WorldWideScience

Sample records for model scientific inquiry

  1. Scientific Approach and Inquiry Learning Model in the Topic of Buffer Solution: A Content Analysis

    Science.gov (United States)

    Kusumaningrum, I. A.; Ashadi, A.; Indriyanti, N. Y.

    2017-09-01

    Many concepts in buffer solution cause student’s misconception. Understanding science concepts should apply the scientific approach. One of learning models which is suitable with this approach is inquiry. Content analysis was used to determine textbook compatibility with scientific approach and inquiry learning model in the concept of buffer solution. By using scientific indicator tools (SIT) and Inquiry indicator tools (IIT), we analyzed three chemistry textbooks grade 11 of senior high school labeled as P, Q, and R. We described how textbook compatibility with scientific approach and inquiry learning model in the concept of buffer solution. The results show that textbook P and Q were very poor and book R was sufficient because the textbook still in procedural level. Chemistry textbooks used at school are needed to be improved in term of scientific approach and inquiry learning model. The result of these analyses might be of interest in order to write future potential textbooks.

  2. Peningkatan Keterlibatan Dalam Perkuliahan Scientific Writing Menggunakan Model Pengajaran Social Inquiry

    Directory of Open Access Journals (Sweden)

    Suwartono Suwartono

    2016-02-01

    Full Text Available This research aimed to solve student low involvement in Scientific Writing classes.The method used in this research was Classroom Action Research (CAR. The planned action was Social Inquiry teaching model, i.e. an autonomous instruction in which students do inquiries for facts (new knowledge on scientific writings along with the linguistic aspects of writings and exercises in communicating the inquiry results within the classroom society are prioritized. The CAR employed Lewin's cyclic model. The model procedures are: (1 identification, evaluation and formulation of the problem; (2 fact finding; (3 review of literature; (4 information gathering to test hypothesis; (5 selection of the planned action procedures; (6 implementation; and (7 interpretation of the data and overall evaluation. The CAR's result has shown that teaching Scientific Writing using Social Inquiry can promote student involvement in scientific writing class activities.

  3. EFFECT OF INQUIRY LEARNING MODEL TRAINING AND CRITICAL THINKING SKILLS ON SCIENTIFIC KNOWLEDGE CLASS X

    Directory of Open Access Journals (Sweden)

    Envilwan Harefa

    2016-12-01

    Full Text Available The aims of research were to analize: (1 Student’s skill proccess science by using inquiry training learning model better than direct intruction learning model; (2 Student’s skill process science who had under average better than above average category in scientific knowledge; and (3 the interaction between learning model and the level of scientific knowledge in fluencing student’s skill process science. The research was quasi-experimental research. The population of this research is all of thenth grade students of SMAN 3 Gunungsitoli. The sample of this researchconsist of grade with was taken by cluster random sampling were X2 and X3 class.The research instrument consisted of skill process science essay test and criticalthinking skills test data be analysed by using Two–way ANAVA. Result of theresearch showed that kill of the student science process (1 between inquiry training and direct intruction, where inquiry training better than direct intruction, (2 between group of student in the group of the students scientific knowledgeupon and under of mean, where scientific knowledge upon of mean better then scientific knowledge under of mean, (3 no interaction between inquiry training and scientific knowledge increased skill of student science process.

  4. Development and Evaluation of a Model-Supported Scientific Inquiry Training Program for Elementary Teachers in Indonesia

    Science.gov (United States)

    Ertikanto, Chandra; Herpratiwi; Yunarti, Tina; Saputra, Andrian

    2017-01-01

    A teacher training program, named Model-Supported Scientific Inquiry Training Program (MSSITP) has been successfully developed to improve the inquiry skills of Indonesian elementary teachers. The skills enhanced by MSSITP are defining problems, formulating hypotheses, planning and doing investigations, drawing conclusions, and communicating the…

  5. Intelligent Tutoring Systems for Scientific Inquiry Skills.

    Science.gov (United States)

    Shute, Valerie; Bonar, Jeffrey

    Described are the initial prototypes of several intelligent tutoring systems designed to build students' scientific inquiry skills. These inquiry skills are taught in the context of acquiring knowledge of principles from a microworld that models a specific domain. This paper discusses microworlds that have been implemented for microeconomics,…

  6. ANALYZE CRITICAL THINKING SKILLS AND SCIENTIFIC ATTITUDE IN PHYSICS LEARNING USED INQUIRY TRAINING AND DIRECT INSTRUCTION LEARNING MODEL

    Directory of Open Access Journals (Sweden)

    Dede Parsaoran Damanik

    2013-06-01

    Full Text Available This study was aimed to determine the differences: (1 the difference of critical thinking skills of students' that using Inquiry Training and Direct Instruction. (2 The difference of critical thinking skills among students who at high scientific attitude and students who at low scientific attitude. (3 To see if there is interaction between inquiry learning model of the scientific attitude students' to increase the ability to critical thinking. This is a quasi experimental research. Which students of private junior high school Two Raya Kahean District Simalungun. Population choose random sample of each class. Instrument used consisted of: (1 test the scientific attitude of students through a questionnaire with 25 statements questionnaire number (2 test the critical thinking skills in the form of descriptions by 9 questions. The data were analyzed according to ANAVA. It showed that: (1 There are differences in students' critical thinking of skills achievement Inquiry Training model and Direct Instruction model, (2 there was a difference of students' critical thinking in scientific attitude at high is better than who thought there is a difference of students' critical thinking in scientific attitude at low. (3 There was no interaction between Inquiry Training model and Direct Instruction with the scientific attitude students' to increase student’s critical thinking of skills.

  7. Effect of levels of inquiry model of science teaching on scientific literacy domain attitudes

    Science.gov (United States)

    Achmad, Maulana; Suhandi, Andi

    2017-05-01

    The aim of this research was to obtain an overview of the increase scientific literacy attitudes domain in high school students as the effects of the Levels of Inquiry (LOI) model of science teaching. This research using a quasi-experimental methods and randomizedpretest-posttest control group design. The subject of this research was students of grade X in a senior high school in Purwakarta and it consists of two classes who were divided into experimental class (30 students) and control class (30 students). While experimental class was taught LOIand control class was taught Interactive Lecture Demonstration (ILD). Data were collected using an attitude scale scientific literacy test which is based on the Likert scale. Data were analyzed using normality test, homogeneity test, and t-test to the value of N-gain attitude of scientific literacy scale test. The result of percentage average N-gain experimental class and control are 49 and 31 that classified into medium improvement category. Based on the results of hypothesis testing on the N-gain value obtained by the Sig.(One-tailed) 0.000 literacy domain attitude of students who got learning by LOI is higher than students who got learning by ILD. It can be concluded that the effect of LOI is better to improve scientific literacy domain attitudes significantly.

  8. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    Science.gov (United States)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  9. THE EFFECT OF MODEL SCIENTIFIC INQUIRY USING MEDIA PhET TOWARD SKILLS PROCESS OF SCIENCE VIEWED FROM CRITICAL THINKING SKILLS

    Directory of Open Access Journals (Sweden)

    Nanda Safarati

    2017-06-01

    Full Text Available The purpose of research to analyse: the science process skills that are taught in a model of scientific inquiry using the media PhET better than students taught by learning direct instruction, science process skills of physics students who has the critical thinking skills using a model of scientific inquiry than average -rata better than students who have critical thinking skills using a direct model of instruction above average, the interaction of scientific inquiry learning model using PhET media with critical thinking skills of students in improving students' science process skills. This research is quasi experimental. Technique that used to gain a sample is random cluster sampling. The instrument used is the science process skills test and test critical thinking skills. The results of this study concluded that: the science process skills of students who are taught by the model of scientific inquiry using the media PhET better than students taught by learning direct instruction, science process skills of physics students who have the critical thinking skills using a model of scientific inquiry over average better than students who have critical thinking skills using a direct model of instruction above average, there is interaction scientific inquiry model using the media PhET with critical thinking skills of students in improving students' science process skills.

  10. Influence of teacher-directed scientific inquiry on students' primal inquiries in two science classrooms

    Science.gov (United States)

    Stone, Brian Andrew

    Scientific inquiry is widely used but pervasively misunderstood in elementary classrooms. The use of inquiry is often attached to direct instruction models of teaching, or is even passed as textbook readings or worksheets. Previous literature on scientific inquiry suggests a range or continuum beginning with teacher-directed inquiry on one extreme, which involves a question, process, and outcome that are predetermined by the teacher. On the other end of the continuum is an element of inquiry that is extremely personal and derived from innate curiosity without external constraints. This authentic inquiry is defined by the study as primal inquiry. If inquiry instruction is used in the elementary classroom, it is often manifested as teacher-directed inquiry, but previous research suggests the most interesting, motivating, and lasting content is owned by the individual and exists within the individual's own curiosity, questioning and processes. Therefore, the study examined the impact of teacher-directed inquiry in two elementary fourth grade classrooms on climate-related factors including interest, motivation, engagement, and student-generated inquiry involvement. The study took place at two elementary classrooms in Arizona. Both were observed for ten weeks during science instruction over the course of one semester. Field notes were written with regard for the inquiry process and ownership, along with climate indicators. Student journals were examined for evidence of primal inquiry, and twenty-two students were interviewed between the two classrooms for evidence of low climate-related factors and low inquiry involvement. Data from the three sources were triangulated. The results of this qualitative study include evidence for three propositions, which were derived from previous literature. Strong evidence was provided in support of all three propositions, which suggest an overall negative impact on climate-related factors of interest, motivation, and engagement for

  11. Scientific Inquiry in Health Sciences Education

    DEFF Research Database (Denmark)

    Musaeus, Peter

    Background: Assistant professors in the health sciences (108 participants from biomedicine, clinical medicine, dentistry, sports, nursing and public health) submitted their teaching portfolio as part of the requirement for a pedagogical course for university teachers at Aarhus University, Denmark....... The course introduced participants to concepts and methods to create constructive alignment and activating teaching and to a teaching portfolio as a means of reflecting upon inquiry and teaching. Design: This study investigated assistant professors espoused beliefs about the role of scientific inquiry...

  12. The Biopsychosocial Model 25 Years Later: Principles, Practice, and Scientific Inquiry

    OpenAIRE

    Borrell-Carrió, Francesc; Suchman, Anthony L.; Epstein, Ronald M.

    2004-01-01

    The biopsychosocial model is both a philosophy of clinical care and a practical clinical guide. Philosophically, it is a way of understanding how suffering, disease, and illness are affected by multiple levels of organization, from the societal to the molecular. At the practical level, it is a way of understanding the patient’s subjective experience as an essential contributor to accurate diagnosis, health outcomes, and humane care. In this article, we defend the biopsychosocial model as a ne...

  13. The Effectiveness of Scientific Inquiry With/Without Integration of Scientific Reasoning

    Science.gov (United States)

    Chen, Chun-Ting; She, Hsiao-Ching

    2015-01-01

    This study examines the difference in effectiveness between two scientific inquiry programs-one with an emphasis on scientific reasoning and one without a scientific reasoning component-on students' scientific concepts, scientific concept-dependent reasoning, and scientific inquiry. A mixed-method approach was used in which 115 grade 5…

  14. Improving Science Student Teachers' Self-Perceptions of Fluency with Innovative Technologies and Scientific Inquiry Abilities

    Science.gov (United States)

    Çalik, Muammer; Ebenezer, Jazlin; Özsevgeç, Tuncay; Küçük, Zeynel; Artun, Hüseyin

    2015-01-01

    The aim of this study was to investigate the effects of "Environmental Chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) self-perceptions of fluency with innovative technologies (InT) and scientific inquiry abilities. The study was conducted with 117 SSSTs (68…

  15. Enhancing Scientific Inquiry Literacy of Prospective Biology Teachers through Inquiry Lab Project in Microbiology

    Science.gov (United States)

    Kusnadi, K.; Rustaman, N. Y.; Redjeki, S.; Aryantha, I. N. P.

    2017-09-01

    The implementation of the inquiry laboratory based project to enhance scientific inquiry literacy of prospective biology teachers in Microbiology course has been done. The inquiry lab based project was designed by three stages were debriefing of basic microbiology lab skills, guided inquiry and free inquiry respectively. The Study was quasi experimental with control group pretest-posttest design. The subjects were prospective biology teachers consists of 80 students. The scientific inquiry literacy instrument refers to ScInqLiT by Wenning. The results showed that there was significant difference of scientific inquiry literacy posttest scores between experiment and control (α 0,05) and was obtained N-gain score was 0.49 (medium) to experiment and 0.24 (low) to control. Based on formative assessment showed that development of student’s scientific attitude, research and microbiology lab skills during conducting project were increased. Student’s research skills especially in identification of variables, constructing a hypothesis, communicating and concluding were increased. During implementation of inquiry project also showed that they carried out mind and hands-on and so collaborative group investigation lab activities. Our findings may aid in reforming higher-education, particularly in microbiology laboratory activities to better promote scientific inquiry literacy, scientific attitude, research and laboratory skills.

  16. Collaborative Inquiry Learning: Models, tools, and challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-02-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  17. Development Instrument’s Learning of Physics Through Scientific Inquiry Model Based Batak Culture to Improve Science Process Skill and Student’s Curiosity

    Science.gov (United States)

    Nasution, Derlina; Syahreni Harahap, Putri; Harahap, Marabangun

    2018-03-01

    This research aims to: (1) developed a instrument’s learning (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) of physics learning through scientific inquiry learning model based Batak culture to achieve skills improvement process of science students and the students’ curiosity; (2) describe the quality of the result of develop instrument’s learning in high school using scientific inquiry learning model based Batak culture (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) to achieve the science process skill improvement of students and the student curiosity. This research is research development. This research developed a instrument’s learning of physics by using a development model that is adapted from the development model Thiagarajan, Semmel, and Semmel. The stages are traversed until retrieved a valid physics instrument’s learning, practical, and effective includes :(1) definition phase, (2) the planning phase, and (3) stages of development. Test performed include expert test/validation testing experts, small groups, and test classes is limited. Test classes are limited to do in SMAN 1 Padang Bolak alternating on a class X MIA. This research resulted in: 1) the learning of physics static fluid material specially for high school grade 10th consisted of (lesson plan, worksheet, student’s book, teacher’s guide book, and instrument test) and quality worthy of use in the learning process; 2) each component of the instrument’s learning meet the criteria have valid learning, practical, and effective way to reach the science process skill improvement and curiosity in students.

  18. Teachers' Language on Scientific Inquiry: Methods of teaching or methods of inquiry?

    Science.gov (United States)

    Gyllenpalm, Jakob; Wickman, Per-Olof; Holmgren, Sven-Olof

    2010-06-01

    With a focus on the use of language related to scientific inquiry, this paper explores how 12 secondary school science teachers describe instances of students' practical work in their science classes. The purpose of the study was to shed light on the culture and traditions of secondary school science teaching related to inquiry as expressed in the use of language. Data consisted of semi-structured interviews about actual inquiry units used by the teachers. These were used to situate the discussion of their teaching in a real context. The theoretical background is socio-cultural and pragmatist views on the role of language in science learning. The analysis focuses on two concepts of scientific inquiry: hypothesis and experiment. It is shown that the teachers tend to use these terms with a pedagogical function thus conflating methods of teaching with methods of inquiry as part of an emphasis on teaching the children the correct explanation. The teachers did not prioritise an understanding of scientific inquiry as a knowledge goal. It discusses how learners' possibilities to learn about the characteristics of scientific inquiry and the nature of science are affected by an unreflective use of everyday discourse.

  19. The Scientific Method and Scientific Inquiry: Tensions in Teaching and Learning

    Science.gov (United States)

    Tang, Xiaowei; Coffey, Janet E.; Elby, Andy; Levin, Daniel M.

    2010-01-01

    Typically, the scientific method in science classrooms takes the form of discrete, ordered steps meant to guide students' inquiry. In this paper, we examine how focusing on the scientific method as discrete steps affects students' inquiry and teachers' perceptions thereof. To do so, we study a ninth-grade environmental science class in which…

  20. Developing Science Learning Material with Authentic Inquiry Learning Approach to Improve Problem Solving and Scientific Attitude

    Directory of Open Access Journals (Sweden)

    A. Widowati

    2017-04-01

    Full Text Available This research was conducted to (1 produce science material learning based Authentic Inquiry Learning which is appropriate to improve problem solving and students scientific attitude; (2 know the potency of developing scientific attitude in science learning material based authentic inquiry learning; and (3 know the potency of developing scientific attitude in science learning material based authentic inquiry learning. The research method was Research and Development (R & D, by pointing to Four D models and Borg & Gall Model. There were 4 main phases (define, design, develop, disseminate and additional phases (preliminary field testing, main product revision, main field testing, and operational product revision. The instruments used included product validation questionnaire, problem solving test, observation sheet of problem solving, and scientific attitude questionnaire. Result data of validation, problem solving test, scientific attitude questionnaire were analyzed descriptively. The result showed that : (1 science learning material based authentic inquiry learning that was developed was considered as very good by expert lecturers and teachers, and it was appropriate to use in learning process; (2 science learning material based authentic inquiry learning could improve students’ problem solving; (3 science learning material based authentic inquiry learning could improve students’ scientific attitude.

  1. Using Peer Feedback to Improve Students' Scientific Inquiry

    Science.gov (United States)

    Tasker, Tammy Q.; Herrenkohl, Leslie Rupert

    2016-02-01

    This article examines a 7th grade teacher's pedagogical practices to support her students to provide peer feedback to one another using technology during scientific inquiry. This research is part of a larger study in which teachers in California and Washington and their classes engaged in inquiry projects using a Web-based system called Web of Inquiry. Videotapes of classroom lessons and artifacts such as student work were collected as part of the corpus of data. In the case examined, Ms. E supports her students to collectively define "meaningful feedback," thereby improving the quality of feedback that was provided in the future. This is especially timely, given the attention in Next Generation Science Standards to cross-cutting concepts and practices that require students discuss and debate ideas with each other in order to improve their understanding and their written inquiry reports (NGSS, 2013).

  2. Epistemology of scientific inquiry and computer-supported collaborative learning

    Science.gov (United States)

    Hakkarainen, Kai Pekka Juhani

    1998-12-01

    The problem addressed in the study was whether 10- and 11-year-old children, collaborating within a computer-supported classroom, could learn a process of inquiry that represented certain principal features of scientific inquiry, namely (1) engagement in increasingly deep levels of explanation, (2) progressive generation of subordinate questions, and (3) collaborative effort to advance explanations. Technical infrastructure for the study was provided by the Computer-Supported Intentional Learning Environments, CSILE. The study was entirely based on qualitative content analysis of students' written productions posted to CSILE's database. Five studies were carried out to analyze CSILE students' process of inquiry. The first two studies aimed at analyzing changes in CSILE students' culture of inquiry in two CSILE classrooms across a three-year period. The results of the studies indicate that the classroom culture changed over three years following the introduction of CSILE. The explanatory level of knowledge produced by the students became increasingly deeper in tracking from the first to third year representing the first principal feature of scientific inquiry. Moreover, between-student communication increasingly focused on facilitating advancement of explanation (the third principal feature). These effects were substantial only in one classroom; the teacher of this class provided strong pedagogical support and epistemological guidance for the students. Detailed analysis of this classroom's inquiry, carried out in the last three studies, indicated that with teacher's guidance the students were able to produce meaningful intuitive explanations as well as go beyond the functional and empirical nature of their intuitive explanations and appropriate theoretical scientific explanations (the first principal feature). Advancement of the students' inquiry appeared to be closely associated with generation of new subordinate questions (the second principal feature) and peer

  3. Comparing the perceptions of scientific inquiry between experts and practitioners

    Science.gov (United States)

    Gooding, Julia Terese Chembars

    The purpose of this study was to determine if there was a difference in the perception of scientific inquiry between experts and practitioners, and, if a difference was shown to exist, to analyze those perceptions in order to better understand the extent of that difference or gap. A disconnect was found between how experts and practitioners perceived scientific inquiry. The practitioners differed from both the experts and the literature in three key areas. First, although the teachers indicated that students would be manipulating materials, there was no direct reference to this manipulation actually being performed for the purpose of investigating. Second, the practitioners implied active physical engagement with materials, but they did not tie this to active mental engagement or direct involvement in their own learning. Third, teachers omitted their role in laying the foundation for inquiry. Though classroom teachers lacked a complete understanding of true inquiry and its place in the K-12 classroom, most of them actually believed they were practicing the art of teaching via inquiry. Additionally, two other points of interest arose. First, an examination of the national standards for a number of curricular areas established that the process skills of scientific inquiry are mirrored in those standards, implying that inquiry is not limited to the sciences. Second, a definition of inquiry was formulated based upon interviews with experts in the field. Although the literature and the experts were in unison in their definition, there was a disparity between the accepted definition and that provided by the teachers. The struggle for a comprehensive understanding of inquiry continues to this day. It might very well be that the concept still remains elusive partly because the teacher behaviors associated with it run counter to more traditional methods of instruction...methods that most teachers have experienced throughout their own educational careers. The most pervasive

  4. Crayfish Behavior: Observing Arthropods to Learn about Science & Scientific Inquiry

    Science.gov (United States)

    Rop, Charles J.

    2010-01-01

    This is a set of animal behavior investigations in which students will practice scientific inquiry as they observe crayfish, ask questions, and discuss territoriality, social interactions, and other behaviors. In doing this, they hone their skills of observation, learn to record and analyze data, control for variables, write hypotheses, make…

  5. Landscape Architectural Design as Scientific Inquiry?

    NARCIS (Netherlands)

    Lenzholzer, S.

    2011-01-01

    This presentation discusses ‘landscape architectural design as scientific inquiry’ and exemplifies this with the description of a design process within climate-responsive design leading to new design knowledge. ‘Research and design’ are issues that need increasing attention within landscape

  6. Exploring prospective secondary science teachers' understandings of scientific inquiry and Mendelian genetics concepts using computer simulation

    Science.gov (United States)

    Cakir, Mustafa

    their understandings of following aspects of scientific inquiry: (a) the iterative nature of scientific inquiry; (b) the tentativeness of specific knowledge claims; (c) the degree to which scientists rely on empirical data, as well as broader conceptual and metaphysical commitments, to assess models and to direct future inquiries; (d) the need for conceptual consistency; (e) multiple methods of investigations and multiple interpretations of data; and (f) social and cultural aspects of scientific inquiry. This research provided evidence that hypothesis testing can support the integrated acquisition of conceptual and procedural knowledge in science. Participants' conceptual elaborations of Mendelian inheritance were enhanced. There were qualitative changes in the nature of the participants' explanations. Moreover, the average percentage of correct responses improved from 39% on the pretest to 67% on the posttest. Findings also suggest those prospective science teachers' experiences as learners of science in their methods course served as a powerful tool for thinking about the role of inquiry in teaching and learning science. They had mixed views about enacting inquiry in their teaching in the future. All of them stated some kind of general willingness to do so; yet, they also mentioned some reservations and practical considerations about inquiry-based teaching.

  7. Scientific visualization as an expressive medium for project science inquiry

    Science.gov (United States)

    Gordin, Douglas Norman

    Scientists' external representations can help science education by providing powerful tools for students' inquiry. Scientific visualization is particularly well suited for this as it uses color patterns, rather than algebraic notation. Nonetheless, visualization must be adapted so it better fits with students' interests, goals, and abilities. I describe how visualization was adapted for students' expressive use and provide a case study where students successfully used visualization. The design process began with scientists' tools, data sets, and activities which were then adapted for students' use. I describe the design through scenarios where students create and analyze visualizations and present the software's functionality through visualization's sub-representations of data; color; scale, resolution, and projection; and examining the relationships between visualizations. I evaluate these designs through a "hot-house" study where a small group of students used visualization under near ideal circumstances for two weeks. Using videotapes of group interactions, software logs, and students' work I examine their representational and inquiry strategies. These inquiries were successful in that the group pursued their interest in world hunger by creating a visualization of daily per capita calorie consumption. Through creating the visualization the students engage in a process of meaning making where they interweave their prior experiences and beliefs with the representations they are using. This interweaving and other processes of collaborative visualization are shown when the students (a) computed values, (b) created a new color scheme, (c) cooperated to create the visualization, and (d) presented their work to other students. I also discuss problems that arose when students (a) used units without considering their meaning, (b) chose inappropriate comparisons in case-based reasoning, (c) did not participate equally during group work, (d) were confused about additive

  8. Agriscience Student Engagement in Scientific Inquiry: Representations of Scientific Processes and Nature of Science.

    Science.gov (United States)

    Grady, Julie R; Dolan, Erin L; Glasson, George E

    2010-01-01

    Students' experiences with science integrated into agriscience courses contribute to their developing epistemologies of science. The purpose of this case study was to gain insight into the implementation of scientific inquiry in an agriscience classroom. Also of interest was how the tenets of the nature of science were reflected in the students' experiments. Participants included an agriscience teacher and her fifteen students who were conducting plant experiments to gain insight into the role of a gene disabled by scientists. Data sources included classroom observations, conversations with students, face-to-face interviews with the teacher, and students' work. Analysis of the data indicated that the teacher viewed scientific inquiry as a mechanical process with little emphasis on the reasoning that typifies scientific inquiry. Students' participation in their experiments also centered on the procedural aspects of inquiry with little attention to scientific reasoning. There was no explicit attention to the nature of science during the experiments, but the practice implied correct, incorrect, and underdeveloped conceptions of the nature of science. Evidence from the study suggests a need for collaboration between agriscience and science teacher educators to design and conduct professional development focused on scientific inquiry and nature of science for preservice and practicing teachers.

  9. Confronting prospective teachers' ideas of evolution and scientific inquiry using technology and inquiry-based tasks

    Science.gov (United States)

    Crawford, Barbara A.; Zembal-Saul, Carla; Munford, Danusa; Friedrichsen, Patricia

    2005-08-01

    This study addresses the need for research in three areas: (1) teachers' understandings of scientific inquiry; (2) conceptual understandings of evolutionary processes; and (3) technology-enhanced instruction using an inquiry approach. The purpose of this study was to determine in what ways The Galapagos Finches software-based materials created a context for learning and teaching about the nature of scientific knowledge and evolutionary concepts. The research used a design experiment in which researchers significantly modified a secondary science methods course. The multiple data sources included: audiotaped conversations of two focus pairs of participants as they interacted with the software; written pre- and posttests on concepts of natural selection of the 21 prospective teachers; written pre- and posttests on views of the nature of science; three e-mail journal questions; and videotaped class discussions. Findings indicate that prospective teachers initially demonstrated alternative understandings of evolutionary concepts; there were uninformed understandings of the nature of scientific inquiry; there was little correlation between understandings and disciplines; and even the prospective teachers with research experience failed to understand the diverse methods used by scientists. Following the module there was evidence of enhanced understandings through metacognition, and the potential for interactive software to provide promising context for enhancing content understandings.

  10. Developing the Critical Thinking Skills of Astrobiology Students through Creative and Scientific Inquiry

    Science.gov (United States)

    Lemus, Judith D.

    2015-01-01

    Abstract Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology. Key Words: Scientific inquiry—Critical thinking—Curriculum development—Astrobiology—Microbialites. Astrobiology 15, 89–99. PMID:25474292

  11. Science Camps for Introducing Nature of Scientific Inquiry Through Student Inquiries in Nature: Two Applications with Retention Study

    Science.gov (United States)

    Leblebicioglu, G.; Abik, N. M.; Capkinoglu, E.; Metin, D.; Dogan, E. Eroglu; Cetin, P. S.; Schwartz, R.

    2017-08-01

    Scientific inquiry is widely accepted as a method of science teaching. Understanding its characteristics, called Nature of Scientific Inquiry (NOSI), is also necessary for a whole conception of scientific inquiry. In this study NOSI aspects were taught explicitly through student inquiries in nature in two summer science camps. Students conducted four inquiries through their questions about surrounding soil, water, plants, and animals under the guidance of university science educators. At the end of each investigation, students presented their inquiry. NOSI aspects were made explicit by one of the science educators in the context of the investigations. Effectiveness of the science camp program and its retention were determined by applying Views of Scientific Inquiry (VOSI-S) (Schwartz et al. 2008) questionnaire as pre-, post-, and retention test after two months. The patterns in the data were similar. The science camp program was effective in developing three of six NOSI aspects which were questions guide scientific research, multiple methods of research, and difference between data and evidence. Students' learning of these aspects was retained. Discussion about these and the other three aspects is included in the paper. Implications of differences between school and out-of-school science experiences are also discussed.

  12. Developing the critical thinking skills of astrobiology students through creative and scientific inquiry.

    Science.gov (United States)

    Foster, Jamie S; Lemus, Judith D

    2015-01-01

    Scientific inquiry represents a multifaceted approach to explore and understand the natural world. Training students in the principles of scientific inquiry can help promote the scientific learning process as well as help students enhance their understanding of scientific research. Here, we report on the development and implementation of a learning module that introduces astrobiology students to the concepts of creative and scientific inquiry, as well as provide practical exercises to build critical thinking skills. The module contained three distinct components: (1) a creative inquiry activity designed to introduce concepts regarding the role of creativity in scientific inquiry; (2) guidelines to help astrobiology students formulate and self-assess questions regarding various scientific content and imagery; and (3) a practical exercise where students were allowed to watch a scientific presentation and practice their analytical skills. Pre- and post-course surveys were used to assess the students' perceptions regarding creative and scientific inquiry and whether this activity impacted their understanding of the scientific process. Survey results indicate that the exercise helped improve students' science skills by promoting awareness regarding the role of creativity in scientific inquiry and building their confidence in formulating and assessing scientific questions. Together, the module and survey results confirm the need to include such inquiry-based activities into the higher education classroom, thereby helping students hone their critical thinking and question asking skill set and facilitating their professional development in astrobiology.

  13. Secondary students' views about scientific inquiry

    International Nuclear Information System (INIS)

    Galano, Silvia; Zappia, Alessandro; Smaldone, Luigi; Testa, Italo

    2015-01-01

    In this study we investigated the views about Scientific Inquiry (SI) of about 300 students at the beginning of the secondary school course (14–15 years old). An adapted version of the Views On Scientific Inquiry (VOSI) questionnaire was used as research instrument. The questionnaire, focused on six specific aspects of SI, was submitted before and after a six-hours in-classroom delivery of a teaching learning sequence (TLS) that targeted explicitly the six SI aspects. We first analyzed responses using a five-level categorization: a) informed view; b) mixed or partially correct view; c) na¨ıve view; d) unclear; e) not given. Two independent researchers iteratively analyzed the data with a final inter-rater reliability of about 90%. Then, we collapsed the initial categories into three macro-categories: C1) informed/partial view; C2) na¨ıve view; C3) unclear or not given; and calculated the shift in the macrocategorization between pre- and post-test. Finally, we investigated a possible relationship between how the TLSs were enacted and the students’ achievements. Data show that the percentage of students’ informed responses only slightly increased between pre- and post-test in the majority of the targeted aspects. Moreover, students’ achievements seem to depend on how the teachers enacted the TLSs. Our results suggest that short inquiry-based teaching interventions are not sufficient to effectively teach SI aspects. Moreover, our results suggest to develop specific training courses aimed at improving teachers’ own beliefs and practices about SI.

  14. The Power of Balance: Transforming Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2010-03-01

    Full Text Available The “power of balance” as conceived by Torbert represents an integral paradigm of principles, theory, and praxis. Deployed, the paradigm is one that can indeed inform and shape the development of self, society, and scientific inquiry. To explicate that fulsome vision, the book’s fifteen chapters develop the themes of three sections: Theory and Strategy, Heart and Practice, and Vision and Method. Here, we have excerpted from several chapters in Theory and Strategy, and from one chapter in Vision and Method. This means, of course, that we present but a small fraction of this integral classic, leaving out all of the rich, in-depth illustrations, including the author’s learning practice as he first attempted to enact the principles. Yet, we hope even this abbreviated form of The Power of Balance supports at least two goals: to offer deployable insights and practices for developing politics and the political; and to take root as part of a foundational canon for integral political thought, research, and praxis. How we readers deploy these principles in our own actions will determine the degree to which self, society, and scientific inquiry transform.

  15. Understanding the Impact of an Apprenticeship-Based Scientific Research Program on High School Students' Understanding of Scientific Inquiry

    Science.gov (United States)

    Aydeniz, Mehmet; Baksa, Kristen; Skinner, Jane

    2011-01-01

    The purpose of this study was to understand the impact of an apprenticeship program on high school students' understanding of the nature of scientific inquiry. Data related to seventeen students' understanding of science and scientific inquiry were collected through open-ended questionnaires. Findings suggest that although engagement in authentic…

  16. Scientists' conceptions of scientific inquiry: Revealing a private side of science

    Science.gov (United States)

    Reiff, Rebecca R.

    Science educators, philosophers, and pre-service teachers have contributed to conceptualizing inquiry but missing from the inquiry forum is an in-depth research study concerning science faculty conceptions of scientific inquiry. The science education literature has tended to focus on certain aspects of doing, teaching, and understanding scientific inquiry without linking these concepts. As a result, conceptions of scientific inquiry have been disjointed and are seemingly unrelated. Furthermore, confusion surrounding the meaning of inquiry has been identified as a reason teachers are not using inquiry in instruction (Welch et al., 1981). Part of the confusion surrounding scientific inquiry is it has been defined differently depending on the context (Colburn, 2000; Lederman, 1998; Shymansky & Yore, 1980; Wilson & Koran, 1976). This lack of a common conception of scientific inquiry is the reason for the timely nature of this research. The result of scientific journeys is not to arrive at a stopping point or the final destination, but to refuel with questions to drive the pursuit of knowledge. A three-member research team conducted Interviews with science faculty members using a semi-structured interview protocol designed to probe the subject's conceptions of scientific inquiry. The participants represented a total of 52 science faculty members from nine science departments (anthropology, biology, chemistry, geology, geography, school of health, physical education and recreation (HPER), medical sciences, physics, and school of environmental science) at a large mid-western research university. The method of analysis used by the team was grounded theory (Strauss & Corbin, 1990; Glaser & Strauss, 1967), in which case the frequency of concepts, patterns, and themes were coded to categorize scientists' conceptions of scientific inquiry. The results from this study address the following components: understanding and doing scientific inquiry, attributes of scientists engaged

  17. Searching for a Common Ground--A Literature Review of Empirical Research on Scientific Inquiry Activities

    Science.gov (United States)

    Rönnebeck, Silke; Bernholt, Sascha; Ropohl, Mathias

    2016-01-01

    Despite the importance of scientific inquiry in science education, researchers and educators disagree considerably regarding what features define this instructional approach. While a large body of literature addresses theoretical considerations, numerous empirical studies investigate scientific inquiry on quite different levels of detail and also…

  18. Enactment of Scientific Inquiry: Observation of Two Cases at Different Grade Levels in China Mainland

    Science.gov (United States)

    Wang, Lei; Zhang, Ronghui; Clarke, David; Wang, Weizhen

    2014-04-01

    Enactment of scientific inquiry in classroom has attracted a great attention of science educators around the world. In this study, we examined two competent teachers' (one Grade 9 chemistry teacher and one Grade 4 science teacher) enactment of scientific inquiry in selected teaching units to reveal the characteristics of enacted inquiry at different grade levels by analyzing lesson sequence videos. The coding schemes for enacted inquiry consist of ontological properties and instructional practices. Pre-topic and post-topic teacher interviews and the two teachers' responses to a questionnaire were adopted to identify the factors influencing teacher's enactment. The results indicate that the two case teachers' enactment involved a range of inquiry activities. The enacted inquiry at fourth-grade level covered all the inquiry elements, tending to engage students in the whole procedure of inquiry. The ninth-grade chemistry class placed emphasis on the elements "making plans" to solve problems in authentic context. Important factors influencing the enactment include teacher's understanding about scientific inquiry, textbooks, assessment, students and resource. Implications for inquiry enactment and instruction improvement have been provided.

  19. The Development of Scientific Literacy through Nature of Science (NoS) within Inquiry Based Learning Approach

    Science.gov (United States)

    Widowati, A.; Widodo, E.; Anjarsari, P.; Setuju

    2017-11-01

    Understanding of science instructional leading to the formation of student scientific literacy, seems not yet fully understood well by science teachers. Because of this, certainly needs to be reformed because science literacy is a major goal in science education for science education reform. Efforts of development science literacy can be done by help students develop an information conception of the Nature of Science (NoS) and apply inquiry approach. It is expected that students’ science literacy can develop more optimal by combining NoS within inquiry approach. The purpose of this research is to produce scientific literacy development model of NoS within inquiry-based learning. The preparation of learning tools will be maked through Research and Development (R & D) following the 4-D model (Define, Design, Develop, and Disseminate) and Borg & Gall. This study is a follow-up of preliminary research results about the inquiry profile of junior high school students indicating that most categories are quite good. The design of the model NoS within inquiry approach for developing scientific literacy is using MER Model in development educational reconstruction. This research will still proceed to the next stage that is Develop.

  20. Changes in Students' Views about Nature of Scientific Inquiry at a Science Camp

    Science.gov (United States)

    Leblebicioglu, G.; Metin, D.; Capkinoglu, E.; Cetin, P. S.; Eroglu Dogan, E.; Schwartz, R.

    2017-12-01

    Although nature of science (NOS) and nature of scientific inquiry (NOSI) are related to each other, they are differentiated as NOS is being more related to the product of scientific inquiry (SI) which is scientific knowledge whereas NOSI is more related to the process of SI (Schwartz et al. 2008). Lederman et al. (Journal of Research in Science Teaching, 51, 65-8, 2014) determined eight NOSI aspects for K-16 context. In this study, a science camp was conducted to teach scientific inquiry (SI) and NOSI to 24 6th and 7th graders (16 girls and 8 boys). The core of the program was guided inquiry in nature. The children working in small groups under guidance of science advisors conducted four guided-inquiries in the nature in morning sessions on nearby plants, animals, water, and soil. NOSI aspects were made explicit during and at the end of each inquiry session. Views about scientific inquiry (VASI) (Lederman et al. Journal of Research in Science Teaching, 51, 65-8, 2014) questionnaire was applied as pre- and post-test. The results of the study showed that children developed in all eight NOSI aspects, but higher developments were observed in "scientific investigations all begin with a question" and "there is no single scientific method," and "explanations are developed from data and what is already known" aspects. It was concluded that the science camp program was effective in teaching NOSI.

  1. Promoting Student Development of Models and Scientific Inquiry Skills in Acid-Base Chemistry: An Important Skill Development in Preparation for AP Chemistry

    Science.gov (United States)

    Hale-Hanes, Cara

    2015-01-01

    In this study, two groups of 11th grade chemistry students (n = 210) performed a sequence of hands-on and virtual laboratories that were progressively more inquiry-based. One-half of the students did the laboratory sequence with the addition of a teacher-led discussion connecting student data to student-generated visual representations of…

  2. Using Cloud-Computing Applications to Support Collaborative Scientific Inquiry: Examining Pre-Service Teachers' Perceived Barriers to Integration

    Science.gov (United States)

    Donna, Joel D.; Miller, Brant G.

    2013-01-01

    Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications, such as Google Drive, can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers' beliefs related to the envisioned use of collaborative,…

  3. Science Teacher Educators’ Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Directory of Open Access Journals (Sweden)

    William J. FRASER

    2017-10-01

    Full Text Available This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS, and by the Nature of Scientific Inquiry (NOSI. Furthermore, science educators’ own PCK, and the limitations of a predominantly paper-based distance education (DE model of delivery are challenges that they have to face when introducing PCK and authentic inquiry-based learning experiences. It deprives them and their students from optimal engagement in a science-oriented community of practice, and leaves little opportunity to establish flourishing communities of inquiry. This study carried out a contextual analysis of the tutorial material to assess the PCK that the student teachers had been exposed to. This comprised the ideas of a community of inquiry, a community of science, the conceptualization of PCK, scientific inquiry, and the 5E Instructional Model of the Biological Sciences Curriculum Study. The analysis confirmed that the lecturers had a good understanding of NOS, NOSI and science process skills, but found it difficult to design interventions to optimize the PCK development of students through communities of inquiry. Paper-based tutorials are ideal to share theory, policies and practices, but fail to monitor the engagement of learners in communities of inquiry. The article concludes with a number of suggestions to address the apparent lack of impact power of the paper-based mode of delivery, specifically in relation to inquiry-based teaching and learning (IBTL.

  4. Decision-making theories as tools for interpreting student behavior during a scientific inquiry simulation

    Science.gov (United States)

    Aikenhead, Glen S.

    The study investigated the predictive ability of two sociological theories of group decision making, the social decision scheme (SDS) and the valence distribution (DV) model. The theories were applied to a normal classroom setting of grade-9 and -10 students (N = 159) involved in a scientific inquiry - a simulation of scientific decision making. In their attempt to resolve conceptual conflicts concerning a pendulum's period, the students worked towards a consensus. It was discovered that student beliefs at the end of the simulation deviated from this group consensus. Neither the SDS or the DV theories could account for this result, except in one extreme case. The psychological state of the decision makers (vigilant, hypervigilant, etc.) was mildly associated with this deviation. The predictive function of the SDS and DV models was apparently severely hampered by the natural complexities common to classroom interactions. However, the study did illuminate factors that likely affect conceptual change in the context of classroom group decision making; and the study discovered strategies which students invented in order to maintain their alternative conceptions of motion related to the pendulum, in the face of conflicting evidence. These results are discussed in terms of the students' participation in the scientific inquiry.

  5. Using Scientific Inquiry to Teach Students about Water Quality

    Science.gov (United States)

    Puche, Helena; Holt, Jame

    2012-01-01

    This semi-guided inquiry activity explores the macroinvertebrate fauna in water sources affected by different levels of pollution. Students develop their ability to identify macroinvertebrates, compare aquatic fauna from different sources of water samples, evaluate water quality using an index, document and analyze data, raise questions and…

  6. An Interdisciplinary Guided Inquiry on Estuarine Transport Using a Computer Model in High School Classrooms

    Science.gov (United States)

    Chan, Kit Yu Karen; Yang, Sylvia; Maliska, Max E.; Grunbaum, Daniel

    2012-01-01

    The National Science Education Standards have highlighted the importance of active learning and reflection for contemporary scientific methods in K-12 classrooms, including the use of models. Computer modeling and visualization are tools that researchers employ in their scientific inquiry process, and often computer models are used in…

  7. K-12 Teacher Professional Growth for Nature of Science and Scientific Inquiry: Promoting Reflection through Exemplars

    Science.gov (United States)

    Parrish, Jennifer C.

    2017-01-01

    Developing K-12 science teachers' understandings of nature of science (NOS) and scientific inquiry (SI) continues to be a major goal of science education reform. There is consensus among science teacher educators that developing students' NOS and SI understandings is vital to the development of a scientifically literate citizenry. However, two…

  8. The Use of Drama in Socio-Scientific Inquiry-Based Learning

    NARCIS (Netherlands)

    Verhoeff, R.P.

    Drama is relatively unexplored in academic science education. This chapter addresses in what way drama may allow science students to explore socio-scientific issues on neuro-technologies. We connect to the educational framework, socio-scientific inquiry-based learning (SSIBL), which integrates

  9. Effectiveness of a scaffolded approach for teaching students to design scientific inquiries

    Science.gov (United States)

    Gabel, Connie

    Teaching students to design their own science experiments has perplexed science educators for over a hundred years. Throughout the years, a number of approaches have been tried with little success. As the new millennium opens, current curriculum reform efforts are stressing science inquiry and science for all students, but methods for teaching science inquiry have remained elusive. Teaching science inquiry is a complex process that requires students to perform multiple tasks well in order for them to be able to conduct a meaningful scientific investigation. The merging of knowledge gained from the field of educational psychology with advancements made in pedagogy were found to be key factors in successfully teaching students to design their own scientific inquiries. The findings from this research study indicate that a scaffolded approach in all pedagogical aspects contributes to a successful performance from the students in designing their own scientific investigations. A schema using the following steps: question, prior knowledge, design of experiment, gathering data, analysis, and conclusion was found to be effective. Students also exhibited a gain in science inquiry skills and maintained a positive attitude toward science. This method was successful with both genders and both minority and non-minority students. A quasi-experimental research design with three independent variables: teaching method, gender, and ethnicity and three dependent variables: science inquiry skills, ability to design an experiment, and attitude toward science was utilized in this research study.

  10. Guided Inquiry Method Employing Virtual Laboratory to Improve Scientific Working Skills

    Directory of Open Access Journals (Sweden)

    Siti Juwariyah

    2017-03-01

    Full Text Available Abstract: There are many obstacles in achieving the goals of learning physics. One of those is how students’ assumption on physics as something abstract and can not be verified by experiment, because of the unavailability of laboratory and equipment in schools. This study aims to assess if students’ scientific work skills learned through Guided Inquiry method employing Virtual Laboratory is higher than those learned through conventional method. The research used quasi-experimental research method with the Non-equivalent control group design. The data was analyzed by using ANCOVA test. The results showed that when covariable controlled the prior knowledge, students’ scientific working skill is higher with guided inquiry method employing virtual laboratory than those who learned through conventional learning. Key Words: guided inquiry, virtual labs, scientific working skill   Abstrak: Banyak kendala yang harus dihadapi dalam mencapai tujuan pembelajaran fisika. Berdasarkan hasil studi pendahuluan, salah satu kendalanya adalah anggapan siswa bahwa materi fisika merupakan sesuatu yang abstrak dan tidak bisa dibuktikan kebenarannya dengan eksperimen di sekolah, karena tidak tersedianya peralatan laboratory. Telah dilakukan penelitian yang bertujuan meningkatkan keterampilan kerja ilmiah siswa yang belajar dengan pembelajaran guided Inquiry berbantuan Laboratory virtual. Metode penelitian yang di implimentasikan adalah kuasi eksperimen, dengan desain penelitian Non-equivalent control-group design. Analisis data menggunakan uji ANCOVA. Hasil penelitian menunjukkan bahwa setelah dikendalikan kovariabel pengetahuan awal, keterampilan kerja ilmiah siswa lebih tinggi pada siswa yang belajar dengan guided inquiry berbantuan laboratory virtual dibanding yang belajar dengan pembelajaran konvensional Kata kunci: Guided Inquiry, Laboratory Virtual

  11. Recognizing Mechanistic Reasoning in Student Scientific Inquiry: A Framework for Discourse Analysis Developed from Philosophy of Science

    Science.gov (United States)

    Russ, Rosemary S.; Scherr, Rachel E.; Hammer, David; Mikeska, Jamie

    2008-01-01

    Science education reform has long focused on assessing student inquiry, and there has been progress in developing tools specifically with respect to experimentation and argumentation. We suggest the need for attention to another aspect of inquiry, namely "mechanistic reasoning." Scientific inquiry focuses largely on understanding causal…

  12. DEVELOPMENT SCIENTIFIC INQUIRY BASED TEACHING MATERIALS ON DYNAMIC FLUIDS TO IMPROVE STUDENTS ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Jeliana Veronika Sirait

    2016-06-01

    Full Text Available The study was conducted to investigate whether the developed scientific inquiry-based teaching materials can improve the students’ response, the students’ activity and the students’ achievement. This study is development which based on Borg & Gall product development. Samples were selected randomly by raffling 4 classes into one class, applied teaching materials based scientific inquiry. The instruments which are used in this study consisted of three namely quetionnaires used for validation of teaching material by the expert of the material and the expert of design, the evaluation of physics teacher and students’ response toward teaching materials and observation sheet of students’ activity used in learning process and also test for students’ achievement in the form of multiple choice consisted of 10 quetions provided for end of the learning. The results of this study showed that the developed scientific inquiry-based teaching materials can improve the students’ response, the students’ activity and the students’ achievement in every session.

  13. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-04-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.

  14. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2017-10-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed and fail at getting students to evolve in their understanding of anthropogenic global climate change (AGCC). Many available climate education technologies aim to convey key AGCC concepts or Earth systems processes; the educational GCM used here aims to teach students the methods and processes of global climate modeling. We hypothesized that challenges to learning about AGCC make authentic technology-enabled inquiry important in developing accurate understandings of not just the issue but how scientists research it. The goal was to determine if student learning trajectories differed between the comparison and treatment groups based on whether each climate education technology allowed authentic scientific research. We trace learning trajectories using pre/post exams, practice quizzes, and written student reflections. To examine the reasons for differing learning trajectories, we discuss student pre/post questionnaires, student exit interviews, and 535 min of recorded classroom video. Students who worked with a GCM demonstrated learning trajectories with larger gains, higher levels of engagement, and a better idea of how climate scientists conduct research. Students who worked with simpler climate education technologies scored lower in the course because of lower levels of engagement with inquiry processes that were perceived to not actually resemble the work of climate scientists.

