoning by refining students' models of multivariable causality

    Science.gov (United States)

    Keselman, Alla

    Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained

  4. Physics Learning using Inquiry-Student Team Achievement Division (ISTAD and Guided Inquiry Models Viewed by Students Achievement Motivation

    Directory of Open Access Journals (Sweden)

    S. H. Sulistijo

    2017-04-01

    Full Text Available This study aims to determine the differences in learning outcomes of between students that are given the Physics learning models of Inquiry-Student Team Achievement Division (ISTAD and guided inquiry, between students who have high achievement motivation and low achievement motivation. This study was an experimental study with a 2x2x2 factorial design. The study population was the students of class X of SMAN 1 Toroh Grobogan of academic year 2016/2017. Samples were obtained by cluster random sampling technique consists of two classes, class X IPA 3 is used as an experimental class using ISTAD model and class X IPA 4 as the control class using guided inquiry model. Data collection techniques using test techniques for learning outcomes, and technical questionnaire to obtain the data of students' achievement motivation. Analysis of data using two-way ANOVA. The results showed that: (1 there is a difference between the learning outcomes of students with the ISTAD Physics models and with the physics model of guided inquiry. (2 There are differences in learning outcomes between students who have high achievement motivation and low achievement motivation. (3 There is no interaction between ISTAD and guided inquiry Physics models learning and achievement motivation of students.

  5. Just Do It? The Effect of a Science Apprenticeship Program on High School Students' Understanding of the Nature of Science and Scientific Inquiry.

    Science.gov (United States)

    Bell, Randy L.; Blair, Lesley M.; Lederman, Norman G.; Crawford, Barbara A.

    Science educators often assume and expect that students who are actively engaged in scientific inquiry should develop more accurate understandings of science and the construction of scientific knowledge. However, this assumption, while intuitive, has not been validated. This paper reports on a study that sought to determine the impact of an 8-week…

  6. Personal Inquiry: Innovations in Participatory Design and Models for Inquiry Learning

    Science.gov (United States)

    Conole, Grainne; Scanlon, Eileen; Littleton, Karen; Kerawalla, Lucinda; Mulholland, Paul

    2010-01-01

    This paper describes a participatory design approach to the development of inquiry-based learning supported through a technology toolkit. The work is part of an interdisciplinary project--Personal Inquiry (PI). The paper focuses on the approach we adopted, concentrating in particular on the two mediating artefacts we used to guide and frame the…

  7. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    Science.gov (United States)

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  8. Demonstration Center: Part II - Elementary School Programs in Scientific Inquiry for Gifted Students.

    Science.gov (United States)

    Suchman, J. Richard; Carlson, Sybil B.

    To disseminate inquiry training methods and materials, the project produced instructional films on the methods, prepared a teacher's manual, and conducted an institute to train teachers and administrators in the procedures. Twenty educators from 11 school districts were enrolled in the summer institute as team members and were trained for 4 weeks…

  9. Mutation-based learning to improve student autonomy and scientific inquiry skills in a large genetics laboratory course.

    Science.gov (United States)

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the "mutations"; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional "cookbook"-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.

  10. Sandboxes for Model-Based Inquiry

    Science.gov (United States)

    Brady, Corey; Holbert, Nathan; Soylu, Firat; Novak, Michael; Wilensky, Uri

    2015-01-01

    In this article, we introduce a class of constructionist learning environments that we call "Emergent Systems Sandboxes" ("ESSs"), which have served as a centerpiece of our recent work in developing curriculum to support scalable model-based learning in classroom settings. ESSs are a carefully specified form of virtual…

  11. Affective Factors in STEM Learning and Scientific Inquiry: Assessment of Cognitive Conflict and Anxiety

    CERN Document Server

    Bao, Lei; Raplinger, Amy; Han, Jing; Koenig, Kathleen

    2014-01-01

    Cognitive conflict is well recognized as an important factor in conceptual change and is widely used in developing inquiry-based curricula. However, cognitive conflict can also contribute to student anxiety during learning, which can have both positive and negative impacts on students' motivation and learning achievement. Therefore, instructors need to be informed of the impacts of introducing cognitive conflicts during teaching. To get this information, teachers need a practical instrument that can help them identify the existence and features of cognitive conflict introduced by the instruction and the resulting anxiety. Based on the literature on studies of cognitive conflict and student anxiety, a quantitative instrument, the In-class Conflict and Anxiety Recognition Evaluation (iCARE), was developed and used to monitor the status of students' cognitive conflict and anxiety in the Physics by Inquiry (PBI) classes. This paper introduces this instrument and discusses the types of information that can be meas...

  12. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  13. Emergent self-regulatory activity among young children during scientific inquiry: An analysis of six kindergarten children

    Science.gov (United States)

    Lomangino, Adrienne Gelpi

    2000-10-01

    This qualitative investigation extends the study of self-regulation to examine young children's developing self-regulated learning competencies. The framework for this research draws upon social cognitive, developmental, and sociocultural perspectives on self-regulation and research on children's scientific thinking. Taking a multiple case study approach, this study examines six kindergarten children's emerging self-regulatory competencies during inquiry-based science instruction. Data were collected during two inquiry-based science programs of study, one pertaining to light and shadow and a second pertaining to motion on inclined planes. Data sources included: videotaped records of the instruction, transcriptions of the videotapes, interviews with the children and teacher, student work, and field notes. Taking an inductive approach to analysis, patterns in the children's activity were identified through a recursive process of defining and refining categories that characterized the children's verbal and behavioral activity. Each case study examines a child's behavior within each phase of the inquiry for evidence of emerging self-regulatory competence. Analysis revealed nascent forms of goal-setting and planning, monitoring, resource management, seeking social assistance, and evaluating. Monitoring activity occurred more frequently than planning or evaluating. For several children, animating materials served to promote motivation. Children's efforts to support peers' activity and monitor the meaning of ongoing discourse contrast with common assumptions about children's attention to others' thinking. Variations in self-regulatory activity were found across phases of instruction. The children exhibited interpersonal self-regulatory efforts, in which monitoring and control of the self was entwined with the activity of others. Joint participation also played a critical role in supporting the metacognitive demands of self-regulation and prompting metacognitive awareness

  14. Middle school science inquiry: Connecting experiences and beliefs to practice

    Science.gov (United States)

    Johnson, Karen Elizabeth

    A major education reform effort today involves the teaching and learning of inquiry science. This case study research examined connections between background experiences and teacher beliefs and the role they played in the implementation of scientific inquiry within four middle school classrooms. The research questions guiding this study included: (a) identifying how teachers' background and experiences related to the use of scientific inquiry-based practice, (b) identification of teacher self-reported characteristics of scientific inquiry, (c) identification of the ways in which teachers' self-reported beliefs related to the use of scientific inquiry-based practice, (d) determine the extent that self-reported teaching scientific inquiry behaviors were consistent with observed behaviors in practice and (e) identify how teachers implemented a scientific inquiry-based approach into their instructional practice. Across the cases, the findings revealed four major experiences that influenced teacher beliefs regarding inquiry-based teaching: (a) opportunities for doing science, (b) influences of the teacher education program primarily with respect to positive science role models, (c) teaching experiences and school expectations and (d) the personality of the individuals. Major themes regarding teaching beliefs regarding characteristics of inquiry-based practice, reported by the participants, included: (a) student-centered instruction, (b) learning by doing, (c) real world applications, (d) integration, (e) collaboration and (f) communicating scientific ideas. Findings also revealed that teacher beliefs and practice aligned except in the area of communicating scientific ideas. Participants did not identify communication as a belief regarding inquirybased practice, but observed practice found communicating scientific ideas played a minor role. Implications from the findings are significant as science educators continue to understand the influence of background experiences

  15. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    Science.gov (United States)

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-01-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are…

  16. Nature of Science, Scientific Inquiry, and Socio-Scientific Issues Arising from Genetics: A Pathway to Developing a Scientifically Literate Citizenry

    Science.gov (United States)

    Lederman, Norman G.; Antink, Allison; Bartos, Stephen

    2014-01-01

    The primary focus of this article is to illustrate how teachers can use contemporary socio-scientific issues to teach students about nature of scientific knowledge as well as address the science subject matter embedded in the issues. The article provides an initial discussion about the various aspects of nature of scientific knowledge that are…

  17. Intersection of opposing pedagogical frameworks: Native Hawaiian ancestral stories and scientific inquiry in a high school science class

    Science.gov (United States)

    Kanahele-Mossman, Huihui

    Inquiry is defined as "an examination into facts and principles." In science education science inquiry is a process through which important discoveries are made by students through scientific methodology. The most important step in this process is forming the right question. The questions formed by students are usually the wrong questions which deem the remainder of the inquiry process impotent. This research will look at the pedagogy of ancestral stories for a solution. For the researcher, ancestral stories were a source of wonderment and learning not only from the lessons the stories revealed but mainly from the questions that still remained after the stories were told. Questions such as "why does the eel only swim near that part?", or "why does the story only talk about the uhu?" are examples of questions that remained after experiencing an ancestral narrative. The research questions were composed for the purpose of finding compatibility between the two pedagogies. The first research question which reads "how can Native Hawaiian ancestral stories encourage an increased level of student driven interactions at all levels of feedback from Native Hawaiian students in science classroom" focuses the research on the level of student feedback that initiate questions. Question two which reads "how can teachers of Native Hawaiian students facilitate the construction of science inquiry projects from ancestral stories" addresses the skill of the teacher and imbeds the concept of pedagogical knowledge into the literature. The last research question "how do analysis and discussion of the stories connect Native Hawaiian students to their ancestral intelligence" examines the role of identity and identity to ancestral intelligence. The method intended for this research was Grounded theory which allows the researcher to develop principles, concepts and theories based on the data presented. Another method utilized in this research is an undocumented but culturally imbedded method

  18. LEMBAR KERJA SISWA (LKS MENGGUNAKAN MODEL GUIDED INQUIRY UNTUK MENINGKATKAN KETERAMPILAN BERPIKIR KRITIS DAN PENGUASAAN KONSEP SISWA

    Directory of Open Access Journals (Sweden)

    Eka Yuli Asmawati

    2015-03-01

    Full Text Available The learning process in 2013 curriculum for all levels of education carried out by using a scientific approach (scientific approach. Critical thinking skills and mastery of concepts students need to developed in a learning process that is as capital to criticize a variety of symptoms, problems that arise in the vicinity. The use of instructional media and learning models in physics very aid learners in understanding the concepts of physics. Based on the above, it is necessary to do a literature review on the develop of guided inquiry worksheets with models to improve critical thinking skills and mastery of concepts students. The study began with highlights of LKS and model of guided inquiry. Next, review the empirical research has done about critical thinking. Then the third part discusses the concept mastery. Furthermore, in the fourth part is the end of the literature review. Based on the literature study, the authors conclude that the develop the model of guided inquiry worksheets can used to improve critical thinking skills and mastery of concepts students.

  19. Using Nikola Tesla's Story and His Experiments as Presented in the Film "The Prestige" to Promote Scientific Inquiry: A Report of an Action Research Project

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Garganourakis, Vassilios

    2010-01-01

    This paper reports on an action research project undertaken with the primary aim of investigating the extent to which situations that evoke a sense of wonder can promote scientific inquiry. Given the intense interest, curiosity, and wonder that some students had begun to develop after seeing the film "The Prestige", a science teacher…

  20. Using Nikola Tesla's Story and His Experiments as Presented in the Film "The Prestige" to Promote Scientific Inquiry: A Report of an Action Research Project

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Garganourakis, Vassilios

    2010-01-01

    This paper reports on an action research project undertaken with the primary aim of investigating the extent to which situations that evoke a sense of wonder can promote scientific inquiry. Given the intense interest, curiosity, and wonder that some students had begun to develop after seeing the film "The Prestige", a science teacher used this…

  1. Look at That!: Using Madagascar Hissing Cockroaches to Develop and Enhance the Scientific Inquiry Skill of Observation in Middle School Students

    Science.gov (United States)

    Wagler, Ron

    2011-01-01

    Middle school students can develop and enhance their observation skills by participating in teacher-guided scientific inquiry (NRC 1996) activities where they observe animals that tend to act in known, predictable ways. Madagascar hissing cockroaches ("Gromphadorhina portentosa") are one such animal. This article presents beginning, intermediate,…

  2. Using Nikola Tesla's Story and His Experiments as Presented in the Film "The Prestige" to Promote Scientific Inquiry: A Report of an Action Research Project

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Garganourakis, Vassilios

    2010-01-01

    This paper reports on an action research project undertaken with the primary aim of investigating the extent to which situations that evoke a sense of wonder can promote scientific inquiry. Given the intense interest, curiosity, and wonder that some students had begun to develop after seeing the film "The Prestige", a science teacher…

  3. An Inquiry-Based Practical for a Large, Foundation-Level Undergraduate Laboratory that Enhances Student Understanding of Basic Cellular Concepts and Scientific Experimental Design

    Science.gov (United States)

    Bugarcic, A.; Zimbardi, K.; Macaranas, J.; Thorn, P.

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny,…

  4. Student Responses to a Context- and Inquiry-Based Three-Step Teaching Model

    Science.gov (United States)

    Walan, Susanne; Rundgren, Shu-Nu Chang

    2015-01-01

    Research has indicated that both context- and inquiry-based approaches could increase student interest in learning sciences. This case study aims to present a context- and inquiry-based combined teaching approach, using a three-step teaching model developed by the PROFILES project, and investigates Swedish students' responses to the activity. A…

  5. Student Responses to a Context- and Inquiry-Based Three-Step Teaching Model

    Science.gov (United States)

    Walan, Susanne; Rundgren, Shu-Nu Chang

    2015-01-01

    Research has indicated that both context- and inquiry-based approaches could increase student interest in learning sciences. This case study aims to present a context- and inquiry-based combined teaching approach, using a three-step teaching model developed by the PROFILES project, and investigates Swedish students' responses to the activity. A…

  6. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  7. Appreciative Inquiry and Video Self Modeling Leadership Program: Achieving Skill or Behavior Change

    Science.gov (United States)

    Bilodeau, Bethany Jewell

    2013-01-01

    A leadership program was created for students to gain skills and/or change their behavior using Appreciative Inquiry and Video Self Modeling, VSM. In 2011a youth that experiences a disability had been unable to achieve a skill utilizing traditional methods of skill acquisition. He employed the Appreciative Inquiry and VSM leadership program and…

  8. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  9. Modelling Transformations of Quadratic Functions: A Proposal of Inductive Inquiry

    Science.gov (United States)

    Sokolowski, Andrzej

    2013-01-01

    This paper presents a study about using scientific simulations to enhance the process of mathematical modelling. The main component of the study is a lesson whose major objective is to have students mathematise a trajectory of a projected object and then apply the model to formulate other trajectories by using the properties of function…

  10. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  11. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    Science.gov (United States)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  12. Teaching Science through Inquiry

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  13. Modelling Scientific Argumentation in the Classroom : Teachers perception and practice

    Science.gov (United States)

    Probosari, R. M.; Sajidan; Suranto; Prayitno, B. A.; Widyastuti, F.

    2017-02-01

    The purposes of this study were to investigate teacher’s perception about scientific argumentation and how they practice it in their classroom. Thirty biology teachers in high school participated in this study and illustrated their perception of scientific argumentation through a questionnaire. This survey research was developed to measure teachers’ understanding of scientific argumentation, what they know about scientific argumentation, the differentiation between argument and reasoning, how they plan teaching strategies in order to make students’ scientific argumentation better and the obstacles in teaching scientific argumentation. The result conclude that generally, teachers modified various representation to accommodate student’s active participation, but most of them assume that argument and reasoning are similar. Less motivation, tools and limited science’s knowledge were considered as obstacles in teaching argumentation. The findings can be helpful to improving students’ abilities of doing scientific argumentation as a part of inquiry.

  14. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  15. Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry

    Science.gov (United States)

    Schwartz, Reneé S.; Lederman, Norman G.; Crawford, Barbara A.

    2004-07-01

    Reform efforts emphasize teaching science to promote contemporary views of the nature of science (NOS) and scientific inquiry. Within the framework of situated cognition, the assertion is that engagement in inquiry activities similar to those of scientists provides a learning context conducive to developing knowledge about the methods and activities through which science progresses, and, in turn, to developing desired views of NOS. The inclusion of a scientific inquiry context to teach about NOS has intuitive appeal. Yet, whether the learners are students, teachers, or scientists, the empirical research does not generally support the claim that engaging in scientific inquiry alone enhances conceptions of NOS. We studied developments in NOS conceptions during a science research internship course for preservice secondary science teachers. In addition to the research component, the course included seminars and journal assignments. Interns' NOS views were assessed in a pre/post format using the Views of Nature of Science questionnaire, [VNOS-C] and interviews. Results indicate most interns showed substantial developments in NOS knowledge. Three factors were identified as important for NOS developments during the internship: (1) reflection, (2) context, and (3) perspective. Reflective journal writing and seminars had the greatest impact on NOS views. The science research component provided a context for reflection. The interns' role perspective appeared to impact their abilities to effectively reflect. Interns who assumed a reflective stance were more successful in deepening their NOS conceptions. Those who maintained a scientist's identity were less successful in advancing their NOS views through reflection. In light of these results, we discuss the significance and challenges to teaching about NOS within inquiry contexts.

  16. Curricular impact on elementary students' images of science: Informational science text read aloud and scientific inquiry

    Science.gov (United States)

    Brown, Tammy Colburn

    Understanding what influences images elementary students create about science has been researched for 30 years. This researcher sought to understand how the way science is presented in school influences images elementary students hold about science. The study's questions included: (1) What images of science do 2nd and 4th grade students portray through dialogue as they experience read alouds of informational science texts? (2) What images of science do 2nd and 4th grade students portray through dialogue as they experience science through inquiry with manipulative objects? and (3) What lifeworld resources influence students' images of science? Drawing upon symbolic interaction within a sociocultural framework, this qualitative study began during the summer of 2005 while students were enrolled in a summer program at their school and continued into the fall of 2007. Primary data included transcripts of students' dialogue during sessions, interviews, observations, field notes, demographic data, and assessment data. The researcher conducted 3 sessions with each of 4 groups of 3 students, spending 30 minutes observing, listening, and taping students in each session. All 12 students were interviewed after each of the 3 sessions on the same day resulting in approximately 18 hours of audiotapes. The researcher met with reading coaches, parents, and the selected students' teachers. Observations of the students and teachers in the context of their school environment were also made throughout the 2006-2007 regular school year. Emergent themes suggest that despite students using process skills in both sessions, the informational book reading sessions were ritualized such that the students viewed the experience as a reading exercise only and not being a scientist. In contrast, students in the manipulative sessions saw themselves as acting like or being scientists. Last, students in both sessions drew upon funds of knowledge accrued from sociocultural influences and home

  17. Prediction of the Science Inquiry Skill of Seventeen-Year-Olds: A Test of the Model of Educational Productivity.

    Science.gov (United States)

    Rakow, Steven J.

    1985-01-01

    This study: (1) tested the effectiveness of the Model of Educational Productivity for predicting the inquiry skill of 17-year-olds; (2) investigated if the prediction of inquiry differed for males and females; and (3) if the prediction of inquiry skill differed for white and nonwhite students. (JN)

  18. A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students.

    Science.gov (United States)

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J

    2013-12-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition.

  19. Students' mental model development during historically contextualized inquiry: how the `Tectonic Plate' metaphor impeded the process

    Science.gov (United States)

    Dolphin, Glenn; Benoit, Wendy

    2016-01-01

    At present, quality earth science education in grade school is rare, increasing the importance of post-secondary courses. Observations of post-secondary geoscience indicate students often maintain errant ideas about the earth, even after direct instruction. This qualitative case study documents model-building activities of students as they experienced classroom instruction that braids history, inquiry, and model-based-learning within the context of earth dynamics. Transcripts of students' conversations, and their written work indicate students primarily employed model accretion to enhance their mental models. Instances of accretion were descriptive, pertaining to what their model consisted of, as opposed to how it explained the target phenomenon. Participants also conflated "continent" with "tectonic plate" and had difficulty attributing elastic properties - the mechanism for earthquakes - to rocks or "plates". We assert that the documented learning difficulties resulted from use of the metaphor "tectonic plate", reinforced by other everyday experiences and meanings. We suggest students need time with new models or concepts to develop strong descriptions before developing explanations. They need concrete experiences and explicit discussions concerning mapping those experiences to concepts. Lastly, because students often apply common meanings to scientific terms, we should not ask if they understand, but ask how they understand the concept.

  20. An Online Inquiry Instructional System for Environmental Issues.

    Science.gov (United States)

    Bodzin, Alec M; Park, John C.

    1999-01-01

    Illustrates how the Dick and Carey systems approach model (1990) can still be used as part of the instructional design and developmental process in an inquiry-based online constructivist learning environment. Focuses on the Shell Island Dilemma, a scientific inquiry simulation on the Carolina Coastal Science Web site. (AEF)

  1. How can students use the potential of technology and the Internet in an elementary science club as the conduit for conducting scientific inquiry?

    Science.gov (United States)

    Bosseler, Marcia L.

    2005-11-01

    The principles underlying this qualitative study were to use technology as a resource to provide new opportunities for students to engage in the process of learning science through inquiry, and to engage in action research on my teaching. The setting was a science club for fourth and fifth graders in a summer school program. As a teacher and mutual stakeholder, I guided my students with my pedagogical content knowledge through interdisciplinary patterns of collaborative inquiry. Set in a socially constructivist environment, this action research became the catalyst for my professional growth and fostered the growth of the learning community. My goals were to engage learners in the construction of their own understanding of science, technology, and the world in which they live. To ensure that students experienced scientific inquiry, conflicting pedagogies between the established school curriculum and my own constructivist methodology prevailed throughout the study. Through socially constructed partnerships, stakeholder club members helped define the process of learning. Product-based simulations and strategies for scaffolding higher-level learning elicited inquiry-oriented and problem-solving skills using the Internet, thereby, enriching the curriculum while teaching students to synthesize information they found on the Internet and make a step towards becoming lifelong learners.

  2. Community of inquiry model: advancing distance learning in nurse anesthesia education.

    Science.gov (United States)

    Pecka, Shannon L; Kotcherlakota, Suhasini; Berger, Ann M

    2014-06-01

    The number of distance education courses offered by nurse anesthesia programs has increased substantially. Emerging distance learning trends must be researched to ensure high-quality education for student registered nurse anesthetists. However, research to examine distance learning has been hampered by a lack of theoretical models. This article introduces the Community of Inquiry model for use in nurse anesthesia education. This model has been used for more than a decade to guide and research distance learning in higher education. A major strength of this model learning. However, it lacks applicability to the development of higher order thinking for student registered nurse anesthetists. Thus, a new derived Community of Inquiry model was designed to improve these students' higher order thinking in distance learning. The derived model integrates Bloom's revised taxonomy into the original Community of Inquiry model and provides a means to design, evaluate, and research higher order thinking in nurse anesthesia distance education courses.

  3. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    Science.gov (United States)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify

  4. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    Science.gov (United States)

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  5. Inquiry Role Approach: A Model for Counselor Involvement in Learning.

    Science.gov (United States)

    Bingman, Richard M.; And Others

    The Inquiry Role Approach (IRA) is a strategy for classroom learning in which students work as 4-member teams and assume roles as Team Coordinator, Process Advisor, Data Recorder, and Technical Advisor. Cognitive as well as affective objectives are identified which relate to optimum learning and personal growth in the classroom. The counselor's…

  6. Industrialized Development Models of Agricultural Scientific and Technological Achievements

    Institute of Scientific and Technical Information of China (English)

    Wanjiang; WANG

    2015-01-01

    Industrialization of agricultural scientific and technological achievements has become an extremely important part in agricultural structural adjustment and agricultural economic development. Basic models for industrialization of China’s agricultural scientific and technological achievements should be:( i) integrating scientific and technological development and production relying on large enterprises;( ii) integrating scientific research and development with agricultural scientific and technological achievements and scientific research institutions as support;( iii) spindle type transformation;( vi) agricultural scientific and technological demonstration area;( v) technology extension network.

  7. Validating and optimizing the effects of model progression in simulation-based inquiry learning

    NARCIS (Netherlands)

    Mulder, Y.G.; Lazonder, A.W.; Jong, de T.; Anjewierden, A.A.; Bollen, L.

    2012-01-01

    Model progression denotes the organization of the inquiry learning process in successive phases of increasing complexity. This study investigated the effectiveness of model progression in general, and explored the added value of either broadening or narrowing students’ possibilities to change model

  8. Implementation of Structured Inquiry Based Model Learning toward Students' Understanding of Geometry

    Science.gov (United States)

    Salim, Kalbin; Tiawa, Dayang Hjh

    2015-01-01

    The purpose of this study is implementation of a structured inquiry learning model in instruction of geometry. The model used is a model with a quasi-experimental study amounted to two classes of samples selected from the population of the ten classes with cluster random sampling technique. Data collection tool consists of a test item…

  9. Kindergarten students’ levels of understanding some science concepts and scientific inquiry processes according to demographic variables (the sampling of Kilis Province in Turkey

    Directory of Open Access Journals (Sweden)

    Nail İlhan

    2016-12-01

    Full Text Available The purpose of this study is to identify the kindergarten students’ levels of understanding some science concepts (LUSSC and scientific inquiry processes (SIP and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the kindergarten students’ LUSSC and SIP. This study was conducted according to quantitative research design. The study group consisted of 335 kindergarten students from 20 different rural and urban schools. In the study, the scale for “Turkish Kindergarten Students’ Understandings of Scientific Concepts and Scientific Inquiry Processes” was used. According to some variables (such as mother’s education level and family structure, there was a statistically significant difference between students’ mean scores for LUSSC and between students’ mean scores for SIP. Within the scope of this study, it was found that among the predictor variables (age, family’s income level, and number of brother/sister were significant predictors for LUSSC, and number of brother/sister was a significant predictor for SIP.

  10. Cannibalism, Kuru, and Mad Cows: Prion Disease As a "Choose-Your-Own-Experiment" Case Study to Simulate Scientific Inquiry in Large Lectures.

    Directory of Open Access Journals (Sweden)

    Antonio Serrano

    2016-01-01

    Full Text Available Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.

  11. Cannibalism, Kuru, and Mad Cows: Prion Disease As a "Choose-Your-Own-Experiment" Case Study to Simulate Scientific Inquiry in Large Lectures.

    Science.gov (United States)

    Serrano, Antonio; Liebner, Jeffrey; Hines, Justin K

    2016-01-01

    Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.

  12. The Development of "Water Strider" Inquiry Learning Program for Improving Scientific Inquiry Learning Ability in the Chapter "The Little Creatures World" of the Korea Elementary School 5th Grade Science Textbook

    Science.gov (United States)

    Kim, Dongryeul

    2017-01-01

    The purpose of this study was to develop a "Water strider" Inquiry Learning Program for improved inquiry learning, and to analyze the validity of the "Water strider." The Inquiry Learning Program's goal was to create an application for finding out an on-site applicability for the "Water strider" Inquiry Learning…

  13. Scientific Theories, Models and the Semantic Approach

    Directory of Open Access Journals (Sweden)

    Décio Krause

    2007-12-01

    Full Text Available According to the semantic view, a theory is characterized by a class of models. In this paper, we examine critically some of the assumptions that underlie this approach. First, we recall that models are models of something. Thus we cannot leave completely aside the axiomatization of the theories under consideration, nor can we ignore the metamathematics used to elaborate these models, for changes in the metamathematics often impose restrictions on the resulting models. Second, based on a parallel between van Fraassen’s modal interpretation of quantum mechanics and Skolem’s relativism regarding set-theoretic concepts, we introduce a distinction between relative and absolute concepts in the context of the models of a scientific theory. And we discuss the significance of that distinction. Finally, by focusing on contemporary particle physics, we raise the question: since there is no general accepted unification of the parts of the standard model (namely, QED and QCD, we have no theory, in the usual sense of the term. This poses a difficulty: if there is no theory, how can we speak of its models? What are the latter models of? We conclude by noting that it is unclear that the semantic view can be applied to contemporary physical theories.

