WorldWideScience

Sample records for model scientific inquiry

  1. EFFECT SCIENTIFIC INQUIRY TEACHING MODELS AND SCIENTIFIC ATTITUDE TO PHYSICS STUDENT OUTCOMES

    Directory of Open Access Journals (Sweden)

    Dian Clara Natalia Sihotang

    2014-12-01

    Full Text Available The objectives of this study were to determine whether: (1 the student’s achievement taught by using Scientific Inquiry Teaching Models is better than that of taught by using Direct Instruction; (2 the student’s achievement who have a high scientific attitude is better than student who have low scientific attitude; and (3 there is interaction between Scientific Inquiry Teaching Models and scientific attitude for the student’s achievement. The results of research are: (1 the student’s achievement given learning through Scientific Inquiry Teaching Models better than Direct Instruction; (2 the student’s achievement who have a high scientific attitude better than student who have low scientific attitude; and (3 there was interaction between Scientific Inquiry Teaching Models and scientific attitude for student’s achievement which this models is better to apply for student who have a high scientific attitude.

  2. Scientific Approach and Inquiry Learning Model in the Topic of Buffer Solution: A Content Analysis

    Science.gov (United States)

    Kusumaningrum, I. A.; Ashadi, A.; Indriyanti, N. Y.

    2017-09-01

    Many concepts in buffer solution cause student’s misconception. Understanding science concepts should apply the scientific approach. One of learning models which is suitable with this approach is inquiry. Content analysis was used to determine textbook compatibility with scientific approach and inquiry learning model in the concept of buffer solution. By using scientific indicator tools (SIT) and Inquiry indicator tools (IIT), we analyzed three chemistry textbooks grade 11 of senior high school labeled as P, Q, and R. We described how textbook compatibility with scientific approach and inquiry learning model in the concept of buffer solution. The results show that textbook P and Q were very poor and book R was sufficient because the textbook still in procedural level. Chemistry textbooks used at school are needed to be improved in term of scientific approach and inquiry learning model. The result of these analyses might be of interest in order to write future potential textbooks.

  3. Peningkatan Keterlibatan Dalam Perkuliahan Scientific Writing Menggunakan Model Pengajaran Social Inquiry

    Directory of Open Access Journals (Sweden)

    Suwartono Suwartono

    2016-02-01

    Full Text Available This research aimed to solve student low involvement in Scientific Writing classes.The method used in this research was Classroom Action Research (CAR. The planned action was Social Inquiry teaching model, i.e. an autonomous instruction in which students do inquiries for facts (new knowledge on scientific writings along with the linguistic aspects of writings and exercises in communicating the inquiry results within the classroom society are prioritized. The CAR employed Lewin's cyclic model. The model procedures are: (1 identification, evaluation and formulation of the problem; (2 fact finding; (3 review of literature; (4 information gathering to test hypothesis; (5 selection of the planned action procedures; (6 implementation; and (7 interpretation of the data and overall evaluation. The CAR's result has shown that teaching Scientific Writing using Social Inquiry can promote student involvement in scientific writing class activities.

  4. Analyze Critical Thinking Skills and Scientific Attitude in Physics Learning Used Inquiry Training and Direct Instruction Learning Model

    OpenAIRE

    Parsaoran Damanik, Dede; Bukit, Nurdin

    2013-01-01

    This study was aimed to determine the differences: (1) the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2) The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3) To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which s...

  5. Development and Evaluation of a Model-Supported Scientific Inquiry Training Program for Elementary Teachers in Indonesia

    OpenAIRE

    Chandra Ertikanto; Herpratiwi; Tina Yunarti; Post-graduate School of Mathematics Education, Faculty of Teacher Training and Education, University of Lampung, Indonesia,

    2017-01-01

    A teacher training program, named Model-Supported Scientific Inquiry Training Program (MSSITP) has been successfully developed to improve the inquiry skills of Indonesian elementary teachers. The skills enhanced by MSSITP are defining problems, formulating hypotheses, planning and doing investigations, drawing conclusions, and communicating the results. This teacher training program was evaluated by 48 teachers selected by stratified random sampling technique from 48 element...

  6. Intelligent Tutoring Systems for Scientific Inquiry Skills.

    Science.gov (United States)

    Shute, Valerie; Bonar, Jeffrey

    Described are the initial prototypes of several intelligent tutoring systems designed to build students' scientific inquiry skills. These inquiry skills are taught in the context of acquiring knowledge of principles from a microworld that models a specific domain. This paper discusses microworlds that have been implemented for microeconomics,…

  7. ANALYZE CRITICAL THINKING SKILLS AND SCIENTIFIC ATTITUDE IN PHYSICS LEARNING USED INQUIRY TRAINING AND DIRECT INSTRUCTION LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Dede Parsaoran Damanik

    2013-06-01

    Full Text Available This study was aimed to determine the differences: (1 the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2 The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3 To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which students of private junior high school Two Raya Kahean District Simalungun. Population choose random sample of each class. Instrument used consisted of: (1 test the scientific attitude of students through a questionnaire with 25 statements questionnaire number (2 test the critical thinking skills in the form of descriptions by 9 questions. The data were analyzed according to ANAVA. It showed that: (1 There are differences in students' critical thinking of skills achievement Inquiry Training model and Direct Instruction model, (2 there was a difference of students' critical thinking in scientific attitude at high is better than who thought there is a difference of students' critical thinking in scientific attitude at low. (3 There was no interaction between Inquiry Training model and Direct Instruction with the scientific attitude students' to increase student’s critical thinking of skills.

  8. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes

    Science.gov (United States)

    Achmad, Maulana; Suhandi, Andi

    2017-05-01

    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 < 0.050, it means that H1 was accepted. The results showed that scientific literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  9. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  10. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.

  11. Comparison of Pre-Service Physics Teachers' Conceptual Understanding of Dynamics in Model-Based Scientific Inquiry and Scientific Inquiry Environments

    Science.gov (United States)

    Arslan Buyruk, Arzu; Ogan Bekiroglu, Feral

    2018-01-01

    The focus of this study was to evaluate the impact of model-based inquiry on pre-service physics teachers' conceptual understanding of dynamics. Theoretical framework of this research was based on models-of-data theory. True-experimental design using quantitative and qualitative research methods was carried out for this research. Participants of…

  12. Effects of `Environmental Chemistry' Elective Course Via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-06-01

    The purpose of this study is to examine the effects of `environmental chemistry' elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge (TPACK) levels. Within one group pre-test-post-test design, the study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in an `environmental chemistry' elective course in the spring semester of 2011-2012 academic-years. Instruments for data collection comprised of Environmental Chemistry Conceptual Understanding Questionnaire, TPACK survey, and Chemistry Attitudes and Experiences Questionnaire. Significant increases in the SSSTs' conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and TPACK levels are attributed to the SSSTs learning how to use the innovative technologies in the contexts of the `environmental chemistry' elective course and teaching practicum. The study implies that the TESI model may serve a useful purpose in experimental science courses that use the innovative technologies. However, to generalize feasibility of the TESI model, it should be evaluated with SSSTs in diverse learning contexts.

  13. Development and Evaluation of a Model-Supported Scientific Inquiry Training Program for Elementary Teachers in Indonesia

    Directory of Open Access Journals (Sweden)

    Chandra Ertikanto

    2017-07-01

    Full Text Available A teacher training program, named Model-Supported Scientific Inquiry Training Program (MSSITP has been successfully developed to improve the inquiry skills of Indonesian elementary teachers. The skills enhanced by MSSITP are defining problems, formulating hypotheses, planning and doing investigations, drawing conclusions, and communicating the results. This teacher training program was evaluated by 48 teachers selected by stratified random sampling technique from 48 elementary schools in Bandar Lampung City, Lampung Province, Indonesia. The program was designed to follow Bandura’s stages of social learning: attention, retention, production, and motivation. The impact of MSSITP was evaluated in three ways. First, by analyzing the improvements of inquiry skills compared to conventional SITP through pretest and posttest control group design. Second, by using an inquiry questionnaire to describe teachers’ perceptions of inquiry learning. Last, by using a response instrument to elicit teachers’ opinions of the program. The results indicate a significant difference (sig 0.00 in teachers’ skills acquired from the two different training programs. Mean posttest scores, varying from 34.7 to 56.9 for the control group and 58.3 to 98.6 for the experimental group, confirmed the effectiveness of MSSITP.

  14. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    Science.gov (United States)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for

  15. Scientific Inquiry in Health Sciences Education

    DEFF Research Database (Denmark)

    Musaeus, Peter

    inquiry or critical thinking. Discussion: The value of this study is that it might enable educational developers to give junior faculty better guidance on teaching and specific feedback on their teaching portfolio in particular in regards to the design of learning activities that might use scientific...... in terms of a more systematic approach to higher-level thinking. Thus although participants cited one or more constructivist educational theorists, they did not express a well-articulated notion of inquiry and they provided limited concrete examples on how to design a conducive learning environment around...... inquiry as means and end in higher education....

  16. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    Science.gov (United States)

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  17. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    Science.gov (United States)

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  18. Improving Science Student Teachers' Self-Perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    Science.gov (United States)

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-01-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68…

  19. Martian Boneyards: Scientific Inquiry in an MMO Game

    Science.gov (United States)

    Asbell-Clarke, Jodi; Edwards, Teon; Rowe, Elizabeth; Larsen, Jamie; Sylvan, Elisabeth; Hewitt, Jim

    2012-01-01

    This paper reports on research of a game designed for scientific inquiry in a new and publicly available massively-multiplayer online environment (MMO). Educators and game designers worked together to create a highly immersive environment, a compelling storyline, and research-grounded tools for scientific inquiry within the game. The designers…

  20. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    Science.gov (United States)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  1. Effects of Scaffolds and Scientific Reasoning Ability on Web-Based Scientific Inquiry

    Science.gov (United States)

    Wu, Hui-Ling; Weng, Hsiao-Lan; She, Hsiao-Ching

    2016-01-01

    This study examined how background knowledge, scientific reasoning ability, and various scaffolding forms influenced students' science knowledge and scientific inquiry achievements. The students participated in an online scientific inquiry program involving such activities as generating scientific questions and drawing evidence-based conclusions,…

  2. Collaborative Inquiry Learning: Models, tools, and challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-02-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  3. Pedagogical Practices to Support Classroom Cultures of Scientific Inquiry

    Science.gov (United States)

    Herrenkohl, Leslie Rupert; Tasker, Tammy; White, Barbara

    2011-01-01

    This article examines the pedagogical practices of two science inquiry teachers and their students using a Web-based system called Web of Inquiry (WOI). There is a need to build a collective repertoire of pedagogical practices that can assist elementary and middle school teachers as they support students to develop a complex model of inquiry based…

  4. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    Science.gov (United States)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  5. Pre-Service Science Teachers in Xinjiang "Scientific Inquiry" - Pedagogical Content Knowledge Research

    Science.gov (United States)

    Li, Yufeng; Xiong, Jianwen

    2012-01-01

    Scientific inquiry is one of the science curriculum content, "Scientific inquiry" - Pedagogical Content Knowledge is the face of scientific inquiry and teachers - of course pedagogical content knowledge and scientific inquiry a teaching practice with more direct expertise. Pre-service teacher training phase of acquisition of knowledge is…

  6. Teachers' Language on Scientific Inquiry: Methods of teaching or methods of inquiry?

    Science.gov (United States)

    Gyllenpalm, Jakob; Wickman, Per-Olof; Holmgren, Sven-Olof

    2010-06-01

    With a focus on the use of language related to scientific inquiry, this paper explores how 12 secondary school science teachers describe instances of students' practical work in their science classes. The purpose of the study was to shed light on the culture and traditions of secondary school science teaching related to inquiry as expressed in the use of language. Data consisted of semi-structured interviews about actual inquiry units used by the teachers. These were used to situate the discussion of their teaching in a real context. The theoretical background is socio-cultural and pragmatist views on the role of language in science learning. The analysis focuses on two concepts of scientific inquiry: hypothesis and experiment. It is shown that the teachers tend to use these terms with a pedagogical function thus conflating methods of teaching with methods of inquiry as part of an emphasis on teaching the children the correct explanation. The teachers did not prioritise an understanding of scientific inquiry as a knowledge goal. It discusses how learners' possibilities to learn about the characteristics of scientific inquiry and the nature of science are affected by an unreflective use of everyday discourse.

  7. The Scientific Method and Scientific Inquiry: Tensions in Teaching and Learning

    Science.gov (United States)

    Tang, Xiaowei; Coffey, Janet E.; Elby, Andy; Levin, Daniel M.

    2010-01-01

    Typically, the scientific method in science classrooms takes the form of discrete, ordered steps meant to guide students' inquiry. In this paper, we examine how focusing on the scientific method as discrete steps affects students' inquiry and teachers' perceptions thereof. To do so, we study a ninth-grade environmental science class in which…

  8. "Martian Boneyards": Sustained Scientific Inquiry in a Social Digital Game

    Science.gov (United States)

    Asbell-Clarke, Jordis

    Social digital gaming is an explosive phenomenon where youth and adults are engaged in inquiry for the sake of fun. The complexity of learning evidenced in social digital games is attracting the attention of educators. Martian Boneyards is a proof-of-concept game designed to study how a community of voluntary gamers can be enticed to engage in sustained, high-quality scientific inquiry. Science educators and game designers worked together to create an educational game with the polish and intrigue of a professional-level game, striving to attract a new audience to scientific inquiry. Martian Boneyards took place in the high-definition, massively multiplayer online environment, Blue Mars, where players spent an average of 30 hours in the game over the 4-month implementation period, with some exceeding 200 hours. Most of the players' time was spent in scientific inquiry activities and about 30% of the players' in-game interactions were in the analysis and theory-building phases of inquiry. Female players conducted most of the inquiry, in particular analysis and theory building. The quality of scientific inquiry processes, which included extensive information gathering by players, and the resulting content were judged to be very good by a team of independent scientists. This research suggests that a compelling storyline, a highly aesthetic environment, and the emergent social bonds among players and between players and the characters played by designers were all responsible for sustaining high quality inquiry among gamers in this free-choice experience. The gaming environment developed for Martian Boneyards is seen as an evolving ecosystem with interactions among design, players' activity, and players' progress.

  9. Using Peer Feedback to Improve Students' Scientific Inquiry

    Science.gov (United States)

    Tasker, Tammy Q.; Herrenkohl, Leslie Rupert

    2016-02-01

    This article examines a 7th grade teacher's pedagogical practices to support her students to provide peer feedback to one another using technology during scientific inquiry. This research is part of a larger study in which teachers in California and Washington and their classes engaged in inquiry projects using a Web-based system called Web of Inquiry. Videotapes of classroom lessons and artifacts such as student work were collected as part of the corpus of data. In the case examined, Ms. E supports her students to collectively define "meaningful feedback," thereby improving the quality of feedback that was provided in the future. This is especially timely, given the attention in Next Generation Science Standards to cross-cutting concepts and practices that require students discuss and debate ideas with each other in order to improve their understanding and their written inquiry reports (NGSS, 2013).

  10. Comparing the perceptions of scientific inquiry between experts and practitioners

    Science.gov (United States)

    Gooding, Julia Terese Chembars

    The purpose of this study was to determine if there was a difference in the perception of scientific inquiry between experts and practitioners, and, if a difference was shown to exist, to analyze those perceptions in order to better understand the extent of that difference or gap. A disconnect was found between how experts and practitioners perceived scientific inquiry. The practitioners differed from both the experts and the literature in three key areas. First, although the teachers indicated that students would be manipulating materials, there was no direct reference to this manipulation actually being performed for the purpose of investigating. Second, the practitioners implied active physical engagement with materials, but they did not tie this to active mental engagement or direct involvement in their own learning. Third, teachers omitted their role in laying the foundation for inquiry. Though classroom teachers lacked a complete understanding of true inquiry and its place in the K-12 classroom, most of them actually believed they were practicing the art of teaching via inquiry. Additionally, two other points of interest arose. First, an examination of the national standards for a number of curricular areas established that the process skills of scientific inquiry are mirrored in those standards, implying that inquiry is not limited to the sciences. Second, a definition of inquiry was formulated based upon interviews with experts in the field. Although the literature and the experts were in unison in their definition, there was a disparity between the accepted definition and that provided by the teachers. The struggle for a comprehensive understanding of inquiry continues to this day. It might very well be that the concept still remains elusive partly because the teacher behaviors associated with it run counter to more traditional methods of instruction...methods that most teachers have experienced throughout their own educational careers. The most pervasive

  11. Invasion Ecology. Student Edition. Cornell Scientific Inquiry Series.

    Science.gov (United States)

    Krasny, Marianne E.; Trautmann, Nancy; Carlsen, William; Cunningham, Christine

    This book contains the student edition of the Environmental Inquiry curriculum series developed at Cornell University. It is designed to teach learning skills for investigating the behaviors of non-native and native species and demonstrate how to apply scientific knowledge to solve real-life problems. This book focuses on strange intruders…

  12. Crayfish Behavior: Observing Arthropods to Learn about Science & Scientific Inquiry

    Science.gov (United States)

    Rop, Charles J.

    2010-01-01

    This is a set of animal behavior investigations in which students will practice scientific inquiry as they observe crayfish, ask questions, and discuss territoriality, social interactions, and other behaviors. In doing this, they hone their skills of observation, learn to record and analyze data, control for variables, write hypotheses, make…

  13. Landscape Architectural Design as Scientific Inquiry?

    NARCIS (Netherlands)

    Lenzholzer, S.

    2011-01-01

    This presentation discusses ‘landscape architectural design as scientific inquiry’ and exemplifies this with the description of a design process within climate-responsive design leading to new design knowledge. ‘Research and design’ are issues that need increasing attention within landscape

  14. Landscape Architectural Design as Scientific Inquiry?

    OpenAIRE

    Lenzholzer, S.

    2011-01-01

    This presentation discusses ‘landscape architectural design as scientific inquiry’ and exemplifies this with the description of a design process within climate-responsive design leading to new design knowledge. ‘Research and design’ are issues that need increasing attention within landscape architecture academia. Substantial contributions on ‘research’ and ‘design’ exist within architectural theory [1,2,3,4]. However, within landscape architecture, there are only few publications on this topi...

  15. Scientific visualization as an expressive medium for project science inquiry

    Science.gov (United States)

    Gordin, Douglas Norman

    Scientists' external representations can help science education by providing powerful tools for students' inquiry. Scientific visualization is particularly well suited for this as it uses color patterns, rather than algebraic notation. Nonetheless, visualization must be adapted so it better fits with students' interests, goals, and abilities. I describe how visualization was adapted for students' expressive use and provide a case study where students successfully used visualization. The design process began with scientists' tools, data sets, and activities which were then adapted for students' use. I describe the design through scenarios where students create and analyze visualizations and present the software's functionality through visualization's sub-representations of data; color; scale, resolution, and projection; and examining the relationships between visualizations. I evaluate these designs through a "hot-house" study where a small group of students used visualization under near ideal circumstances for two weeks. Using videotapes of group interactions, software logs, and students' work I examine their representational and inquiry strategies. These inquiries were successful in that the group pursued their interest in world hunger by creating a visualization of daily per capita calorie consumption. Through creating the visualization the students engage in a process of meaning making where they interweave their prior experiences and beliefs with the representations they are using. This interweaving and other processes of collaborative visualization are shown when the students (a) computed values, (b) created a new color scheme, (c) cooperated to create the visualization, and (d) presented their work to other students. I also discuss problems that arose when students (a) used units without considering their meaning, (b) chose inappropriate comparisons in case-based reasoning, (c) did not participate equally during group work, (d) were confused about additive

  16. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    Science.gov (United States)

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  17. Development and Validation of a Multimedia-based Assessment of Scientific Inquiry Abilities

    Science.gov (United States)

    Kuo, Che-Yu; Wu, Hsin-Kai; Jen, Tsung-Hau; Hsu, Ying-Shao

    2015-09-01

    The potential of computer-based assessments for capturing complex learning outcomes has been discussed; however, relatively little is understood about how to leverage such potential for summative and accountability purposes. The aim of this study is to develop and validate a multimedia-based assessment of scientific inquiry abilities (MASIA) to cover a more comprehensive construct of inquiry abilities and target secondary school students in different grades while this potential is leveraged. We implemented five steps derived from the construct modeling approach to design MASIA. During the implementation, multiple sources of evidence were collected in the steps of pilot testing and Rasch modeling to support the validity of MASIA. Particularly, through the participation of 1,066 8th and 11th graders, MASIA showed satisfactory psychometric properties to discriminate students with different levels of inquiry abilities in 101 items in 29 tasks when Rasch models were applied. Additionally, the Wright map indicated that MASIA offered accurate information about students' inquiry abilities because of the comparability of the distributions of student abilities and item difficulties. The analysis results also suggested that MASIA offered precise measures of inquiry abilities when the components (questioning, experimenting, analyzing, and explaining) were regarded as a coherent construct. Finally, the increased mean difficulty thresholds of item responses along with three performance levels across all sub-abilities supported the alignment between our scoring rubrics and our inquiry framework. Together with other sources of validity in the pilot testing, the results offered evidence to support the validity of MASIA.

  18. Software scaffolds to promote regulation during scientific inquiry learning

    NARCIS (Netherlands)

    Manlove, S.A.; Lazonder, Adrianus W.; de Jong, Anthonius J.M.

    2007-01-01

    This research addresses issues in the design of online scaffolds for regulation within inquiry learning environments. The learning environment in this study included a physics simulation, data analysis tools, and a model editor for students to create runnable models. A regulative support tool called

  19. The Relationship in Biology between the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Kremer, Kerstin; Specht, Christiane; Urhahne, Detlef; Mayer, Jürgen

    2014-01-01

    Informed understandings of nature of science and scientific inquiry are generally accepted goals of biology education. This article points out central features of scientific inquiry with relation to biology and the nature of science in general terms and focuses on the relationship of students' inquiry skills in biology and their beliefs on the…

  20. Poster Development and Presentation to Improve Scientific Inquiry and Broaden Effective Scientific Communication Skills †

    Science.gov (United States)

    Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane

    2018-01-01

    We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy. PMID:29904518

  1. Poster Development and Presentation to Improve Scientific Inquiry and Broaden Effective Scientific Communication Skills.

    Science.gov (United States)

    Rauschenbach, Ines; Keddis, Ramaydalis; Davis, Diane

    2018-01-01

    We have redesigned a tried-and-true laboratory exercise into an inquiry-based team activity exploring microbial growth control, and implemented this activity as the basis for preparing a scientific poster in a large, multi-section laboratory course. Spanning most of the semester, this project culminates in a poster presentation of data generated from a student-designed experiment. Students use and apply the scientific method and improve written and verbal communication skills. The guided inquiry format of this exercise provides the opportunity for student collaboration through cooperative learning. For each learning objective, a percentage score was tabulated (learning objective score = points awarded/total possible points). A score of 80% was our benchmark for achieving each objective. At least 76% of the student groups participating in this project over two semesters achieved each learning goal. Student perceptions of the project were evaluated using a survey. Nearly 90% of participating students felt they had learned a great deal in the areas of formulating a hypothesis, experimental design, and collecting and analyzing data; 72% of students felt this project had improved their scientific writing skills. In a separate survey, 84% of students who responded felt that peer review was valuable in improving their final poster submission. We designed this inquiry-based poster project to improve student scientific communication skills. This exercise is appropriate for any microbiology laboratory course whose learning outcomes include the development of scientific inquiry and literacy.

  2. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    Science.gov (United States)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  3. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    Science.gov (United States)

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  4. Secondary students' views about scientific inquiry

    International Nuclear Information System (INIS)

    Galano, Silvia; Zappia, Alessandro; Smaldone, Luigi; Testa, Italo

    2015-01-01

    In this study we investigated the views about Scientific Inquiry (SI) of about 300 students at the beginning of the secondary school course (14–15 years old). An adapted version of the Views On Scientific Inquiry (VOSI) questionnaire was used as research instrument. The questionnaire, focused on six specific aspects of SI, was submitted before and after a six-hours in-classroom delivery of a teaching learning sequence (TLS) that targeted explicitly the six SI aspects. We first analyzed responses using a five-level categorization: a) informed view; b) mixed or partially correct view; c) na¨ıve view; d) unclear; e) not given. Two independent researchers iteratively analyzed the data with a final inter-rater reliability of about 90%. Then, we collapsed the initial categories into three macro-categories: C1) informed/partial view; C2) na¨ıve view; C3) unclear or not given; and calculated the shift in the macrocategorization between pre- and post-test. Finally, we investigated a possible relationship between how the TLSs were enacted and the students’ achievements. Data show that the percentage of students’ informed responses only slightly increased between pre- and post-test in the majority of the targeted aspects. Moreover, students’ achievements seem to depend on how the teachers enacted the TLSs. Our results suggest that short inquiry-based teaching interventions are not sufficient to effectively teach SI aspects. Moreover, our results suggest to develop specific training courses aimed at improving teachers’ own beliefs and practices about SI.

  5. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  6. The Power of Balance: Transforming Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2010-03-01

    Full Text Available The “power of balance” as conceived by Torbert represents an integral paradigm of principles, theory, and praxis. Deployed, the paradigm is one that can indeed inform and shape the development of self, society, and scientific inquiry. To explicate that fulsome vision, the book’s fifteen chapters develop the themes of three sections: Theory and Strategy, Heart and Practice, and Vision and Method. Here, we have excerpted from several chapters in Theory and Strategy, and from one chapter in Vision and Method. This means, of course, that we present but a small fraction of this integral classic, leaving out all of the rich, in-depth illustrations, including the author’s learning practice as he first attempted to enact the principles. Yet, we hope even this abbreviated form of The Power of Balance supports at least two goals: to offer deployable insights and practices for developing politics and the political; and to take root as part of a foundational canon for integral political thought, research, and praxis. How we readers deploy these principles in our own actions will determine the degree to which self, society, and scientific inquiry transform.

  7. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  8. Addressing scientific literacy through content area reading and processes of scientific inquiry: What teachers report

    Science.gov (United States)

    Cooper, Susan J.

    The purpose of this study was to interpret the experiences of secondary science teachers in Florida as they address the scientific literacy of their students through teaching content reading strategies and student inquiry skills. Knowledge of the successful integration of content reading and inquiry skills by experienced classroom teachers would be useful to many educators as they plan instruction to achieve challenging state and national standards for reading as well as science. The problem was investigated using grounded theory methodology. Open-ended questions were asked in three focus groups and six individual interviews that included teachers from various Florida school districts. The constant comparative approach was used to analyze the data. Initial codes were collapsed into categories to determine the conceptual relationships among the data. From this, the five core categories were determined to be Influencers, Issues, Perceptions, Class Routines, and Future Needs. These relate to the central phenomenon, Instructional Modifications, because teachers often described pragmatic and philosophical changes in their teaching as they deliberated to meet state standards in both reading and science. Although Florida's secondary science teachers have been asked to incorporate content reading strategies into their science instruction for the past several years, there was limited evidence of using these strategies to further student understanding of scientific processes. Most teachers saw little connection between reading and inquiry, other than the fact that students must know how to read to follow directions in the lab. Scientific literacy, when it was addressed by teachers, was approached mainly through class discussions, not reading. Teachers realized that students cannot learn secondary science content unless they read science text with comprehension; therefore the focus of reading instruction was on learning science content, not scientific literacy or student

  9. Searching for a Common Ground--A Literature Review of Empirical Research on Scientific Inquiry Activities

    Science.gov (United States)

    Rönnebeck, Silke; Bernholt, Sascha; Ropohl, Mathias

    2016-01-01

    Despite the importance of scientific inquiry in science education, researchers and educators disagree considerably regarding what features define this instructional approach. While a large body of literature addresses theoretical considerations, numerous empirical studies investigate scientific inquiry on quite different levels of detail and also…

  10. Learning by doing? Prospective elementary teachers' developing understandings of scientific inquiry and science teaching and learning

    Science.gov (United States)

    Haefner, Leigh Ann; Zembal-Saul, Carla

    This study examined prospective elementary teachers' learning about scientific inquiry in the context of an innovative life science course. Research questions included: (1) What do prospective elementary teachers learn about scientific inquiry within the context of the course? and (2) In what ways do their experiences engaging in science investigations and teaching inquiry-oriented science influence prospective elementary teachers' understanding of science and science learning and teaching? Eleven prospective elementary teachers participated in this qualitative, multi-participant case study. Constant comparative analysis strategies attempted to build abstractions and explanations across participants around the constructs of the study. Findings suggest that engaging in scientific inquiry supported the development more appropriate understandings of science and scientific inquiry, and that prospective teachers became more accepting of approaches to teaching science that encourage children's questions about science phenomena. Implications include careful consideration of learning experiences crafted for prospective elementary teachers to support the development of robust subject matter knowledge.

  11. Inquiry in early years science teaching and learning: Curriculum design and the scientific story

    Science.gov (United States)

    McMillan, Barbara Alexander

    2001-07-01

    Inquiry in school science, as conceived by the authors of the Common Framework of Science Learning Outcomes K--12, is dependent upon four areas of skills. These are the skills of initiating and planning, performing and recording, analysing and interpreting, and communication and teamwork that map onto what Hodson calls the five phases of scientific inquiry in school science: initiation, design and planning, performance, interpretation, and reporting and communicating. This study looked at initiation in a multiage (Grades 1--3) classroom, and the curriculum, design tools, and inquiry acts believed to be necessary precursors of design and planning phases whether the inquiry in which young children engage is archival or laboratory investigation. The curriculum was designed to build upon children's everyday biological knowledge and through a series of carefully organized lessons to help them to begin to build scientifically valid conceptual models in the area of animal life cycles. The lessons began with what is called benchmark-invention after the historical work of Robert Karplus and the contemporary work of Earl Hunt and Jim Minstrell. The introduction of a biological concept was followed by a series of exploration activities in which children were encouraged to apply the concept invented in the benchmark lesson. Enlargement followed. This was the instructional phase in which children were helped to establish scientifically valid relationships between the invented concept and other biological concepts. The pre-instruction and post-instruction interview data suggest that the enacted curriculum and sequence in which the biological knowledge was presented helped the nineteen children in the study to recognize the connections and regularities within the life cycles of the major groupings of animals, and to begin to build scientific biological conceptual models. It is, however, argued that everyday biology, in the form of the person analogy, acts as an obstacle to

  12. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    Science.gov (United States)

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-12-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. (Journal of Research in Science Teaching, 51, 65-8, 2014) determined eight NOSI aspects for K-16 context. In this study, a science camp was conducted to teach scientific inquiry (SI) and NOSI to 24 6th and 7th graders (16 girls and 8 boys). The core of the program was guided inquiry in nature. The children working in small groups under guidance of science advisors conducted four guided-inquiries in the nature in morning sessions on nearby plants, animals, water, and soil. NOSI aspects were made explicit during and at the end of each inquiry session. Views about scientific inquiry (VASI) (Lederman et al. Journal of Research in Science Teaching, 51, 65-8, 2014) questionnaire was applied as pre- and post-test. The results of the study showed that children developed in all eight NOSI aspects, but higher developments were observed in "scientific investigations all begin with a question" and "there is no single scientific method," and "explanations are developed from data and what is already known" aspects. It was concluded that the science camp program was effective in teaching NOSI.

  13. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    Science.gov (United States)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  14. Effects of Inquiry-Based Agriscience Instruction on Student Scientific Reasoning

    Science.gov (United States)

    Thoron, Andrew C.; Myers, Brian E.

    2012-01-01

    The purpose of this study was to determine the effect of inquiry-based agriscience instruction on student scientific reasoning. Scientific reasoning is defined as the use of the scientific method, inductive, and deductive reasoning to develop and test hypothesis. Developing scientific reasoning skills can provide learners with a connection to the…

  15. Promoting Student Development of Models and Scientific Inquiry Skills in Acid-Base Chemistry: An Important Skill Development in Preparation for AP Chemistry

    Science.gov (United States)

    Hale-Hanes, Cara

    2015-01-01

    In this study, two groups of 11th grade chemistry students (n = 210) performed a sequence of hands-on and virtual laboratories that were progressively more inquiry-based. One-half of the students did the laboratory sequence with the addition of a teacher-led discussion connecting student data to student-generated visual representations of…

  16. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  17. Sandboxes for Model-Based Inquiry

    Science.gov (United States)

    Brady, Corey; Holbert, Nathan; Soylu, Firat; Novak, Michael; Wilensky, Uri

    2015-04-01

    In this article, we introduce a class of constructionist learning environments that we call Emergent Systems Sandboxes ( ESSs), which have served as a centerpiece of our recent work in developing curriculum to support scalable model-based learning in classroom settings. ESSs are a carefully specified form of virtual construction environment that support students in creating, exploring, and sharing computational models of dynamic systems that exhibit emergent phenomena. They provide learners with "entity"-level construction primitives that reflect an underlying scientific model. These primitives can be directly "painted" into a sandbox space, where they can then be combined, arranged, and manipulated to construct complex systems and explore the emergent properties of those systems. We argue that ESSs offer a means of addressing some of the key barriers to adopting rich, constructionist model-based inquiry approaches in science classrooms at scale. Situating the ESS in a large-scale science modeling curriculum we are implementing across the USA, we describe how the unique "entity-level" primitive design of an ESS facilitates knowledge system refinement at both an individual and social level, we describe how it supports flexible modeling practices by providing both continuous and discrete modes of executability, and we illustrate how it offers students a variety of opportunities for validating their qualitative understandings of emergent systems as they develop.

  18. Science Teacher Educators’ Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Directory of Open Access Journals (Sweden)

    William J. FRASER

    2017-10-01

    Full Text Available This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS, and by the Nature of Scientific Inquiry (NOSI. Furthermore, science educators’ own PCK, and the limitations of a predominantly paper-based distance education (DE model of delivery are challenges that they have to face when introducing PCK and authentic inquiry-based learning experiences. It deprives them and their students from optimal engagement in a science-oriented community of practice, and leaves little opportunity to establish flourishing communities of inquiry. This study carried out a contextual analysis of the tutorial material to assess the PCK that the student teachers had been exposed to. This comprised the ideas of a community of inquiry, a community of science, the conceptualization of PCK, scientific inquiry, and the 5E Instructional Model of the Biological Sciences Curriculum Study. The analysis confirmed that the lecturers had a good understanding of NOS, NOSI and science process skills, but found it difficult to design interventions to optimize the PCK development of students through communities of inquiry. Paper-based tutorials are ideal to share theory, policies and practices, but fail to monitor the engagement of learners in communities of inquiry. The article concludes with a number of suggestions to address the apparent lack of impact power of the paper-based mode of delivery, specifically in relation to inquiry-based teaching and learning (IBTL.

  19. What is the role of induction and deduction in reasoning and scientific inquiry?

    Science.gov (United States)

    Lawson, Anton E.

    2005-08-01

    A long-standing and continuing controversy exists regarding the role of induction and deduction in reasoning and in scientific inquiry. Given the inherent difficulty in reconstructing reasoning patterns based on personal and historical accounts, evidence about the nature of human reasoning in scientific inquiry has been sought from a controlled experiment designed to identify the role played by enumerative induction and deduction in cognition as well as from the relatively new field of neural modeling. Both experimental results and the neurological models imply that induction across a limited set of observations plays no role in task performance and in reasoning. Therefore, support has been obtained for Popper's hypothesis that enumerative induction does not exist as a psychological process. Instead, people appear to process information in terms of increasingly abstract cycles of hypothetico-deductive reasoning. Consequently, science instruction should provide students with opportunities to generate and test increasingly complex and abstract hypotheses and theories in a hypothetico-deductive manner. In this way students can be expected to become increasingly conscious of their underlying hypothetico-deductive thought processes, increasingly skilled in their application, and hence increasingly scientifically literate.

  20. Pre-service elementary teachers' understanding of scientific inquiry and its role in school science

    Science.gov (United States)

    Macaroglu, Esra

    The purpose of this research was to explore pre-service elementary teachers' developing understanding of scientific inquiry within the context of their elementary science teaching and learning. More specifically, the study examined 24 pre-service elementary teachers' emerging understanding of (1) the nature of science and scientific inquiry; (2) the "place" of scientific inquiry in school science; and (3) the roles and responsibilities of teachers and students within an inquiry-based learning environment. Data sources consisted primarily of student-generated artifacts collected throughout the semester, including pre/post-philosophy statements and text-based materials collected from electronic dialogue journals. Individual data sources were open-coded to identify concepts and categories expressed by students. Cross-comparisons were conducted and patterns were identified. Assertions were formed with these patterns. Findings are hopeful in that they suggest pre-service teachers can develop a more contemporary view of scientific inquiry when immersed in a context that promotes this perspective. Not surprisingly, however, the prospective teachers encountered a number of barriers when attempting to translate their emerging ideas into practice. More research is needed to determine which teacher preparation experiences are most powerful in supporting pre-service teachers as they construct a framework for science teaching and learning that includes scientific inquiry as a central component.

  1. Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory

    Science.gov (United States)

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-08-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.

  2. Using Scientific Inquiry to Teach Students about Water Quality

    Science.gov (United States)

    Puche, Helena; Holt, Jame

    2012-01-01

    This semi-guided inquiry activity explores the macroinvertebrate fauna in water sources affected by different levels of pollution. Students develop their ability to identify macroinvertebrates, compare aquatic fauna from different sources of water samples, evaluate water quality using an index, document and analyze data, raise questions and…

  3. An investigation of the practice of scientific inquiry in secondary science and agriculture courses

    Science.gov (United States)

    Grady, Julie R.

    The purpose of this exploratory qualitative study was to investigate the practice of scientific inquiry in two secondary biology classes and one agriculture class from different schools in different communities. The focus was on teachers' interests and intentions for the students' participation in inquiry, the voices contributing to the inquiry, and students' opportunities to confront their conceptions of the nature of science (NOS). The Partnership for Research and Education in Plants (PREP) served as the context by providing students with opportunities to design and conduct original experiments to help elucidate the function(s) of a disabled gene in Arabidopsis thaliana . Transcripts of teacher and student semi-structured interviews, field notes of classroom observations and classroom conversations, and documents (e.g., student work, teacher handouts, school websites, PREP materials) were analyzed for evidence of the practice of scientific inquiry. Teachers were interested in implementing inquiry because of potential student learning about scientific research and because PREP supports course content and is connected to a larger scientific project outside of the school. Teachers' intentions regarding the implementation of inquiry reflected the complexity of their courses and the students' previous experiences. All inquiries were student-directed. The biology students' participation more closely mirrored the practice of scientists, while the agriculture students were more involved with the procedural display of scientific inquiry. All experiences could have been enhanced from additional knowledge-centered activities regarding scientific reasoning. No activities brought explicit attention to NOS. Biology activities tended to implicitly support NOS while the agriculture class activities tended to implicitly contradict NOS. Scientists' interactions contributed to implied support of the NOS. There were missed opportunities for explicit attention to NOS in all classes

  4. The analysis of scientific communications and students’ character development through guided inquiry learning

    Science.gov (United States)

    Sarwi, S.; Fauziah, N.; Astuti, B.

    2018-03-01

    This research is setting by the condition of students who have difficulty in ideas delivery, written scientific communication, and still need the development of student character. The objectives of the research are to determine the improvement of concept understanding, to analyze scientific communication skills and to develop the character of the students through guided inquiry learning. The design in this research is quasi experimental control group preposttest, with research subject of two group of grade X Senior High School in Semarang. One group of controller uses non tutorial and treatment group using tutorial in guided inquiry. Based on result of gain test analysis, obtained = 0.71 for treatment and control group = 0.60. The t-test result of mean mastery of concept of quantity and unit using t-test of right side is t count = 2.37 (p=0.003) while t table = 1.67 (α = 5%), which means that the results of the study differed significantly. The results of the students' scientific communication skills analysis showed that the experimental group was higher than the control, with an average of 69% and 63% scientific communication skills. The character values are effective developed through guided inquiry learning. The conclusion of the study is guided inquiry learning tutorial better than guided inquiry non tutorial learning in aspect understanding concept, scientific communication skills; but the character development result is almost the same.

  5. Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Discourse Analysis Developed from Philosophy of Science

    Science.gov (United States)

    Russ, Rosemary S.; Scherr, Rachel E.; Hammer, David; Mikeska, Jamie

    2008-01-01

    Science education reform has long focused on assessing student inquiry, and there has been progress in developing tools specifically with respect to experimentation and argumentation. We suggest the need for attention to another aspect of inquiry, namely "mechanistic reasoning." Scientific inquiry focuses largely on understanding causal…

  6. DEVELOPMENT SCIENTIFIC INQUIRY BASED TEACHING MATERIALS ON DYNAMIC FLUIDS TO IMPROVE STUDENTS ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Jeliana Veronika Sirait

    2016-06-01

    Full Text Available The study was conducted to investigate whether the developed scientific inquiry-based teaching materials can improve the students’ response, the students’ activity and the students’ achievement. This study is development which based on Borg & Gall product development. Samples were selected randomly by raffling 4 classes into one class, applied teaching materials based scientific inquiry. The instruments which are used in this study consisted of three namely quetionnaires used for validation of teaching material by the expert of the material and the expert of design, the evaluation of physics teacher and students’ response toward teaching materials and observation sheet of students’ activity used in learning process and also test for students’ achievement in the form of multiple choice consisted of 10 quetions provided for end of the learning. The results of this study showed that the developed scientific inquiry-based teaching materials can improve the students’ response, the students’ activity and the students’ achievement in every session.

  7. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-04-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.

  8. Leveraging Educational Data Mining for Real-Time Performance Assessment of Scientific Inquiry Skills within Microworlds

    Science.gov (United States)

    Gobert, Janice D.; Sao Pedro, Michael A.; Baker, Ryan S. J. D.; Toto, Ermal; Montalvo, Orlando

    2012-01-01

    We present "Science Assistments," an interactive environment, which assesses students' inquiry skills as they engage in inquiry using science microworlds. We frame our variables, tasks, assessments, and methods of analyzing data in terms of "evidence-centered design." Specifically, we focus on the "student model," the…

  9. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    Science.gov (United States)

    French, Debbie Ann

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.

  10. Predicting Students' Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables

    Science.gov (United States)

    Nehring, Andreas; Nowak, Kathrin H.; Belzen, Annette Upmeier zu; Tiemann, Rüdiger

    2015-06-01

    Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to investigate to which extent multiple student characteristics contribute to skills of scientific inquiry. Based on a theoretical framework describing nine epistemological acts, we constructed and administered a multiple-choice test that assesses these skills in lower and upper secondary school level (n = 780). The test items contained problem-solving situations that occur during chemical investigations in school and had to be solved by choosing an appropriate inquiry procedure. We collected further data on 12 cognitive, motivational, and sociodemographic variables such as conceptual knowledge, enjoyment of chemistry, or language spoken at home. Plausible values were drawn to quantify students' inquiry skills. The results show that students' characteristics predict their inquiry skills to a large extent (55%), whereas 9 out of 12 variables contribute significantly on a multivariate level. The influence of sociodemographic traits such as gender or the social background becomes non-significant after controlling for cognitive and motivational variables. Furthermore, the performance advance of students from upper secondary school level can be explained by controlling for cognitive covariates. We discuss our findings with regard to curricular aspects and raise the question whether the inquiry skills can be considered as an autonomous trait in science education research.