  15. Snapshots of Authentic Scientific Inquiry and Teacher Preparation: Undergraduate STEM Courses, Preservice and Inservice Teachers' Experiences

    Science.gov (United States)

    French, Debbie Ann

    In this dissertation, the researcher describes authentic scientific inquiry (ASI) within three stages of teacher preparation and development: a1) undergraduate STEM courses, b2) preservice secondary science education methods courses, and c3) inservice teacher professional development (PD). Incorporating (ASI)-- pedagogy closely modeling the research practices of scientists--is at the forefront of national science, technology, engineering, and mathematics (STEM) initiatives and the Next Generation Science Standards (NGSS). In the first of three research articles, 42 students participated in an introductory astronomy course which employed inquiry-based pedagogy. The researcher administered the Test Of Astronomy STandards (TOAST) pre/post instruction. In the second article, 56 preservice secondary science teachers completed ideal lesson plan scenarios before and after 80 hours of methods instruction. The researcher scored the scenarios using a rubrirubric developedc according to the NGSS Science and Engineering Practices, and analyzed the components from the scenarios. The third article surveyed 63 inservice STEM teachers with prior research and industry experience. The researcher highlights teacher ASI perspectives. Overall, teachers incorporated opportunities for K-20 students to use scientific instrumentation and technology to collect and analyze data, work collaboratively, and develop evidence-based conclusions. Few teachers provided opportunities for students to ask scientific questions or disseminate results, suggesting the need that teachers (at all levels) need scaffolded instruction in these areas. The researcher argues that while ASI and STEM PDs are effective for teachers, developing similar interest, on-going communities of practice may provide support for teacher to implement the ASI practices in their classrooms.

  16. Predicting Students' Skills in the Context of Scientific Inquiry with Cognitive, Motivational, and Sociodemographic Variables

    Science.gov (United States)

    Nehring, Andreas; Nowak, Kathrin H.; Belzen, Annette Upmeier zu; Tiemann, Rüdiger

    2015-06-01

    Research on predictors of achievement in science is often targeted on more traditional content-based assessments and single student characteristics. At the same time, the development of skills in the field of scientific inquiry constitutes a focal point of interest for science education. Against this background, the purpose of this study was to investigate to which extent multiple student characteristics contribute to skills of scientific inquiry. Based on a theoretical framework describing nine epistemological acts, we constructed and administered a multiple-choice test that assesses these skills in lower and upper secondary school level (n = 780). The test items contained problem-solving situations that occur during chemical investigations in school and had to be solved by choosing an appropriate inquiry procedure. We collected further data on 12 cognitive, motivational, and sociodemographic variables such as conceptual knowledge, enjoyment of chemistry, or language spoken at home. Plausible values were drawn to quantify students' inquiry skills. The results show that students' characteristics predict their inquiry skills to a large extent (55%), whereas 9 out of 12 variables contribute significantly on a multivariate level. The influence of sociodemographic traits such as gender or the social background becomes non-significant after controlling for cognitive and motivational variables. Furthermore, the performance advance of students from upper secondary school level can be explained by controlling for cognitive covariates. We discuss our findings with regard to curricular aspects and raise the question whether the inquiry skills can be considered as an autonomous trait in science education research.

  17. Development and use of an instrument to measure scientific inquiry and related factors

    Science.gov (United States)

    Dunbar, Terry Frank

    The use of the scientific inquiry method of teaching science was investigated in one district's elementary schools. The study generated data directly from Albuquerque Public Schools fourth- and fifth-grade teachers through a mail-out survey and through observation. Two forms of an inquiry evaluation research instrument (Elementary Science Inquiry Survey - ESIS) were created. The ESIS-A is a classroom observation tool. The ESIS-B is a survey questionnaire designed to collect information from teachers. The study was designed first to establish reliability and validity for both forms of the instrument. The study made use of multiple regression and exploratory factor analysis. Sources used to establish the instruments' reliability and validity included: (1) Input from an international panel (qualitative analysis of comments sent by raters and quantitative analysis of numerical ratings sent by raters); (2) Cronbach's alpha; (3) Results of factor analysis; (4) Survey respondents' comments (qualitative analysis); (5) Teacher observation data. Cronbach's alpha for the data set was .8955. Inquiry practices were reported to occur between twice per week and three times per week. Teachers' comments regarding inquiry were reported. The ESIS was used to collect inquiry self-report data and teacher background data. The teacher background data included teacher science knowledge and information about their standards awareness and implementation. The following teacher knowledge factors were positively correlated with inquiry use: semesters of college science, science workshops taken, conducted scientific research, and SIMSE (NSF institute) participation. The following standards awareness and implementation factors were positively correlated with inquiry use: familiarity with the National Science Education Standards, familiarity with New Mexico science standards, state or national standards as a curriculum selection factor, student interest as a curriculum selection factor, and "no

  18. A Review of the Scientific Misconduct Inquiry Process, Ankara Chamber of Medicine, Turkey.

    Science.gov (United States)

    Gökçay, Banu; Arda, Berna

    2017-08-01

    The aim of this study is to review the inquiry process used in scientific misconduct cases in the Ankara Chamber of Medicine between the years 1998 and 2012. The violations of the "Disciplinary Regulations of the Turkish Medical Association" have been examined by keeping the names of the people, institutions, associations and journals secret. In total, 31 files have been studied and 11 of these files have been identified as related to scientific misconduct. The methods of inquiry, the decisions about the need for an investigation process, the types of scientific misconduct, and the adjudication processes have all been reported. Furthermore, the motives of researchers who made allegations, the study approaches of investigators, and the objections to the decisions about guilt and innocence have also been examined. Based on the findings obtained, the reasons for scientific misconduct and the distribution of responsibilities among the people in the inquiry process have been discussed. A major conclusion is the need to standardize the process of conducting inquiries about scientific misconduct cases for the regional chambers of medicine in Turkey.

  19. Perceptions of Prospective Biology Teachers on Scientific Argumentation in Microbiology Inquiry Lab Activities

    Science.gov (United States)

    Roviati, E.; Widodo, A.; Purwianingsih, W.; Riandi, R.

    2017-09-01

    Inquiry laboratory activity and scientific argumentation in science education should be promoted and explicitly experienced by prospective biology teacher students in classes, including in microbiology courses. The goal of this study is to get information about perceptions of prospective biology teachers on scientific argumentation in microbiology inquiry lab activities. This study reported the result of a survey research to prospective biology teachers about how their perception about microbiology lab classes and their perception about inquiry and argumentation in microbiology lab activities should be. The participants of this study were 100 students of biology education department from an institute in Cirebon, West Java taking microbiology lecture during the fifth semester. The data were collected using questionnaire to explore the perceptions and knowledge of prospective biology teachers about microbiology, inquiry lab activities and argumentation. The result showed that students thought that the difficulties of microbiology as a subject were the lack of references and the way lecturer teaching. The students’ perception was that argumentation and inquiry should be implemented in microbiology courses and lab activities. Based on the data from questionnaire, It showed that prospective biology teacher students had very little knowledge about scientific argumentation and its implementation in science education. When the participants made arguments based on the problems given, they showed low quality of arguments.

  20. Students' Participation in an Interdisciplinary, Socioscientific Issues Based Undergraduate Human Biology Major and Their Understanding of Scientific Inquiry

    Science.gov (United States)

    Eastwood, Jennifer L.; Sadler, Troy D.; Sherwood, Robert D.; Schlegel, Whitney M.

    2013-01-01

    The purpose of this study was to examine whether Socioscientific Issues (SSI) based learning environments affect university students' epistemological understanding of scientific inquiry differently from traditional science educational contexts. We identify and compare conceptions of scientific inquiry of students participating in an…

  1. Pre-service teachers and socio-scientific inquiry : Opportunities and challenges

    NARCIS (Netherlands)

    Knippels, M.C.P.J.; van Harskamp, M.; Verhoeff, R.P.; Postma, P.A.

    2017-01-01

    This paper presents the results of a teacher training program aiming to enable pre-service teachers to engage secondary education students in Socio-Scientific Inquiry-Based Learning (SSIBL). In SSIBL – an approach developed within the European project PARRISE – students formulate questions about

  2. The Influence of RET's on Elementary and Secondary Grade Teachers' Views of Scientific Inquiry

    Science.gov (United States)

    Bahbah, Sibel; Golden, Barry W.; Roseler, Katrina; Elderle, Patrick; Saka, Yavuz; Shoutherland, Sherry A.

    2013-01-01

    This study explores in-service elementary and secondary science teachers' conceptions of the Nature of Scientific Inquiry and the influence of participation in two different Research Experience for Teacher (RET) programs had on these conceptions. Participant teachers attended one of two six week RET programs in which they worked with scientists to…

  3. Teachers' Knowledge Structures for Nature of Science and Scientific Inquiry and Their Classroom Practice

    Science.gov (United States)

    Bartos, Stephen A.

    2013-01-01

    Research on nature of science (NOS) and scientific inquiry (SI) has indicated that a teacher's knowledge of each, however well developed, is not sufficient to ensure that these views necessarily manifest themselves in classroom practice (Lederman & Druger, 1985; Lederman, 2007). In light of the considerable research that has examined teachers'…

  4. Teachers' Knowledge Structures for Nature of Science and Scientific Inquiry: Conceptions and Classroom Practice

    Science.gov (United States)

    Bartos, Stephen A.; Lederman, Norman G.

    2014-01-01

    Research on nature of science (NOS) and scientific inquiry (SI) has indicated that a teacher's knowledge of each, however well developed, is not sufficient to ensure that these conceptions necessarily manifest themselves in classroom practice (Lederman & Druger, 1985; Lederman, 2007). In light of considerable research that has examined…

  5. A framework for teaching scientific inquiry in upper secondary school chemistry

    NARCIS (Netherlands)

    van Rens, L.; Pilot, A.; van der Schee, J.A.

    2010-01-01

    A framework for teaching scientific inquiry in upper secondary chemistry education was constructed in a design research consisting of two research cycles. First, in a pilot study a hypothetical framework was enriched in collaboration with five chemistry teachers. Second, a main study in this

  6. Scientific Inquiry, Digital Literacy, and Mobile Computing in Informal Learning Environments

    Science.gov (United States)

    Marty, Paul F.; Alemanne, Nicole D.; Mendenhall, Anne; Maurya, Manisha; Southerland, Sherry A.; Sampson, Victor; Douglas, Ian; Kazmer, Michelle M.; Clark, Amanda; Schellinger, Jennifer

    2013-01-01

    Understanding the connections between scientific inquiry and digital literacy in informal learning environments is essential to furthering students' critical thinking and technology skills. The Habitat Tracker project combines a standards-based curriculum focused on the nature of science with an integrated system of online and mobile computing…

  7. Scientific attitude in political inquiry: A philosophical appraisal ...

    African Journals Online (AJOL)

    ... what “man” aims for are peace, happiness and development. There is also an imperative need for integration of methodological individualism (a derivative of scientific attitude) and the methodological holism (a derivation of the artistic attitude) and for this to be successful has to rest on philosophical ontology and ethics.

  8. Primary pre-service teachers' skills in planning a guided scientific inquiry

    Science.gov (United States)

    García-Carmona, Antonio; Criado, Ana M.; Cruz-Guzmán, Marta

    2017-10-01

    A study is presented of the skills that primary pre-service teachers (PPTs) have in completing the planning of a scientific inquiry on the basis of a guiding script. The sample comprised 66 PPTs who constituted a group-class of the subject Science Teaching, taught in the second year of an undergraduate degree in primary education at a Spanish university. The data was acquired from the responses of the PPTs (working in teams) to open-ended questions posed to them in the script concerning the various tasks involved in a scientific inquiry (formulation of hypotheses, design of the experiment, data collection, interpretation of results, drawing conclusions). Data were analyzed within the framework of a descriptive-interpretive qualitative research study with a combination of inter- and intra-rater methods, and the use of low-inference descriptors. The results showed that the PPTs have major shortcomings in planning the complete development of a guided scientific inquiry. The discussion of the results includes a number of implications for rethinking the Science Teaching course so that PPTs can attain a basic level of training in inquiry-based science education.

  9. Exploring English Language Learners (ELL) experiences with scientific language and inquiry within a real life context

    Science.gov (United States)

    Algee, Lisa M.

    English Language Learners (ELL) are often at a distinct disadvantage from receiving authentic science learning opportunites. This study explored English Language Learners (ELL) learning experiences with scientific language and inquiry within a real life context. This research was theoretically informed by sociocultural theory and literature on student learning and science teaching for ELL. A qualitative, case study was used to explore students' learning experiences. Data from multiple sources was collected: student interviews, science letters, an assessment in another context, field-notes, student presentations, inquiry assessment, instructional group conversations, parent interviews, parent letters, parent homework, teacher-researcher evaluation, teacher-researcher reflective journal, and student ratings of learning activities. These data sources informed the following research questions: (1) Does participation in an out-of-school contextualized inquiry science project increase ELL use of scientific language? (2) Does participation in an out-of-school contextualized inquiry science project increase ELL understanding of scientific inquiry and their motivation to learn? (3) What are parents' funds of knowledge about the local ecology and does this inform students' experiences in the science project? All data sources concerning students were analyzed for similar patterns and trends and triangulation was sought through the use of these data sources. The remaining data sources concerning the teacher-researcher were used to inform and assess whether the pedagogical and research practices were in alignment with the proposed theoretical framework. Data sources concerning parental participation accessed funds of knowledge, which informed the curriculum in order to create continuity and connections between home and school. To ensure accuracy in the researchers' interpretations of student and parent responses during interviews, member checking was employed. The findings

  10. Linking the Scales of Scientific inquiry and Watershed Management: A Focus on Green Infrastructure

    Science.gov (United States)

    Golden, H. E.; Hoghooghi, N.

    2017-12-01

    Urbanization modifies the hydrologic cycle, resulting in potentially deleterious downstream water quality and quantity effects. However, the cumulative interacting effects of water storage, transport, and biogeochemical processes occurring within other land cover and use types of the same watershed can render management explicitly targeted to limit the negative outcomes from urbanization ineffective. For example, evidence indicates that green infrastructure, or low impact development (LID), practices can attenuate the adverse water quality and quantity effects of urbanizing systems. However, the research providing this evidence has been conducted at local scales (e.g., plots, small homogeneous urban catchments) that isolate the measurable effects of such approaches. Hence, a distinct disconnect exists between the scale of scientific inquiry and the scale of management and decision-making practices. Here we explore the oft-discussed yet rarely directly addressed scientific and management conundrum: How do we scale our well-documented scientific knowledge of the water quantity and quality responses to LID practices measured and modeled at local scales to that of "actual" management scales? We begin by focusing on LID practices in mixed land cover watersheds. We present key concepts that have emerged from LID research at the local scale, considerations for scaling this research to watersheds, recent advances and findings in scaling the effects of LID practices on water quality and quantity at watershed scales, and the use of combined novel measurements and models for these scaling efforts. We underscore these concepts with a case study that evaluates the effects of three LID practices using simulation modeling across a mixed land cover watershed. This synthesis and case study highlight that scientists are making progress toward successfully tailoring fundamental research questions with decision-making goals in mind, yet we still have a long road ahead.

  11. An Inquiry-Based Laboratory Module to Promote Understanding of the Scientific Method and Bacterial Conjugation

    Directory of Open Access Journals (Sweden)

    Melanie B. Berkmen

    2014-08-01

    Full Text Available Students are engaged and improve their critical thinking skills in laboratory courses when they have the opportunity to design and conduct inquiry-based experiments that generate novel results. A discovery-driven project for a microbiology, genetics, or multidisciplinary research laboratory course was developed to familiarize students with the scientific method. In this multi-lab module, students determine whether their chosen stress conditions induce conjugation and/or cell death of the model BSL-1 Gram-positive bacterium Bacillus subtilis. Through consultation of the primary literature, students identify conditions or chemicals that can elicit DNA damage, the SOS response, and/or cellular stress.  In groups, students discuss their selected conditions, develop their hypotheses and experimental plans, and formulate their positive and negative controls. Students then subject the B. subtilis donor cells to the stress conditions, mix donors with recipients to allow mating, and plate serial dilutions of the mixtures on selective plates to measure how the treatments affect conjugation frequency and donor cell viability.  Finally, students analyze and discuss their collective data in light of their controls. The goals of this module are to encourage students to be actively involved in the scientific process while contributing to our understanding of the conditions that stimulate horizontal gene transfer in bacteria.

  12. Exploring South African high school teachers' conceptions of the nature of scientific inquiry: a case study

    Directory of Open Access Journals (Sweden)

    Washington T Dudu

    2014-01-01

    Full Text Available The paper explores conceptions of the nature ofscientific inquiry (NOSI held by five teachers who were purposively and conveniently sampled. Teachers' conceptions of the NOSI were determined using a Probes questionnaire. To confirm teachers' responses, a semi-structured interview was conducted with each teacher. The Probes questionnaire was based on six tenets of the nature of scientific inquiry but only three tenets are presented in this paper, namely: (1 scientists use a variety of methods to conduct scientific investigations; (2 scientific knowledge is socially and culturally embedded; and (3 scientific knowledge is partly the product of human creativity and imagination. The study found that the teachers held mixed NOSI conceptions. These conceptions werefluid and lacked coherence, ranging from static, empiricist-aligned to dynamic, constructivist-oriented conceptions. Although all participants expressed some views that were consistent with current, acceptable conceptions of NOSI, some held inadequate (naïve views on the crucial three NOSI tenets. The significance of this study rests in recommending explicit teaching of NOSI duringpre-service and in-service training which enables teachers to possess informed conceptions about NOSI. With these informed conceptions, teachers may internalise the instructional importance of the NOSI which, in turn, may help avoid the lack of attention to NOSI currently evidenced in teachers' instructional decisions. This might result in teachers' orientations shifting towards an explicit inquiry-based approach from that of an implicit science process and discovery approach.

  13. Science Inquiry as Knowledge Transformation: Investigating Metacognitive and Self-regulation Strategies to Assist Students in Writing about Scientific Inquiry Tasks

    Science.gov (United States)

    Collins, Timothy A.

    2011-12-01

    Science inquiry is central to the science education reform efforts that began in the early 1990's. It is both a topic of instruction and a process to be experienced. Student engagement in the process of scientific inquiry was the focus of this study. The process of scientific inquiry can be conceived as a two-part task. In the initial part of the task, students identify a question or problem to study and then carry out an investigation to address the issue. In the second part of the task, students analyze their data to propose explanations and then report their findings. Knowing that students struggle with science inquiry tasks, this study sought to investigate ways to help students become more successful with the communication demands of science inquiry tasks. The study took place in a high school chemistry class. Students in this study completed a total of three inquiry tasks over the course of one school year. Students were split into four experimental groups in order to determine the effect of goal setting, metacognitive prompts, and sentence stems on student inquiry tasks. The quality of the student written work was assessed using a scoring rubric familiar to the students. In addition, students were asked at four different times in the school year to respond to a self-efficacy survey that measured student self-efficacy for chemistry content and science inquiry processes. Student self-efficacy for the process of scientific inquiry was positive and did not change over the course of the study while student scores on the science inquiry tasks rose significantly. The metacognitive prompts and instruction in goal setting did not have any effect on student inquiry scores. Results related to the effect of the sentence stems were mixed. An analysis of student work indicated that students who received high marks on their initial inquiry task in this study were the ones that adopted the use of the sentence stems. Students who received low marks on their initial inquiry

  14. The Analysis of Students Scientific Reasoning Ability in Solving the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR Problems by Applying the Levels of Inquiry

    Directory of Open Access Journals (Sweden)

    N. Novia

    2017-04-01

    Full Text Available This study aims to determine the students’ achievement in answering modified lawson classroom test of scientific reasoning (MLCTSR questions in overall science teaching and by every aspect of scientific reasoning abilities. There are six aspects related to the scientific reasoning abilities that were measured; they are conservatorial reasoning, proportional reasoning, controlling variables, combinatorial reasoning, probabilistic reasoning, correlational reasoning. The research is also conducted to see the development of scientific reasoning by using levels of inquiry models. The students reasoning ability was measured using the Modified Lawson Classroom Test of Scientific Reasoning (MLCTSR. MLCTSR is a test developed based on the test of scientific reasoning of Lawson’s Classroom Test of Scientific Reasoning (LCTSR in 2000 which amounted to 12 multiple-choice questions. The research method chosen in this study is descriptive quantitative research methods. The research design used is One Group Pretest-Posttest Design. The population of this study is the entire junior high students class VII the academic year 2014/2015 in one junior high school in Bandung. The samples in this study are one of class VII, which is class VII C. The sampling method used in this research is purposive sampling. The results showed that there is an increase in quantitative scientific reasoning although its value is not big.

  15. The Communication in Science Inquiry Project (CISIP): A Project to Enhance Scientific Literacy through the Creation of Science Classroom Discourse Communities

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Purzer, Senay; Watts, Nievita Bueno; Perkins, Gita; Uysal, Sibel; Wong, Sissy; Beard, Rachelle; Lang, Michael

    2009-01-01

    This study reports on the context and impact of the Communication in Science Inquiry Project (CISIP) professional development to promote teachers' and students' scientific literacy through the creation of science classroom discourse communities. The theoretical underpinnings of the professional development model are presented and key professional…

  16. Preservice special education teachers' understandings, enactments, views, and plans for scientific inquiry: Issues and hopes

    Science.gov (United States)

    Ghosh, Rajlakshmi

    This study examined the understandings, enactments, views, and plans for scientific inquiry held by preservice special education teachers enrolled in a K--8 general science methods course. Sixteen participants from four special education concentration areas---Mild to Moderate Educational Needs, Moderate to Intense Educational Needs, Mild to Moderate Educational Needs with Language Arts and Reading Emphasis, and Early Childhood Intervention---participated in this study. Qualitative data were collected from questionnaires, interviews, teaching videos, lesson plans, planning commentaries, and reflection papers. Data were analyzed using a grounded theory approach (Strauss & Corbin, 1990) and compared against the theoretical view of inquiry as conceptualized by the National Research Council (NRC, 2000). The participants held unique interpretations of inquiry that only partially matched with the theoretical insights provided by the NRC. The participants' previous science learning experiences and experiences in special education played an important role in shaping their conceptualizations of inquiry as learned in the science methods class. The impacts of such unique interpretations are discussed with reference to both science education and special education, and implications for teacher education are provided.

  17. The Impact of a Practice-Teaching Professional Development Model on Teachers' Inquiry Instruction and Inquiry Efficacy Beliefs

    Science.gov (United States)

    Lotter, Christine R.; Thompson, Stephen; Dickenson, Tammiee S.; Smiley, Whitney F.; Blue, Genine; Rea, Mary

    2018-01-01

    This study examined changes in middle school teachers' beliefs about inquiry, implementation of inquiry practices, and self-efficacy to teach science through inquiry after participating in a year-long professional development program. The professional development model design was based on Bandura's (1986) social cognitive theory of learning and…

  18. Developing Multimedia-assisted Inquiry Learning Instruments for Basic Biology Intended to Foster Students’ Scientific Inquiry

    Science.gov (United States)

    Cahyani, R.

    2017-04-01

    Seasonal Influenza is one of disease that outbreaks periodically at least once every year. This disease caused many people hospitalized. Many hospitalized people as employers would infect production quantities, distribution time, and some economic aspects. It will infect economic growth. Infected people need treatments to reduce infection period and cure the infection. In this paper, we discussed a mathematical model of seasonal influenza with treatment. Factually, the disease was held in short period, less than one year. Hence, we can assume that the population is constant at the disease outbreak time. In this paper, we analyzed the existence of the equilibrium points of the model and their stability. We also give some simulation to give a geometric image about the results of the analysis process.

  19. The nature of middle school students' knowledge construction and scientific reasoning during inquiry in genetics

    Science.gov (United States)

    Echevarria, Marissa

    1999-11-01

    The purpose of this study was to examine the nature of middle school students' scientific reasoning and knowledge construction during a three-week inquiry unit in genetics. During the unit, students used genetics simulation software to investigate how traits were transmitted in fruit flies and plants in order to develop mental models of trait transmission for simple dominance single trait inheritance patterns. Using a participant/observer design, data were collected consisting of a pretest/posttest assessment, audiotaped/videotaped discourse, computer logs, student recorded logs, homework, final reports, and researcher field notes. Qualitative analyses were used to determine categories of student content knowledge and scientific reasoning. For content knowledge, categories of student explanations were formed for both standard and anomalous inheritance patterns. Standard inheritance patterns were those that could be predicted based on the appearance of the parents. Anomalous inheritance patterns were those that could not. For scientific reasoning, categories of student hypotheses, tests, and conclusions were formed. Quantitative analyses were used to determine patterns of significance in the qualitative data. Based on pre-post analyses, students made a significant shift from less sophisticated to more sophisticated explanations of anomalous inheritance patterns. Changes in scientific reasoning were more subtle. Some students shifted from less complex to more complex hypotheses, and from descriptive to evaluative conclusions. Some students also shifted from less comprehensive to more comprehensive testing. Student ability to explain two different anomalous patterns seemed to be linked to the extent to which they encountered each anomalous outcome during their investigations; greater exposure was associated with an increased number of students being able to explain that pattern. Novice tendencies found in the extant literature on students' lack of systematicity during

  20. Guiding students to develop an understanding of scientific inquiry: a science skills approach to instruction and assessment.

    Science.gov (United States)

    Stone, Elisa M

    2014-01-01

    New approaches for teaching and assessing scientific inquiry and practices are essential for guiding students to make the informed decisions required of an increasingly complex and global society. The Science Skills approach described here guides students to develop an understanding of the experimental skills required to perform a scientific investigation. An individual teacher's investigation of the strategies and tools she designed to promote scientific inquiry in her classroom is outlined. This teacher-driven action research in the high school biology classroom presents a simple study design that allowed for reciprocal testing of two simultaneous treatments, one that aimed to guide students to use vocabulary to identify and describe different scientific practices they were using in their investigations-for example, hypothesizing, data analysis, or use of controls-and another that focused on scientific collaboration. A knowledge integration (KI) rubric was designed to measure how students integrated their ideas about the skills and practices necessary for scientific inquiry. KI scores revealed that student understanding of scientific inquiry increased significantly after receiving instruction and using assessment tools aimed at promoting development of specific inquiry skills. General strategies for doing classroom-based action research in a straightforward and practical way are discussed, as are implications for teaching and evaluating introductory life sciences courses at the undergraduate level.

  1. Communicating with scientific graphics: A descriptive inquiry into non-ideal normativity.

    Science.gov (United States)

    Sheredos, Benjamin

    2017-06-01

    Scientists' graphical practices have recently become a target of inquiry in the philosophy of science, and in the cognitive sciences. Here I supplement our understanding of graphical practices via a case study of how researchers crafted the graphics for scientific publication in the field of circadian biology. The case highlights social aspects of graphical production which have gone understudied - especially concerning the negotiation of publication. I argue that it also supports a challenge to the claim that empirically-informed "cognitive design principles" offer an apt understanding of the norms of success which govern good scientific graphic design to communicate data and hypotheses to other experts. In this respect, the case-study also illustrates how "descriptive" studies of scientific practice can connect with normative issues in philosophy of science, thereby addressing a central concern in recent discussions of practice-oriented philosophy of science. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Scientific evaluation of an intra-curricular educational kit to foster inquiry-based learning (IBL)

    Science.gov (United States)

    Debaes, Nathalie; Cords, Nina; Prasad, Amrita; Fischer, Robert; Euler, Manfred; Thienpont, Hugo

    2014-07-01

    Society becomes increasingly dependent on photonics technologies; however there is an alarming lack of technological awareness among secondary school students. They associate photonics with experiments and components in the class room that seem to bear little relevance to their daily life. The Rocard Report [5] highlights the need for fostering students' scientific skills and technological awareness and identifies inquiry based learning (IBL) as a means to achieve this. Students need to actively do science rather than be silent spectators. The `Photonics Explorer' kit was developed as an EU funded project to equip teachers, free-of-charge, with educational material designed to excite, engage and educate European secondary school students using guided inquiry based learning techniques. Students put together their own experiments using up-to-date versatile components, critically interpret results and relate the conclusions to relevant applications in their daily life. They work hands-on with the material, thus developing and honing their scientific and analytical skills that are otherwise latent in a typical class room situation. A qualitative and quantitative study of the impact of the kit in the classroom was undertaken with 50 kits tested in 7 EU countries with over 1500 students in the local language. This paper reports on the results of the EU wide field tests that show the positive impact of the kit in raising the self-efficacy, scientific skills and interest in science among students and the effectiveness of the kit in implementing IBL strategies in classrooms across EU.

  3. Listening into the Dark: An Essay Testing the Validity and Efficacy of Collaborative Developmental Action Inquiry for Describing and Encouraging Transformations of Self, Society, and Scientific Inquiry

    Directory of Open Access Journals (Sweden)

    William R. Torbert

    2013-06-01

    Full Text Available Collaborative Developmental Action Inquiry (CDAI is introduced as a meta-paradigmatic approach to social science and social action that encompasses seven other more familiar paradigms (e.g., Behaviorism, Empirical Positivism, and Postmodern Interpretivism and that triangulates among third-person, objectivity-seeking social scientific inquiry, second-person, transformational, mutuality-seeking political inquiry, and first-person, adult, spiritual inquiry and consciousness development in the emerging present. CDAI tests findings, not only against third-person criteria of validity as do quantitative, positivist studies and qualitative, interpretive studies, but also against first- and second-person criteria of validity, as well as criteria of efficacy in action. CDAI introduces the possibility of treating, not just formal third-person studies, but any and all activities in one’s daily life in an inquiring manner. The aim of this differently-scientific approach is not only theoretical, generalizable knowledge, but also knowledge that generates increasingly timely action in particular cases in the relationships that mean the most to the inquirer. To illustrate and explain why the CDAI approach can explain unusually high percentages of the variance in whether or not organizations actually transform, all three types of validity-testing are applied to a specific study of intended transformation in ten organizations. The ten organization study found that adding together the performance of each organization’s CEO and lead consultant pn a reliable, well-validated measure of developmental action-logic, predicted 59% of the variance, beyond the .01 level, in whether and how the organization transformed (as rated by three scorers who achieved between .90 and 1.0 reliability. The essay concludes with a comparison between the Empirical Positivist paradigm of inquiry and the Collaborative Developmental Action Inquiry paradigm.

  4. Collaborative Inquiry Learning: Models, Tools, and Challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-01-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters…

  5. Impact of backwards faded scaffolding approach to inquiry-based astronomy laboratory experiences on undergraduate non-science majors' views of scientific inquiry

    Science.gov (United States)

    Lyons, Daniel J.

    This study explored the impact of a novel inquiry-based astronomy laboratory curriculum designed using the Backwards Faded Scaffolding inquiry teaching framework on non-science majoring undergraduate students' views of the nature of scientific inquiry (NOSI). The study focused on two aspects of NOSI: The Distinction between Data and Evidence (DvE), and The Multiple Methods of Science (MMS). Participants were 220 predominately non-science majoring undergraduate students at a small, doctoral granting, research-extensive university in the Rocky Mountain region of the United States. The student participants were enrolled in an introductory astronomy survey course with an associated laboratory section and were selected in two samples over consecutive fall and spring semesters. The participants also included four of the graduate student instructors who taught the laboratory courses using the intervention curriculum. In the first stage, student participant views of NOSI were measured using the VOSI-4 research instrument before and after the intervention curriculum was administered. The responses were quantified, and the distributions of pre and posttest scores of both samples were separately analyzed to determine if there was a significant improvement in understanding of either of the two aspects of NOSI. The results from both samples were compared to evaluate the consistency of the results. In the second stage, the quantitative results were used to strategically design a qualitative investigation, in which the four lab instructors were interviewed about their observations of how the student participants interacted with the intervention curriculum as compared to traditional lab activities, as well as their suggestions as to how the curriculum may or may not have contributed to the results of the first stage. These interviews were summarized and analyzed for common themes as to how the intervention curriculum influenced the students' understandings of the two aspect of

  6. Effect of Technology-Embedded Scientific Inquiry on Senior Science Student Teachers' Self-Efficacy

    Science.gov (United States)

    Calik, Muammer

    2013-01-01

    The aim of this study was to investigate the effect of technology-embedded scientific inquiry (TESI) on senior science student teachers' (SSSTs) self-efficacy. The sample consisted of 117 SSSTs (68 females and 49 males aged 21-23 years) enrolled in an Environmental Chemistry elective course. Within a quasi-experimental design, the…

  7. Mendelian Genetics as a Platform for Teaching about Nature of Science and Scientific Inquiry: The Value of Textbooks

    Science.gov (United States)

    Campanile, Megan F.; Lederman, Norman G.; Kampourakis, Kostas

    2015-01-01

    The purpose of this study was to analyze seven widely used high school biology textbooks in order to assess the nature of science knowledge (NOS) and scientific inquiry (SI) aspects they, explicitly or implicitly, conveyed in the Mendelian genetics sections. Textbook excerpts that directly and/or fully matched our statements about NOS and SI were…

  8. Simulation-Based Inquiry Learning and Computer Modeling: Pitfalls and Potentials

    NARCIS (Netherlands)

    Mulder, Y.G.; Lazonder, Adrianus W.; de Jong, Anthonius J.M.

    2015-01-01

    Background. Inquiry learning environments increasingly incorporate simulation and modeling facilities. Students acquire knowledge through systematic experimentation with the simulations and express that knowledge in runnable computer models. Aim. As inquiry and modeling activities are new and

  9. Inquiry based learning as didactic model in distant learning

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.

    2015-01-01

    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves

  10. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  11. Inquiry-Based Learning and the Flipped Classroom Model

    Science.gov (United States)

    Love, Betty; Hodge, Angie; Corritore, Cynthia; Ernst, Dana C.

    2015-01-01

    The flipped classroom model of teaching can be an ideal venue for turning a traditional classroom into an engaging, inquiry-based learning (IBL) environment. In this paper, we discuss how two instructors at different universities made their classrooms come to life by moving the acquisition of basic course concepts outside the classroom and using…

  12. Inquiry based learning as didactic model in distant learning

    OpenAIRE

    Rothkrantz, L.J.M.

    2015-01-01

    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves questions interacting with a learning text. The model has been tested for students of DUT taking a MOOC in mathematics. The didactic model and test results are presented.

  13. Turning Crisis into Opportunity: Nature of Science and Scientific Inquiry as Illustrated in the Scientific Research on Severe Acute Respiratory Syndrome

    Science.gov (United States)

    Wong, Siu Ling; Kwan, Jenny; Hodson, Derek; Yung, Benny Hin Wai

    2009-01-01

    Interviews with key scientists who had conducted research on Severe Acute Respiratory Syndrome (SARS), together with analysis of media reports, documentaries and other literature published during and after the SARS epidemic, revealed many interesting aspects of the nature of science (NOS) and scientific inquiry in contemporary scientific research in the rapidly growing field of molecular biology. The story of SARS illustrates vividly some NOS features advocated in the school science curriculum, including the tentative nature of scientific knowledge, theory-laden observation and interpretation, multiplicity of approaches adopted in scientific inquiry, the inter-relationship between science and technology, and the nexus of science, politics, social and cultural practices. The story also provided some insights into a number of NOS features less emphasised in the school curriculum—for example, the need to combine and coordinate expertise in a number of scientific fields, the intense competition between research groups (suspended during the SARS crisis), the significance of affective issues relating to intellectual honesty and the courage to challenge authority, the pressure of funding issues on the conduct of research and the ‘peace of mind’ of researchers, These less emphasised elements provided empirical evidence that NOS knowledge, like scientific knowledge itself, changes over time. They reflected the need for teachers and curriculum planners to revisit and reconsider whether the features of NOS currently included in the school science curriculum are fully reflective of the practice of science in the 21st century. In this paper, we also report on how we made use of extracts from the news reports and documentaries on SARS, together with episodes from the scientists’ interviews, to develop a multimedia instructional package for explicitly teaching the prominent features of NOS and scientific inquiry identified in the SARS research.

  14. Building scientific literacy/(ies): A cross-case analysis of how multimodal representations are used to make meaning during scientific inquiry

    Science.gov (United States)

    Shannon, Christa L.

    This study used a Social Semiotic framework to describe the nature of multimodal textual representations created by fourth grade students in a small rural Texas school district south of Dallas in order to answer the question: What is the nature of the multimodal textual representations created by fourth grade students during the scientific inquiry process? Results of the cross case-analysis of the students' digitally recorded reflections, their multimodal representations, and my field notes and personal reflections as a teacher-researcher were indicative of five major themes. Representations created by the students: (a) were supported by scientific learning communities; (b) demonstrated varying abilities to collect both qualitative and quantitative observations; (c) utilized a variety of graphic organizers to communicate/represent scientific information; (d) were influenced by previous instruction and experience; and (e) showed development over time. These findings suggested the need for changes in the learning environment and pedagogy of science as teachers provide environments that support the development of learning communities; provide multiple opportunities for students to make both qualitative and quantitative observations during scientific inquiry; provide explicit instruction into the semiotic tools used by professional scientists to communicate/represent meaning; and allow students the opportunity to reflect, critique, and discuss their representations so that they can learn to be more competent and fluent representors of scientific knowledge. Recommendations for future research included: learning more about the way learning communities scaffold the learning process during scientific inquiry; understanding the best practices for helping students to learn how to make qualitative and quantitative observations of the world around them; describing the best practices for teaching students to be multimodal designers of scientific knowledge;examining the effect

  15. Interplay of Secondary Pre-Service Teacher Content Knowledge (CK), Pedagogical Content Knowledge (PCK) and Attitudes Regarding Scientific Inquiry Teaching within Teacher Training

    Science.gov (United States)

    Smit, Robbert; Weitzel, Holger; Blank, Robert; Rietz, Florian; Tardent, Josiane; Robin, Nicolas

    2017-01-01

    Background: Beginning teachers encounter several constraints with respect to scientific inquiry. Depending on their prior beliefs, knowledge and understanding, these constraints affect their teaching of inquiry. Purpose: To investigate quantitatively the longitudinal relationship between pre-service teachers' knowledge and attitudes on scientific…

  16. Scientific Inquiry: A Problem-Based Approach for Improving Teaching and Learning

    Science.gov (United States)

    Sheldon, Peter; Schimmoeller, Peggy; Toteva, Tatiana

    2009-03-01

    We describe a research project that had two goals: (1) to design and develop a content specific science inquiry institute to improve teachers' instructional practices in the sciences and thus students' achievement in science; and (2) to investigate students' perception of scientists as a measure of their attitude toward science, and to see whether an inquiry science curriculum can improve attitudes. We report that certain stereotypical images of scientists are prevalent among students. Teacher participants increased content knowledge and familiarity with using inquiry and hands-on methods in the classroom.

  17. Physics Learning using Inquiry-Student Team Achievement Division (ISTAD and Guided Inquiry Models Viewed by Students Achievement Motivation

    Directory of Open Access Journals (Sweden)

    S. H. Sulistijo

    2017-04-01

    Full Text Available This study aims to determine the differences in learning outcomes of between students that are given the Physics learning models of Inquiry-Student Team Achievement Division (ISTAD and guided inquiry, between students who have high achievement motivation and low achievement motivation. This study was an experimental study with a 2x2x2 factorial design. The study population was the students of class X of SMAN 1 Toroh Grobogan of academic year 2016/2017. Samples were obtained by cluster random sampling technique consists of two classes, class X IPA 3 is used as an experimental class using ISTAD model and class X IPA 4 as the control class using guided inquiry model. Data collection techniques using test techniques for learning outcomes, and technical questionnaire to obtain the data of students' achievement motivation. Analysis of data using two-way ANOVA. The results showed that: (1 there is a difference between the learning outcomes of students with the ISTAD Physics models and with the physics model of guided inquiry. (2 There are differences in learning outcomes between students who have high achievement motivation and low achievement motivation. (3 There is no interaction between ISTAD and guided inquiry Physics models learning and achievement motivation of students.

  18. Bridging Inquiry-Based Science and Constructionism: Exploring the Alignment between Students Tinkering with Code of Computational Models and Goals of Inquiry

    Science.gov (United States)

    Wagh, Aditi; Cook-Whitt, Kate; Wilensky, Uri

    2017-01-01

    Research on the design of learning environments for K-12 science education has been informed by two bodies of literature: inquiry-based science and Constructionism. Inquiry-based science has emphasized engagement in activities that reflect authentic scientific practices. Constructionism has focused on designing intuitively accessible authoring…

  19. Personal Inquiry: Innovations in Participatory Design and Models for Inquiry Learning

    Science.gov (United States)

    Conole, Grainne; Scanlon, Eileen; Littleton, Karen; Kerawalla, Lucinda; Mulholland, Paul

    2010-01-01

    This paper describes a participatory design approach to the development of inquiry-based learning supported through a technology toolkit. The work is part of an interdisciplinary project--Personal Inquiry (PI). The paper focuses on the approach we adopted, concentrating in particular on the two mediating artefacts we used to guide and frame the…

  20. Enhancing scientific reasoning by refining students' models of multivariable causality

    Science.gov (United States)

    Keselman, Alla

    Inquiry learning as an educational method is gaining increasing support among elementary and middle school educators. In inquiry activities at the middle school level, students are typically asked to conduct investigations and infer causal relationships about multivariable causal systems. In these activities, students usually demonstrate significant strategic weaknesses and insufficient metastrategic understanding of task demands. Present work suggests that these weaknesses arise from students' deficient mental models of multivariable causality, in which effects of individual features are neither additive, nor constant. This study is an attempt to develop an intervention aimed at enhancing scientific reasoning by refining students' models of multivariable causality. Three groups of students engaged in a scientific investigation activity over seven weekly sessions. By creating unique combinations of five features potentially involved in earthquake mechanism and observing associated risk meter readings, students had to find out which of the features were causal, and to learn to predict earthquake risk. Additionally, students in the instructional and practice groups engaged in self-directed practice in making scientific predictions. The instructional group also participated in weekly instructional sessions on making predictions based on multivariable causality. Students in the practice and instructional conditions showed small to moderate improvement in their attention to the evidence and in their metastrategic ability to recognize effective investigative strategies in the work of other students. They also demonstrated a trend towards making a greater number of valid inferences than the control group students. Additionally, students in the instructional condition showed significant improvement in their ability to draw inferences based on multiple records. They also developed more accurate knowledge about non-causal features of the system. These gains were maintained

  1. The scientific modeling assistant: An advanced software tool for scientific model building

    Science.gov (United States)

    Keller, Richard M.; Sims, Michael H.

    1991-01-01

    Viewgraphs on the scientific modeling assistant: an advanced software tool for scientific model building are presented. The objective is to build a specialized software tool to assist in scientific model-building.

  2. Project WEST: Fostering Scientific Inquiry and Collaborations From K Through Gray

    Science.gov (United States)

    Godsey, H. S.; Chapman, D. S.

    2007-12-01

    WEST (Water, the Environment, Science and Teaching) is a science education and outreach program at the University of Utah. WEST partners graduate students in the sciences with K-12 teachers to enhance inquiry- based science teaching in the Salt Lake City urban area. WEST has capitalized on the expertise of faculty and graduate students, scientists from state and federal agencies, local advocacy groups, and K-12 teachers to develop several placed-based scientific field projects for K-12 students. University members provide science content and ideas; state and federal researchers provide practical application and, often times, financial support; advocacy groups provide a tie to the community, and teachers provide a conduit for translating complex science concepts to students. These collaborations are built around a mutual interest in science education and anthropogenic influences on the quality and quantity of water resources critical to life in the arid West. Participants are relied upon to bring their unique perspective to each of the projects in order to meet a number of criteria: 1) projects should involve students in the entire scientific process from developing a hypothesis, making observations, data collection and analysis, 2) projects should be place-based and address interactions of water, the environment and society, and 3) projects should be directly tied to state education standards at appropriate grade levels. Examples of these projects include a water-quality study of Great Salt Lake where students participated in a research project on the lake. Students learned about navigation tools, collected and examined brine shrimp, and measured sulfide and chlorophyll concentrations as indicators of anthropogenic influences to Great Salt Lake. Hydrologists from the University of Utah and U.S. Geological Survey helped design this project and the Utah Dept. of Environmental Quality provided critical funds and supplies. In another project, students were involved in

  3. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    Science.gov (United States)

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  4. Assessing students' ability in performing scientific inquiry: instruments for measuring science skills in primary education

    NARCIS (Netherlands)

    Kruit, Patricia; Oostdam, R.J.; van den Berg, E.; Schuitema, J.

    2018-01-01

    ABSTRACT Background: With the increased attention on the implementation of inquiry activities in primary science classrooms, a growing interest has emerged in assessing students’ science skills. Research has thus far been concerned with the limitations and advantages of different test formats to

  5. Interdisciplinary Knowledge Integration: Genuine Scientific Inquiry or 'Full-Bodied' Red Wine?

    Science.gov (United States)

    Christakos, G.

    2004-12-01

    If the development of conceptual models is going to produce rigorous rules for the integration of knowledge from different disciplines and levels of organization, it should rely on an adequate understanding of scientific interdisciplinarity. Interdisciplinarity, however, is not always a clearly understood and widely accepted concept: (i) Interdisciplinarity has been viewed by certain groups in the same context as the unification of science, which refers to the pyramidal hierarchy that reduces one domain of science to another, seeking the unity of science and searching for the ultimate scientific truth. (ii) A distinction is made between interdisciplinarity producing a new discipline and interdisciplinarity involving the continuing interaction of a variety of disciplines without leading to a separate discipline. (iii) Another distinction is made between interdisciplinarity viewed as a merely practical activity happening on an everyday basis (e.g., studying the components of structured whole in isolation and applying ad hoc combinations to yield the final result) and interdisciplinarity considered for scientific research purposes (in which case issues of disciplinary incompleteness and non-reductive autonomy to be blended with another one may arise). In view of the above, genuinely interdisciplinary and innovative knowledge integration should not be confused with cosmetic inderdisciplinarity, the latter having a superficial and ad hoc interdisciplinary character allowing disciplinary business to go on as usual at the cheap price of some interdisciplinary rhetoric. In the cosmetic case 'interdisciplinarity' is used to describe -and praise- research projects as routinely as 'full-bodied' is used to describe red wines.

  6. Mutation-Based Learning to Improve Student Autonomy and Scientific Inquiry Skills in a Large Genetics Laboratory Course

    Science.gov (United States)

    Wu, Jinlu

    2013-01-01

    Laboratory education can play a vital role in developing a learner's autonomy and scientific inquiry skills. In an innovative, mutation-based learning (MBL) approach, students were instructed to redesign a teacher-designed standard experimental protocol by a “mutation” method in a molecular genetics laboratory course. Students could choose to delete, add, reverse, or replace certain steps of the standard protocol to explore questions of interest to them in a given experimental scenario. They wrote experimental proposals to address their rationales and hypotheses for the “mutations”; conducted experiments in parallel, according to both standard and mutated protocols; and then compared and analyzed results to write individual lab reports. Various autonomy-supportive measures were provided in the entire experimental process. Analyses of student work and feedback suggest that students using the MBL approach 1) spend more time discussing experiments, 2) use more scientific inquiry skills, and 3) find the increased autonomy afforded by MBL more enjoyable than do students following regimented instructions in a conventional “cookbook”-style laboratory. Furthermore, the MBL approach does not incur an obvious increase in labor and financial costs, which makes it feasible for easy adaptation and implementation in a large class. PMID:24006394

  7. Tried and True: Using Diet Coke and Mentos to Teach Scientific Inquiry

    Science.gov (United States)

    Murray, Tracey Arnold

    2011-01-01

    Adding mint Mentos candy to a two-liter bottle of Diet Coke produces a fountain of soda foam that can reach 3 m high. A demonstration such as this can get a "Wow" out of most audiences, usually followed by a "Do it again!"--but can it be used to teach anything? The answer is a definite "Yes," and what follows is a guided inquiry activity that…

  8. John Dewey on theory of learning and inquiry: The scientific method and subject matter

    Science.gov (United States)

    Chen, Po-Nien

    This study examines the educational debate between Dewey and some of his critics on the merits of learning the scientific method. Four of Dewey's critics---Hutchins, Hirsch, Hirst, and Scheffler criticize Dewey for over-emphasizing the importance of the scientific method and under-emphasizing the importance of subject matter in education. This dissertation argues that these critics misunderstand Dewey's use of the scientific method and its importance in education. It argues that Dewey conceives of the scientific method in two different ways: first as an attitude and second as a tool. It also argues that, by failing to understand this critical distinction, these critics misunderstand the role of the scientific method in education. The dissertation concludes by showing that, educationally, Dewey's ideas of the scientific method have different meanings in different context. It analyzes the scientific method as empirical method, critical thinking, cooperative learning, and creative thinking, and shows the place of subject matter in each of them.