  14. Depth and breadth: Bridging the gap between scientific inquiry and high-stakes testing with diverse junior high school students

    Science.gov (United States)

    Kang, Jee Sun Emily

    This study explored how inquiry-based teaching and learning processes occurred in two teachers' diverse 8th grade Physical Science classrooms in a Program Improvement junior high school within the context of high-stakes standardized testing. Instructors for the courses examined included not only the two 8th grade science teachers, but also graduate fellows from a nearby university. Research was drawn from inquiry-based instruction in science education, the achievement gap, and the high stakes testing movement, as well as situated learning theory to understand how opportunities for inquiry were negotiated within the diverse classroom context. Transcripts of taped class sessions; student work samples; interviews of teachers and students; and scores from the California Standards Test in science were collected and analyzed. Findings indicated that the teachers provided structured inquiry in order to support their students in learning about forces and to prepare them for the standardized test. Teachers also supported students in generating evidence-based explanations, connecting inquiry-based investigations with content on forces, proficiently using science vocabulary, and connecting concepts about forces to their daily lives. Findings from classroom data revealed constraints to student learning: students' limited language proficiency, peer counter culture, and limited time. Supports were evidenced as well: graduate fellows' support during investigations, teachers' guided questioning, standardized test preparation, literacy support, and home-school connections. There was no statistical difference in achievement on the Forces Unit test or science standardized test between classes with graduate fellows and without fellows. There was also no statistical difference in student performance between the two teachers' classrooms, even though their teaching styles were very different. However, there was a strong correlation between students' achievement on the chapter test and

  15. Epistemic beliefs of middle and high school students in a problem-based, scientific inquiry unit: An exploratory, mixed methods study

    Science.gov (United States)

    Gu, Jiangyue

    Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a problem-based, scientific inquiry unit, (b) How do middle and high school students' epistemic beliefs contribute to the construction of students' problem solving processes, and (c) how and why do students' epistemic beliefs change by engaging in PBL. Twenty-one middle and high school students participated in a summer science class to investigate local water quality in a 2-week long problem-based learning (PBL) unit. The students worked in small groups to conduct water quality tests at in their local watershed and visited several stakeholders for their investigation. Pretest and posttest versions of the Epistemological Beliefs Questionnaire were conducted to assess students' self-reported epistemic beliefs before and after the unit. I videotaped and interviewed three groups of students during the unit and conducted discourse analysis to examine their epistemic beliefs revealed from scientific inquiry activities and triangulate with their self-reported data. There are three main findings from this study. First, students in this study self-reported relatively sophisticated epistemic beliefs on the pretest. However, the comparison between their self-reported beliefs and beliefs revealed from practice indicated that some students were able to apply sophisticated beliefs during the unit while others failed to do so. The inconsistency between these two types of epistemic beliefs may due to students' inadequate cognitive ability, low validity of self-report measure, and the influence of contextual factors. Second, qualitative analysis indicated that students' epistemic beliefs of the nature of knowing influenced their problem

  16. Inquiry in Limnology Lessons

    Science.gov (United States)

    Variano, Evan; Taylor, Karen

    2006-01-01

    Inquiry can be implemented in various ways, ranging from simple classroom discussions to longterm research projects. In this article, the authors developed a project in which high school students were introduced to the nature and process of scientific discovery through a two-week guided inquiry unit on "limnology"--the study of fresh water, which…

  17. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    Joolingen, van Wouter R.; Jong, de Ton

    1997-01-01

    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS fr

  18. Implementation of Argument-Driven Inquiry as an Instructional Model in a General Chemistry Laboratory Course

    Science.gov (United States)

    Kadayifci, Hakki; Yalcin-Celik, Ayse

    2016-01-01

    This study examined the effectiveness of Argument-Driven Inquiry (ADI) as an instructional model in a general chemistry laboratory course. The study was conducted over the course of ten experimental sessions with 125 pre-service science teachers. The participants' level of reflective thinking about the ADI activities, changes in their science…

  19. Chinese Students' Goal Orientation in English Learning: A Study Based on Autonomous Inquiry Model

    Science.gov (United States)

    Zhang, Jianfeng

    2014-01-01

    Goal orientation is a kind of theory of learning motivation, which helps learners to develop their capability by emphasis on new techniques acquiring and environment adapting. In this study, based on the autonomous inquiry model, the construction of Chinese students' goal orientations in English learning are summarized according to the data…

  20. A Framework for Model-Based Inquiry through Agent-Based Programming

    Science.gov (United States)

    Xiang, Lin; Passmore, Cynthia

    2015-01-01

    There has been increased recognition in the past decades that model-based inquiry (MBI) is a promising approach for cultivating deep understandings by helping students unite phenomena and underlying mechanisms. Although multiple technology tools have been used to improve the effectiveness of MBI, there are not enough detailed examinations of how…

  1. Discursive Modes and Their Pedagogical Functions in Model-Based Inquiry (MBI) Classrooms

    Science.gov (United States)

    Campbell, Todd; Oh, Phil Seok; Neilson, Drew

    2012-01-01

    This research investigated the emergent discursive modes and their pedagogical functions found in model-based inquiry (MBI) science classrooms. A sample of four high school physics classrooms was video-recorded and analysed using a newly established discourse mode analysis framework. Qualitative methods were employed to identify the most salient…

  2. Science Inquiry into Local Animals: Structure and Function Explored through Model Making

    Science.gov (United States)

    Rule, Audrey C.; Tallakson, Denise A.; Glascock, Alex L.; Chao, Astoria

    2015-01-01

    This article describes an arts- and spatial thinking skill--integrated inquiry project applied to life science concepts from the Next Generation Science Standards for fourth grade students that focuses on two unifying or crosscutting themes: (1) structure (or "form") and function and (2) use of models. Students made observations and…

  3. A Framework for Model-Based Inquiry through Agent-Based Programming

    Science.gov (United States)

    Xiang, Lin; Passmore, Cynthia

    2015-01-01

    There has been increased recognition in the past decades that model-based inquiry (MBI) is a promising approach for cultivating deep understandings by helping students unite phenomena and underlying mechanisms. Although multiple technology tools have been used to improve the effectiveness of MBI, there are not enough detailed examinations of how…

  4. Using Appreciative Inquiry to Facilitate Implementation of the Recovery Model in Mental Health Agencies

    Science.gov (United States)

    Clossey, Laurene; Mehnert, Kevin; Silva, Sara

    2011-01-01

    This article describes an organizational development tool called appreciative inquiry (AI) and its use in mental health to aid agencies implementing recovery model services. AI is a discursive tool with the power to shift dominant organizational cultures. Its philosophical underpinnings emphasize values consistent with recovery: community,…

  5. Appreciative Inquiry: A Model for Organizational Development and Performance Improvement in Student Affairs

    Science.gov (United States)

    Elleven, Russell K.

    2007-01-01

    The article examines a relatively new tool to increase the effectiveness of organizations and people. The recent development and background of Appreciative Inquiry (AI) is reviewed. Basic assumptions of the model are discussed. Implications for departments and divisions of student affairs are analyzed. Finally, suggested readings and workshop…

  6. Enhancing Teachers' Application of Inquiry-Based Strategies Using a Constructivist Sociocultural Professional Development Model

    Science.gov (United States)

    Brand, Brenda R.; Moore, Sandra J.

    2011-01-01

    This two-year school-wide initiative to improve teachers' pedagogical skills in inquiry-based science instruction using a constructivist sociocultural professional development model involved 30 elementary teachers from one school, three university faculty, and two central office content supervisors. Research was conducted for investigating the…

  7. Guided Inquiry and Consensus-Building Used to Construct Cellular Models

    Directory of Open Access Journals (Sweden)

    Joel I. Cohen

    2015-02-01

    Full Text Available Using models helps students learn from a “whole systems” perspective when studying the cell. This paper describes a model that employs guided inquiry and requires consensus building among students for its completion. The model is interactive, meaning that it expands upon a static model which, once completed, cannot be altered and additionally relates various levels of biological organization (molecular, organelle, and cellular to define cell and organelle function and interaction. Learning goals are assessed using data summed from final grades and from images of the student’s final cell model (plant, bacteria, and yeast taken from diverse seventh grade classes. Instructional figures showing consensus-building pathways and seating arrangements are discussed. Results suggest that the model leads to a high rate of participation, facilitates guided inquiry, and fosters group and individual exploration by challenging student understanding of the living cell.

  8. Scientific evidence of the homeopathic epistemological model

    Directory of Open Access Journals (Sweden)

    Marcus Zulian Teixeira

    2011-03-01

    Full Text Available Homeopathy is based on principles and a system of knowledge different from the ones supporting the conventional biomedical model: this epistemological conflict is the underlying reason explaining why it is so difficult to accept by present-day scientific reason. To legitimize homeopathy according to the standards of the latter, research must confirm the validity of its basic assumptions: principle of therapeutic similitude, trials of medicines on healthy individuals, individualized prescriptions and use of high dilutions. Correspondingly, basic research must supply experimental data and models to substantiate these principles of homeopathy, whilst clinical trials aim at confirming the efficacy and effectiveness of homeopathy in the treatment of disease. This article discusses the epistemological model of homeopathy relating its basic assumptions with data resulting from different fields of modern experimental research and supporting its therapeutic use on the outcomes of available clinical trials. In this regard, the principle of individualization of treatment is the sine qua non condition to make therapeutic similitude operative and consequently for homeopathic treatment to exhibit clinical efficacy and effectiveness.

  9. Scientific and Financial Performance Measure A Simultaneous Model to Evaluate Scientific Activities

    CERN Document Server

    Handoko, L T

    2005-01-01

    An alternative model to measure simultaneously scientific and financial performances of scientific activities is proposed. This mathematical model focuses only on the final scientific outcomes in each fiscal year to gurantee the objectivity. The model is suited for the purpose of immediate and quantitative evaluation needed by policy makers to make decision in the subsequent fiscal year. The model can be applied to any branches of science, while it is also adjustable to varying macro-economic indicators. This enables the policy makers to evaluate equally scientific activities in various fields of science. It is argued that implementing the model could realize a fair, transparent and objective reward and punishment system in any scientific activities in order to improve both individual and institutional performances.

  10. Implementing inquiry-based kits within a professional development school model

    Science.gov (United States)

    Jones, Mark Thomas

    2005-07-01

    Implementation of guided inquiry teaching for the first time carries inherent problems for science teachers. Reform efforts on inquiry-based science teaching are often unsustainable and are not sensitive to teachers' needs and abilities as professionals. Professional development schools are meant to provide a research-based partnership between a public school and a university. These collaborations can provide support for the professional development of teachers. This dissertation reports a study focused on the implementation of inquiry-based science kits within the support of one of these collaborations. The researcher describes the difficulties and successful adaptations experienced by science teachers and how a coteaching model provided support. These types of data are needed in order to develop a bottom-up, sustainable process that will allow teachers to implement inquiry-based science. A qualitative methodology with "researcher as participant" was used in this study of two science teachers during 2002--2003. These two teachers were supported by a coteaching model, which included preservice teachers for each teacher as well as a supervising professor. Data were collected from the researcher's direct observations of coteachers' practice. Data were also collected from interviews and reflective pieces from the coteachers. Triangulation of the data on each teacher's case supported the validity of the findings. Case reports were prepared from these data for each classroom teacher. These case reports were used and cross-case analysis was conducted to search for major themes and findings in the study. Major findings described the hurdles teachers encounter, examples of adaptations observed in the teachers' cases and the supportive interactions with their coteachers while implementing the inquiry-based kits. In addition, the data were used to make recommendations for future training and use of the kits and the coteaching model. Results from this study showed that the

  11. IMPLEMENTASI MODEL PEMBELAJARAN INQUIRY TRAINING DALAM PEMBELAJARAN FISIKA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR FORMAL SISWA

    Directory of Open Access Journals (Sweden)

    D. Nasution

    2015-07-01

    Full Text Available Low ability of formal thinking students caused the learning outcomes they get too low. This study aims to determine the effectiveness of the inquiry learning model training in improving students' ability to think formal. The design was used quasi-experimental "non-equivalent groups pretest-posttest design". Implementation  experimental class learning with inquiry learning model training, control class learning with direct instruction. Data obtained through a formal thinking ability test thinking ability. Learning model efectivity in improving formal thinking ability is determined based on the gain score average which normalized by average difference test of statistic, namely t test. The results of the reasearch found that the inquiry training learning model is more effective in improving students formal thinking ability compared with the direct instruction learning model. The N-gain percentage of formal thinking ability of students in the experiment class in the indicators of hypothetical deductive thinking, combination thinking and reflection thinking are in the medium category, just proportional thinking is the high category. N-gain average percentage of control class for the hypothesis deductive thinking is just in the low category, while the proportional thinking, combination thinking and reflection thinking are in the medium category.Rendahnya kemampuan berpikir formal siswa menyebabkan hasil belajar yang mereka peroleh juga rendah. Penelitian ini bertujuan untuk mengetahui efektivitas  model pembelajaran inquiry training dalam meningkatkan kemampuan berpikir formal  siswa. Disain yang digunakan adalah kuasi eksperimen “non-equivalent groups pretest-posttest design”. Implementasi pembelajaran kelas eksperimen dibelajarkan dengan model pembelajaran inquiry training, kelas kontrol dengan model pembelajaran direct instruction.  Data kemampuan berpikir formal diperoleh melalui tes kemampuan berpikir formal. Efektivitas  model

  12. A “laboratory of knowledge-making” for personal inquiry learning

    OpenAIRE

    Sharples, Mike; Collins, Trevor; Feißt, Markus; Gaved, Mark; Mulholland, Paul; Paxton, Mark; Wright, Michael

    2011-01-01

    We describe nQuire, a constraint-based learning toolkit to support a continuity of inquiry based learning between classroom and non-formal settings. The paper proposes design requirements for personal inquiry learning environments that support learning of personally meaningful science topics with development of metacognitive understanding and self-regulation of the scientific process through situated practice. It introduces a generic implementable model of the inquiry process, and describes a...

  13. Effectiveness of Inquiry-Based Lessons Using Particulate Level Models to Develop High School Students' Understanding of Conceptual Stoichiometry

    Science.gov (United States)

    Kimberlin, Stephanie; Yezierski, Ellen

    2016-01-01

    Students' inaccurate ideas about what is represented by chemical equations and concepts underlying stoichiometry are well documented; however, there are few classroom-ready instructional solutions to help students build scientifically accurate ideas about these topics central to learning chemistry. An intervention (two inquiry-based activities)…

  14. Effectiveness of Inquiry-Based Lessons Using Particulate Level Models to Develop High School Students' Understanding of Conceptual Stoichiometry

    Science.gov (United States)

    Kimberlin, Stephanie; Yezierski, Ellen

    2016-01-01

    Students' inaccurate ideas about what is represented by chemical equations and concepts underlying stoichiometry are well documented; however, there are few classroom-ready instructional solutions to help students build scientifically accurate ideas about these topics central to learning chemistry. An intervention (two inquiry-based activities)…

  15. A Model Inquiry-Based Genetics Experiment for Introductory Biology Students: Screening for Enhancers & Suppressors of Ptpmeg

    Science.gov (United States)

    Setty, Sumana; Kosinski-Collins, Melissa S.

    2015-01-01

    It has been noted that undergraduate project-based laboratories lead to increased interest in scientific research and student understanding of biological concepts. We created a novel, inquiry-based, multiweek genetics research project studying Ptpmeg, for the Introductory Biology Laboratory course at Brandeis University. Ptpmeg is a protein…

  16. THE EFFECTS OF INQUIRY TRAINING LEARNING MODEL AND CRITICAL THINGKING ABILITY TOWARD SCIENCE PROCESS SKILLS OF SMA

    OpenAIRE

    Ferawati Hutapea; Motlan .

    2015-01-01

    The purpose of research are 1). To know are differences in science process skills of students with the applied of inquiry training learning model and direct instruction learning models, 2). To know are differences in science process skills of students who has high critical thinking ability and the  critically low ability, 3). To know the interaction inquiry training learning model and critical thinking ability toward students science process skills. The samples in this research conducted by c...

  17. An inquiry-based practical for a large, foundation-level undergraduate laboratory that enhances student understanding of basic cellular concepts and scientific experimental design.

    Science.gov (United States)

    Bugarcic, A; Zimbardi, K; Macaranas, J; Thorn, P

    2012-01-01

    Student-centered education involving research experiences or inquiry have been shown to help undergraduate students understand, and become excited about, the process of scientific investigation. These benefits are particularly important for students in the early stages of their degree (Report and Kenny, http://naplesccsunysbedu/Pres/boyernsf/1998). However, embedding such experiences into the curriculum is particularly difficult when dealing with early stage students, who are in larger cohorts and often lack the background content knowledge necessary to engage with primary research literature and research level methods and equipment. We report here the design, delivery, assessment, and subsequent student learning outcomes of a 4-week practical module for 120 students at the beginning of their second year of university, which successfully engages students in designing cell culture experiments and in understanding the molecular processes and machinery involved in the basic cellular process of macropinocytosis. Copyright © 2011 Wiley Periodicals, Inc.

  18. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    Science.gov (United States)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  19. The Associative Basis of Scientific Creativity: A Model Proposal

    Directory of Open Access Journals (Sweden)

    Esra Kanli

    2014-06-01

    Full Text Available Creativity is accepted as an important part of scientific skills. Scientific creativity proceeds from a need or urge to solve a problem, and in-volves the production of original and useful ideas or products. Existing scientific creativity theories and tests do not feature the very im-portant thinking processes, such as analogical and associative thinking, which can be consid-ered crucial in creative scientific problem solv-ing. Current study’s aim is to provide an alter-native model and explicate the associative basis of scientific creativity. Emerging from the re-viewed theoretical framework, Scientific Asso-ciations Model is proposed. This model claims that, similarity and mediation constitutes the basis of creativity and focuses on three compo-nents namely; associative thinking, analogical thinking (analogical reasoning & analogical problem solving and insight which are consid-ered to be main elements of scientific associa-tive thinking.

  20. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  1. An internet-based, guided inquiry approach to geoscience education using interactive models and supporting effective teacher practice.

    Science.gov (United States)

    Chaudhury, S. R.

    2005-12-01

    The Technology Enhanced Learning of Science (TELS) Center is developing online curriculum modules (called TELS Projects) to fulfill its misson of uniting university, research, and secondary school partners to increase the numbers and diversity of teachers who are using innovative, proven, technology-enhanced science curricula to impart key scientific concepts and methods to their students. TELS projects are built on the technology framework of the Web-based Inquiry Science Environment (WISE) and engage students in using interactive modeling and simulation tools as well as real world evidence to address questions of scientific controversy. A Global Warming TELS project designed for middle school students will be presented in this paper. While many instructional models, data sets and activities are available on the Internet, very few are embedded within an instructional framework that also supports effective teacher management of the learning process and the concurrent development of student skills in presentation and debate. Features of the WISE environment that enable learning from technology-enhanced science curricular modules will be demonstrated along with a description of research and teacher professional development activities that are part of the TELS Center.

  2. Addressing contrasting cognitive models in scientific collaboration

    Science.gov (United States)

    Diviacco, P.

    2012-04-01

    If the social aspects of scientific communities and their internal dynamics is starting to be recognized and acknowledged in the everyday lives of scientists, it is rather difficult for them to find tools that could support their activities consistently with this perspective. Issues span from gathering researchers to mutual awareness, from information sharing to building meaning, with the last one being particularly critical in research fields as the geo-sciences, that deal with the reconstruction of unique, often non-reproducible, and contingent processes. Reasoning here is, in fact, mainly abductive, allowing multiple and concurrent explanations for the same phenomenon to coexist. Scientists bias one hypothesis over another not only on strictly logical but also on sociological motivations. Following a vision, scientists tend to evolve and isolate themselves from other scientists creating communities characterized by different cognitive models, so that after some time these become incompatible and scientists stop understanding each other. We address these problems as a communication issue so that the classic distinction into three levels (syntactic, semantic and pragmatic) can be used. At the syntactic level, we highlight non-technical obstacles that condition interoperability and data availability and transparency. At the semantic level, possible incompatibilities of cognitive models are particularly evident, so that using ontologies, cross-domain reconciliation should be applied. This is a very difficult task to perform since the projection of knowledge by scientists, in the designated community, is political and thus can create a lot of tension. The strategy we propose to overcome these issues pertains to pragmatics, in the sense that it is intended to acknowledge the cultural and personal factors each partner brings into the collaboration and is based on the idea that meaning should remain a flexible and contingent representation of possibly divergent views

  3. Key-Aspects of Scientific Modeling Exemplified by School Science Models: Some Units for Teaching Contextualized Scientific Methodology

    Science.gov (United States)

    Develaki, Maria

    2016-01-01

    Models and modeling are core elements of scientific methods and consequently also are of key importance for the conception and teaching of scientific methodology. The epistemology of models and its transfer and adaption to nature of science education are not, however, simple themes. We present some conceptual units in which school science models…

  4. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  5. The logical foundations of scientific theories languages, structures, and models

    CERN Document Server

    Krause, Decio

    2016-01-01

    This book addresses the logical aspects of the foundations of scientific theories. Even though the relevance of formal methods in the study of scientific theories is now widely recognized and regaining prominence, the issues covered here are still not generally discussed in philosophy of science. The authors focus mainly on the role played by the underlying formal apparatuses employed in the construction of the models of scientific theories, relating the discussion with the so-called semantic approach to scientific theories. The book describes the role played by this metamathematical framework in three main aspects: considerations of formal languages employed to axiomatize scientific theories, the role of the axiomatic method itself, and the way set-theoretical structures, which play the role of the models of theories, are developed. The authors also discuss the differences and philosophical relevance of the two basic ways of aximoatizing a scientific theory, namely Patrick Suppes’ set theoretical predicate...

  6. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    Science.gov (United States)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  7. PENERAPAN MODEL PEMBELAJARAN INQUIRI TERHADAP HASIL BELAJAR SISWA SEKOLAH DASAR PADA MATA PELAJARAN IPS

    Directory of Open Access Journals (Sweden)

    Damanhuri Damanhuri

    2016-09-01

    Full Text Available Abstrak. Tujuan Penelitian ini adalah untuk meningkatkan hasil belajar siswa dalam pembelajaran IPS materi Proklamsi Kemerdekaan Indonesia menggunakan model pembelajaran inquiri pada siswa kelas V SDN Anyar II Kecamatan Anyar Kabupaten Serang. Hipotesis tindakan dalam penelitian ini adalah mengguankan model pembelajaran Inquiri  dapat meningkatkan hasil belajar siswa pada pembelajaran IPS kelas V SDN Anyar II Kecamatan Anyar Kabupaten Serang Tahun pelajaran 2016/2017. Jenis penelitian yang digunakan adalah penelitian Kuantitatif. Subjek dalam penelitian ini adalah siswa kelas V SDN Anyar II Kecamatan Anyar Kabupaten Serang yang berjumlah 70 siswa yang terdiri 35 siswa kelas A dan 35 kelas B.Data hasil penelitian diperoleh dari pretest, postest, dokumentasi, untuk analisi data kuantitatif tersebut diolah dengan rumus-rumus statistika. Berdasrkan hasil analisis data penelitian dan pengujian hipotesis berdasarkan hasil analisis data penelitian dan pengujian hipotesis Terdapat perbedaan yang signifikan pada mata pelajaran IPS terhadap hasil belajar siswa menggunakan Model Pembelajaran Inquiri, dengan siswa yang menggunakan model pembelajaran langsung. Kata Kunci: Hasil Belajar IPS, Inquiri, Penelitian Kuantitatif  Abstract. The Purpose of this research is to improve to improve the learning outcomes of students in Social Science learning material Indonesia proclamation of independence using a model learning enquiries on grade V SDN Anyer Anyer Sub-District II of the Serang Regency. The hypothesis in this study is the Act of using a Model learning Enquiries can improve student learning outcomes in learning IPS class V SDN Anyer Anyer Sub-District II of the Serang Regency Year 2016/2017 lessons. This type of research is quantitative research. The subject in this study is the grade V SDN Anyer Anyer Sub-District II of Serang district 70 students composed 35 students of class A and class B 35. Data research results obtained from the pretest

  8. DSRM: An Ontology Driven Domain Scientific Data Retrieval Model

    Directory of Open Access Journals (Sweden)

    Jianghua Li

    2013-09-01

    Full Text Available With the development of information technology, a large number of domain scientific data have been accumulated with the characteristics of distribution and heterogeneity. It has important significance to acquire exact scientific data from multiple data sources for cooperative research. The existing data integration and information retrieval techniques cannot solve the problems of data semantic heterogeneity and retrieval inaccuracy very well. In this paper, an ontology driven domain scientific data retrieval model is proposed, which uses domain ontology to describe user query and queried data. User query is posed on domain ontology schema. Data retrieval for distributed and heterogeneous data sources is realized through constructing mapping relations between them and domain ontology schema. We developed a prototype for material scientific data, and the experimental results show that the proposed model is effective. Our model can also provide some means of use for reference to other domain scientific data retrieval.

  9. Application of Logic Models in a Large Scientific Research Program

    Science.gov (United States)

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  10. Application of Logic Models in a Large Scientific Research Program

    Science.gov (United States)

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  11. Semantic Model for Voice Controlled Telephone Dialing and Inquiry Systems

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new scheme is presented to detect a large number of keywords in voice controlled switchboard tasks. The new scheme is based on two stages. In the first stage, N-best syllable candidates with their corresponding acoustic scores are generated by an acoustic recognizer. In the second stage, a semantic model based parser is applied to determine the optimum keywords by searching through the lattice of N-best candidates. The experimental results show that when the spoken input deviates from the predefined syntactic constraints, the parser can also demonstrate high performance. For comparison purposes, the most common way to incorporate the syntactic knowledge of the task directly into the acoustic recognizer in the form of a finite state network is also investigated. Furthermore, to address the sparse-data problems, out-of-domain data in the form of newspaper text are used to obtain a more robust combined semantic model. The experiments show that the combined semantic model can improve the keywords detection rate from 90.07% to 92.91% when 80 ungrammatical sentences which do not conform to the task grammar are used as testing material.

  12. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  13. Design Approaches to Support Preservice Teachers in Scientific Modeling

    Science.gov (United States)

    Kenyon, Lisa; Davis, Elizabeth A.; Hug, Barbara

    2011-02-01

    Engaging children in scientific practices is hard for beginning teachers. One such scientific practice with which beginning teachers may have limited experience is scientific modeling. We have iteratively designed preservice teacher learning experiences and materials intended to help teachers achieve learning goals associated with scientific modeling. Our work has taken place across multiple years at three university sites, with preservice teachers focused on early childhood, elementary, and middle school teaching. Based on results from our empirical studies supporting these design decisions, we discuss design features of our modeling instruction in each iteration. Our results suggest some successes in supporting preservice teachers in engaging students in modeling practice. We propose design principles that can guide science teacher educators in incorporating modeling in teacher education.

  14. Context-model-based instruction in teaching EFL writing: A narrative inquiry

    Directory of Open Access Journals (Sweden)

    Zheng Lin

    2016-12-01

    Full Text Available This study aims to re-story the provision of the context-model-based instruction in teaching EFL writing, focusing especially on students’ development of the context model and learning to guide EFL writing with the context model. The research data have been collected from the audio recordings of the classroom instruction, the teacher-researcher’s memos, and the students’ reflections on their learning experience in the study. The findings that have resulted from this narrative inquiry show (1 the context-model-based instruction has helped students develop their context model; (2 students could learn to configure the four elements of the context model (i.e. “the purpose of communication, the subject matter, the relationship with the reader and the normal pattern of presentation”; and (3 students could learn to be mindful to proactively apply the context model in the process of EFL writing to manage the situated, dynamic and intercultural issues involved.