  11. Development and use of an instrument to measure scientific inquiry and related factors

    Science.gov (United States)

    Dunbar, Terry Frank

    The use of the scientific inquiry method of teaching science was investigated in one district's elementary schools. The study generated data directly from Albuquerque Public Schools fourth- and fifth-grade teachers through a mail-out survey and through observation. Two forms of an inquiry evaluation research instrument (Elementary Science Inquiry Survey - ESIS) were created. The ESIS-A is a classroom observation tool. The ESIS-B is a survey questionnaire designed to collect information from teachers. The study was designed first to establish reliability and validity for both forms of the instrument. The study made use of multiple regression and exploratory factor analysis. Sources used to establish the instruments' reliability and validity included: (1) Input from an international panel (qualitative analysis of comments sent by raters and quantitative analysis of numerical ratings sent by raters); (2) Cronbach's alpha; (3) Results of factor analysis; (4) Survey respondents' comments (qualitative analysis); (5) Teacher observation data. Cronbach's alpha for the data set was .8955. Inquiry practices were reported to occur between twice per week and three times per week. Teachers' comments regarding inquiry were reported. The ESIS was used to collect inquiry self-report data and teacher background data. The teacher background data included teacher science knowledge and information about their standards awareness and implementation. The following teacher knowledge factors were positively correlated with inquiry use: semesters of college science, science workshops taken, conducted scientific research, and SIMSE (NSF institute) participation. The following standards awareness and implementation factors were positively correlated with inquiry use: familiarity with the National Science Education Standards, familiarity with New Mexico science standards, state or national standards as a curriculum selection factor, student interest as a curriculum selection factor, and "no

  12. The Ties that Bind: Emergent Literacy and Scientific Inquiry

    Science.gov (United States)

    Whitin, Phyllis

    2007-01-01

    This study describes one kindergarten classroom in which informational books and other nonfiction resources were used in the context of a long-term scientific study. Children became proficient in locating information and interpreting content-specific textual features in the process of making sense of their scientific observations and sharing them…

  13. The Texture of Educational Inquiry: An Exploration of George Herbert Mead's Concept of the Scientific.

    Science.gov (United States)

    Franzosa, Susan Douglas

    1984-01-01

    Explores the implications of Mead's philosophic social psychology for current disputes concerning the nature of the scientific in educational studies. Mead's contextualization of the knower and the known are found to be compatible with a contemporary critique of positivist paradigms and a critical reconceptualization of educational inquiry.…

  14. A framework for teaching scientific inquiry in upper secondary school chemistry

    NARCIS (Netherlands)

    van Rens, L.; Pilot, A.; van der Schee, J.A.

    2010-01-01

    A framework for teaching scientific inquiry in upper secondary chemistry education was constructed in a design research consisting of two research cycles. First, in a pilot study a hypothetical framework was enriched in collaboration with five chemistry teachers. Second, a main study in this

  15. Invasion Ecology. Teacher's Guide [and Student Edition]. Cornell Scientific Inquiry Series.

    Science.gov (United States)

    Krasny, Marianne E.; Trautmann, Nancy; Carlsen, William; Cunningham, Christine

    This book contains the teacher's guide of the Environmental Inquiry curriculum series developed at Cornell University. It is designed to teach learning skills for investigating the behaviors of non-native and native species and demonstrate how to apply scientific knowledge to solve real-life problems. This book focuses on strange intruders…

  16. Pre-service teachers and socio-scientific inquiry : Opportunities and challenges

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; van Harskamp, M.; Verhoeff, R.P.; Postma, P.A.

    2017-01-01

    This paper presents the results of a teacher training program aiming to enable pre-service teachers to engage secondary education students in Socio-Scientific Inquiry-Based Learning (SSIBL). In SSIBL – an approach developed within the European project PARRISE – students formulate questions about

  17. Primary pre-service teachers' skills in planning a guided scientific inquiry

    Science.gov (United States)

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2017-10-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive-interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

  18. Using Puppets to Provide Opportunities for Dialogue and Scientific Inquiry

    Science.gov (United States)

    Liston, Maeve

    2015-01-01

    Talk, peer collaboration and exchanging ideas significantly contribute to a child's conceptual understanding in science (Howe, McWilliam and Cross, 2005). Dialogue helps children to clarify their thinking and to develop their capacity to reason, which are crucial scientific process skills (Mercer et al., 2004). One very effective way of supporting…

  19. Technology geography: a new area of scientific inquiry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.

    2003-01-01

    Operations management, international management, public policy and economic geography are four scientific areas, which come together in the study of international technology transfer. This paper shows how each of these four areas has its own central issues but also have specific parts that are

  20. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    Science.gov (United States)

    Golden, H. E.; Hoghooghi, N.

    2017-12-01

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of the same watershed can render management explicitly targeted to limit the negative outcomes from urbanization ineffective. For example, evidence indicates that green infrastructure, or low impact development (LID), practices can attenuate the adverse water quality and quantity effects of urbanizing systems. However, the research providing this evidence has been conducted at local scales (e.g., plots, small homogeneous urban catchments) that isolate the measurable effects of such approaches. Hence, a distinct disconnect exists between the scale of scientific inquiry and the scale of management and decision-making practices. Here we explore the oft-discussed yet rarely directly addressed scientific and management conundrum: How do we scale our well-documented scientific knowledge of the water quantity and quality responses to LID practices measured and modeled at local scales to that of "actual" management scales? We begin by focusing on LID practices in mixed land cover watersheds. We present key concepts that have emerged from LID research at the local scale, considerations for scaling this research to watersheds, recent advances and findings in scaling the effects of LID practices on water quality and quantity at watershed scales, and the use of combined novel measurements and models for these scaling efforts. We underscore these concepts with a case study that evaluates the effects of three LID practices using simulation modeling across a mixed land cover watershed. This synthesis and case study highlight that scientists are making progress toward successfully tailoring fundamental research questions with decision-making goals in mind, yet we still have a long road ahead.

  1. An Inquiry-Based Laboratory Module to Promote Understanding of the Scientific Method and Bacterial Conjugation

    Directory of Open Access Journals (Sweden)

    Melanie B. Berkmen

    2014-08-01

    Full Text Available Students are engaged and improve their critical thinking skills in laboratory courses when they have the opportunity to design and conduct inquiry-based experiments that generate novel results. A discovery-driven project for a microbiology, genetics, or multidisciplinary research laboratory course was developed to familiarize students with the scientific method. In this multi-lab module, students determine whether their chosen stress conditions induce conjugation and/or cell death of the model BSL-1 Gram-positive bacterium Bacillus subtilis. Through consultation of the primary literature, students identify conditions or chemicals that can elicit DNA damage, the SOS response, and/or cellular stress.  In groups, students discuss their selected conditions, develop their hypotheses and experimental plans, and formulate their positive and negative controls. Students then subject the B. subtilis donor cells to the stress conditions, mix donors with recipients to allow mating, and plate serial dilutions of the mixtures on selective plates to measure how the treatments affect conjugation frequency and donor cell viability.  Finally, students analyze and discuss their collective data in light of their controls. The goals of this module are to encourage students to be actively involved in the scientific process while contributing to our understanding of the conditions that stimulate horizontal gene transfer in bacteria.

  2. Exploring the Impacts of Cognitive and Metacognitive Prompting on Students' Scientific Inquiry Practices Within an E-Learning Environment

    Science.gov (United States)

    Zhang, Wen-Xin; Hsu, Ying-Shao; Wang, Chia-Yu; Ho, Yu-Ting

    2015-02-01

    This study explores the effects of metacognitive and cognitive prompting on the scientific inquiry practices of students with various levels of initial metacognition. Two junior high school classes participated in this study. One class, the experimental group (n = 26), which received an inquiry-based curriculum with a combination of cognitive and metacognitive prompts, was compared to the other class, the comparison group (n = 25), which received only cognitive prompts in the same curriculum. Data sources included a test of inquiry practices, a questionnaire of metacognition, and worksheets. The results showed that the mixed cognitive and metacognitive prompts had significant impacts on the students' inquiry practices, especially their planning and analyzing abilities. Furthermore, the mixed prompts appeared to have a differential effect on those students with lower level metacognition, who showed significant improvement in their inquiry abilities. A combination of cognitive and metacognitive prompts during an inquiry cycle was found to promote students' inquiry practices.

  3. Unraveling the development of scientific literacy: Domain-specific inquiry support in a system of cognitive and social interactions

    Science.gov (United States)

    Tabak, Iris Ellen

    The goal of this dissertation was to study how to harness technological tools in service of establishing a climate of inquiry in science classrooms. The research is a design experiment drawing on sociocultural and cognitive theory. As part of the BGuILE project, I developed software to support observational research of natural selection, and a complementary high school unit on evolution. Focusing on urban schools, I employed interpretive methods to examine learning as it unfolds in the classroom. I present design principles for realizing a climate of inquiry in technology-infused classrooms. This research contributes to technology design, teaching practice and educational and cognitive research. My pedagogical approach, Domain-Specific Strategic Support (DSSS), helps students analyze and synthesize primary data by making experts' considerations of content knowledge explicit. Students query data by constructing questions from a selection of comparison and variable types that are privileged in the domain. Students organize their data according to evidence categories that comprise a natural selection argument. I compared the inquiry process of contrastive cases: an honor group, a regular group and a lower track group. DSSS enabled students at different achievement levels to set up systematic comparisons, and construct empirically-based explanations. Prior knowledge and inquiry experience influenced spontaneous strategy use. Teacher guidance compensated for lack of experience, and enabled regular level students to employ strategies as frequently as honor students. I extend earlier research by proposing a taxonomy of both general and domain-specific reflective inquiry strategies. I argue that software, teacher and curriculum work in concert to sustain a climate of inquiry. Teachers help realize the potential that technological tools invite. Teachers reinforce software supports by encouraging students utilize technological tools, and by modeling their use. They also

  4. Exploring South African high school teachers' conceptions of the nature of scientific inquiry: a case study

    Directory of Open Access Journals (Sweden)

    Washington T Dudu

    2014-01-01

    Full Text Available The paper explores conceptions of the nature ofscientific inquiry (NOSI held by five teachers who were purposively and conveniently sampled. Teachers' conceptions of the NOSI were determined using a Probes questionnaire. To confirm teachers' responses, a semi-structured interview was conducted with each teacher. The Probes questionnaire was based on six tenets of the nature of scientific inquiry but only three tenets are presented in this paper, namely: (1 scientists use a variety of methods to conduct scientific investigations; (2 scientific knowledge is socially and culturally embedded; and (3 scientific knowledge is partly the product of human creativity and imagination. The study found that the teachers held mixed NOSI conceptions. These conceptions werefluid and lacked coherence, ranging from static, empiricist-aligned to dynamic, constructivist-oriented conceptions. Although all participants expressed some views that were consistent with current, acceptable conceptions of NOSI, some held inadequate (naïve views on the crucial three NOSI tenets. The significance of this study rests in recommending explicit teaching of NOSI duringpre-service and in-service training which enables teachers to possess informed conceptions about NOSI. With these informed conceptions, teachers may internalise the instructional importance of the NOSI which, in turn, may help avoid the lack of attention to NOSI currently evidenced in teachers' instructional decisions. This might result in teachers' orientations shifting towards an explicit inquiry-based approach from that of an implicit science process and discovery approach.

  5. Science Inquiry as Knowledge Transformation: Investigating Metacognitive and Self-regulation Strategies to Assist Students in Writing about Scientific Inquiry Tasks

    Science.gov (United States)

    Collins, Timothy A.

    2011-12-01

    Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry

  6. The Analysis of Students Scientific Reasoning Ability in Solving the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR Problems by Applying the Levels of Inquiry

    Directory of Open Access Journals (Sweden)

    N. Novia

    2017-04-01

    Full Text Available This study aims to determine the students’ achievement in answering modified lawson classroom test of scientific reasoning (MLCTSR questions in overall science teaching and by every aspect of scientific reasoning abilities. There are six aspects related to the scientific reasoning abilities that were measured; they are conservatorial reasoning, proportional reasoning, controlling variables, combinatorial reasoning, probabilistic reasoning, correlational reasoning. The research is also conducted to see the development of scientific reasoning by using levels of inquiry models. The students reasoning ability was measured using the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR. MLCTSR is a test developed based on the test of scientific reasoning of Lawson’s Classroom Test of Scientific Reasoning (LCTSR in 2000 which amounted to 12 multiple-choice questions. The research method chosen in this study is descriptive quantitative research methods. The research design used is One Group Pretest-Posttest Design. The population of this study is the entire junior high students class VII the academic year 2014/2015 in one junior high school in Bandung. The samples in this study are one of class VII, which is class VII C. The sampling method used in this research is purposive sampling. The results showed that there is an increase in quantitative scientific reasoning although its value is not big.

  7. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  8. Design and validation of general biology learning program based on scientific inquiry skills

    Science.gov (United States)

    Cahyani, R.; Mardiana, D.; Noviantoro, N.

    2018-03-01

    Scientific inquiry is highly recommended to teach science. The reality in the schools and colleges is that many educators still have not implemented inquiry learning because of their lack of understanding. The study aims to1) analyze students’ difficulties in learning General Biology, 2) design General Biology learning program based on multimedia-assisted scientific inquiry learning, and 3) validate the proposed design. The method used was Research and Development. The subjects of the study were 27 pre-service students of general elementary school/Islamic elementary schools. The workflow of program design includes identifying learning difficulties of General Biology, designing course programs, and designing instruments and assessment rubrics. The program design is made for four lecture sessions. Validation of all learning tools were performed by expert judge. The results showed that: 1) there are some problems identified in General Biology lectures; 2) the designed products include learning programs, multimedia characteristics, worksheet characteristics, and, scientific attitudes; and 3) expert validation shows that all program designs are valid and can be used with minor revisions. The first section in your paper.

  9. How are scientific thinking skills best developed? Direct instruction vs. inquiry practice

    Science.gov (United States)

    Dean, David Worth, Jr.

    Despite its support and adoption by most major scientific and educational organizations, some researchers have questioned whether inquiry learning is indeed the best method for acquiring the skills of inquiry. Klahr and colleagues have investigated the development of the control of variables strategy, or controlled comparison (CC), and claim that a brief session of direct instruction, characterized by explicit training of CC, as opposed to allowing children to discover CC through inquiry learning, is sufficient for acquisition, maintenance, and transfer of this core aspect of inquiry. Kuhn and colleagues, however, argue that direct instruction may be insufficient for development of the metastrategic level of understanding necessary to adequately maintain and transfer inquiry skills. In the present study, I attempt to identify the intervention most effective in supporting acquisition, maintenance, and transfer of these skills. Three groups of students received either a direct instruction session followed by standard classroom instruction (DI-only), an introductory session (without direct instruction) followed by practice sessions only (PR-only), or a direct instruction session followed by practice sessions (DI+PR). Practice sessions involved the use of a computer-based inquiry task requiring students to investigate the effects of five potential causal variables on an outcome. The two practice groups worked with this program during 12 sessions over nine weeks. They worked with structurally identical software programs during five weekly maintenance sessions. During this time, the DI-only group received standard classroom instruction. All groups were assessed on familiar and unfamiliar computer-based inquiry tasks at the conclusion of intervention (immediate assessment) and maintenance sessions (delayed assessment). Students in the two practice groups demonstrated improvement in an integrative measure of inquiry skill (valid intent, valid strategy, valid inference, and

  10. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    Science.gov (United States)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  11. THE EFFECTS OF INQUIRY TRAINING ASSIST MEDIA OF HANDOUT AND ATTITUDE SCIENTIFIC TOWARDS SCIENCE PROCESS SKILLS IN PHYSICS STUDENTS

    Directory of Open Access Journals (Sweden)

    Halimatus Sakdiah

    2014-12-01

    Full Text Available The purpose of this research has described difference: (1 skill of student science process between inquiry training assist media of handout and direct instruction, (2 skill of student science process between student possess attitude scientific upon and under of mean, and (3 interaction of inquiry training assist media handout and direct instruction with attitude scientific increase skill of student science process. Type of this research is experiment quasi, use student of senior high school Private sector of  Prayatna as population and chosen sample by cluster sampling random. The instrument used essay test base on skill of science process which have valid and reliable. Data be analysed by using ANAVA two ways. Result of research show that any difference of skill of student science process (1 between inquiry training assist media of handout and direct instruction, where inquiry training assist media of handout better then direct instruction, (2 between student possess attitude scientific upon and under of mean, where possess attitude scientific upon of mean better then student possess attitude scientific under of mean and (3 any interaction between inquiry training assist media of handout and direct instruction with attitude scientific increase skill of student science process, where interaction in class direct instruction better then inquiry training assist media of handout.

  12. The Impact of a Practice-Teaching Professional Development Model on Teachers' Inquiry Instruction and Inquiry Efficacy Beliefs

    Science.gov (United States)

    Lotter, Christine R.; Thompson, Stephen; Dickenson, Tammiee S.; Smiley, Whitney F.; Blue, Genine; Rea, Mary

    2018-01-01

    This study examined changes in middle school teachers' beliefs about inquiry, implementation of inquiry practices, and self-efficacy to teach science through inquiry after participating in a year-long professional development program. The professional development model design was based on Bandura's (1986) social cognitive theory of learning and…

  13. Cases as Shared Inquiry: A Dialogical Model of Teacher Preparation.

    Science.gov (United States)

    Harrington, Helen L.; Garrison, James W.

    1992-01-01

    A dialogical model is proposed for connecting theory to practice in teacher education by conceiving of cases from case-based pedagogy as problems that initiate shared inquiry. Cases with genuine cognitive and axiological content can initiate self-directed, student-centered inquiry while building democratic dialogical communities. (SLD)

  14. Supporting inquiry and modelling with interactive drawings

    NARCIS (Netherlands)

    van Joolingen, Wouter

    2012-01-01

    Creating models is at the heart of any scientific endeavor and therefore should have a place in science curricula. However, creating computer-based models faces resistance in early science education because of the difficulty to create the formal representations required by computational systems. In

  15. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  16. Guiding Students to Develop an Understanding of Scientific Inquiry: A Science Skills Approach to Instruction and Assessment

    Science.gov (United States)

    Stone, Elisa M.

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations—for example, hypothesizing, data analysis, or use of controls—and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level. PMID:24591508

  17. Communicating with scientific graphics: A descriptive inquiry into non-ideal normativity.

    Science.gov (United States)

    Sheredos, Benjamin

    2017-06-01

    Scientists' graphical practices have recently become a target of inquiry in the philosophy of science, and in the cognitive sciences. Here I supplement our understanding of graphical practices via a case study of how researchers crafted the graphics for scientific publication in the field of circadian biology. The case highlights social aspects of graphical production which have gone understudied - especially concerning the negotiation of publication. I argue that it also supports a challenge to the claim that empirically-informed "cognitive design principles" offer an apt understanding of the norms of success which govern good scientific graphic design to communicate data and hypotheses to other experts. In this respect, the case-study also illustrates how "descriptive" studies of scientific practice can connect with normative issues in philosophy of science, thereby addressing a central concern in recent discussions of practice-oriented philosophy of science. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Scientific evaluation of an intra-curricular educational kit to foster inquiry-based learning (IBL)

    Science.gov (United States)

    Debaes, Nathalie; Cords, Nina; Prasad, Amrita; Fischer, Robert; Euler, Manfred; Thienpont, Hugo

    2014-07-01

    Society becomes increasingly dependent on photonics technologies; however there is an alarming lack of technological awareness among secondary school students. They associate photonics with experiments and components in the class room that seem to bear little relevance to their daily life. The Rocard Report [5] highlights the need for fostering students' scientific skills and technological awareness and identifies inquiry based learning (IBL) as a means to achieve this. Students need to actively do science rather than be silent spectators. The `Photonics Explorer' kit was developed as an EU funded project to equip teachers, free-of-charge, with educational material designed to excite, engage and educate European secondary school students using guided inquiry based learning techniques. Students put together their own experiments using up-to-date versatile components, critically interpret results and relate the conclusions to relevant applications in their daily life. They work hands-on with the material, thus developing and honing their scientific and analytical skills that are otherwise latent in a typical class room situation. A qualitative and quantitative study of the impact of the kit in the classroom was undertaken with 50 kits tested in 7 EU countries with over 1500 students in the local language. This paper reports on the results of the EU wide field tests that show the positive impact of the kit in raising the self-efficacy, scientific skills and interest in science among students and the effectiveness of the kit in implementing IBL strategies in classrooms across EU.

  19. Examining the Features of Earth Science Logical Reasoning and Authentic Scientific Inquiry Demonstrated in a High School Earth Science Curriculum: A Case Study

    Science.gov (United States)

    Park, Do-Yong; Park, Mira

    2013-01-01

    The purpose of this study was to investigate the inquiry features demonstrated in the inquiry tasks of a high school Earth Science curriculum. One of the most widely used curricula, Holt Earth Science, was chosen for this case study to examine how Earth Science logical reasoning and authentic scientific inquiry were related to one another and how…

  20. Listening into the Dark: An Essay Testing the Validity and Efficacy of Collaborative Developmental Action Inquiry for Describing and Encouraging Transformations of Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2013-06-01

    Full Text Available Collaborative Developmental Action Inquiry (CDAI is introduced as a meta-paradigmatic approach to social science and social action that encompasses seven other more familiar paradigms (e.g., Behaviorism, Empirical Positivism, and Postmodern Interpretivism and that triangulates among third-person, objectivity-seeking social scientific inquiry, second-person, transformational, mutuality-seeking political inquiry, and first-person, adult, spiritual inquiry and consciousness development in the emerging present. CDAI tests findings, not only against third-person criteria of validity as do quantitative, positivist studies and qualitative, interpretive studies, but also against first- and second-person criteria of validity, as well as criteria of efficacy in action. CDAI introduces the possibility of treating, not just formal third-person studies, but any and all activities in one’s daily life in an inquiring manner. The aim of this differently-scientific approach is not only theoretical, generalizable knowledge, but also knowledge that generates increasingly timely action in particular cases in the relationships that mean the most to the inquirer. To illustrate and explain why the CDAI approach can explain unusually high percentages of the variance in whether or not organizations actually transform, all three types of validity-testing are applied to a specific study of intended transformation in ten organizations. The ten organization study found that adding together the performance of each organization’s CEO and lead consultant pn a reliable, well-validated measure of developmental action-logic, predicted 59% of the variance, beyond the .01 level, in whether and how the organization transformed (as rated by three scorers who achieved between .90 and 1.0 reliability. The essay concludes with a comparison between the Empirical Positivist paradigm of inquiry and the Collaborative Developmental Action Inquiry paradigm.

  1. Intertextual learning strategy with guided inquiry on solubility equilibrium concept to improve the student’s scientific processing skills

    Science.gov (United States)

    Wardani, K. U.; Mulyani, S.; Wiji

    2018-04-01

    The aim of this study was to develop intertextual learning strategy with guided inquiry on solubility equilibrium concept to enhance student’s scientific processing skills. This study was conducted with consideration of some various studies which found that lack of student’s process skills in learning chemistry was caused by learning chemistry is just a concept. The method used in this study is a Research and Development to generate the intertextual learning strategy with guided inquiry. The instruments used in the form of sheets validation are used to determine the congruence of learning activities by step guided inquiry learning and scientific processing skills with aspects of learning activities. Validation results obtained that the learning activities conducted in line with aspects of indicators of the scientific processing skills.

  2. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    Science.gov (United States)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of

  3. Mendelian Genetics as a Platform for Teaching about Nature of Science and Scientific Inquiry: The Value of Textbooks

    Science.gov (United States)

    Campanile, Megan F.; Lederman, Norman G.; Kampourakis, Kostas

    2015-01-01

    The purpose of this study was to analyze seven widely used high school biology textbooks in order to assess the nature of science knowledge (NOS) and scientific inquiry (SI) aspects they, explicitly or implicitly, conveyed in the Mendelian genetics sections. Textbook excerpts that directly and/or fully matched our statements about NOS and SI were…

  4. Effect of Technology-Embedded Scientific Inquiry on Senior Science Student Teachers' Self-Efficacy

    Science.gov (United States)

    Calik, Muammer

    2013-01-01

    The aim of this study was to investigate the effect of technology-embedded scientific inquiry (TESI) on senior science student teachers' (SSSTs) self-efficacy. The sample consisted of 117 SSSTs (68 females and 49 males aged 21-23 years) enrolled in an Environmental Chemistry elective course. Within a quasi-experimental design, the…

  5. Do students with higher self-efficacy exhibit greater and more diverse scientific inquiry skills: An exploratory investigation in "River City", a multi-user virtual environment

    Science.gov (United States)

    Ketelhut, Diane Jass

    In this thesis, I conduct an exploratory study to investigate the relationship between students' self-efficacy on entry into authentic scientific activity and the scientific inquiry behaviors they employ while engaged in that process, over time. Scientific inquiry has been a major standard in most science education policy doctrines for the past two decades and is exemplified by activities such as making observations, formulating hypotheses, gathering and analyzing data, and forming conclusions from that data. The self-efficacy literature, however, indicates that self-efficacy levels affect perseverance and engagement. This study investigated the relationship between these two constructs. The study is conducted in a novel setting, using an innovative science curriculum delivered through an interactive computer technology that recorded each student's conversations, movements, and activities while behaving as a practicing scientist in a "virtual world" called River City. River City is a Multi-User Virtual Environment designed to engage students in a collaborative scientific inquiry-based learning experience. As a result, I was able to follow students' moment-by-moment choices of behavior while they were behaving as scientists. I collected data on students' total scientific inquiry behaviors over three visits to River City, as well as the number of sources from which they gathered their scientific data. I analyzed my longitudinal data on the 96 seventh-graders using individual growth modeling. I found that self-efficacy played a role in the number of data-gathering behaviors students engaged in initially, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. However, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender; by the end of the study, student self-efficacy did not impact data gathering. In addition, students' level of self-efficacy did not affect how many different

  6. How Model Can Help Inquiry--A Qualitative Study of Model Based Inquiry Learning (Mobile) in Engineering Education

    Science.gov (United States)

    Gong, Yu

    2017-01-01

    This study investigates how students can use "interactive example models" in inquiry activities to develop their conceptual knowledge about an engineering phenomenon like electromagnetic fields and waves. An interactive model, for example a computational model, could be used to develop and teach principles of dynamic complex systems, and…

  7. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  8. Inquiry based learning as didactic model in distant learning

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.

    2015-01-01

    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves

  9. Development of a Value Inquiry Model in Biology Education.

    Science.gov (United States)

    Jeong, Eun-Young; Kim, Young-Soo

    2000-01-01

    Points out the rapid advances in biology, increasing bioethical issues, and how students need to make rational decisions. Introduces a value inquiry model development that includes identifying and clarifying value problems; understanding biological knowledge related to conflict situations; considering, selecting, and evaluating each alternative;…

  10. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    Science.gov (United States)

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.

  11. The Telescoping Phenomenon: Origins in Gender Bias and Implications for Contemporary Scientific Inquiry.

    Science.gov (United States)

    Marks, Katherine R; Clark, Claire D

    2018-05-12

    In an article published in International Journal of the Addictions in 1989, Nick Piazza and his coauthors described "telescoping," an accelerated progression through "landmark symptoms" of alcoholism, among a sample of recovering women. The aim of this critical analysis is to apply a feminist philosophy of science to examine the origins of the framework of telescoping research and its implications for contemporary scientific inquiry. A feminist philosophy of science framework is outlined and applied to key source publications of telescoping literature drawn from international and United States-based peer-reviewed journals published beginning in 1952. A feminist philosophy of science framework identifies gender bias in telescoping research in three ways. First, gender bias was present in the early conventions that laid the groundwork for telescoping research. Second, a "masculine" framework was present in the methodology guiding telescoping research. Third, gender bias was present in the interpretation of results as evidenced by biased comparative language. Telescoping research contributed to early evidence of critical sex and gender differences helping to usher in women's substance abuse research more broadly. However, it also utilized a "masculine" framework that perpetuated gender bias and limited generative, novel research that can arise from women-focused research and practice. A feminist philosophy of science identifies gender bias in telescoping research and provides an alternative, more productive approach for substance abuse researchers and clinicians.

  12. Inquiry Practices in Malaysian Secondary Classroom and Model of Inquiry Teaching Based on Verbal Interaction

    Science.gov (United States)

    Li, Winnie Sim Siew; Arshad, Mohammad Yusof

    2015-01-01

    Purpose: Inquiry teaching has been suggested as one of the important approaches in teaching chemistry. This study investigates the inquiry practices among chemistry teachers. Method: A combination of quantitative and qualitative study was applied in this study to provide detailed information about inquiry teaching practices. Questionnaires,…

  13. 5E Mobile Inquiry Learning Approach for Enhancing Learning Motivation and Scientific Inquiry Ability of University Students

    Science.gov (United States)

    Cheng, Ping-Han; Yang, Ya-Ting Carolyn; Chang, Shih-Hui Gilbert; Kuo, Fan-Ray Revon

    2016-01-01

    In recent years, many universities have opened courses to increase students' knowledge in the field of nanotechnology. These have been shown to increase students' knowledge of nanotechnology, but beyond this, advanced and applied nanotechnology courses should also focus on learning motivation and scientific enquiry abilities to equip students to…

  14. Physics Learning using Inquiry-Student Team Achievement Division (ISTAD and Guided Inquiry Models Viewed by Students Achievement Motivation

    Directory of Open Access Journals (Sweden)

    S. H. Sulistijo

    2017-04-01

    Full Text Available This study aims to determine the differences in learning outcomes of between students that are given the Physics learning models of Inquiry-Student Team Achievement Division (ISTAD and guided inquiry, between students who have high achievement motivation and low achievement motivation. This study was an experimental study with a 2x2x2 factorial design. The study population was the students of class X of SMAN 1 Toroh Grobogan of academic year 2016/2017. Samples were obtained by cluster random sampling technique consists of two classes, class X IPA 3 is used as an experimental class using ISTAD model and class X IPA 4 as the control class using guided inquiry model. Data collection techniques using test techniques for learning outcomes, and technical questionnaire to obtain the data of students' achievement motivation. Analysis of data using two-way ANOVA. The results showed that: (1 there is a difference between the learning outcomes of students with the ISTAD Physics models and with the physics model of guided inquiry. (2 There are differences in learning outcomes between students who have high achievement motivation and low achievement motivation. (3 There is no interaction between ISTAD and guided inquiry Physics models learning and achievement motivation of students.

  15. Exploring teachers' beliefs and knowledge about scientific inquiry and the nature of science: A collaborative action research project

    Science.gov (United States)

    Fazio, Xavier Eric

    Science curriculum reform goals espouse the need to foster and support the development of scientific literacy in students. Two critical goals of scientific literacy are students' engagement in, and developing more realistic conceptions about scientific inquiry (SI) and the nature of science (NOS). In order to promote the learning of these curriculum emphases, teachers themselves must possess beliefs and knowledge supportive of them. Collaborative action research is a viable form of curriculum and teacher development that can be used to support teachers in developing the requisite beliefs and knowledge that can promote these scientific literacy goals. This research study used a collective case study methodology to describe and interpret the views and actions of four teachers participating in a collaborative action research project. I explored the teachers' SI and NOS views throughout the project as they investigated ideas and theories, critically examined their current curricular practice, and implemented and reflected on these modified curricular practices. By the end of the research study, all participants had uniquely augmented their understanding of SI and NOS. The participants were better able to provide explanatory depth to some SI and NOS ideas; however, specific belief revision with respect to SI and NOS ideas was nominal. Furthermore, their idealized action research plans were not implemented to the extent that they were planned. Explanations for these findings include: impact of significant past educational experiences, prior understanding of SI and NOS, depth of content and pedagogical content knowledge of the discipline, and institutional and instructional constraints. Nonetheless, through participation in the collaborative action research process, the teachers developed professionally, personally, and socially. They identified many positive outcomes from participating in a collaborative action research project; however, they espoused constraints to

  16. Teacher's Reflection of Inquiry Teaching in Finland before and during an In-Service Program: Examination by a Progress Model of Collaborative Reflection

    Science.gov (United States)

    Kim, Minkee; Lavonen, Jari; Juuti, Kalle; Holbrook, Jack; Rannikmae, Miia

    2013-01-01

    In inquiry-based science education, there have been gradual shifts in research interests: the nature of scientific method, the debates on the effects of inquiry learning, and, recently, inquiry teaching. However, many in-service programs for inquiry teaching have reported inconsistent results due to the static view of classroom inquiries and due…

  17. The Effect of Video-Assisted Inquiry Modified Learning Model on Student’s Achievement on 1st Fundamental Physics Practice

    Directory of Open Access Journals (Sweden)

    T W Maduretno

    2017-12-01

    Full Text Available The purpose of research are: (1 to know the effect of video-assisted inquiry modified learning model on student’s achievement; (2 to improve the student’s achievement in 1st Fundamental Physics Practice through video-assisted inquiry modified learning model. The student’s achievement as dependent variables includes the aspects of knowledge, skill, and attitude. The sampling technique did not choose at random. The Mathematics Education as the control group and the Science Education as the experimental group. The experimental group used video-assisted inquiry modified learning model and the control group used inquiry learning model. The collecting data technique used observation, questionnaire, and test. The researcher used the independent t-test that purposed to compare the average of achievement of control and experiment group. The results of research were: (1 there was an effect of video-assisted inquiry modified learning model on the knowledge and skill aspect but there was not on the attitude aspect; (2 The average of learning outcome of the experimental group higher than the control group’s; (3 The video-assisted inquiry modified learning model helped more skilled and trained student to discovery, inquiry the scientific principle, experiment and observation, and explain the experiment and observation’s result so that the students be able to understand the materials on the 1st Fundamental Physics Practice.

  18. Project WEST: Fostering Scientific Inquiry and Collaborations From K Through Gray

    Science.gov (United States)

    Godsey, H. S.; Chapman, D. S.

    2007-12-01

    WEST (Water, the Environment, Science and Teaching) is a science education and outreach program at the University of Utah. WEST partners graduate students in the sciences with K-12 teachers to enhance inquiry- based science teaching in the Salt Lake City urban area. WEST has capitalized on the expertise of faculty and graduate students, scientists from state and federal agencies, local advocacy groups, and K-12 teachers to develop several placed-based scientific field projects for K-12 students. University members provide science content and ideas; state and federal researchers provide practical application and, often times, financial support; advocacy groups provide a tie to the community, and teachers provide a conduit for translating complex science concepts to students. These collaborations are built around a mutual interest in science education and anthropogenic influences on the quality and quantity of water resources critical to life in the arid West. Participants are relied upon to bring their unique perspective to each of the projects in order to meet a number of criteria: 1) projects should involve students in the entire scientific process from developing a hypothesis, making observations, data collection and analysis, 2) projects should be place-based and address interactions of water, the environment and society, and 3) projects should be directly tied to state education standards at appropriate grade levels. Examples of these projects include a water-quality study of Great Salt Lake where students participated in a research project on the lake. Students learned about navigation tools, collected and examined brine shrimp, and measured sulfide and chlorophyll concentrations as indicators of anthropogenic influences to Great Salt Lake. Hydrologists from the University of Utah and U.S. Geological Survey helped design this project and the Utah Dept. of Environmental Quality provided critical funds and supplies. In another project, students were involved in

  19. The Impact of Student Self-efficacy on Scientific Inquiry Skills: An Exploratory Investigation in River City, a Multi-user Virtual Environment

    Science.gov (United States)

    Ketelhut, Diane Jass

    2007-02-01

    This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade students as they participated in a scientific inquiry-based curriculum project delivered by a multi-user virtual environment (MUVE). This research examined the relationship between students' self-efficacy on entry into the authentic scientific activity and the longitudinal data-gathering behaviors they employed while engaged in that process. Three waves of student behavior data were gathered from a server-side database that recorded all student activity in the MUVE; these data were analyzed using individual growth modeling. The study found that self-efficacy correlated with the number of data-gathering behaviors in which students initially engaged, with high self-efficacy students engaging in more data gathering than students with low self-efficacy. Also, the impact of student self-efficacy on rate of change in data gathering behavior differed by gender. However, by the end of their time in the MUVE, initial student self-efficacy no longer correlated with data gathering behaviors. In addition, students' level of self-efficacy did not affect how many different sources from which they chose to gather data. These results suggest that embedding science inquiry curricula in novel platforms like a MUVE might act as a catalyst for change in students' self-efficacy and learning processes.

  20. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    Science.gov (United States)

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  1. The Impact of Student Self-Efficacy on Scientific Inquiry Skills: An Exploratory Investigation in "River City," a Multi-User Virtual Environment

    Science.gov (United States)

    Ketelhut, Diane Jass

    2007-01-01

    This exploratory study investigated data-gathering behaviors exhibited by 100 seventh-grade students as they participated in a scientific inquiry-based curriculum project delivered by a multi-user virtual environment (MUVE). This research examined the relationship between students' self-efficacy on entry into the authentic scientific activity and…

  2. Interdisciplinary Knowledge Integration: Genuine Scientific Inquiry or 'Full-Bodied' Red Wine?

    Science.gov (United States)

    Christakos, G.

    2004-12-01

    If the development of conceptual models is going to produce rigorous rules for the integration of knowledge from different disciplines and levels of organization, it should rely on an adequate understanding of scientific interdisciplinarity. Interdisciplinarity, however, is not always a clearly understood and widely accepted concept: (i) Interdisciplinarity has been viewed by certain groups in the same context as the unification of science, which refers to the pyramidal hierarchy that reduces one domain of science to another, seeking the unity of science and searching for the ultimate scientific truth. (ii) A distinction is made between interdisciplinarity producing a new discipline and interdisciplinarity involving the continuing interaction of a variety of disciplines without leading to a separate discipline. (iii) Another distinction is made between interdisciplinarity viewed as a merely practical activity happening on an everyday basis (e.g., studying the components of structured whole in isolation and applying ad hoc combinations to yield the final result) and interdisciplinarity considered for scientific research purposes (in which case issues of disciplinary incompleteness and non-reductive autonomy to be blended with another one may arise). In view of the above, genuinely interdisciplinary and innovative knowledge integration should not be confused with cosmetic inderdisciplinarity, the latter having a superficial and ad hoc interdisciplinary character allowing disciplinary business to go on as usual at the cheap price of some interdisciplinary rhetoric. In the cosmetic case 'interdisciplinarity' is used to describe -and praise- research projects as routinely as 'full-bodied' is used to describe red wines.

  3. Mutation-based learning to improve student autonomy and scientific inquiry skills in a large genetics laboratory course.

    Science.gov (United States)

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a "mutation" method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the "mutations"; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional "cookbook"-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class.

  4. Tried and True: Using Diet Coke and Mentos to Teach Scientific Inquiry

    Science.gov (United States)

    Murray, Tracey Arnold

    2011-01-01

    Adding mint Mentos candy to a two-liter bottle of Diet Coke produces a fountain of soda foam that can reach 3 m high. A demonstration such as this can get a "Wow" out of most audiences, usually followed by a "Do it again!"--but can it be used to teach anything? The answer is a definite "Yes," and what follows is a guided inquiry activity that…

  5. Reorienting Esthetic Knowing as an Appropriate "Object" of Scientific Inquiry to Advance Understanding of a Critical Pattern of Nursing Knowledge in Practice.

    Science.gov (United States)

    Bender, Miriam; Elias, Dina

    The esthetic pattern of knowing is critical for nursing practice, yet remains weakly defined and understood. This gap has arguably relegated esthetic knowing to an "ineffable" creativity that resists transparency and understanding, which is a barrier to articulating its value for nursing and its importance in producing beneficial health outcomes. Current philosophy of science developments are synthesized to argue that esthetic knowing is an appropriate "object" of scientific inquiry. Examples of empirical scholarship that can be conceived as scientific inquiry into manifestations of esthetic knowing are highlighted. A program of research is outlined to advance a science of esthetic knowing.

  6. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    OpenAIRE

    Joel Donna; Brant G Miller

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much t...

  7. Learners' Epistemic Criteria for Good Scientific Models

    Science.gov (United States)

    Pluta, William J.; Chinn, Clark A.; Duncan, Ravit Golan

    2011-01-01

    Epistemic criteria are the standards used to evaluate scientific products (e.g., models, evidence, arguments). In this study, we analyzed epistemic criteria for good models generated by 324 middle-school students. After evaluating a range of scientific models, but before extensive instruction or experience with model-based reasoning practices,…

  8. Struggles with learning about scientific models in a middle school science classroom

    Science.gov (United States)

    Loper, Suzanna Jane

    Two important goals in science education are teaching students about the nature of science and teaching students to do scientific inquiry. Learning about scientific models is central to both of these endeavors, but studies have shown that students have very flawed and limited understandings of the nature and purposes of scientific models (Carey & Smith, 1993; Grosslight, Unger, & Jay, 1991; Lederman, 1992). In this dissertation I investigate the processes of teaching and learning about scientific models in an 8th grade classroom in an urban middle school. In order to do so, I examine recordings of student and teacher talk about models across a period of two months in which students completed two independent inquiry projects, using the Inquiry Island software and curriculum (Eslinger, 2004; Shimoda, White, & Frederiksen, 2002; White, Shimoda, & Frederiksen, 2000). My analysis draws on video records of small-group work and whole-class interactions, as well as on students' written work. I find that in this classroom, students struggled to understand the nature and purpose of scientific models. I analyze episodes in the classroom talk in which models appeared to be a source of trouble or confusion, and describe the ways in which the teacher attempted to respond to these troubles. I find that in many cases students appeared to be able to produce scientific models of the proper form, yet still struggled with displaying an understanding of what a model was, or of the functions of models in scientific research. I propose directions for further research and curriculum development in order to build on these findings. In particular, I argue, we need to design ways to help students engage in scientific modeling as a social and communicative practice, and to find ways to build from their everyday reasoning and argumentation practices. My research also reinforces the importance of looking at classroom talk, not just pre- and post-assessments, in order to understand teaching and

  9. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  10. LEMBAR KERJA SISWA (LKS MENGGUNAKAN MODEL GUIDED INQUIRY UNTUK MENINGKATKAN KETERAMPILAN BERPIKIR KRITIS DAN PENGUASAAN KONSEP SISWA

    Directory of Open Access Journals (Sweden)

    Eka Yuli Asmawati

    2015-03-01

    Full Text Available The learning process in 2013 curriculum for all levels of education carried out by using a scientific approach (scientific approach. Critical thinking skills and mastery of concepts students need to developed in a learning process that is as capital to criticize a variety of symptoms, problems that arise in the vicinity. The use of instructional media and learning models in physics very aid learners in understanding the concepts of physics. Based on the above, it is necessary to do a literature review on the develop of guided inquiry worksheets with models to improve critical thinking skills and mastery of concepts students. The study began with highlights of LKS and model of guided inquiry. Next, review the empirical research has done about critical thinking. Then the third part discusses the concept mastery. Furthermore, in the fourth part is the end of the literature review. Based on the literature study, the authors conclude that the develop the model of guided inquiry worksheets can used to improve critical thinking skills and mastery of concepts students.