  9. Learners' Epistemic Criteria for Good Scientific Models

    Science.gov (United States)

    Pluta, William J.; Chinn, Clark A.; Duncan, Ravit Golan

    2011-01-01

    Epistemic criteria are the standards used to evaluate scientific products (e.g., models, evidence, arguments). In this study, we analyzed epistemic criteria for good models generated by 324 middle-school students. After evaluating a range of scientific models, but before extensive instruction or experience with model-based reasoning practices,…

  10. Emergent self-regulatory activity among young children during scientific inquiry: An analysis of six kindergarten children

    Science.gov (United States)

    Lomangino, Adrienne Gelpi

    2000-10-01

    This qualitative investigation extends the study of self-regulation to examine young children's developing self-regulated learning competencies. The framework for this research draws upon social cognitive, developmental, and sociocultural perspectives on self-regulation and research on children's scientific thinking. Taking a multiple case study approach, this study examines six kindergarten children's emerging self-regulatory competencies during inquiry-based science instruction. Data were collected during two inquiry-based science programs of study, one pertaining to light and shadow and a second pertaining to motion on inclined planes. Data sources included: videotaped records of the instruction, transcriptions of the videotapes, interviews with the children and teacher, student work, and field notes. Taking an inductive approach to analysis, patterns in the children's activity were identified through a recursive process of defining and refining categories that characterized the children's verbal and behavioral activity. Each case study examines a child's behavior within each phase of the inquiry for evidence of emerging self-regulatory competence. Analysis revealed nascent forms of goal-setting and planning, monitoring, resource management, seeking social assistance, and evaluating. Monitoring activity occurred more frequently than planning or evaluating. For several children, animating materials served to promote motivation. Children's efforts to support peers' activity and monitor the meaning of ongoing discourse contrast with common assumptions about children's attention to others' thinking. Variations in self-regulatory activity were found across phases of instruction. The children exhibited interpersonal self-regulatory efforts, in which monitoring and control of the self was entwined with the activity of others. Joint participation also played a critical role in supporting the metacognitive demands of self-regulation and prompting metacognitive awareness

  11. LEMBAR KERJA SISWA (LKS MENGGUNAKAN MODEL GUIDED INQUIRY UNTUK MENINGKATKAN KETERAMPILAN BERPIKIR KRITIS DAN PENGUASAAN KONSEP SISWA

    Directory of Open Access Journals (Sweden)

    Eka Yuli Asmawati

    2015-03-01

    Full Text Available The learning process in 2013 curriculum for all levels of education carried out by using a scientific approach (scientific approach. Critical thinking skills and mastery of concepts students need to developed in a learning process that is as capital to criticize a variety of symptoms, problems that arise in the vicinity. The use of instructional media and learning models in physics very aid learners in understanding the concepts of physics. Based on the above, it is necessary to do a literature review on the develop of guided inquiry worksheets with models to improve critical thinking skills and mastery of concepts students. The study began with highlights of LKS and model of guided inquiry. Next, review the empirical research has done about critical thinking. Then the third part discusses the concept mastery. Furthermore, in the fourth part is the end of the literature review. Based on the literature study, the authors conclude that the develop the model of guided inquiry worksheets can used to improve critical thinking skills and mastery of concepts students.

  12. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  13. Middle school science inquiry: Connecting experiences and beliefs to practice

    Science.gov (United States)

    Johnson, Karen Elizabeth

    A major education reform effort today involves the teaching and learning of inquiry science. This case study research examined connections between background experiences and teacher beliefs and the role they played in the implementation of scientific inquiry within four middle school classrooms. The research questions guiding this study included: (a) identifying how teachers' background and experiences related to the use of scientific inquiry-based practice, (b) identification of teacher self-reported characteristics of scientific inquiry, (c) identification of the ways in which teachers' self-reported beliefs related to the use of scientific inquiry-based practice, (d) determine the extent that self-reported teaching scientific inquiry behaviors were consistent with observed behaviors in practice and (e) identify how teachers implemented a scientific inquiry-based approach into their instructional practice. Across the cases, the findings revealed four major experiences that influenced teacher beliefs regarding inquiry-based teaching: (a) opportunities for doing science, (b) influences of the teacher education program primarily with respect to positive science role models, (c) teaching experiences and school expectations and (d) the personality of the individuals. Major themes regarding teaching beliefs regarding characteristics of inquiry-based practice, reported by the participants, included: (a) student-centered instruction, (b) learning by doing, (c) real world applications, (d) integration, (e) collaboration and (f) communicating scientific ideas. Findings also revealed that teacher beliefs and practice aligned except in the area of communicating scientific ideas. Participants did not identify communication as a belief regarding inquirybased practice, but observed practice found communicating scientific ideas played a minor role. Implications from the findings are significant as science educators continue to understand the influence of background experiences

  14. A Five-Stage Prediction-Observation-Explanation Inquiry-Based Learning Model to Improve Students' Learning Performance in Science Courses

    Science.gov (United States)

    Hsiao, Hsien-Sheng; Chen, Jyun-Chen; Hong, Jon-Chao; Chen, Po-Hsi; Lu, Chow-Chin; Chen, Sherry Y.

    2017-01-01

    A five-stage prediction-observation-explanation inquiry-based learning (FPOEIL) model was developed to improve students' scientific learning performance. In order to intensify the science learning effect, the repertory grid technology-assisted learning (RGTL) approach and the collaborative learning (CL) approach were utilized. A quasi-experimental…

  15. Intersection of opposing pedagogical frameworks: Native Hawaiian ancestral stories and scientific inquiry in a high school science class

    Science.gov (United States)

    Kanahele-Mossman, Huihui

    Inquiry is defined as "an examination into facts and principles." In science education science inquiry is a process through which important discoveries are made by students through scientific methodology. The most important step in this process is forming the right question. The questions formed by students are usually the wrong questions which deem the remainder of the inquiry process impotent. This research will look at the pedagogy of ancestral stories for a solution. For the researcher, ancestral stories were a source of wonderment and learning not only from the lessons the stories revealed but mainly from the questions that still remained after the stories were told. Questions such as "why does the eel only swim near that part?", or "why does the story only talk about the uhu?" are examples of questions that remained after experiencing an ancestral narrative. The research questions were composed for the purpose of finding compatibility between the two pedagogies. The first research question which reads "how can Native Hawaiian ancestral stories encourage an increased level of student driven interactions at all levels of feedback from Native Hawaiian students in science classroom" focuses the research on the level of student feedback that initiate questions. Question two which reads "how can teachers of Native Hawaiian students facilitate the construction of science inquiry projects from ancestral stories" addresses the skill of the teacher and imbeds the concept of pedagogical knowledge into the literature. The last research question "how do analysis and discussion of the stories connect Native Hawaiian students to their ancestral intelligence" examines the role of identity and identity to ancestral intelligence. The method intended for this research was Grounded theory which allows the researcher to develop principles, concepts and theories based on the data presented. Another method utilized in this research is an undocumented but culturally imbedded method

  16. A Physical Analog Model of Strike-Slip Faulting for Model-Based Inquiry in the Classroom

    Science.gov (United States)

    Curren, I. S.; Glesener, G.

    2013-12-01

    Geoscience educators often use qualitative physical analog models to demonstrate natural processes; while these are effective teaching tools, they often neglect the fundamental scientific practices that make up the core of scientific work. Physical analog models with dynamic properties that can be manipulated and measured quantitatively in real-time, on the other hand, can give students the opportunity to explore, observe and empirically test their own ideas and hypotheses about the relevant target concepts within a classroom setting. Providing classroom content for inquiry, such as a hands-on physical analog model, which fosters students' production and refinement of their mental models in participatory and discursive activities have been argued by many education researchers to help students build a deeper understanding of science and scientific reasoning. We present a physical analog model that was originally developed by UCLA's Modeling and Educational Demonstrations Laboratory (MEDL) for the purpose of engaging students in the study of elastic rebound on a strike-slip fault; it was later modified to accommodate research of complex tectonic processes associated with strike-slip faulting, which are currently debated by scientists in both the geology and geophysics disciplines. During experimentation, it became clear that this new design could be used as a relevant resource for inquiry from which students would be able to make and discuss real-time empirical measurements and observations to help them infer causal accounts of theoretical and/or unobservable dynamic processes within the Earth's crust. In our poster session, we will: 1) demonstrate the physical analog model; 2) describe various real-time data collection tools, as well as quantitative methods students can use to process their data; and 3) describe the surficial, structural and relational similarities between the physical analog model and the target concepts intended for students to explore in the

  17. Science Teacher Educators' Engagement with Pedagogical Content Knowledge and Scientific Inquiry in Predominantly Paper-Based Distance Learning Programs

    Science.gov (United States)

    Fraser, William J.

    2017-01-01

    This article focuses on the dilemmas science educators face when having to introduce Pedagogical Content Knowledge (PCK) to science student teachers in a predominantly paper-based distance learning environment. It draws on the premise that science education is bound by the Nature of Science (NOS), and by the Nature of Scientific Inquiry (NOSI).…

  18. Look at That!: Using Madagascar Hissing Cockroaches to Develop and Enhance the Scientific Inquiry Skill of Observation in Middle School Students

    Science.gov (United States)

    Wagler, Ron

    2011-01-01

    Middle school students can develop and enhance their observation skills by participating in teacher-guided scientific inquiry (NRC 1996) activities where they observe animals that tend to act in known, predictable ways. Madagascar hissing cockroaches ("Gromphadorhina portentosa") are one such animal. This article presents beginning, intermediate,…

  19. Kindergarten Students' Levels of Understanding Some Science Concepts and Scientific Inquiry Processes According to Demographic Variables (The Sampling of Kilis Province in Turkey)

    Science.gov (United States)

    Ilhan, Nail; Tosun, Cemal

    2016-01-01

    The purpose of this study is to identify the kindergarten students' levels of understanding some science concepts (LUSSC) and scientific inquiry processes (SIP) and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the…

  20. Using Nikola Tesla's Story and His Experiments as Presented in the Film "The Prestige" to Promote Scientific Inquiry: A Report of an Action Research Project

    Science.gov (United States)

    Hadzigeorgiou, Yannis; Garganourakis, Vassilios

    2010-01-01

    This paper reports on an action research project undertaken with the primary aim of investigating the extent to which situations that evoke a sense of wonder can promote scientific inquiry. Given the intense interest, curiosity, and wonder that some students had begun to develop after seeing the film "The Prestige", a science teacher…

  1. Modeling and simulation in inquiry learning: Checking solutions and giving intelligent advice

    NARCIS (Netherlands)

    Bravo, C.; van Joolingen, W.R.; de Jong, T.

    2006-01-01

    Inquiry learning is a didactic approach in which students acquire knowledge and skills through processes of theory building and experimentation. Computer modeling and simulation can play a prominent role within this approach. Students construct representations of physical systems using modeling.

  2. Bit by bit or all at once? Splitting up the inquiry task to promote children’s scientific reasoning

    NARCIS (Netherlands)

    Lazonder, Adrianus W.; Kamp, Ellen

    2012-01-01

    This study examined whether and why assigning children to a segmented inquiry task makes their investigations more productive. Sixty-one upper elementary-school pupils engaged in a simulation-based inquiry assignment either received a multivariable inquiry task (n = 21), a segmented version of this

  3. The effect of inquiry-flipped classroom model toward students' achievement on chemical reaction rate

    Science.gov (United States)

    Paristiowati, Maria; Fitriani, Ella; Aldi, Nurul Hanifah

    2017-08-01

    The aim of this research is to find out the effect of Inquiry-Flipped Classroom Models toward Students' Achievement on Chemical Reaction Rate topic. This study was conducted at SMA Negeri 3 Tangerang in Eleventh Graders. The Quasi Experimental Method with Non-equivalent Control Group design was implemented in this study. 72 students as the sample was selected by purposive sampling. Students in experimental group were learned through inquiry-flipped classroom model. Meanwhile, in control group, students were learned through guided inquiry learning model. Based on the data analysis, it can be seen that there is significant difference in the result of the average achievement of the students. The average achievement of the students in inquiry-flipped classroom model was 83,44 and the average achievement of the students in guided inquiry learning model was 74,06. It can be concluded that the students' achievement with inquiry-flipped classroom better than guided inquiry. The difference of students' achievement were significant through t-test which is tobs 3.056 > ttable 1.994 (α = 0.005).

  4. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    Science.gov (United States)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  5. Using Biological-Control Research in the Classroom to Promote Scientific Inquiry & Literacy

    Science.gov (United States)

    Richardson, Matthew L.; Richardson, Scott L.; Hall, David G.

    2012-01-01

    Scientists researching biological control should engage in education because translating research programs into classroom activities is a pathway to increase scientific literacy among students. Classroom activities focused on biological control target all levels of biological organization and can be cross-disciplinary by drawing from subject areas…

  6. Enhancing Students' Scientific and Quantitative Literacies through an Inquiry-Based Learning Project on Climate Change

    Science.gov (United States)

    McCright, Aaron M.

    2012-01-01

    Promoting sustainability and dealing with complex environmental problems like climate change demand a citizenry with considerable scientific and quantitative literacy. In particular, students in the STEM disciplines of (biophysical) science, technology, engineering, and mathematics need to develop interdisciplinary skills that help them understand…

  7. Improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward student of biology education

    Directory of Open Access Journals (Sweden)

    Bayu Sandika

    2018-03-01

    Full Text Available Inquiry-based learning is one of the learning methods which can provide an active and authentic scientific learning process in order students are able to improve the creative thinking skills and scientific attitude. This study aims at improving creative thinking skills and scientific attitude through inquiry-based learning in basic biology lecture toward students of biology education at the Institut Agama Islam Negeri (IAIN Jember, Indonesia. This study is included in a descriptive quantitative research. The research focused on the topic of cell transport which was taught toward 25 students of Biology 2 class from 2017 academic year of Biology Education Department at the IAIN Jember. The learning process was conducted in two meetings in November 2017. The enhancement of students' creative thinking skills was determined by one group pre-test and post-test research design using test instrument meanwhile the scientific attitude focused on curiosity and objectivity were observed using the non-test instrument. Research result showed that students' creative thinking skills enhanced highly and students' scientific attitude improved excellently through inquiry-based learning in basic biology lecture.

  8. Kumho, Daubert, and the nature of scientific inquiry: implications for forensic anthropology.

    Science.gov (United States)

    Grivas, Christopher R; Komar, Debra A

    2008-07-01

    In the last 15 years, the US Supreme Court has implemented major changes concerning the admittance of expert testimony. In 1993, Daubert v. Merrell Dow Pharmaceuticals superseded the Frye ruling in federal courts and established judges, not the scientific community, as the gatekeepers regarding the credibility of scientific evidence. In 1999, a lesser-known but equally important decision, Kumho Tire v. Carmichael, ruled that technical expert testimony needed to employ the same rigor as outlined in Daubert, but experts can develop theories based on observations and apply such theories to the case before the court. Anthropology has never been defined as a hard science. Yet, many recent publications have modified existing techniques to meet the Daubert criteria, while none have discussed the significance of Kumho to anthropological testimony. This paper examines the impact of Daubert and Kumho on forensic anthropology and illustrates areas of anthropological testimony best admitted under Kumho's guidance.

  9. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  10. Examining the Effects of Model-Based Inquiry on Concepetual Understanding and Engagement in Science

    Science.gov (United States)

    Baze, Christina L.

    Model-Based Inquiry (MBI) is an instructional model which engages students in the scientific practices of modeling, explanation, and argumentation while they work to construct explanations for natural phenomena. This instructional model has not been previously studied at the community college level. The purpose of this study is to better understand how MBI affects the development of community college students' conceptual understanding of evolution and engagement in the practices of science. Mixed-methods were employed to collect quantitative and qualitative data through the multiple-choice Concepts Inventory of Natural Selection, student artifacts, and semi-structured interviews. Participants were enrolled in Biology Concepts, an introductory class for non-science majors, at a small, rural community college in the southwestern United States. Preliminary data shows that conceptual understanding is not adversely affected by the implementation of MBI, and that students gain valuable insights into the practices of science. Specifically, students who participated in the MBI intervention group gained a better understanding of the role of models in explaining and predicting phenomena and experienced feeling ownership of their ideas, an appropriate depth of thinking, more opportunities for collaboration, and coherence and context within the unit. Implications of this study will be of interest to postsecondary science educators and researchers who seek to reform and improve science education.

  11. A Model Approach to the Electrochemical Cell: An Inquiry Activity

    Science.gov (United States)

    Cullen, Deanna M.; Pentecost, Thomas C.

    2011-01-01

    In an attempt to address some student misconceptions in electrochemistry, this guided-inquiry laboratory was devised to give students an opportunity to use a manipulative that simulates the particulate-level activity within an electrochemical cell, in addition to using an actual electrochemical cell. Students are led through a review of expected…

  12. Guided Inquiry as a Model for Curricular Resources in Mathematics

    Science.gov (United States)

    Debritz, Christine; Horne, Rhonda

    2013-01-01

    Research and the Australian Curriculum both indicate the importance of teaching students to apply their mathematical knowledge to real world problems. When developing curriculum resources for Queensland state school teachers from Prep to Year 9, the Department's mathematics team identified the significance of embedding the inquiry process in these…

  13. A Model for Visual Aesthetic Inquiry in Television.

    Science.gov (United States)

    Degge, Rogena M.

    1985-01-01

    An aesthetically based analysis of the visual imagery of commercial television is provided, and the usefulness of television as a basis for visual aesthetic criticism in aesthetic education is considered. Directed, critical inquiry of television can extend knowledge in art and aesthetics and enhance the quality of people's lives. (RM)

  14. Modelling Scientific Argumentation in the Classroom : Teachers perception and practice

    Science.gov (United States)

    Probosari, R. M.; Sajidan; Suranto; Prayitno, B. A.; Widyastuti, F.

    2017-02-01

    The purposes of this study were to investigate teacher’s perception about scientific argumentation and how they practice it in their classroom. Thirty biology teachers in high school participated in this study and illustrated their perception of scientific argumentation through a questionnaire. This survey research was developed to measure teachers’ understanding of scientific argumentation, what they know about scientific argumentation, the differentiation between argument and reasoning, how they plan teaching strategies in order to make students’ scientific argumentation better and the obstacles in teaching scientific argumentation. The result conclude that generally, teachers modified various representation to accommodate student’s active participation, but most of them assume that argument and reasoning are similar. Less motivation, tools and limited science’s knowledge were considered as obstacles in teaching argumentation. The findings can be helpful to improving students’ abilities of doing scientific argumentation as a part of inquiry.

  15. Community of inquiry model: advancing distance learning in nurse anesthesia education.

    Science.gov (United States)

    Pecka, Shannon L; Kotcherlakota, Suhasini; Berger, Ann M

    2014-06-01

    The number of distance education courses offered by nurse anesthesia programs has increased substantially. Emerging distance learning trends must be researched to ensure high-quality education for student registered nurse anesthetists. However, research to examine distance learning has been hampered by a lack of theoretical models. This article introduces the Community of Inquiry model for use in nurse anesthesia education. This model has been used for more than a decade to guide and research distance learning in higher education. A major strength of this model learning. However, it lacks applicability to the development of higher order thinking for student registered nurse anesthetists. Thus, a new derived Community of Inquiry model was designed to improve these students' higher order thinking in distance learning. The derived model integrates Bloom's revised taxonomy into the original Community of Inquiry model and provides a means to design, evaluate, and research higher order thinking in nurse anesthesia distance education courses.

  16. Examining Educational Climate Change Technology: How Group Inquiry Work with Realistic Scientific Technology Alters Classroom Learning

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2018-01-01

    This study with 79 students in Montreal, Quebec, compared the educational use of a National Aeronautics and Space Administration (NASA) global climate model (GCM) to climate education technologies developed for classroom use that included simpler interfaces and processes. The goal was to show how differing climate education technologies succeed…

  17. The effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand

    Science.gov (United States)

    Lertwanasiriwan, Chaiwuti

    The study examined the effects of a technology-enhanced inquiry instructional model on students' understanding of science in Thailand. A mixed quantitative research design was selected for the research design. A pretest-posttest control-group design was implemented for the experimental research. A causal-comparative design using questionnaire and classroom observation was employed for the non-experimental research. Two sixth-grade classrooms at a medium-sized public school in Bangkok, Thailand were randomly selected for the study - one as the control group and the other as the experimental group. The 34 students in the control group only received the inquiry instructional model, while the 35 students in the experimental group received the technology-enhanced inquiry instructional model. Both groups of students had been taught by the same science teacher for 15 weeks (three periods per week). The results and findings from the study seemed to indicate that both the technology-enhanced inquiry instructional model and the inquiry instructional model significantly improve students' understanding of science. However, it might be claimed that students receiving the technology-enhanced inquiry instructional model gain more than students only receiving the inquiry instructional model. In addition, the technology-enhanced inquiry instructional model seemed to support the assessment during the 5E Model's evaluation stage. Most students appeared to have very good attitudes toward using it in the science classroom suggesting that the technology-enhanced inquiry instructional model motivates students to learn science.

  18. Lipman, Dewey, and Philosophical Inquiry in the Mathematics Classroom

    Science.gov (United States)

    Kennedy, Nadia Stoyanova

    2012-01-01

    The paper discusses Matthew Lipman's approach to inquiry as shaped and fashioned by John Dewey's model of scientific inquiry. Although Lipman's program adopted the major aspects of Dewey's pedagogy, at least two characteristics of that program stand out as radically different--his use of relatively free-form philosophical discussions to teach…

  19. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh

    2017-06-01

    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  20. Implementation of Structured Inquiry Based Model Learning toward Students' Understanding of Geometry

    Science.gov (United States)

    Salim, Kalbin; Tiawa, Dayang Hjh

    2015-01-01

    The purpose of this study is implementation of a structured inquiry learning model in instruction of geometry. The model used is a model with a quasi-experimental study amounted to two classes of samples selected from the population of the ten classes with cluster random sampling technique. Data collection tool consists of a test item…

  1. Rocks, Landforms, and Landscapes vs. Words, Sentences, and Paragraphs: An Interdisciplinary Team Approach to Teaching the Tie Between Scientific Literacy and Inquiry-based Writing in a Community College's Geoscience Program and a University's' Geoscience Program

    Science.gov (United States)

    Thweatt, A. M.; Giardino, J. R.; Schroeder, C.

    2014-12-01

    Scientific literacy and inquiry-based writing go together like a hand and glove. Science literacy, defined by NRC in The NSF Standards, stresses the relationship between knowledge of science and skill in literacy so "a person can ask, find, or determine answers to questions derived from curiosity about everyday experiences. It means that a person has the ability to describe, explain, and predict natural phenomena. Scientific literacy entails being able to read with understanding articles about science in the popular press and to engage in social conversation about the validity of the conclusions. Scientific literacy implies that a person can identify scientific issues underlying national and local decisions and express positions that are scientifically and technologically informed." A growing body of research and practice in science instruction suggests language is essential in the practice of the geosciences. Writing and critical thinking are iterative processes. We use this approach to educate our geoscience students to learn, write, and think critically. One does not become an accomplished writer via one course. Proficiency is gained through continued exposure, guidance and tailored assignments. Inquiry-based geoscience makes students proficient in the tools of the geosciences and to develop explanations to questions about Earth events. We have scaffolded our courses from introductory geology, English composition, writing in the geosciences, introduction to field methods and report writing to do more critical thinking, research data gatherings, and in-depth analysis and synthesis. These learning experiences that encourage students to compare their reasoning models, communicate verbally, written and graphically. The English composition course sets the stage for creative assignments through formulation of original research questions, collection of primary data, analysis, and construction of written research papers. Proper use of language allows students to clarify

  2. Model Development for Scientific Data Curation Education

    Directory of Open Access Journals (Sweden)

    Karon Kelly

    2013-06-01

    Full Text Available The mounting and critical need for scientific data curation professionals was the impetus for the Data Curation Education in Research Centers (DCERC program. DCERC is developing a sustainable and transferable model for educating Library and Information Science (LIS students in data curation through field experiences in research and data centers. DCERC has established and implemented a graduate research and education program bringing students into the real world of scientific data curation, where they engage with current practices and challenges, and share their developing expertise and research. The DCERC partner institutions are developing and evaluating this model with the intention of scaling the program to a larger cadre of partners and participants. This paper reports on progress in the early phases of the model development.

  3. Modeling scientific: some theoretical and methodological considerations

    Directory of Open Access Journals (Sweden)

    Carlos Tamayo-Roca

    2017-04-01

    Full Text Available At present widespread use of models as an auxiliary system to penetrate the essence of phenomena related to all areas of cognitive and transforming activity of man, covering as diverse as human sciences fields. In the field of education use it is becoming more common as essential to transform school practice and enrich their theoretical instrument bitter day. The paper deals with the development of theoretical modeling as a scientific method to advance the process to be transformed and characterized by establishing relationships and links between the structural components that comprise it. In this regard it is proposed as an objective socialize some theoretical and methodological considerations that favor the use of modeling method in the scientific research activity of teachers.

  4. THE EFFECTS OF INQUIRY LEARNING MODEL TRAINING AND CRITICAL THINKING TOWARDS SMA STUDENT LEARNING OUTCOMES

    Directory of Open Access Journals (Sweden)

    Ella Lady Saura

    2014-12-01

    Full Text Available The purposes of the research are: (1 To determine differences in learning outcomes of students with Inquiry Training models and Direct Instruction teaching models, (2 to determine differences in physics learning outcomes of students who have high critical thinking and low critical thinking, (3 to determine the interaction between learning models with the level of critical thinking in improving student Physics learning outcomes. The sample in this study conducted in a cluster random sampling of two classes, where the first class as a class experiment applied Inquiry Training models as a class and the second class of controls implemented Direct Instruction models. The instrument is used in this study is physics learning outcomes tests in narrative form as many as 7 questions and critical thinking test in narrative form as 7 questions that have been declared valid and reliable. The results were found: (1 there are differences in physical students learning outcomes are taught by Inquiry Training models and Direct Instruction teaching models. Learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with Direct Instruction Model Learning. (2 There is a difference in student's learning outcomes that have high critical thinking and low critical thinking. Student learning outcomes that have a high critical thinking better than student learning outcomes that have a low critical thinking. (3 There is interaction between learning and mastery of material Model Physics prerequisite to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the Inquiry Training critical thinking, while learning outcomes of students who are taught with Direct Instruction models are not affected by the students' critical thinking.

  5. Short-Term Research Experiences with Teachers in Earth and Planetary Sciences and a Model for Integrating Research into Classroom Inquiry

    Science.gov (United States)

    Morgan, P.; Bloom, J. W.

    2006-12-01

    For the past three summers, we have worked with in-service teachers on image processing, planetary geology, and earthquake and volcano content modules using inquiry methods that ended with mini-research experiences. Although almost all were science teachers, very few could give a reasonable definition of science at the start of the modules, and very few had a basic grasp of the processes of scientific research and could not include substantive scientific inquiry into their lessons. To build research understanding and confidence, an instructor-student interaction model was used in the modules. Studies have shown that children who participate in classrooms as learning and inquiry communities develop more complex understandings. The same patterns of complex understandings have resulted in similarly structured professional communities of teachers. The model is based on professional communities, emphasizing from the beginning that inquiry is a form of research. Although the actual "research" component of the modules was short, the teachers were identified as professionals and researchers from the start. Research/inquiry participation is therefore an excellent example by which to allow their teachers to learn. Initially the teachers were very reluctant to pose questions. As they were encouraged to share, collaborate, and support each other, the role of the instructor became less of a leader and more of a facilitator, and the confidence of the teachers as professionals and researchers grew. One teacher even remarked, "This is how we should be teaching our kids!' Towards the end of the modules the teachers were ready for their mini- research projects and collaborated in teams of 2-4. They selected their own research topics, but were guided toward research questions that required data collection (from existing studies), some data manipulation, interpretation, and drawing conclusions with respect to the original question. The teachers were enthusiastic about all of their

  6. Kindergarten students’ levels of understanding some science concepts and scientific inquiry processes according to demographic variables (the sampling of Kilis Province in Turkey

    Directory of Open Access Journals (Sweden)

    Nail İlhan

    2016-12-01

    Full Text Available The purpose of this study is to identify the kindergarten students’ levels of understanding some science concepts (LUSSC and scientific inquiry processes (SIP and compare their LUSSC and SIP in terms of some demographic variables. Also, another purpose of this study is to identify the predictive power of those demographic variables over the kindergarten students’ LUSSC and SIP. This study was conducted according to quantitative research design. The study group consisted of 335 kindergarten students from 20 different rural and urban schools. In the study, the scale for “Turkish Kindergarten Students’ Understandings of Scientific Concepts and Scientific Inquiry Processes” was used. According to some variables (such as mother’s education level and family structure, there was a statistically significant difference between students’ mean scores for LUSSC and between students’ mean scores for SIP. Within the scope of this study, it was found that among the predictor variables (age, family’s income level, and number of brother/sister were significant predictors for LUSSC, and number of brother/sister was a significant predictor for SIP.

  7. Mental models as indicators of scientific thinking

    Science.gov (United States)

    Derosa, Donald Anthony

    One goal of science education reform is student attainment of scientific literacy. Therefore, it is imperative for science educators to identify its salient elements. A dimension of scientific literacy that warrants careful consideration is scientific thinking and effective ways to foster scientific thinking among students. This study examined the use of mental models as evidence of scientific thinking in the context of two instructional approaches, transmissional and constructivist. Types of mental models, frequency of explanative information, and scores on problem solving transfer questions were measured and compared among subjects in each instructional context. Methods. Subjects consisted of sophomore biology students enrolled in general biology courses at three public high schools. The Group Assessment of Logical Thinking instrument was used to identify two equivalent groups with an N of 65. Each group was taught the molecular basis of sickle cell anemia and the principles of hemoglobin gel electrophoresis using one of the two instructional approaches at their schools during five instructional periods over the course of one week. Laboratory equipment and materials were provided by Boston University School of Medicine's MobileLab program. Following the instructional periods, each subject was asked to think aloud while responding to four problem solving transfer questions. Each response was audiotaped and videotaped. The interviews were transcribed and coded to identify types of mental models and explanative information. Subjects' answers to the problem solving transfer questions were scored using a rubric. Results. Students taught in a constructivist context tended to use more complete mental models than students taught in a transmissional context. Fifty-two percent of constructivist subjects and forty-four percent of transmissional subjects demonstrated evidence of relevant mental models. Overall fifty-two percent of the subjects expressed naive mental models

  8. Cannibalism, Kuru, and Mad Cows: Prion Disease As a "Choose-Your-Own-Experiment" Case Study to Simulate Scientific Inquiry in Large Lectures.

    Science.gov (United States)

    Serrano, Antonio; Liebner, Jeffrey; Hines, Justin K

    2016-01-01

    Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.

  9. Cannibalism, Kuru, and Mad Cows: Prion Disease As a "Choose-Your-Own-Experiment" Case Study to Simulate Scientific Inquiry in Large Lectures.

    Directory of Open Access Journals (Sweden)

    Antonio Serrano

    2016-01-01

    Full Text Available Despite significant efforts to reform undergraduate science education, students often perform worse on assessments of perceptions of science after introductory courses, demonstrating a need for new educational interventions to reverse this trend. To address this need, we created An Inexplicable Disease, an engaging, active-learning case study that is unusual because it aims to simulate scientific inquiry by allowing students to iteratively investigate the Kuru epidemic of 1957 in a choose-your-own-experiment format in large lectures. The case emphasizes the importance of specialization and communication in science and is broadly applicable to courses of any size and sub-discipline of the life sciences.

  10. Industrialized Development Models of Agricultural Scientific and Technological Achievements

    OpenAIRE

    WANG, Wanjiang

    2015-01-01

    Industrialization of agricultural scientific and technological achievements has become an extremely important part in agricultural structural adjustment and agricultural economic development. Basic models for industrialization of China’s agricultural scientific and technological achievements should be: (i) integrating scientific and technological development and production relying on large enterprises; (ii) integrating scientific research and development with agricultural scientific and tec...

  11. WebQuests for Reflection and Conceptual Change: Variations on a Popular Model for Guided Inquiry.

    Science.gov (United States)

    Young, David L.; Wilson, Brent G.

    WebQuests have become a popular form of guided inquiry using Web resources. The goal of WebQuests is to help students think and reason at higher levels,and use information to solve problems. This paper presents modifications to the WebQuest model drawing on primarily on schema theory. It is believed that these changes will further enhance student…

  12. Implementation of Argument-Driven Inquiry as an Instructional Model in a General Chemistry Laboratory Course

    Science.gov (United States)

    Kadayifci, Hakki; Yalcin-Celik, Ayse

    2016-01-01

    This study examined the effectiveness of Argument-Driven Inquiry (ADI) as an instructional model in a general chemistry laboratory course. The study was conducted over the course of ten experimental sessions with 125 pre-service science teachers. The participants' level of reflective thinking about the ADI activities, changes in their science…

  13. An Investigation into the Community of Inquiry Model in the Malaysian ESL Learners' Context

    Science.gov (United States)

    Annamalai, Nagaletchimee

    2017-01-01

    Purpose: This study aims to explore how the Community of Inquiry (CoI) model (2000) is used to categorize students' and teachers' interactions in an asynchronous discussion and how these interactions are able to help students add quality to their narrative writing. Design/methodology/approach: The interactions were categorized based on teaching,…

  14. Science Inquiry into Local Animals: Structure and Function Explored through Model Making

    Science.gov (United States)

    Rule, Audrey C.; Tallakson, Denise A.; Glascock, Alex L.; Chao, Astoria

    2015-01-01

    This article describes an arts- and spatial thinking skill--integrated inquiry project applied to life science concepts from the Next Generation Science Standards for fourth grade students that focuses on two unifying or crosscutting themes: (1) structure (or "form") and function and (2) use of models. Students made observations and…

  15. Chinese Students' Goal Orientation in English Learning: A Study Based on Autonomous Inquiry Model

    Science.gov (United States)

    Zhang, Jianfeng

    2014-01-01

    Goal orientation is a kind of theory of learning motivation, which helps learners to develop their capability by emphasis on new techniques acquiring and environment adapting. In this study, based on the autonomous inquiry model, the construction of Chinese students' goal orientations in English learning are summarized according to the data…

  16. Mediators of a Preservice Teacher's Use of the Inquiry-Application Instructional Model

    Science.gov (United States)

    Gunckel, Kristin L.

    2011-01-01

    This paper reports on one preservice teacher's use of the Inquiry-Application Instructional Model (I-AIM) to plan and teach an instructional sequence on photosynthesis to 5th-grade students. Analysis of the preservice teacher's planned and enacted instructional sequences and interviews shows that the preservice teacher was successful in leveraging…

  17. Inquiry-Based Instruction: A Possible Solution to Improving Student Learning of Both Science Concepts and Scientific Practices

    Science.gov (United States)

    Marshall, Jeff C.; Smart, Julie B.; Alston, Daniel M.

    2017-01-01

    The current study, involving 219 teachers and 15,292 students, examined the relationship between teacher participation in a sustained professional development intervention designed to improve the quantity and quality of guided inquiry-based instruction in middle school science classrooms and subsequent student academic growth. Utilizing a…

  18. Depth and breadth: Bridging the gap between scientific inquiry and high-stakes testing with diverse junior high school students

    Science.gov (United States)

    Kang, Jee Sun Emily

    This study explored how inquiry-based teaching and learning processes occurred in two teachers' diverse 8th grade Physical Science classrooms in a Program Improvement junior high school within the context of high-stakes standardized testing. Instructors for the courses examined included not only the two 8th grade science teachers, but also graduate fellows from a nearby university. Research was drawn from inquiry-based instruction in science education, the achievement gap, and the high stakes testing movement, as well as situated learning theory to understand how opportunities for inquiry were negotiated within the diverse classroom context. Transcripts of taped class sessions; student work samples; interviews of teachers and students; and scores from the California Standards Test in science were collected and analyzed. Findings indicated that the teachers provided structured inquiry in order to support their students in learning about forces and to prepare them for the standardized test. Teachers also supported students in generating evidence-based explanations, connecting inquiry-based investigations with content on forces, proficiently using science vocabulary, and connecting concepts about forces to their daily lives. Findings from classroom data revealed constraints to student learning: students' limited language proficiency, peer counter culture, and limited time. Supports were evidenced as well: graduate fellows' support during investigations, teachers' guided questioning, standardized test preparation, literacy support, and home-school connections. There was no statistical difference in achievement on the Forces Unit test or science standardized test between classes with graduate fellows and without fellows. There was also no statistical difference in student performance between the two teachers' classrooms, even though their teaching styles were very different. However, there was a strong correlation between students' achievement on the chapter test and

  19. Guided Inquiry and Consensus-Building Used to Construct Cellular Models

    Directory of Open Access Journals (Sweden)

    Joel I. Cohen

    2015-02-01

    Full Text Available Using models helps students learn from a “whole systems” perspective when studying the cell. This paper describes a model that employs guided inquiry and requires consensus building among students for its completion. The model is interactive, meaning that it expands upon a static model which, once completed, cannot be altered and additionally relates various levels of biological organization (molecular, organelle, and cellular to define cell and organelle function and interaction. Learning goals are assessed using data summed from final grades and from images of the student’s final cell model (plant, bacteria, and yeast taken from diverse seventh grade classes. Instructional figures showing consensus-building pathways and seating arrangements are discussed. Results suggest that the model leads to a high rate of participation, facilitates guided inquiry, and fosters group and individual exploration by challenging student understanding of the living cell.

  20. Epistemic beliefs of middle and high school students in a problem-based, scientific inquiry unit: An exploratory, mixed methods study

    Science.gov (United States)

    Gu, Jiangyue

    Epistemic beliefs are individuals' beliefs about the nature of knowledge, how knowledge is constructed, and how knowledge can be justified. This study employed a mixed-methods approach to examine: (a) middle and high school students' self-reported epistemic beliefs (quantitative) and epistemic beliefs revealed from practice (qualitative) during a problem-based, scientific inquiry unit, (b) How do middle and high school students' epistemic beliefs contribute to the construction of students' problem solving processes, and (c) how and why do students' epistemic beliefs change by engaging in PBL. Twenty-one middle and high school students participated in a summer science class to investigate local water quality in a 2-week long problem-based learning (PBL) unit. The students worked in small groups to conduct water quality tests at in their local watershed and visited several stakeholders for their investigation. Pretest and posttest versions of the Epistemological Beliefs Questionnaire were conducted to assess students' self-reported epistemic beliefs before and after the unit. I videotaped and interviewed three groups of students during the unit and conducted discourse analysis to examine their epistemic beliefs revealed from scientific inquiry activities and triangulate with their self-reported data. There are three main findings from this study. First, students in this study self-reported relatively sophisticated epistemic beliefs on the pretest. However, the comparison between their self-reported beliefs and beliefs revealed from practice indicated that some students were able to apply sophisticated beliefs during the unit while others failed to do so. The inconsistency between these two types of epistemic beliefs may due to students' inadequate cognitive ability, low validity of self-report measure, and the influence of contextual factors. Second, qualitative analysis indicated that students' epistemic beliefs of the nature of knowing influenced their problem

  1. IMPLEMENTASI MODEL PEMBELAJARAN INQUIRY TRAINING DALAM PEMBELAJARAN FISIKA UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR FORMAL SISWA

    Directory of Open Access Journals (Sweden)

    D. Nasution

    2015-07-01

    Full Text Available Low ability of formal thinking students caused the learning outcomes they get too low. This study aims to determine the effectiveness of the inquiry learning model training in improving students' ability to think formal. The design was used quasi-experimental "non-equivalent groups pretest-posttest design". Implementation  experimental class learning with inquiry learning model training, control class learning with direct instruction. Data obtained through a formal thinking ability test thinking ability. Learning model efectivity in improving formal thinking ability is determined based on the gain score average which normalized by average difference test of statistic, namely t test. The results of the reasearch found that the inquiry training learning model is more effective in improving students formal thinking ability compared with the direct instruction learning model. The N-gain percentage of formal thinking ability of students in the experiment class in the indicators of hypothetical deductive thinking, combination thinking and reflection thinking are in the medium category, just proportional thinking is the high category. N-gain average percentage of control class for the hypothesis deductive thinking is just in the low category, while the proportional thinking, combination thinking and reflection thinking are in the medium category.Rendahnya kemampuan berpikir formal siswa menyebabkan hasil belajar yang mereka peroleh juga rendah. Penelitian ini bertujuan untuk mengetahui efektivitas  model pembelajaran inquiry training dalam meningkatkan kemampuan berpikir formal  siswa. Disain yang digunakan adalah kuasi eksperimen “non-equivalent groups pretest-posttest design”. Implementasi pembelajaran kelas eksperimen dibelajarkan dengan model pembelajaran inquiry training, kelas kontrol dengan model pembelajaran direct instruction.  Data kemampuan berpikir formal diperoleh melalui tes kemampuan berpikir formal. Efektivitas  model

  2. EFFECT OF INQUIRY LEARNING MODEL AND MOTIVATION ON PHYSICS OUTCOMES LEARNING STUDENTS

    Directory of Open Access Journals (Sweden)

    Dahlia Megawati Pardede

    2016-06-01

    Full Text Available The purposes of the research are: (a to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a there are differences in physical students learning outcomes are taught by Inquiry Training models and conventional models. (b learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with conventional model. (c there is a difference in student's learning outcomes that have high motivation and low motivation. (d Student learning outcomes that have a high motivation better than student learning outcomes than have a low motivation. (e there is interaction between learning and motivation to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the motivation, while learning outcomes of students who are taught with conventional models are not affected by motivation.

  3. Optimizing the orchestration of resemiotization with teacher "talk moves": A model of guided-inquiry instruction in middle school science

    Science.gov (United States)

    Millstone, Rachel Diana

    The current conceptualization of science set forth by the National Research Council (2008) is one of science as a social activity, rather than a view of science as a fixed body of knowledge. This requires teachers to consider how communication, processing, and meaning-making contribute to science learning. It also requires teachers to think deeply about what constitutes knowledge and understanding in science, and what types of instruction are most conducive to preparing students to participate meaningfully in the society of tomorrow. Because argumentation is the prominent form of productive talk leading to the building of new scientific knowledge, one indicator of successful inquiry lies in students' abilities to communicate their scientific understandings in scientific argumentation structures. The overarching goal of this study is to identify factors that promote effective inquiry-based instruction in middle school science classrooms, as evidenced in students' abilities to engage in quality argumentation with their peers. Three specific research questions were investigated: (1) What factors do teachers identify in their practice as significant to the teaching and learning of science? (2) What factors do students identify as significant to their learning of science? and (3) What factors affect students' opportunities and abilities to achieve sophisticated levels of argumentation in the classroom? Two teachers and forty students participated in this study. Four principle sources of data were collected over a three-month period of time. These included individual teacher interviews, student focus group interviews, fieldnotes, and approximately 85 hours of classroom videotape. From this sample, four pathways for guided-inquiry instruction are identified. Opportunities for student talk were influenced by a combination of factors located in the domains of "teacher practice," "classroom systems," and "physical structures." Combinations of elements from these three

  4. Enhancing Teachers' Application of Inquiry-Based Strategies Using a Constructivist Sociocultural Professional Development Model

    Science.gov (United States)

    Brand, Brenda R.; Moore, Sandra J.

    2011-05-01

    This two-year school-wide initiative to improve teachers' pedagogical skills in inquiry-based science instruction using a constructivist sociocultural professional development model involved 30 elementary teachers from one school, three university faculty, and two central office content supervisors. Research was conducted for investigating the impact of the professional development activities on teachers' practices, documenting changes in their philosophies, instruction, and the learning environment. This report includes teachers' accounts of philosophical as well as instructional changes and how these changes shaped the learning environment. For the teachers in this study, examining their teaching practices in learner-centered collaborative group settings encouraged them to critically analyze their instructional practices, challenging their preconceived ideas on inquiry-based strategies. Additionally, other factors affecting teachers' understanding and use of inquiry-based strategies were highlighted, such as self-efficacy beliefs, prior experiences as students in science classrooms, teacher preparation programs, and expectations due to federal, state, and local mandates. These factors were discussed and reconciled, as they constructed new understandings and adapted their strategies to become more student-centered and inquiry-based.

  5. THE EFFECT OF INQUIRY TRAINING MODEL USE THE MEDIA PHET AGAINST SCIENCE PROCESS SKILLS AND LOGICAL THINKING SKILLS STUDENTS

    Directory of Open Access Journals (Sweden)

    Fajrul Wahdi Ginting

    2015-12-01

    Full Text Available The Purpose of The study: science process skills and logical thinking ability of students who use inquiry learning model training using PhET media; science process skills and logical thinking ability of students who use conventional learning model; and the difference science process skills and logical thinking ability of students to use learning model Inquiry Training using PhET media and conventional learning models. This research is a quasi experimental. Sample selection is done by cluster random sampling are two classes of classes VIII-E and class VIII-B, where the class VIII-E is taught by inquiry training model using media PhET and VIII-B with conventional learning model. The instrument used consisted of tests science process skills such as essay tests and tests of the ability to think logically in the form of multiple-choice tests. The data were analyzed using t test. The results showed that physics science process skills use Inquiry Training models using PhET media is different and showed better results compared with conventional learning model, and logical thinking skills students use Inquiry Training model using PhET media is different and show better results compared with conventional learning, and there is a difference between the ability to think logically and science process skills of students who use Inquiry Training model using PhET media and conventional learning models.

  6. The Gap between Theory and Action through a Model for Classroom Inquiry

    Directory of Open Access Journals (Sweden)

    Abolfazl Rafiepour

    2017-08-01

    Full Text Available This paper reports an investigation about lower secondary teacher professional development program in Iran that seventy teachers of mathematics participate on that. In this program, lesson study and action research are used to create a model for classroom inquiry. The first and important purpose of this model was to filling the gap between theory and action. Results of this study show that it is possible to combine lesson study and action research. Finding of this study also show that using the model for classroom inquiry can be helpful in decreasing the gap between theory and action. Finally, paper will be finish by introducing some obstacle that occurred within the accomplishment of the teacher professional development program. 

  7. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1997-01-01

    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS

  8. Efektivitas Model Pembelajaran Modified Free Inquiry (Mfi) Disertai Peer Tutoring Terhadap Prestasi Belajar Siswa Pada Materi Hidrolisis Garam Siswa Kelas XI Semester Genap SMA N 1 Kartasura Tahun Pelajaran 2013/2014

    OpenAIRE

    Suryanto, Eko; Susanti, Elfi; Saputro, Sulistyo

    2015-01-01

    Penelitian ini bertujuan untuk mengetahui (1) efektivitas penggunaan model pembelajaran Modified Free Inquiry disertai Peer Tutoring terhadap prestasi belajar siswa pada materi hidrolisis garam; (2) efektivitas penggunaan model pembelajaran Modified Free Inquiry terhadap prestasi belajar siswa pada materi hidrolisis garam; (3) efektivitas penggunaan model pembelajaran Modified Free Inquiry disertai Peer Tutoring dan model pembelajaran Modified Free Inquiry terhadap prestasi belajar siswa pada...

  9. Accurate modeling of parallel scientific computations

    Science.gov (United States)

    Nicol, David M.; Townsend, James C.

    1988-01-01

    Scientific codes are usually parallelized by partitioning a grid among processors. To achieve top performance it is necessary to partition the grid so as to balance workload and minimize communication/synchronization costs. This problem is particularly acute when the grid is irregular, changes over the course of the computation, and is not known until load time. Critical mapping and remapping decisions rest on the ability to accurately predict performance, given a description of a grid and its partition. This paper discusses one approach to this problem, and illustrates its use on a one-dimensional fluids code. The models constructed are shown to be accurate, and are used to find optimal remapping schedules.

  10. Teaching genetics using hands-on models, problem solving, and inquiry-based methods

    Science.gov (United States)

    Hoppe, Stephanie Ann

    Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.

  11. Training of Students’ Critical Thinking Skills through the implementation of a Modified Free Inquiry Model

    Science.gov (United States)

    Hadi, S. A.; Susantini, E.; Agustini, R.

    2018-01-01

    This research aimed at training students’ critical thinking skills through the implementation of a modified free inquiry learning model. The subjects of this research were 21 students of Mathematics Semester II. Using One-Group Pretest-Posttest Design, the data were analyzed descriptively using N-gain indicator. The results indicate that the modified free inquiry learning model was effective to train students’ critical thinking skills. The increase in the students’ critical thinking skills viewed from the value of N-Gain has a range of values with the categories of medium and high with a score between 0,25-0,95. Overall, the change in N-Gain score of each student and each indicator of critical thinking skills is as increasing with a moderate category. The increase of N-Gain value is resulted from the fact that the students were directly involved in organizing their learning process. These criteria indicate that the modified free inquiry learning model can be used to train students’ critical thinking skills on photosynthesis and cellular respiration materials. The results of this research are expected to be nationally implemented to familiarize students with andragogy learning style which places the students as the subjects of learning.

  12. Psyche Mission: Scientific Models and Instrument Selection

    Science.gov (United States)

    Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.

    2017-12-01

    NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end

  13. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models,…

  14. Scientific Inquiry Self-Efficacy and Computer Game Self-Efficacy as Predictors and Outcomes of Middle School Boys' and Girls' Performance in a Science Assessment in a Virtual Environment

    Science.gov (United States)

    Bergey, Bradley W.; Ketelhut, Diane Jass; Liang, Senfeng; Natarajan, Uma; Karakus, Melissa

    2015-01-01

    The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game…

  15. Constructing Scientific Arguments Using Evidence from Dynamic Computational Climate Models

    Science.gov (United States)

    Pallant, Amy; Lee, Hee-Sun

    2015-04-01

    Modeling and argumentation are two important scientific practices students need to develop throughout school years. In this paper, we investigated how middle and high school students ( N = 512) construct a scientific argument based on evidence from computational models with which they simulated climate change. We designed scientific argumentation tasks with three increasingly complex dynamic climate models. Each scientific argumentation task consisted of four parts: multiple-choice claim, openended explanation, five-point Likert scale uncertainty rating, and open-ended uncertainty rationale. We coded 1,294 scientific arguments in terms of a claim's consistency with current scientific consensus, whether explanations were model based or knowledge based and categorized the sources of uncertainty (personal vs. scientific). We used chi-square and ANOVA tests to identify significant patterns. Results indicate that (1) a majority of students incorporated models as evidence to support their claims, (2) most students used model output results shown on graphs to confirm their claim rather than to explain simulated molecular processes, (3) students' dependence on model results and their uncertainty rating diminished as the dynamic climate models became more and more complex, (4) some students' misconceptions interfered with observing and interpreting model results or simulated processes, and (5) students' uncertainty sources reflected more frequently on their assessment of personal knowledge or abilities related to the tasks than on their critical examination of scientific evidence resulting from models. These findings have implications for teaching and research related to the integration of scientific argumentation and modeling practices to address complex Earth systems.