  15. 运用图像法在行星教学中开展科学探究%Conduct of scientific inquiry in planets teaching by means of figures

    Institute of Scientific and Technical Information of China (English)

    张丙开; 李京颍

    2014-01-01

    The function of figures in scientific inquiry was introduced and two typical cases of carrying out scientific inquiry by applying figures in planets teaching were presented. The practice showed that this method can train students' creativity, stimulate them to think deeply, and help them to find out the objective laws hidden in the physical data of planets.%介绍了图像法在科学探究中的作用,并给出了运用图像法在行星教学中开展科学探究的两个典型案例。实践表明,这样做既可以培养学生的创造能力,又能够激发学生的思考,找出隐含在行星物理数据背后的客观规律。

  16. Experiment of Enzyme Kinetics Using Guided Inquiry Model for Enhancing Generic Science Skills

    Science.gov (United States)

    Amida, N.; Supriyanti, F. M. T.; Liliasari

    2017-02-01

    This study aims to enhance generic science skills of students using guided inquiry model through experiments of enzyme kinetics. This study used quasi-experimental methods, with pretest-posttestnonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry lab course, consisted of 18 students in experimental class and 19 students in control class. Instrument in this study were essay test that involves 5 indicators of generic science skills (i.e. direct observation, causality, symbolic language, mathematical modeling, and concepts formation) and also student worksheets. The results showed that the experiments of kinetics enzyme using guided inquiry model have been enhance generic science skills in high category with a value of average of 0.77. Four indicators classified in the high category are direct observation, causality, symbolic language, and mathematical modeling with the value of 0,73 0,70; 0,96; dan 0,85. Meanwhile, indicator of concepts formation in the medium category with a value of 0.62

  17. Modelling the Diffusion of Scientific Publications

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); D. Fok (Dennis)

    2007-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and f

  18. Modeling the diffusion of scientific publications

    NARCIS (Netherlands)

    D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and f

  19. What Is a Scientific Experiment? The Impact of a Professional Development Course on Teachers' Ability to Design an Inquiry-Based Science Curriculum

    Science.gov (United States)

    Pérez, María del Carmen B.; Furman, Melina

    2016-01-01

    Designing inquiry-based science lessons can be a challenge for secondary school teachers. In this study we evaluated the development of in-service teachers' lesson plans as they took part in a 10-month professional development course in Peru which engaged teachers in the design of inquiry-based lessons. At the beginning, most teachers designed…

  20. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  1. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  2. Enabling Interoperation of High Performance, Scientific Computing Applications: Modeling Scientific Data with the Sets & Fields (SAF) Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M C; Reus, J F; Matzke, R P; Arrighi, W J; Schoof, L A; Hitt, R T; Espen, P K; Butler, D M

    2001-02-07

    This paper describes the Sets and Fields (SAF) scientific data modeling system. It is a revolutionary approach to interoperation of high performance, scientific computing applications based upon rigorous, math-oriented data modeling principles. Previous technologies have required all applications to use the same data structures and/or meshes to represent scientific data or lead to an ever expanding set of incrementally different data structures and/or meshes. SAF addresses this problem by providing a small set of mathematical building blocks--sets, relations and fields--out of which a wide variety of scientific data can be characterized. Applications literally model their data by assembling these building blocks. A short historical perspective, a conceptual model and an overview of SAF along with preliminary results from its use in a few ASCI codes are discussed.

  3. Social Justice Is in the Air: Teaching Climate Change and Air Pollution with Scientific and Social Inquiry

    Science.gov (United States)

    Hahnenberger, M.

    2014-12-01

    The intersection of environmental with social problems is a growing area of concern for scientists, policy makers, and citizens. Climate change and air pollution are two current environmental issues holding the public's attention which require collaboration of all stakeholders to create meaningful solutions. General education science courses are critical venues to engage students in the intersection of science with society. Effective teaching methods for these intersections include case studies, gallery walks, and town hall meetings. A case study from California explores how air quality has greatly improved in Los Angeles in the past 20 years, however residents of neighborhoods with lower socioeconomic status are still exposed to high levels of air pollutants. Students analyze scientific and health data to develop understanding and expertise in the problem, and are then tasked with developing a cost-benefit analysis of solutions. Gallery walks can be used to connect natural phenomena, such as hurricanes and severe weather, with their human impacts. Students bring their personal experiences with disasters and recovery to analyze how societies should deal with the changing climate and weather risks in their region, the country, or across the world. Town hall meetings allow students to gain expertise and perspective while embodying a role as a particular stakeholder in a climate mitigation or adaptation issue. A successful application of this method is a discussion of whether a resort community should be rebuilt on a barrier island after being destroyed in a category 3 hurricane. Stakeholders which students take on as roles have included climate scientists, homeowners, emergency managers, meteorologists, and others. Including distinct connections to social issues in introductory science courses helps students to not only engage with the material in a deeper way, but also helps to create critical thinkers who will become better citizens for tomorrow.

  4. Shifting from Activitymania To Inquiry.

    Science.gov (United States)

    Nelson, Tamara Holmlund; Moscovici, Hedy

    1998-01-01

    Discusses various problems with Activitymania (prepackaged activities for science instruction) in the context of teaching scientific inquiry. Suggests that teachers clearly define conceptual goals and their relationships to students' lives and interests before selecting classroom activities. (PVD)

  5. Shifting from Activitymania To Inquiry.

    Science.gov (United States)

    Nelson, Tamara Holmlund; Moscovici, Hedy

    1998-01-01

    Discusses various problems with Activitymania (prepackaged activities for science instruction) in the context of teaching scientific inquiry. Suggests that teachers clearly define conceptual goals and their relationships to students' lives and interests before selecting classroom activities. (PVD)

  6. Using the Communication in Science Inquiry Project Professional Development Model to Facilitate Learning Middle School Genetics Concepts

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry

    2011-01-01

    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…

  7. The Effect of Inquiry Training Learning Model Based on Just in Time Teaching for Problem Solving Skill

    Science.gov (United States)

    Turnip, Betty; Wahyuni, Ida; Tanjung, Yul Ifda

    2016-01-01

    One of the factors that can support successful learning activity is the use of learning models according to the objectives to be achieved. This study aimed to analyze the differences in problem-solving ability Physics student learning model Inquiry Training based on Just In Time Teaching [JITT] and conventional learning taught by cooperative model…

  8. An Inquiry-Based Approach to Teaching the Spherical Earth Model to Preservice Teachers Using the Global Positioning System

    Science.gov (United States)

    Song, Youngjin; Schwenz, Richard

    2013-01-01

    This article describes an inquiry-based lesson to deepen preservice teachers' understanding of the spherical Earth model using the Global Positioning System. The lesson was designed with four learning goals: (1) to increase preservice teachers' conceptual knowledge of the spherical Earth model; (2) to develop preservice teachers'…

  9. 三学科课程标准中的科学探究:思考与建议%Scientific Inquiry in Curriculum Standards of Physics, Chemistry and Biology: Thoughts and Suggestions

    Institute of Scientific and Technical Information of China (English)

    张迎春; 韦晓静

    2012-01-01

    科学探究是科学教育的核心内容,也是我国义务教育阶段物理、化学和生物课程标准中的共同部分。2011年版课程标准同实验稿课程标准相比,科学探究内容主要有以下变化:强调科学探究学习的“应然”价值;注重学生创新精神和实践能力的培养;修改了一些易造成教育工作者片面性理解的表述。但三学科课程标准对科学探究内涵的阐述不同、科学探究所包含的二级主题不同。课标中的重要术语及基本观点应有统一和明确的界定;科学探究应注意学科间的一致性、学段问的连贯性。%As the core of science education, scientific inquiry is the common part of compulsory education curriculum standards of physics, chemistry, and biology. Compared with the content about scientific inquiry in the experimental edition of curriculum standards of the three subjects, there are some changes in the 2011 edition. Firstly, 2011 edition puts more emphasis on the ontological value of scientific inquiry learning; secondly, it pays more attention to the cultivation of students' innovative spirit and practical ability~ thirdly, it has modified some statements that could lead to educators' one- side understanding, However, the description of scientific inquiry and the secondary themes included in the curriculum standards of the three subjects are different. Based on this study, it is suggested that the important terms and basic concepts should be defined clearly and consistently. In addition, we should also strengthen the consistency and the coherence of scientific inquiry between different subjects and different learning periods.

  10. CSPBuilder - CSP based Scientific Workflow Modelling

    DEFF Research Database (Denmark)

    Friborg, Rune Møllegaard; Vinter, Brian

    2008-01-01

    This paper introduces a framework for building CSP based applications, targeted for clusters and next generation CPU designs. CPUs are produced with several cores today and every future CPU generation will feature increasingly more cores, resulting in a requirement for concurrency that has...... not previously been called for. The framework is CSP presented as a scienti¿c work¿ow model, specialized for scienti¿c computing applications. The purpose of the framework is to enable scientists to exploit large parallel computation resources, which has previously been hard due of the dif¿culty of concurrent...... programming using threads and locks....

  11. Model Based Inquiry in the High School Physics Classroom: An Exploratory Study of Implementation and Outcomes

    Science.gov (United States)

    Campbell, Todd; Zhang, Danhui; Neilson, Drew

    2011-06-01

    This study considers whether Model Based Inquiry (MBI) is a suitable mechanism for facilitating science as inquiry to allow students to develop deep understandings of difficult concepts, while also gaining better understandings of science process and the nature of science. This manuscript also considers time devoted to MBI in comparison to more traditional demonstration and lecture (TDL) teaching methods, while also revealing the MBI strategy implemented in the physics classroom. Pre-, post-, and delayed- revised versions of the Physics, Attitudes, Skills, and Knowledge Survey (PASKS) were administered to two groups of students, those taught a unit on buoyancy with a TDL instructional strategy ( n = 26) and those taught the same buoyancy unit, but with the MBI instructional strategy ( n = 28). The PASKS focuses on student achievement in terms of science content, science process/reasoning, nature of science, and student attitude toward science. Through quantitative methods the findings revealed statistical differences when considering the pre-, post-, and delayed- measures with significant differences found overall and on each scale. This indicated improved achievement overall and on each scale with the exception of attitude scale for both groups. Additionally, the findings revealed no statistical differences between groups (i.e., TDL & MBI).

  12. Python for Scientific Computing Education: Modeling of Queueing Systems

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2014-01-01

    Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.

  13. Small Group Inquiry.

    Science.gov (United States)

    Koller, Martin M.

    Learning in small groups is a practical way to bring about behavior change. The inquiry learning process is perceived to be the most natural and scientific way of learning. Skills developed include those of problem-solving task analysis, decision-making, value formation and adaptability. The art of small group interaction is developed. Factual…

  14. John Dewey's Dual Theory of Inquiry and Its Value for the Creation of an Alternative Curriculum

    Science.gov (United States)

    Harris, Fred

    2014-01-01

    Dewey's theory of inquiry cannot be reduced to the pattern of inquiry common to both common-sense inquiry and scientific inquiry, which is grounded in the human life process, since such a reduction ignores Dewey's differentiation of the two forms of inquiry. The difference has to do with the focus of inquiry, with common-sense inquiry…

  15. African Scientific Network: A model to enhance scientific research in developing countries

    Science.gov (United States)

    Kebede, Abebe

    2002-03-01

    Africa has over 350 higher education institutions with a variety of experiences and priorities. The primary objectives of these institutions are to produce white-collar workers, teachers, and the work force for mining, textiles, and agricultural industries. The state of higher education and scientific research in Africa have been discussed in several conferences. The proposals that are generated by these conferences advocate structural changes in higher education, North-South institutional linkages, mobilization of the African Diaspora and funding. We propose a model African Scientific Network that would facilitate and enhance international scientific partnerships between African scientists and their counterparts elsewhere. A recent article by James Lamout (Financial Times, August 2, 2001) indicates that emigration from South Africa alone costs $8.9 billion in lost human resources. The article also stated that every year 23,000 graduates leave Africa for opportunities overseas, mainly in Europe, leaving only 20,000 scientists and engineers serving over 600 million people. The International Organization for Migration states that the brain drain of highly skilled professionals from Africa is making economic growth and poverty alleviation impossible across the continent. In our model we will focus on a possible networking mechanism where the African Diaspora will play a major role in addressing the financial and human resources needs of higher education in Africa

  16. A `Semantic' View of Scientific Models for Science Education

    Science.gov (United States)

    Adúriz-Bravo, Agustín

    2013-07-01

    In this paper I inspect a `semantic' view of scientific models taken from contemporary philosophy of science—I draw upon the so-called `semanticist family', which frontally challenges the received, syntactic conception of scientific theories. I argue that a semantic view may be of use both for science education in the classrooms of all educational levels, and for research and innovation within the discipline of didactics of science. I explore and characterise a model-based account of the nature of science, and derive some implications that may be of interest for our community.

  17. The Use of the "Teaching as Inquiry Model" to Develop Students' Self-Efficacy in Literature Response Essay Writing

    Science.gov (United States)

    Featonby, Amy

    2012-01-01

    This article describes a project conducted with Year 12 English students. It was based on the model of "Teaching as Inquiry" (Ministry of Education, 2007) and aimed to develop students' self-efficacy in relation to their literature-response essay writing. Self-efficacy was measured using Bandura's (2006) self-efficacy scale and an…

  18. Professional development model for science teachers based on scientific literacy

    Science.gov (United States)

    Rubini, B.; Ardianto, D.; Pursitasari, I. D.; Permana, I.

    2017-01-01

    Scientific literacy is considered as a benchmark of high and low quality of science education in a country. Teachers as a major component of learning at the forefront of building science literacy skills of students in the class. The primary purpose this study is development science teacher coaching model based on scientific literacy. In this article we describe about teacher science literacy and profile coaching model for science’ teachers based on scientific literacy which a part of study conducted in first year. The instrument used in this study consisted of tests, observation sheet, interview guides. The finding showed that problem of low scientific literacy is not only happen the students, but science’ teachers which is a major component in the learning process is still not satisfactory. Understanding science teacher is strongly associated with the background disciplinary. Science teacher was still weak when explaining scientific phenomena, mainly related to the material that relates to the concept of environmental. Coaching model generated from this study consisted of 8 stages by assuming the teacher is an independent learner, so the coaching is done with methods on and off, with time off for activities designed more.

  19. TOWARDS A SCALABLE SCIENTIFIC DATA GRID MODEL AND SERVICES

    Directory of Open Access Journals (Sweden)

    Azizol Abdullah

    2010-03-01

    Full Text Available Scientific Data Grid mostly deals with large computational problems. It provides geographically distributed resources for large-scale data-intensive applications that generate large scientific data sets. This required the scientist in modern scientific computing communities involved in managing massive amounts of a very large data collections that are geographically distributed. Research in the area of grid has given various ideas and solutions to address these requirements. However, nowadays the number of participants (scientists and institutions that are involved in this kind of environment is increasing tremendously. This situation has lead to a problem of scalability. In order to overcome this problem we need a data grid model that can scale well with the increasing number of users. Peer-to-peer (P2P is one of the architectures that is a promising scale and dynamism environment. In this paper, we present a P2P model for Scientific Data Grid that utilizes the P2P services to address the scalability problem. By using this model, we study and propose various decentralized discovery strategies that intend to address the problem of scalability. We also investigate the impact of data replication that addresses the data distribution and reliability problem for our Scientific Data Grid model on the propose discovery strategies. For the purpose of this study, we have developed and used our own data grid simulation written using PARSEC. We illustrate our P2P Scientific Data Grid model and our data grid simulation used in this study. We then analyze the performance of the discovery strategies with and without the existence of replication strategies relative to their success rates, bandwidth consumption and average number of hop.

  20. Promoting Inquiry-Based Science Instruction: The Validation of the Science Teacher Inquiry Rubric (STIR)

    Science.gov (United States)

    Bodzin, Alec M.; Beerer, Karen M.

    2003-01-01

    The National Science Education Standards recognize that inquiry-based instruction holds significant promise for developing scientifically literate students. The Science Teacher Inquiry Rubric (STIR) was developed based upon the National Science Education Standards' essential features of inquiry instruction (NRC, 2000). A pilot study using a…

  1. Inquiry Based Learning and Meaning Generation through Modelling on Geometrical Optics in a Constructionist Environment

    Science.gov (United States)

    Kotsari, Constantina; Smyrnaiou, Zacharoula

    2017-01-01

    The central roles that modelling plays in the processes of scientific enquiry and that models play as the outcomes of that enquiry are well established (Gilbert & Boulter, 1998). Besides, there are considerable similarities between the processes and outcomes of science and technology (Cinar, 2016). In this study, we discuss how the use of…

  2. Test Driven Development: Lessons from a Simple Scientific Model

    Science.gov (United States)

    Clune, T. L.; Kuo, K.

    2010-12-01

    In the commercial software industry, unit testing frameworks have emerged as a disruptive technology that has permanently altered the process by which software is developed. Unit testing frameworks significantly reduce traditional barriers, both practical and psychological, to creating and executing tests that verify software implementations. A new development paradigm, known as test driven development (TDD), has emerged from unit testing practices, in which low-level tests (i.e. unit tests) are created by developers prior to implementing new pieces of code. Although somewhat counter-intuitive, this approach actually improves developer productivity. In addition to reducing the average time for detecting software defects (bugs), the requirement to provide procedure interfaces that enable testing frequently leads to superior design decisions. Although TDD is widely accepted in many software domains, its applicability to scientific modeling still warrants reasonable skepticism. While the technique is clearly relevant for infrastructure layers of scientific models such as the Earth System Modeling Framework (ESMF), numerical and scientific components pose a number of challenges to TDD that are not often encountered in commercial software. Nonetheless, our experience leads us to believe that the technique has great potential not only for developer productivity, but also as a tool for understanding and documenting the basic scientific assumptions upon which our models are implemented. We will provide a brief introduction to test driven development and then discuss our experience in using TDD to implement a relatively simple numerical model that simulates the growth of snowflakes. Many of the lessons learned are directly applicable to larger scientific models.

  3. High School Students "Do" and Learn Science through Scientific Modeling.

    Science.gov (United States)

    Anderson, Susan Smetzer; Farnsworth, Valerie

    2000-01-01

    This document describes the research project Modeling for Understanding in Science Education (MUSE) which focuses on the improvement of high school students' learning. MUSE research investigated how lower and high achieving students learned to reason, inquire, present, and critique scientific arguments in a genetics course taught during the spring…

  4. SCIENTIFIC PRINCIPLES AND MATHEMATICAL MODELS OF PROCESSES OF MINING

    OpenAIRE

    Kriuchkov, Anatolii Ivanovych

    2016-01-01

    The connection between mathematical models of the mining industry with the basic scientific principles. The method of simulation of random non-stationary processes in the form of a set of Hamilton-Jacobi equations and Fokker-Planck-Kolmogorov using the principle of duality movement of mass in space

  5. Purposeful and targeted use of scientists to support in-service teachers' understandings and teaching of scientific inquiry and nature of science

    Science.gov (United States)

    White, Kevin

    Efforts have been made to enhance teachers' understanding and teaching of NOS and/or SI by immersing teachers into the field and lab work of scientists through intensive summer institutes. Results have been mixed and the samples have been small. This may be due to several factors: implicit strategies to learn and teach about NOS and/or SI (Schwartz, Lederman, & Crawford, 2004), experiences lasting as little as two weeks (Morrison, Raab, & Ingram, 2009), lack of teacher availability during the school year or summer, intimidation of subject matter or scientists, etc. The challenge remains to see if scientist-teacher collaborations are a meaningful and effective way to enhance teachers' understandings and instruction of NOS and SI. Learning about scientists and their culture while experiencing explicit instruction of NOS has demonstrated improved understandings of NOS (Bianchini & Colburn, 2000). However, Morrison, Raab, and Ingram (2009) identify that there is still a shortage of literature available addressing how teachers' view of NOS and SI may be impacted through interactions with scientists when not involved in authentic research. To this author's knowledge, there is no research available that investigates teachers' instruction of NOS and SI while in the same condition. The purpose of this study was to explore the relationships of in-service teachers' views of scientists, their understandings of NOS and SI, their view of teaching NOS and SI while engaged in a professional development experience that provided participants with a sustained immersion into the culture, beliefs and knowledge of scientists while in a NOS and SI course. Teachers showed substantial changes (pretest to posttest) on all seven aspects of NOS. And, as with NOS, teachers showed substantial improvement on all four aspects of SI investigated. The results of this investigation suggest an approach to teaching nature of science and scientific inquiry that may be an effective, lasting and

  6. Statistical Modeling of Large-Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Eliassi-Rad, T; Baldwin, C; Abdulla, G; Critchlow, T

    2003-11-15

    With the advent of massively parallel computer systems, scientists are now able to simulate complex phenomena (e.g., explosions of a stars). Such scientific simulations typically generate large-scale data sets over the spatio-temporal space. Unfortunately, the sheer sizes of the generated data sets make efficient exploration of them impossible. Constructing queriable statistical models is an essential step in helping scientists glean new insight from their computer simulations. We define queriable statistical models to be descriptive statistics that (1) summarize and describe the data within a user-defined modeling error, and (2) are able to answer complex range-based queries over the spatiotemporal dimensions. In this chapter, we describe systems that build queriable statistical models for large-scale scientific simulation data sets. In particular, we present our Ad-hoc Queries for Simulation (AQSim) infrastructure, which reduces the data storage requirements and query access times by (1) creating and storing queriable statistical models of the data at multiple resolutions, and (2) evaluating queries on these models of the data instead of the entire data set. Within AQSim, we focus on three simple but effective statistical modeling techniques. AQSim's first modeling technique (called univariate mean modeler) computes the ''true'' (unbiased) mean of systematic partitions of the data. AQSim's second statistical modeling technique (called univariate goodness-of-fit modeler) uses the Andersen-Darling goodness-of-fit method on systematic partitions of the data. Finally, AQSim's third statistical modeling technique (called multivariate clusterer) utilizes the cosine similarity measure to cluster the data into similar groups. Our experimental evaluations on several scientific simulation data sets illustrate the value of using these statistical models on large-scale simulation data sets.

  7. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  8. A simple model of scientific progress - with examples

    CERN Document Server

    Scorzato, Luigi

    2016-01-01

    One of the main goals of scientific research is to provide a description of the empirical data which is as accurate and comprehensive as possible, while relying on as few and simple assumptions as possible. In this paper, I propose a definition of the notion of "few and simple assumptions" that is not affected by known problems. This leads to the introduction of a simple model of scientific progress that is based only on empirical accuracy and conciseness. An essential point in this task is the understanding of the role played by "measurability" in the formulation of a scientific theory. This is the key to prevent artificially concise formulations. The model is confronted here with many possible objections and with challenging cases of real progress. Although I cannot exclude that the model might have some limitations, it includes all the cases of genuine progress examined here, and no spurious one. In this model, I stress the role of the "state of the art", which is the collection of all the theories that ar...

  9. Fraud, individuals, and networks: A biopsychosocial model of scientific frauds.

    Science.gov (United States)

    Leistedt, Samuel J; Linkowski, Paul

    2016-03-01

    The problem of fraud, especially scientific fraud, is global and its identification risk is still in its infancy. Based on an in-depth analysis of several financial and scientific fraud trials, the authors propose a new and integrative model of scientific fraud. This model identifies two major levels for committing fraud: (i) at the personal skills level (micro-level) and (ii) at the network skills level (macro-level). Interacting continuously with each other, they form a dynamic, efficient, and integrative system: an integrative model of fraud. The micro-level refers to three factors: (i) personality organization, (ii) social competence, and (iii) the so-called triangle of fraud. The macro-level refers essentially to social network organization and social engineering. Then, the key to understanding and mostly controlling fraud is to consider both the individual and the environment in which they operate. Based on our model, several steps at the micro- and macro-levels can be proposed. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Librarian-Teacher Partnerships for Inquiry Learning: Measures of Effectiveness for a Practice-Based Model of Professional Development

    Directory of Open Access Journals (Sweden)

    Joyce Yukawa

    2009-06-01

    Full Text Available Objective – This study analyzed the effects of a practice-based model of professional development on the teaching and collaborative practices of 9 teams of librarians and teachers, who created and implemented units of inquiry-focused study with K-12 students during a yearlong course. The authors describe how the collection and analysis of evidence guided the development team in the formative and summative evaluations of the outcomes of the professional development, as well as the long-term results of participation in this initiative.Methods – The authors used an interpretive, participative approach. The first author was the external reviewer for the project; the second author headed the development team and served as a participant-observer. Triangulated data were collected from participants in the form of learning logs, discussion board postings, interviews, questionnaires, and learning portfolios consisting of unit and lesson plans and student work samples with critiques. Data were also collected from the professional development designers in the form of meeting notes, responses to participants, interviews, and course documents. For two years following the end of the formal course, the authors also conducted follow-up email correspondence with all teams and site visits with six teams to determine sustained or expanded implementation of inquiry-focused, collaborative curriculum development. Results – The practice-based approach to professional development required continual modification of the course design and timely, individualized mentoring and feedback, based on analysis and co-reflection by the developers on the evidence gathered through participant logs, reports, and school site visits. Modeling the inquiry process in their own course development work and making this process transparent to the participating community were essential to improvement. Course participants reported beneficial results in both immediate and long-term changes

  11. A Set of Vertically Integrated Inquiry-Based Practical Curricula that Develop Scientific Thinking Skills for Large Cohorts of Undergraduate Students

    Science.gov (United States)

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P.; Lluka, Lesley J.

    2013-01-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to under prepared students…

  12. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    Science.gov (United States)

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  13. Model-based evaluation of scientific impact indicators

    CERN Document Server

    Medo, Matus

    2016-01-01

    Using bibliometric data artificially generated through a model of citation dynamics calibrated on empirical data, we compare several indicators for the scientific impact of individual researchers. The use of such a controlled setup has the advantage of avoiding the biases present in real databases, and allows us to assess which aspects of the model dynamics and which traits of individual researchers a particular indicator actually reflects. We find that the simple citation average performs well in capturing the intrinsic scientific ability of researchers, whatever the length of their career. On the other hand, when productivity complements ability in the evaluation process, the notorious $h$ and $g$ indices reveal their potential, yet their normalized variants do not always yield a fair comparison between researchers at different career stages. Notably, the use of logarithmic units for citation counts allows us to build simple indicators with performance equal to that of $h$ and $g$. Our analysis may provide ...

  14. Modelling tipping-point phenomena of scientific coauthorship networks

    CERN Document Server

    Xie, Zheng; Yi, Dongyun; Zhenzheng, Ouyang; Li, Jianping

    2016-01-01

    In a range of scientific coauthorship networks, tipping points are detected in degree distributions, correlations between degrees and local clustering coefficients, etc. The existence of those tipping points could be treated as a result of the diversity of collaboration behaviours in scientific field. A growing geometric hypergraph built on a cluster of concentric circles is proposed to model two typical collaboration behaviours, namely the behaviour of leaders and that of other members in research teams. The model successfully predicts the tipping points, as well as many common features of coauthorship networks. For example, it realizes a process of deriving the complex scale-free property from the simple yes/no experiments. Moreover, it gives a reasonable explanation for the emergence of tipping points by the difference of collaboration behaviours between leaders and other members, which emerges in the evolution of research teams. The evolution synthetically addresses typical factors of generating collabora...

  15. Modeling the States of Matter in a First-Grade Classroom

    Science.gov (United States)

    Lott, Kimberly; Wallin, Lynn

    2012-01-01

    Scientific modeling along with hands-on inquiry can lead to a deeper understanding of scientific concepts among students in upper elementary grades. Even though scientific modeling involves abstract-thinking processes, can students in younger elementary grades successfully participate in scientific modeling? Scientific modeling, like all other…

  16. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  17. Thermal performance modeling of NASA s scientific balloons

    Science.gov (United States)

    Franco, H.; Cathey, H.

    The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed

  18. Promoting health behavior change using appreciative inquiry: moving from deficit models to affirmation models of care.

    Science.gov (United States)

    Moore, Shirley M; Charvat, Jacqueline

    2007-01-01

    This article describes a new theoretical approach to health promotion and behavior change that may be especially suited to underserved women. Appreciative inquiry (AI), an organizational development process that focuses on the positive and creative as a force for an improved future, is described and adapted for use as an intervention to achieve health behavior change at the individual level. Guiding principles for its use with clients are provided, and an example of its application is illustrated in a hypothetical case study of an African American woman of low-socioeconomic resources who is attempting to increase lifestyle exercise following a cardiac event. AI is contrasted with the more traditional problem-solving approaches to the provision of care. The advantages, challenges, and issues associated with the use of AI as a health behavior change strategy are discussed.

  19. Model-based evaluation of scientific impact indicators

    Science.gov (United States)

    Medo, Matúš; Cimini, Giulio

    2016-09-01

    Using bibliometric data artificially generated through a model of citation dynamics calibrated on empirical data, we compare several indicators for the scientific impact of individual researchers. The use of such a controlled setup has the advantage of avoiding the biases present in real databases, and it allows us to assess which aspects of the model dynamics and which traits of individual researchers a particular indicator actually reflects. We find that the simple average citation count of the authored papers performs well in capturing the intrinsic scientific ability of researchers, regardless of the length of their career. On the other hand, when productivity complements ability in the evaluation process, the notorious h and g indices reveal their potential, yet their normalized variants do not always yield a fair comparison between researchers at different career stages. Notably, the use of logarithmic units for citation counts allows us to build simple indicators with performance equal to that of h and g . Our analysis may provide useful hints for a proper use of bibliometric indicators. Additionally, our framework can be extended by including other aspects of the scientific production process and citation dynamics, with the potential to become a standard tool for the assessment of impact metrics.