  11. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    Science.gov (United States)

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  12. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    Directory of Open Access Journals (Sweden)

    Hayati .

    2013-06-01

    Full Text Available The objective in this research: (1 Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2 Determine the level of motivation to learn in affects physics student learning outcomes. (3 Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all students in class XI SMA Negeri 1 T.P Sunggal Semester I 2012/2013. The sample of this research was consisted of two classes with a sample of 70 peoples who are determined by purposive sampling, the IPA XI-2 as a class experiment using a model-based multimedia learning Training Inquiry as many as 35 peoples and XI IPA-3 as a control class using learning model Inquiry Training 35 peoples. Hypotheses were analyzed using the GLM at significant level of 0.05 using SPSS 17.0 for Windows. Based on data analysis and hypothesis testing conducted found that: (1 Training Inquiry-based multimedia learning model in improving student learning outcomes rather than learning model physics Inquiry Training. (2 The results of studying physics students who have high motivation to learn better than students who have a low learning motivation. (3 From this research there was an interaction between learning model inquiry-based multimedia training and motivation to study on learning outcomes of students.

  13. A Physical Analog Model of Strike-Slip Faulting for Model-Based Inquiry in the Classroom

    Science.gov (United States)

    Curren, I. S.; Glesener, G.

    2013-12-01

    Geoscience educators often use qualitative physical analog models to demonstrate natural processes; while these are effective teaching tools, they often neglect the fundamental scientific practices that make up the core of scientific work. Physical analog models with dynamic properties that can be manipulated and measured quantitatively in real-time, on the other hand, can give students the opportunity to explore, observe and empirically test their own ideas and hypotheses about the relevant target concepts within a classroom setting. Providing classroom content for inquiry, such as a hands-on physical analog model, which fosters students' production and refinement of their mental models in participatory and discursive activities have been argued by many education researchers to help students build a deeper understanding of science and scientific reasoning. We present a physical analog model that was originally developed by UCLA's Modeling and Educational Demonstrations Laboratory (MEDL) for the purpose of engaging students in the study of elastic rebound on a strike-slip fault; it was later modified to accommodate research of complex tectonic processes associated with strike-slip faulting, which are currently debated by scientists in both the geology and geophysics disciplines. During experimentation, it became clear that this new design could be used as a relevant resource for inquiry from which students would be able to make and discuss real-time empirical measurements and observations to help them infer causal accounts of theoretical and/or unobservable dynamic processes within the Earth's crust. In our poster session, we will: 1) demonstrate the physical analog model; 2) describe various real-time data collection tools, as well as quantitative methods students can use to process their data; and 3) describe the surficial, structural and relational similarities between the physical analog model and the target concepts intended for students to explore in the

  14. Kindergarten Students' Levels of Understanding Some Science Concepts and Scientific Inquiry Processes According to Demographic Variables (The Sampling of Kilis Province in Turkey)

    Science.gov (United States)

    Ilhan, Nail; Tosun, Cemal

    2016-01-01

    The purpose of this study is to identify the kindergarten students' levels of understanding some science concepts (LUSSC) and scientific inquiry processes (SIP) and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the…

  15. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  16. Look at That!: Using Madagascar Hissing Cockroaches to Develop and Enhance the Scientific Inquiry Skill of Observation in Middle School Students

    Science.gov (United States)

    Wagler, Ron

    2011-01-01

    Middle school students can develop and enhance their observation skills by participating in teacher-guided scientific inquiry (NRC 1996) activities where they observe animals that tend to act in known, predictable ways. Madagascar hissing cockroaches ("Gromphadorhina portentosa") are one such animal. This article presents beginning, intermediate,…

  17. Using Nikola Tesla's Story and His Experiments as Presented in the Film "The Prestige" to Promote Scientific Inquiry: A Report of an Action Research Project

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Garganourakis, Vassilios

    2010-01-01

    This paper reports on an action research project undertaken with the primary aim of investigating the extent to which situations that evoke a sense of wonder can promote scientific inquiry. Given the intense interest, curiosity, and wonder that some students had begun to develop after seeing the film "The Prestige", a science teacher…

  18. Modeling and simulation in inquiry learning: Checking solutions and giving intelligent advice

    NARCIS (Netherlands)

    Bravo, C.; van Joolingen, W.R.; de Jong, T.

    2006-01-01

    Inquiry learning is a didactic approach in which students acquire knowledge and skills through processes of theory building and experimentation. Computer modeling and simulation can play a prominent role within this approach. Students construct representations of physical systems using modeling.

  19. Bit by bit or all at once? Splitting up the inquiry task to promote children’s scientific reasoning

    NARCIS (Netherlands)

    Lazonder, Adrianus W.; Kamp, Ellen

    2012-01-01

    This study examined whether and why assigning children to a segmented inquiry task makes their investigations more productive. Sixty-one upper elementary-school pupils engaged in a simulation-based inquiry assignment either received a multivariable inquiry task (n = 21), a segmented version of this

  20. A generative model for scientific concept hierarchies.

    Science.gov (United States)

    Datta, Srayan; Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new 'product' of research (method, finding, artifact, etc.) is often built upon previous findings-leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution.

  1. A generative model for scientific concept hierarchies

    Science.gov (United States)

    Adar, Eytan

    2018-01-01

    In many scientific disciplines, each new ‘product’ of research (method, finding, artifact, etc.) is often built upon previous findings–leading to extension and branching of scientific concepts over time. We aim to understand the evolution of scientific concepts by placing them in phylogenetic hierarchies where scientific keyphrases from a large, longitudinal academic corpora are used as a proxy of scientific concepts. These hierarchies exhibit various important properties, including power-law degree distribution, power-law component size distribution, existence of a giant component and less probability of extending an older concept. We present a generative model based on preferential attachment to simulate the graphical and temporal properties of these hierarchies which helps us understand the underlying process behind scientific concept evolution and may be useful in simulating and predicting scientific evolution. PMID:29474409

  2. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    OpenAIRE

    Hayati .; Retno Dwi Suyanti

    2013-01-01

    The objective in this research: (1) Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2) Determine the level of motivation to learn in affects physics student learning outcomes. (3) Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all s...

  3. The effect of inquiry-flipped classroom model toward students' achievement on chemical reaction rate

    Science.gov (United States)

    Paristiowati, Maria; Fitriani, Ella; Aldi, Nurul Hanifah

    2017-08-01

    The aim of this research is to find out the effect of Inquiry-Flipped Classroom Models toward Students' Achievement on Chemical Reaction Rate topic. This study was conducted at SMA Negeri 3 Tangerang in Eleventh Graders. The Quasi Experimental Method with Non-equivalent Control Group design was implemented in this study. 72 students as the sample was selected by purposive sampling. Students in experimental group were learned through inquiry-flipped classroom model. Meanwhile, in control group, students were learned through guided inquiry learning model. Based on the data analysis, it can be seen that there is significant difference in the result of the average achievement of the students. The average achievement of the students in inquiry-flipped classroom model was 83,44 and the average achievement of the students in guided inquiry learning model was 74,06. It can be concluded that the students' achievement with inquiry-flipped classroom better than guided inquiry. The difference of students' achievement were significant through t-test which is tobs 3.056 > ttable 1.994 (α = 0.005).

  4. Inquiries and technological assessment

    International Nuclear Information System (INIS)

    1981-01-01

    The authors examine six Canadian inquiries to determine their values as scientific assessments, their ability to combine scientific data with policy considerations, and their effectiveness in extending public debate on scientific issues. Among the inquiries examined are the environmental assessment hearings into the Point Lepreau nuclear generating station, the Bayda inquiry into the Cluff Lake uranium mine, and the Porter commission on electric power planning in Ontario

  5. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    Science.gov (United States)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  6. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  7. Enhancing Students' Scientific and Quantitative Literacies through an Inquiry-Based Learning Project on Climate Change

    Science.gov (United States)

    McCright, Aaron M.

    2012-01-01

    Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…

  8. Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward student of biology education

    Directory of Open Access Journals (Sweden)

    Bayu Sandika

    2018-03-01

    Full Text Available Inquiry-based learning is one of the learning methods which can provide an active and authentic scientific learning process in order students are able to improve the creative thinking skills and scientific attitude. This study aims at improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education at the Institut Agama Islam Negeri (IAIN Jember, Indonesia. This study is included in a descriptive quantitative research. The research focused on the topic of cell transport which was taught toward 25 students of Biology 2 class from 2017 academic year of Biology Education Department at the IAIN Jember. The learning process was conducted in two meetings in November 2017. The enhancement of students' creative thinking skills was determined by one group pre-test and post-test research design using test instrument meanwhile the scientific attitude focused on curiosity and objectivity were observed using the non-test instrument. Research result showed that students' creative thinking skills enhanced highly and students' scientific attitude improved excellently through inquiry-based learning in basic biology lecture.

  9. Assessing Inquiry Process Skills in the Lab Using a Fast, Simple, Inexpensive Fermentation Model System

    Science.gov (United States)

    Knabb, Maureen T.; Misquith, Geraldine

    2006-01-01

    Incorporating inquiry-based learning in the college-level introductory biology laboratory is challenging because the labs serve the dual purpose of providing a hands-on opportunity to explore content while also emphasizing the development of scientific process skills. Time limitations and variations in student preparedness for college further…

  10. Teaching Science through Inquiry

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  11. The Impact of a Professional Development Model on Middle School Science Teachers' Efficacy and Implementation of Inquiry

    Science.gov (United States)

    Lotter, Christine; Smiley, Whitney; Thompson, Stephen; Dickenson, Tammiee

    2016-01-01

    This study investigated a professional development model designed to improve teachers' inquiry teaching efficacy as well as the quality of their inquiry instruction through engaging teachers in practice-teaching and reflection sessions. The programme began with a two-week summer Institute focused on both inquiry pedagogy and science content and…

  12. Kumho, Daubert, and the nature of scientific inquiry: implications for forensic anthropology.

    Science.gov (United States)

    Grivas, Christopher R; Komar, Debra A

    2008-07-01

    In the last 15 years, the US Supreme Court has implemented major changes concerning the admittance of expert testimony. In 1993, Daubert v. Merrell Dow Pharmaceuticals superseded the Frye ruling in federal courts and established judges, not the scientific community, as the gatekeepers regarding the credibility of scientific evidence. In 1999, a lesser-known but equally important decision, Kumho Tire v. Carmichael, ruled that technical expert testimony needed to employ the same rigor as outlined in Daubert, but experts can develop theories based on observations and apply such theories to the case before the court. Anthropology has never been defined as a hard science. Yet, many recent publications have modified existing techniques to meet the Daubert criteria, while none have discussed the significance of Kumho to anthropological testimony. This paper examines the impact of Daubert and Kumho on forensic anthropology and illustrates areas of anthropological testimony best admitted under Kumho's guidance.

  13. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  14. Modelling Scientific Argumentation in the Classroom : Teachers perception and practice

    Science.gov (United States)

    Probosari, R. M.; Sajidan; Suranto; Prayitno, B. A.; Widyastuti, F.

    2017-02-01

    The purposes of this study were to investigate teacher’s perception about scientific argumentation and how they practice it in their classroom. Thirty biology teachers in high school participated in this study and illustrated their perception of scientific argumentation through a questionnaire. This survey research was developed to measure teachers’ understanding of scientific argumentation, what they know about scientific argumentation, the differentiation between argument and reasoning, how they plan teaching strategies in order to make students’ scientific argumentation better and the obstacles in teaching scientific argumentation. The result conclude that generally, teachers modified various representation to accommodate student’s active participation, but most of them assume that argument and reasoning are similar. Less motivation, tools and limited science’s knowledge were considered as obstacles in teaching argumentation. The findings can be helpful to improving students’ abilities of doing scientific argumentation as a part of inquiry.

  15. A set of vertically integrated inquiry-based practical curricula that develop scientific thinking skills for large cohorts of undergraduate students.

    Science.gov (United States)

    Zimbardi, Kirsten; Bugarcic, Andrea; Colthorpe, Kay; Good, Jonathan P; Lluka, Lesley J

    2013-12-01

    Science graduates require critical thinking skills to deal with the complex problems they will face in their 21st century workplaces. Inquiry-based curricula can provide students with the opportunities to develop such critical thinking skills; however, evidence suggests that an inappropriate level of autonomy provided to underprepared students may not only be daunting to students but also detrimental to their learning. After a major review of the Bachelor of Science, we developed, implemented, and evaluated a series of three vertically integrated courses with inquiry-style laboratory practicals for early-stage undergraduate students in biomedical science. These practical curricula were designed so that students would work with increasing autonomy and ownership of their research projects to develop increasingly advanced scientific thinking and communication skills. Students undertaking the first iteration of these three vertically integrated courses reported learning gains in course content as well as skills in scientific writing, hypothesis construction, experimental design, data analysis, and interpreting results. Students also demonstrated increasing skills in both hypothesis formulation and communication of findings as a result of participating in the inquiry-based curricula and completing the associated practical assessment tasks. Here, we report the specific aspects of the curricula that students reported as having the greatest impact on their learning and the particular elements of hypothesis formulation and communication of findings that were more challenging for students to master. These findings provide important implications for science educators concerned with designing curricula to promote scientific thinking and communication skills alongside content acquisition.

  16. Community of inquiry model: advancing distance learning in nurse anesthesia education.

    Science.gov (United States)

    Pecka, Shannon L; Kotcherlakota, Suhasini; Berger, Ann M

    2014-06-01

    The number of distance education courses offered by nurse anesthesia programs has increased substantially. Emerging distance learning trends must be researched to ensure high-quality education for student registered nurse anesthetists. However, research to examine distance learning has been hampered by a lack of theoretical models. This article introduces the Community of Inquiry model for use in nurse anesthesia education. This model has been used for more than a decade to guide and research distance learning in higher education. A major strength of this model learning. However, it lacks applicability to the development of higher order thinking for student registered nurse anesthetists. Thus, a new derived Community of Inquiry model was designed to improve these students' higher order thinking in distance learning. The derived model integrates Bloom's revised taxonomy into the original Community of Inquiry model and provides a means to design, evaluate, and research higher order thinking in nurse anesthesia distance education courses.

  17. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-01-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed…

  18. Lipman, Dewey, and Philosophical Inquiry in the Mathematics Classroom

    Science.gov (United States)

    Kennedy, Nadia Stoyanova

    2012-01-01

    The paper discusses Matthew Lipman's approach to inquiry as shaped and fashioned by John Dewey's model of scientific inquiry. Although Lipman's program adopted the major aspects of Dewey's pedagogy, at least two characteristics of that program stand out as radically different--his use of relatively free-form philosophical discussions to teach…

  19. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh

    2017-06-01

    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  20. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    Science.gov (United States)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify

  1. Kindergarten students’ levels of understanding some science concepts and scientific inquiry processes according to demographic variables (the sampling of Kilis Province in Turkey

    Directory of Open Access Journals (Sweden)

    Nail İlhan

    2016-12-01

    Full Text Available The purpose of this study is to identify the kindergarten students’ levels of understanding some science concepts (LUSSC and scientific inquiry processes (SIP and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the kindergarten students’ LUSSC and SIP. This study was conducted according to quantitative research design. The study group consisted of 335 kindergarten students from 20 different rural and urban schools. In the study, the scale for “Turkish Kindergarten Students’ Understandings of Scientific Concepts and Scientific Inquiry Processes” was used. According to some variables (such as mother’s education level and family structure, there was a statistically significant difference between students’ mean scores for LUSSC and between students’ mean scores for SIP. Within the scope of this study, it was found that among the predictor variables (age, family’s income level, and number of brother/sister were significant predictors for LUSSC, and number of brother/sister was a significant predictor for SIP.

  2. Short-Term Research Experiences with Teachers in Earth and Planetary Sciences and a Model for Integrating Research into Classroom Inquiry

    Science.gov (United States)

    Morgan, P.; Bloom, J. W.

    2006-12-01

    For the past three summers, we have worked with in-service teachers on image processing, planetary geology, and earthquake and volcano content modules using inquiry methods that ended with mini-research experiences. Although almost all were science teachers, very few could give a reasonable definition of science at the start of the modules, and very few had a basic grasp of the processes of scientific research and could not include substantive scientific inquiry into their lessons. To build research understanding and confidence, an instructor-student interaction model was used in the modules. Studies have shown that children who participate in classrooms as learning and inquiry communities develop more complex understandings. The same patterns of complex understandings have resulted in similarly structured professional communities of teachers. The model is based on professional communities, emphasizing from the beginning that inquiry is a form of research. Although the actual "research" component of the modules was short, the teachers were identified as professionals and researchers from the start. Research/inquiry participation is therefore an excellent example by which to allow their teachers to learn. Initially the teachers were very reluctant to pose questions. As they were encouraged to share, collaborate, and support each other, the role of the instructor became less of a leader and more of a facilitator, and the confidence of the teachers as professionals and researchers grew. One teacher even remarked, "This is how we should be teaching our kids!' Towards the end of the modules the teachers were ready for their mini- research projects and collaborated in teams of 2-4. They selected their own research topics, but were guided toward research questions that required data collection (from existing studies), some data manipulation, interpretation, and drawing conclusions with respect to the original question. The teachers were enthusiastic about all of their

  3. Depth and breadth: Bridging the gap between scientific inquiry and high-stakes testing with diverse junior high school students

    Science.gov (United States)

    Kang, Jee Sun Emily

    This study explored how inquiry-based teaching and learning processes occurred in two teachers' diverse 8th grade Physical Science classrooms in a Program Improvement junior high school within the context of high-stakes standardized testing. Instructors for the courses examined included not only the two 8th grade science teachers, but also graduate fellows from a nearby university. Research was drawn from inquiry-based instruction in science education, the achievement gap, and the high stakes testing movement, as well as situated learning theory to understand how opportunities for inquiry were negotiated within the diverse classroom context. Transcripts of taped class sessions; student work samples; interviews of teachers and students; and scores from the California Standards Test in science were collected and analyzed. Findings indicated that the teachers provided structured inquiry in order to support their students in learning about forces and to prepare them for the standardized test. Teachers also supported students in generating evidence-based explanations, connecting inquiry-based investigations with content on forces, proficiently using science vocabulary, and connecting concepts about forces to their daily lives. Findings from classroom data revealed constraints to student learning: students' limited language proficiency, peer counter culture, and limited time. Supports were evidenced as well: graduate fellows' support during investigations, teachers' guided questioning, standardized test preparation, literacy support, and home-school connections. There was no statistical difference in achievement on the Forces Unit test or science standardized test between classes with graduate fellows and without fellows. There was also no statistical difference in student performance between the two teachers' classrooms, even though their teaching styles were very different. However, there was a strong correlation between students' achievement on the chapter test and

  4. WebQuests for Reflection and Conceptual Change: Variations on a Popular Model for Guided Inquiry.

    Science.gov (United States)

    Young, David L.; Wilson, Brent G.

    WebQuests have become a popular form of guided inquiry using Web resources. The goal of WebQuests is to help students think and reason at higher levels,and use information to solve problems. This paper presents modifications to the WebQuest model drawing on primarily on schema theory. It is believed that these changes will further enhance student…

  5. Science Inquiry into Local Animals: Structure and Function Explored through Model Making

    Science.gov (United States)

    Rule, Audrey C.; Tallakson, Denise A.; Glascock, Alex L.; Chao, Astoria

    2015-01-01

    This article describes an arts- and spatial thinking skill--integrated inquiry project applied to life science concepts from the Next Generation Science Standards for fourth grade students that focuses on two unifying or crosscutting themes: (1) structure (or "form") and function and (2) use of models. Students made observations and…

  6. Chinese Students' Goal Orientation in English Learning: A Study Based on Autonomous Inquiry Model

    Science.gov (United States)

    Zhang, Jianfeng

    2014-01-01

    Goal orientation is a kind of theory of learning motivation, which helps learners to develop their capability by emphasis on new techniques acquiring and environment adapting. In this study, based on the autonomous inquiry model, the construction of Chinese students' goal orientations in English learning are summarized according to the data…

  7. Implementation of Argument-Driven Inquiry as an Instructional Model in a General Chemistry Laboratory Course

    Science.gov (United States)

    Kadayifci, Hakki; Yalcin-Celik, Ayse

    2016-01-01

    This study examined the effectiveness of Argument-Driven Inquiry (ADI) as an instructional model in a general chemistry laboratory course. The study was conducted over the course of ten experimental sessions with 125 pre-service science teachers. The participants' level of reflective thinking about the ADI activities, changes in their science…

  8. Inquiry in Limnology Lessons

    Science.gov (United States)

    Variano, Evan; Taylor, Karen

    2006-01-01

    Inquiry can be implemented in various ways, ranging from simple classroom discussions to longterm research projects. In this article, the authors developed a project in which high school students were introduced to the nature and process of scientific discovery through a two-week guided inquiry unit on "limnology"--the study of fresh water, which…

  9. Epistemic beliefs of middle and high school students in a problem-based, scientific inquiry unit: An exploratory, mixed methods study

    Science.gov (United States)

    Gu, Jiangyue

    Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a problem-based, scientific inquiry unit, (b) How do middle and high school students' epistemic beliefs contribute to the construction of students' problem solving processes, and (c) how and why do students' epistemic beliefs change by engaging in PBL. Twenty-one middle and high school students participated in a summer science class to investigate local water quality in a 2-week long problem-based learning (PBL) unit. The students worked in small groups to conduct water quality tests at in their local watershed and visited several stakeholders for their investigation. Pretest and posttest versions of the Epistemological Beliefs Questionnaire were conducted to assess students' self-reported epistemic beliefs before and after the unit. I videotaped and interviewed three groups of students during the unit and conducted discourse analysis to examine their epistemic beliefs revealed from scientific inquiry activities and triangulate with their self-reported data. There are three main findings from this study. First, students in this study self-reported relatively sophisticated epistemic beliefs on the pretest. However, the comparison between their self-reported beliefs and beliefs revealed from practice indicated that some students were able to apply sophisticated beliefs during the unit while others failed to do so. The inconsistency between these two types of epistemic beliefs may due to students' inadequate cognitive ability, low validity of self-report measure, and the influence of contextual factors. Second, qualitative analysis indicated that students' epistemic beliefs of the nature of knowing influenced their problem

  10. Guided Inquiry and Consensus-Building Used to Construct Cellular Models

    Directory of Open Access Journals (Sweden)

    Joel I. Cohen

    2015-02-01

    Full Text Available Using models helps students learn from a “whole systems” perspective when studying the cell. This paper describes a model that employs guided inquiry and requires consensus building among students for its completion. The model is interactive, meaning that it expands upon a static model which, once completed, cannot be altered and additionally relates various levels of biological organization (molecular, organelle, and cellular to define cell and organelle function and interaction. Learning goals are assessed using data summed from final grades and from images of the student’s final cell model (plant, bacteria, and yeast taken from diverse seventh grade classes. Instructional figures showing consensus-building pathways and seating arrangements are discussed. Results suggest that the model leads to a high rate of participation, facilitates guided inquiry, and fosters group and individual exploration by challenging student understanding of the living cell.

  11. Effect Of Inquiry Learning Model And Motivation On Physics Outcomes Learning Students

    OpenAIRE

    Pardede, Dahlia Megawati; Manurung, Sondang Rina

    2016-01-01

    The purposes of the research are: (a) to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b) to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c) to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a) there are differences in physical students learning outcomes are taugh...

  12. Implementing inquiry-based kits within a professional development school model

    Science.gov (United States)

    Jones, Mark Thomas

    2005-07-01

    Implementation of guided inquiry teaching for the first time carries inherent problems for science teachers. Reform efforts on inquiry-based science teaching are often unsustainable and are not sensitive to teachers' needs and abilities as professionals. Professional development schools are meant to provide a research-based partnership between a public school and a university. These collaborations can provide support for the professional development of teachers. This dissertation reports a study focused on the implementation of inquiry-based science kits within the support of one of these collaborations. The researcher describes the difficulties and successful adaptations experienced by science teachers and how a coteaching model provided support. These types of data are needed in order to develop a bottom-up, sustainable process that will allow teachers to implement inquiry-based science. A qualitative methodology with "researcher as participant" was used in this study of two science teachers during 2002--2003. These two teachers were supported by a coteaching model, which included preservice teachers for each teacher as well as a supervising professor. Data were collected from the researcher's direct observations of coteachers' practice. Data were also collected from interviews and reflective pieces from the coteachers. Triangulation of the data on each teacher's case supported the validity of the findings. Case reports were prepared from these data for each classroom teacher. These case reports were used and cross-case analysis was conducted to search for major themes and findings in the study. Major findings described the hurdles teachers encounter, examples of adaptations observed in the teachers' cases and the supportive interactions with their coteachers while implementing the inquiry-based kits. In addition, the data were used to make recommendations for future training and use of the kits and the coteaching model. Results from this study showed that the

  13. IMPLEMENTASI MODEL PEMBELAJARAN INQUIRY TRAINING DALAM PEMBELAJARAN FISIKA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR FORMAL SISWA

    Directory of Open Access Journals (Sweden)

    D. Nasution

    2015-07-01

    Full Text Available Low ability of formal thinking students caused the learning outcomes they get too low. This study aims to determine the effectiveness of the inquiry learning model training in improving students' ability to think formal. The design was used quasi-experimental "non-equivalent groups pretest-posttest design". Implementation  experimental class learning with inquiry learning model training, control class learning with direct instruction. Data obtained through a formal thinking ability test thinking ability. Learning model efectivity in improving formal thinking ability is determined based on the gain score average which normalized by average difference test of statistic, namely t test. The results of the reasearch found that the inquiry training learning model is more effective in improving students formal thinking ability compared with the direct instruction learning model. The N-gain percentage of formal thinking ability of students in the experiment class in the indicators of hypothetical deductive thinking, combination thinking and reflection thinking are in the medium category, just proportional thinking is the high category. N-gain average percentage of control class for the hypothesis deductive thinking is just in the low category, while the proportional thinking, combination thinking and reflection thinking are in the medium category.Rendahnya kemampuan berpikir formal siswa menyebabkan hasil belajar yang mereka peroleh juga rendah. Penelitian ini bertujuan untuk mengetahui efektivitas  model pembelajaran inquiry training dalam meningkatkan kemampuan berpikir formal  siswa. Disain yang digunakan adalah kuasi eksperimen “non-equivalent groups pretest-posttest design”. Implementasi pembelajaran kelas eksperimen dibelajarkan dengan model pembelajaran inquiry training, kelas kontrol dengan model pembelajaran direct instruction.  Data kemampuan berpikir formal diperoleh melalui tes kemampuan berpikir formal. Efektivitas  model

  14. EFFECT OF INQUIRY LEARNING MODEL AND MOTIVATION ON PHYSICS OUTCOMES LEARNING STUDENTS

    Directory of Open Access Journals (Sweden)

    Dahlia Megawati Pardede

    2016-06-01

    Full Text Available The purposes of the research are: (a to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a there are differences in physical students learning outcomes are taught by Inquiry Training models and conventional models. (b learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with conventional model. (c there is a difference in student's learning outcomes that have high motivation and low motivation. (d Student learning outcomes that have a high motivation better than student learning outcomes than have a low motivation. (e there is interaction between learning and motivation to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the motivation, while learning outcomes of students who are taught with conventional models are not affected by motivation.

  15. Optimizing the orchestration of resemiotization with teacher "talk moves": A model of guided-inquiry instruction in middle school science

    Science.gov (United States)

    Millstone, Rachel Diana

    The current conceptualization of science set forth by the National Research Council (2008) is one of science as a social activity, rather than a view of science as a fixed body of knowledge. This requires teachers to consider how communication, processing, and meaning-making contribute to science learning. It also requires teachers to think deeply about what constitutes knowledge and understanding in science, and what types of instruction are most conducive to preparing students to participate meaningfully in the society of tomorrow. Because argumentation is the prominent form of productive talk leading to the building of new scientific knowledge, one indicator of successful inquiry lies in students' abilities to communicate their scientific understandings in scientific argumentation structures. The overarching goal of this study is to identify factors that promote effective inquiry-based instruction in middle school science classrooms, as evidenced in students' abilities to engage in quality argumentation with their peers. Three specific research questions were investigated: (1) What factors do teachers identify in their practice as significant to the teaching and learning of science? (2) What factors do students identify as significant to their learning of science? and (3) What factors affect students' opportunities and abilities to achieve sophisticated levels of argumentation in the classroom? Two teachers and forty students participated in this study. Four principle sources of data were collected over a three-month period of time. These included individual teacher interviews, student focus group interviews, fieldnotes, and approximately 85 hours of classroom videotape. From this sample, four pathways for guided-inquiry instruction are identified. Opportunities for student talk were influenced by a combination of factors located in the domains of "teacher practice," "classroom systems," and "physical structures." Combinations of elements from these three

  16. Second Graders' Emerging Particle Models of Matter in the Context of Learning through Model-Based Inquiry

    Science.gov (United States)

    Samarapungavan, Ala; Bryan, Lynn; Wills, Jamison

    2017-01-01

    In this paper, we present a study of second graders' learning about the nature of matter in the context of content-rich, model-based inquiry instruction. The goal of instruction was to help students learn to use simple particle models to explain states of matter and phase changes. We examined changes in students' ideas about matter, the coherence…

  17. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1997-01-01

    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS

  18. THE EFFECT OF INQUIRY TRAINING MODEL USE THE MEDIA PHET AGAINST SCIENCE PROCESS SKILLS AND LOGICAL THINKING SKILLS STUDENTS

    Directory of Open Access Journals (Sweden)

    Fajrul Wahdi Ginting

    2015-12-01

    Full Text Available The Purpose of The study: science process skills and logical thinking ability of students who use inquiry learning model training using PhET media; science process skills and logical thinking ability of students who use conventional learning model; and the difference science process skills and logical thinking ability of students to use learning model Inquiry Training using PhET media and conventional learning models. This research is a quasi experimental. Sample selection is done by cluster random sampling are two classes of classes VIII-E and class VIII-B, where the class VIII-E is taught by inquiry training model using media PhET and VIII-B with conventional learning model. The instrument used consisted of tests science process skills such as essay tests and tests of the ability to think logically in the form of multiple-choice tests. The data were analyzed using t test. The results showed that physics science process skills use Inquiry Training models using PhET media is different and showed better results compared with conventional learning model, and logical thinking skills students use Inquiry Training model using PhET media is different and show better results compared with conventional learning, and there is a difference between the ability to think logically and science process skills of students who use Inquiry Training model using PhET media and conventional learning models.

  19. Efektivitas Model Pembelajaran Modified Free Inquiry (Mfi) Disertai Peer Tutoring Terhadap Prestasi Belajar Siswa Pada Materi Hidrolisis Garam Siswa Kelas XI Semester Genap SMA N 1 Kartasura Tahun Pelajaran 2013/2014

    OpenAIRE

    Suryanto, Eko; Susanti, Elfi; Saputro, Sulistyo

    2015-01-01

    Penelitian ini bertujuan untuk mengetahui (1) efektivitas penggunaan model pembelajaran Modified Free Inquiry disertai Peer Tutoring terhadap prestasi belajar siswa pada materi hidrolisis garam; (2) efektivitas penggunaan model pembelajaran Modified Free Inquiry terhadap prestasi belajar siswa pada materi hidrolisis garam; (3) efektivitas penggunaan model pembelajaran Modified Free Inquiry disertai Peer Tutoring dan model pembelajaran Modified Free Inquiry terhadap prestasi belajar siswa pada...

  20. THE EFFECT OF LEARNING INQUIRY TRAINING MODEL ON STUDENT LEARNING OUTCOMES ON MEASUREMENT MATERIALS

    Directory of Open Access Journals (Sweden)

    Felisa Irawani Hutabarat

    2017-06-01

    Full Text Available This research aims to know the effect of learning model of inquiry learning results students training material measurement. This type of research is quasi experiment. Sampling done by cluster random sampling by taking 2 classes from grade 9 i.e. class X SCIENCE experiments as a class-B that add up to 35 people and class X SCIENCE-C as control classes that add up to 35 people. The instruments used to find out the results of student learning is the learning outcomes tests have been validated in multiple choice form numbered 15 reserved and activity sheets students. The results of the value obtained 37.71 pretes and postest 70.11. The t-test analysis retrieved thitung greater than ttabel so that it can be concluded no difference due to the influence of the learning model of inquiry learning results students training material measurement.

  1. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  2. The influence of inquiry learning model on additives theme with ethnoscience content to cultural awareness of students

    Science.gov (United States)

    Sudarmin, S.; Selia, E.; Taufiq, M.

    2018-03-01

    The purpose of this research is to determine the influence of inquiry learning model on additives theme with ethnoscience content to cultural awareness of students and how the students’ responses to learning. The method applied in this research is a quasi-experimental with non-equivalent control group design. The sampling technique applied in this research is the technique of random sampling. The samples were eight grade students of one of junior high schools in Semarang. The results of this research were (1) thestudents’ cultural awareness of the experiment class is better than the control class (2) inquiry learning model with ethnoscience content strongly influencing the cultural awareness of students by 78% and (3) students gave positive responses to inquiry learning model with ethnoscience content. The conclusions of this research are inquiry-learning model with ethnoscience content has positive influence on students’ cultural awareness.

  3. Training of Students’ Critical Thinking Skills through the implementation of a Modified Free Inquiry Model

    Science.gov (United States)

    Hadi, S. A.; Susantini, E.; Agustini, R.

    2018-01-01

    This research aimed at training students’ critical thinking skills through the implementation of a modified free inquiry learning model. The subjects of this research were 21 students of Mathematics Semester II. Using One-Group Pretest-Posttest Design, the data were analyzed descriptively using N-gain indicator. The results indicate that the modified free inquiry learning model was effective to train students’ critical thinking skills. The increase in the students’ critical thinking skills viewed from the value of N-Gain has a range of values with the categories of medium and high with a score between 0,25-0,95. Overall, the change in N-Gain score of each student and each indicator of critical thinking skills is as increasing with a moderate category. The increase of N-Gain value is resulted from the fact that the students were directly involved in organizing their learning process. These criteria indicate that the modified free inquiry learning model can be used to train students’ critical thinking skills on photosynthesis and cellular respiration materials. The results of this research are expected to be nationally implemented to familiarize students with andragogy learning style which places the students as the subjects of learning.

  4. Psyche Mission: Scientific Models and Instrument Selection

    Science.gov (United States)

    Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.

    2017-12-01

    NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end

  5. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  6. KETERAMPILAN PROSES SAINS SISWA KELAS VII DENGAN PEMBELAJARAN MODEL LEVELS OF INQUIRY

    Directory of Open Access Journals (Sweden)

    Fitri Fatimah

    2016-09-01

    Banyak penelitian yang mengkaji tentang keterampilan proses sains namun masih diteliti secara terpisah antara keterampilan proses dasar dan keterampilan terintegrasi. Oleh karena itu, perlu dilakukan penelitian tentang keterampilan proses sains yang menggabungkan keterampilan dasar dan terintegrasi dengan menggunakan Levels of Inquiry pada materi ciri-ciri dan klasifikasi makhluk hidup. Penelitian ini menggunakan mixed methods desain embedded terhadap siswa kelas VII SMPN 9 Pontianak. Data dianalisis secara kuantitatif dan kualitatif. Hasil analisis data menunjukkan pembelajaran model Levels of Inquiry dapat melatih dan mengembangkan keterampilan proses sains siswa mulai dari kurang terampil sampai menjadi sangat terampil. Hasil pretes dan postes memperlihatkan peningkatan hasil dengan N-gain sebesar 0.67 berada pada kriteria sedang.

  7. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    Science.gov (United States)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  8. The Experimental Social Scientific Model in Speech Communication Research: Influences and Consequences.

    Science.gov (United States)

    Ferris, Sharmila Pixy

    A substantial number of published articles in speech communication research today is experimental/social scientific in nature. It is only in the past decade that scholars have begun to put the history of communication under the lens. Early advocates of the adoption of the method of social scientific inquiry were J. A. Winans, J. M. O'Neill, and C.…

  9. The Associative Basis of Scientific Creativity: A Model Proposal

    Directory of Open Access Journals (Sweden)

    Esra Kanli

    2014-06-01

    Full Text Available Creativity is accepted as an important part of scientific skills. Scientific creativity proceeds from a need or urge to solve a problem, and in-volves the production of original and useful ideas or products. Existing scientific creativity theories and tests do not feature the very im-portant thinking processes, such as analogical and associative thinking, which can be consid-ered crucial in creative scientific problem solv-ing. Current study’s aim is to provide an alter-native model and explicate the associative basis of scientific creativity. Emerging from the re-viewed theoretical framework, Scientific Asso-ciations Model is proposed. This model claims that, similarity and mediation constitutes the basis of creativity and focuses on three compo-nents namely; associative thinking, analogical thinking (analogical reasoning & analogical problem solving and insight which are consid-ered to be main elements of scientific associa-tive thinking.

  10. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  11. Addressing contrasting cognitive models in scientific collaboration

    Science.gov (United States)

    Diviacco, P.

    2012-04-01

    If the social aspects of scientific communities and their internal dynamics is starting to be recognized and acknowledged in the everyday lives of scientists, it is rather difficult for them to find tools that could support their activities consistently with this perspective. Issues span from gathering researchers to mutual awareness, from information sharing to building meaning, with the last one being particularly critical in research fields as the geo-sciences, that deal with the reconstruction of unique, often non-reproducible, and contingent processes. Reasoning here is, in fact, mainly abductive, allowing multiple and concurrent explanations for the same phenomenon to coexist. Scientists bias one hypothesis over another not only on strictly logical but also on sociological motivations. Following a vision, scientists tend to evolve and isolate themselves from other scientists creating communities characterized by different cognitive models, so that after some time these become incompatible and scientists stop understanding each other. We address these problems as a communication issue so that the classic distinction into three levels (syntactic, semantic and pragmatic) can be used. At the syntactic level, we highlight non-technical obstacles that condition interoperability and data availability and transparency. At the semantic level, possible incompatibilities of cognitive models are particularly evident, so that using ontologies, cross-domain reconciliation should be applied. This is a very difficult task to perform since the projection of knowledge by scientists, in the designated community, is political and thus can create a lot of tension. The strategy we propose to overcome these issues pertains to pragmatics, in the sense that it is intended to acknowledge the cultural and personal factors each partner brings into the collaboration and is based on the idea that meaning should remain a flexible and contingent representation of possibly divergent views

  12. The Process of Scientific Inquiry as It Relates to the Creation/Evolution Controversy: I. A Serious Social Problem

    Science.gov (United States)

    Miller, Jon S.; Toth, Ronald

    2014-01-01

    We describe how the increased level of religiosity in the United States is correlated with the resistance to the teaching of evolution and argue that this is a social, rather than scientific, issue. Our goal is to foster teachers' understanding of the philosophy of biology and encourage them to proactively deal with creationism at all levels,…

  13. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  14. Pengaruh Model Inkuiri Terbimbing (Guided Inquiry) Disertai Metode Mencongak Terhadap Hasil Belajar Siswa Pada Pembelajaran IPA (Fisika) Kelas VII Di SMP Al-Maliki Sukodono - Lumajang

    OpenAIRE

    Nurkhasanah, Ika; Prihandono, Trapsilo; Supriadi, Bambang

    2016-01-01

    The study is focused in implementation of guided inquiry model with mencongak methods. Purpose of this study is to assess the influence of guided inquiry model with mencongak methods against student's result learning, and student's activity in learning physics which applied guided inquiry model with methods mencongak. The type of this study is research experiment conducted in SMP Al-Maliki Sukodono-Lumajang. Data collection method used is a documentary, observation, interview, and test. Data ...

  15. Context-model-based instruction in teaching EFL writing: A narrative inquiry

    Directory of Open Access Journals (Sweden)

    Zheng Lin

    2016-12-01

    Full Text Available This study aims to re-story the provision of the context-model-based instruction in teaching EFL writing, focusing especially on students’ development of the context model and learning to guide EFL writing with the context model. The research data have been collected from the audio recordings of the classroom instruction, the teacher-researcher’s memos, and the students’ reflections on their learning experience in the study. The findings that have resulted from this narrative inquiry show (1 the context-model-based instruction has helped students develop their context model; (2 students could learn to configure the four elements of the context model (i.e. “the purpose of communication, the subject matter, the relationship with the reader and the normal pattern of presentation”; and (3 students could learn to be mindful to proactively apply the context model in the process of EFL writing to manage the situated, dynamic and intercultural issues involved.

  16. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    Science.gov (United States)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  17. Symposium 20 - PABMB: Teaching biochemistry in a connected world: Hands-on inquiry-based biochemistry courses for improving scientific literacy of school teachers and students

    Directory of Open Access Journals (Sweden)

    Andrea T. da Poian

    2015-08-01

    Full Text Available Wednesday – August 26th, 2015 - 3:30 to 5:30 pm – Room: Iguaçu II – 5th floorSymposium 20 - PABMB: Teaching biochemistry in a connected world Chair: Miguel Castanho, Universidade de Lisboa, PortugalAbstract:In the last decades, Brazil has reached a prominent position in the world rank of scientific production. Despite this progress, the establishment of a scientific culture in Brazilian society is still challenging. Our group has been offering hands-on inquiry-based courses to primary and secondary students, which aim to introduce them to the scientific method and improve their interest in science. More recently, we started new initiatives focused on the improvement of the scientific literacy of school science teachers. Here we describe two intensive short-term courses designed in different formats. One consists in a discipline offered to a Master Program to school science teachers, in which the main objective was to work with core disciplinary concepts through an active teachers engagement in “doing science”. The discipline, named “Energy transformation in the living organisms”, intends to deal with the main Biochemistry subjects that take part of the high-school science curriculum, namely, fermentation, photosynthesis and cellular respiration processes. The other initiative was developed in Urucureá, a small community with about 600 residents, located on the banks of the River Arapiuns, in Amazonia region. We trained the local school teachers to act as tutors in the course offered to 40 students of the community, ages 10 to 17. The theme we chose to address was the properties and effects of snakes´ poisons, since poisoning events are a problem with which the local community frequently deal with. Another important point was that we adapted a number of experiments to make them feasible with very limited laboratory resources. Our results show that the activities that we have developed offer real opportunity of scientific training

  18. Test Driven Development of Scientific Models

    Science.gov (United States)

    Clune, Thomas L.