  16. The Associative Basis of Scientific Creativity: A Model Proposal

    Directory of Open Access Journals (Sweden)

    Esra Kanli

    2014-06-01

    Full Text Available Creativity is accepted as an important part of scientific skills. Scientific creativity proceeds from a need or urge to solve a problem, and in-volves the production of original and useful ideas or products. Existing scientific creativity theories and tests do not feature the very im-portant thinking processes, such as analogical and associative thinking, which can be consid-ered crucial in creative scientific problem solv-ing. Current study’s aim is to provide an alter-native model and explicate the associative basis of scientific creativity. Emerging from the re-viewed theoretical framework, Scientific Asso-ciations Model is proposed. This model claims that, similarity and mediation constitutes the basis of creativity and focuses on three compo-nents namely; associative thinking, analogical thinking (analogical reasoning & analogical problem solving and insight which are consid-ered to be main elements of scientific associa-tive thinking.

  17. Artificial intelligence support for scientific model-building

    Science.gov (United States)

    Keller, Richard M.

    1992-01-01

    Scientific model-building can be a time-intensive and painstaking process, often involving the development of large and complex computer programs. Despite the effort involved, scientific models cannot easily be distributed and shared with other scientists. In general, implemented scientific models are complex, idiosyncratic, and difficult for anyone but the original scientific development team to understand. We believe that artificial intelligence techniques can facilitate both the model-building and model-sharing process. In this paper, we overview our effort to build a scientific modeling software tool that aids the scientist in developing and using models. This tool includes an interactive intelligent graphical interface, a high-level domain specific modeling language, a library of physics equations and experimental datasets, and a suite of data display facilities.

  18. Addressing contrasting cognitive models in scientific collaboration

    Science.gov (United States)

    Diviacco, P.

    2012-04-01

    If the social aspects of scientific communities and their internal dynamics is starting to be recognized and acknowledged in the everyday lives of scientists, it is rather difficult for them to find tools that could support their activities consistently with this perspective. Issues span from gathering researchers to mutual awareness, from information sharing to building meaning, with the last one being particularly critical in research fields as the geo-sciences, that deal with the reconstruction of unique, often non-reproducible, and contingent processes. Reasoning here is, in fact, mainly abductive, allowing multiple and concurrent explanations for the same phenomenon to coexist. Scientists bias one hypothesis over another not only on strictly logical but also on sociological motivations. Following a vision, scientists tend to evolve and isolate themselves from other scientists creating communities characterized by different cognitive models, so that after some time these become incompatible and scientists stop understanding each other. We address these problems as a communication issue so that the classic distinction into three levels (syntactic, semantic and pragmatic) can be used. At the syntactic level, we highlight non-technical obstacles that condition interoperability and data availability and transparency. At the semantic level, possible incompatibilities of cognitive models are particularly evident, so that using ontologies, cross-domain reconciliation should be applied. This is a very difficult task to perform since the projection of knowledge by scientists, in the designated community, is political and thus can create a lot of tension. The strategy we propose to overcome these issues pertains to pragmatics, in the sense that it is intended to acknowledge the cultural and personal factors each partner brings into the collaboration and is based on the idea that meaning should remain a flexible and contingent representation of possibly divergent views

  19. Exploring How Research Experiences for Teachers Changes Their Understandings of the Nature of Science and Scientific Inquiry

    Science.gov (United States)

    Buxner, Sanlyn R.

    2014-01-01

    The nature of science is a prevalent theme across United States national science education standards and frameworks as well as other documents that guide formal and informal science education reform. To support teachers in engaging their students in authentic scientific practices and reformed teaching strategies, research experiences for teachers…

  20. The Process of Scientific Inquiry as It Relates to the Creation/Evolution Controversy: I. A Serious Social Problem

    Science.gov (United States)

    Miller, Jon S.; Toth, Ronald

    2014-01-01

    We describe how the increased level of religiosity in the United States is correlated with the resistance to the teaching of evolution and argue that this is a social, rather than scientific, issue. Our goal is to foster teachers' understanding of the philosophy of biology and encourage them to proactively deal with creationism at all levels,…

  1. Key-Aspects of Scientific Modeling Exemplified by School Science Models: Some Units for Teaching Contextualized Scientific Methodology

    Science.gov (United States)

    Develaki, Maria

    2016-01-01

    Models and modeling are core elements of scientific methods and consequently also are of key importance for the conception and teaching of scientific methodology. The epistemology of models and its transfer and adaption to nature of science education are not, however, simple themes. We present some conceptual units in which school science models…

  2. Influence of student-designed experiments with fast plants on their understanding of plants and of scientific inquiry

    Science.gov (United States)

    Akey, Ann Kosek

    2000-10-01

    This dissertation investigates the influence of student designed experiments with Fast Plants in an undergraduate agroecology course on the students' conceptual understanding of plant life cycles and on their procedural understanding of scientific experimentation. It also considers students' perspectives on the value of these experiences. Data sources included semi-structured interviews with students and the instructor, a written task, course evaluations, and observations of class meetings. Students came into the course having strong practical experience with plants from their agricultural backgrounds. Students did not always connect aspects of plant biology that they studied in class, particularly respiration and photosynthesis, to plant growth requirements. The instructor was able to bridge the gap between some practical knowledge and textbook knowledge with experiences other than the Fast Plant project. Most students held an incomplete picture of plant reproduction that was complicated by differences between agricultural and scientific vocabulary. There is need for teaching approaches that help students tie together their knowledge of plants into a cohesive framework. Experiences that help students draw on their background knowledge related to plants, and which give students the opportunity to examine and discuss their ideas, may help students make more meaningful connections. The Fast Plant project, a positive experience for most students, was seen by these undergraduate students as being more helpful in learning about scientific experimentation than about plants. The process of designing and carrying out their own experiments gave students insight into experimentation, provoked their curiosity, and resulted in a sense of ownership and accomplishment.

  3. Symposium 20 - PABMB: Teaching biochemistry in a connected world: Hands-on inquiry-based biochemistry courses for improving scientific literacy of school teachers and students

    Directory of Open Access Journals (Sweden)

    Andrea T. da Poian

    2015-08-01

    Full Text Available Wednesday – August 26th, 2015 - 3:30 to 5:30 pm – Room: Iguaçu II – 5th floorSymposium 20 - PABMB: Teaching biochemistry in a connected world Chair: Miguel Castanho, Universidade de Lisboa, PortugalAbstract:In the last decades, Brazil has reached a prominent position in the world rank of scientific production. Despite this progress, the establishment of a scientific culture in Brazilian society is still challenging. Our group has been offering hands-on inquiry-based courses to primary and secondary students, which aim to introduce them to the scientific method and improve their interest in science. More recently, we started new initiatives focused on the improvement of the scientific literacy of school science teachers. Here we describe two intensive short-term courses designed in different formats. One consists in a discipline offered to a Master Program to school science teachers, in which the main objective was to work with core disciplinary concepts through an active teachers engagement in “doing science”. The discipline, named “Energy transformation in the living organisms”, intends to deal with the main Biochemistry subjects that take part of the high-school science curriculum, namely, fermentation, photosynthesis and cellular respiration processes. The other initiative was developed in Urucureá, a small community with about 600 residents, located on the banks of the River Arapiuns, in Amazonia region. We trained the local school teachers to act as tutors in the course offered to 40 students of the community, ages 10 to 17. The theme we chose to address was the properties and effects of snakes´ poisons, since poisoning events are a problem with which the local community frequently deal with. Another important point was that we adapted a number of experiments to make them feasible with very limited laboratory resources. Our results show that the activities that we have developed offer real opportunity of scientific training

  4. Inquiry through Modeling: Exploring the Tensions between Natural & Sexual Selection Using Crickets

    Science.gov (United States)

    Bouwma-Gearhart, Jana; Bouwma, Andrew

    2015-01-01

    The "Next Generation Science Standards" (NGSS Lead States, 2013) recommend that science courses engage communities of students in scientific practices that include building accurate conceptual models of phenomena central to the understanding of scientific disciplines. We offer a set of activities, implemented successfully at both the…

  5. Inquiry Science and Active Reading

    Science.gov (United States)

    Sandifer, Cody

    2011-01-01

    Pairing an inquiry lesson with a traditional reading activity creates a jarring philosophical mismatch between the interaction, deep thinking, and scientific reasoning that drives meaningful inquiry instruction and the "scan the text, copy the answers" response often obtained from elementary nonfiction readers. Realizing that there must be a…

  6. The Effect of Inquiry Training Learning Model Based on Just in Time Teaching for Problem Solving Skill

    Science.gov (United States)

    Turnip, Betty; Wahyuni, Ida; Tanjung, Yul Ifda

    2016-01-01

    One of the factors that can support successful learning activity is the use of learning models according to the objectives to be achieved. This study aimed to analyze the differences in problem-solving ability Physics student learning model Inquiry Training based on Just In Time Teaching [JITT] and conventional learning taught by cooperative model…

  7. Software Engineering Tools for Scientific Models

    Science.gov (United States)

    Abrams, Marc; Saboo, Pallabi; Sonsini, Mike

    2013-01-01

    Software tools were constructed to address issues the NASA Fortran development community faces, and they were tested on real models currently in use at NASA. These proof-of-concept tools address the High-End Computing Program and the Modeling, Analysis, and Prediction Program. Two examples are the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5) atmospheric model in Cell Fortran on the Cell Broadband Engine, and the Goddard Institute for Space Studies (GISS) coupled atmosphere- ocean model called ModelE, written in fixed format Fortran.

  8. Application of Logic Models in a Large Scientific Research Program

    Science.gov (United States)

    O'Keefe, Christine M.; Head, Richard J.

    2011-01-01

    It is the purpose of this article to discuss the development and application of a logic model in the context of a large scientific research program within the Commonwealth Scientific and Industrial Research Organisation (CSIRO). CSIRO is Australia's national science agency and is a publicly funded part of Australia's innovation system. It conducts…

  9. A "Semantic" View of Scientific Models for Science Education

    Science.gov (United States)

    Adúriz-Bravo, Agustín

    2013-01-01

    In this paper I inspect a "semantic" view of scientific models taken from contemporary philosophy of science-I draw upon the so-called "semanticist family", which frontally challenges the received, syntactic conception of scientific theories. I argue that a semantic view may be of use both for science education in the…

  10. Test Driven Development of Scientific Models

    Science.gov (United States)

    Clune, Thomas L.

    2014-01-01

    Test-Driven Development (TDD), a software development process that promises many advantages for developer productivity and software reliability, has become widely accepted among professional software engineers. As the name suggests, TDD practitioners alternate between writing short automated tests and producing code that passes those tests. Although this overly simplified description will undoubtedly sound prohibitively burdensome to many uninitiated developers, the advent of powerful unit-testing frameworks greatly reduces the effort required to produce and routinely execute suites of tests. By testimony, many developers find TDD to be addicting after only a few days of exposure, and find it unthinkable to return to previous practices.After a brief overview of the TDD process and my experience in applying the methodology for development activities at Goddard, I will delve more deeply into some of the challenges that are posed by numerical and scientific software as well as tools and implementation approaches that should address those challenges.

  11. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  12. Design Approaches to Support Preservice Teachers in Scientific Modeling

    Science.gov (United States)

    Kenyon, Lisa; Davis, Elizabeth A.; Hug, Barbara

    2011-02-01

    Engaging children in scientific practices is hard for beginning teachers. One such scientific practice with which beginning teachers may have limited experience is scientific modeling. We have iteratively designed preservice teacher learning experiences and materials intended to help teachers achieve learning goals associated with scientific modeling. Our work has taken place across multiple years at three university sites, with preservice teachers focused on early childhood, elementary, and middle school teaching. Based on results from our empirical studies supporting these design decisions, we discuss design features of our modeling instruction in each iteration. Our results suggest some successes in supporting preservice teachers in engaging students in modeling practice. We propose design principles that can guide science teacher educators in incorporating modeling in teacher education.

  13. Using Learning Analytics to Understand Scientific Modeling in the Classroom

    Directory of Open Access Journals (Sweden)

    David Quigley

    2017-11-01

    Full Text Available Scientific models represent ideas, processes, and phenomena by describing important components, characteristics, and interactions. Models are constructed across various scientific disciplines, such as the food web in biology, the water cycle in Earth science, or the structure of the solar system in astronomy. Models are central for scientists to understand phenomena, construct explanations, and communicate theories. Constructing and using models to explain scientific phenomena is also an essential practice in contemporary science classrooms. Our research explores new techniques for understanding scientific modeling and engagement with modeling practices. We work with students in secondary biology classrooms as they use a web-based software tool—EcoSurvey—to characterize organisms and their interrelationships found in their local ecosystem. We use learning analytics and machine learning techniques to answer the following questions: (1 How can we automatically measure the extent to which students’ scientific models support complete explanations of phenomena? (2 How does the design of student modeling tools influence the complexity and completeness of students’ models? (3 How do clickstreams reflect and differentiate student engagement with modeling practices? We analyzed EcoSurvey usage data collected from two different deployments with over 1,000 secondary students across a large urban school district. We observe large variations in the completeness and complexity of student models, and large variations in their iterative refinement processes. These differences reveal that certain key model features are highly predictive of other aspects of the model. We also observe large differences in student modeling practices across different classrooms and teachers. We can predict a student’s teacher based on the observed modeling practices with a high degree of accuracy without significant tuning of the predictive model. These results highlight

  14. Applying the chronic care model to an employee benefits program: a qualitative inquiry.

    Science.gov (United States)

    Schauer, Gillian L; Wilson, Mark; Barrett, Barbara; Honeycutt, Sally; Hermstad, April K; Kegler, Michelle C

    2013-12-01

    To assess how employee benefits programs may strengthen and/or complement elements of the chronic care model (CCM), a framework used by health systems to improve chronic illness care. A qualitative inquiry consisting of semi-structured interviews with employee benefit administrators and partners from a self-insured, self-administered employee health benefits program was conducted at a large family-owned business in southwest Georgia. Results indicate that the employer adapted and used many health system-related elements of the CCM in the design of their benefit program. Data also suggest that the employee benefits program contributed to self-management skills and to informing and activating patients to interact with the health system. Findings suggest that employee benefits programs can use aspects of the CCM in their own benefit design, and can structure their benefits to contribute to patient-related elements from the CCM.

  15. THE EFFECT MODEL INQUIRY TRAINING MEDIA AND LOGICAL THINKING ABILITY TO STUDENT’S SCIENCE PROCESS SKILL

    Directory of Open Access Journals (Sweden)

    Dahrim Pohan

    2017-06-01

    Full Text Available The aim of the research is to analyz : student’s science process skill using inquiry training learning model is better than konvesional learning.Student’s science process skill who have logical thinking ability above average are better than under average,and the interaction between inquiry training media and logical thinking ability to increase student’s science process skill.The experiment was conducted in SMP 6 Medan as population and class VII-K and VII-J were chosen as sample through cluster random sampling.Science prosess skill used essay test and logical thinking used multiple choice as instrument.Result of the data was analyzed by using two ways ANAVA.Result show that : student’s science process skill using inquiry training learning model is better than konvesional learning,student’s science process skill who logical thinking ability above average are better than under average and the interaction between inquiry training learning model media and logical thinking ability to increase student’s science process skill.

  16. CSPBuilder - CSP based Scientific Workflow Modelling

    DEFF Research Database (Denmark)

    Friborg, Rune Møllegaard; Vinter, Brian

    2008-01-01

    This paper introduces a framework for building CSP based applications, targeted for clusters and next generation CPU designs. CPUs are produced with several cores today and every future CPU generation will feature increasingly more cores, resulting in a requirement for concurrency that has...... not previously been called for. The framework is CSP presented as a scienti¿c work¿ow model, specialized for scienti¿c computing applications. The purpose of the framework is to enable scientists to exploit large parallel computation resources, which has previously been hard due of the dif¿culty of concurrent...

  17. Scientific data interpolation with low dimensional manifold model

    International Nuclear Information System (INIS)

    Zhu, Wei; Wang, Bao; Barnard, Richard C.; Hauck, Cory D.

    2017-01-01

    Here, we propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace–Beltrami operator in the Euler–Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  18. Scientific data interpolation with low dimensional manifold model

    Science.gov (United States)

    Zhu, Wei; Wang, Bao; Barnard, Richard; Hauck, Cory D.; Jenko, Frank; Osher, Stanley

    2018-01-01

    We propose to apply a low dimensional manifold model to scientific data interpolation from regular and irregular samplings with a significant amount of missing information. The low dimensionality of the patch manifold for general scientific data sets has been used as a regularizer in a variational formulation. The problem is solved via alternating minimization with respect to the manifold and the data set, and the Laplace-Beltrami operator in the Euler-Lagrange equation is discretized using the weighted graph Laplacian. Various scientific data sets from different fields of study are used to illustrate the performance of the proposed algorithm on data compression and interpolation from both regular and irregular samplings.

  19. Python for Scientific Computing Education: Modeling of Queueing Systems

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2014-01-01

    Full Text Available In this paper, we present the methodology for the introduction to scientific computing based on model-centered learning. We propose multiphase queueing systems as a basis for learning objects. We use Python and parallel programming for implementing the models and present the computer code and results of stochastic simulations.

  20. Modeling as an Anchoring Scientific Practice for Explaining Friction Phenomena

    Science.gov (United States)

    Neilson, Drew; Campbell, Todd

    2017-12-01

    Through examining the day-to-day work of scientists, researchers in science studies have revealed how models are a central sense-making practice of scientists as they construct and critique explanations about how the universe works. Additionally, they allow predictions to be made using the tenets of the model. Given this, alongside research suggesting that engaging students in developing and using models can have a positive effect on learning in science classrooms, the recent national standards documents in science education have identified developing and using models as an important practice students should engage in as they apply and refine their ideas with peers and teachers in explaining phenomena or solving problems in classrooms. This article details how students can be engaged in developing and using models to help them make sense of friction phenomena in a high school conceptual physics classroom in ways that align with visions for teaching and learning outlined in the Next Generation Science Standards. This particular unit has been refined over several years to build on what was initially an inquiry-based unit we have described previously. In this latest iteration of the friction unit, students developed and refined models through engaging in small group and whole class discussions and investigations.

  1. John Dewey's Dual Theory of Inquiry and Its Value for the Creation of an Alternative Curriculum

    Science.gov (United States)

    Harris, Fred

    2014-01-01

    Dewey's theory of inquiry cannot be reduced to the pattern of inquiry common to both common-sense inquiry and scientific inquiry, which is grounded in the human life process, since such a reduction ignores Dewey's differentiation of the two forms of inquiry. The difference has to do with the focus of inquiry, with common-sense inquiry…

  2. PENGARUH MODEL PROBLEM BASED LEARNING DENGAN PENDEKATAN INQUIRY TERHADAP HASIL BELAJAR SISWA SMA

    Directory of Open Access Journals (Sweden)

    Moch. Zainuddin

    2016-12-01

    Full Text Available The design used in this study is a quasi-experimental (quasi experiment. Subjects in this study were students of class X SMA Negeri 1 Sakra Timur Semester 2 academic year 2015/2016. independent variables in this study is a model of problem-based learning approach to inquiry and the dependent variable in this study is the student learning outcomes. The data in this study a number or score learning outcomes. Learning outcomes in question is gain score derived from the difference between pretest scores and posttes. The results of data analysis score geography student learning outcomes, showing that there was an increase in average achieved experimental classes from 77.82 to 59.08 into a 18.74 increase. Although the control group also increased score of 56.75 into 70.25 with an increase of 13.5, but when compared with the experimental class, increase in the average score belajaranya results higher than the increase in the control class. The difference increased scores kelase ksperimen learning outcomes with the controls is at 7. 57. Thus, it can be concluded that the learning model based inquiry approach an issue with significant effect on student learning outcomes in high school. This is proven by the results of the calculation of the value of gain score statistic 0.4758 to 0.02787 and the standard error of the mean of 5%. Rancangan yang digunakan dalam penelitian ini adalah eksperimental semu (quasi experiment. Subjek dalam penelitian ini adalah siswa kelas X Semester 2 SMA Negeri 1 Sakra Timur tahun ajaran 2015/2016. variabel bebas dalam penelitian ini adalah model pembelajaran berbasis masalah dengan pendekatan inkuiri dan variabel terikat dalam penelitian ini adalah hasil belajar siswa. Data dalam penelitian ini berupa angka atau skor hasil belajar. Hasil belajar yang dimaksud adalah gain score yang diperoleh dari selisih skor pretes dan posttes. Hasil analisis data skor hasil belajar geografi siswa, menunjukkan bahwa ada terjadi peningkatan

  3. A `Semantic' View of Scientific Models for Science Education

    Science.gov (United States)

    Adúriz-Bravo, Agustín

    2013-07-01

    In this paper I inspect a `semantic' view of scientific models taken from contemporary philosophy of science—I draw upon the so-called `semanticist family', which frontally challenges the received, syntactic conception of scientific theories. I argue that a semantic view may be of use both for science education in the classrooms of all educational levels, and for research and innovation within the discipline of didactics of science. I explore and characterise a model-based account of the nature of science, and derive some implications that may be of interest for our community.

  4. Librarian-Teacher Partnerships for Inquiry Learning: Measures of Effectiveness for a Practice-Based Model of Professional Development

    Directory of Open Access Journals (Sweden)

    Joyce Yukawa

    2009-06-01

    Full Text Available Objective – This study analyzed the effects of a practice-based model of professional development on the teaching and collaborative practices of 9 teams of librarians and teachers, who created and implemented units of inquiry-focused study with K-12 students during a yearlong course. The authors describe how the collection and analysis of evidence guided the development team in the formative and summative evaluations of the outcomes of the professional development, as well as the long-term results of participation in this initiative.Methods – The authors used an interpretive, participative approach. The first author was the external reviewer for the project; the second author headed the development team and served as a participant-observer. Triangulated data were collected from participants in the form of learning logs, discussion board postings, interviews, questionnaires, and learning portfolios consisting of unit and lesson plans and student work samples with critiques. Data were also collected from the professional development designers in the form of meeting notes, responses to participants, interviews, and course documents. For two years following the end of the formal course, the authors also conducted follow-up email correspondence with all teams and site visits with six teams to determine sustained or expanded implementation of inquiry-focused, collaborative curriculum development. Results – The practice-based approach to professional development required continual modification of the course design and timely, individualized mentoring and feedback, based on analysis and co-reflection by the developers on the evidence gathered through participant logs, reports, and school site visits. Modeling the inquiry process in their own course development work and making this process transparent to the participating community were essential to improvement. Course participants reported beneficial results in both immediate and long-term changes

  5. Professional development model for science teachers based on scientific literacy

    Science.gov (United States)

    Rubini, B.; Ardianto, D.; Pursitasari, I. D.; Permana, I.

    2017-01-01

    Scientific literacy is considered as a benchmark of high and low quality of science education in a country. Teachers as a major component of learning at the forefront of building science literacy skills of students in the class. The primary purpose this study is development science teacher coaching model based on scientific literacy. In this article we describe about teacher science literacy and profile coaching model for science’ teachers based on scientific literacy which a part of study conducted in first year. The instrument used in this study consisted of tests, observation sheet, interview guides. The finding showed that problem of low scientific literacy is not only happen the students, but science’ teachers which is a major component in the learning process is still not satisfactory. Understanding science teacher is strongly associated with the background disciplinary. Science teacher was still weak when explaining scientific phenomena, mainly related to the material that relates to the concept of environmental. Coaching model generated from this study consisted of 8 stages by assuming the teacher is an independent learner, so the coaching is done with methods on and off, with time off for activities designed more.

  6. African Scientific Network: A model to enhance scientific research in developing countries

    Science.gov (United States)

    Kebede, Abebe

    2002-03-01

    Africa has over 350 higher education institutions with a variety of experiences and priorities. The primary objectives of these institutions are to produce white-collar workers, teachers, and the work force for mining, textiles, and agricultural industries. The state of higher education and scientific research in Africa have been discussed in several conferences. The proposals that are generated by these conferences advocate structural changes in higher education, North-South institutional linkages, mobilization of the African Diaspora and funding. We propose a model African Scientific Network that would facilitate and enhance international scientific partnerships between African scientists and their counterparts elsewhere. A recent article by James Lamout (Financial Times, August 2, 2001) indicates that emigration from South Africa alone costs $8.9 billion in lost human resources. The article also stated that every year 23,000 graduates leave Africa for opportunities overseas, mainly in Europe, leaving only 20,000 scientists and engineers serving over 600 million people. The International Organization for Migration states that the brain drain of highly skilled professionals from Africa is making economic growth and poverty alleviation impossible across the continent. In our model we will focus on a possible networking mechanism where the African Diaspora will play a major role in addressing the financial and human resources needs of higher education in Africa

  7. TOWARDS A SCALABLE SCIENTIFIC DATA GRID MODEL AND SERVICES

    Directory of Open Access Journals (Sweden)

    Azizol Abdullah

    2010-03-01

    Full Text Available Scientific Data Grid mostly deals with large computational problems. It provides geographically distributed resources for large-scale data-intensive applications that generate large scientific data sets. This required the scientist in modern scientific computing communities involved in managing massive amounts of a very large data collections that are geographically distributed. Research in the area of grid has given various ideas and solutions to address these requirements. However, nowadays the number of participants (scientists and institutions that are involved in this kind of environment is increasing tremendously. This situation has lead to a problem of scalability. In order to overcome this problem we need a data grid model that can scale well with the increasing number of users. Peer-to-peer (P2P is one of the architectures that is a promising scale and dynamism environment. In this paper, we present a P2P model for Scientific Data Grid that utilizes the P2P services to address the scalability problem. By using this model, we study and propose various decentralized discovery strategies that intend to address the problem of scalability. We also investigate the impact of data replication that addresses the data distribution and reliability problem for our Scientific Data Grid model on the propose discovery strategies. For the purpose of this study, we have developed and used our own data grid simulation written using PARSEC. We illustrate our P2P Scientific Data Grid model and our data grid simulation used in this study. We then analyze the performance of the discovery strategies with and without the existence of replication strategies relative to their success rates, bandwidth consumption and average number of hop.

  8. Argument Based Science Inquiry (ABSI) Learning Model in Voltaic Cell Concept

    Science.gov (United States)

    Subarkah, C. Z.; Fadilah, A.; Aisyah, R.

    2017-09-01

    Voltaic Cell is a sub-concept of electrochemistry that is considered difficult to be comprehended by learners Voltaic Cell is a sub concept of electrochemistry that is considered difficult to be understood by learners so that impacts on student activity in learning process. Therefore the learning model Argument Based Science Inquiry (ABSI) will be applied to the concept of Voltaic cell. This research aims to describe students’ activities during learning process using ABSI model and to analyze students’ competency to solve ABSI-based worksheets (LK) of Voltaic Cell concept. The method used in this research was the “mix-method-quantitative-embedded” method with subjects of the study: 39 second-semester students of Chemistry Education study program. The student activity is quite good during ABSI learning. The students’ ability to complete worksheet (LK) for every average phase is good. In the phase of exploration of post instruction understanding, it is categorized very good, and in the phase of negotiation shape III: comparing science ideas to textbooks or other printed resources merely reach enough category. Thus, the ABSI learning has improved the student levels of activity and students’ competency to solve the ABSI-based worksheet (LK).

  9. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    2011-01-01

    This is a collective case study seeking to develop detailed descriptions of how programming an agent-based simulation influences a group of 8th grade students' model-based inquiry (MBI) by examining students' agent-based programmable modeling (ABPM) processes and the learning outcomes. The context of the present study was a biology unit on…

  10. Features of optical modeling in educational and scientific activity ...

    African Journals Online (AJOL)

    The article discusses the functionality of existing software for the modeling, analysis and optimization of lighting systems and optical elements, through which the stage of their design can be automated completely. The use of these programs is shown using the example of scientific work and the educational activity of ...

  11. Teaching for Conceptual Change in a Density Unit Taught to 7th Graders: Comparing Two Teaching Methodologies--Scientific Inquiry and a Traditional Approach

    Science.gov (United States)

    Holveck, Susan E.

    2012-01-01

    This mixed methods study was designed to compare the effect of using an inquiry teaching methodology and a more traditional teaching methodology on the learning gains of students who were taught a five-week conceptual change unit on density. Seventh graders (N = 479) were assigned to five teachers who taught the same unit on density using either a…

  12. Approaches to Inquiry Teaching: Elementary teacher's perspectives

    Science.gov (United States)

    Ireland, Joseph; Watters, James J.; Lunn Brownlee, J.; Lupton, Mandy

    2014-07-01

    Learning science through the process of inquiry is advocated in curriculum documents across many jurisdictions. However, a number of studies suggest that teachers struggle to help students engage in inquiry practices. This is not surprising as many teachers of science have not engaged in scientific inquiry and possibly hold naïve ideas about what constitutes scientific inquiry. This study investigates teachers' self-reported approaches to teaching science through inquiry. Phenomenographic interviews undertaken with 20 elementary teachers revealed teachers identified six approaches to teaching for inquiry, clustered within three categories. These approaches were categorized as Free and Illustrated Inquiries as part of an Experience-centered category, Solution and Method Inquiries as part of a Problem-centered category, and Topic and Chaperoned Inquiries as part of a Question-centered category. This study contributes to our theoretical understanding of how teachers approach Inquiry Teaching and suggests fertile areas of future research into this valued and influential phenomenon broadly known as 'Inquiry Teaching'.

  13. Structure of the Scientific Community Modelling the Evolution of Resistance

    OpenAIRE

    2007-01-01

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expec...

  14. Engaging Nature of Science to Preservice Teachers through Inquiry-Based Classroom

    Science.gov (United States)

    Nuangchalerm, Prasart

    2013-01-01

    Inquiry-based classroom is widely distributed in the school science based on its useful and effective instruction. Science teachers are key elements allowing students to have scientific inquiry. If teachers understand and imply inquiry-based learning into science classroom, students will learn science as scientific inquiry and understand nature of…

  15. The effect of integrating cooperative learning into 5E inquiry learning model on interpersonal skills of high school students

    Science.gov (United States)

    Pholphuet, Preedaporn; Kanyaprasith, Kamonwan; Khumwong, Pinit; Praphairaksit, Nalena

    2018-01-01

    The purpose of this research was to investigate the effect of integrating cooperative learning into 5E inquiry learning model on interpersonal skills of high school students. Two 10th grade classrooms consisting of 63 students were obtained by purposive sampling then one was assigned as an experimental and the other as a control group. The cooperative learning was integrated into 5E inquiry model for the experimental group in addition to the normal 5E inquiry model in the control group. A 5-level rating scale questionnaire was used for data collection both before and after the experiment. Furthermore, a descriptive journal from each student was added to the study after the researchers realized a significant difference in the teamwork skill of each group. Data from questionnaires were analyzed using descriptive statistics and inferential statistics. The results showed that the experimental group had a significantly higher score of interpersonal skills when compared to the control group (pgroups. The journals of the students showed the difference of working preference among two group. It could conclude that the learning intervention enhanced team working in 5 aspects including time management, the outcome of the work, the process of the work and the attitude of the students. The students in the experimental group demonstrated more creative ideas and were more likely to listen to other student ideas. The students in experimental group were less competitive and were more open in sharing and helping others. In conclusion, the addition of cooperative learning in to the usual 5E inquiry learning, not only help the students to achieve the knowledge but also help develop good interpersonal skills.

  16. From Hippocrates to Commodities: three models of NHS governance: NHS governance, regulation, Mid Staffordshire inquiry, health care as a commodity.

    Science.gov (United States)

    Newdick, Christopher

    2014-01-01

    A series of inquiries and reports suggest considerable failings in the care provided to some patients in the NHS. Although the Bristol Inquiry report of 2001 led to the creation of many new regulatory bodies to supervise the NHS, they have never enjoyed consistent support from government and the Mid Staffordshire Inquiry in 2013 suggests they made little difference. Why do some parts of the NHS disregard patients' interests and how we should we respond to the challenge? The following discusses the evolution of approaches to NHS governance through the Hippocratic, Managerial and Commercial models, and assesses their risks and benefits. Apart from the ethical imperative, the need for effective governance is driven both by the growth in information available to the public and the resources wasted by ineffective systems of care. Appropriate solutions depend on an understanding of the perverse incentives inherent in each model and the need for greater sensitivity to the voices of patients and the public. © The Author 2014. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals. permissions@oup.com.

  17. Analyzing Students' Learning Progressions Throughout a Teaching Sequence on Acoustic Properties of Materials with a Model-Based Inquiry Approach

    Science.gov (United States)

    Hernández, María Isabel; Couso, Digna; Pintó, Roser

    2015-04-01

    The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.

  18. The Inquiry Matrix: A Tool for Assessing and Planning Inquiry in Biology and Beyond

    Science.gov (United States)

    Grady, Julie

    2010-01-01

    One way to advance inquiry in the classroom is to establish a systematic strategy for reflecting on our practice and our students' readiness to engage in increasingly complex scientific reasoning. The Matrix for Assessing and Planning Scientific Inquiry (MAPSI) is a tool that promotes this valuable reflection so that we, as teachers, are better…

  19. Educational and Scientific Applications of Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.

    2016-12-01

    Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of

  20. Tides, Krill, Penguins, Oh My!: Scientists and Teachers Partner in Project CONVERGE to Bring Collaborative Antarctic Research, Authentic Data, and Scientific Inquiry into the Hands of NJ and NY Students

    Science.gov (United States)

    Hunter-thomson, K. I.; Kohut, J. T.; Florio, K.; McDonnell, J. D.; Ferraro, C.; Clark, H.; Gardner, K.; Oliver, M. J.

    2016-02-01

    How do you get middle and high school students excited about scientific inquiry? Have them join a collaborative research team in Antarctica! A comprehensive education program brought ocean science, marine ecology, and climate change impact research to more than 950 students in 2014-15 to increase their exposure to and excitement of current research. The program was integrated into a collaborative research project, involving five universities, that worked to characterize the connection between ocean circulation, plankton distribution, penguin foraging behavior, and climate change around Palmer Station, Antarctica. The scientists and education team co-led a weeklong workshop to expose 22 teachers to the research science, build relationships among the teachers and scientists, and refine the program to most effectively communicate the research to their students. In the fall, teachers taught NGSS-aligned, hands-on, data-focused classroom lessons to provide their students the necessary content to understand the project hypotheses using multiple science practices. Through a professional science blog and live video calls from Antarctica, students followed and discussed the science teams work while they were in the field. To apply the science practices the students had learned about, they designed, conducted, and analyzed their own ocean-related, inquiry-based research investigation as the culminating component of the program (results were presented at a Student Research Symposium attended by the science team). Of their own choosing, roughly half of the students used raw data from the CONVERGE research (including krill, CODAR, penguin, and glider data) for their investigations. This presentation will focus on the evaluation results of the education program to identify the aspects that successfully engaged teachers and students with scientific inquiry, science practices, and authentic data as well as the replicability of this integrated scientist-teacher partnership and

  1. A Collective Case Study of Secondary Students' Model-Based Inquiry on Natural Selection through Programming in an Agent-Based Modeling Environment

    Science.gov (United States)

    Xiang, Lin

    incomplete and many relationships among the model ideas had not been well established by the end of the study. Most of them did not treat the natural selection model as a whole but only focused on some ideas within the model. Very few of them could scientifically apply the natural selection model to interpret other evolutionary phenomena. The findings about participating students' programming processes revealed these processes were composed of consecutive programming cycles. The cycle typically included posing a task, constructing and running program codes, and examining the resulting simulation. Students held multiple ideas and applied various programming strategies in these cycles. Students were involved in MBI at each step of a cycle. Three types of ideas, six programming strategies and ten MBI actions were identified out of the processes. The relationships among these ideas, strategies and actions were also identified and described. Findings suggested that ABPM activities could support MBI by (1) exposing students' personal models and understandings, (2) provoking and supporting a series of model-based inquiry activities, such as elaborating target phenomena, abstracting patterns, and revising conceptual models, and (3) provoking and supporting tangible and productive conversations among students, as well as between the instructor and students. Findings also revealed three programming behaviors that appeared to impede productive MBI, including (1) solely phenomenon-orientated programming, (2) transplanting program codes, and (3) blindly running procedures. Based on the findings, I propose a general modeling process in ABPM activities, summarize the ways in which MBI can be supported in ABPM activities and constrained by multiple factors, and suggest the implications of this study in the future ABPM-assisted science instructional design and research.

  2. Fraud, individuals, and networks: A biopsychosocial model of scientific frauds.

    Science.gov (United States)

    Leistedt, Samuel J; Linkowski, Paul

    2016-03-01

    The problem of fraud, especially scientific fraud, is global and its identification risk is still in its infancy. Based on an in-depth analysis of several financial and scientific fraud trials, the authors propose a new and integrative model of scientific fraud. This model identifies two major levels for committing fraud: (i) at the personal skills level (micro-level) and (ii) at the network skills level (macro-level). Interacting continuously with each other, they form a dynamic, efficient, and integrative system: an integrative model of fraud. The micro-level refers to three factors: (i) personality organization, (ii) social competence, and (iii) the so-called triangle of fraud. The macro-level refers essentially to social network organization and social engineering. Then, the key to understanding and mostly controlling fraud is to consider both the individual and the environment in which they operate. Based on our model, several steps at the micro- and macro-levels can be proposed. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.

  3. A model of "integrated scientific method" and its application for the analysis of instruction

    Science.gov (United States)

    Rusbult, Craig Francis

    A model of 'integrated scientific method' (ISM) was constructed as a framework for describing the process of science in terms of activities (formulating a research problem, and inventing and evaluating actions--such as selecting and inventing theories, evaluating theories, designing experiments, and doing experiments--intended to solve the problem) and evaluation criteria (empirical, conceptual, and cultural-personal). Instead of trying to define the scientific method, ISM is intended to serve as a flexible framework that--by varying the characteristics of its components, their integrated relationships, and their relative importance can be used to describe a variety of scientific methods, and a variety of perspectives about what constitutes an accurate portrayal of scientific methods. This framework is outlined visually and verbally, followed by an elaboration of the framework and my own views about science, and an evaluation of whether ISM can serve as a relatively neutral framework for describing a wide range of science practices and science interpretations. ISM was used to analyze an innovative, guided inquiry classroom (taught by Susan Johnson, using Genetics Construction Kit software) in which students do simulated scientific research by solving classical genetics problems that require effect-to-cause reasoning and theory revision. The immediate goal of analysis was to examine the 'science experiences' of students, to determine how the 'structure of instruction' provides opportunities for these experiences. Another goal was to test and improve the descriptive and analytical utility of ISM. In developing ISM, a major objective was to make ISM educationally useful. A concluding discussion includes controversies about "the nature of science" and how to teach it, how instruction can expand opportunities for student experience, and how goal-oriented intentional learning (using ISM might improve the learning, retention, and transfer of thinking skills. Potential

  4. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  5. A Path Model of Effective Technology-Intensive Inquiry-Based Learning

    Science.gov (United States)

    Avsec, Stanislav; Kocijancic, Slavko

    2016-01-01

    Individual aptitude, attitudes, and behavior in inquiry-based learning (IBL) settings may affect work and learning performance outcomes during activities using different technologies. To encourage multifaceted learning, factors in IBL settings must be statistically significant and effective, and not cognitively or psychomotor intensive. We…

  6. The Nature of Scientific Revolutions from the Vantage Point of Chaos Theory: Toward a Formal Model of Scientific Change

    Science.gov (United States)

    Perla, Rocco J.; Carifio, James

    In sharp contrast to the early positivist view of the nature of science and scientific knowledge, Kuhn argues that the scientific enterprise involves states of continuous, gradual development punctuated by comparatively rare instances of turmoil and change, which ultimately brings about a new stability and a qualitatively changed knowledge base. Although this discontinuous or nonlinear view of scientific knowledge is shared by a number of philosophers of science and science educators currently, Kuhn's description of how progress in science occurs has never been formally modeled from a nonlinear mathematical perspective. In this article, we represent aspects of Kuhn's main thesis and ideas as stated in his classic work The Structure of Scientific Revolutions using catastrophe theory, which is a particular instantiation of chaos theory capable of describing discontinuous phenomenon. Through this catastrophe theory representation we attempt to depict and develop a formal nonlinear model of scientific change. The pedagogical implications of the model developed and presented are discussed.

  7. A Multi-Dimensional Classification Model for Scientific Workflow Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Lavanya; Plale, Beth

    2010-04-05

    Workflows have been used to model repeatable tasks or operations in manufacturing, business process, and software. In recent years, workflows are increasingly used for orchestration of science discovery tasks that use distributed resources and web services environments through resource models such as grid and cloud computing. Workflows have disparate re uirements and constraints that affects how they might be managed in distributed environments. In this paper, we present a multi-dimensional classification model illustrated by workflow examples obtained through a survey of scientists from different domains including bioinformatics and biomedical, weather and ocean modeling, astronomy detailing their data and computational requirements. The survey results and classification model contribute to the high level understandingof scientific workflows.

  8. Teaching scientific concepts through simple models and social communication techniques

    International Nuclear Information System (INIS)

    Tilakaratne, K.

    2011-01-01

    For science education, it is important to demonstrate to students the relevance of scientific concepts in every-day life experiences. Although there are methods available for achieving this goal, it is more effective if cultural flavor is also added to the teaching techniques and thereby the teacher and students can easily relate the subject matter to their surroundings. Furthermore, this would bridge the gap between science and day-to-day experiences in an effective manner. It could also help students to use science as a tool to solve problems faced by them and consequently they would feel science is a part of their lives. In this paper, it has been described how simple models and cultural communication techniques can be used effectively in demonstrating important scientific concepts to the students of secondary and higher secondary levels by using two consecutive activities carried out at the Institute of Fundamental Studies (IFS), Sri Lanka. (author)

  9. Earth's Earliest Ecosystems in the Classroom: The Use of Microbial Mats to Teach General Principles in Microbial Ecology, and Scientific Inquiry

    Science.gov (United States)

    Beboutl, Brad M.; Bucaria, Robin

    2004-01-01

    Microbial mats are living examples of the most ancient biological communities on earth, and may also be useful models for the search for life elsewhere. They are centrally important to Astrobiology. In this lecture, we will present an introduction to microbial mats, as well as an introduction to our web-based educational module on the subject of microbial ecology, featuring living mats maintained in a mini "Web Lab" complete with remotely-operable instrumentation. We have partnered with a number of outreach specialists in order to produce an informative and educational web-based presentation, aspects of which will be exported to museum exhibits reaching a wide audience. On our web site, we will conduct regularly scheduled experimental manipulations, linking the experiments to our research activities, and demonstrating fundamental principles of scientific research.

  10. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  11. Stimulating Scientific Reasoning with Drawing-Based Modeling

    Science.gov (United States)

    Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank

    2018-02-01

    We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each iteration, the user interface and instructions were adjusted based on students' remarks and the teacher's observations. Students' conversations were analyzed on reasoning complexity as a measurement of efficacy of the modeling tool and the instructions. These findings were also used to compose a set of recommendations for teachers and curriculum designers for using and constructing models in the classroom. Our findings suggest that to stimulate scientific reasoning in students working with a drawing-based modeling, tool instruction about the tool and the domain should be integrated. In creating models, a sufficient level of scaffolding is necessary. Without appropriate scaffolds, students are not able to create the model. With scaffolding that is too high, students may show reasoning that incorrectly assigns external causes to behavior in the model.

  12. A Pedagogical Model for Ethical Inquiry into Socioscientific Issues In Science

    Science.gov (United States)

    Saunders, Kathryn J.; Rennie, Léonie J.

    2013-02-01

    Internationally there is concern that many science teachers do not address socioscientific issues (SSI) in their classrooms, particularly those that are controversial. However with increasingly complex, science-based dilemmas being presented to society, such as cloning, genetic screening, alternative fuels, reproductive technologies and vaccination, there is a growing call for students to be more scientifically literate and to be able to make informed decisions on issues related to these dilemmas. There have been shifts in science curricula internationally towards a focus on scientific literacy, but research indicates that many secondary science teachers lack the support and confidence to address SSI in their classrooms. This paper reports on a project that developed a pedagogical model that scaffolded teachers through a series of stages in exploring a controversial socioscientific issue with students and supported them in the use of pedagogical strategies and facilitated ways of ethical thinking. The study builds on existing frameworks of ethical thinking. It presents an argument that in today's increasingly pluralistic society, these traditional frameworks need to be extended to acknowledge other worldviews and identities. Pluralism is proposed as an additional framework of ethical thinking in the pedagogical model, from which multiple identities, including cultural, ethnic, religious and gender perspectives, can be explored.

  13. The Benefits of Using Authentic Inquiry within Biotechnology Education

    Science.gov (United States)

    Hanegan, Nikki; Bigler, Amber

    2010-01-01

    A broad continuum exists to describe the structure of inquiry lessons (Hanegan, Friden, & Nelson, 2009). Most teachers have heard inquiry described from a range of simple questioning to completely student-designed scientific studies (Chinn & Malhotra, 2002). Biotechnology education often uses a variety of inquiries from cookbook laboratory…

  14. Development of a common data model for scientific simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosiano, J. [Los Alamos National Lab., NM (United States); Butler, D.M. [Limit Point Systems, Inc. (United States); Matarazzo, C.; Miller, M. [Lawrence Livermore National Lab., CA (United States); Schoof, L. [Sandia National Lab., Albuquerque, NM (United States)

    1999-06-01

    The problem of sharing data among scientific simulation models is a difficult and persistent one. Computational scientists employ an enormous variety of discrete approximations in modeling physical processes on computers. Problems occur when models based on different representations are required to exchange data with one another, or with some other software package. Within the DOE`s Accelerated Strategic Computing Initiative (ASCI), a cross-disciplinary group called the Data Models and Formats (DMF) group, has been working to develop a common data model. The current model is comprised of several layers of increasing semantic complexity. One of these layers is an abstract model based on set theory and topology called the fiber bundle kernel (FBK). This layer provides the flexibility needed to describe a wide range of mesh-approximated functions as well as other entities. This paper briefly describes the ASCI common data model, its mathematical basis, and ASCI prototype development. These prototypes include an object-oriented data management library developed at Los Alamos called the Common Data Model Library or CDMlib, the Vector Bundle API from the Lawrence Livermore Laboratory, and the DMF API from Sandia National Laboratory.

  15. Vad ska elever lära sig angående naturvetenskaplig verksamhet? - En analys av svenska läroplaner för grundskolan under 50 år. "What should students learn about scientific inquiry? A comparative study of 50 years of the Swedish national curricula."

    Directory of Open Access Journals (Sweden)

    Annie-Maj Johansson

    2012-12-01

    Full Text Available The purpose of this study is to contribute to an understanding of which changes related to scientific inquiry have been made historically in curriculum documents. A comparative analysis is made of five Swedish national curricula– Lgr 62, Lgr 69, Lgr 80, Lpo 94 and Lgr 11 – during the last 50 years regarding what compulsory school students (school years 1–9 should learn about scientific inquiry. It focuses 1 what students should learn about carrying out scientific inquiries, and 2 what students should learn about the nature of science. All of the curricula examined have aims concerning scientific inquiry. The results show that during the period there have been many shifts in emphasis and changes of aims, for example from learning an inductive method to a more deductive one, and from an emphasis on carrying out investigations to an emphasis on more conceptual understanding of scientific investigations. Because teaching traditions tend to conserve aspects of earlier curricula, it is discussed how the results can help teachers, teacher students and curriculum developers to better see the consequences of the changes for teaching and learning.

  16. The inquiry continuum: Science teaching practices and student performance on standardized tests

    Science.gov (United States)

    Jernnigan, Laura Jane

    Few research studies have been conducted related to inquiry-based scientific teaching methodologies and NCLB-required state testing. The purpose of this study was to examine the relationship between the strategies used by seventh-grade science teachers in Illinois and student scores on the Illinois Standards Achievement Test (ISAT) to aid in determining best practices/strategies for teaching middle school science. The literature review defines scientific inquiry by placing teaching strategies on a continuum of scientific inquiry methodologies from No Inquiry (Direct Instruction) through Authentic Inquiry. Five major divisions of scientific inquiry: structured inquiry, guided inquiry, learning cycle inquiry, open inquiry, and authentic inquiry, have been identified and described. These five divisions contain eight sub-categories: demonstrations; simple or hands-on activities; discovery learning; variations of learning cycles; problem-based, event-based, and project-based; and student inquiry, science partnerships, and Schwab's enquiry. Quantitative data were collected from pre- and posttests and surveys given to the participants: five seventh grade science teachers in four Academic Excellence Award and Spotlight Award schools and their 531 students. Findings revealed that teachers reported higher inquiry scores for themselves than for their students; the two greatest reported factors limiting teachers' use of inquiry were not enough time and concern about discipline and large class size. Although the correlation between total inquiry and mean difference of pre- and posttest scores was not statistically significant, the survey instrument indicated how often teachers used inquiry in their classes, not the type of inquiry used. Implications arose from the findings that increase the methodology debate between direction instruction and inquiry-based teaching strategies; teachers are very knowledgeable about the Illinois state standards, and various inquiry-based methods

  17. Relational grounding facilitates development of scientifically useful multiscale models

    Directory of Open Access Journals (Sweden)

    Lam Tai

    2011-09-01

    Full Text Available Abstract We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM. Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  18. Relational grounding facilitates development of scientifically useful multiscale models.