  20. Discovering Plate Boundaries Update: Builds Content Knowledge and Models Inquiry-based Learning

    Science.gov (United States)

    Sawyer, D. S.; Pringle, M. S.; Henning, A. T.

    2009-12-01

    Discovering Plate Boundaries (DPB) is a jigsaw-structured classroom exercise in which students explore the fundamental datasets from which plate boundary processes were discovered. The exercise has been widely used in the past ten years as a classroom activity for students in fifth grade through high school, and for Earth Science major and general education courses in college. Perhaps more importantly, the exercise has been used extensively for professional development of in-service and pre-service K-12 science teachers, where it simultaneously builds content knowledge in plate boundary processes (including natural hazards), models an effective data-rich, inquiry-based pedagogy, and provides a set of lesson plans and materials which teachers can port directly into their own classroom (see Pringle, et al, this session for a specific example). DPB is based on 4 “specialty” data maps, 1) earthquake locations, 2) modern volcanic activity, 3) seafloor age, and 4) topography and bathymetry, plus a fifth map of (undifferentiated) plate boundary locations. The jigsaw is structured so that students are first split into one of the four “specialties,” then re-arranged into groups with each of the four specialties to describe the boundaries of a particular plate. We have taken the original DPB materials, used the latest digital data sets to update all the basic maps, and expanded the opportunities for further student and teacher learning. The earthquake maps now cover the recent period including the deadly Banda Aceh event. The topography/bathymetry map now has global coverage and uses ice-free elevations, which can, for example, extend to further inquiry about mantle viscosity and loading processes (why are significant portions of the bedrock surface of Greenland and Antarctica below sea level?). The volcanic activity map now differentiates volcano type and primary volcanic lithology, allowing a more elaborate understanding of volcanism at different plate boundaries

  1. The Institutionalization of Scientific Information: A Scientometric Model (ISI-S Model).

    Science.gov (United States)

    Vinkler, Peter

    2002-01-01

    Introduces a scientometric model (ISI-S model) for describing the institutionalization process of scientific information. ISI-S describes the information and knowledge systems of scientific publications as a global network of interdependent information and knowledge clusters that are dynamically changing by their content and size. (Author/LRW)

  2. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  3. From Hippocrates to Commodities: three models of NHS governance: NHS governance, regulation, Mid Staffordshire inquiry, health care as a commodity.

    Science.gov (United States)

    Newdick, Christopher

    2014-01-01

    A series of inquiries and reports suggest considerable failings in the care provided to some patients in the NHS. Although the Bristol Inquiry report of 2001 led to the creation of many new regulatory bodies to supervise the NHS, they have never enjoyed consistent support from government and the Mid Staffordshire Inquiry in 2013 suggests they made little difference. Why do some parts of the NHS disregard patients' interests and how we should we respond to the challenge? The following discusses the evolution of approaches to NHS governance through the Hippocratic, Managerial and Commercial models, and assesses their risks and benefits. Apart from the ethical imperative, the need for effective governance is driven both by the growth in information available to the public and the resources wasted by ineffective systems of care. Appropriate solutions depend on an understanding of the perverse incentives inherent in each model and the need for greater sensitivity to the voices of patients and the public. © The Author 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals. permissions@oup.com.

  4. MODEL PEMBELAJARAN INQUIRY DAN HASIL BELAJAR SISWA PADA MATA PELAJARAN AQIDAH AKHLAK KELAS VIII MTs NEGERI TEBING TINGGI EMPAT LAWANG

    Directory of Open Access Journals (Sweden)

    Dianti Asmayani

    2014-06-01

    Full Text Available AbstractMost of teaching and learning process that used by the teacher is lecturing method. It could be the reason that the students feel bored and effects to their bad score. In order to solve these problems, the teacher should select the appropriate method which could stimulate students to think and active in the teaching and learning process. The result of the study showed that inquiry method could improve students score on Aqidah Akhlak subject especially on Mukjizat dan kejadian luar biasa lainya material.  Moreover, it was found that there was a significant difference in students’ achievement between the students who were taught by the application of inquiry model on those who were not. The result could be seen that mean score of the students was 17. The post-test score was 10.08, and KKM was 47.37%. Moreover perbedaan t0 is higher than  either at significant level of 5% or at significant level of 1%, it was 2,00  <  5,19 > 2,65.  Keywords: inquiry learning model, result of the study, subject learning

  5. Stimulating Scientific Reasoning with Drawing-Based Modeling

    Science.gov (United States)

    Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank

    2017-07-01

    We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each iteration, the user interface and instructions were adjusted based on students' remarks and the teacher's observations. Students' conversations were analyzed on reasoning complexity as a measurement of efficacy of the modeling tool and the instructions. These findings were also used to compose a set of recommendations for teachers and curriculum designers for using and constructing models in the classroom. Our findings suggest that to stimulate scientific reasoning in students working with a drawing-based modeling, tool instruction about the tool and the domain should be integrated. In creating models, a sufficient level of scaffolding is necessary. Without appropriate scaffolds, students are not able to create the model. With scaffolding that is too high, students may show reasoning that incorrectly assigns external causes to behavior in the model.

  6. Enhancing student teachers' epistemological beliefs about models and conceptual understanding through a model-based inquiry process

    Science.gov (United States)

    Soulios, Ioannis; Psillos, Dimitris

    2016-05-01

    In this study we present the structure and implementation of a model-based inquiry teaching-learning sequence (TLS) integrating expressive, experimental and exploratory modelling pedagogies in a cyclic manner, with the aim of enhancing primary education student teachers' epistemological beliefs about the aspects, nature, purpose and change of models as well as their conceptual understanding of light phenomena related to properties of optical fibres. The subjects were 16 prospective primary teachers involved in modelling activities, employing both hands-on experiments and computer modelling activities, based on the application of the ray model. Student teachers were tested before and after the implementation of the TLS by semi-structured interviews and a written questionnaire. Results show that before the TLS most students adopted epistemologically naïve realistic beliefs about models, whereas after the TLS there was an overall significant transition from naïve to more sophisticated epistemological beliefs, as well as significant improvements in their conceptual knowledge about light phenomena. Nevertheless, the relation between epistemological beliefs and conceptual understanding seems to be aspect-dependent, so our evidence suggests that more educational effort is required in order to establish a coherent relationship between them.

  7. Multi-Resolution Modeling of Large Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, C; Abdulla, G; Critchlow, T

    2002-02-25

    Data produced by large scale scientific simulations, experiments, and observations can easily reach tera-bytes in size. The ability to examine data-sets of this magnitude, even in moderate detail, is problematic at best. Generally this scientific data consists of multivariate field quantities with complex inter-variable correlations and spatial-temporal structure. To provide scientists and engineers with the ability to explore and analyze such data sets we are using a twofold approach. First, we model the data with the objective of creating a compressed yet manageable representation. Second, with that compressed representation, we provide the user with the ability to query the resulting approximation to obtain approximate yet sufficient answers; a process called adhoc querying. This paper is concerned with a wavelet modeling technique that seeks to capture the important physical characteristics of the target scientific data. Our approach is driven by the compression, which is necessary for viable throughput, along with the end user requirements from the discovery process. Our work contrasts existing research which applies wavelets to range querying, change detection, and clustering problems by working directly with a decomposition of the data. The difference in this procedures is due primarily to the nature of the data and the requirements of the scientists and engineers. Our approach directly uses the wavelet coefficients of the data to compress as well as query. We will provide some background on the problem, describe how the wavelet decomposition is used to facilitate data compression and how queries are posed on the resulting compressed model. Results of this process will be shown for several problems of interest and we will end with some observations and conclusions about this research.

  8. Multi-Resolution Modeling of Large Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, C; Abdulla, G; Critchlow, T

    2002-02-25

    Data produced by large scale scientific simulations, experiments, and observations can easily reach tera-bytes in size. The ability to examine data-sets of this magnitude, even in moderate detail, is problematic at best. Generally this scientific data consists of multivariate field quantities with complex inter-variable correlations and spatial-temporal structure. To provide scientists and engineers with the ability to explore and analyze such data sets we are using a twofold approach. First, we model the data with the objective of creating a compressed yet manageable representation. Second, with that compressed representation, we provide the user with the ability to query the resulting approximation to obtain approximate yet sufficient answers; a process called adhoc querying. This paper is concerned with a wavelet modeling technique that seeks to capture the important physical characteristics of the target scientific data. Our approach is driven by the compression, which is necessary for viable throughput, along with the end user requirements from the discovery process. Our work contrasts existing research which applies wavelets to range querying, change detection, and clustering problems by working directly with a decomposition of the data. The difference in this procedures is due primarily to the nature of the data and the requirements of the scientists and engineers. Our approach directly uses the wavelet coefficients of the data to compress as well as query. We will provide some background on the problem, describe how the wavelet decomposition is used to facilitate data compression and how queries are posed on the resulting compressed model. Results of this process will be shown for several problems of interest and we will end with some observations and conclusions about this research.

  9. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    incomplete and many relationships among the model ideas had not been well established by the end of the study. Most of them did not treat the natural selection model as a whole but only focused on some ideas within the model. Very few of them could scientifically apply the natural selection model to interpret other evolutionary phenomena. The findings about participating students' programming processes revealed these processes were composed of consecutive programming cycles. The cycle typically included posing a task, constructing and running program codes, and examining the resulting simulation. Students held multiple ideas and applied various programming strategies in these cycles. Students were involved in MBI at each step of a cycle. Three types of ideas, six programming strategies and ten MBI actions were identified out of the processes. The relationships among these ideas, strategies and actions were also identified and described. Findings suggested that ABPM activities could support MBI by (1) exposing students' personal models and understandings, (2) provoking and supporting a series of model-based inquiry activities, such as elaborating target phenomena, abstracting patterns, and revising conceptual models, and (3) provoking and supporting tangible and productive conversations among students, as well as between the instructor and students. Findings also revealed three programming behaviors that appeared to impede productive MBI, including (1) solely phenomenon-orientated programming, (2) transplanting program codes, and (3) blindly running procedures. Based on the findings, I propose a general modeling process in ABPM activities, summarize the ways in which MBI can be supported in ABPM activities and constrained by multiple factors, and suggest the implications of this study in the future ABPM-assisted science instructional design and research.

  10. Applying the Practical Inquiry Model to Investigate the Quality of Students' Online Discourse in an Information Ethics Course Based on Bloom's Teaching Goal and Bird's 3C Model

    Science.gov (United States)

    Liu, Chien-Jen; Yang, Shu Ching

    2012-01-01

    The goal of this study is to better understand how the study participants' cognitive discourse is displayed in their learning transaction in an asynchronous, text-based conferencing environment based on Garrison's Practical Inquiry Model (2001). The authors designed an online information ethics course based on Bloom's taxonomy of educational…

  11. TRANSFORMATION OF THE STUDENTS’ INQUIRY CAPABILITY THROUGH MINDMAP EDUCATIVE BY USING GAME OBSERVATION NORMATIVELY (MEGONO LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Tasiwan Tasiwan

    2016-04-01

    Full Text Available This classroom action research was conducted to analyze the development of the students’ inquiry abilities in science learning by a learning model of mindmap educative by using game observation normatively (Megono. The study was conducted in three cycles. In each cycle, the students were divided into five groups, each groups consisted of seven students. Each group was mandated to observe and to analyze the images/photos. After the image observations, they were asked to discuss, write and compile the information into a concept map.  One of the students was act as a representative of the group in a game of observation. Data were obtained through the pre-test, post-test, and observation by the observers as well as from the photo and video recording. The results showed that the students’ inquiry ability increased by 63.27% at the end of the cycle. At the initial conditions, the ability of the student was low (0.49. After the first cycle, it increased to 0.63 (medium, and then increased to 0.68 (moderate on the second cycle, and finally it increased to 0.80 (high in the third cycle. The average increase in every aspect was 68.59%.  The highest inquiry capability was achieved in aspects of reasoning amounted to 89.29 (very high. It was suggested to use the observation games fairly and needed more time adjustment to obtain higher learning outcomes.

  12. The Impact of Computational Experiment and Formative Assessment in Inquiry-Based Teaching and Learning Approach in STEM Education

    Science.gov (United States)

    Psycharis, Sarantos

    2016-04-01

    In this study, an instructional design model, based on the computational experiment approach, was employed in order to explore the effects of the formative assessment strategies and scientific abilities rubrics on students' engagement in the development of inquiry-based pedagogical scenario. In the following study, rubrics were used during the model development, based on prompts provided to students during the development of their models. Our results indicate that modelling is a process that needs sequencing and instructional support, in the form of rubrics, focused on the scientific abilities needed for the inquiry process. In this research, eighty (80) prospective primary school teachers participated, and the results of the research indicate that the development of inquiry-based scenario is strongly affected by the scientific abilities rubrics.

  13. Uses and Limitations of Scientific Models: The Periodic Table as an Inductive Tool.

    Science.gov (United States)

    Ben-Zvi, Nava; Genut, Sara

    1998-01-01

    Demonstrates that scientific laws about nature and their representative models, as taught and described by theory, are often different from the method as practiced. Focuses on the use of the Periodic Table as a scientific model. Contains 26 references. (DDR)

  14. The Benefits of Using Authentic Inquiry within Biotechnology Education

    Science.gov (United States)

    Hanegan, Nikki; Bigler, Amber

    2010-01-01

    A broad continuum exists to describe the structure of inquiry lessons (Hanegan, Friden, & Nelson, 2009). Most teachers have heard inquiry described from a range of simple questioning to completely student-designed scientific studies (Chinn & Malhotra, 2002). Biotechnology education often uses a variety of inquiries from cookbook laboratory…

  15. The Benefits of Using Authentic Inquiry within Biotechnology Education

    Science.gov (United States)

    Hanegan, Nikki; Bigler, Amber

    2010-01-01

    A broad continuum exists to describe the structure of inquiry lessons (Hanegan, Friden, & Nelson, 2009). Most teachers have heard inquiry described from a range of simple questioning to completely student-designed scientific studies (Chinn & Malhotra, 2002). Biotechnology education often uses a variety of inquiries from cookbook laboratory…

  16. Vad ska elever lära sig angående naturvetenskaplig verksamhet? - En analys av svenska läroplaner för grundskolan under 50 år. "What should students learn about scientific inquiry? A comparative study of 50 years of the Swedish national curricula."

    Directory of Open Access Journals (Sweden)

    Annie-Maj Johansson

    2012-12-01

    Full Text Available The purpose of this study is to contribute to an understanding of which changes related to scientific inquiry have been made historically in curriculum documents. A comparative analysis is made of five Swedish national curricula– Lgr 62, Lgr 69, Lgr 80, Lpo 94 and Lgr 11 – during the last 50 years regarding what compulsory school students (school years 1–9 should learn about scientific inquiry. It focuses 1 what students should learn about carrying out scientific inquiries, and 2 what students should learn about the nature of science. All of the curricula examined have aims concerning scientific inquiry. The results show that during the period there have been many shifts in emphasis and changes of aims, for example from learning an inductive method to a more deductive one, and from an emphasis on carrying out investigations to an emphasis on more conceptual understanding of scientific investigations. Because teaching traditions tend to conserve aspects of earlier curricula, it is discussed how the results can help teachers, teacher students and curriculum developers to better see the consequences of the changes for teaching and learning.

  17. Structure of the scientific community modelling the evolution of resistance.

    Science.gov (United States)

    2007-12-05

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from 1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides, herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress concerning resistance evolution which is currently a major issue for society.

  18. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  19. The inquiry continuum: Science teaching practices and student performance on standardized tests

    Science.gov (United States)

    Jernnigan, Laura Jane

    Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods

  20. A Path Model of Effective Technology-Intensive Inquiry-Based Learning

    Science.gov (United States)

    Avsec, Stanislav; Kocijancic, Slavko

    2016-01-01

    Individual aptitude, attitudes, and behavior in inquiry-based learning (IBL) settings may affect work and learning performance outcomes during activities using different technologies. To encourage multifaceted learning, factors in IBL settings must be statistically significant and effective, and not cognitively or psychomotor intensive. We…

  1. A Design Model of Distributed Scaffolding for Inquiry-Based Learning

    Science.gov (United States)

    Hsu, Ying-Shao; Lai, Ting-Ling; Hsu, Wei-Hsiu

    2015-01-01

    This study presents a series of three experiments that focus on how distributed scaffolding influences learners' conceptual understanding and reasoning from combined levels of triangulation, at the interactive level (discourses within a focus group) and the collective level (class). Three inquiry lessons on plate tectonics (LPT) were designed,…

  2. A Path Model of Effective Technology-Intensive Inquiry-Based Learning

    Science.gov (United States)

    Avsec, Stanislav; Kocijancic, Slavko

    2016-01-01

    Individual aptitude, attitudes, and behavior in inquiry-based learning (IBL) settings may affect work and learning performance outcomes during activities using different technologies. To encourage multifaceted learning, factors in IBL settings must be statistically significant and effective, and not cognitively or psychomotor intensive. We…

  3. Predatory Journals, Piracy and New Models of Publishing Scientific Articles

    Directory of Open Access Journals (Sweden)

    Zdeněk Smutný

    2016-06-01

    Full Text Available The paper responds to observed absurd impacts associated with predatory journals, both at the personal and institutional level. There is mentioned the basic procedure to identify predatory journal and how to find it in Beall’s list. Briefly are commented the consequences associated with the first study in the Czech Republic dealing with the number of articles published in predatory journals, which are inserted into the Information register of R&D results (RIV by research institutions. On this basis, a part of the funding for universities and research organizations in the Czech Republic is redistributed. Furthermore, there are commented approaches to financing journals and publishing articles, in particular, a new model of paying membership fees used by the publication platform PeerJ. Finally, the issue of the availability of scientific articles including piracy issues is discussed. Described development, which we are currently witnessing, transforms the current system of science and related publishing of scientific articles or knowledge sharing within the society.

  4. Modeling nonuniversal citation distributions: the role of scientific journals

    CERN Document Server

    Yao, Zheng; Zhang, Li-Jie; Xu, Xin-Jian

    2013-01-01

    Whether a scientific paper to be cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or tender, usually submit their most important work to prestigious journals which receives high citations than the ordinary. Thus, scientific journals play a crucial role in citation networks. In this paper, we address this issue and develop a model for citations networks via an intrinsic nodal weight function and an intuitive ageing mechanism. In the network, each node is endowed with a weight which represents its quality determined by the journal publishing it. All the nodes have two discrete stages: active and inactive. The evolution of the network combines the addition of new active nodes randomly connected to existing active ones and the transition of old active nodes to the inactive. The node-degree distribution of resulting networks shows a nonuniversal scaling: the distribution has exponential behaviour for small degree and a power-law tail f...

  5. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    Directory of Open Access Journals (Sweden)

    Joel Donna

    2013-07-01

    Full Text Available Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much time to use. Second-order barriers include perceptions that this technology would not promote face-to-face collaboration skills, would create social loafing situations, and beliefs that the technology does not help students understand the nature of science. Suggestions for mitigating these barriers within pre-service education technology courses are discussed. La technologie joue un rôle essentiel pour faciliter la collaboration au sein de la communauté scientifique. Les applications infonuagiques telles que Google Drive peuvent être utilisées pour donner forme à ce type de collaboration et pour appuyer le questionnement dans les cours de sciences du secondaire. On connaît pourtant peu les opinions que se font les futurs enseignants d’une telle utilisation des technologies collaboratives infonuagiques. Or, ces opinions pourraient influencer l’intégration future de ces technologies en salle de classe. Cette étude révèle plusieurs obstacles de premier plan, comme l’idée que l’utilisation de ces outils informatiques prend trop de temps. Parmi les obstacles de second plan, on note les perceptions selon lesquelles cette technologie ne promeut pas les compétences collaboratives de personne à personne, pose des problèmes de gestion de classe et n'aide pas les étudiants à comprendre la nature de la science. Des suggestions sont proposées pour atténuer ces obstacles dans les cours de technologie des programmes d’éducation.

  6. THE APPLICATION OF INQUIRY LEARNING MODEL TO IMPROVE “SATU ATAP” STUDENTS’ LEARNING RESULTS AT SMPN 4 SINGOSARI MALANG

    Directory of Open Access Journals (Sweden)

    B. Setiawan

    2016-04-01

    Full Text Available The implementation of the learning device with inquiry learning model into a developed model and tested in the learning process in elementary and junior high school “Satu Atap” 4 Singosari Malang. This type of research is done through experimentation with pre-experimental design that is implemented by the design of one group pretest and posttest design. The trial results with the learning device guided by inquiry learning model at the elementary-SMPN 4 “Satu Atap” Singosari Malang shows that the activities carried out as many as four meetings run according to the lesson plans have been made. Learning by using inquiry model on electric material can be accomplished through: 1. Identification of question / formulate problem with the average score 3:38 (pretty good, step 2. Formulate a hypothesis with an average score of 3:25 (pretty good, step 3. Designing and observation/ experiment with an average score of 3:50 (well, step 4. Collecting and analyzing the data with an average score of 3:38 (pretty good, and step 5. Drawing conclusions/ generalizations with an average score of 3:38 (pretty good. Learning models for additives substance material with step 1. Identify the question / formulate the problem got an average score of 3:13 (pretty good, step 2. Formulate a hypothesis to get an average score 3:13 (pretty good, step 3. Designing and making observations / experiment with an average score of 3:38 (pretty good, step 4. Collecting and analyzing the data with an average score of 3:25 (pretty good, and step 5. Drawing conclusions / generalizations with an average score of 3:50 (well. The students’ learning outcomes using inquiry learning model covers aspects of knowledge, skills and attitudes obtained as follows: the aspect of knowledge through the pretest and posttest on the matter of electricity has increased the average percentage score from 42.6 on the pretest become 67.7 with an average score of N-Gain 0.44 in the medium category

  7. Current Scientific Evidence for a Polarized Cardiovascular Endurance Training Model.

    Science.gov (United States)

    Hydren, Jay R; Cohen, Bruce S

    2015-12-01

    Recent publications have provided new scientific evidence for a modern aerobic or cardiovascular endurance exercise prescription that optimizes the periodization cycle and maximizes potential endurance performance gains in highly trained individuals. The traditional threshold, high volume, and high-intensity training models have displayed limited improvement in actual race pace in (highly) trained individuals while frequently resulting in overreaching or overtraining (physical injury and psychological burnout). A review of evidence for replacing these models with the proven polarized training model seems warranted. This review provides a short history of the training models, summarizes 5 key studies, and provides example training programs for both the pre- and in-season periods. A polarized training program is characterized by an undulating nonlinear periodization model with nearly all the training time spent at a "light" (≤13) and "very hard" (≥17) pace with very limited time at "hard" (14-16) or race pace (6-20 Rating of Perceived Exertion [RPE] scale). To accomplish this, the polarization training model has specific high-intensity workouts separated by one or more long slow distance workouts, with the exercise intensity remaining below ventilatory threshold (VT) 1 and/or blood lactate of less than 2 mM (A.K.A. below race pace). Effect sizes for increasing aerobic endurance performance for the polarized training model are consistently superior to that of the threshold training model. Performing a polarized training program may be best accomplished by: going easy on long slow distance workouts, avoiding "race pace" and getting after it during interval workouts.

  8. Report for the Office of Scientific and Technical Information: Population Modeling of the Emergence and Development of Scientific Fields

    Energy Technology Data Exchange (ETDEWEB)

    Bettencourt, L. M. A. (LANL); Castillo-Chavez, C. (Arizona State University); Kaiser, D. (MIT); Wojick, D. E. (IIA)

    2006-10-04

    coarse-grained approach to modeling the time-evolution of scientific fields mathematically, through adaptive models of contagion. That is, our models are inspired by epidemic contact processes, but take into account the social interactions and processes whereby scientific ideas spread - social interactions gleaned from close empirical study of historical cases. Variations in model parameters can increase or hamper the speed at which a field develops. In this way, models for the spread of 'infectious' ideas can be used to identify pressure points in the process of innovation that may allow for the evaluation of possible interventions by those responsible for promoting innovation, such as funding agencies. This report is organized as follows: Section 2 introduces and discusses the population model used here to describe the dynamics behind the establishment of scientific fields. The approach is based on a succinct (coarse) description of contact processes between scientists, and is a simplified version of a general class of models developed in the course of this work. We selected this model based primarily on its ability to treat a wide range of data patterns efficiently, across several different scientific fields. We also describe our methods for estimating parameter values, our optimization techniques used to match the model to data, and our method of generating error estimates. Section 3 presents brief accounts of six case studies of scientific evolution, measured by the growth in number of active authors over time, and shows the results of fitting our model to these data, including extrapolations to the near future. Section 4 discusses these results and provides some perspectives on the values and limitations of the models used. We also discuss topics for further research which should improve our ability to predict (and perhaps influence) the course of future scientific research. Section 5 provides more detail on the broad class of epidemic models developed as

  9. Modeling aspects of human memory for scientific study.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico); Watson, Patrick (University of Illinois - Champaign-Urbana Beckman Institute); McDaniel, Mark A. (Washington University); Eichenbaum, Howard B. (Boston University); Cohen, Neal J. (University of Illinois - Champaign-Urbana Beckman Institute); Vineyard, Craig Michael; Taylor, Shawn Ellis; Bernard, Michael Lewis; Morrow, James Dan; Verzi, Stephen J.

    2009-10-01

    Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closer to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.

  10. The Nature of Pre-service Science Teachers' Argumentation in Inquiry-oriented Laboratory Context

    Science.gov (United States)

    Ozdem, Yasemin; Ertepinar, Hamide; Cakiroglu, Jale; Erduran, Sibel

    2013-10-01

    The aim of this study was to investigate the kinds of argumentation schemes generated by pre-service elementary science teachers (PSTs) as they perform inquiry-oriented laboratory tasks, and to explore how argumentation schemes vary by task as well as by experimentation and discussion sessions. The model of argumentative and scientific inquiry was used as a design framework in the present study. According to the model, the inquiry of scientific topics was employed by groups of participants through experimentation and critical discussion sessions. The participants of the study were 35 PSTs, who teach middle school science to sixth through eighth grade students after graduation. The data were collected through video- and audio-recordings of the discussions made by PSTs in six inquiry-oriented laboratory sessions. For the analysis of data, pre-determined argumentation schemes by Walton were employed. The results illustrated that PSTs applied varied premises rather than only observations or reliable sources to ground their claims or to argue for a case or an action. It is also worthy of notice that the construction and evaluation of scientific knowledge claims resulted in different numbers and kinds of arguments. Results of this study suggest that designing inquiry-oriented laboratory environments, which are enriched with critical discussion, provides discourse opportunities that can support argumentation. Moreover, PSTs can be encouraged to support and promote argumentation in their future science classrooms if they engage in argumentation integrated instructional strategies.

  11. An inquiry-based biochemistry laboratory structure emphasizing competency in the scientific process: a guided approach with an electronic notebook format.

    Science.gov (United States)

    L Hall, Mona; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students through their laboratory work at a steady pace that encourages them to focus on quality observations, careful data collection and thought processes surrounding the chemistry involved. It motivates students to work in a collaborative manner with frequent opportunities for feedback, reflection, and modification of their ideas. Each laboratory activity has four stages to keep the students' efforts on track: pre-lab work, an in-lab discussion, in-lab work, and a post-lab assignment. Students are guided at each stage by an instructor created template that directs their learning while giving them the opportunity and flexibility to explore new information, ideas, and questions. These templates are easily transferred into an electronic journal (termed the E-notebook) and form the basic structural framework of the final lab reports the students submit electronically, via a learning management system. The guided-inquiry based approach presented here uses a single laboratory activity for undergraduate Introductory Biochemistry as an example. After implementation of this guided learning approach student surveys reported a higher level of course satisfaction and there was a statistically significant improvement in the quality of the student work. Therefore we firmly believe the described format to be highly effective in promoting student learning and engagement.

  12. Encouraging Greater Student Inquiry Engagement in Science through Motivational Support by Online Scientist-Mentors

    Science.gov (United States)

    Scogin, Stephen C.; Stuessy, Carol L.

    2015-01-01

    Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…

  13. Encouraging Greater Student Inquiry Engagement in Science through Motivational Support by Online Scientist-Mentors

    Science.gov (United States)

    Scogin, Stephen C.; Stuessy, Carol L.