    2012-01-01

    Test-Driven Development (TDD) is a software development process that promises many advantages for developer productivity and has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices. Of course, scientific/technical software differs from other software categories in a number of important respects, but I nonetheless believe that TDD is quite applicable to the development of such software and has the potential to significantly improve programmer productivity and code quality within the scientific community. After a detailed introduction to TDD, I will present the experience within the Software Systems Support Office (SSSO) in applying the technique to various scientific applications. This discussion will emphasize the various direct and indirect benefits as well as some of the difficulties and limitations of the methodology. I will conclude with a brief description of pFUnit, a unit testing framework I co-developed to support test-driven development of parallel Fortran applications.

  19. Effectiveness of guided inquiry learning model to improve students’ critical thinking skills at senior high school

    Science.gov (United States)

    Nisa, E. K.; Koestiari, T.; Habibbulloh, M.; Jatmiko, Budi

    2018-03-01

    This research aimed to describe the effectiveness of guided inquiry learning model to improve students' critical thinking skills. Subjects in the research were 90 students at three groups of senior high school grade X on Tarik (Indonesia), which follows a physics lesson on static fluid material in academic year 2016/2017. The research was used one group pre-test and post-test design. Before and after being given physics learning with guided discovery learning model, students in the three groups were given the same test (pre-test and post-test). The results of this research showed: 1) there is an increased score of students' critical thinking skills in each group on α = 5%; 2) average N-gain of students' critical thinking skills of each group is a high category; and 3) average N-gain of the three groups did not differ. The conclusion of this research is that learning model of guided inquiry effective to improve students' critical thinking skills.

  20. The logical foundations of scientific theories languages, structures, and models

    CERN Document Server

    Krause, Decio

    2016-01-01

    This book addresses the logical aspects of the foundations of scientific theories. Even though the relevance of formal methods in the study of scientific theories is now widely recognized and regaining prominence, the issues covered here are still not generally discussed in philosophy of science. The authors focus mainly on the role played by the underlying formal apparatuses employed in the construction of the models of scientific theories, relating the discussion with the so-called semantic approach to scientific theories. The book describes the role played by this metamathematical framework in three main aspects: considerations of formal languages employed to axiomatize scientific theories, the role of the axiomatic method itself, and the way set-theoretical structures, which play the role of the models of theories, are developed. The authors also discuss the differences and philosophical relevance of the two basic ways of aximoatizing a scientific theory, namely Patrick Suppes’ set theoretical predicate...

  1. Inquiry through Modeling: Exploring the Tensions between Natural & Sexual Selection Using Crickets

    Science.gov (United States)

    Bouwma-Gearhart, Jana; Bouwma, Andrew

    2015-01-01

    The "Next Generation Science Standards" (NGSS Lead States, 2013) recommend that science courses engage communities of students in scientific practices that include building accurate conceptual models of phenomena central to the understanding of scientific disciplines. We offer a set of activities, implemented successfully at both the…

  2. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  3. E-Learning and the iNtegrating Technology for InQuiry (NTeQ) Model Lesson Design

    Science.gov (United States)

    Flake, Lee Hatch

    2017-01-01

    The author reflects on the history of technology in education and e-learning and introduces the iNtegrating Technology for inQuiry (NTeQ) model of lesson design authored by Morrison and Lowther (2005). The NTeQ model lesson design is a new pedagogy for academic instruction in response to the growth of the Internet and technological advancements in…

  4. The Effect of Inquiry Training Learning Model Based on Just in Time Teaching for Problem Solving Skill

    Science.gov (United States)

    Turnip, Betty; Wahyuni, Ida; Tanjung, Yul Ifda

    2016-01-01

    One of the factors that can support successful learning activity is the use of learning models according to the objectives to be achieved. This study aimed to analyze the differences in problem-solving ability Physics student learning model Inquiry Training based on Just In Time Teaching [JITT] and conventional learning taught by cooperative model…

  5. An Inquiry-Based Approach to Teaching the Spherical Earth Model to Preservice Teachers Using the Global Positioning System

    Science.gov (United States)

    Song, Youngjin; Schwenz, Richard

    2013-01-01

    This article describes an inquiry-based lesson to deepen preservice teachers' understanding of the spherical Earth model using the Global Positioning System. The lesson was designed with four learning goals: (1) to increase preservice teachers' conceptual knowledge of the spherical Earth model; (2) to develop preservice teachers'…

  6. Using the Communication in Science Inquiry Project Professional Development Model to Facilitate Learning Middle School Genetics Concepts

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry

    2011-01-01

    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…

  7. A "Semantic" View of Scientific Models for Science Education

    Science.gov (United States)

    Adúriz-Bravo, Agustín

    2013-01-01

    In this paper I inspect a "semantic" view of scientific models taken from contemporary philosophy of science-I draw upon the so-called "semanticist family", which frontally challenges the received, syntactic conception of scientific theories. I argue that a semantic view may be of use both for science education in the…

  8. Application of Logic Models in a Large Scientific Research Program

    Science.gov (United States)

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  9. Test Driven Development of Scientific Models

    Science.gov (United States)

    Clune, Thomas L.

    2014-01-01

    Test-Driven Development (TDD), a software development process that promises many advantages for developer productivity and software reliability, has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices.After a brief overview of the TDD process and my experience in applying the methodology for development activities at Goddard, I will delve more deeply into some of the challenges that are posed by numerical and scientific software as well as tools and implementation approaches that should address those challenges.

  10. What Is a Scientific Experiment? The Impact of a Professional Development Course on Teachers' Ability to Design an Inquiry-Based Science Curriculum

    Science.gov (United States)

    Pérez, María del Carmen B.; Furman, Melina

    2016-01-01

    Designing inquiry-based science lessons can be a challenge for secondary school teachers. In this study we evaluated the development of in-service teachers' lesson plans as they took part in a 10-month professional development course in Peru which engaged teachers in the design of inquiry-based lessons. At the beginning, most teachers designed…

  11. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  12. Didactical-Scientific Modeling: integrating experimental activities and the process of scientific modeling in the teaching of Physics

    Directory of Open Access Journals (Sweden)

    Leonardo Albuquerque Heidemann

    2016-04-01

    Full Text Available The dissociated way with which the theory and practice are often treated in Physics teaching contributes to students' difficulties in using scientific knowledge to represent real events, which are not idealized situations as the events presented in most textbook problems. Considering that the process of scientific modeling is of fundamental importance for students to learn Science, about Science and how to do Science, Brandão, Araujo and Veit, supported by Vergnaud's Theory of Conceptual Fields and by Bunge's concept of scientific modeling, propose a theoretical-methodological framework for modeling in Physics Education named Didactical-Scientific Modeling (DSM. The authors defend the thesis that it is possible to consider the process of scientific modeling as a conceptual field underlying the specific conceptual fields of Physics. They elucidate knowledge associated to the facing of problems that involve the use, exploration and validation of didactical versions of scientific models. However, the goal of this framework is not to explain how the concepts related to empirical testability are connected to scientific modeling concepts. In order to fill this gap, we present in this article an expansion of this theoretical-methodological framework based on Bunge's concepts on contrasting scientific ideas. In this regard, we insert experimental work concepts in the conceptual field associated to the process of didactical-scientific modeling. Lastly, we exemplify its use in order to support the design and execution of experimental activities focused on the scientific-didactical process, and we also discuss some implications for future research in Physics Education.

  13. Social Justice Is in the Air: Teaching Climate Change and Air Pollution with Scientific and Social Inquiry

    Science.gov (United States)

    Hahnenberger, M.

    2014-12-01

    The intersection of environmental with social problems is a growing area of concern for scientists, policy makers, and citizens. Climate change and air pollution are two current environmental issues holding the public's attention which require collaboration of all stakeholders to create meaningful solutions. General education science courses are critical venues to engage students in the intersection of science with society. Effective teaching methods for these intersections include case studies, gallery walks, and town hall meetings. A case study from California explores how air quality has greatly improved in Los Angeles in the past 20 years, however residents of neighborhoods with lower socioeconomic status are still exposed to high levels of air pollutants. Students analyze scientific and health data to develop understanding and expertise in the problem, and are then tasked with developing a cost-benefit analysis of solutions. Gallery walks can be used to connect natural phenomena, such as hurricanes and severe weather, with their human impacts. Students bring their personal experiences with disasters and recovery to analyze how societies should deal with the changing climate and weather risks in their region, the country, or across the world. Town hall meetings allow students to gain expertise and perspective while embodying a role as a particular stakeholder in a climate mitigation or adaptation issue. A successful application of this method is a discussion of whether a resort community should be rebuilt on a barrier island after being destroyed in a category 3 hurricane. Stakeholders which students take on as roles have included climate scientists, homeowners, emergency managers, meteorologists, and others. Including distinct connections to social issues in introductory science courses helps students to not only engage with the material in a deeper way, but also helps to create critical thinkers who will become better citizens for tomorrow.

  14. Using Learning Analytics to Understand Scientific Modeling in the Classroom

    Directory of Open Access Journals (Sweden)

    David Quigley

    2017-11-01

    Full Text Available Scientific models represent ideas, processes, and phenomena by describing important components, characteristics, and interactions. Models are constructed across various scientific disciplines, such as the food web in biology, the water cycle in Earth science, or the structure of the solar system in astronomy. Models are central for scientists to understand phenomena, construct explanations, and communicate theories. Constructing and using models to explain scientific phenomena is also an essential practice in contemporary science classrooms. Our research explores new techniques for understanding scientific modeling and engagement with modeling practices. We work with students in secondary biology classrooms as they use a web-based software tool—EcoSurvey—to characterize organisms and their interrelationships found in their local ecosystem. We use learning analytics and machine learning techniques to answer the following questions: (1 How can we automatically measure the extent to which students’ scientific models support complete explanations of phenomena? (2 How does the design of student modeling tools influence the complexity and completeness of students’ models? (3 How do clickstreams reflect and differentiate student engagement with modeling practices? We analyzed EcoSurvey usage data collected from two different deployments with over 1,000 secondary students across a large urban school district. We observe large variations in the completeness and complexity of student models, and large variations in their iterative refinement processes. These differences reveal that certain key model features are highly predictive of other aspects of the model. We also observe large differences in student modeling practices across different classrooms and teachers. We can predict a student’s teacher based on the observed modeling practices with a high degree of accuracy without significant tuning of the predictive model. These results highlight

  15. Ferrofluids: Modeling, numerical analysis, and scientific computation

    Science.gov (United States)

    Tomas, Ignacio

    This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a

  16. Modeling the diffusion of scientific publications

    NARCIS (Netherlands)

    D. Fok (Dennis); Ph.H.B.F. Franses (Philip Hans)

    2005-01-01

    textabstractThis paper illustrates that salient features of a panel of time series of annual citations can be captured by a Bass type diffusion model. We put forward an extended version of this diffusion model, where we consider the relation between key characteristics of the diffusion process and

  17. Epistemic Gameplay and Discovery in Computational Model-Based Inquiry Activities

    Science.gov (United States)

    Wilkerson, Michelle Hoda; Shareff, Rebecca; Laina, Vasiliki; Gravel, Brian

    2018-01-01

    In computational modeling activities, learners are expected to discover the inner workings of scientific and mathematical systems: First elaborating their understandings of a given system through constructing a computer model, then "debugging" that knowledge by testing and refining the model. While such activities have been shown to…

  18. Topic Modeling as a Strategy of Inquiry in Organizational Research: A Tutorial With an Application Example on Organizational Culture

    DEFF Research Database (Denmark)

    Schmiedel, Theresa; Müller, Oliver; vom Brocke, Jan

    2018-01-01

    of large textual data sets and increased computational power, text mining has become an attractive method that has the potential to mitigate some of these limitations. Thus, we suggest applying topic modeling, a specific text mining technique, as a new and complementary strategy of inquiry to study...

  19. Effectiveness of the use of question-driven levels of inquiry based instruction (QD-LOIBI) assisted visual multimedia supported teaching material on enhancing scientific explanation ability senior high school students

    Science.gov (United States)

    Suhandi, A.; Muslim; Samsudin, A.; Hermita, N.; Supriyatman

    2018-05-01

    In this study, the effectiveness of the use of Question-Driven Levels of Inquiry Based Instruction (QD-LOIBI) assisted visual multimedia supported teaching materials on enhancing senior high school students scientific explanation ability has been studied. QD-LOIBI was designed by following five-levels of inquiry proposed by Wenning. Visual multimedia used in teaching materials included image (photo), virtual simulation and video phenomena. QD-LOIBI assisted teaching materials supported by visual multimedia were tried out on senior high school students at one high school in one district in West Java. A quasi-experiment method with design one experiment group (n = 31) and one control group (n = 32) were used. Experimental group were given QD-LOIBI assisted teaching material supported by visual multimedia, whereas the control group were given QD-LOIBI assisted teaching materials not supported visual multimedia. Data on the ability of scientific explanation in both groups were collected by scientific explanation ability test in essay form concerning kinetic gas theory concept. The results showed that the number of students in the experimental class that has increased the category and quality of scientific explanation is greater than in the control class. These results indicate that the use of multimedia supported instructional materials developed for implementation of QD-LOIBI can improve students’ ability to provide explanations supported by scientific evidence gained from practicum activities and applicable concepts, laws, principles or theories.

  20. Introducing citizen inquiry

    OpenAIRE

    Herodotou, Christothea; Sharples, Mike; Scanlon, Eileen

    2017-01-01

    The term ‘citizen inquiry’ was coined to describe ways that members of the public can learn by initiating or joining shared inquiry-led scientific investigations (Sharples et al., 2013). It merges learning through scientific investigation with mass collaborative participation exemplified in citizen science activities, altering the relationship most people have with research from being passive recipients to becoming actively engaged, and the relationship between scholarship and public understa...

  1. Applying the chronic care model to an employee benefits program: a qualitative inquiry.

    Science.gov (United States)

    Schauer, Gillian L; Wilson, Mark; Barrett, Barbara; Honeycutt, Sally; Hermstad, April K; Kegler, Michelle C

    2013-12-01

    To assess how employee benefits programs may strengthen and/or complement elements of the chronic care model (CCM), a framework used by health systems to improve chronic illness care. A qualitative inquiry consisting of semi-structured interviews with employee benefit administrators and partners from a self-insured, self-administered employee health benefits program was conducted at a large family-owned business in southwest Georgia. Results indicate that the employer adapted and used many health system-related elements of the CCM in the design of their benefit program. Data also suggest that the employee benefits program contributed to self-management skills and to informing and activating patients to interact with the health system. Findings suggest that employee benefits programs can use aspects of the CCM in their own benefit design, and can structure their benefits to contribute to patient-related elements from the CCM.

  2. Current challenges in health economic modeling of cancer therapies: a research inquiry.

    Science.gov (United States)

    Miller, Jeffrey D; Foley, Kathleen A; Russell, Mason W

    2014-05-01

    The demand for economic models that evaluate cancer treatments is increasing, as healthcare decision makers struggle for ways to manage their budgets while providing the best care possible to patients with cancer. Yet, after nearly 2 decades of cultivating and refining techniques for modeling the cost-effectiveness and budget impact of cancer therapies, serious methodologic and policy challenges have emerged that question the adequacy of economic modeling as a sound decision-making tool in oncology. We sought to explore some of the contentious issues associated with the development and use of oncology economic models as informative tools in current healthcare decision-making. Our objective was to draw attention to these complex pharmacoeconomic concerns and to promote discussion within the oncology and health economics research communities. Using our combined expertise in health economics research and economic modeling, we structured our inquiry around the following 4 questions: (1) Are economic models adequately addressing questions relevant to oncology decision makers; (2) What are the methodologic limitations of oncology economic models; (3) What guidelines are followed for developing oncology economic models; and (4) Is the evolution of oncology economic modeling keeping pace with treatment innovation? Within the context of each of these questions, we discuss issues related to the technical limitations of oncology modeling, the availability of adequate data for developing models, and the problems with how modeling analyses and results are presented and interpreted. There is general acceptance that economic models are good, essential tools for decision-making, but the practice of oncology and its rapidly evolving technologies present unique challenges that make assessing and demonstrating value especially complex. There is wide latitude for improvement in oncology modeling methodologies and how model results are presented and interpreted. Complex technical and

  3. THE EFFECT MODEL INQUIRY TRAINING MEDIA AND LOGICAL THINKING ABILITY TO STUDENT’S SCIENCE PROCESS SKILL

    Directory of Open Access Journals (Sweden)

    Dahrim Pohan

    2017-06-01

    Full Text Available The aim of the research is to analyz : student’s science process skill using inquiry training learning model is better than konvesional learning.Student’s science process skill who have logical thinking ability above average are better than under average,and the interaction between inquiry training media and logical thinking ability to increase student’s science process skill.The experiment was conducted in SMP 6 Medan as population and class VII-K and VII-J were chosen as sample through cluster random sampling.Science prosess skill used essay test and logical thinking used multiple choice as instrument.Result of the data was analyzed by using two ways ANAVA.Result show that : student’s science process skill using inquiry training learning model is better than konvesional learning,student’s science process skill who logical thinking ability above average are better than under average and the interaction between inquiry training learning model media and logical thinking ability to increase student’s science process skill.

  4. The effect of integrating cooperative learning into 5E inquiry learning model on interpersonal skills of high school students

    Science.gov (United States)

    Pholphuet, Preedaporn; Kanyaprasith, Kamonwan; Khumwong, Pinit; Praphairaksit, Nalena

    2018-01-01

    The purpose of this research was to investigate the effect of integrating cooperative learning into 5E inquiry learning model on interpersonal skills of high school students. Two 10th grade classrooms consisting of 63 students were obtained by purposive sampling then one was assigned as an experimental and the other as a control group. The cooperative learning was integrated into 5E inquiry model for the experimental group in addition to the normal 5E inquiry model in the control group. A 5-level rating scale questionnaire was used for data collection both before and after the experiment. Furthermore, a descriptive journal from each student was added to the study after the researchers realized a significant difference in the teamwork skill of each group. Data from questionnaires were analyzed using descriptive statistics and inferential statistics. The results showed that the experimental group had a significantly higher score of interpersonal skills when compared to the control group (ptime management, the outcome of the work, the process of the work and the attitude of the students. The students in the experimental group demonstrated more creative ideas and were more likely to listen to other student ideas. The students in experimental group were less competitive and were more open in sharing and helping others. In conclusion, the addition of cooperative learning in to the usual 5E inquiry learning, not only help the students to achieve the knowledge but also help develop good interpersonal skills.

  5. The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching

    Science.gov (United States)

    Duran, Lena Ballone; Duran, Emilio

    2004-01-01

    The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…

  6. Challenges Pre-Service Teachers Face When Implementing a 5E Inquiry Model of Instruction

    Science.gov (United States)

    Enugu, Ramya; Hokayem, Hayat

    2017-01-01

    This study examined the challenges that pre-service teachers faced when implementing inquiry and their perspective on how to overcome them. The data sample was 55 pre-service teachers (PSTs) enrolled into two sections of a science methods course in a private university in North Texas. The data sources consisted of inquiry-based lesson plans, PST…

  7. An Investigation of Teacher Impact on Student Inquiry Science Performance Using a Hierarchical Linear Model

    Science.gov (United States)

    Liu, Ou Lydia; Lee, Hee-Sun; Linn, Marcia C.

    2010-01-01

    Teachers play a central role in inquiry science classrooms. In this study, we investigate how seven teacher variables (i.e., gender, experience, perceived importance of inquiry and traditional teaching, workshop attendance, partner teacher, use of technology) affect student knowledge integration understanding of science topics drawing on previous…

  8. Scientific data interpolation with low dimensional manifold model

    Science.gov (United States)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  9. Scientific data interpolation with low dimensional manifold model

    International Nuclear Information System (INIS)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

    2017-01-01

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  10. Inquiry Based Learning and Meaning Generation through Modelling on Geometrical Optics in a Constructionist Environment

    Science.gov (United States)

    Kotsari, Constantina; Smyrnaiou, Zacharoula

    2017-01-01

    The central roles that modelling plays in the processes of scientific enquiry and that models play as the outcomes of that enquiry are well established (Gilbert & Boulter, 1998). Besides, there are considerable similarities between the processes and outcomes of science and technology (Cinar, 2016). In this study, we discuss how the use of…

  11. John Dewey's Dual Theory of Inquiry and Its Value for the Creation of an Alternative Curriculum

    Science.gov (United States)

    Harris, Fred

    2014-01-01

    Dewey's theory of inquiry cannot be reduced to the pattern of inquiry common to both common-sense inquiry and scientific inquiry, which is grounded in the human life process, since such a reduction ignores Dewey's differentiation of the two forms of inquiry. The difference has to do with the focus of inquiry, with common-sense inquiry…

  12. Python for Scientific Computing Education: Modeling of Queueing Systems

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2014-01-01

    Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.

  13. Modeling as an Anchoring Scientific Practice for Explaining Friction Phenomena

    Science.gov (United States)

    Neilson, Drew; Campbell, Todd

    2017-12-01

    Through examining the day-to-day work of scientists, researchers in science studies have revealed how models are a central sense-making practice of scientists as they construct and critique explanations about how the universe works. Additionally, they allow predictions to be made using the tenets of the model. Given this, alongside research suggesting that engaging students in developing and using models can have a positive effect on learning in science classrooms, the recent national standards documents in science education have identified developing and using models as an important practice students should engage in as they apply and refine their ideas with peers and teachers in explaining phenomena or solving problems in classrooms. This article details how students can be engaged in developing and using models to help them make sense of friction phenomena in a high school conceptual physics classroom in ways that align with visions for teaching and learning outlined in the Next Generation Science Standards. This particular unit has been refined over several years to build on what was initially an inquiry-based unit we have described previously. In this latest iteration of the friction unit, students developed and refined models through engaging in small group and whole class discussions and investigations.

  14. African Scientific Network: A model to enhance scientific research in developing countries

    Science.gov (United States)

    Kebede, Abebe

    2002-03-01

    Africa has over 350 higher education institutions with a variety of experiences and priorities. The primary objectives of these institutions are to produce white-collar workers, teachers, and the work force for mining, textiles, and agricultural industries. The state of higher education and scientific research in Africa have been discussed in several conferences. The proposals that are generated by these conferences advocate structural changes in higher education, North-South institutional linkages, mobilization of the African Diaspora and funding. We propose a model African Scientific Network that would facilitate and enhance international scientific partnerships between African scientists and their counterparts elsewhere. A recent article by James Lamout (Financial Times, August 2, 2001) indicates that emigration from South Africa alone costs $8.9 billion in lost human resources. The article also stated that every year 23,000 graduates leave Africa for opportunities overseas, mainly in Europe, leaving only 20,000 scientists and engineers serving over 600 million people. The International Organization for Migration states that the brain drain of highly skilled professionals from Africa is making economic growth and poverty alleviation impossible across the continent. In our model we will focus on a possible networking mechanism where the African Diaspora will play a major role in addressing the financial and human resources needs of higher education in Africa

  15. Librarian-Teacher Partnerships for Inquiry Learning: Measures of Effectiveness for a Practice-Based Model of Professional Development

    Directory of Open Access Journals (Sweden)

    Joyce Yukawa

    2009-06-01

    Full Text Available Objective – This study analyzed the effects of a practice-based model of professional development on the teaching and collaborative practices of 9 teams of librarians and teachers, who created and implemented units of inquiry-focused study with K-12 students during a yearlong course. The authors describe how the collection and analysis of evidence guided the development team in the formative and summative evaluations of the outcomes of the professional development, as well as the long-term results of participation in this initiative.Methods – The authors used an interpretive, participative approach. The first author was the external reviewer for the project; the second author headed the development team and served as a participant-observer. Triangulated data were collected from participants in the form of learning logs, discussion board postings, interviews, questionnaires, and learning portfolios consisting of unit and lesson plans and student work samples with critiques. Data were also collected from the professional development designers in the form of meeting notes, responses to participants, interviews, and course documents. For two years following the end of the formal course, the authors also conducted follow-up email correspondence with all teams and site visits with six teams to determine sustained or expanded implementation of inquiry-focused, collaborative curriculum development. Results – The practice-based approach to professional development required continual modification of the course design and timely, individualized mentoring and feedback, based on analysis and co-reflection by the developers on the evidence gathered through participant logs, reports, and school site visits. Modeling the inquiry process in their own course development work and making this process transparent to the participating community were essential to improvement. Course participants reported beneficial results in both immediate and long-term changes

  16. A design-based study of Citizen Inquiry for geology

    OpenAIRE

    Aristeidou, Maria; Scanlon, Eileen; Sharples, Mike

    2013-01-01

    Citizen Inquiry forms a new method of informal science learning and aims to enable the engagement of citizens in online scientific investigations. Citizen Inquiry combines aspects from Citizen Science and Inquiry-based learning and is implemented through a community of practice where people having a shared interest interact and exchange knowledge and methods supported and guided by online systems and tools within a web-based inquiry environment. To explore the potential of Citizen Inquiry, a ...

  17. An ontology model for execution records of Grid scientific applications

    NARCIS (Netherlands)

    Baliś, B.; Bubak, M.

    2008-01-01

    Records of past application executions are particularly important in the case of loosely-coupled, workflow driven scientific applications which are used to conduct in silico experiments, often on top of Grid infrastructures. In this paper, we propose an ontology-based model for storing and querying

  18. Features of optical modeling in educational and scientific activity ...

    African Journals Online (AJOL)

    The article discusses the functionality of existing software for the modeling, analysis and optimization of lighting systems and optical elements, through which the stage of their design can be automated completely. The use of these programs is shown using the example of scientific work and the educational activity of ...

  19. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  20. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  1. Approaches to Inquiry Teaching: Elementary teacher's perspectives

    Science.gov (United States)

    Ireland, Joseph; Watters, James J.; Lunn Brownlee, J.; Lupton, Mandy

    2014-07-01

    Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what constitutes scientific inquiry. This study investigates teachers' self-reported approaches to teaching science through inquiry. Phenomenographic interviews undertaken with 20 elementary teachers revealed teachers identified six approaches to teaching for inquiry, clustered within three categories. These approaches were categorized as Free and Illustrated Inquiries as part of an Experience-centered category, Solution and Method Inquiries as part of a Problem-centered category, and Topic and Chaperoned Inquiries as part of a Question-centered category. This study contributes to our theoretical understanding of how teachers approach Inquiry Teaching and suggests fertile areas of future research into this valued and influential phenomenon broadly known as 'Inquiry Teaching'.

  2. An Inquiry-Based Biochemistry Laboratory Structure Emphasizing Competency in the Scientific Process: A Guided Approach with an Electronic Notebook Format

    Science.gov (United States)

    Hall, Mona L.; Vardar-Ulu, Didem

    2014-01-01

    The laboratory setting is an exciting and gratifying place to teach because you can actively engage the students in the learning process through hands-on activities; it is a dynamic environment amenable to collaborative work, critical thinking, problem-solving and discovery. The guided inquiry-based approach described here guides the students…

  3. The Inquiry Matrix: A Tool for Assessing and Planning Inquiry in Biology and Beyond

    Science.gov (United States)

    Grady, Julie

    2010-01-01

    One way to advance inquiry in the classroom is to establish a systematic strategy for reflecting on our practice and our students' readiness to engage in increasingly complex scientific reasoning. The Matrix for Assessing and Planning Scientific Inquiry (MAPSI) is a tool that promotes this valuable reflection so that we, as teachers, are better…

  4. Educational and Scientific Applications of Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.

    2016-12-01

    Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of

  5. From Hippocrates to Commodities: three models of NHS governance: NHS governance, regulation, Mid Staffordshire inquiry, health care as a commodity.

    Science.gov (United States)

    Newdick, Christopher

    2014-01-01

    A series of inquiries and reports suggest considerable failings in the care provided to some patients in the NHS. Although the Bristol Inquiry report of 2001 led to the creation of many new regulatory bodies to supervise the NHS, they have never enjoyed consistent support from government and the Mid Staffordshire Inquiry in 2013 suggests they made little difference. Why do some parts of the NHS disregard patients' interests and how we should we respond to the challenge? The following discusses the evolution of approaches to NHS governance through the Hippocratic, Managerial and Commercial models, and assesses their risks and benefits. Apart from the ethical imperative, the need for effective governance is driven both by the growth in information available to the public and the resources wasted by ineffective systems of care. Appropriate solutions depend on an understanding of the perverse incentives inherent in each model and the need for greater sensitivity to the voices of patients and the public. © The Author 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals. permissions@oup.com.

  6. MODEL PEMBELAJARAN INQUIRY DAN HASIL BELAJAR SISWA PADA MATA PELAJARAN AQIDAH AKHLAK KELAS VIII MTs NEGERI TEBING TINGGI EMPAT LAWANG

    Directory of Open Access Journals (Sweden)

    Dianti Asmayani

    2014-06-01

    Full Text Available AbstractMost of teaching and learning process that used by the teacher is lecturing method. It could be the reason that the students feel bored and effects to their bad score. In order to solve these problems, the teacher should select the appropriate method which could stimulate students to think and active in the teaching and learning process. The result of the study showed that inquiry method could improve students score on Aqidah Akhlak subject especially on Mukjizat dan kejadian luar biasa lainya material.  Moreover, it was found that there was a significant difference in students’ achievement between the students who were taught by the application of inquiry model on those who were not. The result could be seen that mean score of the students was 17. The post-test score was 10.08, and KKM was 47.37%. Moreover perbedaan t0 is higher than  either at significant level of 5% or at significant level of 1%, it was 2,00  <  5,19 > 2,65.  Keywords: inquiry learning model, result of the study, subject learning

  7. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    Science.gov (United States)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and

  8. A model of "integrated scientific method" and its application for the analysis of instruction

    Science.gov (United States)

    Rusbult, Craig Francis

    A model of 'integrated scientific method' (ISM) was constructed as a framework for describing the process of science in terms of activities (formulating a research problem, and inventing and evaluating actions--such as selecting and inventing theories, evaluating theories, designing experiments, and doing experiments--intended to solve the problem) and evaluation criteria (empirical, conceptual, and cultural-personal). Instead of trying to define the scientific method, ISM is intended to serve as a flexible framework that--by varying the characteristics of its components, their integrated relationships, and their relative importance can be used to describe a variety of scientific methods, and a variety of perspectives about what constitutes an accurate portrayal of scientific methods. This framework is outlined visually and verbally, followed by an elaboration of the framework and my own views about science, and an evaluation of whether ISM can serve as a relatively neutral framework for describing a wide range of science practices and science interpretations. ISM was used to analyze an innovative, guided inquiry classroom (taught by Susan Johnson, using Genetics Construction Kit software) in which students do simulated scientific research by solving classical genetics problems that require effect-to-cause reasoning and theory revision. The immediate goal of analysis was to examine the 'science experiences' of students, to determine how the 'structure of instruction' provides opportunities for these experiences. Another goal was to test and improve the descriptive and analytical utility of ISM. In developing ISM, a major objective was to make ISM educationally useful. A concluding discussion includes controversies about "the nature of science" and how to teach it, how instruction can expand opportunities for student experience, and how goal-oriented intentional learning (using ISM might improve the learning, retention, and transfer of thinking skills. Potential

  9. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    incomplete and many relationships among the model ideas had not been well established by the end of the study. Most of them did not treat the natural selection model as a whole but only focused on some ideas within the model. Very few of them could scientifically apply the natural selection model to interpret other evolutionary phenomena. The findings about participating students' programming processes revealed these processes were composed of consecutive programming cycles. The cycle typically included posing a task, constructing and running program codes, and examining the resulting simulation. Students held multiple ideas and applied various programming strategies in these cycles. Students were involved in MBI at each step of a cycle. Three types of ideas, six programming strategies and ten MBI actions were identified out of the processes. The relationships among these ideas, strategies and actions were also identified and described. Findings suggested that ABPM activities could support MBI by (1) exposing students' personal models and understandings, (2) provoking and supporting a series of model-based inquiry activities, such as elaborating target phenomena, abstracting patterns, and revising conceptual models, and (3) provoking and supporting tangible and productive conversations among students, as well as between the instructor and students. Findings also revealed three programming behaviors that appeared to impede productive MBI, including (1) solely phenomenon-orientated programming, (2) transplanting program codes, and (3) blindly running procedures. Based on the findings, I propose a general modeling process in ABPM activities, summarize the ways in which MBI can be supported in ABPM activities and constrained by multiple factors, and suggest the implications of this study in the future ABPM-assisted science instructional design and research.

  10. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  11. TRANSFORMATION OF THE STUDENTS’ INQUIRY CAPABILITY THROUGH MINDMAP EDUCATIVE BY USING GAME OBSERVATION NORMATIVELY (MEGONO LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Tasiwan Tasiwan

    2016-04-01

    Full Text Available This classroom action research was conducted to analyze the development of the students’ inquiry abilities in science learning by a learning model of mindmap educative by using game observation normatively (Megono. The study was conducted in three cycles. In each cycle, the students were divided into five groups, each groups consisted of seven students. Each group was mandated to observe and to analyze the images/photos. After the image observations, they were asked to discuss, write and compile the information into a concept map.  One of the students was act as a representative of the group in a game of observation. Data were obtained through the pre-test, post-test, and observation by the observers as well as from the photo and video recording. The results showed that the students’ inquiry ability increased by 63.27% at the end of the cycle. At the initial conditions, the ability of the student was low (0.49. After the first cycle, it increased to 0.63 (medium, and then increased to 0.68 (moderate on the second cycle, and finally it increased to 0.80 (high in the third cycle. The average increase in every aspect was 68.59%.  The highest inquiry capability was achieved in aspects of reasoning amounted to 89.29 (very high. It was suggested to use the observation games fairly and needed more time adjustment to obtain higher learning outcomes.

  12. Teacher Inquiry into Student Learning: The TISL Heart Model and Method for use in Teachers’ Professional Development

    OpenAIRE

    Hansen, Cecilie; Wasson, Barbara

    2016-01-01

    Researchers have recently been calling for new models of teacher education and professional development for the 21st century. Teacher inquiry, where the teacher’s own practice is under investigation, can be seen both as a way to improve day-to-day teaching in the classroom and as professional development for teachers. As such, it should also have a role in teacher education. In this article, we present the iterative development of the TISL Heart, a theory-practice model and method of teacher ...

  13. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  14. Teaching scientific concepts through simple models and social communication techniques

    International Nuclear Information System (INIS)

    Tilakaratne, K.

    2011-01-01

    For science education, it is important to demonstrate to students the relevance of scientific concepts in every-day life experiences. Although there are methods available for achieving this goal, it is more effective if cultural flavor is also added to the teaching techniques and thereby the teacher and students can easily relate the subject matter to their surroundings. Furthermore, this would bridge the gap between science and day-to-day experiences in an effective manner. It could also help students to use science as a tool to solve problems faced by them and consequently they would feel science is a part of their lives. In this paper, it has been described how simple models and cultural communication techniques can be used effectively in demonstrating important scientific concepts to the students of secondary and higher secondary levels by using two consecutive activities carried out at the Institute of Fundamental Studies (IFS), Sri Lanka. (author)

  15. Big inquiry

    Energy Technology Data Exchange (ETDEWEB)

    Wynne, B [Lancaster Univ. (UK)

    1979-06-28

    The recently published report entitled 'The Big Public Inquiry' from the Council for Science and Society and the Outer Circle Policy Unit is considered, with especial reference to any future enquiry which may take place into the first commercial fast breeder reactor. Proposals embodied in the report include stronger rights for objectors and an attempt is made to tackle the problem that participation in a public inquiry is far too late to be objective. It is felt by the author that the CSS/OCPU report is a constructive contribution to the debate about big technology inquiries but that it fails to understand the deeper currents in the economic and political structure of technology which so influence the consequences of whatever formal procedures are evolved.

  16. Earth's Earliest Ecosystems in the Classroom: The Use of Microbial Mats to Teach General Principles in Microbial Ecology, and Scientific Inquiry

    Science.gov (United States)

    Beboutl, Brad M.; Bucaria, Robin

    2004-01-01

    Microbial mats are living examples of the most ancient biological communities on earth, and may also be useful models for the search for life elsewhere. They are centrally important to Astrobiology. In this lecture, we will present an introduction to microbial mats, as well as an introduction to our web-based educational module on the subject of microbial ecology, featuring living mats maintained in a mini "Web Lab" complete with remotely-operable instrumentation. We have partnered with a number of outreach specialists in order to produce an informative and educational web-based presentation, aspects of which will be exported to museum exhibits reaching a wide audience. On our web site, we will conduct regularly scheduled experimental manipulations, linking the experiments to our research activities, and demonstrating fundamental principles of scientific research.

  17. Windscale inquiry

    International Nuclear Information System (INIS)

    Lambert, C.M.

    1981-01-01

    The nuclear debate, far from being concluded by the Windscale decision, was in fact opened up and its scope widened to take into account the political, international, environmental and social issues involved. This debate continues and the selection of literature presented here aims to illustrate all aspects of the Inquiry and its implications. The material is presented in two main sections. Section A is concerned with the Inquiry itself: the proceedings, the report and the government's decision. Section B presents a selection of the literature and debate that resulted. (author)

  18. The Benefits of Using Authentic Inquiry within Biotechnology Education

    Science.gov (United States)

    Hanegan, Nikki; Bigler, Amber

    2010-01-01

    A broad continuum exists to describe the structure of inquiry lessons (Hanegan, Friden, & Nelson, 2009). Most teachers have heard inquiry described from a range of simple questioning to completely student-designed scientific studies (Chinn & Malhotra, 2002). Biotechnology education often uses a variety of inquiries from cookbook laboratory…

  19. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  20. A Pedagogical Model for Ethical Inquiry into Socioscientific Issues In Science

    Science.gov (United States)

    Saunders, Kathryn J.; Rennie, Léonie J.

    2013-02-01

    Internationally there is concern that many science teachers do not address socioscientific issues (SSI) in their classrooms, particularly those that are controversial. However with increasingly complex, science-based dilemmas being presented to society, such as cloning, genetic screening, alternative fuels, reproductive technologies and vaccination, there is a growing call for students to be more scientifically literate and to be able to make informed decisions on issues related to these dilemmas. There have been shifts in science curricula internationally towards a focus on scientific literacy, but research indicates that many secondary science teachers lack the support and confidence to address SSI in their classrooms. This paper reports on a project that developed a pedagogical model that scaffolded teachers through a series of stages in exploring a controversial socioscientific issue with students and supported them in the use of pedagogical strategies and facilitated ways of ethical thinking. The study builds on existing frameworks of ethical thinking. It presents an argument that in today's increasingly pluralistic society, these traditional frameworks need to be extended to acknowledge other worldviews and identities. Pluralism is proposed as an additional framework of ethical thinking in the pedagogical model, from which multiple identities, including cultural, ethnic, religious and gender perspectives, can be explored.

  1. Development of a common data model for scientific simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosiano, J. [Los Alamos National Lab., NM (United States); Butler, D.M. [Limit Point Systems, Inc. (United States); Matarazzo, C.; Miller, M. [Lawrence Livermore National Lab., CA (United States); Schoof, L. [Sandia National Lab., Albuquerque, NM (United States)

    1999-06-01

    The problem of sharing data among scientific simulation models is a difficult and persistent one. Computational scientists employ an enormous variety of discrete approximations in modeling physical processes on computers. Problems occur when models based on different representations are required to exchange data with one another, or with some other software package. Within the DOE`s Accelerated Strategic Computing Initiative (ASCI), a cross-disciplinary group called the Data Models and Formats (DMF) group, has been working to develop a common data model. The current model is comprised of several layers of increasing semantic complexity. One of these layers is an abstract model based on set theory and topology called the fiber bundle kernel (FBK). This layer provides the flexibility needed to describe a wide range of mesh-approximated functions as well as other entities. This paper briefly describes the ASCI common data model, its mathematical basis, and ASCI prototype development. These prototypes include an object-oriented data management library developed at Los Alamos called the Common Data Model Library or CDMlib, the Vector Bundle API from the Lawrence Livermore Laboratory, and the DMF API from Sandia National Laboratory.

  2. Scientific white paper on concentration-QTc modeling.

    Science.gov (United States)

    Garnett, Christine; Bonate, Peter L; Dang, Qianyu; Ferber, Georg; Huang, Dalong; Liu, Jiang; Mehrotra, Devan; Riley, Steve; Sager, Philip; Tornoe, Christoffer; Wang, Yaning

    2018-06-01

    The International Council for Harmonisation revised the E14 guideline through the questions and answers process to allow concentration-QTc (C-QTc) modeling to be used as the primary analysis for assessing the QTc interval prolongation risk of new drugs. A well-designed and conducted QTc assessment based on C-QTc modeling in early phase 1 studies can be an alternative approach to a thorough QT study for some drugs to reliably exclude clinically relevant QTc effects. This white paper provides recommendations on how to plan and conduct a definitive QTc assessment of a drug using C-QTc modeling in early phase clinical pharmacology and thorough QT studies. Topics included are: important study design features in a phase 1 study; modeling objectives and approach; exploratory plots; the pre-specified linear mixed effects model; general principles for model development and evaluation; and expectations for modeling analysis plans and reports. The recommendations are based on current best modeling practices, scientific literature and personal experiences of the authors. These recommendations are expected to evolve as their implementation during drug development provides additional data and with advances in analytical methodology.

  3. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  4. Energy modelling with SOPKA-E for the energy paths of the Commission of Inquiry on ''Future nuclear energy policy''

    International Nuclear Information System (INIS)

    Faude, D.

    1983-03-01

    The Commission of Inquiry on ''Future nuclear energy policy'' of the 8th Deutscher Bundestag has examined the question of the longterm exploitation of nuclear energy in the Federal Republic of Germany within a more general framework of energy policy and, for this purpose, created the concept of energy paths. To calculate these energy paths, the SOPKA-E simulation model has been developed and applied at the Karlsruhe Nuclear Research Center. In Chapter 2, the central part of this report, the form and contents of path modeling are described in detail. To help readers understand the energy paths concept, the general background of energy policy in the seventies, which gave rise to the contents of the energy paths, is outlined in a survey article in Chapter 1. Chapter 3 is a description of the energy projections contained in the joint expert opinion on the third updated version of the Energy Program in the light of the energy paths. In Chapter 4 some approaches - albeit fragmentary - are outlined which have been adopted by the Commission of Inquiry of the 9th Deutscher Bundestag in adapting energy paths to the present situation. The presentation in this report of the model computations with SOPKA-E is meant to be a documentation. (orig./UA) [de

  5. Blending Problem Based Learning and History of Science Approaches to Enhance Views about Scientific Inquiry: New Wine in an Old Bottle

    Science.gov (United States)

    Dogan, Nihal

    2017-01-01

    In 2016, the Program for International Student Assessment (PISA) showed that approximately 44.4% of students in Turkey obtained very low grades when their scientific knowledge was evaluated. In addition, the vast majority of students were shown to have no knowledge of basic scientific terms or concepts. Science teachers play a significant role in…

  6. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    Directory of Open Access Journals (Sweden)

    Joel Donna

    2013-07-01

    Full Text Available Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much time to use. Second-order barriers include perceptions that this technology would not promote face-to-face collaboration skills, would create social loafing situations, and beliefs that the technology does not help students understand the nature of science. Suggestions for mitigating these barriers within pre-service education technology courses are discussed. La technologie joue un rôle essentiel pour faciliter la collaboration au sein de la communauté scientifique. Les applications infonuagiques telles que Google Drive peuvent être utilisées pour donner forme à ce type de collaboration et pour appuyer le questionnement dans les cours de sciences du secondaire. On connaît pourtant peu les opinions que se font les futurs enseignants d’une telle utilisation des technologies collaboratives infonuagiques. Or, ces opinions pourraient influencer l’intégration future de ces technologies en salle de classe. Cette étude révèle plusieurs obstacles de premier plan, comme l’idée que l’utilisation de ces outils informatiques prend trop de temps. Parmi les obstacles de second plan, on note les perceptions selon lesquelles cette technologie ne promeut pas les compétences collaboratives de personne à personne, pose des problèmes de gestion de classe et n'aide pas les étudiants à comprendre la nature de la science. Des suggestions sont proposées pour atténuer ces obstacles dans les cours de technologie des programmes d’éducation.