    Science.gov (United States)

    Hunt, C Anthony; Ropella, Glen E P; Lam, Tai ning; Gewitz, Andrew D

    2011-09-27

    We review grounding issues that influence the scientific usefulness of any biomedical multiscale model (MSM). Groundings are the collection of units, dimensions, and/or objects to which a variable or model constituent refers. To date, models that primarily use continuous mathematics rely heavily on absolute grounding, whereas those that primarily use discrete software paradigms (e.g., object-oriented, agent-based, actor) typically employ relational grounding. We review grounding issues and identify strategies to address them. We maintain that grounding issues should be addressed at the start of any MSM project and should be reevaluated throughout the model development process. We make the following points. Grounding decisions influence model flexibility, adaptability, and thus reusability. Grounding choices should be influenced by measures, uncertainty, system information, and the nature of available validation data. Absolute grounding complicates the process of combining models to form larger models unless all are grounded absolutely. Relational grounding facilitates referent knowledge embodiment within computational mechanisms but requires separate model-to-referent mappings. Absolute grounding can simplify integration by forcing common units and, hence, a common integration target, but context change may require model reengineering. Relational grounding enables synthesis of large, composite (multi-module) models that can be robust to context changes. Because biological components have varying degrees of autonomy, corresponding components in MSMs need to do the same. Relational grounding facilitates achieving such autonomy. Biomimetic analogues designed to facilitate translational research and development must have long lifecycles. Exploring mechanisms of normal-to-disease transition requires model components that are grounded relationally. Multi-paradigm modeling requires both hyperspatial and relational grounding.

  19. Structure of the scientific community modelling the evolution of resistance.

    Science.gov (United States)

    2007-12-05

    Faced with the recurrent evolution of resistance to pesticides and drugs, the scientific community has developed theoretical models aimed at identifying the main factors of this evolution and predicting the efficiency of resistance management strategies. The evolutionary forces considered by these models are generally similar for viruses, bacteria, fungi, plants or arthropods facing drugs or pesticides, so interaction between scientists working on different biological organisms would be expected. We tested this by analysing co-authorship and co-citation networks using a database of 187 articles published from 1977 to 2006 concerning models of resistance evolution to all major classes of pesticides and drugs. These analyses identified two main groups. One group, led by ecologists or agronomists, is interested in agricultural crop or stock pests and diseases. It mainly uses a population genetics approach to model the evolution of resistance to insecticidal proteins, insecticides, herbicides, antihelminthic drugs and miticides. By contrast, the other group, led by medical scientists, is interested in human parasites and mostly uses epidemiological models to study the evolution of resistance to antibiotic and antiviral drugs. Our analyses suggested that there is also a small scientific group focusing on resistance to antimalaria drugs, and which is only poorly connected with the two larger groups. The analysis of cited references indicates that each of the two large communities publishes its research in a different set of literature and has its own keystone references: citations with a large impact in one group are almost never cited by the other. We fear the lack of exchange between the two communities might slow progress concerning resistance evolution which is currently a major issue for society.

  20. Using the Activity Model of Inquiry to Enhance General Chemistry Students' Understanding of Nature of Science

    Science.gov (United States)

    Marchlewicz, Sara C.; Wink, Donald J.

    2011-01-01

    Nature of science refers to the processes of scientific activity and the social and cultural premises involved in the creation of scientific knowledge. Having an informed view of nature of science is important in the development of scientifically literate citizens. However, students often come to the classroom with misconceptions about nature of…

  1. Blending Problem Based Learning and History of Science Approaches to Enhance Views about Scientific Inquiry: New Wine in an Old Bottle

    Science.gov (United States)

    Dogan, Nihal

    2017-01-01

    In 2016, the Program for International Student Assessment (PISA) showed that approximately 44.4% of students in Turkey obtained very low grades when their scientific knowledge was evaluated. In addition, the vast majority of students were shown to have no knowledge of basic scientific terms or concepts. Science teachers play a significant role in…

  2. Using cloud-computing applications to support collaborative scientific inquiry: Examining pre-service teachers’ perceived barriers towards integration / Utilisation d'applications infonuagiques pour appuyer la recherche scientifique collaborative

    Directory of Open Access Journals (Sweden)

    Joel Donna

    2013-07-01

    Full Text Available Technology plays a crucial role in facilitating collaboration within the scientific community. Cloud-computing applications can be used to model such collaboration and support inquiry within the secondary science classroom. Little is known about pre-service teachers’ beliefs related to the envisioned use of this technology in their teaching. These beliefs may influence future integration. This study finds several first-order barriers, such as perceptions that these tools would take too much time to use. Second-order barriers include perceptions that this technology would not promote face-to-face collaboration skills, would create social loafing situations, and beliefs that the technology does not help students understand the nature of science. Suggestions for mitigating these barriers within pre-service education technology courses are discussed. La technologie joue un rôle essentiel pour faciliter la collaboration au sein de la communauté scientifique. Les applications infonuagiques telles que Google Drive peuvent être utilisées pour donner forme à ce type de collaboration et pour appuyer le questionnement dans les cours de sciences du secondaire. On connaît pourtant peu les opinions que se font les futurs enseignants d’une telle utilisation des technologies collaboratives infonuagiques. Or, ces opinions pourraient influencer l’intégration future de ces technologies en salle de classe. Cette étude révèle plusieurs obstacles de premier plan, comme l’idée que l’utilisation de ces outils informatiques prend trop de temps. Parmi les obstacles de second plan, on note les perceptions selon lesquelles cette technologie ne promeut pas les compétences collaboratives de personne à personne, pose des problèmes de gestion de classe et n'aide pas les étudiants à comprendre la nature de la science. Des suggestions sont proposées pour atténuer ces obstacles dans les cours de technologie des programmes d’éducation.

  3. Modeling nonuniversal citation distributions: the role of scientific journals

    International Nuclear Information System (INIS)

    Yao, Zheng; Peng, Xiao-Long; Xu, Xin-Jian; Zhang, Li-Jie

    2014-01-01

    Whether a scientific paper is cited is related not only to the influence of its author(s) but also to the journal publishing it. Scientists, either proficient or less experienced, usually submit their most important work to prestigious journals which receive more citations than others. How to model the role of scientific journals in citation dynamics is of great importance. In this paper we address this issue through two approaches. One is the intrinsic heterogeneity of a paper determined by the impact factor of the journal publishing it. The other is the mechanism of a paper being cited which depends on its citations and prestige. We develop a model for citation networks via an intrinsic nodal weight function and an intuitive aging mechanism. The node’s weight is drawn from the distribution of impact factors of journals and the aging transition is a function of the citation and the prestige. The node-degree distribution of resulting networks shows nonuniversal scaling: the distribution decays exponentially for small degree and has a power-law tail for large degree, hence the dual behavior. The higher the impact factor of the journal, the larger the tipping point and the smaller the power exponent that are obtained. With the increase of the journal rank, this phenomenon will fade and evolve to pure power laws. (paper)

  4. Modeling Instruction of David Hestenes: a proposal of thematic modeling cycle and discussion of scientific literacy

    Directory of Open Access Journals (Sweden)

    Ednilson Sergio Ramalho de Souza

    2016-07-01

    Full Text Available The pedagogical work with mathematical modeling assumes investigate situations of reality. However, mental models formed from the contact with the experiential world are generally incompatible with the conceptual models. So David Hestenes supports the view that one of the biggest challenges of teaching and learning in science and mathematics is to coordinate conceptual models with mental models, which led to the elaboration of a didactic in mathematical modeling: Modeling Instruction. Our goal is to present a proposal for thematic modeling cycle drawn up in hestenesianos assumptions and discuss possibilities for scientific literacy. The main question was to know how to emerge indicators for scientific literacy for the proposed cycle. This is a bibliographic research in order to identify the available literature contributions on the subject and raise the possibility and challenges for the brazilian teaching science and mathematics. Preliminary results indicate that the proposed modeling cycle can develop indicators for scientific literacy of different natures.

  5. Fictional Inquiry

    DEFF Research Database (Denmark)

    Dindler, Christian; Iversen, Ole Sejer

    At designe i en fortællemæssig ramme giver brugere og designere mulighed for i fællesskab at udforske fremtidens it-anvendelser. Metoden hedder Fictional Inquiry, og den motiverer brugerne til at tænke ud over dagligdagens begrænsninger og sætte ord på ting i hverdagen, som ellers er svære...

  6. Predatory Journals, Piracy and New Models of Publishing Scientific Articles

    Directory of Open Access Journals (Sweden)

    Zdeněk Smutný

    2016-06-01

    Full Text Available The paper responds to observed absurd impacts associated with predatory journals, both at the personal and institutional level. There is mentioned the basic procedure to identify predatory journal and how to find it in Beall’s list. Briefly are commented the consequences associated with the first study in the Czech Republic dealing with the number of articles published in predatory journals, which are inserted into the Information register of R&D results (RIV by research institutions. On this basis, a part of the funding for universities and research organizations in the Czech Republic is redistributed. Furthermore, there are commented approaches to financing journals and publishing articles, in particular, a new model of paying membership fees used by the publication platform PeerJ. Finally, the issue of the availability of scientific articles including piracy issues is discussed. Described development, which we are currently witnessing, transforms the current system of science and related publishing of scientific articles or knowledge sharing within the society.

  7. Inquiry Coaching: Scientists & Science Educators Energizing the Next Generation

    Science.gov (United States)

    Shope, R. E.; Alcantara Valverde, L.

    2007-05-01

    A recent National Academy of Sciences report recommends that science educators focus strategically on teaching the practice of science. To accomplish this, we have devised and implemented the Science Performance Laboratory, a collaborative research, education, and workforce model that brings scientists and science educators together to conduct scientific inquiry. In this session, we demonstrate how to form active inquiry teams around Arctica Science Research content areas related to the International Polar Year. We use the term "Arctica Science Research" to refer to the entire scope of exploration and discovery relating to: polar science and its global connections; Arctic and Antarctic research and climate sciences; ice and cryospheric studies on Earth; polar regions of the Moon, Mars, and Mercury; icy worlds throughout the Solar System, such as Europa, Enceladus, Titan, Pluto and the Comets; cryovolcanism; ice in interstellar space, and beyond. We apply the notion of teaching the practice science by enacting three effective strategies: 1) The Inquiry Wheel Game, in which we develop an expanded understanding of what has been traditionally taught as "the scientific method"; 2) Acting Out the Science Story, in which we develop a physicalized expression of our conceptual understanding; and 3) Selecting Success Criteria for Inquiry Coaching, in which we reframe how we evaluate science learning as we teach the practice of science.

  8. Earth's Earliest Ecosystems in the C: The Use of Microbial Mats to Demonstrate General Principles of Scientific Inquiry and Microbial Ecology

    Science.gov (United States)

    Bebout, Brad M.; Bucaria, Robin

    2006-01-01

    Microbial mats are living examples of the most ancient biological communities on Earth. As Earth's earliest ecosystems, they are centrally important to understanding the history of life on our planet and are useful models for the search for life elsewhere. As relatively compact (but complete) ecosystems, microbial mats are also extremely useful for educational activities. Mats may be used to demonstrate a wide variety of concepts in general and microbial ecology, including the biogeochemical cycling of elements, photosynthesis and respiration, and the origin of the Earth's present oxygen containing atmosphere. Microbial mats can be found in a number of common environments accessible to teachers, and laboratory microbial mats can be constructed using materials purchased from biological supply houses. With funding from NASA's Exobiology program, we have developed curriculum and web-based activities centered on the use of microbial mats as tools for demonstrating general principles in ecology, and the scientific process. Our web site (http://microbes.arc.nasa.gov) includes reference materials, lesson plans, and a "Web Lab", featuring living mats maintained in a mini-aquarium. The site also provides information as to how research on microbial mats supports NASA's goals, and various NASA missions. A photo gallery contains images of mats, microscopic views of the organisms that form them, and our own research activities. An animated educational video on the web site uses computer graphic and video microscopy to take students on a journey into a microbial mat. These activities are targeted to a middle school audience and are aligned with the National Science Standards.

  9. Modeling aspects of human memory for scientific study.

    Energy Technology Data Exchange (ETDEWEB)

    Caudell, Thomas P. (University of New Mexico); Watson, Patrick (University of Illinois - Champaign-Urbana Beckman Institute); McDaniel, Mark A. (Washington University); Eichenbaum, Howard B. (Boston University); Cohen, Neal J. (University of Illinois - Champaign-Urbana Beckman Institute); Vineyard, Craig Michael; Taylor, Shawn Ellis; Bernard, Michael Lewis; Morrow, James Dan; Verzi, Stephen J.

    2009-10-01

    Working with leading experts in the field of cognitive neuroscience and computational intelligence, SNL has developed a computational architecture that represents neurocognitive mechanisms associated with how humans remember experiences in their past. The architecture represents how knowledge is organized and updated through information from individual experiences (episodes) via the cortical-hippocampal declarative memory system. We compared the simulated behavioral characteristics with those of humans measured under well established experimental standards, controlling for unmodeled aspects of human processing, such as perception. We used this knowledge to create robust simulations of & human memory behaviors that should help move the scientific community closer to understanding how humans remember information. These behaviors were experimentally validated against actual human subjects, which was published. An important outcome of the validation process will be the joining of specific experimental testing procedures from the field of neuroscience with computational representations from the field of cognitive modeling and simulation.

  10. Infusing Authentic Inquiry into Biotechnology

    Science.gov (United States)

    Hanegan, Nikki L.; Bigler, Amber

    2009-10-01

    Societal benefit depends on the general public's understandings of biotechnology (Betsch in World J Microbiol Biotechnol 12:439-443, 1996; Dawson and Cowan in Int J Sci Educ 25(1):57-69, 2003; Schiller in Business Review: Federal Reserve Bank of Philadelphia (Fourth Quarter), 2002; Smith and Emmeluth in Am Biol Teach 64(2):93-99, 2002). A National Science Foundation funded survey of high school biology teachers reported that hands-on biotechnology education exists in advanced high school biology in the United States, but is non-existent in mainstream biology coursework (Micklos et al. in Biotechnology labs in American high schools, 1998). The majority of pre-service teacher content preparation courses do not teach students appropriate content knowledge through the process of inquiry. A broad continuum exists when discussing inquiry-oriented student investigations (Hanegan et al. in School Sci Math J 109(2):110-134, 2009). Depending on the amount of structure in teacher lessons, inquiries can often be categorized as guided or open. The lesson can be further categorized as simple or authentic (Chinn and Malhotra in Sci Educ 86(2):175-218, 2002). Although authentic inquiries provide the best opportunities for cognitive development and scientific reasoning, guided and simple inquiries are more often employed in the classroom (Crawford in J Res Sci Teach 37(9):916-937, 2000; NRC in Inquiry and the national science education standards: a guide for teaching and learning, 2000). For the purposes of this study we defined inquiry as "authentic" if original research problems were resolved (Hanegan et al. in School Sci Math J 109(2):110-134, 2009; Chinn and Malhotra in Sci Educ 86(2):175-218, 2002; Roth in Authentic school science: knowing and learning in open-inquiry science laboratories, 1995). The research question to guide this study through naturalistic inquiry research methods was: How will participants express whether or not an authentic inquiry experience enhanced

  11. Report for the Office of Scientific and Technical Information: Population Modeling of the Emergence and Development of Scientific Fields

    Energy Technology Data Exchange (ETDEWEB)

    Bettencourt, L. M. A. (LANL); Castillo-Chavez, C. (Arizona State University); Kaiser, D. (MIT); Wojick, D. E. (IIA)

    2006-10-04

    coarse-grained approach to modeling the time-evolution of scientific fields mathematically, through adaptive models of contagion. That is, our models are inspired by epidemic contact processes, but take into account the social interactions and processes whereby scientific ideas spread - social interactions gleaned from close empirical study of historical cases. Variations in model parameters can increase or hamper the speed at which a field develops. In this way, models for the spread of 'infectious' ideas can be used to identify pressure points in the process of innovation that may allow for the evaluation of possible interventions by those responsible for promoting innovation, such as funding agencies. This report is organized as follows: Section 2 introduces and discusses the population model used here to describe the dynamics behind the establishment of scientific fields. The approach is based on a succinct (coarse) description of contact processes between scientists, and is a simplified version of a general class of models developed in the course of this work. We selected this model based primarily on its ability to treat a wide range of data patterns efficiently, across several different scientific fields. We also describe our methods for estimating parameter values, our optimization techniques used to match the model to data, and our method of generating error estimates. Section 3 presents brief accounts of six case studies of scientific evolution, measured by the growth in number of active authors over time, and shows the results of fitting our model to these data, including extrapolations to the near future. Section 4 discusses these results and provides some perspectives on the values and limitations of the models used. We also discuss topics for further research which should improve our ability to predict (and perhaps influence) the course of future scientific research. Section 5 provides more detail on the broad class of epidemic models developed as

  12. Tacit Beginnings Towards a Model of Scientific Thinking

    Science.gov (United States)

    Glass, Rory J.

    2013-10-01

    The purpose of this paper is to provide an examination of the role tacit knowledge plays in understanding, and to provide a model to make such knowledge identifiable. To do this I first consider the needs of society, the ubiquity of information in our world and the future demands of the science classroom. I propose the use of more implicit or tacit understandings as foundational elements for the development of student knowledge. To justify this proposition I consider a wide range of philosophical and psychological perspectives on knowledge. Then develop a Model of Scientific Knowledge, based in large part on a similar model created by Paul Ernest (Social constructivism as a philosophy of mathematics, SUNY Press, Albany, NY, 1998a; Situated cognition and the learning of mathematics, University of Oxford Department of Educational Studies, Oxford, 1998b). Finally, I consider the work that has been done by those in fields beyond education and the ways in which tacit knowledge can be used as a starting point for knowledge building.

  13. Exploring teachers' learning: A teacher's experiences integrating scientific modeling in the science classroom

    Science.gov (United States)

    Gonzalez Maza, Mirta Elizabeth

    This study, a narrative inquiry into the teaching of models and modeling in an elementary science classroom, explores a teacher's growth in pedagogical content knowledge (PCK) as she implemented a novel curriculum adapted from the MoDeLS (Modeling Designs for the Learning of Science) project. The purpose of the study was to explore, from the teacher's point of view, the pedagogical and conceptual changes she underwent while implementing a model-based approach in her classroom. The study summarizes the teacher's experiences, her decisions about teaching, her understanding of how her choices and practices influenced her content knowledge (CK), her PCK, and her motivations for changing her teaching. During the three years of the project I collected data from four science units (Astronomy, Animal Science, Electricity, and Light). Each of the units were observed and videotaped and Ms. Delaney (pseudonym), the classroom teacher, audio-recorded her practices every day. I observed and analyzed classroom videotapes in order to explore how Ms. Delaney's modeling practices unfolded and changed in her classroom and how her PCK on modeling developed. I analyzed professional development activities and informal interviews conducted during and after the units. Subsequently I interviewed Ms. Delaney about these issues using open-ended questions and video clips of her classroom practices. Three aspects of models and modeling expressed in the MoDeLS project were taken into account as I developed categories of analysis: a) models have purpose; b) models have limitations; and c) models change. These categories and the codes proposed were revised and refined while analyzing the data. The findings from the interview analyses and the classroom practices showed that Ms. Delaney developed new CK around models and modeling throughout the three years she was involved in the project. She adapted some of the proposed strategies from the MoDeLS project and adopted them in her curriculum in ways

  14. Knowledge about Inquiry: A Study in South African High Schools

    Science.gov (United States)

    Gaigher, Estelle; Lederman, Norman; Lederman, Judith

    2014-01-01

    This paper reports a study on South African learners' knowledge about scientific inquiry using the Views About Scientific Inquiry (VASI) Questionnaire. The sample consisted of 105 grade 11 learners from 7 schools across the socio-economic spectrum in a South African city. A rubric for scoring the VASI Questionnaire was developed and refined during…

  15. Internet Inquiry

    DEFF Research Database (Denmark)

    This collection of dialogues is the only textbook of its kind. Internet Inquiry: Conversations About Method takes students into the minds of top internet researchers as they discuss how they have worked through critical challenges as they research online social environments. Editors Annette N....... Markham and Nancy K. Baym illustrate that good research choices are not random but are deliberate, studied, and internally consistent. Rather than providing single "how to" answers, this book presents distinctive and divergent viewpoints on how to think about and conduct qualitative internet studies....

  16. Critical-Inquiry-Based-Learning: Model of Learning to Promote Critical Thinking Ability of Pre-service Teachers

    Science.gov (United States)

    Prayogi, S.; Yuanita, L.; Wasis

    2018-01-01

    This study aimed to develop Critical-Inquiry-Based-Learning (CIBL) learning model to promote critical thinking (CT) ability of preservice teachers. The CIBL learning model was developed by meeting the criteria of validity, practicality, and effectiveness. Validation of the model involves 4 expert validators through the mechanism of the focus group discussion (FGD). CIBL learning model declared valid to promote CT ability, with the validity level (Va) of 4.20 and reliability (r) of 90,1% (very reliable). The practicality of the model was evaluated when it was implemented that involving 17 of preservice teachers. The CIBL learning model had been declared practice, its measuring from learning feasibility (LF) with very good criteria (LF-score = 4.75). The effectiveness of the model was evaluated from the improvement CT ability after the implementation of the model. CT ability were evaluated using the scoring technique adapted from Ennis-Weir Critical Thinking Essay Test. The average score of CT ability on pretest is - 1.53 (uncritical criteria), whereas on posttest is 8.76 (critical criteria), with N-gain score of 0.76 (high criteria). Based on the results of this study, it can be concluded that developed CIBL learning model is feasible to promote CT ability of preservice teachers.

  17. Inquiry Learning of High School Students through a Problem-Based Environmental Health Science Curriculum

    Science.gov (United States)

    Kang, Nam-Hwa; DeChenne, Sue Ellen; Smith, Grant

    2012-01-01

    The purpose of this study was to examine the degree to which high school students improved their inquiry capabilities in relation to scientific literacy through their experience of a problem-based environmental health science curriculum. The two inquiry capabilities studied were scientific questioning and approaches to inquiry into their own…

  18. Effect of Inquiry-Based Computer Simulation Modeling on Pre-Service Teachers' Understanding of Homeostasis and Their Perceptions of Design Features

    Science.gov (United States)

    Chabalengula, Vivien; Fateen, Rasheta; Mumba, Frackson; Ochs, Laura Kathryn

    2016-01-01

    This study investigated the effect of an inquiry-based computer simulation modeling (ICoSM) instructional approach on pre-service science teachers' understanding of homeostasis and its related concepts, and their perceived design features of the ICoSM and simulation that enhanced their conceptual understanding of these concepts. Fifty pre-service…

  19. THE DEVELOPMENT OF RESEARCH-BASED PHYSICS LEARNING MODEL WITH SCIENTIFIC APPROACH TO DEVELOP STUDENTS’ SCIENTIFIC PROCESSING SKILL

    Directory of Open Access Journals (Sweden)

    Usmeldi Usmeldi

    2016-04-01

    Full Text Available Physics learning in SMA N 2 Padang was implemented through theory and practicum for verifying the theories. The results of the initial survey showed that the physics teachers had not yet applied the research-based learning. Supporting facilities such as physics lab and its equipment has been already available, but it has not been utilized optimally. Research-based learning is a model that can improve scientific processing skills and learning outcomes of students. The research aimed to produce a valid, practical, and effective research-based physics learning model and devices. This research was a research and development using the 4D model of Thiagarajan. The instrument of this research are interview guides, observation sheets, sheet of validation of model and learning tools, questionnaire for both teachers’ and learners’ responses, assessment sheets for scientific processing skills, and achievement test. The results showed that the developed model and the learning devices according to the assessment of experts were declared valid. Model and learning devices were practical based on the observation and the questionnaires. The application of research-based physics learning could effectively improve scientific skills and learning outcomes of students. This model is suggested to physics teachers in high school in regard with implementing research-based learning.

  20. The split between availability and selection. Business models for scientific information, and the scientific process?

    NARCIS (Netherlands)

    Zalewska-Kurek, Katarzyna; Geurts, Petrus A.T.M.; Roosendaal, Hans E.

    2006-01-01

    The Berlin declaration on Open Access to Knowledge in the Sciences and Humanities has resulted in a strong impetus in the discussion on business models, and in particular the model of open access. A business model is defined as just the organisation of property. Consequently, business models for

  1. WFIRST: Integrated Coronagraph Design and Scientific Yield Modeling

    Science.gov (United States)

    Eldorado Riggs, A. J.; Nemati, Bijan; Gersh-Range, Jessica; Kasdin, Jeremy; Balasubramanian, Kunjithapatham; Krist, John; Ruane, Garreth; Sidick, Erkin

    2018-01-01

    The WFIRST Coronagraph Instrument (CGI) will be the first instrument to directly image cool gas giant exoplanets. To achieve its scientific goals of exoplanet imaging, exoplanet characterization, and circumstellar debris disk imaging, the CGI will carry both the shaped pupil coronagraph and hybrid Lyot coronagraph. Ongoing design work is focused on increasing the expected scientific yield by improving coronagraph performance (e.g., throughput or starlight suppression), robustness to observatory dynamics, and robustness to polarization aberrations. We present the design methodology, updated designs, and the evaluation process for choosing the designs with the highest scientific returns.

  2. ICTP: A Successful Model of International Scientific Collaboration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The importance of international scientific collaboration in the changing world where the centre of gravity of fundamental research may be moving towards the east and the south is addressed. The unique role of ICTP in supporting global science is highlighted.

  3. STEM Integration through Design and Inquiry

    Science.gov (United States)

    Johns, Gary; Mentzer, Nathan

    2016-01-01

    Teachers can find opportunities to incorporate design thinking and scientific inquiry within any lesson where a constraint of the design can be connected to a scientific experiment. Within a lesson, this connection establishes context between engineering and science and can positively impact students' learning and interest in these subjects. The…

  4. Science for all: Experiences and outcomes of students with visual impairment in a guided inquiry-based classroom

    Science.gov (United States)

    Rooks, Deborah L.

    The purpose of this study was to examine instructional experiences of students with visual impairment in an guided inquiry-based science classroom. Drawing from social constructive perspectives about teaching and learning, I focused on the initial attempts of students to participate fully in an inquiry-based astronomy unit. The astronomy unit incorporated features of project-based science inquiry and aligned with national standards. This study described the opportunities provided to and challenges faced by students with visual impairment as they participated in the guided inquiry-based learning environment. Additionally, discursive practices of students including student-generated questions, student discussions, and students' science notebook writing were examined. Also, students' alternative conceptions about scientific phenomena and changes in students' thinking during the course of instruction, if any, were described. Methods of data collection included classroom observations, video records, pre- and post-curriculum assessments, attitudes toward science measurement, student interviews, and student artifacts (i.e., science notebook entries, student-constructed models). Findings showed that student learning was enhanced when the instructor-researcher guided students in accomplishing inquiry tasks and in making sense of their inquiry experiences. Additionally, the use of appropriate reflective prompts assisted students with visual impairment to fully participate in the writing tasks of the inquiry-based learning environment. Results suggested that the quantity and quality of student-generated questions increased with extended inquiry instruction. Also, students used questions to not only establish verbal communication, but to elaborate on their own thinking and expand or explain the thinking of others. Findings suggested also that students with visual impairment have similar alternative frameworks about scientific phenomena (i.e., causes of lunar phases, reason for

  5. Building the Scientific Modeling Assistant: An interactive environment for specialized software design

    Science.gov (United States)

    Keller, Richard M.

    1991-01-01

    The construction of scientific software models is an integral part of doing science, both within NASA and within the scientific community at large. Typically, model-building is a time-intensive and painstaking process, involving the design of very large, complex computer programs. Despite the considerable expenditure of resources involved, completed scientific models cannot easily be distributed and shared with the larger scientific community due to the low-level, idiosyncratic nature of the implemented code. To address this problem, we have initiated a research project aimed at constructing a software tool called the Scientific Modeling Assistant. This tool provides automated assistance to the scientist in developing, using, and sharing software models. We describe the Scientific Modeling Assistant, and also touch on some human-machine interaction issues relevant to building a successful tool of this type.

  6. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    Science.gov (United States)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  7. Charlotte: Scientific Modeling and Simulation Under the Software as a Service Paradigm, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA spends considerable effort supporting the efforts of collaborating researchers. These researchers are interested in interacting with scientific models provided...

  8. High-Altitude Aggressions and Physiological Degeneration? The Biography of “Climate” as an Object of Scientific Inquiry in Colombia During the 19th and the Early 20th Centuries

    Directory of Open Access Journals (Sweden)

    Stefan Pohl-Valero

    2015-10-01

    Full Text Available Objective: to show the role played by experimental physiology in the way of understanding the effects of high-altitude climates on the functioning of the human body and the possibilities of progress of the Colombian nation throughout the 19th and early 20th centuries. Content: the transformation of the concept of climate as an object of scientific inquiry is explored over the studied period. This is done by analyzing investigations on respiratory capacity, nutrition and metabolism, blood chemistry and heart function in people of the eastern range of the Colombian Andes. Conclusions: beyond an institutional or disciplinary history of physiology, this article shows that some practices of experimental physiology played a role in the process of represent­ing the Colombian nation, territory, and population. The inhabitants of the Andean highlands were understood not only in terms of race and innate abilities, but also in terms of social classes and organic transformations. The idea that there was a supposed process of “physiological de­generation”, decreasing the efficiency of high-altitude workers, was tried to compensate through a “rational diet”.

  9. Inquiry-based Science Instruction in High School Biology Courses: A Multiple Case Study

    Science.gov (United States)

    Aso, Eze

    A lack of research exists about how secondary school science teachers use inquiry-based instruction to improve student learning. The purpose of this qualitative study was to explore how science teachers used inquiry-based instruction to improve student learning in high school biology courses. The conceptual framework was based on Banchi and Bell's model of increasing levels of complexity for inquiry-based instruction. A multiple case study research design was conducted of biology programs at 3 high schools in an urban school district in the northeastern region of the United States. Participants included 2 biology teachers from each of the 3 high schools. Data were collected from individual interviews with biology teachers, observations of lessons in biology, and documents related to state standards, assessments, and professional development. The first level of data analysis involved coding and categorizing the interview and observation data. A content analysis was used for the documents. The second level of data analysis involved examining data across all sources and all cases for themes and discrepancies. According to study findings, biology teachers used confirmation, structure, and guided inquiry to improve student learning. However, they found open inquiry challenging and frustrating to implement because professional development about scaffolding of instruction over time was needed, and students' reading and writing skills needed to improve. This study contributes to positive social change by providing educators and researchers with a deeper understanding about how to scaffold levels of inquiry-based science instruction in order to help students become scientifically literate citizens.

  10. Student-guided field based investigations of microplastic contamination in urban waterways as a tool to introduce environmental science students to scientific inquiry

    Science.gov (United States)

    Pondell, C.

    2016-12-01

    Microplastic pollution is becoming an increasing concern in oceanographic and environmental studies, and offers an opportunity to engage undergraduate students in environmental research using a highly relevant field of investigation. For instance, a majority of environmental science majors not only know about the Great Pacific Garbage Patch, but can also list off several statistics about its size and impact on marine life. Building on this enthusiasm for understanding the impact of microplastics on the environment, a laboratory class was designed to introduce environmental science majors to the rigors of scientific investigation using microplastic pollution in urban waterways as the focus of their laboratory experience. Over a seven-week period, students worked in small groups to design an experiment, collect samples in the field, analyze the samples in the lab, and present their findings in a university-wide forum. Their research questions focused on developing a better understanding of the transportation and fate of microplastics in the urban waterways of Washington, D.C. This presentation will explore the benefits and challenges associated with a student guided field study for environmental science undergraduates, and will describe results and student feedback from their urban microplastic field study.

  11. Modeling scientific research articles : shifting perspectives and persistent issues

    NARCIS (Netherlands)

    De Waard, Anita; Kircz, Joost

    2008-01-01

    We review over 10 years of research at Elsevier and various Dutch academic institutions on establishing a new format for the scientific research article. Our work rests on two main theoretical principles: the concept of modular documents, consisting of content elements that can exist and be

  12. Studying Plant-Rhizobium Mutualism in the Biology Classroom: Connecting the Big Ideas in Biology through Inquiry

    Science.gov (United States)

    Suwa, Tomomi; Williamson, Brad

    2014-01-01

    We present a guided-inquiry biology lesson, using the plant-rhizobium symbiosis as a model system. This system provides a rich environment for developing connections between the big ideas in biology as outlined in the College Board's new AP Biology Curriculum. Students gain experience with the practice of scientific investigation, from…

  13. The effects of inquiry based ecopedagogy model on pre-service physics teachers' motivation and achievement in environmental physics instruction

    Science.gov (United States)

    Napitupulu, Nur Dewi; Munandar, Achmad

    2017-05-01

    —Motivation plays a crucial role in learning. Motivation energizes the behavior of the individual. It also directs the behavior towards specific goals. It helps students acquire knowledge, increase initiation, persist in activities, improve achievement, and develop a sense of discipline. The purpose of this study was to investigate the effects on the achievement and motivation of pre-service teacher of the Inquiry based ecopedagogy (In-EcoP) learning process applied to environmental physics instruction. The motivation adapted to Keller's four dimensions, namely attention, relevance, confidence and satisfaction. The study involved 66 students which are divided into two classes of an environmental physics instruction. The first class used the traditional lecture format while the In-EcoP model was used in the second. The research data were obtained through the environmental physics concept test and motivation questionnaire. The data analysis was conducted using a quantitative study approach and involved a motivational survey and an academic achievement test. It was found that the experimental group students were achieve more than the students in the control group. An increase in motivation and academic achievement of the students in the experimental group was identified as well. This research demonstrates the effectiveness of the In-EcoP model for enhancing pre-service teacher motivation and academic achievement in environmental physics instruction.

  14. Using the Scientific Method to Engage Mathematical Modeling: An Investigation of pi

    Science.gov (United States)

    Archer, Lester A. C.; Ng, Karen E.

    2016-01-01

    The purpose of this paper is to explain how to use the scientific method as the framework to introduce mathematical model. Two interdisciplinary activities, targeted for students in grade 6 or grade 7, are explained to show the application of the scientific method while building a mathematical model to investigate the relationship between the…

  15. The Aysen Glacier Trail (AGT): Fostering leadership and personal growth towards understanding our place in the environment through experiential learning and scientific inquiry in northern Patagonia, Chile

    Science.gov (United States)

    Sincavage, R.; Chambers, F. B.; Leidich, J.

    2017-12-01

    The Colonia Glacier, a low elevation mid-latitude glacier, drains the lee side of the central division of the Northern Patagonian Ice Field (NPI). As such, it serves as a microcosm of conditions on the NPI as a whole. Glaciers of this type have experienced extreme variability in Holocene thickness and extent, making them excellent indicators of local and regional climate conditions. Glacial lake outburst floods (GLOFs) originating in the remote Cachet Basin, dammed by the Colonia Glacier, have increased in frequency from once every 10 years to 3 times annually since 2008. These flood events are important in that they 1.) directly impact the livelihoods of downstream residents, 2.) may be linked to the overall health of the Colonia Glacier and, to a larger extent, the NPI, 3.) provide a natural laboratory for studying the dynamics of large flood events, and 4.) have downcut the sediments sequestered in the upper basin, revealing a rich Holocene sedimentologic and climate record. With improved access to this remote region through local partners in recent years, outstanding opportunities for scientific discovery, education, and outreach exist in one of the most beautiful and least-studied glacial regions on Earth. We propose establishing an NSF REU site here to further develop the abundant educational and research opportunities in this spectacular locale. We envision students participating under the REU will receive a broad-based background in glaciology and sedimentology prior to the field experience, and then participate in basic field research led by the PIs into understanding recent and Holocene linkages between climate change and the glacio-fluvio geomorphology of the NPI. A pilot program of 13 U.S. and Chilean students with wide-ranging backgrounds and degree levels was conducted in the winter of 2015-16. A two week backcountry trek across rocky terrain, mountain streams, active glaciers, and proglacial lakes in this seldom-visited region immersed the students

  16. Learning Analytics for Communities of Inquiry

    Science.gov (United States)

    Kovanovic, Vitomir; Gaševic, Dragan; Hatala, Marek

    2014-01-01

    This paper describes doctoral research that focuses on the development of a learning analytics framework for inquiry-based digital learning. Building on the Community of Inquiry model (CoI)--a foundation commonly used in the research and practice of digital learning and teaching--this research builds on the existing body of knowledge in two…

  17. Interactive Scientific Visualization in 3D Virtual Reality Model

    Directory of Open Access Journals (Sweden)

    Filip Popovski

    2016-11-01

    Full Text Available Scientific visualization in technology of virtual reality is a graphical representation of virtual environment in the form of images or animation that can be displayed with various devices such as Head Mounted Display (HMD or monitors that can view threedimensional world. Research in real time is a desirable capability for scientific visualization and virtual reality in which we are immersed and make the research process easier. In this scientific paper the interaction between the user and objects in the virtual environment аrе in real time which gives a sense of reality to the user. Also, Quest3D VR software package is used and the movement of the user through the virtual environment, the impossibility to walk through solid objects, methods for grabbing objects and their displacement are programmed and all interactions between them will be possible. At the end some critical analysis were made on all of these techniques on various computer systems and excellent results were obtained.

  18. MODELING OF INNOVATION EDUCATIONAL ENVIRONMENT OF GENERAL EDUCATIONAL INSTITUTION: THE SCIENTIFIC APPROACHES

    OpenAIRE

    Anzhelika D. Tsymbalaru

    2010-01-01

    In the paper the scientific approaches to modeling of innovation educational environment of a general educational institution – system (analysis of object, process and result of modeling as system objects), activity (organizational and psychological structure) and synergetic (aspects and principles).

  19. The profile of middle school students in experimental planning skills through inquiry training model on heat transfer

    Science.gov (United States)

    Darwis, Rahmiati; Rustaman, Nuryani Y.

    2016-02-01

    This study aimed to describe the experimental planning skills in middle school students on the topic of heat transfer through Inquiry Training Model (ITM) with laboratory activity. This research used descriptive method with A number of middle school students (n=21) in Bone was involved as participants in this study. Data was collected through observation sheets on science process skills. Research finding shows that the experimental planning skills of the participants varied in a sense of groups and all was well developed (> 90%) after having experience learning on heat transfer through ITM. It can be shown in the data collected phase through experimentation and filled-in student worksheet, Topic of heat transfer was the last period of the whole heat topic carried out through ITM. The students carried out the investigation without following the experimental design presented in the student' workbook, instead they were active in discussions to determine the tools and materials, as well as setting the pace of work independently based on the agreement in their group, so they have had experience in planning experiments. This activity shows the various students 'creativity in designing an experiment and from that those creations the students' like scientists in proving, discovery and developing invention potency that have been there before.

  20. TSA Public Inquiry Data

    Data.gov (United States)

    Department of Homeland Security — All non-media public inquiries and complaints and responses to inquiries received by telephone, e-mail and fax, and handles contacts in English and Spanish. The data...

  1. Mobile Inquiry Based Learning

    NARCIS (Netherlands)

    Specht, Marcus

    2012-01-01

    Specht, M. (2012, 8 November). Mobile Inquiry Based Learning. Presentation given at the Workshop "Mobile inquiry-based learning" at the Mobile Learning Day 2012 at the Fernuniversität Hagen, Hagen, Germany.

  2. Maternal death inquiry and response in India - the impact of contextual factors on defining an optimal model to help meet critical maternal health policy objectives

    Directory of Open Access Journals (Sweden)

    Kalter Henry D

    2011-11-01

    Full Text Available Abstract Background Maternal death reviews have been utilized in several countries as a means of identifying social and health care quality issues affecting maternal survival. From 2005 to 2009, a standardized community-based maternal death inquiry and response initiative was implemented in eight Indian states with the aim of addressing critical maternal health policy objectives. However, state-specific contextual factors strongly influenced the effort's success. This paper examines the impact and implications of the contextual factors. Methods We identified community, public health systems and governance related contextual factors thought to affect the implementation, utilization and up-scaling of the death inquiry process. Then, according to selected indicators, we documented the contextual factors' presence and their impact on the process' success in helping meet critical maternal health policy objectives in four districts of Rajasthan, Madhya Pradesh and West Bengal. Based on this assessment, we propose an optimal model for conducting community-based maternal death inquiries in India and similar settings. Results The death inquiry process led to increases in maternal death notification and investigation whether civil society or government took charge of these tasks, stimulated sharing of the findings in multiple settings and contributed to the development of numerous evidence-based local, district and statewide maternal health interventions. NGO inputs were essential where communities, public health systems and governance were weak and boosted effectiveness in stronger settings. Public health systems participation was enabled by responsive and accountable governance. Communities participated most successfully through India's established local governance Panchayat Raj Institutions. In one instance this led to the development of a multi-faceted intervention well-integrated at multiple levels. Conclusions The impact of several contextual

  3. Maternal death inquiry and response in India--the impact of contextual factors on defining an optimal model to help meet critical maternal health policy objectives.

    Science.gov (United States)

    Kalter, Henry D; Mohan, Pavitra; Mishra, Archana; Gaonkar, Narayan; Biswas, Akhil B; Balakrishnan, Sudha; Arya, Gaurav; Babille, Marzio

    2011-11-30

    Maternal death reviews have been utilized in several countries as a means of identifying social and health care quality issues affecting maternal survival. From 2005 to 2009, a standardized community-based maternal death inquiry and response initiative was implemented in eight Indian states with the aim of addressing critical maternal health policy objectives. However, state-specific contextual factors strongly influenced the effort's success. This paper examines the impact and implications of the contextual factors. We identified community, public health systems and governance related contextual factors thought to affect the implementation, utilization and up-scaling of the death inquiry process. Then, according to selected indicators, we documented the contextual factors' presence and their impact on the process' success in helping meet critical maternal health policy objectives in four districts of Rajasthan, Madhya Pradesh and West Bengal. Based on this assessment, we propose an optimal model for conducting community-based maternal death inquiries in India and similar settings. The death inquiry process led to increases in maternal death notification and investigation whether civil society or government took charge of these tasks, stimulated sharing of the findings in multiple settings and contributed to the development of numerous evidence-based local, district and statewide maternal health interventions. NGO inputs were essential where communities, public health systems and governance were weak and boosted effectiveness in stronger settings. Public health systems participation was enabled by responsive and accountable governance. Communities participated most successfully through India's established local governance Panchayat Raj Institutions. In one instance this led to the development of a multi-faceted intervention well-integrated at multiple levels. The impact of several contextual factors on the death inquiry process could be discerned, and suggested an

  4. A Critical Synthesis of Scientific Research on Business Models and Business Model Components

    Directory of Open Access Journals (Sweden)

    Roxana CLODNIȚCHI

    2017-12-01

    Full Text Available The current volatile economic environment, globalization and evermore shorter technology cycles impact the way business is done today. Business modelling proves itself as an instrument, which may impact decisively the success or failure of a business. This is why both the business and academic community critically address this issue. The aim of this article is to contribute to the development of a unifying research agenda by synthesising the most relevant scientific research and studies. The author reviewed and analysed the scientific theoretical framework on this subject from the past 15 years. The research result consists in a systematisation on past approaches on business modelling stressing the components as they are defined by contemporary scholars. By doing this, the author aims at reconciling the fragmented and only partially overlapping definition of the concept of “business model”.

  5. Personal Inquiry Manager

    NARCIS (Netherlands)

    Suarez, Angel; Ternier, Stefaan; Specht, Marcus

    2014-01-01

    The Personal Inquiry Manager (PIM) is an integration approach based on a mobile application, based on Android, to support the IBL process and gives users mobile access to their inquiries. Moreover it facilitates a more self-directed approach as it enables to set up their own personal inquiries. The

  6. Stimulating Scientific Reasoning with Drawing-Based Modeling

    Science.gov (United States)

    Heijnes, Dewi; van Joolingen, Wouter; Leenaars, Frank

    2018-01-01

    We investigate the way students' reasoning about evolution can be supported by drawing-based modeling. We modified the drawing-based modeling tool SimSketch to allow for modeling evolutionary processes. In three iterations of development and testing, students in lower secondary education worked on creating an evolutionary model. After each…

  7. Proposing an Educational Scaling-and-Diffusion Model for Inquiry-Based Learning Designs

    Science.gov (United States)

    Hung, David; Lee, Shu-Shing

    2015-01-01

    Education cannot adopt the linear model of scaling used by the medical sciences. "Gold standards" cannot be replicated without considering process-in-learning, diversity, and student-variedness in classrooms. This article proposes a nuanced model of educational scaling-and-diffusion, describing the scaling (top-down supports) and…

  8. A reciprocal influence model of social power: Emerging principles and lines of inquiry

    NARCIS (Netherlands)

    Keltner, D.; van Kleef, G.A.; Chen, S.; Kraus, M.

    2008-01-01

    In the present chapter, we advance a reciprocal influence model of social power. Our model is rooted in evolutionist analyses of primate hierarchies, and notions that the capacity for subordinates to form alliances imposes important demands upon those in power, and that power heuristically reduces

  9. Periodic Properties and Inquiry: Student Mental Models Observed during a Periodic Table Puzzle Activity

    Science.gov (United States)

    Larson, Kathleen G.; Long, George R.; Briggs, Michael W.

    2012-01-01

    The mental models of both novice and advanced chemistry students were observed while the students performed a periodic table activity. The mental model framework seems to be an effective way of analyzing student behavior during learning activities. The analysis suggests that students do not recognize periodic trends through the examination of…

  10. History Teachers' Knowledge of Inquiry Methods: An Analysis of Cognitive Processes Used During a Historical Inquiry

    Science.gov (United States)

    Voet, Michiel; De Wever, Bram

    2017-01-01

    The present study explores secondary school history teachers' knowledge of inquiry methods. To do so, a process model, outlining five core cognitive processes of inquiry in the history classroom, was developed based on a review of the literature. This process model was then used to analyze think-aloud protocols of 20 teachers' reasoning during an…

  11. Integration of Environmental Issues in a Physics Course: 'Physics by Inquiry' High School Teachers' Integration Models and Challenges

    Science.gov (United States)

    Kimori, David Abiya

    As we approach the second quarter of the twenty-first century, one may predict that the environment will be among the dominant themes in the political and educational discourse. Over the past three decades, particular perspectives regarding the environment have begun to emerge: (i) realization by human beings that we not only live on earth and use its resources at an increasingly high rate but we also actually belong to the earth and the total ecology of all living systems, (ii) there are strong interactions among different components of the large and complex systems that make up our environment, and (iii) the rising human population and its impact on the environment is a great concern (Hughes & Mason, 2014). Studies have revealed that although the students do not have a deep understanding of environmental issues and lack environmental awareness and attitudes necessary for protecting the environment, they have great concern for the environment (Chapman & Sharma, 2001; Fien, Yencken, & Sykes, 2002). However, addressing environmental issues in the classroom and other disciplines has never been an easy job for teachers (Pennock & Bardwell, 1994; Edelson, 2007). Using multiple case studies, this study investigated how three purposefully selected physics teachers teaching a 'Physics by Inquiry' course integrated environmental topics and issues in their classroom. Particularly this study looked at what integration models and practices the three physics teachers employed in integrating environmental topics and issues in their classroom and what challenges the teachers faced while integrating environmental topics in their classrooms. Data collection methods including field notes taken from observations, teachers' interviews and a collection of artifacts and documents were used. The data were coded analyzed and organized into codes and categories guided by Fogarty (1991) models of curriculum integration and Ham and Sewing (1988) four categories of barriers to environmental

  12. Working environment with social and personal open tools for inquiry based learning: Pedagogic and diagnostic frameworks

    NARCIS (Netherlands)

    Protopsaltis, Aristos; Seitlinger, Paul; Chaimala, Foteini; Firssova, Olga; Hetzner, Sonja; Kikis-Papadakis, Kitty; Boytchev, Pavel

    2014-01-01

    The weSPOT project aims at propagating scientific inquiry as the approach for science learning and teaching in combination with today’s curricula and teaching practices The project focuses on inquiry-based learning with a theoretically sound and technology supported personal inquiry approach and it

  13. Mass Media and Global Warming: A Public Arenas Model of the Greenhouse Effect's Scientific Roots.

    Science.gov (United States)

    Neuzil, Mark

    1995-01-01

    Uses the Public Arenas model to examine the historical roots of the greenhouse effect issue as communicated in scientific literature from the early 1800s to modern times. Utilizes a constructivist approach to discuss several possible explanations for the rise and fall of global warming as a social problem in the scientific arena. (PA)

  14. CONSTRUCTION OF CONCEPTUAL MODEL OF INFORMATION SYSTEM «SCIENTIFIC RESEARCHES» AT NAPS OF UKRAINE

    Directory of Open Access Journals (Sweden)

    A. V. Kіlchenko

    2013-03-01

    Full Text Available This paper are presented the principles of construction of conceptual model of the information system «Scientific researches» for automation of management of scientific researches in NAPS of Ukraine. Research results are described in relation to forming of the fields and automation of treatment of documents in the integrated environment of MS Sharepoint, which was conducted within the limits of implementation of R&D «Scientifically methodical providing of the information system of planning of scientific researches in Academy of pedagogical sciences of Ukraine on the base of network the Internet»

  15. A methodology for constructing the calculation model of scientific spreadsheets

    NARCIS (Netherlands)

    Vos, de M.; Wielemaker, J.; Schreiber, G.; Wielinga, B.; Top, J.L.