    2015-01-01

    Next Generation Science Standards (NGSS) call for integrating knowledge and practice in learning experiences in K-12 science education. "PlantingScience" (PS), an ideal curriculum for use as an NGSS model, is a computer-mediated collaborative learning environment intertwining scientific inquiry, classroom instruction, and online…

  14. Injecting Inquiry into Photosynthesis Investigations

    Science.gov (United States)

    Salter, Irene; Smith, Rebecca; Nielsen, Katherine

    2008-01-01

    This is the story of how a typical middle school lab was transformed into an open-ended inquiry experience through a few small, but very powerful, changes. By allowing students to follow their own questions, the classroom filled with enthusiasm and students learned much more about photosynthesis, respiration, and the scientific processes. The…

  15. Poetic inquiry

    DEFF Research Database (Denmark)

    Gørlich, Anne

    2016-01-01

    In this article, I argue that poetic inquiry is a valuable method for producing knowledge that complements current research into ‘what works’ in reintegrating young people into secondary education. Researching ‘what works’ and ‘finding effects’ leads to insight into which interventions and tools...

  16. Enzyme Inquiry

    Science.gov (United States)

    Rushton, Gregory T.; Dias, Michael; McDurmon, Grant

    2008-01-01

    In this article, the authors describe a two-phase inquiry lesson in which students explore the catalytic activity of amylase on starch (Rungruangsa and Panijpan 1979). In the first phase, students' prior knowledge about the reaction is assessed through a set of directed prompts and small-group discussion, then challenged or reinforced as students…

  17. Tacit Beginnings Towards a Model of Scientific Thinking

    Science.gov (United States)

    Glass, Rory J.

    2013-10-01

    The purpose of this paper is to provide an examination of the role tacit knowledge plays in understanding, and to provide a model to make such knowledge identifiable. To do this I first consider the needs of society, the ubiquity of information in our world and the future demands of the science classroom. I propose the use of more implicit or tacit understandings as foundational elements for the development of student knowledge. To justify this proposition I consider a wide range of philosophical and psychological perspectives on knowledge. Then develop a Model of Scientific Knowledge, based in large part on a similar model created by Paul Ernest (Social constructivism as a philosophy of mathematics, SUNY Press, Albany, NY, 1998a; Situated cognition and the learning of mathematics, University of Oxford Department of Educational Studies, Oxford, 1998b). Finally, I consider the work that has been done by those in fields beyond education and the ways in which tacit knowledge can be used as a starting point for knowledge building.

  18. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  19. Exploring teachers' learning: A teacher's experiences integrating scientific modeling in the science classroom

    Science.gov (United States)

    Gonzalez Maza, Mirta Elizabeth

    This study, a narrative inquiry into the teaching of models and modeling in an elementary science classroom, explores a teacher's growth in pedagogical content knowledge (PCK) as she implemented a novel curriculum adapted from the MoDeLS (Modeling Designs for the Learning of Science) project. The purpose of the study was to explore, from the teacher's point of view, the pedagogical and conceptual changes she underwent while implementing a model-based approach in her classroom. The study summarizes the teacher's experiences, her decisions about teaching, her understanding of how her choices and practices influenced her content knowledge (CK), her PCK, and her motivations for changing her teaching. During the three years of the project I collected data from four science units (Astronomy, Animal Science, Electricity, and Light). Each of the units were observed and videotaped and Ms. Delaney (pseudonym), the classroom teacher, audio-recorded her practices every day. I observed and analyzed classroom videotapes in order to explore how Ms. Delaney's modeling practices unfolded and changed in her classroom and how her PCK on modeling developed. I analyzed professional development activities and informal interviews conducted during and after the units. Subsequently I interviewed Ms. Delaney about these issues using open-ended questions and video clips of her classroom practices. Three aspects of models and modeling expressed in the MoDeLS project were taken into account as I developed categories of analysis: a) models have purpose; b) models have limitations; and c) models change. These categories and the codes proposed were revised and refined while analyzing the data. The findings from the interview analyses and the classroom practices showed that Ms. Delaney developed new CK around models and modeling throughout the three years she was involved in the project. She adapted some of the proposed strategies from the MoDeLS project and adopted them in her curriculum in ways

  20. Reconceptualising inquiry in science education

    Science.gov (United States)

    Bevins, Stuart; Price, Gareth

    2016-01-01

    Decades of discussion and debate about how science is most effectively taught and learned have resulted in a number of similar but competing inquiry models. These aim to develop students learning of science through approaches which reflect the authenticity of science as practiced by professional scientists while being practical and manageable within the school context. This paper offers a collection of our current reflections and suggestions concerning inquiry and its place in science education. We suggest that many of the current models of inquiry are too limited in their vision concerning themselves, almost exclusively, with producing a scaffold which reduces the complex process of inquiry into an algorithmic approach based around a sequence of relatively simple steps. We argue that this restricts students' experience of authentic inquiry to make classroom management and assessment procedures easier. We then speculate that a more integrated approach is required through an alternative inquiry model that depends on three dimensions (conceptual, procedural and personal) and we propose that it will be more likely to promote effective learning and a willingness to engage in inquiry across all facets of a students' school career and beyond.

  1. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    Science.gov (United States)

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  2. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    Science.gov (United States)

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  3. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    Science.gov (United States)

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  4. Multi-Resolution Modeling of Large Scale Scientific Simulation Data

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, C; Abdulla, G; Critchlow, T

    2003-01-31

    This paper discusses using the wavelets modeling technique as a mechanism for querying large-scale spatio-temporal scientific simulation data. Wavelets have been used successfully in time series analysis and in answering surprise and trend queries. Our approach however is driven by the need for compression, which is necessary for viable throughput given the size of the targeted data, along with the end user requirements from the discovery process. Our users would like to run fast queries to check the validity of the simulation algorithms used. In some cases users are welling to accept approximate results if the answer comes back within a reasonable time. In other cases they might want to identify a certain phenomena and track it over time. We face a unique problem because of the data set sizes. It may take months to generate one set of the targeted data; because of its shear size, the data cannot be stored on disk for long and thus needs to be analyzed immediately before it is sent to tape. We integrated wavelets within AQSIM, a system that we are developing to support exploration and analyses of tera-scale size data sets. We will discuss the way we utilized wavelets decomposition in our domain to facilitate compression and in answering a specific class of queries that is harder to answer with any other modeling technique. We will also discuss some of the shortcomings of our implementation and how to address them.

  5. Inquiry Learning of High School Students through a Problem-Based Environmental Health Science Curriculum

    Science.gov (United States)

    Kang, Nam-Hwa; DeChenne, Sue Ellen; Smith, Grant

    2012-01-01

    The purpose of this study was to examine the degree to which high school students improved their inquiry capabilities in relation to scientific literacy through their experience of a problem-based environmental health science curriculum. The two inquiry capabilities studied were scientific questioning and approaches to inquiry into their own…

  6. Practical Advice for Teaching Inquiry-Based Science Process Skills in the Biological Sciences

    Science.gov (United States)

    Wilke, R. Russell; Straits, William J.

    2005-01-01

    Inquiry learning is student-based exploration of an authentic problem using the processes and tools of the discipline. Often inquiry learning is presented in a fashion that mirrors the scientific method, proceeding from identification of a problem to reporting of findings. In post-secondary settings, these scientific-method inquiry exercises…

  7. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  8. Fictional Inquiry

    DEFF Research Database (Denmark)

    Dindler, Christian; Iversen, Ole Sejer

    At designe i en fortællemæssig ramme giver brugere og designere mulighed for i fællesskab at udforske fremtidens it-anvendelser. Metoden hedder Fictional Inquiry, og den motiverer brugerne til at tænke ud over dagligdagens begrænsninger og sætte ord på ting i hverdagen, som ellers er svære...

  9. Comparison of Chemistry Learning Outcomes with Inquiry Learning Model and Learning Cycle 5E in Material Solubility and Solubility Multiplication Results

    Directory of Open Access Journals (Sweden)

    Nur Indah Firdausi

    2015-04-01

    Full Text Available Perbandingan Hasil Belajar Kimia dengan Model Pembelajaran Inquiry dan Learning Cycle 5E pada Materi Kelarutan dan Hasil Kali Kelarutan   Abstract: This research is aimed to compare the effectiveness between inquiry and LC 5E in solubility equilibria and the solubility product for students with different prior knowledge. The effectiveness of both learning models is measured from students learning outcome. This quasi experimental research uses factorial2x2 with posttest only design. Research samples are chosen using cluster random sampling. They are two classes of XI IPA SMAN 1 Kepanjen in the 2012/2013 academic year which consist of 31 students in each class. Cognitive learning outcome is measured by test items consist of four objective items and nine subjective items. Technique of data analysis in this research is two way ANOVA. Research results show that: (1 cognitive learning outcome and higher cognitive learning outcome of students in inquiry class is higher than students in LC 5E class; (2 cognitive learning outcome and higher cognitive learning outcome of students who have upper prior knowledge is higher than students who have lower prior knowledge in both inquiry and LC 5E. Key Words: learning outcome, inquiry, learning cycle 5E, solubility equilibria and the solubility product   Abstrak: Penelitian ini bertujuan membandingkan keefektifan model inquiry dan LC 5E pada materi kelarutan dan hasil kali kelarutan untuk siswa dengan kemampuan awal berbeda. Keefektifan model pembelajaran dilihat dari hasil belajar kognitif siswa. Penelitian ini menggunakan rancangan eksperimen semu dengan desain faktorial 2x2. Subjek penelitian dipilih secara cluster random sampling yaitu dua kelas XI IPA SMAN 1 Kepanjen dengan jumlah masing-masing kelas sebanyak 31 siswa. Instrumen perlakuan yang digunakan adalah silabus dan RPP sedangkan instrumen pengukuran berupa soal tes terdiri dari empat soal objektif dan sembilan soal subjektif. Teknik analisis data

  10. ICTP: A Successful Model of International Scientific Collaboration

    CERN Document Server

    CERN. Geneva

    2012-01-01

    The importance of international scientific collaboration in the changing world where the centre of gravity of fundamental research may be moving towards the east and the south is addressed. The unique role of ICTP in supporting global science is highlighted.

  11. DSRM: An Ontology Driven Domain Scientific Data Retrieval Model

    OpenAIRE

    2013-01-01

    With the development of information technology, a large number of domain scientific data have been accumulated with the characteristics of distribution and heterogeneity. It has important significance to acquire exact scientific data from multiple data sources for cooperative research. The existing data integration and information retrieval techniques cannot solve the problems of data semantic heterogeneity and retrieval inaccuracy very well. In this paper, an ontology driven domain scientifi...

  12. Investigating the Relationship between Students' Views of Scientific Models and Their Development of Models

    Science.gov (United States)

    Cheng, Meng-Fei; Lin, Jang-Long

    2015-10-01

    Understanding the nature of models and engaging in modeling practice have been emphasized in science education. However, few studies discuss the relationships between students' views of scientific models and their ability to develop those models. Hence, this study explores the relationship between students' views of scientific models and their self-generated models, and also whether views of models and modeling practice may be influenced by other factors, such as science learning performance and interest. The participants were 402 ninth-grade students in Taiwan. Data were collected using the Students' Understanding of Models in Science (SUMS) survey and students' self-evaluations of their own science learning interests and performance on a Likert-scale. The students' self-developed models explaining why three different magnetic phenomena occur were also evaluated on a schema of five levels, from lower (observational and fragmented models) to higher (microscopic and coherent models).The results reveal that most students' models remained only at the level of description of observable magnetic phenomena. A small number of the students were able to visualize unseen mechanisms, but these models were fragmented. However, several students with better science learning performance were able to develop coherent microscopic models to explain the three magnetic phenomena. The analyses indicated that most sub-factors of the SUMS survey were positively correlated with students' self-developed models, science learning performance and science learning interest. This study provides implications for teaching the nature of models and modeling practice.

  13. Charlotte: Scientific Modeling and Simulation Under the Software as a Service Paradigm Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA spends considerable effort supporting the efforts of collaborating researchers. These researchers are interested in interacting with scientific models provided...

  14. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  15. 试析科学管理的实质--思想革命%An Inquiry into the Essence of Scientific Management-Ideological Revolution

    Institute of Scientific and Technical Information of China (English)

    林影; 孙广华

    2014-01-01

    Taylor's scientific management is a great synthesize in management thoughts, and it is a great leap not only in productivity improvement but also in the protection of the dignity of labor.This paper analyzes the essence of scientific management-ideological revolution, refines humanitarian ideals in ideological revolution, and indicates that ideological revolution is helpful to realize the high efficiency of the scientific management.But limited to the natural defects in ideological revolution-“Platonic complex,” ideological revolution can not truly implement in re-ality.%泰勒的科学管理是一次管理思想上的大综合,无论是在提高生产力上,还是在保护劳动者的尊严上它都有一个巨大的飞跃。本文将分析泰勒的科学管理的实质———思想革命,提炼出思想革命中的人道主义理想,表明思想革命有助于高效率的科学管理的实现。但囿于思想革命的天然缺陷———“柏拉图情结”,思想革命在现实中难以真正落实。

  16. Science for all: Experiences and outcomes of students with visual impairment in a guided inquiry-based classroom

    Science.gov (United States)

    Rooks, Deborah L.

    The purpose of this study was to examine instructional experiences of students with visual impairment in an guided inquiry-based science classroom. Drawing from social constructive perspectives about teaching and learning, I focused on the initial attempts of students to participate fully in an inquiry-based astronomy unit. The astronomy unit incorporated features of project-based science inquiry and aligned with national standards. This study described the opportunities provided to and challenges faced by students with visual impairment as they participated in the guided inquiry-based learning environment. Additionally, discursive practices of students including student-generated questions, student discussions, and students' science notebook writing were examined. Also, students' alternative conceptions about scientific phenomena and changes in students' thinking during the course of instruction, if any, were described. Methods of data collection included classroom observations, video records, pre- and post-curriculum assessments, attitudes toward science measurement, student interviews, and student artifacts (i.e., science notebook entries, student-constructed models). Findings showed that student learning was enhanced when the instructor-researcher guided students in accomplishing inquiry tasks and in making sense of their inquiry experiences. Additionally, the use of appropriate reflective prompts assisted students with visual impairment to fully participate in the writing tasks of the inquiry-based learning environment. Results suggested that the quantity and quality of student-generated questions increased with extended inquiry instruction. Also, students used questions to not only establish verbal communication, but to elaborate on their own thinking and expand or explain the thinking of others. Findings suggested also that students with visual impairment have similar alternative frameworks about scientific phenomena (i.e., causes of lunar phases, reason for

  17. Authentic Environmental Inquiry Model: An Approach to Integrating Science and Social Studies in Under-Resourced Urban Elementary Schools in Southeastern Louisiana.

    Science.gov (United States)

    Buxton, Cory A.; Whatley, April

    This paper reports on a study of what it means to create authentic learning experiences for teachers and students in a southern urban elementary school context. A teacher education model emphasizing local environmental, cultural and historical themes, structured inquiry-based learning, and student-directed assessment strategies was implemented. We…

  18. PENGARUH MODEL PEMBELAJARAN INQUIRY TRAINING TERHADAP HASIL BELAJAR SISWA PADA MATERI POKOK USAHA DAN ENERGI KELAS VIII MTS N-3 MEDAN

    Directory of Open Access Journals (Sweden)

    Ratni Sirait

    2012-06-01

    36 orang. Hasil analisis data melalui uji t menunjukkan bahwa diperoleh thitung = 1,71 dan ttabel = 1,67, sehingga thitung > ttabel, artinya Ha diterima. Dapat disimpulkan ada pengaruh terhadap hasil belajar siswa dengan menggunakan model pembelajaran inquiry training pada materi pokok usaha dan energi kelas VIII semester I MTs N 3 Medan.

  19. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  20. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  1. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  2. Internet Inquiry

    DEFF Research Database (Denmark)

    This collection of dialogues is the only textbook of its kind. Internet Inquiry: Conversations About Method takes students into the minds of top internet researchers as they discuss how they have worked through critical challenges as they research online social environments. Editors Annette N....... Markham and Nancy K. Baym illustrate that good research choices are not random but are deliberate, studied, and internally consistent. Rather than providing single "how to" answers, this book presents distinctive and divergent viewpoints on how to think about and conduct qualitative internet studies....

  3. Internet Inquiry

    DEFF Research Database (Denmark)

    This collection of dialogues is the only textbook of its kind. Internet Inquiry: Conversations About Method takes students into the minds of top internet researchers as they discuss how they have worked through critical challenges as they research online social environments. Editors Annette N....... Markham and Nancy K. Baym illustrate that good research choices are not random but are deliberate, studied, and internally consistent. Rather than providing single "how to" answers, this book presents distinctive and divergent viewpoints on how to think about and conduct qualitative internet studies....

  4. Developing explanations: Student reasoning about science concepts during Claims-Evidence Inquiry lessons

    Science.gov (United States)

    Pegg, Jerine M.

    Recent science education reforms have placed a large emphasis on inquiry-based teaching strategies as an effective way of improving conceptual understanding of science principles, comprehension of the nature of scientific inquiry, and development of the abilities for inquiry (NRC, 1996). To better understand the relationship between inquiry-based instruction and student learning, this study examined the nature of student reasoning about science concepts during Claims-Evidence Inquiry lessons. The Claims-Evidence approach to inquiry teaching was chosen as the context for this study, because it focuses student investigations on specific scientific concepts. It uses a deductive approach to question generation, in which scientific claims are used as springboards for student investigations (Gummer, 2002; Thompson, 2003; Briley, 2003). This study found that the Claims-Evidence Inquiry model provides a framework for encouraging student reasoning about science concepts by providing supports for the development of explanations. Students were encouraged to develop explanations and consider how science concepts related to their investigations. A number of instructional factors appeared to influence students' development of explanations during Claims-Evidence inquiry. These included explicitly encouraging explanations, clarifying the connection between the claim and the investigation, the presentation of the claim, the nature of the claim, the development of science concepts, the design of the task, and the development of inquiry skills. Students were found to engage in discourse related to explanations during all four phases of the inquiry; forming a question or hypothesis, designing an investigation, collecting and presenting data, and analyzing results. Most of the verbal discourse related to explanations occurred when students were reasoning about hypotheses and most of the written discourse related to explanations occurred when students were reasoning about hypotheses and

  5. Students' Views of Scientific Models and Modeling: Do Representational Characteristics of Models and Students' Educational Levels Matter?

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Wu, Hsin-Kai

    2017-01-01

    The aim of this study was to examine the potential impact of the representational characteristics of models and students' educational levels on students' views of scientific models and modeling (VSMM). An online multimedia questionnaire was designed to address three major aspects of VSMM, namely the "nature of models," the "nature…

  6. Modeling Scientific Research Articles – Shifting Perspectives and Persistent Issues

    NARCIS (Netherlands)

    De Waard, Anita; Kircz, Joost

    2008-01-01

    We review over 10 years of research at Elsevier and various Dutch academic institutions on establishing a new format for the scientific research article. Our work rests on two main theoretical principles: the concept of modular documents, consisting of content elements that can exist and be publishe

  7. Incorporating Inquiry into Upper-Level Homework Assignments: The Mini-Journal

    Science.gov (United States)

    Whittington, A. G.; Speck, A. K.; Witzig, S. B.; Abell, S. K.

    2009-12-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. As part of an NSF-funded project, “CUES: Connecting Undergraduates to the Enterprise of Science,” new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). We engage students in inquiry-based learning by presenting homework exercises as “mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the minijournal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. The key differences between the old and new formats include (i) the active participation of the students in

  8. High-Altitude Aggressions and Physiological Degeneration? The Biography of “Climate” as an Object of Scientific Inquiry in Colombia During the 19th and the Early 20th Centuries

    Directory of Open Access Journals (Sweden)

    Stefan Pohl-Valero

    2015-10-01

    Full Text Available Objective: to show the role played by experimental physiology in the way of understanding the effects of high-altitude climates on the functioning of the human body and the possibilities of progress of the Colombian nation throughout the 19th and early 20th centuries. Content: the transformation of the concept of climate as an object of scientific inquiry is explored over the studied period. This is done by analyzing investigations on respiratory capacity, nutrition and metabolism, blood chemistry and heart function in people of the eastern range of the Colombian Andes. Conclusions: beyond an institutional or disciplinary history of physiology, this article shows that some practices of experimental physiology played a role in the process of represent­ing the Colombian nation, territory, and population. The inhabitants of the Andean highlands were understood not only in terms of race and innate abilities, but also in terms of social classes and organic transformations. The idea that there was a supposed process of “physiological de­generation”, decreasing the efficiency of high-altitude workers, was tried to compensate through a “rational diet”.

  9. Inquiry-based Science Instruction in High School Biology Courses: A Multiple Case Study

    Science.gov (United States)

    Aso, Eze

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's model of increasing levels of complexity for inquiry-based instruction. A multiple case study research design was conducted of biology programs at 3 high schools in an urban school district in the northeastern region of the United States. Participants included 2 biology teachers from each of the 3 high schools. Data were collected from individual interviews with biology teachers, observations of lessons in biology, and documents related to state standards, assessments, and professional development. The first level of data analysis involved coding and categorizing the interview and observation data. A content analysis was used for the documents. The second level of data analysis involved examining data across all sources and all cases for themes and discrepancies. According to study findings, biology teachers used confirmation, structure, and guided inquiry to improve student learning. However, they found open inquiry challenging and frustrating to implement because professional development about scaffolding of instruction over time was needed, and students' reading and writing skills needed to improve. This study contributes to positive social change by providing educators and researchers with a deeper understanding about how to scaffold levels of inquiry-based science instruction in order to help students become scientifically literate citizens.

  10. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

    Science.gov (United States)

    Archer, Lester A. C.; Ng, Karen E.

    2016-01-01

    The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

  11. Nematodes: Model Organisms in High School Biology

    Science.gov (United States)

    Bliss, TJ; Anderson, Margery; Dillman, Adler; Yourick, Debra; Jett, Marti; Adams, Byron J.; Russell, RevaBeth

    2007-01-01

    In a collaborative effort between university researchers and high school science teachers, an inquiry-based laboratory module was designed using two species of insecticidal nematodes to help students apply scientific inquiry and elements of thoughtful experimental design. The learning experience and model are described in this article. (Contains 4…

  12. Inquiry on scientific and fair evaluation of routine road maintenance performance%公正科学评价公路小修保养绩效探讨

    Institute of Scientific and Technical Information of China (English)

    王永顺

    2016-01-01

    The thesis analyzes problems existing in routine road maintenance performance evaluation,determines the quality standards of routine road maintenance according to road condition types,and puts forward converting methods of county administration bureau in light of different mile-age and different road conditions,with a view to scientifically and fairly assesses routine road maintenance performance.%分析了公路小修保养绩效评价中存在的问题,根据路况类型,确定了小修保养工作合格目标,并提出了县区局管养不同里程和不同路况的折算方法,以科学公正评价小修保养绩效,提高公路养护管理水平。

  13. Studying Plant-Rhizobium Mutualism in the Biology Classroom: Connecting the Big Ideas in Biology through Inquiry

    Science.gov (United States)

    Suwa, Tomomi; Williamson, Brad

    2014-01-01

    We present a guided-inquiry biology lesson, using the plant-rhizobium symbiosis as a model system. This system provides a rich environment for developing connections between the big ideas in biology as outlined in the College Board's new AP Biology Curriculum. Students gain experience with the practice of scientific investigation, from…

  14. Studying Plant-Rhizobium Mutualism in the Biology Classroom: Connecting the Big Ideas in Biology through Inquiry

    Science.gov (United States)

    Suwa, Tomomi; Williamson, Brad

    2014-01-01

    We present a guided-inquiry biology lesson, using the plant-rhizobium symbiosis as a model system. This system provides a rich environment for developing connections between the big ideas in biology as outlined in the College Board's new AP Biology Curriculum. Students gain experience with the practice of scientific investigation, from…

  15. Investigating the Effects of Structured and Guided Inquiry on Students' Development of Conceptual Knowledge and Inquiry Abilities: A Case Study in Taiwan

    Science.gov (United States)

    Fang, Su-Chi; Hsu, Ying-Shao; Chang, Hsin-Yi; Chang, Wen-Hua; Wu, Hsin-Kai; Chen, Chih-Ming

    2016-01-01

    In order to promote scientific inquiry in secondary schooling in Taiwan, the study developed a computer-based inquiry curriculum (including structured and guided inquiry units) and investigated how the curriculum influenced students' science learning. The curriculum was implemented in 5 junior secondary schools in the context of a weeklong summer…

  16. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  17. Student-guided field based investigations of microplastic contamination in urban waterways as a tool to introduce environmental science students to scientific inquiry

    Science.gov (United States)

    Pondell, C.

    2016-12-01

    Microplastic pollution is becoming an increasing concern in oceanographic and environmental studies, and offers an opportunity to engage undergraduate students in environmental research using a highly relevant field of investigation. For instance, a majority of environmental science majors not only know about the Great Pacific Garbage Patch, but can also list off several statistics about its size and impact on marine life. Building on this enthusiasm for understanding the impact of microplastics on the environment, a laboratory class was designed to introduce environmental science majors to the rigors of scientific investigation using microplastic pollution in urban waterways as the focus of their laboratory experience. Over a seven-week period, students worked in small groups to design an experiment, collect samples in the field, analyze the samples in the lab, and present their findings in a university-wide forum. Their research questions focused on developing a better understanding of the transportation and fate of microplastics in the urban waterways of Washington, D.C. This presentation will explore the benefits and challenges associated with a student guided field study for environmental science undergraduates, and will describe results and student feedback from their urban microplastic field study.

  18. Developing Students’ Reflections about the Function and Status of Mathematical Modeling in Different Scientific Practices

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical...... position held by the modeler(s) and the practitioners in the extra-mathematical domain. For students to experience the significance of different scientific practices and cultures for the function and status of mathematical modeling in other sciences, students need to be placed in didactical situations...... in situations in which they can experience and be challenged to reflect upon and criticize, the use of modeling and the significance of the context for the function and status of modeling and models in scientific practices. We present Nicolas Rashevsky’s model of cell division from the 1930s together...

  19. Quantitative comparisons to promote inquiry in the introductory physics lab

    CERN Document Server

    Holmes, N G

    2015-01-01

    In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs.1 This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and communicating physics. These themes all tie together as a set of practical skills in scientific measurement, analysis, and experimentation. In addition to teaching students how to use these skills, it is important for students to know when to use them so that they can use them autonomously. This requires, especially in the case of analytical skills, high-levels of inquiry behaviours to reflect on data and iterate measurements, which students rarely do in lab experiments. In this paper, we describe a simple framework for structuring the critical thinking and inquiry behaviours relevant to lab work, which focuses on iterative cycles of comparisons between data sets. W...

  20. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching. This review identifies both the strengths and weaknesses of each of these case studies. It is the first to go beyond examining the impact of specific inquiry instructional approaches to offer a synthesis of cases. We find that inquiry teaching can succeed by concretising scientific processes, providing access to global data and evidence, imparting critical and higher order thinking about AGCC science policy and contextualising learning with places and scientific facts. We recommend educational researchers and scientists collaborate to create and refine curricula that utilise geospatial technologies, climate models and communication technologies to bring students into contact with scientists, climate data and authentic AGCC research processes. Many available science education technologies and curricula also require further research to maximise trade-offs between implementation and training costs and their educational value.

  1. Scientific Playworlds: a Model of Teaching Science in Play-Based Settings

    Science.gov (United States)

    Fleer, Marilyn

    2017-09-01

    Eminent scientists, like Einstein, worked with theoretical contradiction, thought experiments, mental models and visualisation—all characteristics of children's play. Supporting children's play is a strength of early childhood teachers. Promising research shows a link between imagination in science and imagination in play. A case study of 3 preschool teachers and 26 children (3.6-5.9 years; mean age of 4.6 years) over 6 weeks was undertaken, generating 59.6 h of digital observations and 788 photographs of play practices. The research sought to understand (1) how imaginative play promotes scientific learning and (2) examined how teachers engaged children in scientific play. Although play pedagogy is a strength of early childhood teachers, it was found that transforming imaginary situations into scientific narratives requires different pedagogical characteristics. The study found that the building of collective scientific narratives alongside of discourses of wondering were key determinants of science learning in play-based settings. Specifically, the pedagogical principles of using a cultural device that mirrors the science experiences, creating imaginary scientific situations, collectively building scientific problem situations, and imagining the relations between observable contexts and non-observable concepts, changed everyday practices into a scientific narrative and engagement. It is argued that these unique pedagogical characteristics promote scientific narratives in play-based settings. An approach, named as Scientific Playworlds, is presented as a possible model for teaching science in play-based settings.