  7. Modeling nonuniversal citation distributions: the role of scientific journals

    International Nuclear Information System (INIS)

    Yao, Zheng; Peng, Xiao-Long; Xu, Xin-Jian; Zhang, Li-Jie

    2014-01-01

    Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or less experienced, usually submit their most important work to prestigious journals which receive more citations than others. How to model the role of scientific journals in citation dynamics is of great importance. In this paper we address this issue through two approaches. One is the intrinsic heterogeneity of a paper determined by the impact factor of the journal publishing it. The other is the mechanism of a paper being cited which depends on its citations and prestige. We develop a model for citation networks via an intrinsic nodal weight function and an intuitive aging mechanism. The node’s weight is drawn from the distribution of impact factors of journals and the aging transition is a function of the citation and the prestige. The node-degree distribution of resulting networks shows nonuniversal scaling: the distribution decays exponentially for small degree and has a power-law tail for large degree, hence the dual behavior. The higher the impact factor of the journal, the larger the tipping point and the smaller the power exponent that are obtained. With the increase of the journal rank, this phenomenon will fade and evolve to pure power laws. (paper)

  8. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    Science.gov (United States)

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  9. Modeling Instruction of David Hestenes: a proposal of thematic modeling cycle and discussion of scientific literacy

    Directory of Open Access Journals (Sweden)

    Ednilson Sergio Ramalho de Souza

    2016-07-01

    Full Text Available The pedagogical work with mathematical modeling assumes investigate situations of reality. However, mental models formed from the contact with the experiential world are generally incompatible with the conceptual models. So David Hestenes supports the view that one of the biggest challenges of teaching and learning in science and mathematics is to coordinate conceptual models with mental models, which led to the elaboration of a didactic in mathematical modeling: Modeling Instruction. Our goal is to present a proposal for thematic modeling cycle drawn up in hestenesianos assumptions and discuss possibilities for scientific literacy. The main question was to know how to emerge indicators for scientific literacy for the proposed cycle. This is a bibliographic research in order to identify the available literature contributions on the subject and raise the possibility and challenges for the brazilian teaching science and mathematics. Preliminary results indicate that the proposed modeling cycle can develop indicators for scientific literacy of different natures.

  10. Development of a family nursing model for prevention of cancer and other noncommunicable diseases through an appreciative inquiry.

    Science.gov (United States)

    Jongudomkarn, Darunee; Macduff, Colin

    2014-01-01

    Cancer and non-communicable diseases are a major issue not only for the developed but also developing countries. Public health and primary care nursing offer great potential for primary and secondary prevention of these diseases through community and family-based approaches. Within Thailand there are related established educational curricula but less is known about how graduate practitioners enact ideas in practice and how these can influence policy at local levels. The aim of this inquiry was to develop family nursing practice in primary care settings in the Isaan region or Northeastern Thailand and to distill what worked well into a nursing model to guide practice. An appreciative inquiry approach involving analysis of written reports, focus group discussions and individual interviews was used to synthesize what worked well for fourteen family nurses involved in primary care delivery and to build the related model. Three main strategies were seen to offer a basis for optimal care delivery, namely: enacting a participatory action approach mobilizing families' social capital; using family nursing process; and implementing action strategies within communities. These were distilled into a new conceptual model. The model has some features in common with related community partnership models and the World Health Organization Europe Family Health Nurse model, but highlights practical strategies for family nursing enactment. The model offers a basis not only for planning and implementing family care to help prevent cancer and other diseases but also for education of nurses and health care providers working in communities. This articulation of what works in this culture also offers possible transference to different contexts internationally, with related potential to inform health and social care policies, and international development of care models.

  11. Fictional Inquiry

    DEFF Research Database (Denmark)

    Dindler, Christian; Iversen, Ole Sejer

    At designe i en fortællemæssig ramme giver brugere og designere mulighed for i fællesskab at udforske fremtidens it-anvendelser. Metoden hedder Fictional Inquiry, og den motiverer brugerne til at tænke ud over dagligdagens begrænsninger og sætte ord på ting i hverdagen, som ellers er svære...

  12. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  13. Collaboration Modality, Cognitive Load, and Science Inquiry Learning in Virtual Inquiry Environments

    Science.gov (United States)

    Erlandson, Benjamin E.; Nelson, Brian C.; Savenye, Wilhelmina C.

    2010-01-01

    Educational multi-user virtual environments (MUVEs) have been shown to be effective platforms for situated science inquiry curricula. While researchers find MUVEs to be supportive of collaborative scientific inquiry processes, the complex mix of multi-modal messages present in MUVEs can lead to cognitive overload, with learners unable to…

  14. Modeling aspects of human memory for scientific study.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico); Watson, Patrick (University of Illinois - Champaign-Urbana Beckman Institute); McDaniel, Mark A. (Washington University); Eichenbaum, Howard B. (Boston University); Cohen, Neal J. (University of Illinois - Champaign-Urbana Beckman Institute); Vineyard, Craig Michael; Taylor, Shawn Ellis; Bernard, Michael Lewis; Morrow, James Dan; Verzi, Stephen J.

    2009-10-01

    Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closer to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.

  15. Earth's Earliest Ecosystems in the C: The Use of Microbial Mats to Demonstrate General Principles of Scientific Inquiry and Microbial Ecology

    Science.gov (United States)

    Bebout, Brad M.; Bucaria, Robin

    2006-01-01

    Microbial mats are living examples of the most ancient biological communities on Earth. As Earth's earliest ecosystems, they are centrally important to understanding the history of life on our planet and are useful models for the search for life elsewhere. As relatively compact (but complete) ecosystems, microbial mats are also extremely useful for educational activities. Mats may be used to demonstrate a wide variety of concepts in general and microbial ecology, including the biogeochemical cycling of elements, photosynthesis and respiration, and the origin of the Earth's present oxygen containing atmosphere. Microbial mats can be found in a number of common environments accessible to teachers, and laboratory microbial mats can be constructed using materials purchased from biological supply houses. With funding from NASA's Exobiology program, we have developed curriculum and web-based activities centered on the use of microbial mats as tools for demonstrating general principles in ecology, and the scientific process. Our web site (http://microbes.arc.nasa.gov) includes reference materials, lesson plans, and a "Web Lab", featuring living mats maintained in a mini-aquarium. The site also provides information as to how research on microbial mats supports NASA's goals, and various NASA missions. A photo gallery contains images of mats, microscopic views of the organisms that form them, and our own research activities. An animated educational video on the web site uses computer graphic and video microscopy to take students on a journey into a microbial mat. These activities are targeted to a middle school audience and are aligned with the National Science Standards.

  16. Report for the Office of Scientific and Technical Information: Population Modeling of the Emergence and Development of Scientific Fields

    Energy Technology Data Exchange (ETDEWEB)

    Bettencourt, L. M. A. (LANL); Castillo-Chavez, C. (Arizona State University); Kaiser, D. (MIT); Wojick, D. E. (IIA)

    2006-10-04

    coarse-grained approach to modeling the time-evolution of scientific fields mathematically, through adaptive models of contagion. That is, our models are inspired by epidemic contact processes, but take into account the social interactions and processes whereby scientific ideas spread - social interactions gleaned from close empirical study of historical cases. Variations in model parameters can increase or hamper the speed at which a field develops. In this way, models for the spread of 'infectious' ideas can be used to identify pressure points in the process of innovation that may allow for the evaluation of possible interventions by those responsible for promoting innovation, such as funding agencies. This report is organized as follows: Section 2 introduces and discusses the population model used here to describe the dynamics behind the establishment of scientific fields. The approach is based on a succinct (coarse) description of contact processes between scientists, and is a simplified version of a general class of models developed in the course of this work. We selected this model based primarily on its ability to treat a wide range of data patterns efficiently, across several different scientific fields. We also describe our methods for estimating parameter values, our optimization techniques used to match the model to data, and our method of generating error estimates. Section 3 presents brief accounts of six case studies of scientific evolution, measured by the growth in number of active authors over time, and shows the results of fitting our model to these data, including extrapolations to the near future. Section 4 discusses these results and provides some perspectives on the values and limitations of the models used. We also discuss topics for further research which should improve our ability to predict (and perhaps influence) the course of future scientific research. Section 5 provides more detail on the broad class of epidemic models developed as

  17. How does the entrepreneurial orientation of scientists affect their scientific performance? Evidence from the Quadrant Model

    OpenAIRE

    Naohiro Shichijo; Silvia Rita Sedita; Yasunori Baba

    2013-01-01

    Using Stokes's (1997) "quadrant model of scientific research", this paper deals with how the entrepreneurial orientation of scientists affects their scientific performance by considering its impact on scientific production (number of publications), scientific prestige (number of forward citations), and breadth of research activities (interdisciplinarity). The results of a quantitative analysis applied to a sample of 1,957 scientific papers published by 66 scientists active in advanced materia...

  18. Comparison of Chemistry Learning Outcomes with Inquiry Learning Model and Learning Cycle 5E in Material Solubility and Solubility Multiplication Results

    Directory of Open Access Journals (Sweden)

    Nur Indah Firdausi

    2015-04-01

    Full Text Available Perbandingan Hasil Belajar Kimia dengan Model Pembelajaran Inquiry dan Learning Cycle 5E pada Materi Kelarutan dan Hasil Kali Kelarutan   Abstract: This research is aimed to compare the effectiveness between inquiry and LC 5E in solubility equilibria and the solubility product for students with different prior knowledge. The effectiveness of both learning models is measured from students learning outcome. This quasi experimental research uses factorial2x2 with posttest only design. Research samples are chosen using cluster random sampling. They are two classes of XI IPA SMAN 1 Kepanjen in the 2012/2013 academic year which consist of 31 students in each class. Cognitive learning outcome is measured by test items consist of four objective items and nine subjective items. Technique of data analysis in this research is two way ANOVA. Research results show that: (1 cognitive learning outcome and higher cognitive learning outcome of students in inquiry class is higher than students in LC 5E class; (2 cognitive learning outcome and higher cognitive learning outcome of students who have upper prior knowledge is higher than students who have lower prior knowledge in both inquiry and LC 5E. Key Words: learning outcome, inquiry, learning cycle 5E, solubility equilibria and the solubility product   Abstrak: Penelitian ini bertujuan membandingkan keefektifan model inquiry dan LC 5E pada materi kelarutan dan hasil kali kelarutan untuk siswa dengan kemampuan awal berbeda. Keefektifan model pembelajaran dilihat dari hasil belajar kognitif siswa. Penelitian ini menggunakan rancangan eksperimen semu dengan desain faktorial 2x2. Subjek penelitian dipilih secara cluster random sampling yaitu dua kelas XI IPA SMAN 1 Kepanjen dengan jumlah masing-masing kelas sebanyak 31 siswa. Instrumen perlakuan yang digunakan adalah silabus dan RPP sedangkan instrumen pengukuran berupa soal tes terdiri dari empat soal objektif dan sembilan soal subjektif. Teknik analisis data

  19. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  20. Preservice teachers working with narrative inquiry

    DEFF Research Database (Denmark)

    Daugbjerg, Peer

    Application of inquiry in teacher education is gaining momentum. Inquiry is used to build connections with the local community (Nicholas, Baker-Sennett, McClanahan, & Harwood, 2012), student-centered inquiry is used as a curricular model (Oliver et al., 2015), inquiry is used to accentuate......’-module is a 6 week full-time study including a 2 weeks stay at a youth folk high school, where the teacher students are to focus on a self-determined element of the praxis. The students are to study this focus through narrative inquiry based on the North-American tradition within narrative inquiry (Clandinin....... Aarhus; Kbh.: Klim; i samarbejde med Folkehøjskolernes Forening. Salerno, A. S., & Kibler, A. K. (2015). Questions they ask: Considering teacher-inquiry questions posed by pre-service english teachers. Educational Action Research, 23(3), 399-415....

  1. Tacit Beginnings Towards a Model of Scientific Thinking

    Science.gov (United States)

    Glass, Rory J.

    2013-10-01

    The purpose of this paper is to provide an examination of the role tacit knowledge plays in understanding, and to provide a model to make such knowledge identifiable. To do this I first consider the needs of society, the ubiquity of information in our world and the future demands of the science classroom. I propose the use of more implicit or tacit understandings as foundational elements for the development of student knowledge. To justify this proposition I consider a wide range of philosophical and psychological perspectives on knowledge. Then develop a Model of Scientific Knowledge, based in large part on a similar model created by Paul Ernest (Social constructivism as a philosophy of mathematics, SUNY Press, Albany, NY, 1998a; Situated cognition and the learning of mathematics, University of Oxford Department of Educational Studies, Oxford, 1998b). Finally, I consider the work that has been done by those in fields beyond education and the ways in which tacit knowledge can be used as a starting point for knowledge building.

  2. Knowledge about Inquiry: A Study in South African High Schools

    Science.gov (United States)

    Gaigher, Estelle; Lederman, Norman; Lederman, Judith

    2014-01-01

    This paper reports a study on South African learners' knowledge about scientific inquiry using the Views About Scientific Inquiry (VASI) Questionnaire. The sample consisted of 105 grade 11 learners from 7 schools across the socio-economic spectrum in a South African city. A rubric for scoring the VASI Questionnaire was developed and refined during…

  3. Internet Inquiry

    DEFF Research Database (Denmark)

    This collection of dialogues is the only textbook of its kind. Internet Inquiry: Conversations About Method takes students into the minds of top internet researchers as they discuss how they have worked through critical challenges as they research online social environments. Editors Annette N....... Markham and Nancy K. Baym illustrate that good research choices are not random but are deliberate, studied, and internally consistent. Rather than providing single "how to" answers, this book presents distinctive and divergent viewpoints on how to think about and conduct qualitative internet studies....

  4. Critical-Inquiry-Based-Learning: Model of Learning to Promote Critical Thinking Ability of Pre-service Teachers

    Science.gov (United States)

    Prayogi, S.; Yuanita, L.; Wasis

    2018-01-01

    This study aimed to develop Critical-Inquiry-Based-Learning (CIBL) learning model to promote critical thinking (CT) ability of preservice teachers. The CIBL learning model was developed by meeting the criteria of validity, practicality, and effectiveness. Validation of the model involves 4 expert validators through the mechanism of the focus group discussion (FGD). CIBL learning model declared valid to promote CT ability, with the validity level (Va) of 4.20 and reliability (r) of 90,1% (very reliable). The practicality of the model was evaluated when it was implemented that involving 17 of preservice teachers. The CIBL learning model had been declared practice, its measuring from learning feasibility (LF) with very good criteria (LF-score = 4.75). The effectiveness of the model was evaluated from the improvement CT ability after the implementation of the model. CT ability were evaluated using the scoring technique adapted from Ennis-Weir Critical Thinking Essay Test. The average score of CT ability on pretest is - 1.53 (uncritical criteria), whereas on posttest is 8.76 (critical criteria), with N-gain score of 0.76 (high criteria). Based on the results of this study, it can be concluded that developed CIBL learning model is feasible to promote CT ability of preservice teachers.

  5. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  6. Do science coaches promote inquiry-based instruction in the elementary science classroom?

    Science.gov (United States)

    Wicker, Rosemary Knight

    The South Carolina Mathematics and Science Coaching Initiative established a school-based science coaching model that was effective in improving instruction by increasing the level of inquiry-based instruction in elementary science classrooms. Classroom learning environment data from both teacher groups indicated considerable differences in the quality of inquiry instruction for those classrooms of teachers supported by a science coach. All essential features of inquiry were demonstrated more frequently and at a higher level of open-ended inquiry in classrooms with the support of a science coach than were demonstrated in classrooms without a science coach. However, from teacher observations and interviews, it was determined that elementary schoolteacher practice of having students evaluate conclusions and connect them to current scientific knowledge was often neglected. Teachers with support of a science coach reported changes in inquiry-based instruction that were statistically significant. This mixed ethnographic study also suggested that the Mathematics and Science Coaching Initiative Theory of Action for Instructional Improvement was an effective model when examining the work of science coaches. All components of effective school infrastructure were positively impacted by a variety of science coaching strategies intended to promote inquiry. Professional development for competent teachers, implementation of researched-based curriculum, and instructional materials support were areas highly impacted by the work of science coaches.

  7. A Simple Exercise Reveals the Way Students Think about Scientific Modeling

    Science.gov (United States)

    Ruebush, Laura; Sulikowski, Michelle; North, Simon

    2009-01-01

    Scientific modeling is an integral part of contemporary science, yet many students have little understanding of how models are developed, validated, and used to predict and explain phenomena. A simple modeling exercise led to significant gains in understanding key attributes of scientific modeling while revealing some stubborn misconceptions.…

  8. Building an Understanding of How Model-Based Inquiry Is Implemented in the High School Chemistry Classroom

    Science.gov (United States)

    Dass, Katarina; Head, Michelle L.; Rushton, Gregory T.

    2015-01-01

    Modeling as a scientific practice in K-12 classrooms has received a wealth of attention in the U.S. and abroad due to the advent of revised national science education standards. The study described herein investigated how a group of high school chemistry teachers developed their understanding of the nature and function of models in the precollege…

  9. ICTP: A Successful Model of International Scientific Collaboration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The importance of international scientific collaboration in the changing world where the centre of gravity of fundamental research may be moving towards the east and the south is addressed. The unique role of ICTP in supporting global science is highlighted.

  10. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  11. Charlotte: Scientific Modeling and Simulation Under the Software as a Service Paradigm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA spends considerable effort supporting the efforts of collaborating researchers. These researchers are interested in interacting with scientific models provided...

  12. The Coastal Zone: Man and Nature. An Application of the Socio-Scientific Reasoning Model.

    Science.gov (United States)

    Maul, June Paradise; And Others

    The curriculum model described here has been designed by incorporating the socio-scientific reasoning model with a simulation design in an attempt to have students investigate the onshore impacts of Outer Continental Shelf (OCS) gas and oil development. The socio-scientific reasoning model incorporates a logical/physical reasoning component as…

  13. High-Altitude Aggressions and Physiological Degeneration? The Biography of “Climate” as an Object of Scientific Inquiry in Colombia During the 19th and the Early 20th Centuries

    Directory of Open Access Journals (Sweden)

    Stefan Pohl-Valero

    2015-10-01

    Full Text Available Objective: to show the role played by experimental physiology in the way of understanding the effects of high-altitude climates on the functioning of the human body and the possibilities of progress of the Colombian nation throughout the 19th and early 20th centuries. Content: the transformation of the concept of climate as an object of scientific inquiry is explored over the studied period. This is done by analyzing investigations on respiratory capacity, nutrition and metabolism, blood chemistry and heart function in people of the eastern range of the Colombian Andes. Conclusions: beyond an institutional or disciplinary history of physiology, this article shows that some practices of experimental physiology played a role in the process of represent­ing the Colombian nation, territory, and population. The inhabitants of the Andean highlands were understood not only in terms of race and innate abilities, but also in terms of social classes and organic transformations. The idea that there was a supposed process of “physiological de­generation”, decreasing the efficiency of high-altitude workers, was tried to compensate through a “rational diet”.

  14. Incorporating Inquiry into Upper-Level Homework Assignments: The Mini-Journal

    Science.gov (United States)

    Whittington, A. G.; Speck, A. K.; Witzig, S. B.; Abell, S. K.

    2009-12-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. As part of an NSF-funded project, “CUES: Connecting Undergraduates to the Enterprise of Science,” new inquiry-based homework materials were developed for two upper-level classes at the University of Missouri: Geochemistry (required for Geology majors), and Solar System Science (open to seniors and graduate students, co-taught and cross-listed between Geology and Physics & Astronomy). We engage students in inquiry-based learning by presenting homework exercises as “mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. Mini-journals replace traditional homework problem sets with a format that more directly reflects and encourages scientific practice. Students are engaged in inquiry-based homework which encompass doing, thinking, and communicating, while the minijournal allows the instructor to contain lines of inquiry within the limits posed by available resources. In the examples we present, research is conducted via spreadsheet modeling, where the students develop their own spreadsheets. The key differences between the old and new formats include (i) the active participation of the students in

  15. Modeling scientific research articles : shifting perspectives and persistent issues

    NARCIS (Netherlands)

    De Waard, Anita; Kircz, Joost

    2008-01-01

    We review over 10 years of research at Elsevier and various Dutch academic institutions on establishing a new format for the scientific research article. Our work rests on two main theoretical principles: the concept of modular documents, consisting of content elements that can exist and be

  16. Generating Testable Questions in the Science Classroom: The BDC Model

    Science.gov (United States)

    Tseng, ChingMei; Chen, Shu-Bi Shu-Bi; Chang, Wen-Hua

    2015-01-01

    Guiding students to generate testable scientific questions is essential in the inquiry classroom, but it is not easy. The purpose of the BDC ("Big Idea, Divergent Thinking, and Convergent Thinking") instructional model is to to scaffold students' inquiry learning. We illustrate the use of this model with an example lesson, designed…

  17. Nematodes: Model Organisms in High School Biology

    Science.gov (United States)

    Bliss, TJ; Anderson, Margery; Dillman, Adler; Yourick, Debra; Jett, Marti; Adams, Byron J.; Russell, RevaBeth

    2007-01-01

    In a collaborative effort between university researchers and high school science teachers, an inquiry-based laboratory module was designed using two species of insecticidal nematodes to help students apply scientific inquiry and elements of thoughtful experimental design. The learning experience and model are described in this article. (Contains 4…

  18. Using GIS with real-time water quality assessment to guide scientific inquiry and learning in a community college environmental studies program

    Science.gov (United States)

    Schwartz, M. C.; Beauregard, A.

    2011-12-01

    The overarching goal of this project is to introduce community college students to the use of environmental analytical technology and geographical information systems (GIS) through the development of a new course in Aquatic Environmental Science at Northwest Florida State College (NWFSC), a community college in Niceville, FL. During the new course, NWFSC students are guided by an instructor from NWFSC and one from the local university, the University of West Florida (UWF), as well as a UWF graduate student. Students learn to use field instruments to measure water quality variables (temperature, salinity, dissolved oxygen, and nutrients) during several field trips on a local estuary. While still in the field, students on multiple boats in different parts of the estuary use a wireless broadband interface to upload field data to a web-based GIS system interface developed by commissioned GIS professionals. This GIS system compiles the data and generates maps to show a whole-basin view of variations in water quality parameters that students access from the field. The capstone of each field trip is a "floating classroom" during which students and instructors discuss summary results, test field hypotheses, and compare results with historical data collected during previous field trips. Our continuing assessment of the impact on student learning of this real-time geospatial assessment suggests that student interest in environmental science and technology has been positively affected by the use of these methods. Furthermore, students show considerable improvement in their use of the technology and their understanding of the related scientific concepts (e.g., aquatic biogeochemistry). While the primary goal of this course is the academic benefit provided to NWFSC students, the in-class sampling also provides access to important data that can be used to support ongoing research by both authors. We are currently assessing the precision of the data collected by NWFSC students in

  19. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

    Science.gov (United States)

    Archer, Lester A. C.; Ng, Karen E.

    2016-01-01

    The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

  20. The Scientific Theory Profile: A Philosophy of Science Model for Science Teachers.

    Science.gov (United States)

    Loving, Cathleen

    The model developed for use with science teachers--called the Scientific Theory Profile--consists of placing three well-known philosophers of science on a grid, with the x-axis being their methods for judging theories (rational vs. natural) and the y-axis being their views on scientific theories representing the Truth versus mere models of what…

  1. Refining Inquiry with Multi-Form Assessment: Formative and Summative Assessment Functions for Flexible Inquiry

    Science.gov (United States)

    Zuiker, Steven; Whitaker, J. Reid

    2014-01-01

    This paper describes the 5E+I/A inquiry model and reports a case study of one curricular enactment by a US fifth-grade classroom. A literature review establishes the model's conceptual adequacy with respect to longstanding research related to both the 5E inquiry model and multiple, incremental innovations of it. As a collective line of research,…

  2. The Aysen Glacier Trail (AGT): Fostering leadership and personal growth towards understanding our place in the environment through experiential learning and scientific inquiry in northern Patagonia, Chile

    Science.gov (United States)

    Sincavage, R.; Chambers, F. B.; Leidich, J.

    2017-12-01

    The Colonia Glacier, a low elevation mid-latitude glacier, drains the lee side of the central division of the Northern Patagonian Ice Field (NPI). As such, it serves as a microcosm of conditions on the NPI as a whole. Glaciers of this type have experienced extreme variability in Holocene thickness and extent, making them excellent indicators of local and regional climate conditions. Glacial lake outburst floods (GLOFs) originating in the remote Cachet Basin, dammed by the Colonia Glacier, have increased in frequency from once every 10 years to 3 times annually since 2008. These flood events are important in that they 1.) directly impact the livelihoods of downstream residents, 2.) may be linked to the overall health of the Colonia Glacier and, to a larger extent, the NPI, 3.) provide a natural laboratory for studying the dynamics of large flood events, and 4.) have downcut the sediments sequestered in the upper basin, revealing a rich Holocene sedimentologic and climate record. With improved access to this remote region through local partners in recent years, outstanding opportunities for scientific discovery, education, and outreach exist in one of the most beautiful and least-studied glacial regions on Earth. We propose establishing an NSF REU site here to further develop the abundant educational and research opportunities in this spectacular locale. We envision students participating under the REU will receive a broad-based background in glaciology and sedimentology prior to the field experience, and then participate in basic field research led by the PIs into understanding recent and Holocene linkages between climate change and the glacio-fluvio geomorphology of the NPI. A pilot program of 13 U.S. and Chilean students with wide-ranging backgrounds and degree levels was conducted in the winter of 2015-16. A two week backcountry trek across rocky terrain, mountain streams, active glaciers, and proglacial lakes in this seldom-visited region immersed the students

  3. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  4. Learning Analytics for Communities of Inquiry

    Science.gov (United States)

    Kovanovic, Vitomir; Gaševic, Dragan; Hatala, Marek

    2014-01-01

    This paper describes doctoral research that focuses on the development of a learning analytics framework for inquiry-based digital learning. Building on the Community of Inquiry model (CoI)--a foundation commonly used in the research and practice of digital learning and teaching--this research builds on the existing body of knowledge in two…

  5. MODELING OF INNOVATION EDUCATIONAL ENVIRONMENT OF GENERAL EDUCATIONAL INSTITUTION: THE SCIENTIFIC APPROACHES

    OpenAIRE

    Anzhelika D. Tsymbalaru

    2010-01-01

    In the paper the scientific approaches to modeling of innovation educational environment of a general educational institution – system (analysis of object, process and result of modeling as system objects), activity (organizational and psychological structure) and synergetic (aspects and principles).

  6. THE EFFECTIVENESS OF CTL MODEL GUIDED INQUIRI-BASED IN THE TOPIC OF CHEMICALS IN DAILY LIFE TO IMPROVE STUDENTS’ LEARNING OUTCOMES AND ACTIVENESS

    OpenAIRE

    N. R. Fitriani; A. Widiyatmoko; M. Khusniati

    2016-01-01

    Science learning in school can be applied by connecting the material in the learning with real life. However in fact science learning process in SMP Negeri 10 Magelang has not emphasized students’ activity to relate science to real life. Learning science using CTL guided inquiry-based model implement the learning in where teacher provides initial questions related issues or events in everyday life, then students do experiments to prove concepts of science guided by teacher.The purpose of this...

  7. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching. This review identifies both the strengths and weaknesses of each of these case studies. It is the first to go beyond examining the impact of specific inquiry instructional approaches to offer a synthesis of cases. We find that inquiry teaching can succeed by concretising scientific processes, providing access to global data and evidence, imparting critical and higher order thinking about AGCC science policy and contextualising learning with places and scientific facts. We recommend educational researchers and scientists collaborate to create and refine curricula that utilise geospatial technologies, climate models and communication technologies to bring students into contact with scientists, climate data and authentic AGCC research processes. Many available science education technologies and curricula also require further research to maximise trade-offs between implementation and training costs and their educational value.

  8. Mobile Inquiry Based Learning

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 8 November). Mobile Inquiry Based Learning. Presentation given at the Workshop "Mobile inquiry-based learning" at the Mobile Learning Day 2012 at the Fernuniversität Hagen, Hagen, Germany.

  9. TSA Public Inquiry Data

    Data.gov (United States)

    Department of Homeland Security — All non-media public inquiries and complaints and responses to inquiries received by telephone, e-mail and fax, and handles contacts in English and Spanish. The data...

  10. Experimental Comparison of Inquiry and Direct Instruction in Science

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Applegate, Brooks; Skjold, Brandy; Undreiu, Adriana; Loving, Cathleen C.; Gobert, Janice D.

    2010-01-01

    There are continuing educational and political debates about "inquiry" versus "direct" teaching of science. Traditional science instruction has been largely direct but in the US, recent national and state science education standards advocate inquiry throughout K-12 education. While inquiry-based instruction has the advantage of modelling aspects…

  11. Maternal death inquiry and response in India - the impact of contextual factors on defining an optimal model to help meet critical maternal health policy objectives

    Directory of Open Access Journals (Sweden)

    Kalter Henry D

    2011-11-01

    Full Text Available Abstract Background Maternal death reviews have been utilized in several countries as a means of identifying social and health care quality issues affecting maternal survival. From 2005 to 2009, a standardized community-based maternal death inquiry and response initiative was implemented in eight Indian states with the aim of addressing critical maternal health policy objectives. However, state-specific contextual factors strongly influenced the effort's success. This paper examines the impact and implications of the contextual factors. Methods We identified community, public health systems and governance related contextual factors thought to affect the implementation, utilization and up-scaling of the death inquiry process. Then, according to selected indicators, we documented the contextual factors' presence and their impact on the process' success in helping meet critical maternal health policy objectives in four districts of Rajasthan, Madhya Pradesh and West Bengal. Based on this assessment, we propose an optimal model for conducting community-based maternal death inquiries in India and similar settings. Results The death inquiry process led to increases in maternal death notification and investigation whether civil society or government took charge of these tasks, stimulated sharing of the findings in multiple settings and contributed to the development of numerous evidence-based local, district and statewide maternal health interventions. NGO inputs were essential where communities, public health systems and governance were weak and boosted effectiveness in stronger settings. Public health systems participation was enabled by responsive and accountable governance. Communities participated most successfully through India's established local governance Panchayat Raj Institutions. In one instance this led to the development of a multi-faceted intervention well-integrated at multiple levels. Conclusions The impact of several contextual

  12. Context-Model-Based Instruction in Teaching EFL Writing: A Narrative Inquiry

    Science.gov (United States)

    Lin, Zheng

    2016-01-01

    This study aims to re-story the provision of the context-model-based instruction in teaching EFL writing, focusing especially on students' development of the context model and learning to guide EFL writing with the context model. The research data have been collected from the audio recordings of the classroom instruction, the teacher-researcher's…

  13. Complexity-Based Modeling of Scientific Capital: An Outline of Mathematical Theory

    Directory of Open Access Journals (Sweden)

    Yurij L. Katchanov

    2014-01-01

    measuring and assessing the accumulated recognition and the specific scientific power. The concept of scientific capital developed by Bourdieu is used in international social science research to explain a set of scholarly properties and practices. Mathematical modeling is applied as a lens through which the scientific capital is addressed. The principal contribution of this paper is an axiomatic characterization of scientific capital in terms of natural axioms. The application of the axiomatic method to scientific capital reveals novel insights into problem still not covered by mathematical modeling. Proposed model embraces the interrelations between separate sociological variables, providing a unified sociological view of science. Suggested microvariational principle is based upon postulate, which affirms that (under suitable conditions the observed state of the agent in scientific field maximizes scientific capital. Its value can be roughly imagined as a volume of social differences. According to the considered macrovariational principle, the actual state of scientific field makes so-called energy functional (which is associated with the distribution of scientific capital minimal.

  14. Personal Inquiry Manager

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Specht, Marcus

    2014-01-01

    The Personal Inquiry Manager (PIM) is an integration approach based on a mobile application, based on Android, to support the IBL process and gives users mobile access to their inquiries. Moreover it facilitates a more self-directed approach as it enables to set up their own personal inquiries. The

  15. Stimulating Scientific Reasoning with Drawing-Based Modeling

    Science.gov (United States)

    Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank

    2018-01-01

    We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each…

  16. Teaching-based research: Models of and experiences with students doing research and inquiry – results from a university-wide initiative in a research-intensive environment

    DEFF Research Database (Denmark)

    Rump, Camilla Østerberg; Damsholt, Tine; Sandberg, Marie

    , where students coproduce knowledge together with teachers. Two case studies, (3) and (4), also relate to students engaging in research-like activities, where students are engaged in inquiry, but do not produce new knowledge as such. One project was done across faculties (3), one was done...... a two-dimensional model distinguish between different research-based forms of teaching: Research-led: Students are mainly an audience, emphasis on research content • Students learn about current research in the discipline. Research-oriented: Students are mainly an audience, emphasis on research...... processes and problems • Students develop research skills and techniques. Research-based: Student are active, emphasis on research processes and problems • Students undertake research and inquiry. Research-tutored: Student are active, emphasis on research content • Students engage in research discussions...

  17. Working environment with social and personal open tools for inquiry based learning: Pedagogic and diagnostic frameworks

    NARCIS (Netherlands)

    Protopsaltis, Aristos; Seitlinger, Paul; Chaimala, Foteini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, Kitty; Boytchev, Pavel

    2014-01-01

    The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it

  18. Mass Media and Global Warming: A Public Arenas Model of the Greenhouse Effect's Scientific Roots.

    Science.gov (United States)

    Neuzil, Mark

    1995-01-01

    Uses the Public Arenas model to examine the historical roots of the greenhouse effect issue as communicated in scientific literature from the early 1800s to modern times. Utilizes a constructivist approach to discuss several possible explanations for the rise and fall of global warming as a social problem in the scientific arena. (PA)

  19. Attitudes of Pre-Service Mathematics Teachers towards Modelling: A South African Inquiry

    Science.gov (United States)

    Jacobs, Gerrie J.; Durandt, Rina

    2017-01-01

    This study explores the attitudes of mathematics pre-service teachers, based on their initial exposure to a model-eliciting challenge. The new Curriculum and Assessment Policy Statement determines that mathematics students should be able to identify, investigate and solve problems via modelling. The unpreparedness of mathematics teachers in…

  20. Periodic Properties and Inquiry: Student Mental Models Observed during a Periodic Table Puzzle Activity

    Science.gov (United States)

    Larson, Kathleen G.; Long, George R.; Briggs, Michael W.

    2012-01-01

    The mental models of both novice and advanced chemistry students were observed while the students performed a periodic table activity. The mental model framework seems to be an effective way of analyzing student behavior during learning activities. The analysis suggests that students do not recognize periodic trends through the examination of…

  1. Teacher (and District) Research: Three Inquiries into the Picture Word Inductive Model.

    Science.gov (United States)

    Calhoun, Emily; Poirier, Tracy; Simon, Nicole; Mueller, Lisa

    Three Canadian teachers (an English language first grade teacher, a French immersion first grade teacher, and a grade four/five teacher of students with special needs) used an action research framework and a multidimensional model of teaching to study and expand their literacy strategies and watch the effects on their students. The model they…

  2. Scientific Playworlds: a Model of Teaching Science in Play-Based Settings

    Science.gov (United States)

    Fleer, Marilyn

    2017-09-01

    Eminent scientists, like Einstein, worked with theoretical contradiction, thought experiments, mental models and visualisation—all characteristics of children's play. Supporting children's play is a strength of early childhood teachers. Promising research shows a link between imagination in science and imagination in play. A case study of 3 preschool teachers and 26 children (3.6-5.9 years; mean age of 4.6 years) over 6 weeks was undertaken, generating 59.6 h of digital observations and 788 photographs of play practices. The research sought to understand (1) how imaginative play promotes scientific learning and (2) examined how teachers engaged children in scientific play. Although play pedagogy is a strength of early childhood teachers, it was found that transforming imaginary situations into scientific narratives requires different pedagogical characteristics. The study found that the building of collective scientific narratives alongside of discourses of wondering were key determinants of science learning in play-based settings. Specifically, the pedagogical principles of using a cultural device that mirrors the science experiences, creating imaginary scientific situations, collectively building scientific problem situations, and imagining the relations between observable contexts and non-observable concepts, changed everyday practices into a scientific narrative and engagement. It is argued that these unique pedagogical characteristics promote scientific narratives in play-based settings. An approach, named as Scientific Playworlds, is presented as a possible model for teaching science in play-based settings.

  3. Integration of Environmental Issues in a Physics Course: 'Physics by Inquiry' High School Teachers' Integration Models and Challenges

    Science.gov (United States)

    Kimori, David Abiya

    As we approach the second quarter of the twenty-first century, one may predict that the environment will be among the dominant themes in the political and educational discourse. Over the past three decades, particular perspectives regarding the environment have begun to emerge: (i) realization by human beings that we not only live on earth and use its resources at an increasingly high rate but we also actually belong to the earth and the total ecology of all living systems, (ii) there are strong interactions among different components of the large and complex systems that make up our environment, and (iii) the rising human population and its impact on the environment is a great concern (Hughes & Mason, 2014). Studies have revealed that although the students do not have a deep understanding of environmental issues and lack environmental awareness and attitudes necessary for protecting the environment, they have great concern for the environment (Chapman & Sharma, 2001; Fien, Yencken, & Sykes, 2002). However, addressing environmental issues in the classroom and other disciplines has never been an easy job for teachers (Pennock & Bardwell, 1994; Edelson, 2007). Using multiple case studies, this study investigated how three purposefully selected physics teachers teaching a 'Physics by Inquiry' course integrated environmental topics and issues in their classroom. Particularly this study looked at what integration models and practices the three physics teachers employed in integrating environmental topics and issues in their classroom and what challenges the teachers faced while integrating environmental topics in their classrooms. Data collection methods including field notes taken from observations, teachers' interviews and a collection of artifacts and documents were used. The data were coded analyzed and organized into codes and categories guided by Fogarty (1991) models of curriculum integration and Ham and Sewing (1988) four categories of barriers to environmental

  4. A methodology for constructing the calculation model of scientific spreadsheets

    NARCIS (Netherlands)

    Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.

    2015-01-01

    Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are

  5. A germ for young European scientists: Drawing-based modelling.

    NARCIS (Netherlands)

    van Joolingen, Wouter

    2017-01-01

    An important movement in European science education is that learning should be inquiry-based and represents realistic scientific practice. The inquiry-based nature of science education is essential to interest more young people for a career in science and technology. Creating models is broadly seen

  6. Naturalistic Inquiry in E-Learning Research

    Directory of Open Access Journals (Sweden)

    Shirley Agostinho

    2005-03-01

    Full Text Available In this article, the author explains how and why one particular qualitative research approach, the naturalistic inquiry paradigm, was implemented in an e-learning research study that investigated the use of the World Wide Web technology in higher education. A framework is presented that situates the research study within the qualitative research literature. The author then justifies how the study was compliant with naturalistic inquiry and concludes by presenting a model for judging the quality of such research. The purpose of this article is to provide an example of how naturalistic inquiry can be implemented in e-learning research that can serve as a guide for researchers undertaking this form of qualitative inquiry. As such, the focus of the article is to illustrate how methodological issues pertaining to naturalistic inquiry were addressed and justified to represent a rigorous research approach rather than presenting the results of the research study.

  7. GeoPro: Technology to Enable Scientific Modeling

    International Nuclear Information System (INIS)

    C. Juan

    2004-01-01

    Development of the ground-water flow model for the Death Valley Regional Groundwater Flow System (DVRFS) required integration of numerous supporting hydrogeologic investigations. The results from recharge, discharge, hydraulic properties, water level, pumping, model boundaries, and geologic studies were integrated to develop the required conceptual and 3-D framework models, and the flow model itself. To support the complex modeling process and the needs of the multidisciplinary DVRFS team, a hardware and software system called GeoPro (Geoscience Knowledge Integration Protocol) was developed. A primary function of GeoPro is to manage the large volume of disparate data compiled for the 100,000-square-kilometer area of southern Nevada and California. The data are primarily from previous investigations and regional flow models developed for the Nevada Test Site and Yucca Mountain projects. GeoPro utilizes relational database technology (Microsoft SQL Server(trademark)) to store and manage these tabular point data, groundwater flow model ASCII data, 3-D hydrogeologic framework data, 2-D and 2.5-D GIS data, and text documents. Data management consists of versioning, tracking, and reporting data changes as multiple users access the centralized database. GeoPro also supports the modeling process by automating the routine data transformations required to integrate project software. This automation is also crucial to streamlining pre- and post-processing of model data during model calibration. Another function of GeoPro is to facilitate the dissemination and use of the model data and results through web-based documents by linking and allowing access to the underlying database and analysis tools. The intent is to convey to end-users the complex flow model product in a manner that is simple, flexible, and relevant to their needs. GeoPro is evolving from a prototype system to a production-level product. Currently the DVRFS pre- and post-processing modeling tools are being re

  8. Effects of face-to-face versus chat communication on performance in a collaborative inquiry modeling task

    NARCIS (Netherlands)

    Sins, P.H.M.; Savelsbergh, E.R.; van Joolingen, W.R.; van Hout-Wolters, B.H.A.M.

    2011-01-01

    In many contemporary collaborative inquiry learning environments, chat is being used as a means for communication. Still, it remains an open issue whether chat communication is an appropriate means to support the deep reasoning process students need to perform in such environments. Purpose of the

  9. Effects of Face-to-Face versus Chat Communication on Performance in a Collaborative Inquiry Modeling Task

    Science.gov (United States)

    Sins, Patrick H. M.; Savelsbergh, Elwin R.; van Joolingen, Wouter R.; van Hout-Wolters, Bernadette H. A. M.