    2015-01-01

    Spreadsheets models are frequently used by scientists to analyze research data. These models are typically described in a paper or a report, which serves as single source of information on the underlying research project. As the calculation workflow in these models is not made explicit, readers are

  16. Scientific Playworlds: a Model of Teaching Science in Play-Based Settings

    Science.gov (United States)

    Fleer, Marilyn

    2017-09-01

    Eminent scientists, like Einstein, worked with theoretical contradiction, thought experiments, mental models and visualisation—all characteristics of children's play. Supporting children's play is a strength of early childhood teachers. Promising research shows a link between imagination in science and imagination in play. A case study of 3 preschool teachers and 26 children (3.6-5.9 years; mean age of 4.6 years) over 6 weeks was undertaken, generating 59.6 h of digital observations and 788 photographs of play practices. The research sought to understand (1) how imaginative play promotes scientific learning and (2) examined how teachers engaged children in scientific play. Although play pedagogy is a strength of early childhood teachers, it was found that transforming imaginary situations into scientific narratives requires different pedagogical characteristics. The study found that the building of collective scientific narratives alongside of discourses of wondering were key determinants of science learning in play-based settings. Specifically, the pedagogical principles of using a cultural device that mirrors the science experiences, creating imaginary scientific situations, collectively building scientific problem situations, and imagining the relations between observable contexts and non-observable concepts, changed everyday practices into a scientific narrative and engagement. It is argued that these unique pedagogical characteristics promote scientific narratives in play-based settings. An approach, named as Scientific Playworlds, is presented as a possible model for teaching science in play-based settings.

  17. Conceptualising inquiry based education in mathematics

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Artigue, Michéle

    2013-01-01

    The terms inquiry-based learning (IBL) and inquiry-based education (IBE) have appeared with increasing frequency in educational policy and curriculum documents related to mathematics and science education over the past decade, indicating a major educational trend. We go back to the origin...... frameworks in mathematics education. Six such frameworks are analysed from the perspective of inquiry: the problem-solving tradition, the Theory of Didactical Situations, the Realistic Mathematics Education programme, the mathematical modelling perspective, the Anthropological Theory of Didactics...... of inquiry as a pedagogical concept in the work of Dewey (e.g. 1916, 1938) to analyse and discuss its migration to science and mathematics education. For conceptualizing inquiry-based mathematics education (IBME) it is important to analyse how this concept resonates with already well-established theoretical...

  18. Naturalistic Inquiry in E-Learning Research

    Directory of Open Access Journals (Sweden)

    Shirley Agostinho

    2005-03-01

    Full Text Available In this article, the author explains how and why one particular qualitative research approach, the naturalistic inquiry paradigm, was implemented in an e-learning research study that investigated the use of the World Wide Web technology in higher education. A framework is presented that situates the research study within the qualitative research literature. The author then justifies how the study was compliant with naturalistic inquiry and concludes by presenting a model for judging the quality of such research. The purpose of this article is to provide an example of how naturalistic inquiry can be implemented in e-learning research that can serve as a guide for researchers undertaking this form of qualitative inquiry. As such, the focus of the article is to illustrate how methodological issues pertaining to naturalistic inquiry were addressed and justified to represent a rigorous research approach rather than presenting the results of the research study.

  19. A germ for young European scientists: Drawing-based modelling.

    NARCIS (Netherlands)

    van Joolingen, Wouter|info:eu-repo/dai/nl/073458872

    2017-01-01

    An important movement in European science education is that learning should be inquiry-based and represents realistic scientific practice. The inquiry-based nature of science education is essential to interest more young people for a career in science and technology. Creating models is broadly seen

  20. The Teaching and Assessment of Inquiry Competences

    DEFF Research Database (Denmark)

    Rönnebeck, Silke; Nielsen, Jan Alexis; Olley, Christopher

    2018-01-01

    need to be accompanied by changes in assess-ment in order to be sustainable. Teaching and learning goals need to be aligned and assessment methods developed that allow for the assessment of competences related to scientific inquiry, mathematical problem solving or design and innova-tion processes......New competence-oriented learning goals can only be sustainably implemented if they are aligned with teaching and assessment goals. Within the fields of science, technology and mathematics education, one approach of compe-tence-oriented teaching is based on the concept of inquiry-based education....... Scien-tific inquiry in science, problem solving in mathematics, design processes in tech-nology and innovation as a cross-curricular approach to teaching and learning that is emphasised as a key element of 21st century skills allow students to engage in the thinking and working processes of scientists...

  1. GeoPro: Technology to Enable Scientific Modeling

    International Nuclear Information System (INIS)

    C. Juan

    2004-01-01

    Development of the ground-water flow model for the Death Valley Regional Groundwater Flow System (DVRFS) required integration of numerous supporting hydrogeologic investigations. The results from recharge, discharge, hydraulic properties, water level, pumping, model boundaries, and geologic studies were integrated to develop the required conceptual and 3-D framework models, and the flow model itself. To support the complex modeling process and the needs of the multidisciplinary DVRFS team, a hardware and software system called GeoPro (Geoscience Knowledge Integration Protocol) was developed. A primary function of GeoPro is to manage the large volume of disparate data compiled for the 100,000-square-kilometer area of southern Nevada and California. The data are primarily from previous investigations and regional flow models developed for the Nevada Test Site and Yucca Mountain projects. GeoPro utilizes relational database technology (Microsoft SQL Server(trademark)) to store and manage these tabular point data, groundwater flow model ASCII data, 3-D hydrogeologic framework data, 2-D and 2.5-D GIS data, and text documents. Data management consists of versioning, tracking, and reporting data changes as multiple users access the centralized database. GeoPro also supports the modeling process by automating the routine data transformations required to integrate project software. This automation is also crucial to streamlining pre- and post-processing of model data during model calibration. Another function of GeoPro is to facilitate the dissemination and use of the model data and results through web-based documents by linking and allowing access to the underlying database and analysis tools. The intent is to convey to end-users the complex flow model product in a manner that is simple, flexible, and relevant to their needs. GeoPro is evolving from a prototype system to a production-level product. Currently the DVRFS pre- and post-processing modeling tools are being re

  2. Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model

    Science.gov (United States)

    Hardianti, D.; Priatna, N.; Priatna, B. A.

    2017-09-01

    This research aims to analysis students’ geometric thinking ability and theoretically examine the process-oriented guided iquiry (POGIL) model. This study uses qualitative approach with descriptive method because this research was done without any treatment on subjects. Data were collected naturally. This study was conducted in one of the State Junior High School in Bandung. The population was second grade students and the sample was 32 students. Data of students’ geometric thinking ability were collected through geometric thinking test. These questions are made based on the characteristics of geometry thinking based on van hiele’s theory. Based on the results of the analysis and discussion, students’ geometric thinking ability is still low so it needs to be improved. Therefore, an effort is needed to overcome the problems related to students’ geometric thinking ability. One of the efforts that can be done by doing the learning that can facilitate the students to construct their own geometry concept, especially quadrilateral’s concepts so that students’ geometric thinking ability can enhance maximally. Based on study of the theory, one of the learning models that can enhance the students’ geometric thinking ability is POGIL model.

  3. Modelling Relationships between Students' Academic Achievement and Community of Inquiry in an Online Learning Environment for a Blended Course

    Science.gov (United States)

    Choy, Jeanette Lyn Fung; Quek, Choon Lang

    2016-01-01

    With the advancement in technology, learners are spending a substantial amount of time on online learning. Guided by the community of inquiry (CoI) framework (Garrison, Anderson, & Archer, 1999), this study examined the relationships among students' perceived teaching element, social element, cognitive element, satisfaction, continuous…

  4. Effects of face-to-face versus chat communication on performance in a collaborative inquiry modeling task

    NARCIS (Netherlands)

    Sins, P.H.M.; Savelsbergh, E.R.; van Joolingen, W.R.; van Hout-Wolters, B.H.A.M.

    2011-01-01

    In many contemporary collaborative inquiry learning environments, chat is being used as a means for communication. Still, it remains an open issue whether chat communication is an appropriate means to support the deep reasoning process students need to perform in such environments. Purpose of the

  5. Effects of Face-to-Face versus Chat Communication on Performance in a Collaborative Inquiry Modeling Task

    Science.gov (United States)

    Sins, Patrick H. M.; Savelsbergh, Elwin R.; van Joolingen, Wouter R.; van Hout-Wolters, Bernadette H. A. M.

    2011-01-01

    In many contemporary collaborative inquiry learning environments, chat is being used as a means for communication. Still, it remains an open issue whether chat communication is an appropriate means to support the deep reasoning process students need to perform in such environments. Purpose of the present study was to compare the impact of chat…

  6. The Community of Inquiry Framework Meets the SOLO Taxonomy: A Process-Product Model of Online Learning

    Science.gov (United States)

    Shea, Peter; Gozza-Cohen, Mary; Uzuner, Sedef; Mehta, Ruchi; Valtcheva, Anna Valentinova; Hayes, Suzanne; Vickers, Jason

    2011-01-01

    This paper presents both a conceptual and empirical investigation of teaching and learning in online courses. Employing both the Community of Inquiry framework (CoI) and the Structure of Observed Learning Outcomes (SOLO) taxonomy, two complete online courses were examined for the quality of both collaborative learning processes and learning…

  7. U.S. Geoid Heights, Scientific Model (G96SSS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' geoid height grid for the conterminous United States is the G96SSS model. The computation used about 1.8 million terrestrial and marine gravity data held in...

  8. Involving mental health service users in suicide-related research: a qualitative inquiry model.

    Science.gov (United States)

    Lees, David; Procter, Nicholas; Fassett, Denise; Handley, Christine

    2016-03-01

    To describe the research model developed and successfully deployed as part of a multi-method qualitative study investigating suicidal service-users' experiences of mental health nursing care. Quality mental health care is essential to limiting the occurrence and burden of suicide, however there is a lack of relevant research informing practice in this context. Research utilising first-person accounts of suicidality is of particular importance to expanding the existing evidence base. However, conducting ethical research to support this imperative is challenging. The model discussed here illustrates specific and more generally applicable principles for qualitative research regarding sensitive topics and involving potentially vulnerable service-users. Researching into mental health service users with first-person experience of suicidality requires stakeholder and institutional support, researcher competency, and participant recruitment, consent, confidentiality, support and protection. Research with service users into their experiences of sensitive issues such as suicidality can result in rich and valuable data, and may also provide positive experiences of collaboration and inclusivity. If challenges are not met, objectification and marginalisation of service-users may be reinforced, and limitations in the evidence base and service provision may be perpetuated.

  9. An evidence-based patient-centered method makes the biopsychosocial model scientific.

    Science.gov (United States)

    Smith, Robert C; Fortin, Auguste H; Dwamena, Francesca; Frankel, Richard M

    2013-06-01

    To review the scientific status of the biopsychosocial (BPS) model and to propose a way to improve it. Engel's BPS model added patients' psychological and social health concerns to the highly successful biomedical model. He proposed that the BPS model could make medicine more scientific, but its use in education, clinical care, and, especially, research remains minimal. Many aver correctly that the present model cannot be defined in a consistent way for the individual patient, making it untestable and non-scientific. This stems from not obtaining relevant BPS data systematically, where one interviewer obtains the same information another would. Recent research by two of the authors has produced similar patient-centered interviewing methods that are repeatable and elicit just the relevant patient information needed to define the model at each visit. We propose that the field adopt these evidence-based methods as the standard for identifying the BPS model. Identifying a scientific BPS model in each patient with an agreed-upon, evidence-based patient-centered interviewing method can produce a quantum leap ahead in both research and teaching. A scientific BPS model can give us more confidence in being humanistic. In research, we can conduct more rigorous studies to inform better practices. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Modeling with data tools and techniques for scientific computing

    CERN Document Server

    Klemens, Ben

    2009-01-01

    Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods

  11. Teaching Art Criticism As Aesthetic Inquiry

    Science.gov (United States)

    Ecker, David W.

    1972-01-01

    The teaching model in the visual arts will be derived less from the painter and more from the art critic as art education moves into aesthetic inquiry. There are implications for other arts as well. (Editor)

  12. Tacit Beginnings towards a Model of Scientific Thinking

    Science.gov (United States)

    Glass, Rory J.

    2013-01-01

    The purpose of this paper is to provide an examination of the role tacit knowledge plays in understanding, and to provide a model to make such knowledge identifiable. To do this I first consider the needs of society, the ubiquity of information in our world and the future demands of the science classroom. I propose the use of more implicit or…

  13. The influence of a Classroom Model of Scientific Scholarship on Four Girls' Trajectories of Identification with Science

    Science.gov (United States)

    Cook, Melissa Sunshine

    This study examines the teacher's role in shaping the identity construction resources available in a classroom and the ways in which individual students take up, modify, and appropriate those resources to construct themselves as scientists through interaction with their teacher and peers. Drawing on frameworks of identity construction and social positioning, I propose that the locally-negotiated classroom-level cultural model of what it means to be a "good" science student forms the arena in which students construct a sense of their own competence at, affiliation with, and interest in science. The setting for this study was a 6th grade science class at a progressive urban elementary school whose population roughly represents the ethnic and socioeconomic diversity of the state of California. The teacher was an experienced science and math teacher interested in social justice and inquiry teaching. Drawing from naturalistic observations, video and artifact analysis, survey data, and repeated interviews with students and the teacher, I demonstrated what it meant to be a "good" science student in this particular cultural community by analyzing what was required, reinforced, and rewarded in this classroom. Next, I traced the influence of this particular classroom's conception of what it meant to be good at science on the trajectories of identification with science of four 6th grade girls selected to represent a variety of stances towards science, levels of classroom participation, and personal backgrounds. Scientific scholarship in this class had two parts: values related to science as a discipline, and a more generic set of school-related values one might see in any classroom. Different meanings of and values for science were indexed in the everyday activities of the classroom: science as a language for describing the natural world, science as a set of rhetorical values, science as an adult social community, and science as a place for mess and explosions. Among school

  14. Data Relationships: Towards a Conceptual Model of Scientific Data Catalogs

    Science.gov (United States)

    Hourcle, J. A.

    2008-12-01

    As the amount of data, types of processing and storage formats increase, the total number of record permutations increase dramatically. The result is an overwhelming number of records that make identifying the best data object to answer a user's needs more difficult. The issue is further complicated as each archive's data catalog may be designed around different concepts - - anything from individual files to be served, series of similarly generated and processed data, or something entirely different. Catalogs may not only be flat tables, but may be structured as multiple tables with each table being a different data series, or a normalized structure of the individual data files. Merging federated search results from archives with different catalog designs can create situations where the data object of interest is difficult to find due to an overwhelming number of seemingly similar or entirely unwanted records. We present a reference model for discussing data catalogs and the complex relationships between similar data objects. We show how the model can be used to improve scientist's ability to quickly identify the best data object for their purposes and discuss technical issues required to use this model in a federated system.

  15. ANALYZE THE KNOWLEDGE INQUIRY SCIENCE PHYSICS TEACHER CANDIDATES WITH ESSENCE INQUIRY SCIENCE TEST INSTRUMENT OPTIKA GEOMETRY

    Directory of Open Access Journals (Sweden)

    Wawan Bunawan

    2013-06-01

    Full Text Available The objective in this research to explore the relationship between ability of the knowledge essential features inquiry science and their reasons underlying sense of scientific inquiry for physics teacher candidates on content geometrical optics. The essential features of inquiry science are components that should arise during the learning process subject matter of geometrical optics reflectance of light on a flat mirror, the reflection of light on curved mirrors and refraction of light at the lens. Five of essential features inquiry science adopted from assessment system developed by the National Research Council. Content geometrical optics developed from an analysis of a college syllabus material. Based on the study of the essential features of inquiry and content develop the multiple choice diagnostic test three tier. Data were taken from the students who are taking courses in optics and wave from one the LPTK in North Sumatra totaled 38 students. Instruments showed Cronbach alpha reliability of 0.67 to test the essential features of inquiry science and 0.61 to there as on geometrical optics science inquiry.

  16. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    Directory of Open Access Journals (Sweden)

    Gryk Michael R

    2007-01-01

    Full Text Available Abstract Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting

  17. Scientific models red atoms, white lies and black boxes in a yellow book

    CERN Document Server

    Gerlee, Philip

    2016-01-01

    A zebrafish, the hull of a miniature ship, a mathematical equation and a food chain - what do these things have in common? They are examples of models used by scientists to isolate and study particular aspects of the world around us. This book begins by introducing the concept of a scientific model from an intuitive perspective, drawing parallels to mental models and artistic representations. It then recounts the history of modelling from the 16th century up until the present day. The iterative process of model building is described and discussed in the context of complex models with high predictive accuracy versus simpler models that provide more of a conceptual understanding. To illustrate the diversity of opinions within the scientific community, we also present the results of an interview study, in which ten scientists from different disciplines describe their views on modelling and how models feature in their work. Lastly, it includes a number of worked examples that span different modelling approaches a...

  18. Inquiry based learning with a virtual microscope

    Science.gov (United States)

    Kelley, S. P.; Sharples, M.; Tindle, A.; Villasclaras-Fernández, E.

    2012-12-01

    As part of newly funded initiative, the Wolfson OpenScience Laboratory, we are linking a tool for inquiry based learning, nQuire (http://www.nquire.org.uk) with the virtual microscope for Earth science (http://www.virtualmicroscope.co.uk) to allow students to undertake projects and gain from inquiry based study thin sections of rocks without the need for a laboratory with expensive petrological microscopes. The Virtual Microscope (VM) was developed for undergraduate teaching of petrology and geoscience, allowing students to explore rock hand specimens and thin sections in a browser window. The system is based on HTML5 application and allows students to scan and zoom the rocks in a browser window, view in ppl and xpl conditions, and rotate specific areas to view birefringence and pleochroism. Importantly the VM allows students to gain access to rare specimens such as Moon rocks that might be too precious to suffer loss or damage. Experimentation with such specimens can inspire the learners' interest in science and allows them to investigate relevant science questions. Yet it is challenging for learners to engage in scientific processes, as they may lack scientific investigation skills or have problems in planning their activities; for teachers, managing inquiry activities is a demanding task (Quintana et al., 2004). To facilitate the realization of inquiry activities, the VM is being integrated with the nQuire tool. nQuire is a web tool that guides and supports students through the inquiry process (Mulholland et al., 2011). Learners are encouraged to construct their own personally relevant hypothesis, pose scientific questions, and plan the method to answer them. Then, the system enables users to collect and analyze data, and share their conclusions. Teachers can monitor their students' progress through inquiries, and give them access to new parts of inquiries as they advance. By means of the integration of nQuire and the VM, inquiries that involve collecting data

  19. An inquiry-based programming lesson

    Science.gov (United States)

    Douglas, Stephanie; Rice, Emily; Derdzinski, Andrea

    2016-03-01

    We designed a 2-day inquiry activity where students learned about error analysis and coding practices in Python. Inquiry-based lessons provide students with opportunities to independently investigate scientific concepts and tools. A general structure is developed ahead of time and minimal, careful guidance provided during the activity, but students are given as much freedom as possible to explore the concepts at their own pace. We designed our activity to help students learn to write flexible, re-usable, and readable code. I will describe the lesson structure we initially designed, as well as what aspects worked for our students (or didn't) and our experience leading the activity.

  20. Whole earth modeling: developing and disseminating scientific software for computational geophysics.

    Science.gov (United States)

    Kellogg, L. H.

    2016-12-01

    Historically, a great deal of specialized scientific software for modeling and data analysis has been developed by individual researchers or small groups of scientists working on their own specific research problems. As the magnitude of available data and computer power has increased, so has the complexity of scientific problems addressed by computational methods, creating both a need to sustain existing scientific software, and expand its development to take advantage of new algorithms, new software approaches, and new computational hardware. To that end, communities like the Computational Infrastructure for Geodynamics (CIG) have been established to support the use of best practices in scientific computing for solid earth geophysics research and teaching. Working as a scientific community enables computational geophysicists to take advantage of technological developments, improve the accuracy and performance of software, build on prior software development, and collaborate more readily. The CIG community, and others, have adopted an open-source development model, in which code is developed and disseminated by the community in an open fashion, using version control and software repositories like Git. One emerging issue is how to adequately identify and credit the intellectual contributions involved in creating open source scientific software. The traditional method of disseminating scientific ideas, peer reviewed publication, was not designed for review or crediting scientific software, although emerging publication strategies such software journals are attempting to address the need. We are piloting an integrated approach in which authors are identified and credited as scientific software is developed and run. Successful software citation requires integration with the scholarly publication and indexing mechanisms as well, to assign credit, ensure discoverability, and provide provenance for software.

  1. Online Library of Scientific Models, A New Way to Teach, Learn, and Share Learning Experience

    Directory of Open Access Journals (Sweden)

    Hatem H. Elrefaei

    2008-05-01

    Full Text Available While scientific models are usually communicated in paper format, the need to reprogram every model by every user results in a huge loss of efforts, time and money, hence lengthening the educational and research developing cycle and loosing the learning experience and expertise gained by every user. We demonstrate a new portal www.imodelit.com that hosts a library of scientific models for electrical engineers in the form of java applets. They are all conformal, informative, with strong input and output filing system. The software design allows a fast developing cycle and it represents a strong infrastructure that can be shared by researchers to develop their own applets to be posted on the library. We aim for a community based library of scientific models that enhances the e-learning process for engineering students.

  2. Developing Students’ Reflections about the Function and Status of Mathematical Modeling in Different Scientific Practices

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical...... position held by the modeler(s) and the practitioners in the extra-mathematical domain. For students to experience the significance of different scientific practices and cultures for the function and status of mathematical modeling in other sciences, students need to be placed in didactical situations...... where such differences are exposed and made into explicit objects of their reflections. It can be difficult to create such situations in the teaching of contemporary science in which modeling is part of the culture. In this paper we show how history can serve as a means for students to be engaged...

  3. Evaluation of Student Models on Current Socio-Scientific Topics Based on System Dynamics

    Science.gov (United States)

    Nuhoglu, Hasret

    2014-01-01

    This study aims to 1) enable primary school students to develop models that will help them understand and analyze a system, through a learning process based on system dynamics approach, 2) examine and evaluate students' models related to socio-scientific issues using certain criteria. The research method used is a case study. The study sample…

  4. Model-as-you-go for Choreographies : Rewinding and Repeating Scientific Choreographies

    NARCIS (Netherlands)

    Weiss, Andreass; Andrikopoulos, Vasilios; Hahn, Michael; Karastoyanova, Dimka

    2017-01-01

    Scientists are increasingly using the workflow technology as a means for modeling and execution of scientific experiments. Despite being a very powerful paradigm workflows still lack support for trial-and-error modeling, as well as flexibility mechanisms that enable the ad hoc repetition of

  5. Framing Negotiation: Dynamics of Epistemological and Positional Framing in Small Groups during Scientific Modeling

    Science.gov (United States)

    Shim, Soo-Yean; Kim, Heui-Baik

    2018-01-01

    In this study, we examined students' epistemological and positional framing during small group scientific modeling to explore their context-dependent perceptions about knowledge, themselves, and others. We focused on two small groups of Korean eighth-grade students who participated in six modeling activities about excretion. The two groups were…

  6. Building a model based on scientific consensus for Life Cycle Impact Assessment of chemicals:

    DEFF Research Database (Denmark)

    Hauschild, Michael Zwicky; Huijbregts, Mark; Jolliet, Olivier

    2008-01-01

    Achieving consensus among scientists is often a challenge - particularly in model development. In this article we describe a recent scientific consensus-building process for Life Cycle Impact Assessment (LCIA) models applied to chemical emissions - including the strategy, execution, and results...

  7. Identifying Multiple Levels of Discussion-Based Teaching Strategies for Constructing Scientific Models

    Science.gov (United States)

    Williams, Grant; Clement, John

    2015-01-01

    This study sought to identify specific types of discussion-based strategies that two successful high school physics teachers using a model-based approach utilized in attempting to foster students' construction of explanatory models for scientific concepts. We found evidence that, in addition to previously documented dialogical strategies that…

  8. Education for the '80's - And Beyond the Socio-Scientific Reasoning Model.

    Science.gov (United States)

    Iozzi, Louis A.

    Research and theories by psychologists Jean Piaget, Lawrence Kohlberg, and Robert Selman on problem solving, decision making, moral development, and critical-thinking skills are reviewed. These theories and research are combined with the author's theories to develop an original decision-making model, namely, the socio-scientific model. The model…

  9. Toward a Model of Social Influence that Explains Minority Student Integration into the Scientific Community

    Science.gov (United States)

    Estrada, Mica; Woodcock, Anna; Hernandez, Paul R.; Schultz, P. Wesley

    2010-01-01

    Students from several ethnic minority groups are underrepresented in the sciences, such that minority students more frequently drop out of the scientific career path than non-minority students. Viewed from a perspective of social influence, this pattern suggests that minority students do not integrate into the scientific community at the same rate as non-minority students. Kelman (1958, 2006) describes a tripartite integration model of social influence (TIMSI) by which a person orients to a social system. To test if this model predicts integration into the scientific community, we conducted analyses of data from a national panel of minority science students. A structural equation model framework showed that self-efficacy (operationalized consistent with Kelman’s ‘rule-orientation’) predicted student intentions to pursue a scientific career. However, when identification as a scientist and internalization of values are added to the model, self-efficacy becomes a poorer predictor of intention. Additional mediation analyses support the conclusion that while having scientific self-efficacy is important, identifying with and endorsing the values of the social system reflect a deeper integration and more durable motivation to persist as a scientist. PMID:21552374

  10. Using a Core Scientific Metadata Model in Large-Scale Facilities

    Directory of Open Access Journals (Sweden)

    Brian Matthews

    2010-07-01

    Full Text Available In this paper, we present the Core Scientific Metadata Model (CSMD, a model for the representation of scientific study metadata developed within the Science & Technology Facilities Council (STFC to represent the data generated from scientific facilities. The model has been developed to allow management of and access to the data resources of the facilities in a uniform way, although we believe that the model has wider application, especially in areas of “structural science” such as chemistry, materials science and earth sciences. We give some motivations behind the development of the model, and an overview of its major structural elements, centred on the notion of a scientific study formed by a collection of specific investigations. We give some details of the model, with the description of each investigation associated with a particular experiment on a sample generating data, and the associated data holdings are then mapped to the investigation with the appropriate parameters. We then go on to discuss the instantiation of the metadata model within a production quality data management infrastructure, the Information CATalogue (ICAT, which has been developed within STFC for use in large-scale photon and neutron sources. Finally, we give an overview of the relationship between CSMD, and other initiatives, and give some directions for future developments.    

  11. Science teacher candidates' perceptions about roles and nature of scientific models

    Science.gov (United States)

    Yenilmez Turkoglu, Ayse; Oztekin, Ceren

    2016-05-01

    Background: Scientific models have important roles in science and science education. For scientists, they provide a means for generating new knowledge or function as an accessible summary of scientific studies. In science education, on the other hand, they are accessible representations of abstract concepts, and are also organizational frameworks to teach and learn inaccessible facts. As being indispensable parts of learning and doing science, use of scientific models in science classes should be reinforced. At this point, uncovering pre-service science teachers' (PSTs) understandings of scientific models are of great importance since they will design and conduct teaching situations for their students. Purpose: The study aimed to provide an answer to the research question: What understandings do PSTs possess about scientific models? Sample: The sample of the study consisted of 14 PSTs enrolled in an Elementary Science Education program in a public university in Ankara, Turkey. Design and methods: Data were collected by using an open-item instrument and semi-structured interviews, and were analyzed by using qualitative data analysis methods. Results: Findings showed that PSTs held fragmented views of models by having informed views in some aspects while having naïve views on others. That is, although they displayed a constructivist orientation by acknowledging the presence of multiple models for the same phenomenon depending on scientists' perspectives or creativity involved in the production of scientific knowledge, PSTs also expressed logical positivist views by believing that models should be close to the real phenomena that they represent. Findings further revealed that PSTs generally conceptualized models' materialistic uses, yet they did not think much about their theoretical and conceptual uses. It was observed that roles like reifying and visualizing were overestimated and models were dominantly characterized as three-dimensional representations

  12. A Comparative Analysis of Earth Science Curriculum Using Inquiry Methodology between Korean and the U.S. Textbooks

    Science.gov (United States)

    Park, Mira; Park, Do-Yong; Lee, Robert E.

    2009-01-01

    The purpose of this study is to investigate in what ways the inquiry task of teaching and learning in earth science textbooks reflect the unique characteristics of earth science inquiry methodology, and how it provides students with opportunities to develop their scientific reasoning skills. This study analyzes a number of inquiry activities in…

  13. Development of Animal Physiology Practical Guidance Oriented Guided Inquiry for Student of Biology Department

    Science.gov (United States)

    Putra, Z. A. Z.; Sumarmin, R.; Violita, V.

    2018-04-01

    The guides used for practicing animal physiology need to be revised and adapted to the lecture material. This is because in the subject of Animal Physiology. The guidance of animal physiology practitioners is still conventional with prescription model instructions and is so simple that it is necessary to develop a practical guide that can lead to the development of scientific work. One of which is through practice guided inquiry guided practicum guide. This study aims to describe the process development of the practical guidance and reveal the validity, practicality, and effectiveness Guidance Physiology Animals guided inquiry inferior to the subject of Animal Physiology for students Biology Department State University of Padang. This type of research is development research. This development research uses the Plomp model. Stages performed are problem identification and analysis stage, prototype development and prototyping stage, and assessment phase. Data analysis using descriptive analysis. The instrument of data collection using validation and practical questionnaires, competence and affective field of competence observation and psychomotor and cognitive domain competence test. The result of this research shows that guidance of Inquiry Guided Initiative Guided Physiology with 3.23 valid category, practicality by lecturer with value 3.30 practical category, student with value 3.37 practical criterion. Affective effectiveness test with 93,00% criterion is very effective, psychomotor aspect 89,50% with very effective criteria and cognitive domain with value of 67, pass criterion. The conclusion of this research is Guided Inquiry Student Guided Protoxial Guidance For Students stated valid, practical and effective.

  14. Connecting Inquiry and Values in Science Education - An Approach Based on John Dewey's Philosophy

    Science.gov (United States)

    Lee, Eun Ah; Brown, Matthew J.

    2018-01-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  15. Connecting Inquiry and Values in Science Education. An Approach Based on John Dewey's Philosophy

    Science.gov (United States)

    Lee, Eun Ah; Brown, Matthew J.

    2018-03-01

    Conducting scientific inquiry is expected to help students make informed decisions; however, how exactly it can help is rarely explained in science education standards. According to classroom studies, inquiry that students conduct in science classes seems to have little effect on their decision-making. Predetermined values play a large role in students' decision-making, but students do not explore these values or evaluate whether they are appropriate to the particular issue they are deciding, and they often ignore relevant scientific information. We explore how to connect inquiry and values, and how this connection can contribute to informed decision-making based on John Dewey's philosophy. Dewey argues that scientific inquiry should include value judgments and that conducting inquiry can improve the ability to make good value judgments. Value judgment is essential to informed, rational decision-making, and Dewey's ideas can explain how conducting inquiry can contribute to make an informed decision through value judgment. According to Dewey, each value judgment during inquiry is a practical judgment guiding action, and students can improve their value judgments by evaluating their actions during scientific inquiry. Thus, we suggest that students need an opportunity to explore values through scientific inquiry and that practicing value judgment will help informed decision-makings.

  16. XSIM Final Report: Modelling the Past and Future of Identity Management for Scientific Collaborations

    Energy Technology Data Exchange (ETDEWEB)

    Cowles, Robert; Jackson, Craig; Welch, Von

    2016-08-31

    The eXtreme Science Identity Management (XSIM1) research project: collected and analyzed real world data on virtual organization (VO) identity management (IdM) representing the last 15+ years of collaborative DOE science; constructed a descriptive VO IdM model based on that data; used the model and existing trends to project the direction for IdM in the 2020 timeframe; and provided guidance to scientific collaborations and resource providers that are implementing or seeking to improve IdM functionality. XSIM conducted over 20 semi­structured interviews of representatives from scientific collaborations and resource providers, both in the US and Europe; the interviewees supported diverse set of scientific collaborations and disciplines. We developed a definition of “trust,” a key concept in IdM, to understand how varying trust models affect where IdM functions are performed. The model identifies how key IdM data elements are utilized in collaborative scientific workflows, and it has the flexibility to describe past, present and future trust relationships and IdM implementations. During the funding period, we gave more than two dozen presentations to socialize our work, encourage feedback, and improve the model; we also published four refereed papers. Additionally, we developed, presented, and received favorable feedback on three white papers providing practical advice to collaborations and/or resource providers.

  17. Middle-School Science Students' Scientific Modelling Performances Across Content Areas and Within a Learning Progression

    Science.gov (United States)

    Bamberger, Yael M.; Davis, Elizabeth A.

    2013-01-01

    This paper focuses on students' ability to transfer modelling performances across content areas, taking into consideration their improvement of content knowledge as a result of a model-based instruction. Sixty-five sixth grade students of one science teacher in an urban public school in the Midwestern USA engaged in scientific modelling practices that were incorporated into a curriculum focused on the nature of matter. Concept-process models were embedded in the curriculum, as well as emphasis on meta-modelling knowledge and modelling practices. Pre-post test items that required drawing scientific models of smell, evaporation, and friction were analysed. The level of content understanding was coded and scored, as were the following elements of modelling performance: explanation, comparativeness, abstraction, and labelling. Paired t-tests were conducted to analyse differences in students' pre-post tests scores on content knowledge and on each element of the modelling performances. These are described in terms of the amount of transfer. Students significantly improved in their content knowledge for the smell and the evaporation models, but not for the friction model, which was expected as that topic was not taught during the instruction. However, students significantly improved in some of their modelling performances for all the three models. This improvement serves as evidence that the model-based instruction can help students acquire modelling practices that they can apply in a new content area.

  18. Assessing Dimensions of Inquiry Practice by Middle School Science Teachers Engaged in a Professional Development Program

    Science.gov (United States)

    Lakin, Joni M.; Wallace, Carolyn S.

    2015-03-01

    Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry. Teachers, therefore, may believe they are providing more inquiry experiences than they are, reducing the positive impact of inquiry on science interest and skills. Given the prominence of inquiry in professional development experiences, educational evaluators need strong tools to detect intended use in the classroom. The current study focuses on the validity of assessments developed for evaluating teachers' use of inquiry strategies and classroom orientations. We explored the relationships between self-reported inquiry strategy use, preferences for inquiry, knowledge of inquiry practices, and related pedagogical content knowledge. Finally, we contrasted students' and teachers' reports of the levels of inquiry-based teaching in the classroom. Self-reports of inquiry use, especially one specific to the 5E instructional model, were useful, but should be interpreted with caution. Teachers tended to self-report higher levels of inquiry strategy use than their students perceived. Further, there were no significant correlations between either knowledge of inquiry practices or PCK and self-reported inquiry strategy use.

  19. A Scientific Investigation into why Firms Fail: A Model of corporate ...

    African Journals Online (AJOL)

    The research used modelling tools such as Gambler's Ruin Score, BCG, Wilcox's Probability of Ultimate Failure, Cash Flow Reinvestment Ratio, Z-Score to investigate 20 failed and successful banks. This study is significant because a proper scientific foundation on the critical success and failure factors responsible for this ...

  20. Integrate Data into Scientific Workflows for Terrestrial Biosphere Model Evaluation through Brokers

    Science.gov (United States)

    Wei, Y.; Cook, R. B.; Du, F.; Dasgupta, A.; Poco, J.; Huntzinger, D. N.; Schwalm, C. R.; Boldrini, E.; Santoro, M.; Pearlman, J.; Pearlman, F.; Nativi, S.; Khalsa, S.

    2013-12-01

    Terrestrial biosphere models (TBMs) have become integral tools for extrapolating local observations and process-level understanding of land-atmosphere carbon exchange to larger regions. Model-model and model-observation intercomparisons are critical to understand the uncertainties within model outputs, to improve model skill, and to improve our understanding of land-atmosphere carbon exchange. The DataONE Exploration, Visualization, and Analysis (EVA) working group is evaluating TBMs using scientific workflows in UV-CDAT/VisTrails. This workflow-based approach promotes collaboration and improved tracking of evaluation provenance. But challenges still remain. The multi-scale and multi-discipline nature of TBMs makes it necessary to include diverse and distributed data resources in model evaluation. These include, among others, remote sensing data from NASA, flux tower observations from various organizations including DOE, and inventory data from US Forest Service. A key challenge is to make heterogeneous data from different organizations and disciplines discoverable and readily integrated for use in scientific workflows. This presentation introduces the brokering approach taken by the DataONE EVA to fill the gap between TBMs' evaluation scientific workflows and cross-organization and cross-discipline data resources. The DataONE EVA started the development of an Integrated Model Intercomparison Framework (IMIF) that leverages standards-based discovery and access brokers to dynamically discover, access, and transform (e.g. subset and resampling) diverse data products from DataONE, Earth System Grid (ESG), and other data repositories into a format that can be readily used by scientific workflows in UV-CDAT/VisTrails. The discovery and access brokers serve as an independent middleware that bridge existing data repositories and TBMs evaluation scientific workflows but introduce little overhead to either component. In the initial work, an OpenSearch-based discovery broker

  1. Integrating a geographic information system, a scientific visualization system and an orographic precipitation model

    Science.gov (United States)

    Hay, L.; Knapp, L.

    1996-01-01

    Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.

  2. Spud and FLML: generalising and automating the user interfaces of scientific computer models

    Science.gov (United States)

    Ham, D. A.; Farrell, P. E.; Maddison, J. R.; Gorman, G. J.; Wilson, C. R.; Kramer, S. C.; Shipton, J.; Collins, G. S.; Cotter, C. J.; Piggott, M. D.

    2009-04-01

    The interfaces by which users specify the scenarios to be simulated by scientific computer models are frequently primitive, under-documented and ad-hoc text files which make using the model in question difficult and error-prone and significantly increase the development cost of the model. We present a model-independent system, Spud[1], which formalises the specification of model input formats in terms of formal grammars. This is combined with an automatically generated graphical user interface which guides users to create valid model inputs based on the grammar provided, and a generic options reading module which minimises the development cost of adding model options. We further present FLML, the Fluidity Markup Language. FLML applies Spud to the Imperial College Ocean Model (ICOM) resulting in a graphically driven system which radically improves the usability of ICOM. As well as a step forward for ICOM, FLML illustrates how the Spud system can be applied to an existing complex ocean model highlighting the potential of Spud as a user interface for other codes in the ocean modelling community. [1] Ham, D. A. et.al, Spud 1.0: generalising and automating the user interfaces of scientific computer models, Geosci. Model Dev. Discuss., 1, 125-146, 2008.

  3. APPRECIATIVE INQUIRY AND PEDAGOGY

    DEFF Research Database (Denmark)

    Duvander, Mille Themsen

    2017-01-01

    I blogindlægget gives en lille indblik i hvordan Appreciative Inquiry kan anvendes i undervisningen af pædagogstuderende på en Professionshøjskole i Danmark......I blogindlægget gives en lille indblik i hvordan Appreciative Inquiry kan anvendes i undervisningen af pædagogstuderende på en Professionshøjskole i Danmark...

  4. Developing the conceptual instructional design with inquiry-based instruction model of secondary students at the 10th grade level on digestion system and cellular degradation issue

    Science.gov (United States)

    Rotjanakunnatam, Boonthida; Chayaburakul, Kanokporn

    2018-01-01

    The aims of this research study was to develop the conceptual instructional design with the Inquiry-Based Instruction Model (IBIM) of secondary students at the 10th grade level on Digestion System and Cellular Degradation issue using both oxygen and oxygen-degrading cellular nutrients were designed instructional model with a sample size of 45 secondary students at the 10th Grade level. Data were collected by asking students to do a questionnaire pre and post learning processes. The questionnaire consists of two main parts that composed of students' perception questionnaire and the questionnaire that asked the question answer concept for the selected questionnaire. The 10-item Conceptual Thinking Test (CTT) was assessed students' conceptual thinking evaluation that it was covered in two main concepts, namely; Oxygen degradation nutrients and degradation nutrients without oxygen. The data by classifying students' answers into 5 groups and measuring them in frequency and a percentage of students' performances of their learning pre and post activities with the Inquiry-Based Instruction Model were analyzed as a tutorial. The results of this research found that: After the learning activities with the IBIM, most students developed concepts of both oxygen and oxygen-degrading cellular nutrients in the correct, complete and correct concept, and there are a number of students who have conceptual ideas in the wrong concept, and no concept was clearly reduced. However, the results are still found that; some students have some misconceptions, such as; the concept of direction of electron motion and formation of the ATP of bioactivities of life. This cause may come from the nature of the content, the complexity, the continuity, the movement, and the time constraints only in the classroom. Based on this research, it is suggested that some students may take some time, and the limited time in the classroom to their learning activity with content creation content binding and

  5. What matters in the classroom: A structural model of standards-based scientific literacy

    Science.gov (United States)

    Shive, Louise E.

    For over two decades educators and policy makers have been particularly concerned with student achievement in the wake of A Nation at Risk. A majority of studies indicates that students' family background has the strongest influence on achievement, although characteristics of their teachers and schools have significant impact as well. This study considered achievement in science in particular, investigating the influence of alterable factors within the classroom on students' gains in scientific literacy. Scientific literacy included three elements: content knowledge, scientific process skills, and attitude towards science. Based on a review of the literature on student achievement, a structural equation model was constructed with five latent variables: teacher's education, instructional practices, teacher's attitudes, school's context, and students' scientific literacy. The model was tested using data from the five-month implementation of a standards-based integrated text/technology/laboratory program, Biology: Exploring Life. The sixteen biology teachers completed two pre-implementation surveys, and 664 of their students completed the three pretests and the corresponding posttests. The initial model did not fit well (chi2(80) = 2784.16; chi 2/df = 34.80; GFI = .70; IFI = .49; CFI = .49) and was inadmissible due to the presence of negative variances. After revision of the model, fit improved somewhat (chi2(53) = 1623.97; chi 2/df = 30.64; GFI = .77; IFI = .65; CFI = .65), although a negative variance migrated and persisted. The total effects were greatest for the teacher's attitudes (largely indirect, mediated through instructional practices), followed by school's context, and instructional practices. Teacher's education had the lowest total effects due to almost equal but opposite direct effects (positive) and indirect effects (mediated through instructional practices and teacher's attitudes). The investigator concluded that alterable factors such as teachers

  6. Scientific method, adversarial system, and technology assessment

    Science.gov (United States)

    Mayo, L. H.

    1975-01-01

    A basic framework is provided for the consideration of the purposes and techniques of scientific method and adversarial systems. Similarities and differences in these two techniques of inquiry are considered with reference to their relevance in the performance of assessments.

  7. Scientific Reasoning in Early and Middle Childhood: The Development of Domain-General Evidence Evaluation, Experimentation, and Hypothesis Generation Skills

    Science.gov (United States)

    Piekny, Jeanette; Maehler, Claudia

    2013-01-01

    According to Klahr's (2000, 2005; Klahr & Dunbar, 1988) Scientific Discovery as Dual Search model, inquiry processes require three cognitive components: hypothesis generation, experimentation, and evidence evaluation. The aim of the present study was to investigate (a) when the ability to evaluate perfect covariation, imperfect covariation,…

  8. HIERARCHICAL DATAFLOW MODEL WITH AUTOMATED FILE MANAGEMENT FOR ENGINEERING AND SCIENTIFIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Solving modern scientific and engineering problems typically implies using multiple task-specific software appli- cations and often a complex sequence of computations must be performed. Adopted approach to achieve the required level of automation is to use one of the many available scientific and engineering workflow systems, which can be based on dif- ferent workflow models. This paper introduces a workflow model targeted to provide natural automation and distributed execution of complex iterative computation processes, where the calculation chain contains multiple task-specific software applications which exchange files during the process.The proposed workflow model addresses a wide range of applications and targets complex cases when a single it- eration of a top-level process may contain multiple nested execution loops. Typical requirements to process automation are considered as well: execution isolation, data re-use and caching, parallel execution, data provenance tracking.

  9. Examples of Video to Communicate Scientific Findings to Non-Scientists-Bayesian Ecological Modeling

    Science.gov (United States)

    Moorman, M.; Harned, D. A.; Cuffney, T.; Qian, S.

    2011-12-01

    The U.S Geological Survey (USGS) National Water-Quality Assessment Program (NAWQA) provides information about (1) water-quality conditions and how those conditions vary locally, regionally, and nationally, (2) water-quality trends, and (3) factors that affect those conditions. As part of the NAWQA Program, the Effects of Urbanization on Stream Ecosystems (EUSE) study examined the vulnerability and resilience of streams to urbanization. Completion of the EUSE study has resulted in over 20 scientific publications. Video podcasts are being used in addition to these publications to communicate the relevance of these scientific findings to more general audiences such as resource managers, educational groups, public officials, and the general public. An example of one of the podcasts is a film about the results of modeling the effects urbanization on stream ecology. The film describes some of the results of the EUSE ecological modeling effort and the advantages of the Bayesian and multi-level statistical modeling approaches, while relating the science to fly fishing. The complex scientific discussion combined with the lighter, more popular activity of fly fishing leads to an entertaining forum while educating viewers about a complex topic. This approach is intended to represent the scientists as interesting people with diverse interests. Video can be an effective scientific communication tool for presenting scientific findings to a broad audience. The film is available for access from the EUSE website (http://water.usgs.gov/nawqa/urban/html/podcasts.html). Additional films are planned to be released in 2012 on other USGS project results and programs.

  10. Open Knee: Open Source Modeling & Simulation to Enable Scientific Discovery and Clinical Care in Knee Biomechanics

    Science.gov (United States)

    Erdemir, Ahmet

    2016-01-01

    Virtual representations of the knee joint can provide clinicians, scientists, and engineers the tools to explore mechanical function of the knee and its tissue structures in health and disease. Modeling and simulation approaches such as finite element analysis also provide the possibility to understand the influence of surgical procedures and implants on joint stresses and tissue deformations. A large number of knee joint models are described in the biomechanics literature. However, freely accessible, customizable, and easy-to-use models are scarce. Availability of such models can accelerate clinical translation of simulations, where labor intensive reproduction of model development steps can be avoided. The interested parties can immediately utilize readily available models for scientific discovery and for clinical care. Motivated by this gap, this study aims to describe an open source and freely available finite element representation of the tibiofemoral joint, namely Open Knee, which includes detailed anatomical representation of the joint's major tissue structures, their nonlinear mechanical properties and interactions. Three use cases illustrate customization potential of the model, its predictive capacity, and its scientific and clinical utility: prediction of joint movements during passive flexion, examining the role of meniscectomy on contact mechanics and joint movements, and understanding anterior cruciate ligament mechanics. A summary of scientific and clinically directed studies conducted by other investigators are also provided. The utilization of this open source model by groups other than its developers emphasizes the premise of model sharing as an accelerator of simulation-based medicine. Finally, the imminent need to develop next generation knee models are noted. These are anticipated to incorporate individualized anatomy and tissue properties supported by specimen-specific joint mechanics data for evaluation, all acquired in vitro from varying age

  11. Tools for bridging the cultures of everyday and scientific thinking

    Science.gov (United States)

    Hawkins, Jan; Pea, Roy D.

    A perspective about science education is developed which has implications for the design of interactive learning technologies. Current philosophical work concerning the interpretative nature of scientific inquiry is reviewed as a context for discussing the situation of the child in developing scientific understanding. This view of learning emphasizes the relationships among informal understanding, conceptual change, and enculturation into modes of scientific discourse. A prototype software system for supporting scientific inquiry processes in students is described.

  12. The use of theoretical and empirical knowledge in the production of explanations and arguments in an inquiry biology activity

    Directory of Open Access Journals (Sweden)

    Maíra Batistoni e Silva

    2017-08-01

    Full Text Available Agreeing with the scientific literacy as the purpose of science education and with the recent propositions that in order to achieve it we should favor the engagement of students in practices of scientific culture, this study intends to analyze the production of explanations and arguments in an inquiry based teaching activity in order to characterize students' mobilization of theoretical and empirical knowledge by engaging in these practices. Analyzing the scientific reports elaborated by the students (14-15 years old after the inquiry activity on population dynamics, we highlight the importance of empirical knowledge about the experimental context as a repertoire for construction of explanations, especially when students deal with anomalous data. This knowledge was also important for production of valid arguments, since most of the justifications were empirical, regardless of whether or not the data were in accordance with the explanatory model already known. These results reinforce the importance of students' engagement in inquiry activities, as already defended by different authors of this research area, and indicate that the inquiry practice allowed the engagement in epistemic practices, since the knowledge about the experimental conditions and the procedures of data collection provided a repertoire for the production of explanations and arguments. Finally, we discuss the relevance of this research to the field of biology teaching, seeking to defend the promotion of inquiry activities with an experimental approach as an opportunity to integrate conceptual and epistemic objectives and overcome the difficulties generated by the specificities of this area of knowledge in relation to the other disciplines in nature sciences.

  13. Pragmatism, mathematical models, and the scientific ideal of prediction and control.

    Science.gov (United States)

    Moore, J

    2015-05-01

    Mathematical models are often held to be valuable, if not necessary, for theories and explanations in the quantitative analysis of behavior. The present review suggests that mathematical models primarily derived from the observation of functional relations do indeed contribute to the scientific value of theories and explanations, even though the final form of the models appears to be highly abstract. However, mathematical models not primarily so derived risk being essentialist in character, based on a particular view of formal causation. Such models invite less effective and frequently mentalistic theories and explanations of behavior. Models may be evaluated in terms of both (a) the verbal processes responsible for their origin and development and (b) the prediction and control engendered by the theories and explanations that incorporate the models, however indirect or abstract that prediction and control may be. Overall, the present review suggests that technological application and theoretical contemplation may be usefully viewed as continuous and overlapping forms of scientific activity, rather than dichotomous and mutually exclusive. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Are opinions based on science: modelling social response to scientific facts.