  2. Accelerating scientific codes by performance and accuracy modeling

    CERN Document Server

    Fabregat-Traver, Diego; Bientinesi, Paolo

    2016-01-01

    Scientific software is often driven by multiple parameters that affect both accuracy and performance. Since finding the optimal configuration of these parameters is a highly complex task, it extremely common that the software is used suboptimally. In a typical scenario, accuracy requirements are imposed, and attained through suboptimal performance. In this paper, we present a methodology for the automatic selection of parameters for simulation codes, and a corresponding prototype tool. To be amenable to our methodology, the target code must expose the parameters affecting accuracy and performance, and there must be formulas available for error bounds and computational complexity of the underlying methods. As a case study, we consider the particle-particle particle-mesh method (PPPM) from the LAMMPS suite for molecular dynamics, and use our tool to identify configurations of the input parameters that achieve a given accuracy in the shortest execution time. When compared with the configurations suggested by exp...

  3. Using participative inquiry in usability analysis to align a development team's mental model with its users' needs

    Science.gov (United States)

    Kneifel, A. A.; Guerrero, C.

    2003-01-01

    In this web site usability case study, two methods of participative inquiry are used to align a development team's objectives with their users' needs and to promote the team awareness of the benefit of qualitative usability analysis.

  4. Learning Analytics for Communities of Inquiry

    Science.gov (United States)

    Kovanovic, Vitomir; Gaševic, Dragan; Hatala, Marek

    2014-01-01

    This paper describes doctoral research that focuses on the development of a learning analytics framework for inquiry-based digital learning. Building on the Community of Inquiry model (CoI)--a foundation commonly used in the research and practice of digital learning and teaching--this research builds on the existing body of knowledge in two…

  5. Forward progress of scientific inquiry into the early father-child relationship: introduction to the special issue on very young children and their fathers.

    Science.gov (United States)

    Bocknek, Erika L; Hossain, Ziarat; Roggman, Lori

    2014-01-01

    Research on fathering and the father-child relationship has made substantial progress in the most recent 15 years since the last special issue of the Infant Mental Health Journal on fathers and young children. This special issue on fathers and young children contains a series of papers exemplifying this progress, including advances in methodology-more direct assessment and more observational measures-in addition to the increasing dynamic complexity of the conceptual models used to study fathers, the diversity of fathers studied, and the growth of programs to support early father involvement. In assessing the current state of the field, special attention is given to contributions made by the papers contained in this special issue, and two critical areas for continued progress are addressed: (1) methodological and measurement development that specifically address fathers and fathering relationships and (2) cross-cultural and ecologically valid research examining the diversity of models of fathering.

  6. A germ for young European scientists: Drawing-based modelling.

    NARCIS (Netherlands)

    van Joolingen, Wouter

    2017-01-01

    An important movement in European science education is that learning should be inquiry-based and represents realistic scientific practice. The inquiry-based nature of science education is essential to interest more young people for a career in science and technology. Creating models is broadly seen

  7. A germ for young European scientists: Drawing-based modelling.

    NARCIS (Netherlands)

    van Joolingen, Wouter

    2017-01-01

    An important movement in European science education is that learning should be inquiry-based and represents realistic scientific practice. The inquiry-based nature of science education is essential to interest more young people for a career in science and technology. Creating models is broadly seen

  8. Experimental Comparison of Inquiry and Direct Instruction in Science

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  9. Experimental Comparison of Inquiry and Direct Instruction in Science

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  10. The effects of inquiry based ecopedagogy model on pre-service physics teachers' motivation and achievement in environmental physics instruction

    Science.gov (United States)

    Napitupulu, Nur Dewi; Munandar, Achmad

    2017-05-01

    —Motivation plays a crucial role in learning. Motivation energizes the behavior of the individual. It also directs the behavior towards specific goals. It helps students acquire knowledge, increase initiation, persist in activities, improve achievement, and develop a sense of discipline. The purpose of this study was to investigate the effects on the achievement and motivation of pre-service teacher of the Inquiry based ecopedagogy (In-EcoP) learning process applied to environmental physics instruction. The motivation adapted to Keller's four dimensions, namely attention, relevance, confidence and satisfaction. The study involved 66 students which are divided into two classes of an environmental physics instruction. The first class used the traditional lecture format while the In-EcoP model was used in the second. The research data were obtained through the environmental physics concept test and motivation questionnaire. The data analysis was conducted using a quantitative study approach and involved a motivational survey and an academic achievement test. It was found that the experimental group students were achieve more than the students in the control group. An increase in motivation and academic achievement of the students in the experimental group was identified as well. This research demonstrates the effectiveness of the In-EcoP model for enhancing pre-service teacher motivation and academic achievement in environmental physics instruction.

  11. Working environment with social and personal open tools for inquiry based learning: Pedagogic and diagnostic frameworks

    NARCIS (Netherlands)

    Protopsaltis, Aristos; Seitlinger, Paul; Chaimala, Foteini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, Kitty; Boytchev, Pavel

    2014-01-01

    The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it

  12. Working environment with social and personal open tools for inquiry based learning: Pedagogic and diagnostic frameworks

    NARCIS (Netherlands)

    Protopsaltis, Aristos; Seitlinger, Paul; Chaimala, Foteini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, Kitty; Boytchev, Pavel

    2014-01-01

    The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it

  13. The Effect of Cognitive Apprenticeship-Based Professional Development on Teacher Self-Efficacy of Science Teaching, Motivation, Knowledge Calibration, and Perceptions of Inquiry-Based Teaching

    Science.gov (United States)

    Peters-Burton, Erin E.; Merz, Sydney A.; Ramirez, Erin M.; Saroughi, Maryam

    2015-10-01

    This study investigated the effects of a 1-year professional development (PD) based on a cognitive apprenticeship model of research experiences on inservice teacher self-efficacy of science teaching, motivation, knowledge calibration, and perceptions of inquiry of 19 secondary earth science and biology teachers. The PD facilitator, who serves a dual role as a scientist and teacher educator, utilized a cognitive apprenticeship model to shape both scientific thinking and inquiry instruction with 19 inservice teachers. Results indicated that inservice teachers changed their perceptions of inquiry and maintained high self-efficacy throughout all phases of the study. However, teachers refrained from making long-term changes in their cognitive strategy instruction. Implications provide a fuller picture of teacher learning during a RET program, supported with inquiry instruction and the implications of cognitive apprenticeships in offering authentic science research experiences with minimal laboratory resources.

  14. Discovery of the faithfulness gene: a model of transmission and transformation of scientific information.

    Science.gov (United States)

    Green, Eva G T; Clémence, Alain

    2008-09-01

    The purpose of this paper is to study the diffusion and transformation of scientific information in everyday discussions. Based on rumour models and social representations theory, the impact of interpersonal communication and pre-existing beliefs on transmission of the content of a scientific discovery was analysed. In three experiments, a communication chain was simulated to investigate how laypeople make sense of a genetic discovery first published in a scientific outlet, then reported in a mainstream newspaper and finally discussed in groups. Study 1 (N=40) demonstrated a transformation of information when the scientific discovery moved along the communication chain. During successive narratives, scientific expert terminology disappeared while scientific information associated with lay terminology persisted. Moreover, the idea of a discovery of a faithfulness gene emerged. Study 2 (N=70) revealed that transmission of the scientific message varied as a function of attitudes towards genetic explanations of behaviour (pro-genetics vs. anti-genetics). Pro-genetics employed more scientific terminology than anti-genetics. Study 3 (N=75) showed that endorsement of genetic explanations was related to descriptive accounts of the scientific information, whereas rejection of genetic explanations was related to evaluative accounts of the information.

  15. A methodology for constructing the calculation model of scientific spreadsheets

    OpenAIRE

    Vos, de, Ans; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.

    2015-01-01

    Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are not able to fully understand how the research results are calculated, and trace them back to the underlying spreadsheets. This paper proposes a methodology for semi-automatically deriving the calcu...

  16. A Simultaneous Model to measure Academic and Financial Performances of Scientific Activities

    CERN Document Server

    Handoko, L T

    2005-01-01

    I propose a new model to measure simultaneously academic and financial performances of scientific activities quantitatively. The tool is very simple and can be applied to any branches of science, while it is also adjustable to varying macroeconomic indicators. I argue that implementing the model could realize a fair and objective decisionmaking and also reward and punishment system in order to improve the individual and institutional performances in scientific activities.

  17. Mobile Inquiry Based Learning

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 8 November). Mobile Inquiry Based Learning. Presentation given at the Workshop "Mobile inquiry-based learning" at the Mobile Learning Day 2012 at the Fernuniversität Hagen, Hagen, Germany.

  18. Mobile Inquiry Based Learning

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 8 November). Mobile Inquiry Based Learning. Presentation given at the Workshop "Mobile inquiry-based learning" at the Mobile Learning Day 2012 at the Fernuniversität Hagen, Hagen, Germany.

  19. TSA Public Inquiry Data

    Data.gov (United States)

    Department of Homeland Security — All non-media public inquiries and complaints and responses to inquiries received by telephone, e-mail and fax, and handles contacts in English and Spanish. The data...

  20. Maternal death inquiry and response in India - the impact of contextual factors on defining an optimal model to help meet critical maternal health policy objectives

    Directory of Open Access Journals (Sweden)

    Kalter Henry D

    2011-11-01

    Full Text Available Abstract Background Maternal death reviews have been utilized in several countries as a means of identifying social and health care quality issues affecting maternal survival. From 2005 to 2009, a standardized community-based maternal death inquiry and response initiative was implemented in eight Indian states with the aim of addressing critical maternal health policy objectives. However, state-specific contextual factors strongly influenced the effort's success. This paper examines the impact and implications of the contextual factors. Methods We identified community, public health systems and governance related contextual factors thought to affect the implementation, utilization and up-scaling of the death inquiry process. Then, according to selected indicators, we documented the contextual factors' presence and their impact on the process' success in helping meet critical maternal health policy objectives in four districts of Rajasthan, Madhya Pradesh and West Bengal. Based on this assessment, we propose an optimal model for conducting community-based maternal death inquiries in India and similar settings. Results The death inquiry process led to increases in maternal death notification and investigation whether civil society or government took charge of these tasks, stimulated sharing of the findings in multiple settings and contributed to the development of numerous evidence-based local, district and statewide maternal health interventions. NGO inputs were essential where communities, public health systems and governance were weak and boosted effectiveness in stronger settings. Public health systems participation was enabled by responsive and accountable governance. Communities participated most successfully through India's established local governance Panchayat Raj Institutions. In one instance this led to the development of a multi-faceted intervention well-integrated at multiple levels. Conclusions The impact of several contextual

  1. The profile of middle school students in experimental planning skills through inquiry training model on heat transfer

    Science.gov (United States)

    Darwis, Rahmiati; Rustaman, Nuryani Y.

    2016-02-01

    This study aimed to describe the experimental planning skills in middle school students on the topic of heat transfer through Inquiry Training Model (ITM) with laboratory activity. This research used descriptive method with A number of middle school students (n=21) in Bone was involved as participants in this study. Data was collected through observation sheets on science process skills. Research finding shows that the experimental planning skills of the participants varied in a sense of groups and all was well developed (> 90%) after having experience learning on heat transfer through ITM. It can be shown in the data collected phase through experimentation and filled-in student worksheet, Topic of heat transfer was the last period of the whole heat topic carried out through ITM. The students carried out the investigation without following the experimental design presented in the student' workbook, instead they were active in discussions to determine the tools and materials, as well as setting the pace of work independently based on the agreement in their group, so they have had experience in planning experiments. This activity shows the various students 'creativity in designing an experiment and from that those creations the students' like scientists in proving, discovery and developing invention potency that have been there before.

  2. U.S. Geoid Heights, Scientific Model (G96SSS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the conterminous United States is the G96SSS model. The computation used about 1.8 million terrestrial and marine gravity data held in...

  3. Enhancing Access to Scientific Models through Standard Web Services Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility and value of the "Software as a Service" paradigm in facilitating access to Earth Science numerical models. We...

  4. History Teachers' Knowledge of Inquiry Methods: An Analysis of Cognitive Processes Used During a Historical Inquiry

    Science.gov (United States)

    Voet, Michiel; De Wever, Bram

    2017-01-01

    The present study explores secondary school history teachers' knowledge of inquiry methods. To do so, a process model, outlining five core cognitive processes of inquiry in the history classroom, was developed based on a review of the literature. This process model was then used to analyze think-aloud protocols of 20 teachers' reasoning during an…

  5. Personal Inquiry Manager

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Specht, Marcus

    2014-01-01

    The Personal Inquiry Manager (PIM) is an integration approach based on a mobile application, based on Android, to support the IBL process and gives users mobile access to their inquiries. Moreover it facilitates a more self-directed approach as it enables to set up their own personal inquiries. The

  6. The influence of a Classroom Model of Scientific Scholarship on Four Girls' Trajectories of Identification with Science

    Science.gov (United States)

    Cook, Melissa Sunshine

    This study examines the teacher's role in shaping the identity construction resources available in a classroom and the ways in which individual students take up, modify, and appropriate those resources to construct themselves as scientists through interaction with their teacher and peers. Drawing on frameworks of identity construction and social positioning, I propose that the locally-negotiated classroom-level cultural model of what it means to be a "good" science student forms the arena in which students construct a sense of their own competence at, affiliation with, and interest in science. The setting for this study was a 6th grade science class at a progressive urban elementary school whose population roughly represents the ethnic and socioeconomic diversity of the state of California. The teacher was an experienced science and math teacher interested in social justice and inquiry teaching. Drawing from naturalistic observations, video and artifact analysis, survey data, and repeated interviews with students and the teacher, I demonstrated what it meant to be a "good" science student in this particular cultural community by analyzing what was required, reinforced, and rewarded in this classroom. Next, I traced the influence of this particular classroom's conception of what it meant to be good at science on the trajectories of identification with science of four 6th grade girls selected to represent a variety of stances towards science, levels of classroom participation, and personal backgrounds. Scientific scholarship in this class had two parts: values related to science as a discipline, and a more generic set of school-related values one might see in any classroom. Different meanings of and values for science were indexed in the everyday activities of the classroom: science as a language for describing the natural world, science as a set of rhetorical values, science as an adult social community, and science as a place for mess and explosions. Among school

  7. Promoting and Supporting Scientific Argumentation in the Classroom: The Evaluate-Alternatives Instructional Model

    Science.gov (United States)

    Sampson, Victor; Grooms, Jonathon

    2009-01-01

    This article describes an instructional model that science teachers can use to promote and support student engagement in scientific argumentation. This model is called the evaluate-alternatives instructional model and it is grounded in current research on argumentation in science education (e.g., Berland and Reiser 2009; McNeill and Krajcik 2006;…

  8. Teacher Students' Dilemmas When Teaching Science through Inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-01-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE…

  9. Statistical modelling of usual intake. Scientific report submitted to EFSA

    NARCIS (Netherlands)

    Voet, van der H.; Klaveren, van J.D.; Arcella, D.; Bakker, M.; Boeing, H.; Boon, P.E.; Crépét, A.; Dekkers, A.; Boer, de W.; Dodd, K.W.; Ferrari, P.; Goedhart, P.W.; Hart, A.; Heijden, van der G.W.A.M.; Kennedy, M.; Kipnis, V.; Knüppel, S.; Merten, C.; Ocké, M.; Slob, W.

    2010-01-01

    Within the EFSA Article 36 project “European Tool Usual Intake” (ETUI) a workshop was organised in May 2010 where the different available models to calculate usual intake were presented and discussed. This report integrates the workshop background document, the presentations given by experts, and th

  10. How Does a Cowboy Make Money? Using Student Curiosities to Further Elementary School Inquiries

    Science.gov (United States)

    Whitlock, Annie McMahon; Brugar, Kristy A.

    2017-01-01

    This article explores examples of student-initiated inquiries (in Grades 1 and 5) and the opportunities and challenges with engaging in them. To explore these student-initiated inquiries, we use the "C3 Framework" Inquiry Arc (National Council for the Social Studies, 2013) and Harvey and Daniels's (2009) Small-Group Inquiry Model to…

  11. Scientific Inquiry into Home Electronic Technology Usage

    Science.gov (United States)

    Lazaros, Edward J.; Spotts, Thomas H.; Verdon, Jessica E.

    2010-01-01

    This activity promotes ways to save electricity in the home. Students identify electronic devices in the home and examine wattage, hours of use per month, estimated wattage per month, kilowatt hours per month, average retail price per kilowatt hour in each state, and the estimated cost per month. Students gain an appreciation for how saving power…

  12. Doing Science: The Process of Scientific Inquiry

    Science.gov (United States)

    National Institutes of Health, 2005

    2005-01-01

    This curriculum supplement, from The NIH Curriculum Supplement Series, brings cutting-edge medical science and basic research discoveries from the National Institutes of Health (NIH) into classrooms. It was designed to complement existing life science curricula at both the state and local levels and to be consistent with the National Science…

  13. Teaching Scientific Inquiry with Galaxy Zoo

    Science.gov (United States)

    Slater, Stephanie J.; Slater, Timothy F.; Lyons, Daniel J.

    2011-01-01

    The universe of topics to choose from when teaching an astronomy course is astronomically immense. This wide array of opportunity presents some inherently difficult choices for teachers at all levels on how to limit the scope of the course to make the syllabus manageable. As but one example, consider that even the most experienced astronomy…

  14. Middle school students' development of inscriptional practices in inquiry-based science classrooms

    Science.gov (United States)

    Wu, Hsin-Kai

    The purpose of this study is to characterize the learning practices demonstrated by seventh graders when they used various scientific inscriptions in an inquiry-based learning environment. Inscriptions are types of transformations, such as graphs, diagrams, data tables, symbols, maps, and models, that materialize or visualize an entity into another format or mode. As suggested by science studies, scientific knowledge and the reality of science are constructed through manipulating a variety of inscriptions. However, little is known about how middle school students make use of inscriptions over time and what resources or features of the learning environment support students in doing so. Drawing on a naturalistic approach, this classroom-based study aims to characterize students' inscriptional practices, trace their learning trajectories, examine potential use of various scientific inscriptions, and analyze the learning supports and resources provided by the teachers and the learning environment. This eight-month study is conducted in two inquiry-based science classes with participation of two teachers and 27 seventh graders. Two student dyads from each class were observed intensively. Multiple sources of data were collected, including fieldnotes, classroom video recordings, process video recordings, computer-based models, webpages, science reports, notebooks, and transcripts from interviews with students and teachers. Several analytical steps were taken to analyze and synthesize these data. Expanding upon early research on students' learning of inscriptions, this study shows that seventh graders could demonstrate competent, purposeful inscriptional practices when they were scaffolded by the teachers and the curriculum in a learning environment where the inscriptional activities were sequenced, iterated, and embedded in scientific inquiry. Additionally, using inscriptions in science classrooms provided students with opportunities to engage in thoughtful discussions

  15. Scientific and conceptual flaws of coercive treatment models in addiction.

    Science.gov (United States)

    Uusitalo, Susanne; van der Eijk, Yvette

    2016-01-01

    In conceptual debates on addiction, neurobiological research has been used to support the idea that addicted drug users lack control over their addiction-related actions. In some interpretations, this has led to coercive treatment models, in which, the purpose is to 'restore' control. However, neurobiological studies that go beyond what is typically presented in conceptual debates paint a different story. In particular, they indicate that though addiction has neurobiological manifestations that make the addictive behaviour difficult to control, it is possible for individuals to reverse these manifestations through their own efforts. Thus, addicted individuals should not be considered incapable of making choices voluntarily, simply on the basis that addiction has neurobiological manifestations, and coercive treatment models of addiction should be reconsidered in this respect.

  16. Data Relationships: Towards a Conceptual Model of Scientific Data Catalogs

    Science.gov (United States)

    Hourcle, J. A.

    2008-12-01

    As the amount of data, types of processing and storage formats increase, the total number of record permutations increase dramatically. The result is an overwhelming number of records that make identifying the best data object to answer a user's needs more difficult. The issue is further complicated as each archive's data catalog may be designed around different concepts - - anything from individual files to be served, series of similarly generated and processed data, or something entirely different. Catalogs may not only be flat tables, but may be structured as multiple tables with each table being a different data series, or a normalized structure of the individual data files. Merging federated search results from archives with different catalog designs can create situations where the data object of interest is difficult to find due to an overwhelming number of seemingly similar or entirely unwanted records. We present a reference model for discussing data catalogs and the complex relationships between similar data objects. We show how the model can be used to improve scientist's ability to quickly identify the best data object for their purposes and discuss technical issues required to use this model in a federated system.

  17. Conceptualising inquiry based education in mathematics

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Artigue, Michéle

    2013-01-01

    The terms inquiry-based learning (IBL) and inquiry-based education (IBE) have appeared with increasing frequency in educational policy and curriculum documents related to mathematics and science education over the past decade, indicating a major educational trend. We go back to the origin...... of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical...... frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the Theory of Didactical Situations, the Realistic Mathematics Education programme, the mathematical modelling perspective, the Anthropological Theory of Didactics...

  18. Naturalistic Inquiry in E-Learning Research

    Directory of Open Access Journals (Sweden)

    Shirley Agostinho

    2005-03-01

    Full Text Available In this article, the author explains how and why one particular qualitative research approach, the naturalistic inquiry paradigm, was implemented in an e-learning research study that investigated the use of the World Wide Web technology in higher education. A framework is presented that situates the research study within the qualitative research literature. The author then justifies how the study was compliant with naturalistic inquiry and concludes by presenting a model for judging the quality of such research. The purpose of this article is to provide an example of how naturalistic inquiry can be implemented in e-learning research that can serve as a guide for researchers undertaking this form of qualitative inquiry. As such, the focus of the article is to illustrate how methodological issues pertaining to naturalistic inquiry were addressed and justified to represent a rigorous research approach rather than presenting the results of the research study.

  19. Scientific models red atoms, white lies and black boxes in a yellow book

    CERN Document Server

    Gerlee, Philip

    2016-01-01

    A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches a...

  20. Evaluation Model for Scientific Quality Based on Rough Sets and Its Empirical Study

    Institute of Scientific and Technical Information of China (English)

    LIU Dun; HU Pei; JIANG Chao-zhe; LIU Li

    2007-01-01

    By analyzing the questionnaires recollected from 74 different government departments in Chengdu, China, an evaluation model for scientific quality of civil servants was developed with the rough set theory. In the empirical study, a series of important rules were given to help to check and forecast the degree of the scientific quality of civil servants by using the reduction algorithm, and the total accuracy of prediction was 93.2%.

  1. Reconceptualising Inquiry in Science Education

    Science.gov (United States)

    Bevins, Stuart; Price, Gareth

    2016-01-01

    Decades of discussion and debate about how science is most effectively taught and learned have resulted in a number of similar but competing inquiry models. These aim to develop students learning of science through approaches which reflect the authenticity of science as practiced by professional scientists while being practical and manageable…

  2. Integration of Environmental Issues in a Physics Course: 'Physics by Inquiry' High School Teachers' Integration Models and Challenges

    Science.gov (United States)

    Kimori, David Abiya

    As we approach the second quarter of the twenty-first century, one may predict that the environment will be among the dominant themes in the political and educational discourse. Over the past three decades, particular perspectives regarding the environment have begun to emerge: (i) realization by human beings that we not only live on earth and use its resources at an increasingly high rate but we also actually belong to the earth and the total ecology of all living systems, (ii) there are strong interactions among different components of the large and complex systems that make up our environment, and (iii) the rising human population and its impact on the environment is a great concern (Hughes & Mason, 2014). Studies have revealed that although the students do not have a deep understanding of environmental issues and lack environmental awareness and attitudes necessary for protecting the environment, they have great concern for the environment (Chapman & Sharma, 2001; Fien, Yencken, & Sykes, 2002). However, addressing environmental issues in the classroom and other disciplines has never been an easy job for teachers (Pennock & Bardwell, 1994; Edelson, 2007). Using multiple case studies, this study investigated how three purposefully selected physics teachers teaching a 'Physics by Inquiry' course integrated environmental topics and issues in their classroom. Particularly this study looked at what integration models and practices the three physics teachers employed in integrating environmental topics and issues in their classroom and what challenges the teachers faced while integrating environmental topics in their classrooms. Data collection methods including field notes taken from observations, teachers' interviews and a collection of artifacts and documents were used. The data were coded analyzed and organized into codes and categories guided by Fogarty (1991) models of curriculum integration and Ham and Sewing (1988) four categories of barriers to environmental

  3. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    Science.gov (United States)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  4. The Impact of Inquiry Based Instruction on Science Process Skills and Self-Efficacy Perceptions of Pre-Service Science Teachers at a University Level Biology Laboratory

    Science.gov (United States)

    Sen, Ceylan; Sezen Vekli, Gülsah

    2016-01-01

    The aim of this study is to determine the influence of inquiry-based teaching approach on pre-service science teachers' laboratory self-efficacy perceptions and scientific process skills. The quasi experimental model with pre-test-post-test control group design was used as an experimental design in this research. The sample of this study included…

  5. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  6. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  7. Teacher (and District) Research: Three Inquiries into the Picture Word Inductive Model.

    Science.gov (United States)

    Calhoun, Emily; Poirier, Tracy; Simon, Nicole; Mueller, Lisa

    Three Canadian teachers (an English language first grade teacher, a French immersion first grade teacher, and a grade four/five teacher of students with special needs) used an action research framework and a multidimensional model of teaching to study and expand their literacy strategies and watch the effects on their students. The model they…

  8. Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry

    Science.gov (United States)

    Jacobs, Gerrie J.; Durandt, Rina

    2017-01-01

    This study explores the attitudes of mathematics pre-service teachers, based on their initial exposure to a model-eliciting challenge. The new Curriculum and Assessment Policy Statement determines that mathematics students should be able to identify, investigate and solve problems via modelling. The unpreparedness of mathematics teachers in…

  9. Periodic Properties and Inquiry: Student Mental Models Observed during a Periodic Table Puzzle Activity

    Science.gov (United States)

    Larson, Kathleen G.; Long, George R.; Briggs, Michael W.

    2012-01-01

    The mental models of both novice and advanced chemistry students were observed while the students performed a periodic table activity. The mental model framework seems to be an effective way of analyzing student behavior during learning activities. The analysis suggests that students do not recognize periodic trends through the examination of…

  10. Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry

    Science.gov (United States)

    Jacobs, Gerrie J.; Durandt, Rina

    2017-01-01

    This study explores the attitudes of mathematics pre-service teachers, based on their initial exposure to a model-eliciting challenge. The new Curriculum and Assessment Policy Statement determines that mathematics students should be able to identify, investigate and solve problems via modelling. The unpreparedness of mathematics teachers in…

  11. A reciprocal influence model of social power: Emerging principles and lines of inquiry

    NARCIS (Netherlands)

    Keltner, D.; van Kleef, G.A.; Chen, S.; Kraus, M.

    2008-01-01

    In the present chapter, we advance a reciprocal influence model of social power. Our model is rooted in evolutionist analyses of primate hierarchies, and notions that the capacity for subordinates to form alliances imposes important demands upon those in power, and that power heuristically reduces t

  12. Periodic Properties and Inquiry: Student Mental Models Observed during a Periodic Table Puzzle Activity

    Science.gov (United States)

    Larson, Kathleen G.; Long, George R.; Briggs, Michael W.