    2011-01-01

    In many contemporary collaborative inquiry learning environments, chat is being used as a means for communication. Still, it remains an open issue whether chat communication is an appropriate means to support the deep reasoning process students need to perform in such environments. Purpose of the present study was to compare the impact of chat…

  10. The Community of Inquiry Framework Meets the SOLO Taxonomy: A Process-Product Model of Online Learning

    Science.gov (United States)

    Shea, Peter; Gozza-Cohen, Mary; Uzuner, Sedef; Mehta, Ruchi; Valtcheva, Anna Valentinova; Hayes, Suzanne; Vickers, Jason

    2011-01-01

    This paper presents both a conceptual and empirical investigation of teaching and learning in online courses. Employing both the Community of Inquiry framework (CoI) and the Structure of Observed Learning Outcomes (SOLO) taxonomy, two complete online courses were examined for the quality of both collaborative learning processes and learning…

  11. Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model

    Science.gov (United States)

    Hardianti, D.; Priatna, N.; Priatna, B. A.

    2017-09-01

    This research aims to analysis students’ geometric thinking ability and theoretically examine the process-oriented guided iquiry (POGIL) model. This study uses qualitative approach with descriptive method because this research was done without any treatment on subjects. Data were collected naturally. This study was conducted in one of the State Junior High School in Bandung. The population was second grade students and the sample was 32 students. Data of students’ geometric thinking ability were collected through geometric thinking test. These questions are made based on the characteristics of geometry thinking based on van hiele’s theory. Based on the results of the analysis and discussion, students’ geometric thinking ability is still low so it needs to be improved. Therefore, an effort is needed to overcome the problems related to students’ geometric thinking ability. One of the efforts that can be done by doing the learning that can facilitate the students to construct their own geometry concept, especially quadrilateral’s concepts so that students’ geometric thinking ability can enhance maximally. Based on study of the theory, one of the learning models that can enhance the students’ geometric thinking ability is POGIL model.

  12. U.S. Geoid Heights, Scientific Model (G96SSS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the conterminous United States is the G96SSS model. The computation used about 1.8 million terrestrial and marine gravity data held in...

  13. Process modeling for Humanities: tracing and analyzing scientific processes

    OpenAIRE

    Hug , Charlotte; Salinesi , Camille; Deneckere , Rebecca; Lamasse , Stéphane

    2011-01-01

    International audience; This paper concerns epistemology and the understanding of research processes in Humanities, such as Archaeology. We believe that to properly understand research processes, it is essential to trace them. The collected traces depend on the process model established, which has to be as accurate as possible to exhaustively record the traces. In this paper, we briefly explain why the existing process models for Humanities are not sufficient to represent traces. We then pres...

  14. Standing Waves and Inquiry Using Water Droplets

    Science.gov (United States)

    Sinclair, Dina; Vondracek, Mark

    2015-01-01

    Most high school and introductory college physics classes study simple harmonic motion and various wave phenomena. With the majority of states adopting the Next Generation Science Standards and pushing students to explore the scientific process for themselves, there is a growing demand for hands-on inquiry activities that involve and develop more…

  15. Students' Attitude in a Web-enhanced Hybrid Course: A Structural Equation Modeling Inquiry

    OpenAIRE

    Cheng-Chang Sam Pan; Stephen Sivo; James Brophy

    2003-01-01

    The present study focuses on five latent factors affecting students use of WebCT in a Web-enhanced hybrid undergraduate course at a southeastern university in the United States. An online questionnaire is used to measure a hypothetic model composed of two exogenous variables (i.e., subjective norm and computer self-efficacy), three endogenous variables (i.e., perceived ease of use, perceived usefulness, and attitude toward WebCT use), one dependent variable (i.e., actual system use), and elev...

  16. An evidence-based patient-centered method makes the biopsychosocial model scientific.

    Science.gov (United States)

    Smith, Robert C; Fortin, Auguste H; Dwamena, Francesca; Frankel, Richard M

    2013-06-01

    To review the scientific status of the biopsychosocial (BPS) model and to propose a way to improve it. Engel's BPS model added patients' psychological and social health concerns to the highly successful biomedical model. He proposed that the BPS model could make medicine more scientific, but its use in education, clinical care, and, especially, research remains minimal. Many aver correctly that the present model cannot be defined in a consistent way for the individual patient, making it untestable and non-scientific. This stems from not obtaining relevant BPS data systematically, where one interviewer obtains the same information another would. Recent research by two of the authors has produced similar patient-centered interviewing methods that are repeatable and elicit just the relevant patient information needed to define the model at each visit. We propose that the field adopt these evidence-based methods as the standard for identifying the BPS model. Identifying a scientific BPS model in each patient with an agreed-upon, evidence-based patient-centered interviewing method can produce a quantum leap ahead in both research and teaching. A scientific BPS model can give us more confidence in being humanistic. In research, we can conduct more rigorous studies to inform better practices. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Involving mental health service users in suicide-related research: a qualitative inquiry model.

    Science.gov (United States)

    Lees, David; Procter, Nicholas; Fassett, Denise; Handley, Christine

    2016-03-01

    To describe the research model developed and successfully deployed as part of a multi-method qualitative study investigating suicidal service-users' experiences of mental health nursing care. Quality mental health care is essential to limiting the occurrence and burden of suicide, however there is a lack of relevant research informing practice in this context. Research utilising first-person accounts of suicidality is of particular importance to expanding the existing evidence base. However, conducting ethical research to support this imperative is challenging. The model discussed here illustrates specific and more generally applicable principles for qualitative research regarding sensitive topics and involving potentially vulnerable service-users. Researching into mental health service users with first-person experience of suicidality requires stakeholder and institutional support, researcher competency, and participant recruitment, consent, confidentiality, support and protection. Research with service users into their experiences of sensitive issues such as suicidality can result in rich and valuable data, and may also provide positive experiences of collaboration and inclusivity. If challenges are not met, objectification and marginalisation of service-users may be reinforced, and limitations in the evidence base and service provision may be perpetuated.

  18. Students' Attitude in a Web-enhanced Hybrid Course: A Structural Equation Modeling Inquiry

    Directory of Open Access Journals (Sweden)

    Cheng-Chang Sam Pan

    2003-12-01

    Full Text Available The present study focuses on five latent factors affecting students use of WebCT in a Web-enhanced hybrid undergraduate course at a southeastern university in the United States. An online questionnaire is used to measure a hypothetic model composed of two exogenous variables (i.e., subjective norm and computer self-efficacy, three endogenous variables (i.e., perceived ease of use, perceived usefulness, and attitude toward WebCT use, one dependent variable (i.e., actual system use, and eleven demographic items. PROC CALIS is used to analyze the data collected. Results suggest the technology acceptance model may not be applicable to the higher education setting. However, student attitude toward WebCT instruction remains a significant determinant to WebCT use on a non-voluntary basis. Educational achievement (i.e., student final grades is regressed on the attitude factor as an outcome variable.Suggestions for practitioners and researchers in the field are mentioned.

  19. Modeling with data tools and techniques for scientific computing

    CERN Document Server

    Klemens, Ben

    2009-01-01

    Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods

  20. Statistical modelling of usual intake. Scientific report submitted to EFSA

    NARCIS (Netherlands)

    Voet, van der H.; Klaveren, van J.D.; Arcella, D.; Bakker, M.; Boeing, H.; Boon, P.E.; Crépét, A.; Dekkers, A.; Boer, de W.; Dodd, K.W.; Ferrari, P.; Goedhart, P.W.; Hart, A.; Heijden, van der G.W.A.M.; Kennedy, M.; Kipnis, V.; Knüppel, S.; Merten, C.; Ocké, M.; Slob, W.

    2010-01-01

    Within the EFSA Article 36 project “European Tool Usual Intake” (ETUI) a workshop was organised in May 2010 where the different available models to calculate usual intake were presented and discussed. This report integrates the workshop background document, the presentations given by experts, and

  1. Tacit Beginnings towards a Model of Scientific Thinking

    Science.gov (United States)

    Glass, Rory J.

    2013-01-01

    The purpose of this paper is to provide an examination of the role tacit knowledge plays in understanding, and to provide a model to make such knowledge identifiable. To do this I first consider the needs of society, the ubiquity of information in our world and the future demands of the science classroom. I propose the use of more implicit or…

  2. Teaching Art Criticism As Aesthetic Inquiry

    Science.gov (United States)

    Ecker, David W.

    1972-01-01

    The teaching model in the visual arts will be derived less from the painter and more from the art critic as art education moves into aesthetic inquiry. There are implications for other arts as well. (Editor)

  3. The influence of a Classroom Model of Scientific Scholarship on Four Girls' Trajectories of Identification with Science

    Science.gov (United States)

    Cook, Melissa Sunshine

    This study examines the teacher's role in shaping the identity construction resources available in a classroom and the ways in which individual students take up, modify, and appropriate those resources to construct themselves as scientists through interaction with their teacher and peers. Drawing on frameworks of identity construction and social positioning, I propose that the locally-negotiated classroom-level cultural model of what it means to be a "good" science student forms the arena in which students construct a sense of their own competence at, affiliation with, and interest in science. The setting for this study was a 6th grade science class at a progressive urban elementary school whose population roughly represents the ethnic and socioeconomic diversity of the state of California. The teacher was an experienced science and math teacher interested in social justice and inquiry teaching. Drawing from naturalistic observations, video and artifact analysis, survey data, and repeated interviews with students and the teacher, I demonstrated what it meant to be a "good" science student in this particular cultural community by analyzing what was required, reinforced, and rewarded in this classroom. Next, I traced the influence of this particular classroom's conception of what it meant to be good at science on the trajectories of identification with science of four 6th grade girls selected to represent a variety of stances towards science, levels of classroom participation, and personal backgrounds. Scientific scholarship in this class had two parts: values related to science as a discipline, and a more generic set of school-related values one might see in any classroom. Different meanings of and values for science were indexed in the everyday activities of the classroom: science as a language for describing the natural world, science as a set of rhetorical values, science as an adult social community, and science as a place for mess and explosions. Among school

  4. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  5. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    Directory of Open Access Journals (Sweden)

    Gryk Michael R

    2007-01-01

    Full Text Available Abstract Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting

  6. The Impact of Inquiry Based Instruction on Science Process Skills and Self-Efficacy Perceptions of Pre-Service Science Teachers at a University Level Biology Laboratory

    Science.gov (United States)

    Sen, Ceylan; Sezen Vekli, Gülsah

    2016-01-01

    The aim of this study is to determine the influence of inquiry-based teaching approach on pre-service science teachers' laboratory self-efficacy perceptions and scientific process skills. The quasi experimental model with pre-test-post-test control group design was used as an experimental design in this research. The sample of this study included…

  7. Scientific models red atoms, white lies and black boxes in a yellow book

    CERN Document Server

    Gerlee, Philip

    2016-01-01

    A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches a...

  8. Conceptualising inquiry based education in mathematics

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Artigue, Michéle

    2013-01-01

    of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical...... frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the Theory of Didactical Situations, the Realistic Mathematics Education programme, the mathematical modelling perspective, the Anthropological Theory of Didactics...

  9. The Classical Model of Science: a Millennia-Old Model of Scientific Rationality

    NARCIS (Netherlands)

    de Jong, W.R.; Betti, A.

    2010-01-01

    Throughout more than two millennia philosophers adhered massively to ideal standards of scientific rationality going back ultimately to Aristotle's Analytica posteriora. These standards got progressively shaped by and adapted to new scientific needs and tendencies. Nevertheless, a core of conditions

  10. The Nature of Scientific Revolutions from the Vantage Point of Chaos Theory: Toward a Formal Model of Scientific Change

    Science.gov (United States)

    Perla, Rocco J.; Carifio, James

    2005-01-01

    In sharp contrast to the early positivist view of the nature of science and scientific knowledge, Kuhn argues that the scientific enterprise involves states of continuous, gradual development punctuated by comparatively rare instances of turmoil and change, which ultimately brings about a new stability and a qualitatively changed knowledge base.…

  11. Online Library of Scientific Models, A New Way to Teach, Learn, and Share Learning Experience

    Directory of Open Access Journals (Sweden)

    Hatem H. Elrefaei

    2008-05-01

    Full Text Available While scientific models are usually communicated in paper format, the need to reprogram every model by every user results in a huge loss of efforts, time and money, hence lengthening the educational and research developing cycle and loosing the learning experience and expertise gained by every user. We demonstrate a new portal www.imodelit.com that hosts a library of scientific models for electrical engineers in the form of java applets. They are all conformal, informative, with strong input and output filing system. The software design allows a fast developing cycle and it represents a strong infrastructure that can be shared by researchers to develop their own applets to be posted on the library. We aim for a community based library of scientific models that enhances the e-learning process for engineering students.

  12. Inquiry, Argumentation, and the Phases of the Moon: Helping Students Learn Important Concepts and Practices

    Science.gov (United States)

    Hall, Cady B.; Sampson, Victor

    2009-01-01

    An important goal of the current reform movement in science education is to promote scientific literacy in the United States, and scientific inquiry is at its heart. However, the National Science Education Standards clearly indicate that to promote inquiry, more emphasis should be placed on "science as argument and explanation" rather than on…

  13. Developing Students’ Reflections about the Function and Status of Mathematical Modeling in Different Scientific Practices

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    position held by the modeler(s) and the practitioners in the extra-mathematical domain. For students to experience the significance of different scientific practices and cultures for the function and status of mathematical modeling in other sciences, students need to be placed in didactical situations......Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical...... where such differences are exposed and made into explicit objects of their reflections. It can be difficult to create such situations in the teaching of contemporary science in which modeling is part of the culture. In this paper we show how history can serve as a means for students to be engaged...

  14. Evaluation of Student Models on Current Socio-Scientific Topics Based on System Dynamics

    Science.gov (United States)

    Nuhoglu, Hasret

    2014-01-01

    This study aims to 1) enable primary school students to develop models that will help them understand and analyze a system, through a learning process based on system dynamics approach, 2) examine and evaluate students' models related to socio-scientific issues using certain criteria. The research method used is a case study. The study sample…

  15. Model-as-you-go for Choreographies : Rewinding and Repeating Scientific Choreographies

    NARCIS (Netherlands)

    Weiss, Andreass; Andrikopoulos, Vasilios; Hahn, Michael; Karastoyanova, Dimka

    2017-01-01

    Scientists are increasingly using the workflow technology as a means for modeling and execution of scientific experiments. Despite being a very powerful paradigm workflows still lack support for trial-and-error modeling, as well as flexibility mechanisms that enable the ad hoc repetition of

  16. Framing Negotiation: Dynamics of Epistemological and Positional Framing in Small Groups during Scientific Modeling

    Science.gov (United States)

    Shim, Soo-Yean; Kim, Heui-Baik

    2018-01-01

    In this study, we examined students' epistemological and positional framing during small group scientific modeling to explore their context-dependent perceptions about knowledge, themselves, and others. We focused on two small groups of Korean eighth-grade students who participated in six modeling activities about excretion. The two groups were…

  17. Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals:

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark; Jolliet, Olivier

    2008-01-01

    Achieving consensus among scientists is often a challenge - particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions - including the strategy, execution, and results...

  18. Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models

    Science.gov (United States)

    Williams, Grant; Clement, John

    2015-01-01

    This study sought to identify specific types of discussion-based strategies that two successful high school physics teachers using a model-based approach utilized in attempting to foster students' construction of explanatory models for scientific concepts. We found evidence that, in addition to previously documented dialogical strategies that…

  19. Toward a Model of Social Influence that Explains Minority Student Integration into the Scientific Community

    Science.gov (United States)

    Estrada, Mica; Woodcock, Anna; Hernandez, Paul R.; Schultz, P. Wesley

    2010-01-01

    Students from several ethnic minority groups are underrepresented in the sciences, such that minority students more frequently drop out of the scientific career path than non-minority students. Viewed from a perspective of social influence, this pattern suggests that minority students do not integrate into the scientific community at the same rate as non-minority students. Kelman (1958, 2006) describes a tripartite integration model of social influence (TIMSI) by which a person orients to a social system. To test if this model predicts integration into the scientific community, we conducted analyses of data from a national panel of minority science students. A structural equation model framework showed that self-efficacy (operationalized consistent with Kelman’s ‘rule-orientation’) predicted student intentions to pursue a scientific career. However, when identification as a scientist and internalization of values are added to the model, self-efficacy becomes a poorer predictor of intention. Additional mediation analyses support the conclusion that while having scientific self-efficacy is important, identifying with and endorsing the values of the social system reflect a deeper integration and more durable motivation to persist as a scientist. PMID:21552374

  20. Orchestrating Inquiry Learning

    Science.gov (United States)

    Littleton, Karen, Ed.; Scanlon, Eileen, Ed.; Sharples, Mike, Ed.

    2011-01-01

    There is currently a rapidly growing interest in inquiry learning and an emerging consensus among researchers that, particularly when supported by technology, it can be a significant vehicle for developing higher order thinking skills. Inquiry learning methods also offer learners meaningful and productive approaches to the development of their…

  1. Science teacher candidates' perceptions about roles and nature of scientific models

    Science.gov (United States)

    Yenilmez Turkoglu, Ayse; Oztekin, Ceren

    2016-05-01

    Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks to teach and learn inaccessible facts. As being indispensable parts of learning and doing science, use of scientific models in science classes should be reinforced. At this point, uncovering pre-service science teachers' (PSTs) understandings of scientific models are of great importance since they will design and conduct teaching situations for their students. Purpose: The study aimed to provide an answer to the research question: What understandings do PSTs possess about scientific models? Sample: The sample of the study consisted of 14 PSTs enrolled in an Elementary Science Education program in a public university in Ankara, Turkey. Design and methods: Data were collected by using an open-item instrument and semi-structured interviews, and were analyzed by using qualitative data analysis methods. Results: Findings showed that PSTs held fragmented views of models by having informed views in some aspects while having naïve views on others. That is, although they displayed a constructivist orientation by acknowledging the presence of multiple models for the same phenomenon depending on scientists' perspectives or creativity involved in the production of scientific knowledge, PSTs also expressed logical positivist views by believing that models should be close to the real phenomena that they represent. Findings further revealed that PSTs generally conceptualized models' materialistic uses, yet they did not think much about their theoretical and conceptual uses. It was observed that roles like reifying and visualizing were overestimated and models were dominantly characterized as three-dimensional representations

  2. Articulating uncertainty as part of scientific argumentation during model-based exoplanet detection tasks

    Science.gov (United States)

    Lee, Hee-Sun; Pallant, Amy; Pryputniewicz, Sarah

    2015-08-01

    Teaching scientific argumentation has emerged as an important goal for K-12 science education. In scientific argumentation, students are actively involved in coordinating evidence with theory based on their understanding of the scientific content and thinking critically about the strengths and weaknesses of the cited evidence in the context of the investigation. We developed a one-week-long online curriculum module called "Is there life in space?" where students conduct a series of four model-based tasks to learn how scientists detect extrasolar planets through the “wobble” and transit methods. The simulation model allows students to manipulate various parameters of an imaginary star and planet system such as planet size, orbit size, planet-orbiting-plane angle, and sensitivity of telescope equipment, and to adjust the display settings for graphs illustrating the relative velocity and light intensity of the star. Students can use model-based evidence to formulate an argument on whether particular signals in the graphs guarantee the presence of a planet. Students' argumentation is facilitated by the four-part prompts consisting of multiple-choice claim, open-ended explanation, Likert-scale uncertainty rating, and open-ended uncertainty rationale. We analyzed 1,013 scientific arguments formulated by 302 high school student groups taught by 7 teachers. We coded these arguments in terms of the accuracy of their claim, the sophistication of explanation connecting evidence to the established knowledge base, the uncertainty rating, and the scientific validity of uncertainty. We found that (1) only 18% of the students' uncertainty rationale involved critical reflection on limitations inherent in data and concepts, (2) 35% of students' uncertainty rationale reflected their assessment of personal ability and knowledge, rather than scientific sources of uncertainty related to the evidence, and (3) the nature of task such as the use of noisy data or the framing of

  3. A well-started beginning elementary teacher's beliefs and practices in relation to reform recommendations about inquiry-based science

    NARCIS (Netherlands)

    Avraamidou, Lucy

    2017-01-01

    Given reform recommendations emphasizing scientific inquiry and empirical evidence pointing to the difficulties beginning teachers face in enacting inquiry-based science, this study explores a well-started beginning elementary teacher's (Sofia) beliefs about inquiry-based science and related

  4. A Comparative Analysis of Earth Science Curriculum Using Inquiry Methodology between Korean and the U.S. Textbooks

    Science.gov (United States)

    Park, Mira; Park, Do-Yong; Lee, Robert E.

    2009-01-01

    The purpose of this study is to investigate in what ways the inquiry task of teaching and learning in earth science textbooks reflect the unique characteristics of earth science inquiry methodology, and how it provides students with opportunities to develop their scientific reasoning skills. This study analyzes a number of inquiry activities in…

  5. Connecting Inquiry and Values in Science Education - An Approach Based on John Dewey's Philosophy

    Science.gov (United States)

    Lee, Eun Ah; Brown, Matthew J.

    2018-01-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  6. Connecting Inquiry and Values in Science Education. An Approach Based on John Dewey's Philosophy

    Science.gov (United States)

    Lee, Eun Ah; Brown, Matthew J.

    2018-03-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  7. "On Clocks and Clouds:" Confirming and Interpreting Climate Models as Scientific Hypotheses (Invited)

    Science.gov (United States)

    Donner, L.

    2009-12-01

    The certainty of climate change projected under various scenarios of emissions using general circulation models is an issue of vast societal importance. Unlike numerical weather prediction, a problem to which general circulation models are also applied, projected climate changes usually lie outside of the range of external forcings for which the models generating these changes have been directly evaluated. This presentation views climate models as complex scientific hypotheses and thereby frames these models within a well-defined process of both advancing scientific knowledge and recognizing its limitations. Karl Popper's Logik der Forschung (The Logic of Scientific Discovery, 1934) and 1965 essay “On Clocks and Clouds” capture well the methodologies and challenges associated with constructing climate models. Indeed, the process of a problem situation generating tentative theories, refined by error elimination, characterizes aptly the routine of general circulation model development. Limitations on certainty arise from the distinction Popper perceived in types of natural processes, which he exemplified by clocks, capable of exact measurement, and clouds, subject only to statistical approximation. Remarkably, the representation of clouds in general circulation models remains the key uncertainty in understanding atmospheric aspects of climate change. The asymmetry of hypothesis falsification by negation and much vaguer development of confidence in hypotheses consistent with some of their implications is an important practical challenge to confirming climate models. The presentation will discuss the ways in which predictions made by climate models for observable aspects of the present and past climate can be regarded as falsifiable hypotheses. The presentation will also include reasons why “passing” these tests does not provide complete confidence in predictions about the future by climate models. Finally, I will suggest that a “reductionist” view, in

  8. Development of Animal Physiology Practical Guidance Oriented Guided Inquiry for Student of Biology Department

    Science.gov (United States)

    Putra, Z. A. Z.; Sumarmin, R.; Violita, V.

    2018-04-01

    The guides used for practicing animal physiology need to be revised and adapted to the lecture material. This is because in the subject of Animal Physiology. The guidance of animal physiology practitioners is still conventional with prescription model instructions and is so simple that it is necessary to develop a practical guide that can lead to the development of scientific work. One of which is through practice guided inquiry guided practicum guide. This study aims to describe the process development of the practical guidance and reveal the validity, practicality, and effectiveness Guidance Physiology Animals guided inquiry inferior to the subject of Animal Physiology for students Biology Department State University of Padang. This type of research is development research. This development research uses the Plomp model. Stages performed are problem identification and analysis stage, prototype development and prototyping stage, and assessment phase. Data analysis using descriptive analysis. The instrument of data collection using validation and practical questionnaires, competence and affective field of competence observation and psychomotor and cognitive domain competence test. The result of this research shows that guidance of Inquiry Guided Initiative Guided Physiology with 3.23 valid category, practicality by lecturer with value 3.30 practical category, student with value 3.37 practical criterion. Affective effectiveness test with 93,00% criterion is very effective, psychomotor aspect 89,50% with very effective criteria and cognitive domain with value of 67, pass criterion. The conclusion of this research is Guided Inquiry Student Guided Protoxial Guidance For Students stated valid, practical and effective.

  9. A Teaching Model for Scaffolding 4th Grade Students' Scientific Explanation Writing

    Science.gov (United States)

    Yang, Hsiu-Ting; Wang, Kuo-Hua

    2014-08-01

    Improving students scientific explanations is one major goal of science education. Both writing activities and concept mapping are reported as effective strategies for enhancing student learning of science. The purpose of this study was to examine the effect of a teaching model, named the DCI model, which integrates a Descriptive explanation writing activity, Concept mapping, and an Interpretive explanation writing activity, is introduced in a 4th grade science class to see if it would improve students' scientific explanations and understanding. A quasi-experimental design, including a non-randomized comparison group and a pre- and post-test design, was adopted for this study. An experimental group of 25 students were taught using the DCI teaching model, while a comparison group received a traditional lecture teaching. A rubric and content analysis was used to assess students' scientific explanations. The independent sample t test was used to measure difference in conceptual understanding between the two groups, before and after instruction. Then, the paired t test analysis was used to understand the promotion of the DCI teaching model. The results showed that students in the experimental group performed better than students in the comparison group, both in scientific concept understanding and explanation. Suggestions for using concept mapping and writing activities (the DCI teaching model) in science classes are provided in this study.

  10. XSIM Final Report: Modelling the Past and Future of Identity Management for Scientific Collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Robert; Jackson, Craig; Welch, Von

    2016-08-31

    The eXtreme Science Identity Management (XSIM1) research project: collected and analyzed real world data on virtual organization (VO) identity management (IdM) representing the last 15+ years of collaborative DOE science; constructed a descriptive VO IdM model based on that data; used the model and existing trends to project the direction for IdM in the 2020 timeframe; and provided guidance to scientific collaborations and resource providers that are implementing or seeking to improve IdM functionality. XSIM conducted over 20 semi­structured interviews of representatives from scientific collaborations and resource providers, both in the US and Europe; the interviewees supported diverse set of scientific collaborations and disciplines. We developed a definition of “trust,” a key concept in IdM, to understand how varying trust models affect where IdM functions are performed. The model identifies how key IdM data elements are utilized in collaborative scientific workflows, and it has the flexibility to describe past, present and future trust relationships and IdM implementations. During the funding period, we gave more than two dozen presentations to socialize our work, encourage feedback, and improve the model; we also published four refereed papers. Additionally, we developed, presented, and received favorable feedback on three white papers providing practical advice to collaborations and/or resource providers.

  11. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    Science.gov (United States)

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-03-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.

  12. Improving Students’ Scientific Reasoning and Problem-Solving Skills by The 5E Learning Model

    Directory of Open Access Journals (Sweden)

    Sri Mulyani Endang Susilowati

    2017-12-01

    Full Text Available Biology learning in MA (Madrasah Aliyah Khas Kempek was still dominated by teacher with low students’ involvement. This study would analyze the effectiveness of the 5E (Engagement, Exploration, Explanation, Elaboration, Evaluation learning model in improving scientific knowledge and problems solving. It also explained the relationship between students’ scientific reasoning with their problem-solving abilities. This was a pre-experimental research with one group pre-test post-test. Sixty students of MA Khas Kempek from XI MIA 3 and XI MIA 4 involved in this study. The learning outcome of the students was collected by the test of reasoning and problem-solving. The results showed that the rises of students’ scientific reasoning ability were 69.77% for XI MIA 3 and 66.27% for XI MIA 4, in the medium category. The problem-solving skills were 63.40% for XI MIA 3, 61.67% for XI MIA 4, and classified in the moderate category. The simple regression test found a linear correlation between students’ scientific reasoning and problem-solving ability. This study affirms that reasoning ability is needed in problem-solving. It is found that application of 5E learning model was effective to improve scientific reasoning and problem-solving ability of students.

  13. A Scientific Investigation into why Firms Fail: A Model of corporate ...

    African Journals Online (AJOL)

    A Scientific Investigation into why Firms Fail: A Model of corporate health trajectory. ... to analyse the data of 20 banks, 10 which failed and 10 that is successful. Key words: Corporate collapse, trajectories of failure, bank failure, bank distress, ...

  14. Integrate Data into Scientific Workflows for Terrestrial Biosphere Model Evaluation through Brokers

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Du, F.; Dasgupta, A.; Poco, J.; Huntzinger, D. N.; Schwalm, C. R.; Boldrini, E.; Santoro, M.; Pearlman, J.; Pearlman, F.; Nativi, S.; Khalsa, S.

    2013-12-01

    Terrestrial biosphere models (TBMs) have become integral tools for extrapolating local observations and process-level understanding of land-atmosphere carbon exchange to larger regions. Model-model and model-observation intercomparisons are critical to understand the uncertainties within model outputs, to improve model skill, and to improve our understanding of land-atmosphere carbon exchange. The DataONE Exploration, Visualization, and Analysis (EVA) working group is evaluating TBMs using scientific workflows in UV-CDAT/VisTrails. This workflow-based approach promotes collaboration and improved tracking of evaluation provenance. But challenges still remain. The multi-scale and multi-discipline nature of TBMs makes it necessary to include diverse and distributed data resources in model evaluation. These include, among others, remote sensing data from NASA, flux tower observations from various organizations including DOE, and inventory data from US Forest Service. A key challenge is to make heterogeneous data from different organizations and disciplines discoverable and readily integrated for use in scientific workflows. This presentation introduces the brokering approach taken by the DataONE EVA to fill the gap between TBMs' evaluation scientific workflows and cross-organization and cross-discipline data resources. The DataONE EVA started the development of an Integrated Model Intercomparison Framework (IMIF) that leverages standards-based discovery and access brokers to dynamically discover, access, and transform (e.g. subset and resampling) diverse data products from DataONE, Earth System Grid (ESG), and other data repositories into a format that can be readily used by scientific workflows in UV-CDAT/VisTrails. The discovery and access brokers serve as an independent middleware that bridge existing data repositories and TBMs evaluation scientific workflows but introduce little overhead to either component. In the initial work, an OpenSearch-based discovery broker

  15. Scientific method, adversarial system, and technology assessment

    Science.gov (United States)

    Mayo, L. H.

    1975-01-01

    A basic framework is provided for the consideration of the purposes and techniques of scientific method and adversarial systems. Similarities and differences in these two techniques of inquiry are considered with reference to their relevance in the performance of assessments.

  16. Scientific Reasoning in Early and Middle Childhood: The Development of Domain-General Evidence Evaluation, Experimentation, and Hypothesis Generation Skills

    Science.gov (United States)

    Piekny, Jeanette; Maehler, Claudia

    2013-01-01

    According to Klahr's (2000, 2005; Klahr & Dunbar, 1988) Scientific Discovery as Dual Search model, inquiry processes require three cognitive components: hypothesis generation, experimentation, and evidence evaluation. The aim of the present study was to investigate (a) when the ability to evaluate perfect covariation, imperfect covariation,…

  17. Towards a Dialogical Pedagogy: Some Characteristics of a Community of Mathematical Inquiry

    Science.gov (United States)

    Kennedy, Nadia Stoyanova

    2009-01-01

    This paper discusses a teaching model called community of mathematical inquiry (CMI), characterized by dialogical and inquiry-driven communication and a dynamic structure of intertwined cognitive processes including distributed thinking, mathematical argumentation, integrated reasoning, conceptual transformation, internalization of critical…

  18. APPRECIATIVE INQUIRY AND PEDAGOGY

    DEFF Research Database (Denmark)

    Duvander, Mille Themsen

    2017-01-01

    I blogindlægget gives en lille indblik i hvordan Appreciative Inquiry kan anvendes i undervisningen af pædagogstuderende på en Professionshøjskole i Danmark......I blogindlægget gives en lille indblik i hvordan Appreciative Inquiry kan anvendes i undervisningen af pædagogstuderende på en Professionshøjskole i Danmark...

  19. Mars Rover Model Celebration: Developing Inquiry Based Lesson Plans to Teach Planetary Science In Elementary And Middle School

    Science.gov (United States)

    Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.; Dominey, W.; Ramsey, J.; Konstantinidis, I.; James, J.; Sweaney, S.; Mendez, R.

    2012-12-01

    The recent NASA Mars Rover missions capture the imagination of children, as NASA missions have done for decades. The University of Houston is in the process of developing a prototype of a flexible program that offers children an in-depth educational experience culminating in the design and construction of their own model rover. The existing prototype program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students will design and build a model of a Mars rover to carry out a student selected science mission on the surface of Mars. The model will be a mock-up, constructed at a minimal cost from art supplies. The students will build the models as part of a project on Mars. The students will be given design criteria for a rover and will do basic research on Mars that will determine the objectives and features of their rover. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the development of a detailed set of new 5E lesson plans to

  20. Developing the conceptual instructional design with inquiry-based instruction model of secondary students at the 10th grade level on digestion system and cellular degradation issue

    Science.gov (United States)

    Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn

    2018-01-01

    The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and

  1. Mediating objects: scientific and public functions of models in nineteenth-century biology.

    Science.gov (United States)

    Ludwig, David

    2013-01-01

    The aim of this article is to examine the scientific and public functions of two- and three-dimensional models in the context of three episodes from nineteenth-century biology. I argue that these models incorporate both data and theory by presenting theoretical assumptions in the light of concrete data or organizing data through theoretical assumptions. Despite their diverse roles in scientific practice, they all can be characterized as mediators between data and theory. Furthermore, I argue that these different mediating functions often reflect their different audiences that included specialized scientists, students, and the general public. In this sense, models in nineteenth-century biology can be understood as mediators between theory, data, and their diverse audiences.

  2. Precursor models construction at preschool education: an approach to improve scientific education in the classroom

    Directory of Open Access Journals (Sweden)

    SABRINA PATRICIA CANEDO- IBARRA

    2010-07-01

    Full Text Available This study aimed to explore young children scientific precursor models construction and how the designed teaching strategy was successful for improving science learning at preschool in a social context. We describe how 6 years old children built a precursor model of flotation based on density. The exploratory study used a qualitative data collection and analysis following a pre-interview, instructional process and post-interview design. On analyzing children’s answers after the instructional period, we realized that several children were led to both the construction of a precursor model and a general qualitative upgrade in reasoning. We conclude that learning activities were effective and that the approach used in this study may help expand and improve teaching and learning of scientific concepts in preschool education

  3. The Model of Optimum Economic Growth with the Induced Scientific-Technological Progress

    Directory of Open Access Journals (Sweden)

    Dilenko Viktor A.

    2017-07-01

    Full Text Available On the basis of the economic dynamics of the Harrod – Domar model, a model of optimum economic growth in line with the induced scientific-technological progress (STP has been built. In order to reflect the induced scientific-technological progress, with this model is proposed to further allocate the income element that is specially used for the investment of innovation activity, implementation of which reduces the capital intensity in development of the discussed economy. For the simplest way of presenting an economic mechanism for the investment of induced STP, analytical solutions of an appropriate task in optimum management have been obtained. Studying these decisions allowed to reveal the characteristics of the impact of parameters of scientific-technological progress and the analyzed economic system on choosing the best trajectory for its evolution. Possible directions for further developing the results presented can be considered the tasks in building and analyzing models of optimum economic growth that implement different investment options for the induced STP, as well as the models in which this investment mechanism is not exogenouslyed, but rather the result of the corresponding economic-mathematical research.

  4. Examples of Video to Communicate Scientific Findings to Non-Scientists-Bayesian Ecological Modeling

    Science.gov (United States)

    Moorman, M.; Harned, D. A.; Cuffney, T.; Qian, S.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film about the results of modeling the effects urbanization on stream ecology. The film describes some of the results of the EUSE ecological modeling effort and the advantages of the Bayesian and multi-level statistical modeling approaches, while relating the science to fly fishing. The complex scientific discussion combined with the lighter, more popular activity of fly fishing leads to an entertaining forum while educating viewers about a complex topic. This approach is intended to represent the scientists as interesting people with diverse interests. Video can be an effective scientific communication tool for presenting scientific findings to a broad audience. The film is available for access from the EUSE website (http://water.usgs.gov/nawqa/urban/html/podcasts.html). Additional films are planned to be released in 2012 on other USGS project results and programs.

  5. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    Science.gov (United States)

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  6. The use of theoretical and empirical knowledge in the production of explanations and arguments in an inquiry biology activity

    Directory of Open Access Journals (Sweden)

    Maíra Batistoni e Silva

    2017-08-01

    Full Text Available Agreeing with the scientific literacy as the purpose of science education and with the recent propositions that in order to achieve it we should favor the engagement of students in practices of scientific culture, this study intends to analyze the production of explanations and arguments in an inquiry based teaching activity in order to characterize students' mobilization of theoretical and empirical knowledge by engaging in these practices. Analyzing the scientific reports elaborated by the students (14-15 years old after the inquiry activity on population dynamics, we highlight the importance of empirical knowledge about the experimental context as a repertoire for construction of explanations, especially when students deal with anomalous data. This knowledge was also important for production of valid arguments, since most of the justifications were empirical, regardless of whether or not the data were in accordance with the explanatory model already known. These results reinforce the importance of students' engagement in inquiry activities, as already defended by different authors of this research area, and indicate that the inquiry practice allowed the engagement in epistemic practices, since the knowledge about the experimental conditions and the procedures of data collection provided a repertoire for the production of explanations and arguments. Finally, we discuss the relevance of this research to the field of biology teaching, seeking to defend the promotion of inquiry activities with an experimental approach as an opportunity to integrate conceptual and epistemic objectives and overcome the difficulties generated by the specificities of this area of knowledge in relation to the other disciplines in nature sciences.

  7. The Windscale Inquiry: the public inquiry system on trial

    International Nuclear Information System (INIS)

    Garry, A.M.

    1992-01-01

    This thesis is concerned with the Windscale Inquiry of 1977 and its effect on the public inquiry system. It focusses both on the major influences of the Windscale Inquiry process, and on the participants, their aims, motivations, expectations and achievements. It provides the most detailed examination of the Inquiry to date and, as a result, uncovers aspects of the process while have not been explored previously. The central questions of the thesis are: Was the outcome of the Windscale Inquiry inevitable or could it have reached different conclusions? and did the Windscale Inquiry demonstrate that the public inquiry system could be used by a government to reach a decision which it favoured? The thesis argues that the outcome of the Windscale Inquiry was almost inevitable. In fact it was found that the Inspector had made up his mind in favour of oxide reprocessing before the Inquiry opened. However, this finding does not express fully the Inquiry's impact, because, as the thesis shows, the Inquiry became a mechanism which forced the nuclear industry and the government to explain, and substantially alter, some parts of their policies. The process of bringing the government and industry to account, did not alter the THORP decision, but it demonstrated that any subsequent inquiries could subject nuclear developments to searching criticism and investigation. Indeed it is suggested that the Windscale Inquiry made it impossible for subsequent Governments to proceed with nuclear expansion without subjecting them to the public inquiry process. Part I of the thesis examines the history and structure of the public Inquiry system and the relevant aspects of planning law. Part II describes the history of reprocessing and the themes which led to the public inquiry being established. Part III forms the most detailed part of the thesis and examines the Windscale Inquiry process focussing on the participants and the issues involved. (author)

  8. Are opinions based on science: modelling social response to scientific facts.

    Directory of Open Access Journals (Sweden)

    Gerardo Iñiguez

    Full Text Available As scientists we like to think that modern societies and their members base their views, opinions and behaviour on scientific facts. This is not necessarily the case, even though we are all (over- exposed to information flow through various channels of media, i.e. newspapers, television, radio, internet, and web. It is thought that this is mainly due to the conflicting information on the mass media and to the individual attitude (formed by cultural, educational and environmental factors, that is, one external factor and another personal factor. In this paper we will investigate the dynamical development of opinion in a small population of agents by means of a computational model of opinion formation in a co-evolving network of socially linked agents. The personal and external factors are taken into account by assigning an individual attitude parameter to each agent, and by subjecting all to an external but homogeneous field to simulate the effect of the media. We then adjust the field strength in the model by using actual data on scientific perception surveys carried out in two different populations, which allow us to compare two different societies. We interpret the model findings with the aid of simple mean field calculations. Our results suggest that scientifically sound concepts are more difficult to acquire than concepts not validated by science, since opposing individuals organize themselves in close communities that prevent opinion consensus.

  9. Towards a comprehensive model of scientific research and professional practice in psychology

    Directory of Open Access Journals (Sweden)

    Jerzy Marian Brzeziński

    2016-03-01

    Full Text Available In this article I present a model of associations between two social domains: the scientific research domain (here psychology and the professional practice domain. In the former case, its quality is determined by social and individual methodological awareness (MA. I introduce my own definition of MA. What determines the validity and usefulness of practical actions undertaken by professionals (e.g., assessment, therapy in the practice domain is the accurately constructed empirical theory high in descriptive power, explanatory power and predictive power. I propose a model (my own conceptualization in which I analyze information flow between the domains of scientific research (psychology as a science and professional practice (psychology as a profession. In the subsequent and final part I discuss my own model which links theory and practice: Scientific Research and Professional Practice in Psychology (SRPPP. The article ends with a presentation of three contexts in which the interrelationship between theory and practice is immersed: the ethical, psychological and cultural contexts.

  10. A model of scientific attitudes assessment by observation in physics learning based scientific approach: case study of dynamic fluid topic in high school

    Science.gov (United States)

    Yusliana Ekawati, Elvin

    2017-01-01

    This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)

  11. Physiology Should Be Taught as Science Is Practiced: An Inquiry-Based Activity to Investigate the "Alkaline Tide"

    Science.gov (United States)

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…

  12. Trained Inquiry Skills on Heat and Temperature Concepts

    Science.gov (United States)

    Hasanah, U.; Hamidah, I.; Utari, S.

    2017-09-01

    Inquiry skills are skills that aperson needs in developing concepts, but the results of the study suggest that these skills haven’t yet been trained along with the development of concepts in science feeding, found the difficulties of students in building the concept scientifically. Therefore, this study aims to find ways that are effective in training inquiry skills trough Levels of Inquiry (LoI) learning. Experimental research with one group pretest-postest design, using non-random sampling samples in one of vocational high school in Cimahi obtained purposively 33 students of X class. The research using the inquiry skills test instrument in the form of 15questions multiple choice with reliability in very high category. The result of data processing by using the normalized gain value obtained an illustration that the ways developed in the LoI are considered effective trained inquiry skills in the middle category. Some of the ways LoI learning are considered effective in communicating aspects through discovery learning, predicting trough interactive demonstration, hypotheses through inquiry lesson, and interpreting data through inquiry lab, but the implementation of LoI learning in this study hasn’t found a way that is seen as effective for trespassing aspects of designing an experiment.