    Science.gov (United States)

    Iñiguez, Gerardo; Tagüeña-Martínez, Julia; Kaski, Kimmo K; Barrio, Rafael A

    2012-01-01

    As scientists we like to think that modern societies and their members base their views, opinions and behaviour on scientific facts. This is not necessarily the case, even though we are all (over-) exposed to information flow through various channels of media, i.e. newspapers, television, radio, internet, and web. It is thought that this is mainly due to the conflicting information on the mass media and to the individual attitude (formed by cultural, educational and environmental factors), that is, one external factor and another personal factor. In this paper we will investigate the dynamical development of opinion in a small population of agents by means of a computational model of opinion formation in a co-evolving network of socially linked agents. The personal and external factors are taken into account by assigning an individual attitude parameter to each agent, and by subjecting all to an external but homogeneous field to simulate the effect of the media. We then adjust the field strength in the model by using actual data on scientific perception surveys carried out in two different populations, which allow us to compare two different societies. We interpret the model findings with the aid of simple mean field calculations. Our results suggest that scientifically sound concepts are more difficult to acquire than concepts not validated by science, since opposing individuals organize themselves in close communities that prevent opinion consensus.

  15. Towards a comprehensive model of scientific research and professional practice in psychology

    Directory of Open Access Journals (Sweden)

    Jerzy Marian Brzeziński

    2016-03-01

    Full Text Available In this article I present a model of associations between two social domains: the scientific research domain (here psychology and the professional practice domain. In the former case, its quality is determined by social and individual methodological awareness (MA. I introduce my own definition of MA. What determines the validity and usefulness of practical actions undertaken by professionals (e.g., assessment, therapy in the practice domain is the accurately constructed empirical theory high in descriptive power, explanatory power and predictive power. I propose a model (my own conceptualization in which I analyze information flow between the domains of scientific research (psychology as a science and professional practice (psychology as a profession. In the subsequent and final part I discuss my own model which links theory and practice: Scientific Research and Professional Practice in Psychology (SRPPP. The article ends with a presentation of three contexts in which the interrelationship between theory and practice is immersed: the ethical, psychological and cultural contexts.

  16. A model of scientific attitudes assessment by observation in physics learning based scientific approach: case study of dynamic fluid topic in high school

    Science.gov (United States)

    Yusliana Ekawati, Elvin

    2017-01-01

    This study aimed to produce a model of scientific attitude assessment in terms of the observations for physics learning based scientific approach (case study of dynamic fluid topic in high school). Development of instruments in this study adaptation of the Plomp model, the procedure includes the initial investigation, design, construction, testing, evaluation and revision. The test is done in Surakarta, so that the data obtained are analyzed using Aiken formula to determine the validity of the content of the instrument, Cronbach’s alpha to determine the reliability of the instrument, and construct validity using confirmatory factor analysis with LISREL 8.50 program. The results of this research were conceptual models, instruments and guidelines on scientific attitudes assessment by observation. The construct assessment instruments include components of curiosity, objectivity, suspended judgment, open-mindedness, honesty and perseverance. The construct validity of instruments has been qualified (rated load factor > 0.3). The reliability of the model is quite good with the Alpha value 0.899 (> 0.7). The test showed that the model fits the theoretical models are supported by empirical data, namely p-value 0.315 (≥ 0.05), RMSEA 0.027 (≤ 0.08)

  17. Analysis of Inquiry Materials to Explain Complexity of Chemical Reasoning in Physical Chemistry Students' Argumentation

    Science.gov (United States)

    Moon, Alena; Stanford, Courtney; Cole, Renee; Towns, Marcy

    2017-01-01

    One aim of inquiry activities in science education is to promote students' participation in the practices used to build scientific knowledge by providing opportunities to engage in scientific discourse. However, many factors influence the actual outcomes and effect on students' learning when using inquiry materials. In this study, discourse from…

  18. Physiology Should Be Taught as Science Is Practiced: An Inquiry-Based Activity to Investigate the "Alkaline Tide"

    Science.gov (United States)

    Lujan, Heidi L.; DiCarlo, Stephen E.

    2015-01-01

    The American Association for the Advancement of Science (AAAS) strongly recommends that "science be taught as science is practiced." This means that the teaching approach must be consistent with the nature of scientific inquiry. In this article, the authors describe how they added scientific inquiry to a large lecture-based physiology…

  19. Blow-by-Blow Inquiry.

    Science.gov (United States)

    Wittrock, Cathy A.; Barrow, Lloyd H.

    2000-01-01

    Focuses on inquiry-based science instruction for third grade elementary school students. Presents an activity on analyzing data using a graph. Explains what students learn from inquiry-based instruction. (YDS)

  20. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  1. Pragmatic inquiry and creativity

    DEFF Research Database (Denmark)

    Gimmler, Antje

    of Thevenot’s critical pragmatism this understanding might be naïve – not because this is an idealistic rather than a real-life scenario but because the idea of collaborative creativity and self-realization has actually become the driving force in a marked dominated organization of science and production......’Don’t block the road of inquiry” was the motto of Peirce and also Dewey situated inquiry in its ideal version in a democratic and cooperative community. Abduction became the key concept for the pragmatic and creative research process where the lonely engineer is substituted with intelligent...... collaborations of the many. Thus, inquiry is from a pragmatic understanding rather a social than a purely cognitive task. The paper will firstly give a sketch of this understanding of inquiry and creativity on the background of the theories of Peirce and Dewey and will draw some parallels to recent...

  2. Trained Inquiry Skills on Heat and Temperature Concepts

    Science.gov (United States)

    Hasanah, U.; Hamidah, I.; Utari, S.

    2017-09-01

    Inquiry skills are skills that aperson needs in developing concepts, but the results of the study suggest that these skills haven’t yet been trained along with the development of concepts in science feeding, found the difficulties of students in building the concept scientifically. Therefore, this study aims to find ways that are effective in training inquiry skills trough Levels of Inquiry (LoI) learning. Experimental research with one group pretest-postest design, using non-random sampling samples in one of vocational high school in Cimahi obtained purposively 33 students of X class. The research using the inquiry skills test instrument in the form of 15questions multiple choice with reliability in very high category. The result of data processing by using the normalized gain value obtained an illustration that the ways developed in the LoI are considered effective trained inquiry skills in the middle category. Some of the ways LoI learning are considered effective in communicating aspects through discovery learning, predicting trough interactive demonstration, hypotheses through inquiry lesson, and interpreting data through inquiry lab, but the implementation of LoI learning in this study hasn’t found a way that is seen as effective for trespassing aspects of designing an experiment.

  3. KEEFEKTIFAN METODE SCHOOLYARD INQUIRY TERHADAP PENINGKATAN PEMAHAMAN SCIENCE VOCABULARY

    Directory of Open Access Journals (Sweden)

    S.D. Pamelasari

    2014-10-01

    Full Text Available Tantangan yang harus dihadapi dalam mengajar Bahasa Inggris di pada mahasiswa selain jurusan Bahasa Inggris adalah tingkat pemahaman kosakata yang rendah. Hal tersebut berpengaruh pada pemahaman materi mereka, berdasarkan permasalahan tersebut metode schoolyard inquiry digagas untuk membantu meningkatkan pemahaman mereka dalam memahami science vocabulary sebagai metode alternative untuk membantu mereka belajar. Schoolyard inquiry adalah metode belajar kosakata secara mandiri di luar kelas. Hasil analisis menunjukkan bahwa pemahaman science vocabulary mahasiswa Pendidikan IPA FMIPA Unnes mengingkat secara signifikan dan mencapai tingkat tinggi pada level pemahamannya. Melalui metode ini mahasiswa juga dapat mengintegrasikan pembelajaran Bahasa Inggris dengan metode saintifik. Mahasiswa juga memberikan respon positif terhadap metode schoolyard inquiry  ini. The challenge that should be faced of teaching English for non English department students is the low level of students’ vocabulary mastery. It affects their comprehension of material, therefore to help students to master the science vocabulary schoolyard inquiry method was proposed to be used as alternative method to improve students’ vocabulary mastery. Schoolyard inquiry is a method of independent learning that is conducted outside the class. The result showed that the students’ science vocabulary mastery improved significantly most of students reached high level of science vocabulary mastery. Through Schoolyard Inquiry method Students were be able to learn English by applying the scientific skill. The students also gave positive responses of learning vocabulary by using alternatif method of schoolyard inquiry.

  4. The VIS-AD data model: Integrating metadata and polymorphic display with a scientific programming language

    Science.gov (United States)

    Hibbard, William L.; Dyer, Charles R.; Paul, Brian E.

    1994-01-01

    The VIS-AD data model integrates metadata about the precision of values, including missing data indicators and the way that arrays sample continuous functions, with the data objects of a scientific programming language. The data objects of this data model form a lattice, ordered by the precision with which they approximate mathematical objects. We define a similar lattice of displays and study visualization processes as functions from data lattices to display lattices. Such functions can be applied to visualize data objects of all data types and are thus polymorphic.

  5. CERN’s model for international scientific collaboration to be discussed at UNOG

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 2 November, on the occasion of the 70th anniversary of the United Nations, CERN and UNOG will co-host a one-day symposium, with the support of Switzerland and France. The event will bring together policy-makers, scientists and members of civil society to debate how to construct synergies across communities as a means to drive global objectives. CERN people are invited to the Palais des Nations to take part.   CERN's seat at the General Assembly of the United Nations in New York. How does CERN work? How are goals achieved in such a complex environment where diverse communities work together in the interests of science? CERN’s model for international scientific collaboration is being looked at with growing interest by an increasingly large community of experts in various fields. Scientific advances and accomplishments are testament to the effectiveness of the model and prove that ambitious scientific programmes can be carried out only by communities c...

  6. Analyzing Ocean Tracks: A model for student engagement in authentic scientific practices using data

    Science.gov (United States)

    Krumhansl, K.; Krumhansl, R.; Brown, C.; DeLisi, J.; Kochevar, R.; Sickler, J.; Busey, A.; Mueller-Northcott, J.; Block, B.

    2013-12-01

    The collection of large quantities of scientific data has not only transformed science, but holds the potential to transform teaching and learning by engaging students in authentic scientific work. Furthermore, it has become imperative in a data-rich world that students gain competency in working with and interpreting data. The Next Generation Science Standards reflect both the opportunity and need for greater integration of data in science education, and emphasize that both scientific knowledge and practice are essential elements of science learning. The process of enabling access by novice learners to data collected and used by experts poses significant challenges, however, recent research has demonstrated that barriers to student learning with data can be overcome by the careful design of data access and analysis tools that are specifically tailored to students. A group of educators at Education Development Center, Inc. (EDC) and scientists at Stanford University's Hopkins Marine Station are collaborating to develop and test a model for student engagement with scientific data using a web-based platform. This model, called Ocean Tracks: Investigating Marine Migrations in a Changing Ocean, provides students with the ability to plot and analyze tracks of migrating marine animals collected through the Tagging of Pacific Predators program. The interface and associated curriculum support students in identifying relationships between animal behavior and physical oceanographic variables (e.g. SST, chlorophyll, currents), making linkages between the living world and climate. Students are also supported in investigating possible sources of human impact to important biodiversity hotspots in the Pacific Ocean. The first round of classroom testing revealed that students were able to easily access and display data on the interface, and collect measurements from the animal tracks and oceanographic data layers. They were able to link multiple types of data to draw powerful

  7. Integrating a geographic information system, a scientific visualization system, and a precipitation model

    Science.gov (United States)

    Hay, L.E.; Knapp, L.K.

    1996-01-01

    Investigating natural, potential, and human-induced impacts on hydrologic systems commonly requires complex modeling with overlapping data requirements, plus massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrologic studies, the requisite software infrastructure must incorporate many components including simulation modeling and spatial analysis with a flexible, intuitive display. Integrating geographic information systems (GIS) and scientific visualization systems (SVS) provides such an infrastructure. This paper describes an integrated system consisting of an orographic precipitation model, a GIS, and an SVS. The results of this study provide a basis for improving the understanding of hydro-climatic processes in mountainous regions. An additional benefit of the integrated system, the value of which is often underestimated, is the improved ability to communicate model results, leading to a broader understanding of the model assumptions, sensitivities, and conclusions at a management level.Investigating natural, potential, and human-induced impacts on hydrologic systems commonly requires complex modeling with overlapping data requirements, plus massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrologic studies, the requisite software infrastructure must incorporate many components including simulation modeling and spatial analysis with a flexible, intuitive display. Integrating geographic information systems (GIS) and scientific visualization systems (SVS) provides such an infrastructure. This paper describes an integrated system consisting of an orographic precipitation model, a GIS, and an SVS. The results of this study provide a basis for improving the understanding of hydro-climatic processes in mountainous regions. An additional benefit of the integrated system, the value of which is often underestimated, is the improved ability to

  8. SASAgent: an agent based architecture for search, retrieval and composition of scientific models.

    Science.gov (United States)

    Felipe Mendes, Luiz; Silva, Laryssa; Matos, Ely; Braga, Regina; Campos, Fernanda

    2011-07-01

    Scientific computing is a multidisciplinary field that goes beyond the use of computer as machine where researchers write simple texts, presentations or store analysis and results of their experiments. Because of the huge hardware/software resources invested in experiments and simulations, this new approach to scientific computing currently adopted by research groups is well represented by e-Science. This work aims to propose a new architecture based on intelligent agents to search, recover and compose simulation models, generated in the context of research projects related to biological domain. The SASAgent architecture is described as a multi-tier, comprising three main modules, where CelO ontology satisfies requirements put by e-science projects mainly represented by the semantic knowledge base. Preliminary results suggest that the proposed architecture is promising to achieve requirements found in e-Science projects, considering mainly the biological domain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Performance modeling of hybrid MPI/OpenMP scientific applications on large-scale multicore supercomputers

    KAUST Repository

    Wu, Xingfu

    2013-12-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore supercomputers: IBM POWER4, POWER5+ and BlueGene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks and Intel\\'s MPI benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore supercomputers because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyrokinetic Toroidal Code (GTC) in magnetic fusion to validate our performance model of the hybrid application on these multicore supercomputers. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore supercomputers. © 2013 Elsevier Inc.

  10. A tale of two slinkies: learning about scientific models in a student-driven classroom

    Science.gov (United States)

    Gandhi, Punit; Berggren, Calvin; Livezey, Jesse; Olf, Ryan

    2014-11-01

    We describe a set of conceptual activities and hands-on experiments based around understanding the dynamics of a slinky that is hung vertically and released from rest. The motion, or lack thereof, of the bottom of the slinky after the top is dropped sparks students' curiosity by challenging their expectations and provides context for learning about scientific model building. This curriculum helps students learn about the model building process by giving them an opportunity to enlist their collective intellectual and creative resources to develop and explore two different physical models of the falling slinky system. By engaging with two complementary models, students not only have the opportunity to understand an intriguing phenomenon from multiple perspectives, but also learn deeper lessons about the nature of scientific understanding, the role of physical models, and the experience of doing science. The activities we present were part of a curriculum developed for a week-long summer program for incoming freshmen as a part of the Compass Project at UC Berkeley, but could easily be implemented in a wide range of classrooms at the high school or introductory college level.

  11. Assessing Problem Solving Competence through Inquiry-Based Teaching in School Science Education

    Science.gov (United States)

    Zervas, Panagiotis; Sotiriou, Sofoklis; Tiemann, Rüdiger; Sampson, Demetrios G.

    2015-01-01

    Nowadays, there is a consensus that inquiry-based learning contributes to developing students' scientific literacy in schools. Inquiry-based teaching strategies are promoted for the development (among others) of the cognitive processes that cultivate problem solving (PS) competence. The build up of PS competence is a central objective for most…

  12. Problems Students Experience with Inquiry Processes in the Study of Enzyme Kinetics

    Science.gov (United States)

    Ferrés Gurt, Concepció; Marbà Tallada, Anna

    2018-01-01

    This case study describes a classroom-based questionnaire that was carried out with a group of 36 high school students (17-18 years old) in Catalonia. The aim was to examine the usefulness of questionnaires focused on scientific inquiry, both to evaluate students' inquiry abilities and for their potential as tools to improve the understanding of…

  13. A Virtual Tour of Plate Tectonics: Using Google Earth for Inquiry Investigations

    Science.gov (United States)

    Mulvey, Bridget; Bell, Randy

    2012-01-01

    Google Earth is an exciting way to engage students in scientific inquiry--the foundation of science education standards and reforms. The National Science Education Standards identify inquiry as an active process that incorporates questioning, gathering and analyzing data, and thinking critically about the interplay of evidence and explanations.…

  14. A participative model for undertaking and evaluating scientific communication in Earth Observation

    Science.gov (United States)

    L'Astorina, Alba; Tomasoni, Irene

    2015-04-01

    Public communication of Science and Technology (PCST) is an integral part of the mission of the Italian National Research Council (CNR) and widely carried out among the scientific community. Recently it has also become a research field investigating practices, channels, tools and models of public engagement and their impact on the relation between Science and Society. Understanding such aspects is increasingly considered relevant for an effective and aware outreach. Within this context, CNR has adopted some innovative communication approaches addressed to different publics, such as stakeholders, users, media, young people and the general public, using participative methodologies. Besides being practices of communication promoting the scientific culture, such initiatives aim at understanding the models at the basis of the relationship between the scientific community and the public. To what extent do scientists put their communication and involvement strategies in discussion? Do they use to have a real exchange with their publics in order to evaluate the effectiveness of the participatory techniques they adopt in communicating and disseminating their activities? In this paper we present a case study of a communication and educational proposal recently developed by CNR in order to promote a mutual exchange between Education/School and Research, that are the most important actors in the production and the revision of the scientific knowledge. The proposal brings an ongoing CNR research project (its steps, subjects, tools, activities, costs etc) in classrooms, making use of interactive Earth Sciences workshops conducted directly by researchers. The ongoing CNR project shared with students studies Innovative Methodologies of Earth Observation supporting the Agricultural sector in Lombardy. It aims at exploiting the Aerospace Earth Observation (EO) tools to develop dedicated agricultural downstream services that will bring added economic value and benefits for Lombardy

  15. Do our Means of Inquiry Match our Intentions?

    Directory of Open Access Journals (Sweden)

    Yaacov Petscher

    2016-07-01

    Full Text Available A key stage of the scientific method is the data analysis, yet despite the variety of methods that are available to researchers they are most frequently distilled to a model that focuses on the average relation between variables. Although research questions are conceived as ones of general inquiry, most regression methods are limited to comprehensively evaluate how observed behaviors are related to each other. Quantile regression is a largely unknown yet well-suited analytic technique similar to traditional regression analysis, but allows for a more systematic approach to understanding complex associations among observed phenomena in the psychological sciences. Data from the National Education Longitudinal Study of 1988/2000 are used to illustrate how quantile regression overcomes the limitations of average associations in linear regression by showing that psychological well-being and sex each differentially relate to reading achievement depending on one’s level of reading achievement.

  16. From Stories to Scientific Models and Back: Narrative Framing in Modern Macroscopic Physics

    Science.gov (United States)

    Fuchs, Hans U.

    2015-01-01

    Narrative in science learning has become an important field of inquiry. Most applications of narrative are extrinsic to science--such as when they are used for creating affect and context. Where they are intrinsic, they are often limited to special cases and uses. To extend the reach of narrative in science, a hypothesis of narrative framing of…

  17. Selenium, copper and iron in veterinary medicine-From clinical implications to scientific models.

    Science.gov (United States)

    Humann-Ziehank, Esther

    2016-09-01

    Diseases related to copper, selenium or iron overload or deficiency are common and well-described in large animal veterinary medicine. Some of them certainly have the potential to serve as useful animal models for ongoing research in the field of trace elements. Obvious advantages of large animal models compared to laboratory animal models like rats and mice are the option of long-term, consecutive examinations of progressive deficient or toxic stages and the opportunity to collect various, high volume samples for repeated measurements. Nevertheless, close cooperation between scientific disciplines is necessary as scientists using high sophisticated analytical methods and equipment are not regularly in touch with scientists working with large animal diseases. This review will give an introduction into some typical animal diseases related to trace elements and will present approaches where the animal diseases were used already as a model for interdisciplinary research. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Semantic Models of Sentences with Verbs of Motion in Standard Language and in Scientific Language Used in Biology

    Directory of Open Access Journals (Sweden)

    Vita Banionytė

    2016-06-01

    Full Text Available The semantic models of sentences with verbs of motion in German standard language and in scientific language used in biology are analyzed in the article. In its theoretic part it is affirmed that the article is based on the semantic theory of the sentence. This theory, in its turn, is grounded on the correlation of semantic predicative classes and semantic roles. The combination of semantic predicative classes and semantic roles is expressed by the main semantic formula – proposition. In its practical part the differences between the semantic models of standard and scientific language used in biology are explained. While modelling sentences with verbs of motion, two groups of semantic models of sentences are singled out: that of action (Handlung and process (Vorgang. The analysis shows that the semantic models of sentences with semantic action predicatives dominate in the text of standard language while the semantic models of sentences with semantic process predicatives dominate in the texts of scientific language used in biology. The differences how the doer and direction are expressed in standard and in scientific language are clearly seen and the semantic cases (Agens, Patiens, Direktiv1 help to determine that. It is observed that in scientific texts of high level of specialization (biology science in contrast to popular scientific literature models of sentences with moving verbs are usually seldom found. They are substituted by denominative constructions. In conclusions it is shown that this analysis can be important in methodics, especially planning material for teaching professional-scientific language.

  19. Historical Scientific Models and Theories as Resources for Learning and Teaching: The Case of Friction

    Science.gov (United States)

    Besson, Ugo

    2013-05-01

    This paper presents a history of research and theories on sliding friction between solids. This history is divided into four phases: from Leonardo da Vinci to Coulomb and the establishment of classical laws of friction; the theories of lubrication and the Tomlinson's theory of friction (1850-1930); the theories of wear, the Bowden and Tabor's synthesis and the birth of Tribology (1930-1980); nanotribology, friction at the atomic scale, and new fields of research (after 1980). Attention is given to recent research, so giving the sense of a topic that is still alive and currently an object of interest, with interpretative controversies. The development of explanatory and visual models is especially stressed, in connection with students' common ideas and with didactic purposes. The history shows that many models proposed in the past have been modified but not abandoned, so that here the scientific evolution has worked more by adding than by eliminating. The last sections discuss problems and proposals on teaching friction and the possible uses in teaching of models, images and theories found in history. Concerning the role of the history in science teaching, the case of friction has particular features, because some recent developments are unknown to most teachers and many results, also not very recent, contrast with the laws usually proposed in textbooks. Here history can supply a number of models, examples and experiments which can constitute useful resources to improve student understanding, joining together objectives of cultural value and of better scientific knowledge.

  20. Coupling of a continuum ice sheet model and a discrete element calving model using a scientific workflow system

    Science.gov (United States)

    Memon, Shahbaz; Vallot, Dorothée; Zwinger, Thomas; Neukirchen, Helmut

    2017-04-01

    Scientific communities generate complex simulations through orchestration of semi-structured analysis pipelines which involves execution of large workflows on multiple, distributed and heterogeneous computing and data resources. Modeling ice dynamics of glaciers requires workflows consisting of many non-trivial, computationally expensive processing tasks which are coupled to each other. From this domain, we present an e-Science use case, a workflow, which requires the execution of a continuum ice flow model and a discrete element based calving model in an iterative manner. Apart from the execution, this workflow also contains data format conversion tasks that support the execution of ice flow and calving by means of transition through sequential, nested and iterative steps. Thus, the management and monitoring of all the processing tasks including data management and transfer of the workflow model becomes more complex. From the implementation perspective, this workflow model was initially developed on a set of scripts using static data input and output references. In the course of application usage when more scripts or modifications introduced as per user requirements, the debugging and validation of results were more cumbersome to achieve. To address these problems, we identified a need to have a high-level scientific workflow tool through which all the above mentioned processes can be achieved in an efficient and usable manner. We decided to make use of the e-Science middleware UNICORE (Uniform Interface to Computing Resources) that allows seamless and automated access to different heterogenous and distributed resources which is supported by a scientific workflow engine. Based on this, we developed a high-level scientific workflow model for coupling of massively parallel High-Performance Computing (HPC) jobs: a continuum ice sheet model (Elmer/Ice) and a discrete element calving and crevassing model (HiDEM). In our talk we present how the use of a high

  1. This Is Inquiry ... Right?

    Science.gov (United States)

    Zangori, Laura; Forbes, Cory; Biggers, Mandy

    2012-01-01

    Many teachers have taught their share of science lessons that needed improvements. For the past eight years, the authors have been working with elementary teachers to implement quick and easy strategies to modify existing science lessons to make them more inquiry-based. Elementary teachers can use these strategies to adapt existing science lessons…

  2. Critical Narrative Inquiry

    DEFF Research Database (Denmark)

    While organizations have become central for thinking and structuring contemporary social action, existing perspectives on what they are and how to deal with them are still rooted in modern ideas about the foundations of society. The chapters in this volume take critical narrative inquiry — inspired...

  3. Does attainment of Piaget's formal operational level of cognitive development predict student understanding of scientific models?

    Science.gov (United States)

    Lahti, Richard Dennis, II

    Knowledge of scientific models and their uses is a concept that has become a key benchmark in many of the science standards of the past 30 years, including the proposed Next Generation Science Standards. Knowledge of models is linked to other important nature of science concepts such as theory change which are also rising in prominence in newer standards. Effective methods of instruction will need to be developed to enable students to achieve these standards. The literature reveals an inconsistent history of success with modeling education. These same studies point to a possible cognitive development component which might explain why some students succeeded and others failed. An environmental science course, rich in modeling experiences, was used to test both the extent to which knowledge of models and modeling could be improved over the course of one semester, and more importantly, to identify if cognitive ability was related to this improvement. In addition, nature of science knowledge, particularly related to theories and theory change, was also examined. Pretest and posttest results on modeling (SUMS) and nature of science (SUSSI), as well as data from the modeling activities themselves, was collected. Cognitive ability was measured (CTSR) as a covariate. Students' gain in six of seven categories of modeling knowledge was at least medium (Cohen's d >.5) and moderately correlated to CTSR for two of seven categories. Nature of science gains were smaller, although more strongly correlated with CTSR. Student success at creating a model was related to CTSR, significantly in three of five sub-categories. These results suggest that explicit, reflective experience with models can increase student knowledge of models and modeling (although higher cognitive ability students may have more success), but successfully creating models may depend more heavily on cognitive ability. This finding in particular has implications in the grade placement of modeling standards and

  4. Development of a Model for Measuring Scientific Processing Skills Based on Brain-Imaging Technology: Focused on the Experimental Design Process

    Science.gov (United States)

    Lee, Il-Sun; Byeon, Jung-Ho; Kim, Young-shin; Kwon, Yong-Ju

    2014-01-01

    The purpose of this study was to develop a model for measuring experimental design ability based on functional magnetic resonance imaging (fMRI) during biological inquiry. More specifically, the researchers developed an experimental design task that measures experimental design ability. Using the developed experimental design task, they measured…

  5. Using an Agent-Based Modeling Simulation and Game to Teach Socio-Scientific Topics

    Directory of Open Access Journals (Sweden)

    Lori L. Scarlatos

    2014-02-01

    Full Text Available In our modern world, where science, technology and society are tightly interwoven, it is essential that all students be able to evaluate scientific evidence and make informed decisions. Energy Choices, an agent-based simulation with a multiplayer game interface, was developed as a learning tool that models the interdependencies between the energy choices that are made, growth in local economies, and climate change on a global scale. This paper presents the results of pilot testing Energy Choices in two different settings, using two different modes of delivery.

  6. Growing complex network of citations of scientific papers: Modeling and measurements.

    Science.gov (United States)

    Golosovsky, Michael; Solomon, Sorin

    2017-01-01

    We consider the network of citations of scientific papers and use a combination of the theoretical and experimental tools to uncover microscopic details of this network growth. Namely, we develop a stochastic model of citation dynamics based on the copying-redirection-triadic closure mechanism. In a complementary and coherent way, the model accounts both for statistics of references of scientific papers and for their citation dynamics. Originating in empirical measurements, the model is cast in such a way that it can be verified quantitatively in every aspect. Such validation is performed by measuring citation dynamics of physics papers. The measurements revealed nonlinear citation dynamics, the nonlinearity being intricately related to network topology. The nonlinearity has far-reaching consequences including nonstationary citation distributions, diverging citation trajectories of similar papers, runaways or "immortal papers" with infinite citation lifetime, etc. Thus nonlinearity in complex network growth is our most important finding. In a more specific context, our results can be a basis for quantitative probabilistic prediction of citation dynamics of individual papers and of the journal impact factor.

  7. The relationship between inquiry-based science instruction and student achievement

    Science.gov (United States)

    Suarez, Michael Louis

    Teaching science through inquiry has become a focus of recent educational reform in Mississippi and other states. Based on the Constructivist learning theory, inquiry instruction can take many forms, but generally follows the scientific method by requiring students to learn concepts through experimentation and real-world, hands-on experiences. This dissertation examines the relationship between the amounts of time spent using inquiry-based science instruction and student achievement as measured by the Mississippi State Science Assessment. The study also identifies teacher perceptions of inquiry and the amount of professional development received by participants on using inquiry-based instructional techniques. Finally, this study identifies factors that hinder the use of inquiry. Using a 24-question written survey, the researcher collected quantitative data from 204 science teachers in grades K-8 in four southern Mississippi school districts. Participants rated their average amount of time spent using inquiry-based science instruction in their classrooms. These results were then compared to each school's average test score on the 2009-2010 Mississippi State Science Assessment using a Spearman rho correlation. A significant positive relationship was found between amounts of time spent using inquiry-based science instruction and student achievement. The participants also indicated their perceptions of inquiry, amount of professional development, and deterrents to inquiry usage on a five-point Likert scale survey. Overall, participants held a favorable opinion of inquiry-based instruction and felt that it was important for their students' success. Over half of participants had not attended professional development on inquiry-based instruction. A majority indicated a desire for professional development. The most commonly identified factor hindering the use of inquiry was a lack of materials and resources. Many participants also indicated that time constraints prevented

  8. Inquiry pedagogy to promote emerging proportional reasoning in primary students

    Science.gov (United States)

    Fielding-Wells, Jill; Dole, Shelley; Makar, Katie

    2014-03-01

    Proportional reasoning as the capacity to compare situations in relative (multiplicative) rather than absolute (additive) terms is an important outcome of primary school mathematics. Research suggests that students tend to see comparative situations in additive rather than multiplicative terms and this thinking can influence their capacity for proportional reasoning in later years. In this paper, excerpts from a classroom case study of a fourth-grade classroom (students aged 9) are presented as they address an inquiry problem that required proportional reasoning. As the inquiry unfolded, students' additive strategies were progressively seen to shift to proportional thinking to enable them to answer the question that guided their inquiry. In wrestling with the challenges they encountered, their emerging proportional reasoning was supported by the inquiry model used to provide a structure, a classroom culture of inquiry and argumentation, and the proportionality embedded in the problem context.

  9. The Earth's Shape and Movements: Teachers' Perception of the Relations Between Daily Observation and Scientific Models

    Science.gov (United States)

    Ferreira, Flávia Polati; Leite, Cristina

    2015-07-01

    The Earth’s shape and movements are some of the most common issues in official documents and research studies of astronomy education. Many didactic proposals suggest these issues within observational astronomy. Therefore, we present in this paper some of the main results of a research study of the teachers’ perception of the relations between the knowledge from daily observation and scientific models currently accepted about the “earth’s shape and movements”. Data were obtained in application of the didactic proposal during a teacher training course for teachers from São Paulo, have been constructed with the dynamics “Three Pedagogical Moments” and guided by some of the central ideas of the educator Paulo Freire. The results indicate that a small proportion of teachers seem to understand some of the relations of “apparent contradictions” and “limitations” with the concepts of spatiality, and many of them argued based only on vague phrases or "buzzwords", unconnected to the problem explored. The difficulties of teachers to relate elements of daily observation with scientific models seem to indicate a necessity to approach some these aspects with the astronomical knowledge in the teacher training courses.

  10. Built To Last: Using Iterative Development Models for Sustainable Scientific Software Development

    Science.gov (United States)

    Jasiak, M. E.; Truslove, I.; Savoie, M.

    2013-12-01

    In scientific research, software development exists fundamentally for the results they create. The core research must take focus. It seems natural to researchers, driven by grant deadlines, that every dollar invested in software development should be used to push the boundaries of problem solving. This system of values is frequently misaligned with those of the software being created in a sustainable fashion; short-term optimizations create longer-term sustainability issues. The National Snow and Ice Data Center (NSIDC) has taken bold cultural steps in using agile and lean development and management methodologies to help its researchers meet critical deadlines, while building in the necessary support structure for the code to live far beyond its original milestones. Agile and lean software development and methodologies including Scrum, Kanban, Continuous Delivery and Test-Driven Development have seen widespread adoption within NSIDC. This focus on development methods is combined with an emphasis on explaining to researchers why these methods produce more desirable results for everyone, as well as promoting developers interacting with researchers. This presentation will describe NSIDC's current scientific software development model, how this addresses the short-term versus sustainability dichotomy, the lessons learned and successes realized by transitioning to this agile and lean-influenced model, and the current challenges faced by the organization.

  11. Mini-Journal Inquiry Laboratory: A Case Study in a General Chemistry Kinetics Experiment

    Science.gov (United States)

    Zhao, Ningfeng; Wardeska, Jeffrey G.

    2011-01-01

    The mini-journal curriculum for undergraduate science laboratories mirrors the format of scientific literature and helps students improve their learning through direct scientific practices. The lab embodies the essential features of scientific inquiry and replaces the traditional "cookbook" lab to engage students in active learning. A case study…

  12. Demonstrating Patterns in the Views Of Stakeholders Regarding Ethically-Salient Issues in Clinical Research: A Novel Use of Graphical Models in Empirical Ethics Inquiry.

    Science.gov (United States)

    Kim, Jane Paik; Roberts, Laura Weiss

    Empirical ethics inquiry works from the notion that stakeholder perspectives are necessary for gauging the ethical acceptability of human studies and assuring that research aligns with societal expectations. Although common, studies involving different populations often entail comparisons of trends that problematize the interpretation of results. Using graphical model selection - a technique aimed at transcending limitations of conventional methods - this report presents data on the ethics of clinical research with two objectives: (1) to display the patterns of views held by ill and healthy individuals in clinical research as a test of the study's original hypothesis and (2) to introduce graphical model selection as a key analytic tool for ethics research. In this IRB-approved, NIH-funded project, data were collected from 60 mentally ill and 43 physically ill clinical research protocol volunteers, 47 healthy protocol-consented participants, and 29 healthy individuals without research protocol experience. Respondents were queried on the ethical acceptability of research involving people with mental and physical illness (i.e., cancer, HIV, depression, schizophrenia, and post-traumatic stress disorder) and non-illness related sources of vulnerability (e.g., age, class, gender, ethnicity). Using a statistical algorithm, we selected graphical models to display interrelationships among responses to questions. Both mentally and physically ill protocol volunteers revealed a high degree of connectivity among ethically-salient perspectives. Healthy participants, irrespective of research protocol experience, revealed patterns of views that were not highly connected. Between ill and healthy protocol participants, the pattern of views is vastly different. Experience with illness was tied to dense connectivity, whereas healthy individuals expressed views with sparse connections. In offering a nuanced perspective on the interrelation of ethically relevant responses, graphical

  13. The Impact of Three-Dimensional Computational Modeling on Student Understanding of Astronomical Concepts: A Quantitative Analysis

    Science.gov (United States)

    Hansen, John A.; Barnett, Michael; Makinster, James G.; Keating, Thomas

    2004-01-01

    The increased availability of computational modeling software has created opportunities for students to engage in scientific inquiry through constructing computer-based models of scientific phenomena. However, despite the growing trend of integrating technology into science curricula, educators need to understand what aspects of these technologies…

  14. Preservice Teachers Developing Coherent Inquiry Investigations in Elementary Astronomy

    Science.gov (United States)

    Plummer, Julia D.; Tanis Ozcelik, Arzu

    2015-01-01

    For students to attain deep understanding of scientific practices, they will need to have opportunities to participate in sustained engagement in doing science. Such opportunities begin with elementary teachers implementing coherent and well-sequenced inquiry-based investigations in their classrooms. This study explored how preservice teachers (N…

  15. Achievable Inquiry in the College Laboratory: The Mini-Journal

    Science.gov (United States)

    Witzig, Stephen B.; Zhao, Ningfeng; Abell, Sandra K.; Weaver, Jan C.; Adams, John E.; Schmidt, Frank J.

    2010-01-01

    The authors engage students in inquiry-based learning by presenting laboratory exercises as mini-journal articles that mirror the format of a scientific journal article, including a title, authors, abstract, introduction, materials and methods, results, discussion, and citations. Students develop and carry out their follow-up investigation, then…

  16. Science teachers understanding of inquiry-based science teaching ...

    African Journals Online (AJOL)

    owner

    provide different definitions of scientific inquiry but teachers who are looking for a detailed operational definition that can serve as a guide for ... at the same time may constitute a platform towards teachers' understanding of what IBST is. Modern science ..... Ordinary Level Science Curriculum (Biology, Chemistry, Physics).

  17. Promoting Cognitive and Social Aspects of Inquiry through Classroom Discourse

    Science.gov (United States)

    Jin, Hui; Wei, Xin; Duan, Peiran; Guo, Yuying; Wang, Wenxia

    2016-01-01

    We investigated how Chinese physics teachers structured classroom discourse to support the cognitive and social aspects of inquiry-based science learning. Regarding the cognitive aspect, we examined to what extent the cognitive processes underlying the scientific skills and the disciplinary reasoning behind the content knowledge were taught.…

  18. A PROBLEM-BASED LEARNING MODEL IN BIOLOGY EDUCATION COURSES TO DEVELOP INQUIRY TEACHING COMPETENCY OF PRESERVICE TEACHERS

    Directory of Open Access Journals (Sweden)

    Diah Aryulina

    2016-02-01

    MODEL PEMBELAJARAN BERBASIS MASALAH PADA MATAKULIAH PENDIDIKAN BIOLOGI UNTUK MENGEMBANGKAN KOMPETENSI PEMBELAJARAN INKUIRI Abstrak: Tujuan tahap awal penelitian pengembangan ini adalah: 1 mengembangkan model pembelajaran berbasis masalah (PBM pada matakuliah pendidikan biologi, dan 2 memeroleh penilaian ahli terhadap ketepatan model PBM. Model PBM dikembangkan menggunakan pendekatan sistem desain instruksional berdasarkan analisis kebutuhan kompetensi guru biologi, serta kajian literatur mengenai ciri dan proses pembelajaran berbasis masalah. Evaluasi model PBM dilakukan oleh dua pakar pendidikan biologi. Selanjutnya data evaluasi dari pakar dianalisis secara deskriptif. Struktur model PBM yang dikembangkan pada matakuliah Strategi Pembelajaran Biologi, PPL I, dan PPL II terdiri atas tahap identifikasi masalah, perencanaan pemecahan masalah, pelaksanaan pemecahan masalah, penyajian hasil pemecahan masalah, dan refleksi pemecahan masalah. Kelima tahap tersebut dilaksanakan berulang dalam beberapa siklus selama semester. Hasil penilaian pakar menunjukkan bahwa model PBM sesuai dengan ciri pembelajaran berbasis masalah dan tepat digunakan untuk mengembangkan kompetensi pembelajaran inkuiri calon guru. Kata kunci: Model PBM, matakuliah pendidikan biologi, calon guru, kompetensi pembelajaran inkuiri

  19. Data mining techniques for scientific computing: Application to asymptotic paraxial approximations to model ultrarelativistic particles

    Science.gov (United States)

    Assous, Franck; Chaskalovic, Joël

    2011-06-01

    We propose a new approach that consists in using data mining techniques for scientific computing. Indeed, data mining has proved to be efficient in other contexts which deal with huge data like in biology, medicine, marketing, advertising and communications. Our aim, here, is to deal with the important problem of the exploitation of the results produced by any numerical method. Indeed, more and more data are created today by numerical simulations. Thus, it seems necessary to look at efficient tools to analyze them. In this work, we focus our presentation to a test case dedicated to an asymptotic paraxial approximation to model ultrarelativistic particles. Our method directly deals with numerical results of simulations and try to understand what each order of the asymptotic expansion brings to the simulation results over what could be obtained by other lower-order or less accurate means. This new heuristic approach offers new potential applications to treat numerical solutions to mathematical models.

  20. THE MODEL OF EXPERT SYSTEM FOR SCIENTIFIC PROJECTS EVALUATION IN HIGHER EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович ВОЗНИЙ

    2015-05-01

    Full Text Available There have been proposed the model of the expert system for the assessment of research projects in higher educational institutions, based on estimates of probability. It allows to rank alternative projects and scenarios. The model is implemented through the software "Small expert system." The principle of calculating the probability of approval of research projects, which form the basis of the expert system, is based on Bayes' theorem. Expert system calculates the probability of approval of research projects by Ministry of Science and Education on the basis of the responses to questions about the content of the request for the execution of research projects. Questions are formed on the basis of the criteria by which experts of state authorities evaluate scientific research projects.

  1. Teachers developing exemplary inquiry practices: Three longitudinal case studies

    Science.gov (United States)

    Sweetman, Sara Berry

    If students are to be successful in the ever-changing scientific world they need to be taught how to think critically, to manipulate materials, and to gather evidence to build knowledge. Most teachers fall short in providing students the inquiry instruction described in the Next Generation Science Frameworks (National Research Council, 2011). This study examined three elementary science teachers' processes as they developed inquiry practices over time. The Electronic Quality of Inquiry Protocol (EQUIP) was used to gather quantitative and qualitative evidence of the teachers' inquiry practices in terms of four factors, Curriculum, Instruction, Discourse, and Assessment. A chronological analysis was used to examine the teachers' professional development and curriculum experiences in relation to their teaching practices. The results showed that all three teachers did change their practice, although the changes varied among cases. For each case, multiple factors influenced the teacher's development. There was a strong positive correlation between the quality of the teachers' inquiry practices and the time spent in curriculum-contextualized professional development. This research indicates that when teachers are supported with curriculum and professional development over extended periods, they develop exemplary inquiry practices. Three recommendations are provided for those interested in implementing science education reform.

  2. Organization model compound by phases to establish didactic methodological actions in the scientific formation of the Weightlifting trainer

    Directory of Open Access Journals (Sweden)

    Luis Orlando Caballero-Riera

    2015-06-01

    Full Text Available The work offers a model with organization didactic methodological actions having the purpose of transforming the insufficiencies revealed in the scientific preparation of the Physical Culture and Sport Professional, as well as in the development and leading of the scientific investigative activity during the solution of problems that are shown in the socio professional context of the Weightlifting sport. The actions are focused in the scientific investigative activities and in the information management about the trainers leadership, having them to acting an independent and productive way; where the investigative creative activity articulated is harmonically with the development of investigative skills making possible the acquisition of capacities in the scientific investigative work. To carry out this research theoretical and empirical methods of investigation were used which allowed to base the proposed, to carry out the investigation process and to value its feasibility according to the specialists criteria for the solution of the Scientific Problem.

  3. An auto-focusing heuristic model to increase the reliability of a scientific mission

    International Nuclear Information System (INIS)

    Gualdesi, Lavinio

    2006-01-01

    Researchers invest a lot of time and effort on the design and development of components used in a scientific mission. To capitalize on this investment and on the operational experience of the researchers, it is useful to adopt a quantitative data base to monitor the history and usage of the components. This work describes a model to monitor the reliability level of components. The model is very flexible and allows users to compose systems using the same components in different configurations as required by each mission. This tool provides availability and reliability figures for the configuration requested, derived from historical data of the components' previous performance. The system is based on preliminary checklists to establish standard operating procedures (SOP) for all components life phases. When an infringement to the SOP occurs, a quantitative ranking is provided in order to quantify the risk associated with this deviation. The final agreement between field data and expected performance of the component makes the model converge onto a heuristic monitoring system. The model automatically focuses on points of failure at the detailed component element level, calculates risks, provides alerts when a demonstrated risk to safety is encountered, and advises when there is a mismatch between component performance and mission requirements. This model also helps the mission to focus resources on critical tasks where they are most needed

  4. An auto-focusing heuristic model to increase the reliability of a scientific mission

    Science.gov (United States)

    Gualdesi, Lavinio

    2006-11-01

    Researchers invest a lot of time and effort on the design and development of components used in a scientific mission. To capitalize on this investment and on the operational experience of the researchers, it is useful to adopt a quantitative data base to monitor the history and usage of the components. This work describes a model to monitor the reliability level of components. The model is very flexible and allows users to compose systems using the same components in different configurations as required by each mission. This tool provides availability and reliability figures for the configuration requested, derived from historical data of the components' previous performance. The system is based on preliminary checklists to establish standard operating procedures (SOP) for all components life phases. When an infringement to the SOP occurs, a quantitative ranking is provided in order to quantify the risk associated with this deviation. The final agreement between field data and expected performance of the component makes the model converge onto a heuristic monitoring system. The model automatically focuses on points of failure at the detailed component element level, calculates risks, provides alerts when a demonstrated risk to safety is encountered, and advises when there is a mismatch between component performance and mission requirements. This model also helps the mission to focus resources on critical tasks where they are most needed.

  5. Modelling the effects of subjective and objective decision making in scientific peer review.

    Science.gov (United States)

    Park, In-Uck; Peacey, Mike W; Munafò, Marcus R

    2014-02-06

    The objective of science is to advance knowledge, primarily in two interlinked ways: circulating ideas, and defending or criticizing the ideas of others. Peer review acts as the gatekeeper to these mechanisms. Given the increasing concern surrounding the reproducibility of much published research, it is critical to understand whether peer review is intrinsically susceptible to failure, or whether other extrinsic factors are responsible that distort scientists' decisions. Here we show that even when scientists are motivated to promote the truth, their behaviour may be influenced, and even dominated, by information gleaned from their peers' behaviour, rather than by their personal dispositions. This phenomenon, known as herding, subjects the scientific community to an inherent risk of converging on an incorrect answer and raises the possibility that, under certain conditions, science may not be self-correcting. We further demonstrate that exercising some subjectivity in reviewer decisions, which serves to curb the herding process, can be beneficial for the scientific community in processing available information to estimate truth more accurately. By examining the impact of different models of reviewer decisions on the dynamic process of publication, and thereby on eventual aggregation of knowledge, we provide a new perspective on the ongoing discussion of how the peer-review process may be improved.

  6. The Impact of Positive Role Models on the Success of Students Involved in Original Scientific Research

    Science.gov (United States)

    Danch, J. M.

    2010-12-01

    To maximize student understanding of the methods of science via performance of authentic scientific research, a mentorship program for middle school students was developed for the 2010 - 2011 school year. A population of 8th grade science students will be selected from a district middle school and be paired with secondary student mentors already conducting individual research as part of a successful preexisting science research program. Students will interact with mentors in a school setting to develop and implement original scientific research projects. Upon completion, students will present their findings at an interscholastic science symposium and/or an in-district science symposium. Students will also receive support from professional scientists at the University of Medicine and Dentistry of New Jersey through interactive visitations and electronic communication. In an effort to provide diverse role models, mentors from a variety of racial, ethnic, and gender groups will participate. Student success will be evaluated through questionnaires, symposium participation and monitoring of future participation in authentic research programs as participants make the transition from middle to high school.

  7. Construction and reality: Mario Bunge's scientific realism and the teaching of sciences through models

    Directory of Open Access Journals (Sweden)

    Maurício Pietrocola

    1999-09-01

    Full Text Available In this paper we criticize the constructivist movement, which according to our view has overestimated the role of individual constructions, in detriment to the ontological dimension of scientific knowledge. It will be developed based on some critical papers directed to the constructivist movement and on an analysis of the reception of Thomas Kuhn's ideas by research in science teaching. One of our conclusions will suggest that constructivism does not place enough emphasis in the grasping of a reality that is associated to the physical world. That ends up reflecting a weakening of scientific knowledge in face of other forms of knowledge., establishing a kind of epistemological relativism among the various forms of knowing. In this sense, we present Mario Bunge's ideas on the role of models in science and their linkages to reality. Thus, we aim at minimizing the excesses contained in constructivist and realist theses, that is, the trend to view each human construction as an activity that does not have any links to the ontological dimension of the world, and to see all realism as a purge of human action.

  8. “SimDelta”—Inquiry into an Internet-Based Interactive Model for Water Infrastructure Development in The Netherlands

    Directory of Open Access Journals (Sweden)

    Nadine Slootjes

    2012-03-01

    Full Text Available The Dutch Delta Program is currently developing new government policies for flood protection and fresh water supply. Decision support instruments have to address the program’s technical and political complexity. The water system functions are highly interwoven and would benefit from an integrated approach on a national level, with decisions supported by a scientific Systems Analysis. Politically, there is a tendency towards broad participation and decentralization, and decision-making is typically supported by Conflict Resolution methods. To connect these two sides of the Delta Program’s task, an outline is presented of an internet community-based interactive instrument, preliminarily named SimDelta. On-line interactive maps and elements of serious gaming intuitively provide local Delta Program participants insight into the interaction between scenarios, problems, and solutions. SimDelta uses the internet to more frequently and efficiently present conceptual designs by architects and engineers to the Delta Program stakeholders, record their preferences, and “crowdsource” corrections, improvements and new ideas.