    2012-01-01

    The mental models of both novice and advanced chemistry students were observed while the students performed a periodic table activity. The mental model framework seems to be an effective way of analyzing student behavior during learning activities. The analysis suggests that students do not recognize periodic trends through the examination of…

  13. Proposing an Educational Scaling-and-Diffusion Model for Inquiry-Based Learning Designs

    Science.gov (United States)

    Hung, David; Lee, Shu-Shing

    2015-01-01

    Education cannot adopt the linear model of scaling used by the medical sciences. "Gold standards" cannot be replicated without considering process-in-learning, diversity, and student-variedness in classrooms. This article proposes a nuanced model of educational scaling-and-diffusion, describing the scaling (top-down supports) and…

  14. Proposing an Educational Scaling-and-Diffusion Model for Inquiry-Based Learning Designs

    Science.gov (United States)

    Hung, David; Lee, Shu-Shing

    2015-01-01

    Education cannot adopt the linear model of scaling used by the medical sciences. "Gold standards" cannot be replicated without considering process-in-learning, diversity, and student-variedness in classrooms. This article proposes a nuanced model of educational scaling-and-diffusion, describing the scaling (top-down supports) and…

  15. Online Library of Scientific Models, A New Way to Teach, Learn, and Share Learning Experience

    Directory of Open Access Journals (Sweden)

    Hatem H. Elrefaei

    2008-05-01

    Full Text Available While scientific models are usually communicated in paper format, the need to reprogram every model by every user results in a huge loss of efforts, time and money, hence lengthening the educational and research developing cycle and loosing the learning experience and expertise gained by every user. We demonstrate a new portal www.imodelit.com that hosts a library of scientific models for electrical engineers in the form of java applets. They are all conformal, informative, with strong input and output filing system. The software design allows a fast developing cycle and it represents a strong infrastructure that can be shared by researchers to develop their own applets to be posted on the library. We aim for a community based library of scientific models that enhances the e-learning process for engineering students.

  16. Simplifying Inquiry Instruction: Assessing the Inquiry Level of Classroom Activities

    Science.gov (United States)

    Bell, Randy L.; Smetana, Lara; Binns, Ian

    2005-01-01

    Inquiry instruction is a hallmark of the current science education reform efforts. Science teachers know that inquiry is important, yet most teachers lack a practical framework of inquiry to inform their instruction. Defining inquiry and assessing how much inquiry is supported by a particular activity or lab can be difficult and confusing. This…

  17. Designing Open Source Computer Models for Physics by Inquiry using Easy Java Simulation

    CERN Document Server

    Wee, Loo Kang

    2012-01-01

    The Open Source Physics community has created hundreds of physics computer models (Wolfgang Christian, Esquembre, & Barbato, 2011; F. K. Hwang & Esquembre, 2003) which are mathematical computation representations of real-life Physics phenomenon. Since the source codes are available and can be modified for redistribution licensed Creative Commons Attribution or other compatible copyrights like GNU General Public License (GPL), educators can customize (Wee & Mak, 2009) these models for more targeted productive (Wee, 2012) activities for their classroom teaching and redistribute them to benefit all humankind. In this interactive event, we will share the basics of using the free authoring toolkit called Easy Java Simulation (W. Christian, Esquembre, & Mason, 2010; Esquembre, 2010) so that participants can modify the open source computer models for their own learning and teaching needs. These computer models has the potential to provide the experience and context, essential for deepening students c...

  18. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    Science.gov (United States)

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-01-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation…

  19. Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals:

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark; Jolliet, Olivier

    2008-01-01

    Achieving consensus among scientists is often a challenge - particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions - including the strategy, execution, and results...

  20. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  1. Inquiry Based Learning Model Natural Phenomena to Improve The Curiousity and Mastery of Teh Concept of Junior High School Student

    Directory of Open Access Journals (Sweden)

    Soleh Hadiryanto

    2016-07-01

    Full Text Available The purpose of this study was to analyze the increase curiousity and mastery of the concept of junior high school students after participating in inquiry learning based on the natural phenomenon of motion plant material. The method used is experiment using a randomized design Pretest-Posttest Control Group Design. In the conduct of research, classroom-based inquiry learning experiments using natural phenomena and grade control using conventional learning. The instrument used is the concept mastery tests and questionnaires curiousity students. The results of calculation of N-gain scores showed a rise curiousity and mastery of concepts students both in the experimental and control groups, but the increase in the experimental group was higher than the control group. Through two different test average showed a significant difference curiousity improvement and mastery of concepts students at level α of 0.05 between students who learn by inquiry-based learning and the study of natural phenomena with conventional learning. Increased curiousity and mastery of concepts students learn the natural phenomena based inquiry learning in the experimental group is higher than that of learning through conventional teaching in the control group.

  2. Applying a Linked-Course Model to Foster Inquiry and Integration across Large First-Year Courses

    Science.gov (United States)

    Husband, Brian C.; Bettger, William J.; Murrant, Coral L.; Kirby, Kim; Wright, Patricia A.; Newmaster, Steven G.; Dawson, John F.; Gregory, T. Ryan; Mullen, Robert T.; Nejedly, April; van der Merwe, George; Yankulov, Krassimir; Wolf, Peter

    2015-01-01

    Many first-year university courses are large and content-driven, which can contribute to low student engagement and difficulty involving students in the dynamic, cross-disciplinary nature of inquiry. Learning communities can address these goals, but their implementation often poses logistical challenges, especially in large courses. Here, we apply…

  3. Effects of Face-to-Face versus Chat Communication on Performance in a Collaborative Inquiry Modeling Task

    Science.gov (United States)

    Sins, Patrick H. M.; Savelsbergh, Elwin R.; van Joolingen, Wouter R.; van Hout-Wolters, Bernadette H. A. M.

    2011-01-01

    In many contemporary collaborative inquiry learning environments, chat is being used as a means for communication. Still, it remains an open issue whether chat communication is an appropriate means to support the deep reasoning process students need to perform in such environments. Purpose of the present study was to compare the impact of chat…

  4. Students' Mental Model Development during Historically Contextualized Inquiry: How the "Tectonic Plate" Metaphor Impeded the Process

    Science.gov (United States)

    Dolphin, Glenn; Benoit, Wendy

    2016-01-01

    At present, quality earth science education in grade school is rare, increasing the importance of post-secondary courses. Observations of post-secondary geoscience indicate students often maintain errant ideas about the earth, even after direct instruction. This qualitative case study documents model-building activities of students as they…

  5. Students' Mental Model Development during Historically Contextualized Inquiry: How the "Tectonic Plate" Metaphor Impeded the Process

    Science.gov (United States)

    Dolphin, Glenn; Benoit, Wendy

    2016-01-01

    At present, quality earth science education in grade school is rare, increasing the importance of post-secondary courses. Observations of post-secondary geoscience indicate students often maintain errant ideas about the earth, even after direct instruction. This qualitative case study documents model-building activities of students as they…

  6. Inquiry, Argumentation, and the Phases of the Moon: Helping Students Learn Important Concepts and Practices

    Science.gov (United States)

    Hall, Cady B.; Sampson, Victor

    2009-01-01

    An important goal of the current reform movement in science education is to promote scientific literacy in the United States, and scientific inquiry is at its heart. However, the National Science Education Standards clearly indicate that to promote inquiry, more emphasis should be placed on "science as argument and explanation" rather than on…

  7. Articulating uncertainty as part of scientific argumentation during model-based exoplanet detection tasks

    Science.gov (United States)

    Lee, Hee-Sun; Pallant, Amy; Pryputniewicz, Sarah

    2015-08-01

    Teaching scientific argumentation has emerged as an important goal for K-12 science education. In scientific argumentation, students are actively involved in coordinating evidence with theory based on their understanding of the scientific content and thinking critically about the strengths and weaknesses of the cited evidence in the context of the investigation. We developed a one-week-long online curriculum module called "Is there life in space?" where students conduct a series of four model-based tasks to learn how scientists detect extrasolar planets through the “wobble” and transit methods. The simulation model allows students to manipulate various parameters of an imaginary star and planet system such as planet size, orbit size, planet-orbiting-plane angle, and sensitivity of telescope equipment, and to adjust the display settings for graphs illustrating the relative velocity and light intensity of the star. Students can use model-based evidence to formulate an argument on whether particular signals in the graphs guarantee the presence of a planet. Students' argumentation is facilitated by the four-part prompts consisting of multiple-choice claim, open-ended explanation, Likert-scale uncertainty rating, and open-ended uncertainty rationale. We analyzed 1,013 scientific arguments formulated by 302 high school student groups taught by 7 teachers. We coded these arguments in terms of the accuracy of their claim, the sophistication of explanation connecting evidence to the established knowledge base, the uncertainty rating, and the scientific validity of uncertainty. We found that (1) only 18% of the students' uncertainty rationale involved critical reflection on limitations inherent in data and concepts, (2) 35% of students' uncertainty rationale reflected their assessment of personal ability and knowledge, rather than scientific sources of uncertainty related to the evidence, and (3) the nature of task such as the use of noisy data or the framing of

  8. Inquiry based learning with a virtual microscope

    Science.gov (United States)

    Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.

    2012-12-01

    As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data

  9. Science teacher candidates' perceptions about roles and nature of scientific models

    Science.gov (United States)

    Yenilmez Turkoglu, Ayse; Oztekin, Ceren

    2016-05-01

    Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks to teach and learn inaccessible facts. As being indispensable parts of learning and doing science, use of scientific models in science classes should be reinforced. At this point, uncovering pre-service science teachers' (PSTs) understandings of scientific models are of great importance since they will design and conduct teaching situations for their students. Purpose: The study aimed to provide an answer to the research question: What understandings do PSTs possess about scientific models? Sample: The sample of the study consisted of 14 PSTs enrolled in an Elementary Science Education program in a public university in Ankara, Turkey. Design and methods: Data were collected by using an open-item instrument and semi-structured interviews, and were analyzed by using qualitative data analysis methods. Results: Findings showed that PSTs held fragmented views of models by having informed views in some aspects while having naïve views on others. That is, although they displayed a constructivist orientation by acknowledging the presence of multiple models for the same phenomenon depending on scientists' perspectives or creativity involved in the production of scientific knowledge, PSTs also expressed logical positivist views by believing that models should be close to the real phenomena that they represent. Findings further revealed that PSTs generally conceptualized models' materialistic uses, yet they did not think much about their theoretical and conceptual uses. It was observed that roles like reifying and visualizing were overestimated and models were dominantly characterized as three-dimensional representations

  10. Involving mental health service users in suicide-related research: a qualitative inquiry model.

    Science.gov (United States)

    Lees, David; Procter, Nicholas; Fassett, Denise; Handley, Christine

    2016-03-01

    To describe the research model developed and successfully deployed as part of a multi-method qualitative study investigating suicidal service-users' experiences of mental health nursing care. Quality mental health care is essential to limiting the occurrence and burden of suicide, however there is a lack of relevant research informing practice in this context. Research utilising first-person accounts of suicidality is of particular importance to expanding the existing evidence base. However, conducting ethical research to support this imperative is challenging. The model discussed here illustrates specific and more generally applicable principles for qualitative research regarding sensitive topics and involving potentially vulnerable service-users. Researching into mental health service users with first-person experience of suicidality requires stakeholder and institutional support, researcher competency, and participant recruitment, consent, confidentiality, support and protection. Research with service users into their experiences of sensitive issues such as suicidality can result in rich and valuable data, and may also provide positive experiences of collaboration and inclusivity. If challenges are not met, objectification and marginalisation of service-users may be reinforced, and limitations in the evidence base and service provision may be perpetuated.

  11. Students' Attitude in a Web-enhanced Hybrid Course: A Structural Equation Modeling Inquiry

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Sam Pan

    2003-12-01

    Full Text Available The present study focuses on five latent factors affecting students use of WebCT in a Web-enhanced hybrid undergraduate course at a southeastern university in the United States. An online questionnaire is used to measure a hypothetic model composed of two exogenous variables (i.e., subjective norm and computer self-efficacy, three endogenous variables (i.e., perceived ease of use, perceived usefulness, and attitude toward WebCT use, one dependent variable (i.e., actual system use, and eleven demographic items. PROC CALIS is used to analyze the data collected. Results suggest the technology acceptance model may not be applicable to the higher education setting. However, student attitude toward WebCT instruction remains a significant determinant to WebCT use on a non-voluntary basis. Educational achievement (i.e., student final grades is regressed on the attitude factor as an outcome variable.Suggestions for practitioners and researchers in the field are mentioned.

  12. An inquiry-based programming lesson

    Science.gov (United States)

    Douglas, Stephanie; Rice, Emily; Derdzinski, Andrea

    2016-03-01

    We designed a 2-day inquiry activity where students learned about error analysis and coding practices in Python. Inquiry-based lessons provide students with opportunities to independently investigate scientific concepts and tools. A general structure is developed ahead of time and minimal, careful guidance provided during the activity, but students are given as much freedom as possible to explore the concepts at their own pace. We designed our activity to help students learn to write flexible, re-usable, and readable code. I will describe the lesson structure we initially designed, as well as what aspects worked for our students (or didn't) and our experience leading the activity.

  13. "On Clocks and Clouds:" Confirming and Interpreting Climate Models as Scientific Hypotheses (Invited)

    Science.gov (United States)

    Donner, L.

    2009-12-01

    The certainty of climate change projected under various scenarios of emissions using general circulation models is an issue of vast societal importance. Unlike numerical weather prediction, a problem to which general circulation models are also applied, projected climate changes usually lie outside of the range of external forcings for which the models generating these changes have been directly evaluated. This presentation views climate models as complex scientific hypotheses and thereby frames these models within a well-defined process of both advancing scientific knowledge and recognizing its limitations. Karl Popper's Logik der Forschung (The Logic of Scientific Discovery, 1934) and 1965 essay “On Clocks and Clouds” capture well the methodologies and challenges associated with constructing climate models. Indeed, the process of a problem situation generating tentative theories, refined by error elimination, characterizes aptly the routine of general circulation model development. Limitations on certainty arise from the distinction Popper perceived in types of natural processes, which he exemplified by clocks, capable of exact measurement, and clouds, subject only to statistical approximation. Remarkably, the representation of clouds in general circulation models remains the key uncertainty in understanding atmospheric aspects of climate change. The asymmetry of hypothesis falsification by negation and much vaguer development of confidence in hypotheses consistent with some of their implications is an important practical challenge to confirming climate models. The presentation will discuss the ways in which predictions made by climate models for observable aspects of the present and past climate can be regarded as falsifiable hypotheses. The presentation will also include reasons why “passing” these tests does not provide complete confidence in predictions about the future by climate models. Finally, I will suggest that a “reductionist” view, in

  14. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    Science.gov (United States)

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-08-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.

  15. Do Different Levels of Inquiry Lead to Different Learning Outcomes? A comparison between guided and structured inquiry

    Science.gov (United States)

    Bunterm, Tassanee; Lee, Kerry; Kong, Jeremy Ng Lan; Srikoon, Sanit; Vangpoomyai, Penporn; Rattanavongsa, Jareunkwan; Rachahoon, Ganya

    2014-08-01

    Although the effects of open inquiry vs. more didactic approaches have been studied extensively, the effects of different types of inquiry have not received as much attention. We examined the effects of guided vs. structured inquiry on secondary students' learning of science. Students from three schools in north-eastern Thailand participated (N = 239, Grades 7 and 10). Two classes in each school were randomly assigned to either the guided or the structured-inquiry condition. Students had a total of 14-15 hours of instructions in each condition. The dependent measures were science content knowledge, science process skills, scientific attitudes, and self-perceived stress. In comparison to the structured-inquiry condition, students in the guided-inquiry condition showed greater improvement in both science content knowledge and science process skills. For scientific attitudes and stress, students in one school benefited from guided inquiry much more than they did from structured inquiry. Findings were explained in terms of differences in the degree to which students engaged effortfully with the teaching material.

  16. Students' Views of Scientific Models and Modeling: Do Representational Characteristics of Models and Students' Educational Levels Matter?

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Chang, Hsin-Yi; Wu, Hsin-Kai

    2017-04-01

    The aim of this study was to examine the potential impact of the representational characteristics of models and students' educational levels on students' views of scientific models and modeling (VSMM). An online multimedia questionnaire was designed to address three major aspects of VSMM, namely the nature of models, the nature of modeling, and the purpose of models. The three scales of representational characteristics included modality, dimensionality, and dynamics. A total of 102 eighth graders and 87 eleventh graders were surveyed. Both quantitative data and written responses were analyzed. The influence of the representational characteristics seemed to be more salient on the nature of models and the purpose of models. Some interactions between the educational levels and the representational characteristics showed that the high school students were more likely to recognize textual representations and pictorial representations as models, while also being more likely to appreciate the differences between 2D and 3D models. However, some other differences between educational levels did not necessarily suggest that the high school students attained more sophisticated VSMM. For instance, in considering what information should be included in a model, students' attention to particular affordances of the representation can lead to a more naive view of modeling. Implications for developing future questionnaires and for teaching modeling are suggested in this study.

  17. 近4年高考物理“重庆卷”对学生科学探究能力的考查特点分析%A Study on the Characteristics of Physical Questions about the Assessment of Scientific Inquiry Abilities of Chongqing's College Entrance Examination in the Recent Four Years

    Institute of Scientific and Technical Information of China (English)

    廖文; 张正严

    2011-01-01

    This article selects physical questions of college entrance examination of Chongqing in the recent four years as the research objects, to make for the characteristics of physical questions about the assessment of scientific inquiry abilities according to statistics and analysis. The study finds that the average proportion of the questions about the assessment of scientific inquiry abilities is 12.5 % and the questions mainly test students' "analysis and argument ability". The content focuses on electromagnetism and mechanics.%本文以近4年重庆高考物理题为例,统计分析了科学探究试题的各项特征。研究发现,探究题在重庆高考物理题中所占比重平均达12.5%,以考查学生“分析与论证”能力为主。考查内容集中在电学、力学部分。

  18. On the scientific status of cognitive appraisal models of anxiety disorder.

    Science.gov (United States)

    McNally, R J

    2001-05-01

    The cognitive paradigm for understanding and treating anxiety disorders comprises two distinct and potentially incompatible approaches: appraisal and information-processing. Advocates of the latter approach have sharply criticized the scientific adequacy of the appraisal models popularized by cognitive therapists. The purpose of this essay is to provide a reappraisal of these critiques of appraisal, and to defend an argument for methodological pluralism.

  19. Citations, References and the Growth of Scientific Literature: A Model of Dynamic Interaction

    Science.gov (United States)

    Krauze, Tadeusz K.; Hillinger, Claude

    1971-01-01

    A mathematical model is presented which explains the observed exponential growth rates of citations and references in a scientific discipline. The independent variables are the growth rate of the number of articles published and the decay rate of citation of old literature. (13 references) (Author)

  20. DEVELOPMENT OF A RATING MODEL OF THE ASSESSMENT OF SCIENTIFIC PROJECTS

    Directory of Open Access Journals (Sweden)

    Pavel A. Kalachikhin

    2013-01-01

    Full Text Available The procedure of organization of scientific projects competition in a higher education institution is investigated in the article. The method of expert evaluations is taken as a basis and the factorial variables are used at calculation. The rules of processing of model parameters, calculation of intermediate variables, calculation of a total rating and division of objects into classes on value of a rating are the results. The developed technique allows increasing validity of results of competitive selection during planning scientific researches.

  1. Integrating a geographic information system, a scientific visualization system and an orographic precipitation model

    Science.gov (United States)

    Hay, L.; Knapp, L.

    1996-01-01

    Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.

  2. The Role of Aggregate Representations in Scaffolding Collective Inquiry

    Science.gov (United States)

    Cober, Rebecca Mary

    This study explores how aggregate representations of student-contributed content were used in whole-class discussions to scaffold scientific inquiry in two middle school science classrooms. Working together as a knowledge community, students contribute scaffolded observations concerning HelioRoom and WallCology, room-sized “Embedded Phenomena” simulations, using tablet computers. These observations are collected and represented in aggregate form, and are the focus of teacher-led whole-class discussions. This thesis examines the efficacy of these aggregate designs for advancing students’ and teachers’ engagement in and understanding of the object of scientific inquiry, their usefulness for constructing relational models, and the interaction patterns that arise from their use. Findings suggest that aggregate representations of binary relationships that use tallies are well-suited for learning activities that have directed outcomes, such as constructing a relationship network. Aggregate representations that highlight gaps in data, and areas of agreement and disagreement in the data can be effective tools fostering productive discourse in classrooms.

  3. Is Inquiry the Answer?

    Science.gov (United States)

    Booth, Gregory

    2001-01-01

    Conducts an action research investigation to determine which type of student benefits more from inquiry-based science laboratories. Designs two labs on diffusion and osmosis using both traditional and inquiry-based approaches and assesses student learning in these settings. (YDS)

  4. Testing History As Inquiry

    Science.gov (United States)

    Miller, James R.; Hart, James

    1973-01-01

    Some obvious difficulties of teaching and testing history as inquiry are reviewed. Examples of test items that require students to utilize thought processes developed through inquiry teaching are presented together with a rationale for their use. Bloom's Taxonomy of Educational Objectives is proposed as a useful tool in test construction. (SM)

  5. 董涛数学探究训练教学模式%Upon the Teaching Model of Mathematics Inquiry Training

    Institute of Scientific and Technical Information of China (English)

    董涛

    2013-01-01

    The instructional principles of mathematics inquiry training model involve question, direction, mathematization and moderate formalization. Its teaching process covers seven steps: problems identifying, scaffolds providing, activities orientation, discovery communication, pattern confirmation and application, and knowledge and methods integration. And its content organization mainly involves induction and analogy. Its performance requires high cognitive tasks and students’ inquiry of effectiveness and efficiency. The author suggests that the mode can be applied in introducing new methods or structurally similar extensive issues, which requires teachers to be well-experienced in inquiry teaching and class coordination.%数学探究训练教学模式的教学原则有问题驱动、定向、数学化、适度形式化。教学环节包括确认问题、提供支架、定向活动、交流发现、确认规律、应用规律、整合知识方法七个阶段。内容组织方式主要是归纳和类比。实施过程中要注意保持任务的高认知水平。学生的探究有效果、有效率、有效用。这一模式适合于引入新方法或结构相似的扩张性课题,要求教师具有数学探究经验与调控课堂经验。

  6. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    Science.gov (United States)

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-03-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.

  7. Growing complex network of citations of scientific papers -- measurements and modeling

    CERN Document Server

    Golosovsky, M

    2016-01-01

    To quantify the mechanism of a complex network growth we focus on the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on copying/redirection/triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such verification is performed by measuring citation dynamics of Physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including non-stationary citation distributions, diverging citation trajectory of similar papers, runaways or "immortal papers" with infinite citation lifetime ...

  8. Precursor models construction at preschool education: an approach to improve scientific education in the classroom

    Directory of Open Access Journals (Sweden)

    SABRINA PATRICIA CANEDO- IBARRA

    2010-07-01

    Full Text Available This study aimed to explore young children scientific precursor models construction and how the designed teaching strategy was successful for improving science learning at preschool in a social context. We describe how 6 years old children built a precursor model of flotation based on density. The exploratory study used a qualitative data collection and analysis following a pre-interview, instructional process and post-interview design. On analyzing children’s answers after the instructional period, we realized that several children were led to both the construction of a precursor model and a general qualitative upgrade in reasoning. We conclude that learning activities were effective and that the approach used in this study may help expand and improve teaching and learning of scientific concepts in preschool education

  9. Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models

    Science.gov (United States)

    Williams, Grant; Clement, John

    2015-01-01

    This study sought to identify specific types of discussion-based strategies that two successful high school physics teachers using a model-based approach utilized in attempting to foster students' construction of explanatory models for scientific concepts. We found evidence that, in addition to previously documented dialogical strategies that teachers utilize to engage students in effectively communicating their scientific ideas in class, there is a second level of more cognitively focused model-construction-supporting strategies that these teachers utilized in attempting to foster students' learning. A further distinction between macro and micro strategy levels within the set of cognitive strategies is proposed. The relationships between the resulting three levels of strategies are portrayed in a diagramming system that tracks discussions over time. The study attempts to contribute to a clearer understanding of how discussion-leading strategies may be used to scaffold the development of conceptual understanding.

  10. Mediating objects: scientific and public functions of models in nineteenth-century biology.

    Science.gov (United States)

    Ludwig, David

    2013-01-01

    The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.

  11. The Model of Optimum Economic Growth with the Induced Scientific-Technological Progress

    Directory of Open Access Journals (Sweden)

    Dilenko Viktor A.

    2017-07-01

    Full Text Available On the basis of the economic dynamics of the Harrod – Domar model, a model of optimum economic growth in line with the induced scientific-technological progress (STP has been built. In order to reflect the induced scientific-technological progress, with this model is proposed to further allocate the income element that is specially used for the investment of innovation activity, implementation of which reduces the capital intensity in development of the discussed economy. For the simplest way of presenting an economic mechanism for the investment of induced STP, analytical solutions of an appropriate task in optimum management have been obtained. Studying these decisions allowed to reveal the characteristics of the impact of parameters of scientific-technological progress and the analyzed economic system on choosing the best trajectory for its evolution. Possible directions for further developing the results presented can be considered the tasks in building and analyzing models of optimum economic growth that implement different investment options for the induced STP, as well as the models in which this investment mechanism is not exogenouslyed, but rather the result of the corresponding economic-mathematical research.

  12. The estimated and look-ahead model of scientific and technical capacityof region

    Directory of Open Access Journals (Sweden)

    Anna Vital'evna Zolotukhina

    2012-03-01

    Full Text Available This paper studies the impact of scientific and technical capacity of Russian regions to the possibility of their sustainable development in the modern world. At the same time clarified the concept of «sustainable development», which in the extended treatment is disclosed in dynamic, static and efficiently-factorial aspects. The essential features of sustainable regional development (economic growth and high living standards, the effectiveness of the sectoral structure of economy, solidarity and partnership between the subjects of regional cooperation, coevolution, etc. within the framework of a comprehensive, integrative approach are identified.The algorithm of an indicative estimation of scientific and technical capacity of region for the purpose of research of its influence on sustainability of the social and economic development reveals; integrated indicators of a sustainable development and the scientific and technical capacity of the several Russian regions on the basis of computation of corresponding individual and private indicators are calculated. The choice of indicators due to the proposed theoretical and methodological approach to understanding the phenomena is under consideration. Generated by means of carrying out the correlation and regression analysis the econometric model allows to predict degree of stability of regional economy at escalating of separate components of scientific and technical capacity (in particular, its productive, human and financial components, identified in the analysis of the most important from the standpoint of sustainable development in the region. Results of practical application of model are approved on an example of regions of Privolzhsky Federal District

  13. Investigating the effects of structured and guided inquiry on students' development of conceptual knowledge and inquiry abilities: a case study in Taiwan

    Science.gov (United States)

    Fang, Su-Chi; Hsu, Ying-Shao; Chang, Hsin-Yi; Chang, Wen-Hua; Wu, Hsin-Kai; Chen, Chih-Ming

    2016-08-01

    In order to promote scientific inquiry in secondary schooling in Taiwan, the study developed a computer-based inquiry curriculum (including structured and guided inquiry units) and investigated how the curriculum influenced students' science learning. The curriculum was implemented in 5 junior secondary schools in the context of a weeklong summer science course with 117 students. We first used a multi-level assessment approach to evaluate the students' learning outcomes with the curriculum. Then, a path analysis approach was adopted for investigating at different assessment levels how the curriculum as a whole and how different types of inquiry units affected the students' development of conceptual understandings and inquiry abilities. The results showed that the curriculum was effective in enhancing the students' conceptual knowledge and inquiry abilities in the contexts of the six scientific topics. After the curriculum, they were able to construct interconnected scientific knowledge. The path diagrams suggested that, due to different instructional designs, the structured and guided inquiry units appeared to support the students' learning of the topics in different ways. More importantly, they demonstrated graphically how the learning of content knowledge and inquiry ability mutually influenced one another and were reciprocally developed in a computer-based inquiry learning environment.

  14. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    Science.gov (United States)

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  15. Inquiry Summary for Universities English Teachers’Self-development

    Institute of Scientific and Technical Information of China (English)

    FAN Xin-heng

    2014-01-01

    College English teachers’Self development apparently affects teaching quality, major curriculum development and in-quiry development. The scope of inquiry summary indicates the intrinsic factors as awareness of professional competence, profes-sional-knowledge learning awareness, awareness of teaching means, development awareness and the notions alike. And the sum-mary comes to the findings that foreign ones ignore the effect of the external factors, the domestic just focus on the teaching pat-tern of team, yet ignore the scientific and inquiry group construction.