  13. KEEFEKTIFAN METODE SCHOOLYARD INQUIRY TERHADAP PENINGKATAN PEMAHAMAN SCIENCE VOCABULARY

    Directory of Open Access Journals (Sweden)

    S.D. Pamelasari

    2014-10-01

    Full Text Available Tantangan yang harus dihadapi dalam mengajar Bahasa Inggris di pada mahasiswa selain jurusan Bahasa Inggris adalah tingkat pemahaman kosakata yang rendah. Hal tersebut berpengaruh pada pemahaman materi mereka, berdasarkan permasalahan tersebut metode schoolyard inquiry digagas untuk membantu meningkatkan pemahaman mereka dalam memahami science vocabulary sebagai metode alternative untuk membantu mereka belajar. Schoolyard inquiry adalah metode belajar kosakata secara mandiri di luar kelas. Hasil analisis menunjukkan bahwa pemahaman science vocabulary mahasiswa Pendidikan IPA FMIPA Unnes mengingkat secara signifikan dan mencapai tingkat tinggi pada level pemahamannya. Melalui metode ini mahasiswa juga dapat mengintegrasikan pembelajaran Bahasa Inggris dengan metode saintifik. Mahasiswa juga memberikan respon positif terhadap metode schoolyard inquiry  ini. The challenge that should be faced of teaching English for non English department students is the low level of students’ vocabulary mastery. It affects their comprehension of material, therefore to help students to master the science vocabulary schoolyard inquiry method was proposed to be used as alternative method to improve students’ vocabulary mastery. Schoolyard inquiry is a method of independent learning that is conducted outside the class. The result showed that the students’ science vocabulary mastery improved significantly most of students reached high level of science vocabulary mastery. Through Schoolyard Inquiry method Students were be able to learn English by applying the scientific skill. The students also gave positive responses of learning vocabulary by using alternatif method of schoolyard inquiry.

  14. The Modeling as Didactic Method in the Scientific-Professional Training of the Psychologist

    Directory of Open Access Journals (Sweden)

    Lic. Ramiro Gross Tur

    2016-02-01

    Full Text Available The modeling method has often been developed or recognized in various processes related to training of psychologists studies. It has educational value as its application favors the appropriation of skills and capacity necessary for the performance on the student. However, the method has limitations because it does not exhaust the content praxiological psychology in the teaching-learning process. Therefore, the modeling required to be valued its limitations and potentials in order to plan actions necessary to improve or complement other methods, which serve to improve the process of scientific and professional training of psychologists, with emphasis on the labor dimension.

  15. The VIS-AD data model: Integrating metadata and polymorphic display with a scientific programming language

    Science.gov (United States)

    Hibbard, William L.; Dyer, Charles R.; Paul, Brian E.

    1994-01-01

    The VIS-AD data model integrates metadata about the precision of values, including missing data indicators and the way that arrays sample continuous functions, with the data objects of a scientific programming language. The data objects of this data model form a lattice, ordered by the precision with which they approximate mathematical objects. We define a similar lattice of displays and study visualization processes as functions from data lattices to display lattices. Such functions can be applied to visualize data objects of all data types and are thus polymorphic.

  16. Inquiry Teaching in High School Chemistry Classrooms: The Role of Knowledge and Beliefs

    Science.gov (United States)

    Roehrig, Gillian H.; Luft, Julie A.

    2004-01-01

    The call for implementation of inquiry-based teaching in secondary classrooms has taken on a new sense of urgency, hence several instructions models are developed to assists teachers in implementing inquiry in their classrooms. The role of knowledge and beliefs in inquiry teaching are examined.

  17. CERN’s model for international scientific collaboration to be discussed at UNOG

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 2 November, on the occasion of the 70th anniversary of the United Nations, CERN and UNOG will co-host a one-day symposium, with the support of Switzerland and France. The event will bring together policy-makers, scientists and members of civil society to debate how to construct synergies across communities as a means to drive global objectives. CERN people are invited to the Palais des Nations to take part.   CERN's seat at the General Assembly of the United Nations in New York. How does CERN work? How are goals achieved in such a complex environment where diverse communities work together in the interests of science? CERN’s model for international scientific collaboration is being looked at with growing interest by an increasingly large community of experts in various fields. Scientific advances and accomplishments are testament to the effectiveness of the model and prove that ambitious scientific programmes can be carried out only by communities c...

  18. Methods for Specifying Scientific Data Standards and Modeling Relationships with Applications to Neuroscience

    Science.gov (United States)

    Rübel, Oliver; Dougherty, Max; Prabhat; Denes, Peter; Conant, David; Chang, Edward F.; Bouchard, Kristofer

    2016-01-01

    Neuroscience continues to experience a tremendous growth in data; in terms of the volume and variety of data, the velocity at which data is acquired, and in turn the veracity of data. These challenges are a serious impediment to sharing of data, analyses, and tools within and across labs. Here, we introduce BRAINformat, a novel data standardization framework for the design and management of scientific data formats. The BRAINformat library defines application-independent design concepts and modules that together create a general framework for standardization of scientific data. We describe the formal specification of scientific data standards, which facilitates sharing and verification of data and formats. We introduce the concept of Managed Objects, enabling semantic components of data formats to be specified as self-contained units, supporting modular and reusable design of data format components and file storage. We also introduce the novel concept of Relationship Attributes for modeling and use of semantic relationships between data objects. Based on these concepts we demonstrate the application of our framework to design and implement a standard format for electrophysiology data and show how data standardization and relationship-modeling facilitate data analysis and sharing. The format uses HDF5, enabling portable, scalable, and self-describing data storage and integration with modern high-performance computing for data-driven discovery. The BRAINformat library is open source, easy-to-use, and provides detailed user and developer documentation and is freely available at: https://bitbucket.org/oruebel/brainformat. PMID:27867355

  19. Modeling-Oriented Assessment in K-12 Science Education: A Synthesis of Research from 1980 to 2013 and New Directions

    Science.gov (United States)

    Namdar, Bahadir; Shen, Ji

    2015-01-01

    Scientific modeling has been advocated as one of the core practices in recent science education policy initiatives. In modeling-based instruction (MBI), students use, construct, and revise models to gain scientific knowledge and inquiry skills. Oftentimes, the benefits of MBI have been documented using assessments targeting students' conceptual…

  20. Pragmatic inquiry and creativity

    DEFF Research Database (Denmark)

    Gimmler, Antje

    ’Don’t block the road of inquiry” was the motto of Peirce and also Dewey situated inquiry in its ideal version in a democratic and cooperative community. Abduction became the key concept for the pragmatic and creative research process where the lonely engineer is substituted with intelligent...... collaborations of the many. Thus, inquiry is from a pragmatic understanding rather a social than a purely cognitive task. The paper will firstly give a sketch of this understanding of inquiry and creativity on the background of the theories of Peirce and Dewey and will draw some parallels to recent...... of Thevenot’s critical pragmatism this understanding might be naïve – not because this is an idealistic rather than a real-life scenario but because the idea of collaborative creativity and self-realization has actually become the driving force in a marked dominated organization of science and production...

  1. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  2. Analyzing Ocean Tracks: A model for student engagement in authentic scientific practices using data

    Science.gov (United States)

    Krumhansl, K.; Krumhansl, R.; Brown, C.; DeLisi, J.; Kochevar, R.; Sickler, J.; Busey, A.; Mueller-Northcott, J.; Block, B.

    2013-12-01

    The collection of large quantities of scientific data has not only transformed science, but holds the potential to transform teaching and learning by engaging students in authentic scientific work. Furthermore, it has become imperative in a data-rich world that students gain competency in working with and interpreting data. The Next Generation Science Standards reflect both the opportunity and need for greater integration of data in science education, and emphasize that both scientific knowledge and practice are essential elements of science learning. The process of enabling access by novice learners to data collected and used by experts poses significant challenges, however, recent research has demonstrated that barriers to student learning with data can be overcome by the careful design of data access and analysis tools that are specifically tailored to students. A group of educators at Education Development Center, Inc. (EDC) and scientists at Stanford University's Hopkins Marine Station are collaborating to develop and test a model for student engagement with scientific data using a web-based platform. This model, called Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, provides students with the ability to plot and analyze tracks of migrating marine animals collected through the Tagging of Pacific Predators program. The interface and associated curriculum support students in identifying relationships between animal behavior and physical oceanographic variables (e.g. SST, chlorophyll, currents), making linkages between the living world and climate. Students are also supported in investigating possible sources of human impact to important biodiversity hotspots in the Pacific Ocean. The first round of classroom testing revealed that students were able to easily access and display data on the interface, and collect measurements from the animal tracks and oceanographic data layers. They were able to link multiple types of data to draw powerful

  3. SASAgent: an agent based architecture for search, retrieval and composition of scientific models.

    Science.gov (United States)

    Felipe Mendes, Luiz; Silva, Laryssa; Matos, Ely; Braga, Regina; Campos, Fernanda

    2011-07-01

    Scientific computing is a multidisciplinary field that goes beyond the use of computer as machine where researchers write simple texts, presentations or store analysis and results of their experiments. Because of the huge hardware/software resources invested in experiments and simulations, this new approach to scientific computing currently adopted by research groups is well represented by e-Science. This work aims to propose a new architecture based on intelligent agents to search, recover and compose simulation models, generated in the context of research projects related to biological domain. The SASAgent architecture is described as a multi-tier, comprising three main modules, where CelO ontology satisfies requirements put by e-science projects mainly represented by the semantic knowledge base. Preliminary results suggest that the proposed architecture is promising to achieve requirements found in e-Science projects, considering mainly the biological domain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Framing Inquiry in High School Chemistry: Helping Students See the Bigger Picture

    Science.gov (United States)

    Criswell, Brett

    2012-01-01

    Inquiry has been advocated as an effective pedagogical strategy for promoting deep conceptual understanding and more sophisticated scientific thinking by numerous bodies associated with chemistry (and science) education. To allow inquiry to achieve these goals, the teacher must manage the amount of cognitive load experienced by students while they…

  5. Inquiry Based Teaching in Turkey: A Content Analysis of Research Reports

    Science.gov (United States)

    Kizilaslan, Aydin; Sozbilir, Mustafa; Yasar, M. Diyaddin

    2012-01-01

    Inquiry-based learning [IBL] enhances students' critical thinking abilities and help students to act as a scientist through using scientific method while learning. Specifically, inquiry as a teaching approach has been defined in many ways, the most important one is referred to nature of constructing knowledge while the individuals possess a…

  6. University-Level Teaching of Anthropogenic Global Climate Change (AGCC) via Student Inquiry

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-01-01

    This paper reviews university-level efforts to improve understanding of anthropogenic global climate change (AGCC) through curricula that enable student scientific inquiry. We examined 152 refereed publications and proceedings from academic conferences and selected 26 cases of inquiry learning that overcome specific challenges to AGCC teaching.…

  7. An Inquiry-Based Approach of Traditional "Step-by-Step" Experiments

    Science.gov (United States)

    Szalay, L.; Tóth, Z.

    2016-01-01

    This is the start of a road map for the effective introduction of inquiry-based learning in chemistry. Advantages of inquiry-based approaches to the development of scientific literacy are widely discussed in the literature. However, unless chemistry educators take account of teachers' reservations and identified disadvantages such approaches will…

  8. Problems Students Experience with Inquiry Processes in the Study of Enzyme Kinetics

    Science.gov (United States)

    Ferrés Gurt, Concepció; Marbà Tallada, Anna

    2018-01-01

    This case study describes a classroom-based questionnaire that was carried out with a group of 36 high school students (17-18 years old) in Catalonia. The aim was to examine the usefulness of questionnaires focused on scientific inquiry, both to evaluate students' inquiry abilities and for their potential as tools to improve the understanding of…

  9. Creating Personal Meaning through Technology-Supported Science Inquiry Learning across Formal and Informal Settings

    Science.gov (United States)

    Anastopoulou, Stamatina; Sharples, Mike; Ainsworth, Shaaron; Crook, Charles; O'Malley, Claire; Wright, Michael

    2012-01-01

    In this paper, a novel approach to engaging students in personal inquiry learning is described, whereby they carry out scientific investigations that are personally meaningful and relevant to their everyday lives. The learners are supported by software that guides the inquiry process, extending from the classroom into the school grounds, home, or…

  10. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    Science.gov (United States)

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  11. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu; Taylor, Valerie

    2013-01-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel's MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  12. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  13. Designing Summer Research Experiences for Teachers and Students That Promote Classroom Science Inquiry Projects and Produce Research Results

    Science.gov (United States)

    George, L. A.; Parra, J.; Rao, M.; Offerman, L.

    2007-12-01

    Research experiences for science teachers are an important mechanism for increasing classroom teachers' science content knowledge and facility with "real world" research processes. We have developed and implemented a summer scientific research and education workshop model for high school teachers and students which promotes classroom science inquiry projects and produces important research results supporting our overarching scientific agenda. The summer training includes development of a scientific research framework, design and implementation of preliminary studies, extensive field research and training in and access to instruments, measurement techniques and statistical tools. The development and writing of scientific papers is used to reinforce the scientific research process. Using these skills, participants collaborate with scientists to produce research quality data and analysis. Following the summer experience, teachers report increased incorporation of research inquiry in their classrooms and student participation in science fair projects. This workshop format was developed for an NSF Biocomplexity Research program focused on the interaction of urban climates, air quality and human response and can be easily adapted for other scientific research projects.

  14. Primary Sources and Inquiry Learning

    Science.gov (United States)

    Pappas, Marjorie L.

    2006-01-01

    In this article, the author discusses inquiry learning and primary sources. Inquiry learning puts students in the active role of investigators. Questioning, authentic and active learning, and interactivity are a few of the characteristics of inquiry learning that put the teacher and library media specialist in the role of coaches while students…

  15. A participative model for undertaking and evaluating scientific communication in Earth Observation

    Science.gov (United States)

    L'Astorina, Alba; Tomasoni, Irene

    2015-04-01

    Public communication of Science and Technology (PCST) is an integral part of the mission of the Italian National Research Council (CNR) and widely carried out among the scientific community. Recently it has also become a research field investigating practices, channels, tools and models of public engagement and their impact on the relation between Science and Society. Understanding such aspects is increasingly considered relevant for an effective and aware outreach. Within this context, CNR has adopted some innovative communication approaches addressed to different publics, such as stakeholders, users, media, young people and the general public, using participative methodologies. Besides being practices of communication promoting the scientific culture, such initiatives aim at understanding the models at the basis of the relationship between the scientific community and the public. To what extent do scientists put their communication and involvement strategies in discussion? Do they use to have a real exchange with their publics in order to evaluate the effectiveness of the participatory techniques they adopt in communicating and disseminating their activities? In this paper we present a case study of a communication and educational proposal recently developed by CNR in order to promote a mutual exchange between Education/School and Research, that are the most important actors in the production and the revision of the scientific knowledge. The proposal brings an ongoing CNR research project (its steps, subjects, tools, activities, costs etc) in classrooms, making use of interactive Earth Sciences workshops conducted directly by researchers. The ongoing CNR project shared with students studies Innovative Methodologies of Earth Observation supporting the Agricultural sector in Lombardy. It aims at exploiting the Aerospace Earth Observation (EO) tools to develop dedicated agricultural downstream services that will bring added economic value and benefits for Lombardy

  16. From Stories to Scientific Models and Back: Narrative Framing in Modern Macroscopic Physics

    Science.gov (United States)

    Fuchs, Hans U.

    2015-01-01

    Narrative in science learning has become an important field of inquiry. Most applications of narrative are extrinsic to science--such as when they are used for creating affect and context. Where they are intrinsic, they are often limited to special cases and uses. To extend the reach of narrative in science, a hypothesis of narrative framing of…

  17. Semantic Models of Sentences with Verbs of Motion in Standard Language and in Scientific Language Used in Biology

    Directory of Open Access Journals (Sweden)

    Vita Banionytė

    2016-06-01

    Full Text Available The semantic models of sentences with verbs of motion in German standard language and in scientific language used in biology are analyzed in the article. In its theoretic part it is affirmed that the article is based on the semantic theory of the sentence. This theory, in its turn, is grounded on the correlation of semantic predicative classes and semantic roles. The combination of semantic predicative classes and semantic roles is expressed by the main semantic formula – proposition. In its practical part the differences between the semantic models of standard and scientific language used in biology are explained. While modelling sentences with verbs of motion, two groups of semantic models of sentences are singled out: that of action (Handlung and process (Vorgang. The analysis shows that the semantic models of sentences with semantic action predicatives dominate in the text of standard language while the semantic models of sentences with semantic process predicatives dominate in the texts of scientific language used in biology. The differences how the doer and direction are expressed in standard and in scientific language are clearly seen and the semantic cases (Agens, Patiens, Direktiv1 help to determine that. It is observed that in scientific texts of high level of specialization (biology science in contrast to popular scientific literature models of sentences with moving verbs are usually seldom found. They are substituted by denominative constructions. In conclusions it is shown that this analysis can be important in methodics, especially planning material for teaching professional-scientific language.

  18. Historical Scientific Models and Theories as Resources for Learning and Teaching: The Case of Friction

    Science.gov (United States)

    Besson, Ugo

    2013-05-01

    This paper presents a history of research and theories on sliding friction between solids. This history is divided into four phases: from Leonardo da Vinci to Coulomb and the establishment of classical laws of friction; the theories of lubrication and the Tomlinson's theory of friction (1850-1930); the theories of wear, the Bowden and Tabor's synthesis and the birth of Tribology (1930-1980); nanotribology, friction at the atomic scale, and new fields of research (after 1980). Attention is given to recent research, so giving the sense of a topic that is still alive and currently an object of interest, with interpretative controversies. The development of explanatory and visual models is especially stressed, in connection with students' common ideas and with didactic purposes. The history shows that many models proposed in the past have been modified but not abandoned, so that here the scientific evolution has worked more by adding than by eliminating. The last sections discuss problems and proposals on teaching friction and the possible uses in teaching of models, images and theories found in history. Concerning the role of the history in science teaching, the case of friction has particular features, because some recent developments are unknown to most teachers and many results, also not very recent, contrast with the laws usually proposed in textbooks. Here history can supply a number of models, examples and experiments which can constitute useful resources to improve student understanding, joining together objectives of cultural value and of better scientific knowledge.

  19. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    Science.gov (United States)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high

  20. Stepping into the Unknown: Three Models for the Teaching and Learning of the Opening Sections of Scientific Articles

    Science.gov (United States)

    Falk, Hedda; Yarden, Anat

    2011-01-01

    Different genres of scientific articles have begun to diffuse into science curricula. Among them, adapted primary literature (APL) retains the characteristics of scientific research articles, while adapting their contents to the knowledge level of students in the 11th to 12th grades. We present three models for the teaching and learning of the…

  1. The Teaching and Assessment of Inquiry Competences

    DEFF Research Database (Denmark)

    Rönnebeck, Silke; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    New competence-oriented learning goals can only be sustainably implemented if they are aligned with teaching and assessment goals. Within the fields of science, technology and mathematics education, one approach of compe-tence-oriented teaching is based on the concept of inquiry-based education....... Scien-tific inquiry in science, problem solving in mathematics, design processes in tech-nology and innovation as a cross-curricular approach to teaching and learning that is emphasised as a key element of 21st century skills allow students to engage in the thinking and working processes of scientists....... By applying these approaches, teachers can address subject-specific as well as generic competences (e.g. investi-gation in science as a subject-specific competence vs. argumentation or communi-cation as more generic competences). Since what is assessed strongly influences what is taught, changes in teaching...

  2. Representational Inquiry competences in Science Games

    DEFF Research Database (Denmark)

    Magnussen, Rikke

    2009-01-01

    to support work with genuine scientific inquiry and to meet the seventh- to tenth grade curriculum objectives for science and Danish education in Danish schools. This paper comprises a presentation of the results of a long-term empirical study done of four school classes who have played the game. The chapter......This chapter concerns the enactment of competences in a particular science learning game Homicide, which is played in lower secondary schools. Homicide is a forensic investigation game in which pupils play police experts solving criminal cases in the space of one week. The game is designed......, transform and criticize visual representations as an integrated part of conducting an inquiry in the science game...

  3. Development of a Model for Measuring Scientific Processing Skills Based on Brain-Imaging Technology: Focused on the Experimental Design Process

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju

    2014-01-01

    The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…

  4. NASA's Climate in a Box: Desktop Supercomputing for Open Scientific Model Development

    Science.gov (United States)

    Wojcik, G. S.; Seablom, M. S.; Lee, T. J.; McConaughy, G. R.; Syed, R.; Oloso, A.; Kemp, E. M.; Greenseid, J.; Smith, R.

    2009-12-01

    NASA's High Performance Computing Portfolio in cooperation with its Modeling, Analysis, and Prediction program intends to make its climate and earth science models more accessible to a larger community. A key goal of this effort is to open the model development and validation process to the scientific community at large such that a natural selection process is enabled and results in a more efficient scientific process. One obstacle to others using NASA models is the complexity of the models and the difficulty in learning how to use them. This situation applies not only to scientists who regularly use these models but also non-typical users who may want to use the models such as scientists from different domains, policy makers, and teachers. Another obstacle to the use of these models is that access to high performance computing (HPC) accounts, from which the models are implemented, can be restrictive with long wait times in job queues and delays caused by an arduous process of obtaining an account, especially for foreign nationals. This project explores the utility of using desktop supercomputers in providing a complete ready-to-use toolkit of climate research products to investigators and on demand access to an HPC system. One objective of this work is to pre-package NASA and NOAA models so that new users will not have to spend significant time porting the models. In addition, the prepackaged toolkit will include tools, such as workflow, visualization, social networking web sites, and analysis tools, to assist users in running the models and analyzing the data. The system architecture to be developed will allow for automatic code updates for each user and an effective means with which to deal with data that are generated. We plan to investigate several desktop systems, but our work to date has focused on a Cray CX1. Currently, we are investigating the potential capabilities of several non-traditional development environments. While most NASA and NOAA models are

  5. Does attainment of Piaget's formal operational level of cognitive development predict student understanding of scientific models?

    Science.gov (United States)

    Lahti, Richard Dennis, II

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer standards. Effective methods of instruction will need to be developed to enable students to achieve these standards. The literature reveals an inconsistent history of success with modeling education. These same studies point to a possible cognitive development component which might explain why some students succeeded and others failed. An environmental science course, rich in modeling experiences, was used to test both the extent to which knowledge of models and modeling could be improved over the course of one semester, and more importantly, to identify if cognitive ability was related to this improvement. In addition, nature of science knowledge, particularly related to theories and theory change, was also examined. Pretest and posttest results on modeling (SUMS) and nature of science (SUSSI), as well as data from the modeling activities themselves, was collected. Cognitive ability was measured (CTSR) as a covariate. Students' gain in six of seven categories of modeling knowledge was at least medium (Cohen's d >.5) and moderately correlated to CTSR for two of seven categories. Nature of science gains were smaller, although more strongly correlated with CTSR. Student success at creating a model was related to CTSR, significantly in three of five sub-categories. These results suggest that explicit, reflective experience with models can increase student knowledge of models and modeling (although higher cognitive ability students may have more success), but successfully creating models may depend more heavily on cognitive ability. This finding in particular has implications in the grade placement of modeling standards and

  6. Using an Agent-Based Modeling Simulation and Game to Teach Socio-Scientific Topics

    Directory of Open Access Journals (Sweden)

    Lori L. Scarlatos

    2014-02-01

    Full Text Available In our modern world, where science, technology and society are tightly interwoven, it is essential that all students be able to evaluate scientific evidence and make informed decisions. Energy Choices, an agent-based simulation with a multiplayer game interface, was developed as a learning tool that models the interdependencies between the energy choices that are made, growth in local economies, and climate change on a global scale. This paper presents the results of pilot testing Energy Choices in two different settings, using two different modes of delivery.

  7. Growing complex network of citations of scientific papers: Modeling and measurements.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  8. Gondwana Tales: an inquiry approach to plate tectonics

    Science.gov (United States)

    Domènech Casal, Jordi

    2014-05-01

    Plate tectonics and its effects on the constitution of seas and continents are key models in science education. Fossil evidences are usually taught in demostrative key when Wegener's discoverings about Pangea are introduced. In order to introduce inquiry-based science education (IBSE) approaches to this topic, we propose "Gondwana Tales", an activity where students are asked to use fossil data to reconstruct the geologic history of an imaginary planet. Grouped in independent teams, each team is furnished with stratigraphic columns from several sites containing faunistic successions of real organisms existing in the past in Earth. Students are told to reconstruct a model of the evolution of the continents, by making calculations of relative ages of the fossils, and relating each fossil to a geologic era. The different teams have incomplete and complementary information. After a first step where they have to propose a partial model based on incomplete data, each team receives a "visitor scientist" from another team, this implying an informal scientific communication event. This process is performed several times, engaging a discussion in each team and getting a final consensus model created by the whole class. Correct answer is not given to the students, even at the end of the activity, to keep the activity under the parameters of real scientific experience, where there is not a "correct answer" to compare. Instead of this, and following the IBSE standards, a reflection on the process is proposed to students. The lack of complete information and the need to collaborate are part of classroom dynamics focused to the understanding of the process of creation of the scientific knowledge. This activity is part of the C3 Project on Creation of Scientific Knowledge that is being applied in the school.

  9. Mini-Journal Inquiry Laboratory: A Case Study in a General Chemistry Kinetics Experiment

    Science.gov (United States)

    Zhao, Ningfeng; Wardeska, Jeffrey G.

    2011-01-01

    The mini-journal curriculum for undergraduate science laboratories mirrors the format of scientific literature and helps students improve their learning through direct scientific practices. The lab embodies the essential features of scientific inquiry and replaces the traditional "cookbook" lab to engage students in active learning. A case study…

  10. The Earth's Shape and Movements: Teachers' Perception of the Relations Between Daily Observation and Scientific Models

    Science.gov (United States)

    Ferreira, Flávia Polati; Leite, Cristina

    2015-07-01

    The Earth’s shape and movements are some of the most common issues in official documents and research studies of astronomy education. Many didactic proposals suggest these issues within observational astronomy. Therefore, we present in this paper some of the main results of a research study of the teachers’ perception of the relations between the knowledge from daily observation and scientific models currently accepted about the “earth’s shape and movements”. Data were obtained in application of the didactic proposal during a teacher training course for teachers from São Paulo, have been constructed with the dynamics “Three Pedagogical Moments” and guided by some of the central ideas of the educator Paulo Freire. The results indicate that a small proportion of teachers seem to understand some of the relations of “apparent contradictions” and “limitations” with the concepts of spatiality, and many of them argued based only on vague phrases or "buzzwords", unconnected to the problem explored. The difficulties of teachers to relate elements of daily observation with scientific models seem to indicate a necessity to approach some these aspects with the astronomical knowledge in the teacher training courses.

  11. Built To Last: Using Iterative Development Models for Sustainable Scientific Software Development

    Science.gov (United States)

    Jasiak, M. E.; Truslove, I.; Savoie, M.

    2013-12-01

    In scientific research, software development exists fundamentally for the results they create. The core research must take focus. It seems natural to researchers, driven by grant deadlines, that every dollar invested in software development should be used to push the boundaries of problem solving. This system of values is frequently misaligned with those of the software being created in a sustainable fashion; short-term optimizations create longer-term sustainability issues. The National Snow and Ice Data Center (NSIDC) has taken bold cultural steps in using agile and lean development and management methodologies to help its researchers meet critical deadlines, while building in the necessary support structure for the code to live far beyond its original milestones. Agile and lean software development and methodologies including Scrum, Kanban, Continuous Delivery and Test-Driven Development have seen widespread adoption within NSIDC. This focus on development methods is combined with an emphasis on explaining to researchers why these methods produce more desirable results for everyone, as well as promoting developers interacting with researchers. This presentation will describe NSIDC's current scientific software development model, how this addresses the short-term versus sustainability dichotomy, the lessons learned and successes realized by transitioning to this agile and lean-influenced model, and the current challenges faced by the organization.

  12. Kidspiration[R] for Inquiry-Centered Activities

    Science.gov (United States)

    Shaw, Edward L., Jr.; Baggett, Paige V.; Salyer, Barbara

    2004-01-01

    Computer technology can be integrated into science inquiry activities to increase student motivation and enhance and expand scientific thinking. Fifth-grade students used the visual thinking tools in the Kidspiration[R] software program to generate and represent a web of hypotheses around the question, "What affects the distance a marble rolls?"…

  13. Preservice Teachers Developing Coherent Inquiry Investigations in Elementary Astronomy

    Science.gov (United States)

    Plummer, Julia D.; Tanis Ozcelik, Arzu

    2015-01-01

    For students to attain deep understanding of scientific practices, they will need to have opportunities to participate in sustained engagement in doing science. Such opportunities begin with elementary teachers implementing coherent and well-sequenced inquiry-based investigations in their classrooms. This study explored how preservice teachers (N…

  14. Promoting Cognitive and Social Aspects of Inquiry through Classroom Discourse

    Science.gov (United States)

    Jin, Hui; Wei, Xin; Duan, Peiran; Guo, Yuying; Wang, Wenxia

    2016-01-01

    We investigated how Chinese physics teachers structured classroom discourse to support the cognitive and social aspects of inquiry-based science learning. Regarding the cognitive aspect, we examined to what extent the cognitive processes underlying the scientific skills and the disciplinary reasoning behind the content knowledge were taught.…

  15. Five decades of tackling models for stiff fluid dynamics problems a scientific autobiography

    CERN Document Server

    Zeytounian, Radyadour Kh

    2014-01-01

    Rationality - as opposed to 'ad-hoc' - and asymptotics - to emphasize the fact that perturbative methods are at the core of the theory - are the two main concepts associated with the Rational Asymptotic Modeling (RAM) approach in fluid dynamics when the goal is to specifically provide useful models accessible to numerical simulation via high-speed computing. This approach has contributed to a fresh understanding of Newtonian fluid flow problems and has opened up new avenues for tackling real fluid flow phenomena, which are known to lead to very difficult mathematical and numerical problems irrespective of turbulence. With the present scientific autobiography the author guides the reader through his somewhat non-traditional career; first discovering fluid mechanics, and then devoting more than fifty years to intense work in the field. Using both personal and general historical contexts, this account will be of benefit to anyone interested in the early and contemporary developments of an important branch of the...

  16. THE MODEL OF EXPERT SYSTEM FOR SCIENTIFIC PROJECTS EVALUATION IN HIGHER EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович ВОЗНИЙ

    2015-05-01

    Full Text Available There have been proposed the model of the expert system for the assessment of research projects in higher educational institutions, based on estimates of probability. It allows to rank alternative projects and scenarios. The model is implemented through the software "Small expert system." The principle of calculating the probability of approval of research projects, which form the basis of the expert system, is based on Bayes' theorem. Expert system calculates the probability of approval of research projects by Ministry of Science and Education on the basis of the responses to questions about the content of the request for the execution of research projects. Questions are formed on the basis of the criteria by which experts of state authorities evaluate scientific research projects.

  17. HASIL BELAJAR ASPEK KETERAMPILAN IPA PADA PEMBELAJARAN LEVEL OF INQUIRY TINGKAT INQUIRY LESSON DI SMP

    Directory of Open Access Journals (Sweden)

    Yeni Hariningsih

    2016-08-01

    Full Text Available Learning science in junior high school in general is focused on mastery of concepts and basic science has not yet developed abilities, such as the ability berinkuiri. Therefore, it is necessary to find the appropriate steps to improve the process of learning science. The purpose of the study iniuntuk improve learning outcomes by using the skill aspect of inquiry learning model level. The method used in this research is mixed method. The instrument used is the syllabus, lesson plans, and the observation sheet keterampilan.Teknik data collection using observation. Aspects of data analysis skills using data reduction method, coding and interpretation. Results of research conducted on 36 students showed the ability berinkuiri learners increased by using the model level of inquiry. Results of learners aspect of overall skill increases with the good category. The conclusion from this study that the use of models level of inquiry to improve the ability berinkuiri learners and improve learning outcomes aspects of science skills of learners. Pembelajaran IPA di SMP pada umumnya masih menekankan pada penguasaan konsep dan belum mengembangkan kemampuan dasar sains, seperti kemampuan berinkuiri.Oleh karena itu perlu ditemukan langkah yang tepat untuk memperbaiki proses pembelajaran IPA. Tujuan dari penelitian iniuntuk meningkatkan hasil belajar aspek keterampilan dengan menggunakan model pembelajaran level of inquiry. Metode yang digunakan dalam penelitian ini yaitu mixed methode. Instrumen yang digunakan yaitu Silabus, RPP dan lembar observasi keterampilan. Teknik pengumpulan data menggunakan observasi. Analisis data aspek keterampilan dengan menggunakan cara mereduksi data, pengkodean dan interpretasi. Hasil penelitian yang dilakukan pada 36 peserta didik menunjukkan kemampuan berinkuiri peserta didik mengalami peningkatan dengan menggunakan model level of inquiry. Hasil belajar peserta didik aspek keterampilan secara keseluruhan meningkat dengan dengan

  18. Demonstrating Patterns in the Views Of Stakeholders Regarding Ethically-Salient Issues in Clinical Research: A Novel Use of Graphical Models in Empirical Ethics Inquiry.

    Science.gov (United States)

    Kim, Jane Paik; Roberts, Laura Weiss

    Empirical ethics inquiry works from the notion that stakeholder perspectives are necessary for gauging the ethical acceptability of human studies and assuring that research aligns with societal expectations. Although common, studies involving different populations often entail comparisons of trends that problematize the interpretation of results. Using graphical model selection - a technique aimed at transcending limitations of conventional methods - this report presents data on the ethics of clinical research with two objectives: (1) to display the patterns of views held by ill and healthy individuals in clinical research as a test of the study's original hypothesis and (2) to introduce graphical model selection as a key analytic tool for ethics research. In this IRB-approved, NIH-funded project, data were collected from 60 mentally ill and 43 physically ill clinical research protocol volunteers, 47 healthy protocol-consented participants, and 29 healthy individuals without research protocol experience. Respondents were queried on the ethical acceptability of research involving people with mental and physical illness (i.e., cancer, HIV, depression, schizophrenia, and post-traumatic stress disorder) and non-illness related sources of vulnerability (e.g., age, class, gender, ethnicity). Using a statistical algorithm, we selected graphical models to display interrelationships among responses to questions. Both mentally and physically ill protocol volunteers revealed a high degree of connectivity among ethically-salient perspectives. Healthy participants, irrespective of research protocol experience, revealed patterns of views that were not highly connected. Between ill and healthy protocol participants, the pattern of views is vastly different. Experience with illness was tied to dense connectivity, whereas healthy individuals expressed views with sparse connections. In offering a nuanced perspective on the interrelation of ethically relevant responses, graphical

  19. A PROBLEM-BASED LEARNING MODEL IN BIOLOGY EDUCATION COURSES TO DEVELOP INQUIRY TEACHING COMPETENCY OF PRESERVICE TEACHERS

    Directory of Open Access Journals (Sweden)

    Diah Aryulina

    2016-02-01

    MODEL PEMBELAJARAN BERBASIS MASALAH PADA MATAKULIAH PENDIDIKAN BIOLOGI UNTUK MENGEMBANGKAN KOMPETENSI PEMBELAJARAN INKUIRI Abstrak: Tujuan tahap awal penelitian pengembangan ini adalah: 1 mengembangkan model pembelajaran berbasis masalah (PBM pada matakuliah pendidikan biologi, dan 2 memeroleh penilaian ahli terhadap ketepatan model PBM. Model PBM dikembangkan menggunakan pendekatan sistem desain instruksional berdasarkan analisis kebutuhan kompetensi guru biologi, serta kajian literatur mengenai ciri dan proses pembelajaran berbasis masalah. Evaluasi model PBM dilakukan oleh dua pakar pendidikan biologi. Selanjutnya data evaluasi dari pakar dianalisis secara deskriptif. Struktur model PBM yang dikembangkan pada matakuliah Strategi Pembelajaran Biologi, PPL I, dan PPL II terdiri atas tahap identifikasi masalah, perencanaan pemecahan masalah, pelaksanaan pemecahan masalah, penyajian hasil pemecahan masalah, dan refleksi pemecahan masalah. Kelima tahap tersebut dilaksanakan berulang dalam beberapa siklus selama semester. Hasil penilaian pakar menunjukkan bahwa model PBM sesuai dengan ciri pembelajaran berbasis masalah dan tepat digunakan untuk mengembangkan kompetensi pembelajaran inkuiri calon guru. Kata kunci: Model PBM, matakuliah pendidikan biologi, calon guru, kompetensi pembelajaran inkuiri

  20. On comparative inquiry

    DEFF Research Database (Denmark)

    Moutsios, Stavros

    of self‐reflexivity and self-questioning in the Greek polis gave also rise to the genuine interest in the institutions of the cultural ‘other’. Impartiality in the study of the others’ institutions started in Greece and it was closely associated with the signification that physis (nature) should......The paper explores the origins of comparative studies, which as it argues are located in Ancient Greece. Greece is not only the place where the school was born, but it is also there where the interest in and inquiry of the institutions of other societies, including education, emerged. The rise...... to know better their own society through comparison. Cross-cultural examination in this regard informed further the Greeks’ self-reflexivity. By going through a set of historical sources and contemporary literature, the paper will elaborate on the emergence of cross-cultural and comparative inquiry...

  1. Organization model compound by phases to establish didactic methodological actions in the scientific formation of the Weightlifting trainer

    Directory of Open Access Journals (Sweden)

    Luis Orlando Caballero-Riera

    2015-06-01

    Full Text Available The work offers a model with organization didactic methodological actions having the purpose of transforming the insufficiencies revealed in the scientific preparation of the Physical Culture and Sport Professional, as well as in the development and leading of the scientific investigative activity during the solution of problems that are shown in the socio professional context of the Weightlifting sport. The actions are focused in the scientific investigative activities and in the information management about the trainers leadership, having them to acting an independent and productive way; where the investigative creative activity articulated is harmonically with the development of investigative skills making possible the acquisition of capacities in the scientific investigative work. To carry out this research theoretical and empirical methods of investigation were used which allowed to base the proposed, to carry out the investigation process and to value its feasibility according to the specialists criteria for the solution of the Scientific Problem.

  2. An auto-focusing heuristic model to increase the reliability of a scientific mission

    International Nuclear Information System (INIS)

    Gualdesi, Lavinio

    2006-01-01

    Researchers invest a lot of time and effort on the design and development of components used in a scientific mission. To capitalize on this investment and on the operational experience of the researchers, it is useful to adopt a quantitative data base to monitor the history and usage of the components. This work describes a model to monitor the reliability level of components. The model is very flexible and allows users to compose systems using the same components in different configurations as required by each mission. This tool provides availability and reliability figures for the configuration requested, derived from historical data of the components' previous performance. The system is based on preliminary checklists to establish standard operating procedures (SOP) for all components life phases. When an infringement to the SOP occurs, a quantitative ranking is provided in order to quantify the risk associated with this deviation. The final agreement between field data and expected performance of the component makes the model converge onto a heuristic monitoring system. The model automatically focuses on points of failure at the detailed component element level, calculates risks, provides alerts when a demonstrated risk to safety is encountered, and advises when there is a mismatch between component performance and mission requirements. This model also helps the mission to focus resources on critical tasks where they are most needed

  3. “SimDelta”—Inquiry into an Internet-Based Interactive Model for Water Infrastructure Development in The Netherlands

    Directory of Open Access Journals (Sweden)

    Nadine Slootjes

    2012-03-01

    Full Text Available The Dutch Delta Program is currently developing new government policies for flood protection and fresh water supply. Decision support instruments have to address the program’s technical and political complexity. The water system functions are highly interwoven and would benefit from an integrated approach on a national level, with decisions supported by a scientific Systems Analysis. Politically, there is a tendency towards broad participation and decentralization, and decision-making is typically supported by Conflict Resolution methods. To connect these two sides of the Delta Program’s task, an outline is presented of an internet community-based interactive instrument, preliminarily named SimDelta. On-line interactive maps and elements of serious gaming intuitively provide local Delta Program participants insight into the interaction between scenarios, problems, and solutions. SimDelta uses the internet to more frequently and efficiently present conceptual designs by architects and engineers to the Delta Program stakeholders, record their preferences, and “crowdsource” corrections, improvements and new ideas.

  4. From Scientific Innovation to Popularization of Science: a Theoretical Model TOC \\o "1-5" \\h \\z of Science Communication

    Directory of Open Access Journals (Sweden)

    Svetlana M. Medvedeva

    2014-01-01

    Full Text Available Science communication is process of promotion of scientific ideas from a scientist through scientific community to muss public. Now this research area attracts a lot of attention from scientists. At the same time science communication suffers from the lack of theoretical framework, which can integrate it. In this article we try to contribute to the further theoretical integration of this area. Here we discuss a model of motion and transformation of ideas from the moment of their generation to the time of their appearance in public movies and literature. The model consists of 5 elements: phase of a scientist (generation of ideas; phase of scientific community (promotion of the ideas among scientists; phase of interested groups (communication with business and government, education of future scientists; phase of popular science (promotion of ideas into mass culture; phase of fiction (subject of communication becomes not scientific knowledge, but myth about science. Each phase is conceived as equal in value stage of existence of scientific ideas. There is a consistent interaction between all phases. The ideas can flow sequentially through all five phases. But independent communication among separate stages is also possible. Furthermore, the ideas can flow in both directions from scientific community to public and visa verse. As a result, scientific communication becomes a real dialogue with equal partners.

  5. Measurement Model of Reasoning Skills among Science Students Based on Socio Scientific Issues (SSI

    Directory of Open Access Journals (Sweden)

    MOHD AFIFI BAHURUDIN SETAMBAH

    2018-05-01

    Full Text Available The lack of reasoning skills has been recognized as one of the contributing factors to the declined achievement in the Trends in Mathematics and Science Studies (TIMSS and Programme for International Student Assessment (PISA assessments in Malaysia. The use of socio-scientific issues (SSI as a learning strategy offers the potential of improving the level of students' reasoning skills and consequently improves students’ achievement in science subjects. This study examined the development of a measurement model of reasoning skills among science students based on SSI using the analysis of moment structure (AMOS approach before going to second level to full structured equation modelling (SEM. A total of 450 respondents were selected using a stratified random sampling. Results showed a modified measurement model of reasoning skills consisting of the View Knowledge (VK was as a main construct. The items that measure the level of pre-reflection of students fulfilled the elements of unidimensionality, validity, and reliability. Although the level of student reasoning skills was still low but this development of measurement model could be identified and proposed teaching methods that could be adopted to improve students’ reasoning skills.

  6. Teaching Scientific Computing: A Model-Centered Approach to Pipeline and Parallel Programming with C

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2015-01-01

    Full Text Available The aim of this study is to present an approach to the introduction into pipeline and parallel computing, using a model of the multiphase queueing system. Pipeline computing, including software pipelines, is among the key concepts in modern computing and electronics engineering. The modern computer science and engineering education requires a comprehensive curriculum, so the introduction to pipeline and parallel computing is the essential topic to be included in the curriculum. At the same time, the topic is among the most motivating tasks due to the comprehensive multidisciplinary and technical requirements. To enhance the educational process, the paper proposes a novel model-centered framework and develops the relevant learning objects. It allows implementing an educational platform of constructivist learning process, thus enabling learners’ experimentation with the provided programming models, obtaining learners’ competences of the modern scientific research and computational thinking, and capturing the relevant technical knowledge. It also provides an integral platform that allows a simultaneous and comparative introduction to pipelining and parallel computing. The programming language C for developing programming models and message passing interface (MPI and OpenMP parallelization tools have been chosen for implementation.

  7. Simulation of ODE/PDE models with MATLAB, OCTAVE and SCILAB scientific and engineering applications

    CERN Document Server

    Vande Wouwer, Alain; Vilas, Carlos

    2014-01-01

    Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and -element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB®/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of applicatio...

  8. SCIENTIFIC METHODOLOGICAL APPROACHES TO CREATION OF COMPLEX CONTROL SYSTEM MODEL FOR THE STREAMS OF BUILDING WASTE

    Directory of Open Access Journals (Sweden)

    Tskhovrebov Eduard Stanislavovich

    2015-09-01

    Full Text Available In 2011 in Russia a Strategy of Production Development of Construction Materials and Industrial Housing Construction for the period up to 2020 was approved as one of strategic documents in the sphere of construction. In the process of this strategy development all the needs of construction complex were taken into account in all the spheres of economy, including transport system. The strategy also underlined, that the construction industry is a great basis for use and application in secondary economic turnover of dangerous waste from different production branches. This gives possibility to produce construction products of recycled materials and at the same time to solve the problem of environmental protection. The article considers and analyzes scientific methodological approaches to creation of a model of a complex control system for the streams of building waste in frames of organizing uniform ecologically safe and economically effective complex system of waste treatment in country regions.

  9. The Implementation of Discovery Learning Model with Scientific Learning Approach to Improve Students’ Critical Thinking in Learning History

    Directory of Open Access Journals (Sweden)

    Edi Nurcahyo

    2018-03-01

    Full Text Available Historical learning has not reached optimal in the learning process. It is caused by the history teachers’ learning model has not used the innovative learning models. Furthermore, it supported by the perception of students to the history subject because it does not become final exam (UN subject so it makes less improvement and builds less critical thinking in students’ daily learning. This is due to the lack of awareness of historical events and the availability of history books for students and teachers in the library are still lacking. Discovery learning with scientific approach encourages students to solve problems actively and able to improve students' critical thinking skills with scientific approach so student can build scientific thinking include observing, asking, reasoning, trying, and networking   Keywords: discovery learning, scientific, critical thinking

  10. A comparison of bilingual education and generalist teachers' approaches to scientific biliteracy

    Science.gov (United States)

    Garza, Esther

    The purpose of this study was to determine if educators were capitalizing on bilingual learners' use of their biliterate abilities to acquire scientific meaning and discourse that would formulate a scientific biliterate identity. Mixed methods were used to explore teachers' use of biliteracy and Funds of Knowledge (Moll, L., Amanti, C., Neff, D., & Gonzalez, N., 1992; Gonzales, Moll, & Amanti, 2005) from the students' Latino heritage while conducting science inquiry. The research study explored four constructs that conceptualized scientific biliteracy. The four constructs include science literacy, science biliteracy, reading comprehension strategies and students' cultural backgrounds. There were 156 4th-5th grade bilingual and general education teachers in South Texas that were surveyed using the Teacher Scientific Biliteracy Inventory (TSBI) and five teachers' science lessons were observed. Qualitative findings revealed that a variety of scientific biliteracy instructional strategies were frequently used in both bilingual and general education classrooms. The language used to deliver this instruction varied. A General Linear Model revealed that classroom assignment, bilingual or general education, had a significant effect on a teacher's instructional approach to employ scientific biliteracy. A simple linear regression found that the TSBI accounted for 17% of the variance on 4th grade reading benchmarks. Mixed methods results indicated that teachers were utilizing scientific biliteracy strategies in English, Spanish and/or both languages. Household items and science experimentation at home were encouraged by teachers to incorporate the students' cultural backgrounds. Finally, science inquiry was conducted through a universal approach to science learning versus a multicultural approach to science learning.

  11. Exploring the meaning of practicing classroom inquiry from the perspectives of National Board Certified Science Teachers

    Science.gov (United States)

    Karaman, Ayhan

    of science teachers. Second, it examined the meaning of practicing classroom inquiry for National Board Certified Science Teachers [NBCSTs]. Based on the specific cases of four NBCSTs, this naturalistic inquiry study was conducted to answer to those questions with the involvement of the following qualitative data sources: classroom observations, in-depth teacher interviews, and document analyses of teacher portfolios. The specific cases in this study indicated that undergoing the performance assessment process of NBC played an affirmational role for National Board Certified Science Teachers [NBCSTs] in their professional development. Their successful completion of the portfolio assessment process created a sharpened confidence into their existing notions and ways of teaching science. In the study, not all teachers were equally open to science education reform ideas. This meant that NBC experience strengthened the conventional notions of teaching science held by some teachers rather than generating a higher affiliation with the reform ideas. The teacher cases presented in this study denoted that teachers' conceptions of classroom inquiry were driven both by scientific and constructivist rationales. However, NBCSTs failed to create broader operational definitions of classroom inquiry. They tended to reduce the meaning of classroom inquiry into empirical investigations of students. The conventional representation of the scientific method as a stepwise linear process influenced teachers' understandings and practices of classroom inquiry. NBCSTs used inquiry in their classrooms to introduce their students to the cognitive processes and the actions of practicing scientists but not necessarily to teach scientific principles. Their reluctance to teach scientific principles through inquiry developed in parallel to their tendency of associating classroom inquiry with the highest levels of student autonomy. Participant teachers' particular understandings of scientific literacy

  12. Scientific communication

    Directory of Open Access Journals (Sweden)

    Aleksander Kobylarek

    2017-09-01

    Full Text Available The article tackles the problem of models of communication in science. The formal division of communication processes into oral and written does not resolve the problem of attitude. The author defines successful communication as a win-win game, based on the respect and equality of the partners, regardless of their position in the world of science. The core characteristics of the process of scientific communication are indicated , such as openness, fairness, support, and creation. The task of creating the right atmosphere for science communication belongs to moderators, who should not allow privilege and differentiation of position to affect scientific communication processes.

  13. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    Science.gov (United States)

    Van Horne, Katie

    tools and means of contemporary scientific inquiry allows them to gain conceptual development and proficiency with the scientific practices within the contexts of their lives, in ways that provided access to resources that promoted students' stabilization of practice-linked identities. For teachers implementing this instructional model in their classrooms, it brought up dilemmas and opportunities related to their school contexts and their personal history of instructional practices. The work collectively informs how interest-driven project-based science instruction can happen across a range of school contexts and how such models can support meaningful science learning and identification.

  14. Fast and Low-Complexity Simulations of the Inquiry Time in Bluetooth

    DEFF Research Database (Denmark)

    Figueiras, Joao; Schwefel, Hans-Peter

    2006-01-01

    The timing behavior of the Inquiry Procedure in Bluetooth is relevant for several important functionalities, in particular topology formation and localization. The detailed Inquiry procedure is rather complex and simulation models may become inefficient if they implement the full detailed...... specification. This paper presents an abstracted model to approximate the distribution of Bluetooth inquiry time for scenarios in which multiple Bluetooth nodes perform the inquiry procedure. The abstracted model leads to a simple algorithm which can be used in simulation models to generate samples from...

  15. Let's Change the Subject and Change Our Organization: An Appreciative Inquiry Approach to Organization Change.

    Science.gov (United States)

    Whitney, Diana

    1998-01-01

    Appreciative inquiry is a form of organizational development based on principles of constructivism, poetics, anticipation, and simultaneity. The model has four phases: discovery, dream, design, and delivery. (SK)

  16. Conservation Process Model (cpm): a Twofold Scientific Research Scope in the Information Modelling for Cultural Heritage

    Science.gov (United States)

    Fiorani, D.; Acierno, M.

    2017-05-01

    The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction) field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014). In order to combine achievements reached within AEC through BIM environment (design control and management) with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  17. CONSERVATION PROCESS MODEL (CPM: A TWOFOLD SCIENTIFIC RESEARCH SCOPE IN THE INFORMATION MODELLING FOR CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    D. Fiorani

    2017-05-01

    Full Text Available The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014. In order to combine achievements reached within AEC through BIM environment (design control and management with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  18. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  19. The Relationship between Students' Perception of the Scientific Models and Their Alternative Conceptions of the Lunar Phases

    Science.gov (United States)

    Park, Su-Kyeong

    2013-01-01

    The aim of this study was to reveal whether there were differences in the understanding of scientific models according to their conceptions of lunar phases. The participants were 252 10th grader in South Korea. They were asked to respond SUMS (Students Understanding of Models in Science) instrument and to draw and explain why the different lunar…

  20. Does Attainment of Piaget's Formal Operational Level of Cognitive Development Predict Student Understanding of Scientific Models?

    Science.gov (United States)

    Lahti, Richard Dennis, II.

    2012-01-01

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer…

  1. Earth Science for Educators: Preparing 7-12 Teachers for Standards-based, Inquiry Instruction

    Science.gov (United States)

    Sloan, H.

    2002-05-01

    "Earth Science for Educators" is an innovative, standards-based, graduate level teacher education curriculum that presents science content and pedagogic technique in parallel. The curriculum calls upon the resources and expertise of the American Museum of Natural History (AMNH) to prepare novice New York City teachers for teaching Earth Science. One of the goals of teacher education is to assure and facilitate science education reform through preparation of K-12 teachers who understand and are able to implement standard-based instruction. Standards reflect not only the content knowledge students are expected to attain but also the science skills and dispositions towards science they are expected to develop. Melding a list of standards with a curriculum outline to create inquiry-based classroom instruction that reaches a very diverse population of learners is extremely challenging. "Earth Science for Educators" helps novice teachers make the link between standards and practice by constantly connecting standards with instruction they receive and activities they carry out. Development of critical thinking and enthusiasm for inquiry is encouraged through engaging experience and contact with scientists and their work. Teachers are taught Earth systems science content through modeling of a wide variety of instruction and assessment methods based upon authentic scientific inquiry and aimed at different learning styles. Use of fieldwork and informal settings, such as the Museum, familiarizes novice teachers with ways of drawing on community resources for content and instructional settings. Metacognitive reflection that articulates standards, practice, and the teachers' own learning experience help draw out teachers' insights into their students' learning. The innovation of bring science content together with teaching methods is key to preparing teachers for standards-based, inquiry instruction. This curriculum was successfully piloted with a group of 28 novice teachers as

  2. Human capital, social capital and scientific research in Europe: an application of linear hierarchical models

    OpenAIRE

    Mathieu Goudard; Michel Lubrano

    2011-01-01

    The theory of human capital is one way to explain individual decisions to produce scientific research. However, this theory, even if it reckons the importance of time in science, is too short for explaining the existing diversity of scientific output. The present paper introduces the social capital of Bourdieu (1980), Coleman (1988) and Putnam (1995) as a necessary complement to explain the creation of scientific human capital. This paper connects these two concepts by means of a hierarchical...

  3. Narratives of Inquiry Learning in Middle-School Geographic Inquiry Class

    Science.gov (United States)

    Kuisma, Merja

    2018-01-01

    This study aimed at modifying a teaching and learning model for a geographic inquiry to enhance both the subject-related skills of geography and so-called twenty-first century skills in middle-school students (14-15 years old). The purpose of this research is to extend our understanding of the user experiences concerning certain tools for learning…

  4. Discrete Lognormal Model as an Unbiased Quantitative Measure of Scientific Performance Based on Empirical Citation Data

    Science.gov (United States)

    Moreira, Joao; Zeng, Xiaohan; Amaral, Luis

    2013-03-01

    Assessing the career performance of scientists has become essential to modern science. Bibliometric indicators, like the h-index are becoming more and more decisive in evaluating grants and approving publication of articles. However, many of the more used indicators can be manipulated or falsified by publishing with very prolific researchers or self-citing papers with a certain number of citations, for instance. Accounting for these factors is possible but it introduces unwanted complexity that drives us further from the purpose of the indicator: to represent in a clear way the prestige and importance of a given scientist. Here we try to overcome this challenge. We used Thompson Reuter's Web of Science database and analyzed all the papers published until 2000 by ~1500 researchers in the top 30 departments of seven scientific fields. We find that over 97% of them have a citation distribution that is consistent with a discrete lognormal model. This suggests that our model can be used to accurately predict the performance of a researcher. Furthermore, this predictor does not depend on the individual number of publications and is not easily ``gamed'' on. The authors acknowledge support from FCT Portugal, and NSF grants

  5. Computational Inquiry in Introductory Statistics

    Science.gov (United States)

    Toews, Carl

    2017-01-01

    Inquiry-based pedagogies have a strong presence in proof-based undergraduate mathematics courses, but can be difficult to implement in courses that are large, procedural, or highly computational. An introductory course in statistics would thus seem an unlikely candidate for an inquiry-based approach, as these courses typically steer well clear of…

  6. Inquiry and Digital Learning Centers

    Science.gov (United States)

    Pappas, Marjorie L.

    2005-01-01

    "Inquiry is an investigative process that engages students in answering questions, solving real world problems, confronting issues, or exploring personal interests" (Pappas and Tepe 2002, 27). Students who engage in inquiry learning need tools and resources that enable them to independently gather and use information. Scaffolding is important for…

  7. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    Science.gov (United States)

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  8. Inquiry Guided Learning Projects for the Development of Critical Thinking in the College Classroom: A Pilot Study

    Science.gov (United States)

    Bentley, Danielle C.

    2014-01-01

    This paper describes the inaugural success of implementing Inquiry Guided Learning Projects within a college-level human anatomy and physiology course. In this context, scientific inquiry was used as a means of developing skills required for critical thinking among students. The projects were loosely designed using the Information Search Process…

  9. Modeling the Uptake of Scientific Information by the Public and Opinion Flow in Society (Invited)

    Science.gov (United States)

    Lewandowsky, S.; Brown, G. D.; Cook, J.

    2013-12-01

    Improved communication of scientific findings requires knowledge not only of how people process information, but also how such information spreads through society and how people's opinions are shaped by those of others. Recent advances in cognitive science have yielded mathematical modeling techniques that permit the detailed analysis of individuals' cognition as well as the behavior of communities in the aggregate. We present two case studies that highlight the insights that can be derived from mathematical models of cognition: We show how rational processing of information (i.e., Bayesian hypothesis revision) can nonetheless give rise to seemingly 'irrational' belief updating, as for example when acceptance of human-caused global warming decreases among conservatives in response to evidence for human-caused global warming. We also show in an agent-based simulation how social norms can lead to polarization of societies. The model assumes that agents located within a social network observe the behavior of neighbours and infer from their behavior the social distribution of particular attitudes (e.g. towards climate change). Agents are assumed to dislike behaviours that are extreme within their neighbourhood (social extremeness aversion), and hence have a tendency to conform. However, agents are also assumed to prefer choices that are consistent with their own true beliefs (authenticity preference). Expression of attitudes reflects a compromise between these opposing principles. The model sheds light on the role of perceived rather than actual social consensus on attitudes to climate change. This is particularly relevant given the widespread perception among those who reject climate science that the percentage of the public that is sharing their beliefs is much higher than it actually is.

  10. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    Science.gov (United States)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  11. The nuclear inquiry

    International Nuclear Information System (INIS)

    Clement, K.J.

    1987-01-01

    Opposition to nuclear energy facilities has increased considerably in Scotland and Germany within the past two decades. The statutory institutions which exist in each country to consider formal objections to such developments have important differences, as do the licensing or planning processes of which they form an integral part. In Britain, the initiation of judicial review following public inquiries is very rare, due to the limited grounds within which this would be possible. By contrast, there has been a very high referral of nuclear power station decisions to the administrative courts in Germany, but the number is now declining as cases are invariably found in favour of the developers. The comparative examination of case studies reveals that objectors' interests may best be served, in terms of achieving policy influence, by acting outside the restrictions of the statutory planning and legal systems. The Scottish public inquiry is revealed as the more flexible institution and one which allows a much greater degree of public participation. (author)

  12. Slash Writers and Guinea Pigs as Models for a Scientific Multiliteracy

    Science.gov (United States)

    Weinstein, Matthew

    2006-01-01

    This paper explores alternative approaches to the conception of scientific literacy, drawing on cultural studies and emerging practices in language arts as its framework. The paper reviews historic tensions in the understanding of scientific literacy and then draws on the multiliteracies movement in language arts to suggest a scientific…

  13. Engaging Fifth Graders in Scientific Modeling to Learn about Evaporation and Condensation

    Science.gov (United States)

    Hokayem, Hayat; Schwarz, Christina

    2014-01-01

    Reform efforts in science education have aimed at fostering scientific literacy by helping learners meaningfully engage in scientific practices to make sense of the world. In this paper, we report on our second year of unit implementation that has investigated 34 fifth grade students' (10-year-olds) learning about evaporation and condensation…

  14. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  15. MENGEMBANGKAN PENALARAN ILMIAH (SCIENTIFIC REASONING SISWA MELALUI MODEL PEMBELAJRAN 5E PADA SISWA KELAS X SMAN 15 SURABAYA

    Directory of Open Access Journals (Sweden)

    N. Shofiyah

    2013-04-01

    Full Text Available Tujuan dari penelitian ini adalah untuk mengembangkan perangkat pembelajaran menggunakan model 5E untuk meningkatkan keterampilan penalaran ilmiah siswa. Hasil dari penelitian ini menunjukkan bahwa perangkat pembelajaran yang dikembangkan dengan model 5E valid untuk diterapkan di dalam kelas, BAS memiliki keterbacaan yang bagus, keterlaksanaan RPP dikategorikan baik, model pembelajaran 5E secara efektif dapat mening-katkan keterampilan penalaran ilmiah siswa dan siswa memberikan respon yang positif terhadap pembelajaran. The purpose of this research is to develop the 5E model of learning to improve students’ scientific reasoning skills. The results of this study show that the developed learning model 5E valid to be applied in the classroom, BAS has good readability, keterlaksanaan RPP well categorized, 5E learning model can effectively improve students’ scientific reasoning skills and the students responded positively to the learning.

  16. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  17. A Theoretical Modeling of Digital World History: Premises, Paradigm, and Scientific Data Strategy

    Directory of Open Access Journals (Sweden)

    Xudong Wang

    2007-10-01

    Full Text Available Digital World History is a new expression of world history (or maybe "a new method for world history expression" and a paradigm of world history description, study, and application by virtual informatization and recovery. It is also a comprehensive systematic study through dynamic marks, integrated description, and retrieval of human society evolution and its causality dependant on the theory and methodology of digitization information. It aims at breaking the limitation of diachronic language attributed to the process of history cognition, summation, and recovery, addressing a possible scheme to fuse historical factors in relation to changing history, dynamically applying a multiplicity of results so that the discipline of world history can meet the needs of the information-equipped society of the 21st century. In this article, the author uses theoretical modelling methods, resulting in a blueprint of the quality issue, namely the Digital World History premise, and a paradigm for setting the foundation and scientific data strategy as a basis for its necessity.

  18. A model of sustainable development of scientific research health institutions, providing high-tech medical care

    Directory of Open Access Journals (Sweden)

    I. Yu. Bedoreva

    2017-01-01

    Full Text Available The issue of sustainability is relevant for all types of businesses and organizations. Long-term development has always been and remains one of the most difficult tasks faced by organizations. The implementation the provisions of international standards ISO series 9000 has proven to be effective. The ISO standards are concentrated on the global experience for sustainable success of organizations. The standards incorporated all the rational that has been accumulated in this field of knowledge and practice. These standards not only eliminate technical barriers in collaboration and have established standardized approaches, but also serve as a valuable source of international experience and ready management solutions. They became a practical guide for the creation of management systems for sustainable development in organizations of different spheres of activity.Problem and purpose. The article presents the author’s approach to the problem of sustainable development health of the organization. The purpose of this article is to examine the approaches to management for sustainable success of organizations and to describe a model of sustainable development applied in research healthcare institutions providing high-tech medical care.Methodology. The study used general scientific methods of empirical and theoretical knowledge, general logical methods and techniques and methods of system analysis, comparison, analogy, generalization, the materials research for the development of medical organizations.The main results of our work are to first develop the technique of complex estimation of activity of the scientific-research institutions of health and deploy key elements of the management system that allows the level of maturity of the management system of the institution to be set in order to identify its strengths and weaknesses, and to identify areas for improvements and innovation, and to set priorities for determining the sequence of action when

  19. Which Sweetener Is Best for Yeast? An Inquiry-Based Learning for Conceptual Change

    Science.gov (United States)

    Cherif, Abour H.; Siuda, JoElla E.; Kassem, Sana; Gialamas, Stefanos; Movahedzadeh, Farahnaz

    2017-01-01

    One way to help students understand the scientific inquiry process, and how it applies in investigative research, is to involve them in scientific investigation. An example of this would be letting them come to their own understanding of how different variables (e.g., starting products) can affect outcomes (e.g., variable quality end products)…

  20. Sizewell B: the anatomy of an inquiry

    International Nuclear Information System (INIS)

    O'Riordan, T.; Kemp, R.; Purdue, M.

    1987-01-01

    The Economic and Social Research Council has studied four major environmental public inquiries, including Sizewell-B. This report summarizes some of the observations of the Sizewell Inquiry Review Project which has been analyzing the context, content and conduct of the Sizewell-B Inquiry. Although public inquiries in Britain have an important function in building public trust in planning decisions where opinions are divided and independent advice is needed, one outcome of the Sizewell-B Inquiry may be a streamlining of the inquiry process, eg by prior examination of policy matters, leaving the Inquiry to consider specifically site-related matters only. (UK)

  1. The Scientific Enlightenment System in Russia in the Early Twentieth Century as a Model for Popularizing Science

    Science.gov (United States)

    Balashova, Yuliya B.

    2016-01-01

    This research reconstructs the traditions of scientific enlightenment in Russia. The turn of the nineteenth and twentieth centuries was chosen as the most representative period. The modern age saw the establishment of the optimal model for advancing science in the global context and its crucial segment--Russian science. This period was…

  2. Writing as collaborative inquiry

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Pedersen, Christina Hee; Novak, Martin

    2015-01-01

    involved in collaborative knowledge production across difference (including age, professional position, life situation, nation). We tell about our experiences with how collaboration can lead toward re-invention of our research practices and methods, as well as our own subjectivities, through involvement......In our presentation we strive to disturb and unravel the romantic discourses of collaboration, dialogue and empowerment in relation to qualitative inquiry. For more than two years we (five Danish and Czech researchers) have been exploring the complex obstructions, difficulties and potentials...... in the not-yet-known. Over the years, we have shared and analyzed personal stories about our collaborative experiences in an on-going reflective learning process. We draw on writing methodologies, including memory-work (Haug, Davies) and collaborative writing such as by Wyatt, Gale, Gannon & Davies. Our...

  3. Incorporating Inquiry into Upper-Level Undergraduate Homework Assignments: The Mini-Journal

    Science.gov (United States)

    Whittington, Alan; Speck, Angela; Witzig, Stephen; Abell, Sandra

    2010-05-01

    The US National Science Education Standards (2000) state that science should be taught through inquiry. The five essential features of classroom inquiry are that the leaner (i) engages in scientifically oriented questions, (ii) gives priority to evidence in responding to questions, (iii) formulates explanations from evidence, (iv) connects explanations to scientific knowledge, and (v) communicates and justifies explanations. One difficulty in achieving this vision at the university level lies in the common perception that inquiry be fully open and unstructured, and that its implementation will be impractical due to time and material constraints. In an NSF-funded project, "CUES: Connecting Undergraduates to the Enterprise of Science," faculty developed new inquiry-based laboratory curriculum materials using a "mini-journal" approach, which is designed as an alternative to the cookbook laboratory and represents the way that scientists do science. Here we adapt this approach to a homework assignment in an upper-level Planetary Science class, and show that inquiry is achievable in this setting. Traditional homeworks in this class consisted of problem sets requiring algebraic manipulation, computation, and in most cases an appraisal of the result Longer questions are broken down into chunks worth 1 to 4 points. In contrast, the mini-journal is a short article that is modeled in the way that scientists do and report science. It includes a title, abstract, introduction (with clear statement of the problem to be tackled), a description of the methods, results (presented as both tables and graphs), a discussion (with suggestions for future work) and a list of cited work. Students devise their research questions and hypothesis from the paper based on a logical next step in the investigation. Guiding questions in the discussion can assist the students ("it would be interesting to evaluate the effect of ..."). Students submit their own minijournal, using the same journal

  4. Co-creating meaning through Artful Inquiry

    DEFF Research Database (Denmark)

    Darsø, Lotte

    2017-01-01

    The purpose of this chapter is to point out the need for aesthetic and artful methods for reflection, learning and co-creation. The context is management education focused on developing innovation competency. The data derive from action research, observations and written reports. The main contrib...... of leadership icons as well as co-creating with tangible materials can give rise to new meaning and transformational learning.......The purpose of this chapter is to point out the need for aesthetic and artful methods for reflection, learning and co-creation. The context is management education focused on developing innovation competency. The data derive from action research, observations and written reports. The main...... contribution of this chapter is the introduction of a model for Artful Inquiry, which involves constructing powerful questions and finding appropriate artistic methods for reflecting and for co-creating with people or with artistic material. It is argued that Artful Inquiry can access deeper layers of knowing...

  5. Neuroscience in middle schools: a professional development and resource program that models inquiry-based strategies and engages teachers in classroom implementation.

    Science.gov (United States)

    MacNabb, Carrie; Schmitt, Lee; Michlin, Michael; Harris, Ilene; Thomas, Larry; Chittendon, David; Ebner, Timothy J; Dubinsky, Janet M

    2006-01-01

    The Department of Neuroscience at the University of Minnesota and the Science Museum of Minnesota have developed and implemented a successful program for middle school (grades 5-8) science teachers and their students, called Brain Science on the Move. The overall goals have been to bring neuroscience education to underserved schools, excite students about science, improve their understanding of neuroscience, and foster partnerships between scientists and educators. The program includes BrainU, a teacher professional development institute; Explain Your Brain Assembly and Exhibit Stations, multimedia large-group presentation and hands-on activities designed to stimulate student thinking about the brain; Class Activities, in-depth inquiry-based investigations; and Brain Trunks, materials and resources related to class activities. Formal evaluation of the program indicated that teacher neuroscience knowledge, self-confidence, and use of inquiry-based strategies and neuroscience in their classrooms have increased. Participating teachers increased the time spent teaching neuroscience and devoted more time to "inquiry-based" teaching versus "lecture-based teaching." Teachers appreciated in-depth discussions of pedagogy and science and opportunities for collegial interactions with world-class researchers. Student interest in the brain and in science increased. Since attending BrainU, participating teachers have reported increased enthusiasm about teaching and have become local neuroscience experts within their school communities.

  6. Design processes of a citizen inquiry community

    OpenAIRE

    Aristeidou, Maria; Scanlon, Eileen; Sharples, Mike

    2017-01-01

    As with other online communities, it is important to design elements of citizen inquiry projects that will attract and engage members. This chapter describes the process of designing an online community for citizen inquiry. It builds on design principles of inquiry learning, citizen inquiry and other online communities. The ‘Weather-it’ citizen inquiry community is intended to engage and support people in initiating and joining sustainable citizen-led investigations. The findings indicate som...

  7. MODEL LEARNING CYCLE 5E DENGAN PENDEKATAN SCIENTIFIC UNTUK MENINGKATKAN DISPOSISI MATEMATIS DAN BERPIKIR KRITIS

    Directory of Open Access Journals (Sweden)

    Sofuroh -

    2014-02-01

    a minimum value criticalthinking  abilities  equal by 75 by 75%; b the existence of  a positive influence of  dispositionmathematics  and skill softhe critical thinking ability as large as 95,5%; c class that learn use5E Learning Cycle Model with a Scientific Approach better than expository; and d an increasinginthedisposition mathematics as 0,47,theskills of the critical thinking as 0,35 and theKBK formation proccess of  experimental class as 0,604. The results have a valid and provenpractical and effective. 

  8. Soliciting scientific information and beliefs in predictive modeling and adaptive management

    Science.gov (United States)

    Glynn, P. D.; Voinov, A. A.; Shapiro, C. D.

    2015-12-01

    Post-normal science requires public engagement and adaptive corrections in addressing issues with high complexity and uncertainty. An adaptive management framework is presented for the improved management of natural resources and environments through a public participation process. The framework solicits the gathering and transformation and/or modeling of scientific information but also explicitly solicits the expression of participant beliefs. Beliefs and information are compared, explicitly discussed for alignments or misalignments, and ultimately melded back together as a "knowledge" basis for making decisions. An effort is made to recognize the human or participant biases that may affect the information base and the potential decisions. In a separate step, an attempt is made to recognize and predict the potential "winners" and "losers" (perceived or real) of any decision or action. These "winners" and "losers" include present human communities with different spatial, demographic or socio-economic characteristics as well as more dispersed or more diffusely characterized regional or global communities. "Winners" and "losers" may also include future human communities as well as communities of other biotic species. As in any adaptive management framework, assessment of predictions, iterative follow-through and adaptation of policies or actions is essential, and commonly very difficult or impossible to achieve. Recognizing beforehand the limits of adaptive management is essential. More generally, knowledge of the behavioral and economic sciences and of ethics and sociology will be key to a successful implementation of this adaptive management framework. Knowledge of biogeophysical processes will also be essential, but by definition of the issues being addressed, will always be incomplete and highly uncertain. The human dimensions of the issues addressed and the participatory processes used carry their own complexities and uncertainties. Some ideas and principles are

  9. A scientific model to determine the optimal radiographer staffing component in a nuclear medicine department

    International Nuclear Information System (INIS)

    Shipanga, A.N.; Ellmann, A.

    2004-01-01

    Full text: Introduction: Nuclear medicine in South Africa is developing fast. Much has changed since the constitution of a scientific model for determining an optimum number of radiographer posts in a Nuclear Medicine department in the late 1980's. Aim: The aim of this study was to ascertain whether the number of radiographers required by a Nuclear Medicine department can still be determined according to the norms established in 1988. Methods: A quantitative study using non-experimental evaluation design was conducted to determine the ratios between current radiographer workload and staffing norms. The workload ratios were analysed using the procedures statistics of the Nuclear Medicine department at Tygerberg Hospital. Radiographers provided data about their activities related to patient procedures, including information about the condition of the patients, activities in the radiopharmaceutical laboratory, and patient related administrative tasks. These were factored into an equation relating this data to working hours, including vacation and sick leave. The calculation of Activity Standards and an annual Standard Workload was used to finally calculate the staffing requirements for a Nuclear Medicine department. Results: Preliminary data confirmed that old staffing norms cannot be used in a modern Nuclear Medicine department. Protocols for several types of study have changed, including the additional acquisition of tomographic studies. Interest in the use of time-consuming non-imaging studies has been revived and should be factored Into the equation. Conclusions: All Nuclear Medicine departments In South Africa, where the types of studies performed have changed over the past years, should look carefully at their radiographer staffing ratio to ascertain whether the number of radiographers needed is adequate for the current workload. (author)

  10. Focusing on the Processes of Science Using Inquiry-oriented Astronomy Labs for Learning Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Whittington, A.; Witzig, S.

    2010-01-01

    The U.S. National Science Education Standards provide guidelines for teaching science through inquiry, where students actively develop their understanding of science by combining scientific knowledge with reasoning and thinking skills. Inquiry activities include reading scientific literature, generating hypotheses, designing and carrying out investigations, interpreting data, and formulating conclusions. Inquiry-based instruction emphasizes questions, evidence, and explanation, the essential features of inquiry. We present two projects designed to develop learning materials for laboratory experiences in an undergraduate astronomy course. First, we engage students in inquiry-based learning by using "mini-journal” articles that follow the format of a scientific journal article, including a title, authors, abstract, introduction, methods, results, discussion and citations to peer-reviewed literature. The mini-journal provides a scaffold and serves as a springboard for students to develop and carry out their own follow-up investigation. They then present their findings in the form of their own mini-journal. This mini-journal format more directly reflects and encourages scientific practice. We use this technique in both introductory and upper level courses. The second project develops 3D virtual reality environments to help students interact with scientific constructs, and the use of collaborative learning tools to motivate student activity, deepen understanding and support knowledge building.

  11. Pre-Service Physics Teachers' Argumentation in a Model Rocketry Physics Experience

    Science.gov (United States)

    Gürel, Cem; Süzük, Erol

    2017-01-01

    This study investigates the quality of argumentation developed by a group of pre-service physics teachers' (PSPT) as an indicator of subject matter knowledge on model rocketry physics. The structure of arguments and scientific credibility model was used as a design framework in the study. The inquiry of model rocketry physics was employed in…

  12. Semantic integration of scientific publications and research data: proposal of model of expanded publication for the area of nuclear sciences

    International Nuclear Information System (INIS)

    Sales, Luana Farias

    2014-01-01

    This research takes place under the conditions of an arising scientific paradigm, known as e-Science or 4 th Scientific Paradigm. This new way of doing science is characterized by intensive use of computer networks, distributed digital repositories and by extraordinary generation of research data, which is a consequence of the heavy use of information and simulation technologies and advancing of scientific instrumentation. The information environment that is established as a result of these transformations significantly impacts the patterns of scientific communication, especially regarding to cooperative research, the sharing and reuse of information resources and ways to communicate and to disseminate research results. In order to create a context for their field of study, the thesis contributes to delineate new and renewed concepts for Information Science such as e-Science, curation of research data, complex digital objects, data repository, CRIS (Current Research Information System Model ) and others key infrastructures for the management of research and also of new conceptions of academic and scientific publications. The research is based on two assumptions: first raises the need for a model of scientific publication that would reflect the new standard for generating scientific knowledge characterized by data richness, and being able to integrate these data to publications; the second highlights that this can be performed according to the technological possibilities and standards arising from the Semantic Web. These two assumptions embody the formulation of the hypothesis raised by this thesis: a scientific publication can be enriched and be closer to new ways of generating knowledge, which characterizes contemporary science, if it is configured according to a model that links through semantic relations the research data and datasets to conventional publication. The method adopted was the deductive one, starting from general concepts of Information Science

  13. Automatically quantifying the scientific quality and sensationalism of news records mentioning pandemics: validating a maximum entropy machine-learning model.

    Science.gov (United States)

    Hoffman, Steven J; Justicz, Victoria

    2016-07-01

    To develop and validate a method for automatically quantifying the scientific quality and sensationalism of individual news records. After retrieving 163,433 news records mentioning the Severe Acute Respiratory Syndrome (SARS) and H1N1 pandemics, a maximum entropy model for inductive machine learning was used to identify relationships among 500 randomly sampled news records that correlated with systematic human assessments of their scientific quality and sensationalism. These relationships were then computationally applied to automatically classify 10,000 additional randomly sampled news records. The model was validated by randomly sampling 200 records and comparing human assessments of them to the computer assessments. The computer model correctly assessed the relevance of 86% of news records, the quality of 65% of records, and the sensationalism of 73% of records, as compared to human assessments. Overall, the scientific quality of SARS and H1N1 news media coverage had potentially important shortcomings, but coverage was not too sensationalizing. Coverage slightly improved between the two pandemics. Automated methods can evaluate news records faster, cheaper, and possibly better than humans. The specific procedure implemented in this study can at the very least identify subsets of news records that are far more likely to have particular scientific and discursive qualities. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. [Evaluation of scientific production in different subareas of Public Health: limits of the current model and contributions to the debate].

    Science.gov (United States)

    Iriart, Jorge Alberto Bernstein; Deslandes, Suely Ferreira; Martin, Denise; Camargo, Kenneth Rochel de; Carvalho, Marilia Sá; Coeli, Cláudia Medina

    2015-10-01

    The aim of this study was to discuss the limits of the quantitative evaluation model for scientific production in Public Health. An analysis of the scientific production of professors from the various subareas of Public Health was performed for 2010-2012. Distributions of the mean annual score for professors were compared according to subareas. The study estimated the likelihood that 60% of the professors in the graduate studies programs scored P50 (Very Good) or higher in their area. Professors of Epidemiology showed a significantly higher median annual score. Graduate studies programs whose faculty included at least 60% of Epidemiology professors and fewer than 10% from the subarea Social and Human Sciences in Health were significantly more likely to achieve a "Very Good" classification. The observed inequalities in scientific production between different subareas of Public Health point to the need to rethink their evaluation in order to avoid reproducing iniquities that have harmful consequences for the field's diversity.

  15. Reference architecture and interoperability model for data mining and fusion in scientific cross-domain infrastructures

    Science.gov (United States)

    Haener, Rainer; Waechter, Joachim; Grellet, Sylvain; Robida, Francois

    2017-04-01

    Interoperability is the key factor in establishing scientific research environments and infrastructures, as well as in bringing together heterogeneous, geographically distributed risk management, monitoring, and early warning systems. Based on developments within the European Plate Observing System (EPOS), a reference architecture has been devised that comprises architectural blue-prints and interoperability models regarding the specification of business processes and logic as well as the encoding of data, metadata, and semantics. The architectural blueprint is developed on the basis of the so called service-oriented architecture (SOA) 2.0 paradigm, which combines intelligence and proactiveness of event-driven with service-oriented architectures. SOA 2.0 supports analysing (Data Mining) both, static and real-time data in order to find correlations of disparate information that do not at first appear to be intuitively obvious: Analysed data (e.g., seismological monitoring) can be enhanced with relationships discovered by associating them (Data Fusion) with other data (e.g., creepmeter monitoring), with digital models of geological structures, or with the simulation of geological processes. The interoperability model describes the information, communication (conversations) and the interactions (choreographies) of all participants involved as well as the processes for registering, providing, and retrieving information. It is based on the principles of functional integration, implemented via dedicated services, communicating via service-oriented and message-driven infrastructures. The services provide their functionality via standardised interfaces: Instead of requesting data directly, users share data via services that are built upon specific adapters. This approach replaces the tight coupling at data level by a flexible dependency on loosely coupled services. The main component of the interoperability model is the comprehensive semantic description of the information

  16. Inquiry Teaching in Clinical Periodontics.

    Science.gov (United States)

    Heins, Paul J.; Mackenzie, Richard S.

    1987-01-01

    An adaptation of the inquiry method of teaching, which develops skills of information retrieval and reasoning through systematic questioning by the teacher, is proposed for instruction in clinical periodontics. (MSE)

  17. Freva - Freie Univ Evaluation System Framework for Scientific HPC Infrastructures in Earth System Modeling

    Science.gov (United States)

    Kadow, C.; Illing, S.; Schartner, T.; Grieger, J.; Kirchner, I.; Rust, H.; Cubasch, U.; Ulbrich, U.

    2017-12-01

    The Freie Univ Evaluation System Framework (Freva - freva.met.fu-berlin.de) is a software infrastructure for standardized data and tool solutions in Earth system science (e.g. www-miklip.dkrz.de, cmip-eval.dkrz.de). Freva runs on high performance computers to handle customizable evaluation systems of research projects, institutes or universities. It combines different software technologies into one common hybrid infrastructure, including all features present in the shell and web environment. The database interface satisfies the international standards provided by the Earth System Grid Federation (ESGF). Freva indexes different data projects into one common search environment by storing the meta data information of the self-describing model, reanalysis and observational data sets in a database. This implemented meta data system with its advanced but easy-to-handle search tool supports users, developers and their plugins to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. The integrated web-shell (shellinabox) adds a degree of freedom in the choice of the working environment and can be used as a gate to the research projects HPC. Plugins are able to integrate their e.g. post-processed results into the database of the user. This allows e.g. post-processing plugins to feed statistical analysis plugins, which fosters an active exchange between plugin developers of a research project. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a database. Configurations and results of the tools can be shared among scientists via shell or web system. Furthermore, if configurations match

  18. Freva - Freie Univ Evaluation System Framework for Scientific Infrastructures in Earth System Modeling

    Science.gov (United States)

    Kadow, Christopher; Illing, Sebastian; Kunst, Oliver; Schartner, Thomas; Kirchner, Ingo; Rust, Henning W.; Cubasch, Ulrich; Ulbrich, Uwe

    2016-04-01

    The Freie Univ Evaluation System Framework (Freva - freva.met.fu-berlin.de) is a software infrastructure for standardized data and tool solutions in Earth system science. Freva runs on high performance computers to handle customizable evaluation systems of research projects, institutes or universities. It combines different software technologies into one common hybrid infrastructure, including all features present in the shell and web environment. The database interface satisfies the international standards provided by the Earth System Grid Federation (ESGF). Freva indexes different data projects into one common search environment by storing the meta data information of the self-describing model, reanalysis and observational data sets in a database. This implemented meta data system with its advanced but easy-to-handle search tool supports users, developers and their plugins to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. Facilitation of the provision and usage of tools and climate data automatically increases the number of scientists working with the data sets and identifying discrepancies. The integrated web-shell (shellinabox) adds a degree of freedom in the choice of the working environment and can be used as a gate to the research projects HPC. Plugins are able to integrate their e.g. post-processed results into the database of the user. This allows e.g. post-processing plugins to feed statistical analysis plugins, which fosters an active exchange between plugin developers of a research project. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a database

  19. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    Science.gov (United States)

    Ward, Peggy

    subjects tended to associate inquiry learning exclusively in terms of exploring before lecture, getting a single correct answer. Additionally, various subjects at multiple levels, described inquiry in terms of the 5E Model of Instruction, which is emphasized in the Arkansas UTeach lesson design. Implications of these findings and suggestions for program improvement at the course levels are suggested.

  20. Problematizing as a scientific endeavor

    Directory of Open Access Journals (Sweden)

    Anna McLean Phillips

    2017-08-01

    Full Text Available The work of physics learners at all levels revolves around problems. Physics education research has inspired attention to the forms of these problems, whether conceptual or algorithmic, closed or open response, well or ill structured. Meanwhile, it has been the work of curriculum developers and instructors to develop these problems. Physics education research has supported these efforts with studies of students problem solving and the effects of different kinds of problems on learning. In this article we argue, first, that developing problems is central to the discipline of physics. It involves noticing a gap of understanding, identifying and articulating its precise nature, and motivating a community of its existence and significance. We refer to this activity as problematizing, and we show its importance by drawing from writings in physics and philosophy of science. Second, we argue that students, from elementary age to adults, can problematize as part of their engaging in scientific inquiry. We present four cases, drawing from episodes vetted by a panel of collaborating faculty in science departments as clear instances of students doing science. Although neither we nor the scientists had problematizing in mind when screening cases, we found it across the episodes. We close with implications for instruction, including the value of helping students recognize and manage the situation of being confused but not yet having a clear question, and implications for research, including the need to build problematizing into our models of learning.