  16. Towards a Dialogical Pedagogy: Some Characteristics of a Community of Mathematical Inquiry

    Science.gov (United States)

    Kennedy, Nadia Stoyanova

    2009-01-01

    This paper discusses a teaching model called community of mathematical inquiry (CMI), characterized by dialogical and inquiry-driven communication and a dynamic structure of intertwined cognitive processes including distributed thinking, mathematical argumentation, integrated reasoning, conceptual transformation, internalization of critical…

  17. A model of scientific attitudes assessment by observation in physics learning based scientific approach: case study of dynamic fluid topic in high school

    Science.gov (United States)

    Yusliana Ekawati, Elvin

    2017-01-01

    This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)

  18. Towards a comprehensive model of scientific research and professional practice in psychology

    Directory of Open Access Journals (Sweden)

    Jerzy Marian Brzeziński

    2016-03-01

    Full Text Available In this article I present a model of associations between two social domains: the scientific research domain (here psychology and the professional practice domain. In the former case, its quality is determined by social and individual methodological awareness (MA. I introduce my own definition of MA. What determines the validity and usefulness of practical actions undertaken by professionals (e.g., assessment, therapy in the practice domain is the accurately constructed empirical theory high in descriptive power, explanatory power and predictive power. I propose a model (my own conceptualization in which I analyze information flow between the domains of scientific research (psychology as a science and professional practice (psychology as a profession. In the subsequent and final part I discuss my own model which links theory and practice: Scientific Research and Professional Practice in Psychology (SRPPP. The article ends with a presentation of three contexts in which the interrelationship between theory and practice is immersed: the ethical, psychological and cultural contexts.

  19. Are opinions based on science: modelling social response to scientific facts.

    Directory of Open Access Journals (Sweden)

    Gerardo Iñiguez

    Full Text Available As scientists we like to think that modern societies and their members base their views, opinions and behaviour on scientific facts. This is not necessarily the case, even though we are all (over- exposed to information flow through various channels of media, i.e. newspapers, television, radio, internet, and web. It is thought that this is mainly due to the conflicting information on the mass media and to the individual attitude (formed by cultural, educational and environmental factors, that is, one external factor and another personal factor. In this paper we will investigate the dynamical development of opinion in a small population of agents by means of a computational model of opinion formation in a co-evolving network of socially linked agents. The personal and external factors are taken into account by assigning an individual attitude parameter to each agent, and by subjecting all to an external but homogeneous field to simulate the effect of the media. We then adjust the field strength in the model by using actual data on scientific perception surveys carried out in two different populations, which allow us to compare two different societies. We interpret the model findings with the aid of simple mean field calculations. Our results suggest that scientifically sound concepts are more difficult to acquire than concepts not validated by science, since opposing individuals organize themselves in close communities that prevent opinion consensus.

  20. Are opinions based on science: modelling social response to scientific facts.

    Science.gov (United States)

    Iñiguez, Gerardo; Tagüeña-Martínez, Julia; Kaski, Kimmo K; Barrio, Rafael A

    2012-01-01

    As scientists we like to think that modern societies and their members base their views, opinions and behaviour on scientific facts. This is not necessarily the case, even though we are all (over-) exposed to information flow through various channels of media, i.e. newspapers, television, radio, internet, and web. It is thought that this is mainly due to the conflicting information on the mass media and to the individual attitude (formed by cultural, educational and environmental factors), that is, one external factor and another personal factor. In this paper we will investigate the dynamical development of opinion in a small population of agents by means of a computational model of opinion formation in a co-evolving network of socially linked agents. The personal and external factors are taken into account by assigning an individual attitude parameter to each agent, and by subjecting all to an external but homogeneous field to simulate the effect of the media. We then adjust the field strength in the model by using actual data on scientific perception surveys carried out in two different populations, which allow us to compare two different societies. We interpret the model findings with the aid of simple mean field calculations. Our results suggest that scientifically sound concepts are more difficult to acquire than concepts not validated by science, since opposing individuals organize themselves in close communities that prevent opinion consensus.

  1. Towards a comprehensive model of scientific research and professional practice in psychology

    Directory of Open Access Journals (Sweden)

    Jerzy Marian Brzeziński

    2016-03-01

    Full Text Available In this article I present a model of associations between two social domains: the scientific research domain (here psychology and the professional practice domain. In the former case, its quality is determined by social and individual methodological awareness (MA. I introduce my own definition of MA. What determines the validity and usefulness of practical actions undertaken by professionals (e.g., assessment, therapy in the practice domain is the accurately constructed empirical theory high in descriptive power, explanatory power and predictive power. I propose a model (my own conceptualization in which I analyze information flow between the domains of scientific research (psychology as a science and professional practice (psychology as a profession. In the subsequent and final part I discuss my own model which links theory and practice: Scientific Research and Professional Practice in Psychology (SRPPP. The article ends with a presentation of three contexts in which the interrelationship between theory and practice is immersed: the ethical, psychological and cultural contexts.

  2. Pragmatism, mathematical models, and the scientific ideal of prediction and control.

    Science.gov (United States)

    Moore, J

    2015-05-01

    Mathematical models are often held to be valuable, if not necessary, for theories and explanations in the quantitative analysis of behavior. The present review suggests that mathematical models primarily derived from the observation of functional relations do indeed contribute to the scientific value of theories and explanations, even though the final form of the models appears to be highly abstract. However, mathematical models not primarily so derived risk being essentialist in character, based on a particular view of formal causation. Such models invite less effective and frequently mentalistic theories and explanations of behavior. Models may be evaluated in terms of both (a) the verbal processes responsible for their origin and development and (b) the prediction and control engendered by the theories and explanations that incorporate the models, however indirect or abstract that prediction and control may be. Overall, the present review suggests that technological application and theoretical contemplation may be usefully viewed as continuous and overlapping forms of scientific activity, rather than dichotomous and mutually exclusive.

  3. The use of theoretical and empirical knowledge in the production of explanations and arguments in an inquiry biology activity

    Directory of Open Access Journals (Sweden)

    Maíra Batistoni e Silva

    2017-08-01

    Full Text Available Agreeing with the scientific literacy as the purpose of science education and with the recent propositions that in order to achieve it we should favor the engagement of students in practices of scientific culture, this study intends to analyze the production of explanations and arguments in an inquiry based teaching activity in order to characterize students' mobilization of theoretical and empirical knowledge by engaging in these practices. Analyzing the scientific reports elaborated by the students (14-15 years old after the inquiry activity on population dynamics, we highlight the importance of empirical knowledge about the experimental context as a repertoire for construction of explanations, especially when students deal with anomalous data. This knowledge was also important for production of valid arguments, since most of the justifications were empirical, regardless of whether or not the data were in accordance with the explanatory model already known. These results reinforce the importance of students' engagement in inquiry activities, as already defended by different authors of this research area, and indicate that the inquiry practice allowed the engagement in epistemic practices, since the knowledge about the experimental conditions and the procedures of data collection provided a repertoire for the production of explanations and arguments. Finally, we discuss the relevance of this research to the field of biology teaching, seeking to defend the promotion of inquiry activities with an experimental approach as an opportunity to integrate conceptual and epistemic objectives and overcome the difficulties generated by the specificities of this area of knowledge in relation to the other disciplines in nature sciences.

  4. Artists-in-Labs: Processes of Inquiry

    Science.gov (United States)

    Scott, Jill

    This book verifies the need for the arts and the sciences to work together in order to develop more creative and conceptual approaches to innovation and presentation. By blending ethnographical case studies, scientific viewpoints and critical essays, the focus of this research inquiry is the lab context. For scientists, the lab context is one of the most important educational experiences. For contemporary artists, laboratories are inspiring spaces to investigate, share know-how transfer and search for new collaboration potentials.

  5. Ensuring confidence in predictions: A scheme to assess the scientific validity of in silico models.

    Science.gov (United States)

    Hewitt, Mark; Ellison, Claire M; Cronin, Mark T D; Pastor, Manuel; Steger-Hartmann, Thomas; Munoz-Muriendas, Jordi; Pognan, Francois; Madden, Judith C

    2015-06-23

    The use of in silico tools within the drug development process to predict a wide range of properties including absorption, distribution, metabolism, elimination and toxicity has become increasingly important due to changes in legislation and both ethical and economic drivers to reduce animal testing. Whilst in silico tools have been used for decades there remains reluctance to accept predictions based on these methods particularly in regulatory settings. This apprehension arises in part due to lack of confidence in the reliability, robustness and applicability of the models. To address this issue we propose a scheme for the verification of in silico models that enables end users and modellers to assess the scientific validity of models in accordance with the principles of good computer modelling practice. We report here the implementation of the scheme within the Innovative Medicines Initiative project "eTOX" (electronic toxicity) and its application to the in silico models developed within the frame of this project.

  6. CERN’s model for international scientific collaboration to be discussed at UNOG

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 2 November, on the occasion of the 70th anniversary of the United Nations, CERN and UNOG will co-host a one-day symposium, with the support of Switzerland and France. The event will bring together policy-makers, scientists and members of civil society to debate how to construct synergies across communities as a means to drive global objectives. CERN people are invited to the Palais des Nations to take part.   CERN's seat at the General Assembly of the United Nations in New York. How does CERN work? How are goals achieved in such a complex environment where diverse communities work together in the interests of science? CERN’s model for international scientific collaboration is being looked at with growing interest by an increasingly large community of experts in various fields. Scientific advances and accomplishments are testament to the effectiveness of the model and prove that ambitious scientific programmes can be carried out only by communities c...

  7. Wondering + Online Inquiry = Learning

    Science.gov (United States)

    Sekeres, Diane Carver; Coiro, Julie; Castek, Jill; Guzniczak, Lizabeth A.

    2014-01-01

    Digital information sources can form the basis of effective inquiry-based learning if teachers construct the information and exercises in ways that will promote collaboration, communication, and problem solving.

  8. Analyzing Ocean Tracks: A model for student engagement in authentic scientific practices using data

    Science.gov (United States)

    Krumhansl, K.; Krumhansl, R.; Brown, C.; DeLisi, J.; Kochevar, R.; Sickler, J.; Busey, A.; Mueller-Northcott, J.; Block, B.

    2013-12-01

    The collection of large quantities of scientific data has not only transformed science, but holds the potential to transform teaching and learning by engaging students in authentic scientific work. Furthermore, it has become imperative in a data-rich world that students gain competency in working with and interpreting data. The Next Generation Science Standards reflect both the opportunity and need for greater integration of data in science education, and emphasize that both scientific knowledge and practice are essential elements of science learning. The process of enabling access by novice learners to data collected and used by experts poses significant challenges, however, recent research has demonstrated that barriers to student learning with data can be overcome by the careful design of data access and analysis tools that are specifically tailored to students. A group of educators at Education Development Center, Inc. (EDC) and scientists at Stanford University's Hopkins Marine Station are collaborating to develop and test a model for student engagement with scientific data using a web-based platform. This model, called Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, provides students with the ability to plot and analyze tracks of migrating marine animals collected through the Tagging of Pacific Predators program. The interface and associated curriculum support students in identifying relationships between animal behavior and physical oceanographic variables (e.g. SST, chlorophyll, currents), making linkages between the living world and climate. Students are also supported in investigating possible sources of human impact to important biodiversity hotspots in the Pacific Ocean. The first round of classroom testing revealed that students were able to easily access and display data on the interface, and collect measurements from the animal tracks and oceanographic data layers. They were able to link multiple types of data to draw powerful

  9. Physiology Should Be Taught as Science Is Practiced: An Inquiry-Based Activity to Investigate the "Alkaline Tide"

    Science.gov (United States)

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…

  10. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    Science.gov (United States)

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  11. Revisions of Physical Geology Laboratory Courses to Increase the Level of Inquiry: Implications for Teaching and Learning

    Science.gov (United States)

    Grissom, April N.; Czajka, C. Douglas; McConnell, David A.

    2015-01-01

    The introductory physical geology laboratory courses taught at North Carolina State University aims to promote scientific thinking and learning through the use of scientific inquiry-based activities. A rubric describing five possible levels of inquiry was applied to characterize the laboratory activities in the course. Two rock and mineral…

  12. Authorship of scientific articles within an ethical-legal framework: quantitative model

    Directory of Open Access Journals (Sweden)

    Martha Y. Vallejo

    2012-12-01

    Full Text Available Determining authorship and the order of authorship in scientific papers, in modern interdisciplinary and interinstitutional science, has become complex at a legal and ethical level. Failure to define authorship before or during the research, creates subsequent problems for those considered authors of a publication or lead authors of a work, particularly so, once the project or manuscript is completed. This article proposes a quantitative and qualitative model to determine authorship within a scientific, ethical and legal frame. The principles used for the construction of this design are based on 2 criteria: a stages of research and scientific method involving: 1. Planning and development of the research project, 2. Design and data collection, 3. Presentation of results, 4. Interpretation of results, 5. Manuscript preparation to disseminate new knowledge to the scientific community, 6. Administration and management, and b weighting coefficients in each phase, to decide on authorship and ownership of the work. The model also considers and distinguishes whether the level and activity performed during the creation of the work and the diffusion of knowledge is an intellectual or practical contribution; this distinction both contrasts and complements the elements protected by copyright laws. The format can be applied a priori and a posteriori to the completion of a project or manuscript and can conform to any research and publication. The use of this format will quantitatively resolve: 1. The order of authorship (first author and co-author order, 2. Determine the inclusion and exclusion of contributors, taking into account ethical and legal principles, and 3. Percentages of economic rights for each authors.

  13. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  14. A tale of two slinkies: learning about scientific models in a student-driven classroom

    Science.gov (United States)

    Gandhi, Punit; Berggren, Calvin; Livezey, Jesse; Olf, Ryan

    2014-11-01

    We describe a set of conceptual activities and hands-on experiments based around understanding the dynamics of a slinky that is hung vertically and released from rest. The motion, or lack thereof, of the bottom of the slinky after the top is dropped sparks students' curiosity by challenging their expectations and provides context for learning about scientific model building. This curriculum helps students learn about the model building process by giving them an opportunity to enlist their collective intellectual and creative resources to develop and explore two different physical models of the falling slinky system. By engaging with two complementary models, students not only have the opportunity to understand an intriguing phenomenon from multiple perspectives, but also learn deeper lessons about the nature of scientific understanding, the role of physical models, and the experience of doing science. The activities we present were part of a curriculum developed for a week-long summer program for incoming freshmen as a part of the Compass Project at UC Berkeley, but could easily be implemented in a wide range of classrooms at the high school or introductory college level.

  15. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    Science.gov (United States)

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  16. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to

  17. A participative model for undertaking and evaluating scientific communication in Earth Observation

    Science.gov (United States)

    L'Astorina, Alba; Tomasoni, Irene

    2015-04-01

    Public communication of Science and Technology (PCST) is an integral part of the mission of the Italian National Research Council (CNR) and widely carried out among the scientific community. Recently it has also become a research field investigating practices, channels, tools and models of public engagement and their impact on the relation between Science and Society. Understanding such aspects is increasingly considered relevant for an effective and aware outreach. Within this context, CNR has adopted some innovative communication approaches addressed to different publics, such as stakeholders, users, media, young people and the general public, using participative methodologies. Besides being practices of communication promoting the scientific culture, such initiatives aim at understanding the models at the basis of the relationship between the scientific community and the public. To what extent do scientists put their communication and involvement strategies in discussion? Do they use to have a real exchange with their publics in order to evaluate the effectiveness of the participatory techniques they adopt in communicating and disseminating their activities? In this paper we present a case study of a communication and educational proposal recently developed by CNR in order to promote a mutual exchange between Education/School and Research, that are the most important actors in the production and the revision of the scientific knowledge. The proposal brings an ongoing CNR research project (its steps, subjects, tools, activities, costs etc) in classrooms, making use of interactive Earth Sciences workshops conducted directly by researchers. The ongoing CNR project shared with students studies Innovative Methodologies of Earth Observation supporting the Agricultural sector in Lombardy. It aims at exploiting the Aerospace Earth Observation (EO) tools to develop dedicated agricultural downstream services that will bring added economic value and benefits for Lombardy

  18. Stepping into the Unknown: Three Models for the Teaching and Learning of the Opening Sections of Scientific Articles

    Science.gov (United States)

    Falk, Hedda; Yarden, Anat

    2011-01-01

    Different genres of scientific articles have begun to diffuse into science curricula. Among them, adapted primary literature (APL) retains the characteristics of scientific research articles, while adapting their contents to the knowledge level of students in the 11th to 12th grades. We present three models for the teaching and learning of the…

  19. Stepping into the Unknown: Three Models for the Teaching and Learning of the Opening Sections of Scientific Articles

    Science.gov (United States)

    Falk, Hedda; Yarden, Anat

    2011-01-01

    Different genres of scientific articles have begun to diffuse into science curricula. Among them, adapted primary literature (APL) retains the characteristics of scientific research articles, while adapting their contents to the knowledge level of students in the 11th to 12th grades. We present three models for the teaching and learning of the…

  20. Socio-Scientific Decision Making in the Science Classroom

    Science.gov (United States)

    Siribunnam, Siripun; Nuangchalerm, Prasart; Jansawang, Natchanok

    2014-01-01

    The learning ability of students in science is improved by socio-scientific decision-making, an important activity that improves a student's scientific literacy, conceptual understanding, scientific inquiry, attitudes, and social values. The socio-scientific issues must be discussed during science classroom activities in the current state of 21st…

  1. Selenium, copper and iron in veterinary medicine-From clinical implications to scientific models.

    Science.gov (United States)

    Humann-Ziehank, Esther

    2016-09-01

    Diseases related to copper, selenium or iron overload or deficiency are common and well-described in large animal veterinary medicine. Some of them certainly have the potential to serve as useful animal models for ongoing research in the field of trace elements. Obvious advantages of large animal models compared to laboratory animal models like rats and mice are the option of long-term, consecutive examinations of progressive deficient or toxic stages and the opportunity to collect various, high volume samples for repeated measurements. Nevertheless, close cooperation between scientific disciplines is necessary as scientists using high sophisticated analytical methods and equipment are not regularly in touch with scientists working with large animal diseases. This review will give an introduction into some typical animal diseases related to trace elements and will present approaches where the animal diseases were used already as a model for interdisciplinary research.

  2. A geometric graph model of the coevolution between citations and coauthorships in scientific papers

    CERN Document Server

    Xie, Zheng; Li, Jianping; Li, Miao; Yi, Dongyun

    2016-01-01

    Collaborations and citations within scientific research grow simultaneously and interact dynamically. Modelling the coevolution between them helps to study many phenomena that can be approached only through combining citation and coauthorship data. A geometric graph for the coevolution is proposed, the mechanism of which synthetically expresses the interactive impacts of authors and papers in a geometrical way. The model is validated against a data set of papers published in PNAS during 2000-2015. The validation shows the ability to reproduce a range of features observed with citation and coauthorship data combined and separately. Particulary, in the empirical distribution of citations per author there exist two limits, in which the distribution appears as a generalized Poisson and a power-law respectively. Our model successfully reproduces the shape of the distribution, and provides an explanation for how the shape emerges. The model also captures the empirically positive correlations between the numbers of ...

  3. Historical Scientific Models and Theories as Resources for Learning and Teaching: The Case of Friction

    Science.gov (United States)

    Besson, Ugo

    2013-05-01

    This paper presents a history of research and theories on sliding friction between solids. This history is divided into four phases: from Leonardo da Vinci to Coulomb and the establishment of classical laws of friction; the theories of lubrication and the Tomlinson's theory of friction (1850-1930); the theories of wear, the Bowden and Tabor's synthesis and the birth of Tribology (1930-1980); nanotribology, friction at the atomic scale, and new fields of research (after 1980). Attention is given to recent research, so giving the sense of a topic that is still alive and currently an object of interest, with interpretative controversies. The development of explanatory and visual models is especially stressed, in connection with students' common ideas and with didactic purposes. The history shows that many models proposed in the past have been modified but not abandoned, so that here the scientific evolution has worked more by adding than by eliminating. The last sections discuss problems and proposals on teaching friction and the possible uses in teaching of models, images and theories found in history. Concerning the role of the history in science teaching, the case of friction has particular features, because some recent developments are unknown to most teachers and many results, also not very recent, contrast with the laws usually proposed in textbooks. Here history can supply a number of models, examples and experiments which can constitute useful resources to improve student understanding, joining together objectives of cultural value and of better scientific knowledge.

  4. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  5. From Stories to Scientific Models and Back: Narrative Framing in Modern Macroscopic Physics

    Science.gov (United States)

    Fuchs, Hans U.

    2015-01-01

    Narrative in science learning has become an important field of inquiry. Most applications of narrative are extrinsic to science--such as when they are used for creating affect and context. Where they are intrinsic, they are often limited to special cases and uses. To extend the reach of narrative in science, a hypothesis of narrative framing of…

  6. From Stories to Scientific Models and Back: Narrative Framing in Modern Macroscopic Physics

    Science.gov (United States)

    Fuchs, Hans U.

    2015-01-01

    Narrative in science learning has become an important field of inquiry. Most applications of narrative are extrinsic to science--such as when they are used for creating affect and context. Where they are intrinsic, they are often limited to special cases and uses. To extend the reach of narrative in science, a hypothesis of narrative framing of…

  7. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    Science.gov (United States)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high

  8. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    Science.gov (United States)

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  9. Developing Students' Ability to Ask More and Better Questions Resulting from Inquiry-Type Chemistry Laboratories

    Science.gov (United States)

    Hofstein, Avi; Navon, Oshrit; Kipnis, Mira; Mamlok-Naaman, Rachel

    2005-01-01

    This study focuses on the ability of high-school chemistry students, who learn chemistry through the inquiry approach, to ask meaningful and scientifically sound questions. We investigated (a) the ability of students to ask questions related to their observations and findings in an inquiry-type experiment (a practical test) and (b) the ability of…

  10. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    Science.gov (United States)

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  11. Using Brief Teacher Interviews to Assess the Extent of Inquiry in Classrooms

    Science.gov (United States)

    Oppong-Nuako, Juliet; Shore, Bruce M.; Saunders-Stewart, Katie S.; Gyles, Petra D. T.

    2015-01-01

    Inquiry-based instruction is common to nearly every model of gifted education. Six teachers of 14 secondary classes were briefly interviewed about their teaching and learning methods, use of inquiry-based strategies, classroom descriptions, a typical day, student expectations, and inquiry-instruction outcomes. A criterion-referenced checklist of…

  12. Does attainment of Piaget's formal operational level of cognitive development predict student understanding of scientific models?

    Science.gov (United States)

    Lahti, Richard Dennis, II

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer standards. Effective methods of instruction will need to be developed to enable students to achieve these standards. The literature reveals an inconsistent history of success with modeling education. These same studies point to a possible cognitive development component which might explain why some students succeeded and others failed. An environmental science course, rich in modeling experiences, was used to test both the extent to which knowledge of models and modeling could be improved over the course of one semester, and more importantly, to identify if cognitive ability was related to this improvement. In addition, nature of science knowledge, particularly related to theories and theory change, was also examined. Pretest and posttest results on modeling (SUMS) and nature of science (SUSSI), as well as data from the modeling activities themselves, was collected. Cognitive ability was measured (CTSR) as a covariate. Students' gain in six of seven categories of modeling knowledge was at least medium (Cohen's d >.5) and moderately correlated to CTSR for two of seven categories. Nature of science gains were smaller, although more strongly correlated with CTSR. Student success at creating a model was related to CTSR, significantly in three of five sub-categories. These results suggest that explicit, reflective experience with models can increase student knowledge of models and modeling (although higher cognitive ability students may have more success), but successfully creating models may depend more heavily on cognitive ability. This finding in particular has implications in the grade placement of modeling standards and

  13. Using an Agent-Based Modeling Simulation and Game to Teach Socio-Scientific Topics

    Directory of Open Access Journals (Sweden)

    Lori L. Scarlatos

    2014-02-01

    Full Text Available In our modern world, where science, technology and society are tightly interwoven, it is essential that all students be able to evaluate scientific evidence and make informed decisions. Energy Choices, an agent-based simulation with a multiplayer game interface, was developed as a learning tool that models the interdependencies between the energy choices that are made, growth in local economies, and climate change on a global scale. This paper presents the results of pilot testing Energy Choices in two different settings, using two different modes of delivery.

  14. Successful African American women in science: A narrative inquiry

    Science.gov (United States)

    Petty, Cailisha L.

    This study used narrative inquiry as a methodology to explore the lived experiences of five African American women in science across the academic spectrum, from doctoral candidate to full professor. The research questions guiding the inquiry included one overarching question and three sub-questions: What are the lifestories of successful African American women in science?; a) How do successful African American women in science define themselves?; b) What have been the facilitators and barriers encountered by successful African American women in science?; and c) What have been the systems of support for African American women in science? The study was theoretically positioned within the frameworks of Critical Race Theory and Black Feminist Thought. The two theories were used to guide all aspects of the study including methodology, data collection, and analysis. Data included eleven 40-60 minute semi-structured interview transcripts as well as the participants' Curriculum Vitae. The study design and data analysis were built upon Clandinin and Connelly's (2000) and Clandinin's (2006) model of narrative inquiry which explores narratives as a means to understand experience. Analysis and interpretation created three dominant narratives: Scientific Beginnings, An Unexpected Journey, and Lift as You Climb. Each narrative set explores multiple stories that describe storylines which aligned with the participants' goals of who they were and who they were becoming as scientists; and, storylines of tension which ran counter to the women's goals and aspirations. Barriers and support systems are revealed, as well as the meanings the participants made of their experiences and how it affected their lives.

  15. Development of a Model for Measuring Scientific Processing Skills Based on Brain-Imaging Technology: Focused on the Experimental Design Process

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju

    2014-01-01

    The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…

  16. Growing complex network of citations of scientific papers: Modeling and measurements.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  17. Growing complex network of citations of scientific papers: Modeling and measurements

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  18. Appraisement on Contributive Ratio of Scientific and Technical Progresses in Milk Productive Enterprises by Model C2GS2

    Institute of Scientific and Technical Information of China (English)

    SUN Futian; SUN Liqun; YANG Guanglin

    2008-01-01

    Scientific and technical progress has been the driving forces of enterprises development. Milk productive enterprises are developing faster and growing better. It is very important to measure the contributive ratio of scientific and technical progress in milk productive enterprises. And the appraisement could help to develop milk productive enterprises. The model C2GS2 was established to appraise the contributive ratio of scientific and technical progress in milk productive enterprises in the research. And the appraisement on the contributive ratio of scientific and technical progress in milk productive enterprises was made by the model. In the results of appraisement, science and technology play a main role in milk productive enterprises. It is shown that our milk productive enterprises are developed by scientific and technical progress while not by input of productive factors.

  19. Transforming a Traditional Inquiry-Based Science Unit into a STEM Unit for Elementary Pre-service Teachers: A View from the Trenches

    Science.gov (United States)

    Schmidt, Matthew; Fulton, Lori

    2016-04-01

    The need to prepare students with twenty-first-century skills through STEM-related teaching is strong, especially at the elementary level. However, most teacher education preparation programs do not focus on STEM education. In an attempt to provide an exemplary model of a STEM unit, we used a rapid prototyping approach to transform an inquiry-based unit on moon phases into one that integrated technology in a meaningful manner to develop technological literacy and scientific concepts for pre-service teachers (PSTs). Using qualitative case study methodology, we describe lessons learned related to the development and implementation of a STEM unit in an undergraduate elementary methods course, focusing on the impact the inquiry model had on PSTs' perceptions of inquiry-based science instruction and how the integration of technology impacted their learning experience. Using field notes and survey data, we uncovered three overarching themes. First, we found that PSTs held absolutist beliefs and had a need for instruction on inquiry-based learning and teaching. Second, we determined that explicit examples of effective and ineffective technology use are needed to help PSTs develop an understanding of meaningful technology integration. Finally, the rapid prototyping approach resulted in a successful modification of the unit, but caused the usability of our digital instructional materials to suffer. Our findings suggest that while inquiry-based STEM units can be implemented in existing programs, creating and testing these prototypes requires significant effort to meet PSTs' learning needs, and that iterating designs is essential to successful implementation.

  20. Transformative communication as a cultural tool for guiding inquiry science

    Science.gov (United States)

    Polman, Joseph L.; Pea, Roy D.

    2001-05-01

    Inquiry-based science instruction offers great promise as a means of actively engaging students in authentic scientific problem solving, including consideration of research design issues. At the same time, inquiry introduces some difficulties. In particular, familiar cultural tools for classroom discourse, such as Initiation-Reply-Evaluation sequences, are no longer appropriate because they are premised on known answers and teacher-driven activity. To help support productive open-ended science inquiry, coaching strategies that allow for strong student voice and teacher influence are necessary. We describe the sociocultural theory motivating one such strategy, transformative communication, as well as a specific dialogue sequence that can be used as a cultural tool for accomplishing such interaction. We then illustrate the utility of the dialogue sequence in four key episodes within an inquiry-based high school Earth Science class.