  9. Teaching Scientific Computing: A Model-Centered Approach to Pipeline and Parallel Programming with C

    Directory of Open Access Journals (Sweden)

    Vladimiras Dolgopolovas

    2015-01-01

    Full Text Available The aim of this study is to present an approach to the introduction into pipeline and parallel computing, using a model of the multiphase queueing system. Pipeline computing, including software pipelines, is among the key concepts in modern computing and electronics engineering. The modern computer science and engineering education requires a comprehensive curriculum, so the introduction to pipeline and parallel computing is the essential topic to be included in the curriculum. At the same time, the topic is among the most motivating tasks due to the comprehensive multidisciplinary and technical requirements. To enhance the educational process, the paper proposes a novel model-centered framework and develops the relevant learning objects. It allows implementing an educational platform of constructivist learning process, thus enabling learners’ experimentation with the provided programming models, obtaining learners’ competences of the modern scientific research and computational thinking, and capturing the relevant technical knowledge. It also provides an integral platform that allows a simultaneous and comparative introduction to pipelining and parallel computing. The programming language C for developing programming models and message passing interface (MPI and OpenMP parallelization tools have been chosen for implementation.

  10. From Scientific Innovation to Popularization of Science: a Theoretical Model TOC \\o "1-5" \\h \\z of Science Communication

    Directory of Open Access Journals (Sweden)

    Svetlana M. Medvedeva

    2014-01-01

    Full Text Available Science communication is process of promotion of scientific ideas from a scientist through scientific community to muss public. Now this research area attracts a lot of attention from scientists. At the same time science communication suffers from the lack of theoretical framework, which can integrate it. In this article we try to contribute to the further theoretical integration of this area. Here we discuss a model of motion and transformation of ideas from the moment of their generation to the time of their appearance in public movies and literature. The model consists of 5 elements: phase of a scientist (generation of ideas; phase of scientific community (promotion of the ideas among scientists; phase of interested groups (communication with business and government, education of future scientists; phase of popular science (promotion of ideas into mass culture; phase of fiction (subject of communication becomes not scientific knowledge, but myth about science. Each phase is conceived as equal in value stage of existence of scientific ideas. There is a consistent interaction between all phases. The ideas can flow sequentially through all five phases. But independent communication among separate stages is also possible. Furthermore, the ideas can flow in both directions from scientific community to public and visa verse. As a result, scientific communication becomes a real dialogue with equal partners.

  11. Simulation of ODE/PDE models with MATLAB, OCTAVE and SCILAB scientific and engineering applications

    CERN Document Server

    Vande Wouwer, Alain; Vilas, Carlos

    2014-01-01

    Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB shows the reader how to exploit a fuller array of numerical methods for the analysis of complex scientific and engineering systems than is conventionally employed. The book is dedicated to numerical simulation of distributed parameter systems described by mixed systems of algebraic equations, ordinary differential equations (ODEs) and partial differential equations (PDEs). Special attention is paid to the numerical method of lines (MOL), a popular approach to the solution of time-dependent PDEs, which proceeds in two basic steps: spatial discretization and time integration. Besides conventional finite-difference and -element techniques, more advanced spatial-approximation methods are examined in some detail, including nonoscillatory schemes and adaptive-grid approaches. A MOL toolbox has been developed within MATLAB®/OCTAVE/SCILAB. In addition to a set of spatial approximations and time integrators, this toolbox includes a collection of applicatio...

  12. The Model Analyst’s Toolkit: Scientific Model Development, Analysis, and Validation

    Science.gov (United States)

    2015-08-20

    Prepared for Dr. Harold Hawkins US Government Contract N00014-12-C-0653 Charles River Analytics p. 3 (HSCB) models can help predict instability ...observational studies that look at correlations between, say, heart health and drinking red wine to drive academic articles, press reports, and the

  13. A Geometric Model to Teach Nature of Science, Science Practices, and Metacognition

    Science.gov (United States)

    Nyman, Matthew; St. Clair, Tyler

    2016-01-01

    Using the science practice model in science classes for preservice teachers addresses three important aspects of science teacher preparation: teaching the nonlinear nature of scientific process, using scientific practices rather than the ambiguous term "inquiry-based," and emphasizing the process of metacognition as an important tool in…

  14. The influence of a graduate teaching fellows collaboration on science teachers' inquiry practices and perceptions

    Science.gov (United States)

    Thompson, Stephen Ludwig

    For more than a decade, there has been a call for reform in science education. This effort stresses the creation of a scientifically literate population. Required in this effort to create a more scientifically literate populace is an understanding of the Nature of Science (NOS) on the part of the average citizen. This, in turn requires an understanding of scientific inquiry. This call for reform recognizes the classroom teacher as the main vehicle through which images of the NOS and scientific inquiry are portrayed for students. In order to improve both science teachers' and students' understanding of the NOS and inquiry, the National Science Foundation has implemented the Graduate Teaching Fellows in GK--12 Education (GK--12) initiative. This initiative, which is consistent with reform efforts that call for scientist involvement in K--12 science classrooms, supports programs that place graduate level scientists (GTFs) with K--12 science teachers (PTs) to act as classroom resources. One such program focuses on sustained collaborations between GTFs and PTs with a hands-on, inquiry-based planning and teaching emphasis. This naturalistic study used mixed methods of surveys, observation, interviews and artifact collection to examine how this program influenced PTs' inquiry practices and perceptions. Results from the case studies indicate that collaboration with GTFs had little influence on PTs' inquiry practices and perceptions. PTs displayed little change in beliefs as indicated through survey responses and interview data. They also displayed little change in their observed teaching practices. During data analysis classroom features of inquiry emerged. These features led to the creation of five components of two types of inquiry, Technical and Substantive. These types of inquiry, the components, and their features, make-up an Inquiry Framework that represents a continuum of understandings related to inquiry and is grounded in the practice of teaching. This framework

  15. A comparison of bilingual education and generalist teachers' approaches to scientific biliteracy

    Science.gov (United States)

    Garza, Esther

    The purpose of this study was to determine if educators were capitalizing on bilingual learners' use of their biliterate abilities to acquire scientific meaning and discourse that would formulate a scientific biliterate identity. Mixed methods were used to explore teachers' use of biliteracy and Funds of Knowledge (Moll, L., Amanti, C., Neff, D., & Gonzalez, N., 1992; Gonzales, Moll, & Amanti, 2005) from the students' Latino heritage while conducting science inquiry. The research study explored four constructs that conceptualized scientific biliteracy. The four constructs include science literacy, science biliteracy, reading comprehension strategies and students' cultural backgrounds. There were 156 4th-5th grade bilingual and general education teachers in South Texas that were surveyed using the Teacher Scientific Biliteracy Inventory (TSBI) and five teachers' science lessons were observed. Qualitative findings revealed that a variety of scientific biliteracy instructional strategies were frequently used in both bilingual and general education classrooms. The language used to deliver this instruction varied. A General Linear Model revealed that classroom assignment, bilingual or general education, had a significant effect on a teacher's instructional approach to employ scientific biliteracy. A simple linear regression found that the TSBI accounted for 17% of the variance on 4th grade reading benchmarks. Mixed methods results indicated that teachers were utilizing scientific biliteracy strategies in English, Spanish and/or both languages. Household items and science experimentation at home were encouraged by teachers to incorporate the students' cultural backgrounds. Finally, science inquiry was conducted through a universal approach to science learning versus a multicultural approach to science learning.

  16. Pakiramdaman: Isang Tatak Filipinong Lapit sa Pagdadalumat sa Sosyolohiya (Pakiramdaman: A Filipino Brand of Reflective Inquiry in Sociology

    Directory of Open Access Journals (Sweden)

    Dennis S. Erasga

    2015-06-01

    Full Text Available The article contends that neither theory-building nor theorizing is an exclusive means of understanding the social in Philippine sociological discourse. Pagdadalumat as a homegrown reflexive inquiry proves to be more proficient and powerful an approach in making sense of the foundational principles of the discipline. Henceforth, the article examines the two implicated issues of doing pagdadalumat in the production of sociological knowledge in the Philippines viz. (i the concept of kapwa as manifestation of the nexus of the Self and Other (ii and the epistemological affordances of pagdadalumat versus the rigid evidence-seeking temperament of scientif ic inquiry. At the end, an outline of a sociological model of pagdadalumat is presented—pakiramdaman—anchored on an indigenous communicative practice (pakikipagtalastasan using four (4 Filipino social constructs—lapit, galang, hiya, lusot—and their corresponding indicators—relasyon, kapwa, sitwasyon, kahihinatnan.

  17. Scientific communication

    Directory of Open Access Journals (Sweden)

    Aleksander Kobylarek

    2017-09-01

    Full Text Available The article tackles the problem of models of communication in science. The formal division of communication processes into oral and written does not resolve the problem of attitude. The author defines successful communication as a win-win game, based on the respect and equality of the partners, regardless of their position in the world of science. The core characteristics of the process of scientific communication are indicated , such as openness, fairness, support, and creation. The task of creating the right atmosphere for science communication belongs to moderators, who should not allow privilege and differentiation of position to affect scientific communication processes.

  18. Let's Change the Subject and Change Our Organization: An Appreciative Inquiry Approach to Organization Change.

    Science.gov (United States)

    Whitney, Diana

    1998-01-01

    Appreciative inquiry is a form of organizational development based on principles of constructivism, poetics, anticipation, and simultaneity. The model has four phases: discovery, dream, design, and delivery. (SK)

  19. Fast and Low-Complexity Simulations of the Inquiry Time in Bluetooth

    DEFF Research Database (Denmark)

    Figueiras, Joao; Schwefel, Hans-Peter

    2006-01-01

    The timing behavior of the Inquiry Procedure in Bluetooth is relevant for several important functionalities, in particular topology formation and localization. The detailed Inquiry procedure is rather complex and simulation models may become inefficient if they implement the full detailed...... specification. This paper presents an abstracted model to approximate the distribution of Bluetooth inquiry time for scenarios in which multiple Bluetooth nodes perform the inquiry procedure. The abstracted model leads to a simple algorithm which can be used in simulation models to generate samples from...

  20. Process Materials Scientific Data for Intelligent Service Using a Dataspace Model

    Directory of Open Access Journals (Sweden)

    Yang Li

    2016-07-01

    Full Text Available Nowadays, materials scientific data come from lab experiments, simulations, individual archives, enterprise and internet in all scales and formats. The data flood has outpaced our capability to process, manage, analyze, and provide intelligent services. Extracting valuable information from the huge data ocean is necessary for improving the quality of domain services. The most acute information management challenges today stem from organizations relying on amounts of diverse, interrelated data sources, but having no way to manage the dataspaces in an integrated, user-demand driven and services convenient way. Thus, we proposed the model of Virtual DataSpace (VDS in materials science field to organize multi-source and heterogeneous data resources and offer services on the data in place without losing context information. First, the concept and theoretical analysis are described for the model. Then the methods for construction of the model is proposed based on users’ interests. Furthermore, the dynamic evolution algorithm of VDS is analyzed using the user feedback mechanism. Finally, we showed its efficiency for intelligent, real-time, on-demand services in the field of materials engineering.

  1. Conservation Process Model (cpm): a Twofold Scientific Research Scope in the Information Modelling for Cultural Heritage

    Science.gov (United States)

    Fiorani, D.; Acierno, M.

    2017-05-01

    The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction) field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014). In order to combine achievements reached within AEC through BIM environment (design control and management) with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  2. CONSERVATION PROCESS MODEL (CPM: A TWOFOLD SCIENTIFIC RESEARCH SCOPE IN THE INFORMATION MODELLING FOR CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    D. Fiorani

    2017-05-01

    Full Text Available The aim of the present research is to develop an instrument able to adequately support the conservation process by means of a twofold approach, based on both BIM environment and ontology formalisation. Although BIM has been successfully experimented within AEC (Architecture Engineering Construction field, it has showed many drawbacks for architectural heritage. To cope with unicity and more generally complexity of ancient buildings, applications so far developed have shown to poorly adapt BIM to conservation design with unsatisfactory results (Dore, Murphy 2013; Carrara 2014. In order to combine achievements reached within AEC through BIM environment (design control and management with an appropriate, semantically enriched and flexible The presented model has at its core a knowledge base developed through information ontologies and oriented around the formalization and computability of all the knowledge necessary for the full comprehension of the object of architectural heritage an its conservation. Such a knowledge representation is worked out upon conceptual categories defined above all within architectural criticism and conservation scope. The present paper aims at further extending the scope of conceptual modelling within cultural heritage conservation already formalized by the model. A special focus is directed on decay analysis and surfaces conservation project.

  3. Modeling and analysis of hybrid pixel detector deficiencies for scientific applications

    Science.gov (United States)

    Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman

    2015-08-01

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  4. Modeling and Analysis of Hybrid Pixel Detector Deficiencies for Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Northwestern U. (main); Deptuch, Grzegorz W. [Fermilab; Hoff, James R. [Fermilab; Mohseni, Hooman [Northwestern U. (main)

    2015-08-28

    Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to

  5. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    Science.gov (United States)

    Van Horne, Katie

    tools and means of contemporary scientific inquiry allows them to gain conceptual development and proficiency with the scientific practices within the contexts of their lives, in ways that provided access to resources that promoted students' stabilization of practice-linked identities. For teachers implementing this instructional model in their classrooms, it brought up dilemmas and opportunities related to their school contexts and their personal history of instructional practices. The work collectively informs how interest-driven project-based science instruction can happen across a range of school contexts and how such models can support meaningful science learning and identification.

  6. Thinking and Acting Like Scientists: Inquiry in the Undergraduate Astronomy Classroom

    Science.gov (United States)

    Cobb, B. E.

    2012-08-01

    Students can benefit from a more authentic scientific experience in introductory astronomy laboratories. Rather than simply following step-by-step instructions to replicate well-known results, students in inquiry labs are forced to think critically and fully engage in the scientific process. Developing inquiry labs and activities can, however, be a challenging task. I present here some resources available for undergraduate-level educators who are interested in bringing inquiry into their classrooms. Even minor changes to current traditional labs can provide students with the opportunity to answer scientific questions more independently. I also introduce the idea of substituting scientific "poster" sessions for traditional "lab reports" to provide students with immediate feedback as well as exposure to their peers' work and thinking. Allowing students to think and act more like scientists can increase their interest and engagement in science and enhance their basic understanding of the scientific process.

  7. Expertise in soccer teams: A thematic inquiry into the role of shared mental models within team chemistry

    OpenAIRE

    Gershgoren, Lael; Basevitch, Itay; Filho, Edson; Gershgoren, Aaron; Brill, Yaron S.; Schinke, Robert J.; Tenenbaum, Gershon

    2015-01-01

    Aims. The purpose of the current study was to establish a conceptual framework of team chemistry components in sport with an emphasis on Shared Mental Models (SMM).\\ud Method. Elite soccer coaches (n = 6) and players (n = 3) were interviewed using a semi-structured interview guide. An inductive thematic analysis was employed to analyze the data. Results. Four themes related to team chemistry components were identified: (1) members' characteristics (i.e., demographic data, on-field characteris...

  8. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  9. Narratives of Inquiry Learning in Middle-School Geographic Inquiry Class

    Science.gov (United States)

    Kuisma, Merja

    2018-01-01

    This study aimed at modifying a teaching and learning model for a geographic inquiry to enhance both the subject-related skills of geography and so-called twenty-first century skills in middle-school students (14-15 years old). The purpose of this research is to extend our understanding of the user experiences concerning certain tools for learning…

  10. The construction of a scientific model: Otto Warburg and the building block strategy.

    Science.gov (United States)

    Nickelsen, Kärin

    2009-06-01

    In the years 1919 to 1923, Otto Warburg published four papers that were to revolutionise the field of photosynthesis. In these articles, he introduced a number of new techniques to measure the rate of photosynthesis, put forward a new model of the mechanism and added a completely new perspective to the topic by attempting to establish the process's efficiency in terms of the light quantum requirement. In this paper I trace the roots of Warburg's series of contributions to photosynthesis research by exploring three different contexts of inspiration: Warburg's own research into cell respiration, his father's work on the quantum yield of photochemical reactions in general and the photosynthesis work carried out by Richard Willstätter and Arthur Stoll. When these influences are considered together, it becomes clear that Warburg implemented a Building Block Strategy in his research: rather than inventing his photosynthesis model from scratch, he availed himself of fragments from other contexts, which he then recombined in a new and innovative way. This way of working is considered to be standard practice in scientific research.

  11. Life-Cycle Thinking in Inquiry-Based Sustainability Education--Effects on Students' Attitudes towards Chemistry and Environmental Literacy

    Science.gov (United States)

    Juntunen, Marianne; Aksela, Maija

    2013-01-01

    The aim of the present study is to improve the quality of students' environmental literacy and sustainability education in chemistry teaching by combining the socio-scientific issue of life-cycle thinking with inquiry-based learning approaches. This case study presents results from an inquiry-based life-cycle thinking project: an interdisciplinary…

  12. Inquiry Guided Learning Projects for the Development of Critical Thinking in the College Classroom: A Pilot Study

    Science.gov (United States)

    Bentley, Danielle C.

    2014-01-01

    This paper describes the inaugural success of implementing Inquiry Guided Learning Projects within a college-level human anatomy and physiology course. In this context, scientific inquiry was used as a means of developing skills required for critical thinking among students. The projects were loosely designed using the Information Search Process…

  13. The nuclear inquiry

    International Nuclear Information System (INIS)

    Clement, K.J.

    1987-01-01

    Opposition to nuclear energy facilities has increased considerably in Scotland and Germany within the past two decades. The statutory institutions which exist in each country to consider formal objections to such developments have important differences, as do the licensing or planning processes of which they form an integral part. In Britain, the initiation of judicial review following public inquiries is very rare, due to the limited grounds within which this would be possible. By contrast, there has been a very high referral of nuclear power station decisions to the administrative courts in Germany, but the number is now declining as cases are invariably found in favour of the developers. The comparative examination of case studies reveals that objectors' interests may best be served, in terms of achieving policy influence, by acting outside the restrictions of the statutory planning and legal systems. The Scottish public inquiry is revealed as the more flexible institution and one which allows a much greater degree of public participation. (author)

  14. Toward a Model of Social Influence that Explains Minority Student Integration into the Scientific Community

    Science.gov (United States)

    Estrada, Mica; Woodcock, Anna; Hernandez, Paul R.; Schultz, P. Wesley

    2011-01-01

    Students from several ethnic minority groups are underrepresented in the sciences, indicating that minority students more frequently drop out of the scientific career path than nonminority students. Viewed from a perspective of social influence, this pattern suggests that minority students do not integrate into the scientific community at the same…

  15. Slash Writers and Guinea Pigs as Models for a Scientific Multiliteracy

    Science.gov (United States)

    Weinstein, Matthew

    2006-01-01

    This paper explores alternative approaches to the conception of scientific literacy, drawing on cultural studies and emerging practices in language arts as its framework. The paper reviews historic tensions in the understanding of scientific literacy and then draws on the multiliteracies movement in language arts to suggest a scientific…

  16. Engaging Fifth Graders in Scientific Modeling to Learn about Evaporation and Condensation

    Science.gov (United States)

    Hokayem, Hayat; Schwarz, Christina

    2014-01-01

    Reform efforts in science education have aimed at fostering scientific literacy by helping learners meaningfully engage in scientific practices to make sense of the world. In this paper, we report on our second year of unit implementation that has investigated 34 fifth grade students' (10-year-olds) learning about evaporation and condensation…

  17. Angular sensitivity of modeled scientific silicon charge-coupled devices to initial electron direction

    Energy Technology Data Exchange (ETDEWEB)

    Plimley, Brian, E-mail: brian.plimley@gmail.com [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Coffer, Amy; Zhang, Yigong [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Vetter, Kai [Nuclear Engineering Department, University of California, Berkeley, CA (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States)

    2016-08-11

    Previously, scientific silicon charge-coupled devices (CCDs) with 10.5-μm pixel pitch and a thick (650 μm), fully depleted bulk have been used to measure gamma-ray-induced fast electrons and demonstrate electron track Compton imaging. A model of the response of this CCD was also developed and benchmarked to experiment using Monte Carlo electron tracks. We now examine the trade-off in pixel pitch and electronic noise. We extend our CCD response model to different pixel pitch and readout noise per pixel, including pixel pitch of 2.5 μm, 5 μm, 10.5 μm, 20 μm, and 40 μm, and readout noise from 0 eV/pixel to 2 keV/pixel for 10.5 μm pixel pitch. The CCD images generated by this model using simulated electron tracks are processed by our trajectory reconstruction algorithm. The performance of the reconstruction algorithm defines the expected angular sensitivity as a function of electron energy, CCD pixel pitch, and readout noise per pixel. Results show that our existing pixel pitch of 10.5 μm is near optimal for our approach, because smaller pixels add little new information but are subject to greater statistical noise. In addition, we measured the readout noise per pixel for two different device temperatures in order to estimate the effect of temperature on the reconstruction algorithm performance, although the readout is not optimized for higher temperatures. The noise in our device at 240 K increases the FWHM of angular measurement error by no more than a factor of 2, from 26° to 49° FWHM for electrons between 425 keV and 480 keV. Therefore, a CCD could be used for electron-track-based imaging in a Peltier-cooled device.

  18. PERANGKAT PEMBELAJARAN IPA BERBASIS INKUIRI UNTUK MENINGKATKAN CRITICAL THINKING SKILLS DAN SCIENTIFIC ATTITUDE SISWA

    Directory of Open Access Journals (Sweden)

    Din Azwar Uswatun

    2015-10-01

    Full Text Available Penelitian ini bertujuan untuk: (1 mendeskripsikan kelayakan perangkat pembelajaran IPA berbasis inkuiri berdasarkan hasil penilaian dosen ahli dan guru IPA, dan (2 mengukur keefektifan perangkat pembelajaran IPA berbasis inkuiri dalam meningkatkan critical thinking skills dan scientific attitude siswa SMP. Metode yang digunakan dalam penelitian ini adalah research and development (R&D yang mengadaptasi model penelitian pengembangan Borg & Gall. Subjek uji coba produk terdiri atas 34 siswa kelas VII SMPN 14 Yogyakarta dan 52 siswa SMPN 1 Piyungan. Pengumpulan data menggunakan metode wawancara, observasi, angket, dan tes. Data dikumpulkan melalui pedoman wawancara, lembar observasi, lembar angket, dan soal tes. Data kelayakan perangkat pembelajaran dianalisis dengan menggunakan konversi skor skala 4. Keefektifan perangkat pembelajaran dalam meningkatkan critical thinking skills dan scientific attitude siswa dianalisis dengan multivariate analysis of variance (MANOVA dan gain score. Hasil validasi dan uji coba produk menunjukkan bahwa (1 perangkat pembelajaran IPA layak digunakan dalam pembelajaran dan (2 efektif dalam meningkatkan critical thinking skills dan scientific attitude siswa. Kata Kunci: perangkat pembelajaran IPA, inkuiri, critical thinking skills, scientific attitude   AN INQUIRY-BASED NATURAL SCIENCE TEACHING PACKAGE TO IMPROVE STUDENT’S CRITICAL THINKING SKILLS AND SCIENTIFIC ATTITUDE Abstract The objectives of this study are (1 to explain the validity of an inquiry-based natural science teaching package and (2 to measure the effectiveness of an inquiry-based natural science teaching package to improve junior high school student’s critical thinking skills and scientific attitude. The method of this study was research and development (R & D adapted from the development model by Borg & Gall. The product testing subjects consisted of 34 students of SMPN 14 Yogyakarta and 52 students of SMPN 1 Piyungan. The data collection

  19. A Theoretical Modeling of Digital World History: Premises, Paradigm, and Scientific Data Strategy

    Directory of Open Access Journals (Sweden)

    Xudong Wang

    2007-10-01

    Full Text Available Digital World History is a new expression of world history (or maybe "a new method for world history expression" and a paradigm of world history description, study, and application by virtual informatization and recovery. It is also a comprehensive systematic study through dynamic marks, integrated description, and retrieval of human society evolution and its causality dependant on the theory and methodology of digitization information. It aims at breaking the limitation of diachronic language attributed to the process of history cognition, summation, and recovery, addressing a possible scheme to fuse historical factors in relation to changing history, dynamically applying a multiplicity of results so that the discipline of world history can meet the needs of the information-equipped society of the 21st century. In this article, the author uses theoretical modelling methods, resulting in a blueprint of the quality issue, namely the Digital World History premise, and a paradigm for setting the foundation and scientific data strategy as a basis for its necessity.

  20. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  1. THE USE OF SCIENCE ENVIRONMENT TECHNOLOGY AND SOCIETY (SETS LEARNING MODEL FOR ENHANCING THE CRITICAL THINKING SKILLS AND SCIENTIFIC ATTITUDES

    Directory of Open Access Journals (Sweden)

    Maimunah

    2017-05-01

    Full Text Available This research purposed to determine the improvement of student’s scientific attitudes and critical thinking skills on the colloidal concept with implementation the learning model science environment technology and society (SETS. The method for this study is quasi-experimental with research design "Pretest-Posttest Nonequivalent Control Group Design". Class XI student at one of SMAN in Majalengka District is the sample in this research with 62 students. The written test and the observation sheets used for collecting the data. The results showed that SETS learning for colloidal concept can enhance the student’s scientific attitude was 72,7 % (good category and student’s critical thinking skills with N-Gain of 42% (moderate category. Increasing student’s critical thinking skills class experiment is also significantly differ from the control class. So, the students’ scientific attitudes and critical thinking skills can improved by implementation the learning chemistry with SETS learning model

  2. Writing as collaborative inquiry

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Pedersen, Christina Hee; Novak, Martin

    2015-01-01

    involved in collaborative knowledge production across difference (including age, professional position, life situation, nation). We tell about our experiences with how collaboration can lead toward re-invention of our research practices and methods, as well as our own subjectivities, through involvement......In our presentation we strive to disturb and unravel the romantic discourses of collaboration, dialogue and empowerment in relation to qualitative inquiry. For more than two years we (five Danish and Czech researchers) have been exploring the complex obstructions, difficulties and potentials...... in the not-yet-known. Over the years, we have shared and analyzed personal stories about our collaborative experiences in an on-going reflective learning process. We draw on writing methodologies, including memory-work (Haug, Davies) and collaborative writing such as by Wyatt, Gale, Gannon & Davies. Our...

  3. Writing as collaborative inquiry

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Pedersen, Christina Hee; Novak, Martin

    2015-01-01

    in the not-yet-known. Over the years, we have shared and analyzed personal stories about our collaborative experiences in an on-going reflective learning process. We draw on writing methodologies, including memory-work (Haug, Davies) and collaborative writing such as by Wyatt, Gale, Gannon & Davies. Our......In our presentation we strive to disturb and unravel the romantic discourses of collaboration, dialogue and empowerment in relation to qualitative inquiry. For more than two years we (five Danish and Czech researchers) have been exploring the complex obstructions, difficulties and potentials...... involved in collaborative knowledge production across difference (including age, professional position, life situation, nation). We tell about our experiences with how collaboration can lead toward re-invention of our research practices and methods, as well as our own subjectivities, through involvement...

  4. Fostering Third-Grade Students' Use of Scientific Models with the Water Cycle: Elementary teachers' conceptions and practices

    Science.gov (United States)

    Vo, Tina; Forbes, Cory T.; Zangori, Laura; Schwarz, Christina V.

    2015-10-01

    Elementary teachers play a crucial role in supporting and scaffolding students' model-based reasoning about natural phenomena, particularly complex systems such as the water cycle. However, little research exists to inform efforts in supporting elementary teachers' learning to foster model-centered, science learning environments. To address this need, we conducted an exploratory multiple-case study using qualitative research methods to investigate six 3rd-grade teachers' pedagogical reasoning and classroom instruction around modeling practices (construct, use, evaluate, and revise) and epistemic considerations of scientific modeling (generality/abstraction, evidence, mechanism, and audience). Study findings show that all teachers emphasized a subset of modeling practices-construction and use-and the epistemic consideration of generality/abstraction. There was observable consistency between teachers' articulated conceptions of scientific modeling and their classroom practices. Results also show a subset of the teachers more strongly emphasized additional epistemic considerations and, as a result, better supported students to use models as sense-making tools as well as representations. These findings provide important evidence for developing elementary teacher supports to scaffold students' engagement in scientific modeling.

  5. Strategies for assessment of inquiry learning in science in a Danish context

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Albrechtsen, Thomas R. S.; Michelsen, Claus

    that there is no hindrance in the curriculum for changing the assessment approach in the direction of skills and competencies on behalf of a more content based approach. • Teachers find it hard to assess student’s skills and competencies during their inquiry work. • Teachers find the developed assessment structures useful...... and understand scientific inquiry in itself. For an assessment purpose these different approaches clearly gives two distinct different ways. If we are to assess specific scientific knowledge we can do so through summative assessment and tests. But if we are to assess skills, competencies and procedural knowledge...... of Inquiry Learning in Science) project shows that the valuing of skills and competencies is present but it is not implemented in the assessment approaches: “This review of national contexts indicates that although inquiry and its associated skills and competencies are valued in the national curriculum...

  6. Inquiry Learning: Students' Perception of Light Wave Phenomena in an Informal Environment

    Science.gov (United States)

    Ford, Ken

    2011-01-01

    This study involved identifying students' perception of light phenomena and determined if they learned the scientific concepts of light that were presented to them by an interactive science exhibit. The participants in this study made scientific inquiry about light by using a powerful white light source, a prism, converging lenses, diverging…

  7. The Scientific Enlightenment System in Russia in the Early Twentieth Century as a Model for Popularizing Science

    Science.gov (United States)

    Balashova, Yuliya B.

    2016-01-01

    This research reconstructs the traditions of scientific enlightenment in Russia. The turn of the nineteenth and twentieth centuries was chosen as the most representative period. The modern age saw the establishment of the optimal model for advancing science in the global context and its crucial segment--Russian science. This period was…

  8. The Relationship between Learners' Distrust of Scientific Models, Their Spatial Ability, and the Vividness of Their Mental Images

    Science.gov (United States)

    Al-Balushi, Sulaiman M.

    2013-01-01

    The purpose of the current study was to examine the nature of the relationship between learners' distrust of scientific models that represent unseen entities and phenomena, their spatial ability, and the vividness of their mental images. The sample consisted of 302 tenth grade students in the Sultanate of Oman. Three measures were used for this…

  9. A scientific model to determine the optimal radiographer staffing component in a nuclear medicine department

    International Nuclear Information System (INIS)

    Shipanga, A.N.; Ellmann, A.

    2004-01-01

    Full text: Introduction: Nuclear medicine in South Africa is developing fast. Much has changed since the constitution of a scientific model for determining an optimum number of radiographer posts in a Nuclear Medicine department in the late 1980's. Aim: The aim of this study was to ascertain whether the number of radiographers required by a Nuclear Medicine department can still be determined according to the norms established in 1988. Methods: A quantitative study using non-experimental evaluation design was conducted to determine the ratios between current radiographer workload and staffing norms. The workload ratios were analysed using the procedures statistics of the Nuclear Medicine department at Tygerberg Hospital. Radiographers provided data about their activities related to patient procedures, including information about the condition of the patients, activities in the radiopharmaceutical laboratory, and patient related administrative tasks. These were factored into an equation relating this data to working hours, including vacation and sick leave. The calculation of Activity Standards and an annual Standard Workload was used to finally calculate the staffing requirements for a Nuclear Medicine department. Results: Preliminary data confirmed that old staffing norms cannot be used in a modern Nuclear Medicine department. Protocols for several types of study have changed, including the additional acquisition of tomographic studies. Interest in the use of time-consuming non-imaging studies has been revived and should be factored Into the equation. Conclusions: All Nuclear Medicine departments In South Africa, where the types of studies performed have changed over the past years, should look carefully at their radiographer staffing ratio to ascertain whether the number of radiographers needed is adequate for the current workload. (author)

  10. Reference architecture and interoperability model for data mining and fusion in scientific cross-domain infrastructures

    Science.gov (United States)

    Haener, Rainer; Waechter, Joachim; Grellet, Sylvain; Robida, Francois

    2017-04-01

    Interoperability is the key factor in establishing scientific research environments and infrastructures, as well as in bringing together heterogeneous, geographically distributed risk management, monitoring, and early warning systems. Based on developments within the European Plate Observing System (EPOS), a reference architecture has been devised that comprises architectural blue-prints and interoperability models regarding the specification of business processes and logic as well as the encoding of data, metadata, and semantics. The architectural blueprint is developed on the basis of the so called service-oriented architecture (SOA) 2.0 paradigm, which combines intelligence and proactiveness of event-driven with service-oriented architectures. SOA 2.0 supports analysing (Data Mining) both, static and real-time data in order to find correlations of disparate information that do not at first appear to be intuitively obvious: Analysed data (e.g., seismological monitoring) can be enhanced with relationships discovered by associating them (Data Fusion) with other data (e.g., creepmeter monitoring), with digital models of geological structures, or with the simulation of geological processes. The interoperability model describes the information, communication (conversations) and the interactions (choreographies) of all participants involved as well as the processes for registering, providing, and retrieving information. It is based on the principles of functional integration, implemented via dedicated services, communicating via service-oriented and message-driven infrastructures. The services provide their functionality via standardised interfaces: Instead of requesting data directly, users share data via services that are built upon specific adapters. This approach replaces the tight coupling at data level by a flexible dependency on loosely coupled services. The main component of the interoperability model is the comprehensive semantic description of the information

  11. Semantic integration of scientific publications and research data: proposal of model of expanded publication for the area of nuclear sciences

    International Nuclear Information System (INIS)

    Sales, Luana Farias

    2014-01-01

    This research takes place under the conditions of an arising scientific paradigm, known as e-Science or 4 th Scientific Paradigm. This new way of doing science is characterized by intensive use of computer networks, distributed digital repositories and by extraordinary generation of research data, which is a consequence of the heavy use of information and simulation technologies and advancing of scientific instrumentation. The information environment that is established as a result of these transformations significantly impacts the patterns of scientific communication, especially regarding to cooperative research, the sharing and reuse of information resources and ways to communicate and to disseminate research results. In order to create a context for their field of study, the thesis contributes to delineate new and renewed concepts for Information Science such as e-Science, curation of research data, complex digital objects, data repository, CRIS (Current Research Information System Model ) and others key infrastructures for the management of research and also of new conceptions of academic and scientific publications. The research is based on two assumptions: first raises the need for a model of scientific publication that would reflect the new standard for generating scientific knowledge characterized by data richness, and being able to integrate these data to publications; the second highlights that this can be performed according to the technological possibilities and standards arising from the Semantic Web. These two assumptions embody the formulation of the hypothesis raised by this thesis: a scientific publication can be enriched and be closer to new ways of generating knowledge, which characterizes contemporary science, if it is configured according to a model that links through semantic relations the research data and datasets to conventional publication. The method adopted was the deductive one, starting from general concepts of Information Science

  12. Automatically quantifying the scientific quality and sensationalism of news records mentioning pandemics: validating a maximum entropy machine-learning model.

    Science.gov (United States)

    Hoffman, Steven J; Justicz, Victoria

    2016-07-01

    To develop and validate a method for automatically quantifying the scientific quality and sensationalism of individual news records. After retrieving 163,433 news records mentioning the Severe Acute Respiratory Syndrome (SARS) and H1N1 pandemics, a maximum entropy model for inductive machine learning was used to identify relationships among 500 randomly sampled news records that correlated with systematic human assessments of their scientific quality and sensationalism. These relationships were then computationally applied to automatically classify 10,000 additional randomly sampled news records. The model was validated by randomly sampling 200 records and comparing human assessments of them to the computer assessments. The computer model correctly assessed the relevance of 86% of news records, the quality of 65% of records, and the sensationalism of 73% of records, as compared to human assessments. Overall, the scientific quality of SARS and H1N1 news media coverage had potentially important shortcomings, but coverage was not too sensationalizing. Coverage slightly improved between the two pandemics. Automated methods can evaluate news records faster, cheaper, and possibly better than humans. The specific procedure implemented in this study can at the very least identify subsets of news records that are far more likely to have particular scientific and discursive qualities. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Freva - Freie Univ Evaluation System Framework for Scientific HPC Infrastructures in Earth System Modeling

    Science.gov (United States)

    Kadow, C.; Illing, S.; Schartner, T.; Grieger, J.; Kirchner, I.; Rust, H.; Cubasch, U.; Ulbrich, U.

    2017-12-01

    The Freie Univ Evaluation System Framework (Freva - freva.met.fu-berlin.de) is a software infrastructure for standardized data and tool solutions in Earth system science (e.g. www-miklip.dkrz.de, cmip-eval.dkrz.de). Freva runs on high performance computers to handle customizable evaluation systems of research projects, institutes or universities. It combines different software technologies into one common hybrid infrastructure, including all features present in the shell and web environment. The database interface satisfies the international standards provided by the Earth System Grid Federation (ESGF). Freva indexes different data projects into one common search environment by storing the meta data information of the self-describing model, reanalysis and observational data sets in a database. This implemented meta data system with its advanced but easy-to-handle search tool supports users, developers and their plugins to retrieve the required information. A generic application programming interface (API) allows scientific developers to connect their analysis tools with the evaluation system independently of the programming language used. Users of the evaluation techniques benefit from the common interface of the evaluation system without any need to understand the different scripting languages. The integrated web-shell (shellinabox) adds a degree of freedom in the choice of the working environment and can be used as a gate to the research projects HPC. Plugins are able to integrate their e.g. post-processed results into the database of the user. This allows e.g. post-processing plugins to feed statistical analysis plugins, which fosters an active exchange between plugin developers of a research project. Additionally, the history and configuration sub-system stores every analysis performed with the evaluation system in a database. Configurations and results of the tools can be shared among scientists via shell or web system. Furthermore, if configurations match

  14. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    Science.gov (United States)

    Ward, Peggy

    subjects tended to associate inquiry learning exclusively in terms of exploring before lecture, getting a single correct answer. Additionally, various subjects at multiple levels, described inquiry in terms of the 5E Model of Instruction, which is emphasized in the Arkansas UTeach lesson design. Implications of these findings and suggestions for program improvement at the course levels are suggested.

  15. Problematizing as a scientific endeavor

    Science.gov (United States)

    Phillips, Anna McLean; Watkins, Jessica; Hammer, David

    2017-12-01

    The work of physics learners at all levels revolves around problems. Physics education research has inspired attention to the forms of these problems, whether conceptual or algorithmic, closed or open response, well or ill structured. Meanwhile, it has been the work of curriculum developers and instructors to develop these problems. Physics education research has supported these efforts with studies of students problem solving and the effects of different kinds of problems on learning. In this article we argue, first, that developing problems is central to the discipline of physics. It involves noticing a gap of understanding, identifying and articulating its precise nature, and motivating a community of its existence and significance. We refer to this activity as problematizing, and we show its importance by drawing from writings in physics and philosophy of science. Second, we argue that students, from elementary age to adults, can problematize as part of their engaging in scientific inquiry. We present four cases, drawing from episodes vetted by a panel of collaborating faculty in science departments as clear instances of students doing science. Although neither we nor the scientists had problematizing in mind when screening cases, we found it across the episodes. We close with implications for instruction, including the value of helping students recognize and manage the situation of being confused but not yet having a clear question, and implications for research, including the need to build problematizing into our models of learning.

  16. BioLab: Using Yeast Fermentation as a Model for the Scientific Method.

    Science.gov (United States)

    Pigage, Helen K.; Neilson, Milton C.; Greeder, Michele M.

    This document presents a science experiment demonstrating the scientific method. The experiment consists of testing the fermentation capabilities of yeasts under different circumstances. The experiment is supported with computer software called BioLab which demonstrates yeast's response to different environments. (YDS)

  17. A Convenient Model for the Evolution of Early Psychology as a Scientific Discipline.

    Science.gov (United States)

    Epstein, Robert

    1981-01-01

    To help college students understand psychology, the article suggests that instructors develop curriculum based on the relationship between scientific and technological advances and the development of early psychology. Views of many nineteenth century psychologists are summarized, including Johann Friedrich Herbart, Hermann Lotze, and Georg…

  18. Using a Simple "Escherichia Coli" Growth Curve Model to Teach the Scientific Method

    Science.gov (United States)

    McKernan, Lisa N.

    2015-01-01

    The challenge of teaching in the sciences is not only conveying knowledge in the discipline, but also developing essential critical thinking, data analysis, and scientific writing skills. I outline an exercise that can be done easily as part of a microbiology laboratory course. It teaches the nature of the research process, from asking questions…

  19. The Hawaii protocol for scientific monitoring of coffee berry borer: a model for coffee agroecosystems worldwide

    Science.gov (United States)

    Coffee Berry Borer (CBB) is the most devastating insect pest for coffee crops worldwide. We developed a scientific monitoring protocol aimed at capturing and quantifying the dynamics and impact of this invasive insect pest as well as the development of its host plant across a heterogeneous landscape...

  20. KEEFEKTIFAN MODEL TGT DENGAN PENDEKATAN SCIENTIFIC BERBANTUAN CD PEMBELAJARAN TERHADAP KEMAMPUAN PEMECAHAN MASALAH SISWA SMP KELAS VIII PADA MATERI LINGKARAN

    Directory of Open Access Journals (Sweden)

    Singgih Baswendro

    2015-11-01

    Full Text Available Artikel ini dibuat berdasarkan penelitian skripsi yang telah dilaksanakan. Tujuan penelitian ini adalah (1 untuk mengetahui hasil kemampuan pemecahan masalah siswa kelas VIII pada materi lingkaran dengan menggunakan model TGT mencapai KKM, dan (2 untuk mengetahui rata-rata kemampuan pemecahan masalah siswa dengan model TGT lebih tinggi daripada dengan model ekspositori. Penelitian ini dilaksanakan di SMP Negeri 3 Ungaran dengan populasi siswa kelas VIII tahun ajaran 2014/2015. Pengambilan kelas sampel menggunakan teknik cluster random sampling. Untuk mengetahui hasil penelitian ini, data hasil akhir diuji dengan uji proporsi dan uji perbedaan rata-rata. Hasil penelitan ini menunjukkan bahwa (1 hasil kemampuan pemecahan masalah siswa kelas VIII pada materi lingkaran dengan menggunakan model TGT mencapai KKM, dan (2 rata-rata kemampuan pemecahan masalah siswa dengan model TGT lebih tinggi daripada dengan model ekspositori. Dengan ini maka model TGT dengan pendekatan scientific berbantuan CD pembelajaran efektif terhadap kemampuan pemecahan masalah siswa.

  1. Information model for management and preservation of scientific digital memory of the Institute of Nuclear Engineering, Brazil

    International Nuclear Information System (INIS)

    Sales, Luana Farias; Sayao, Luis Fernando

    2013-01-01

    In the context of the data-oriented science (eScience), a considerable part of the results of research activities has been created in digital formats. This means that the memory of the scientific institutions involved in this new scientific paradigm may be at risk of being lost by rapid technological obsolescence, the known fragility of digital media and also by the fragmentation of information and knowledge scattered across multiples repositories. Thus, management of research data in a digital networked and distributed environment becomes an increasing challenge for the research world and the whole area of information: information science, librarianship, knowledge management, archival science and information technology; moreover, in the dynamic environment featuring eScience, there is a need for novel concepts of documents establishing a linkage between traditional documents - printed or digital - stored in repositories, with the data sets stored in data repositories. In this new research environment, an important issue is how to preserve these new complex documents so that they maintain their structure, meaning and authenticity and also its ability to be retrieved, accessed and reused through time and space. In this sense, this paper proposes an information model focused on the curation of scientific memory of the Institute of Nuclear Engineering of the Brazilian Commission of Nuclear Energy (CNEN/IEN). The model considers the traditional scientific documents (theses, articles, books, etc.) in digital formats and all other relevant data and information related to them, such as: scientific data, software, simulations, photos, videos, historical facts, news, etc., compounding an enhanced publication type oriented to the nuclear area. (author)

  2. Thomas Kuhn's 'Structure of Scientific Revolutions' applied to exercise science paradigm shifts: example including the Central Governor Model.

    Science.gov (United States)

    Pires, Flávio de Oliveira; de Oliveira Pires, Flávio

    2013-07-01

    According to Thomas Kuhn, the scientific progress of any discipline could be distinguished by a pre-paradigm phase, a normal science phase and a revolution phase. The science advances when a scientific revolution takes place after silent period of normal science and the scientific community moves ahead to a paradigm shift. I suggest there has been a recent change of course in the direction of the exercise science. According to the 'current paradigm', exercise would be probably limited by alterations in either central command or peripheral skeletal muscles, and fatigue would be developed in a task-dependent manner. Instead, the central governor model (GCM) has proposed that all forms of exercise are centrally-regulated, the central nervous system would calculate the metabolic cost required to complete a task in order to avoid catastrophic body failure. Some have criticized the CGM and supported the traditional interpretation, but recently the scientific community appears to have begun an intellectual trajectory to accept this theory. First, the increased number of citations of articles that have supported the CGM could indicate that the community has changed the focus. Second, relevant journals have devoted special editions to promote the debate on subjects challenged by the CGM. Finally, scientists from different fields have recognized mechanisms included in the CGM to understand the exercise limits. Given the importance of the scientific community in demarcating a Kuhnian paradigm shift, I suggest that these three aspects could indicate an increased acceptance of a centrally-regulated effort model, to understand the limits of exercise.

  3. Information model for management and preservation of scientific digital memory of the Institute of Nuclear Engineering, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Sales, Luana Farias, E-mail: lsales@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Sayao, Luis Fernando, E-mail: isayao@cnen.gov.br [Centro de Informacoes Nucleares (CIN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    In the context of the data-oriented science (eScience), a considerable part of the results of research activities has been created in digital formats. This means that the memory of the scientific institutions involved in this new scientific paradigm may be at risk of being lost by rapid technological obsolescence, the known fragility of digital media and also by the fragmentation of information and knowledge scattered across multiples repositories. Thus, management of research data in a digital networked and distributed environment becomes an increasing challenge for the research world and the whole area of information: information science, librarianship, knowledge management, archival science and information technology; moreover, in the dynamic environment featuring eScience, there is a need for novel concepts of documents establishing a linkage between traditional documents - printed or digital - stored in repositories, with the data sets stored in data repositories. In this new research environment, an important issue is how to preserve these new complex documents so that they maintain their structure, meaning and authenticity and also its ability to be retrieved, accessed and reused through time and space. In this sense, this paper proposes an information model focused on the curation of scientific memory of the Institute of Nuclear Engineering of the Brazilian Commission of Nuclear Energy (CNEN/IEN). The model considers the traditional scientific documents (theses, articles, books, etc.) in digital formats and all other relevant data and information related to them, such as: scientific data, software, simulations, photos, videos, historical facts, news, etc., compounding an enhanced publication type oriented to the nuclear area. (author)

  4. Sustaining inquiry-based teaching methods in the middle school science classroom

    Science.gov (United States)

    Murphy, Amy Fowler

    This dissertation used a combination of case study and phenomenological research methods to investigate how individual teachers of middle school science in the Alabama Math, Science, and Technology Initiative (AMSTI) program sustain their use of inquiry-based methods of teaching and learning. While the overall context for the cases was the AMSTI program, each of the four teacher participants in this study had a unique, individual context as well. The researcher collected data through a series of interviews, multiple-day observations, and curricular materials. The interview data was analyzed to develop a textural, structural, and composite description of the phenomenon. The Reformed Teaching Observation Protocol (RTOP) was used along with the Assesing Inquiry Potential (AIP) questionnaire to determine the level of inquiry-based instruction occuring in the participants classrooms. Analysis of the RTOP data and AIP data indicated all of the participants utilized inquiry-based methods in their classrooms during their observed lessons. The AIP data also indicated the level of inquiry in the AMSTI curricular materials utilized by the participants during the observations was structured inquiry. The findings from the interview data suggested the ability of the participants to sustain their use of structured inquiry was influenced by their experiences with, beliefs about, and understandings of inquiry. This study contributed to the literature by supporting existing studies regarding the influence of teachers' experiences, beliefs, and understandings of inquiry on their classroom practices. The inquiry approach stressed in current reforms in science education targets content knowledge, skills, and processes needed in a future scientifically literate citizenry.

  5. Human dimension in scientific models in high-mountain climate change and risk projects: Peruvian-Swiss experiences

    Science.gov (United States)

    Vicuña, Luis; Jurt, Christine; Minan, Fiorella; Huggel, Christian

    2014-05-01

    Models in a range of scientific disciplines are increasingly seen as indispensable for successful adaptation. Governments as well as international organizations and cooperations put their efforts in basing their adaptation projects on scientific results. Thereby, it is critical that scientific models are first put into the particular context in which they will be applied. This paper addresses the experience of the project 'Glaciers 513- Climate change adaptation and disaster risk management for glacier retreat in the Andes' conducted in the districts of Carhuaz (Ancash region) and Santa Teresa (Cusco region) in Peru. The Peruvian and the Swiss governments put their joint efforts in an adaptation project in the context of climate change and the retreat of the glaciers. The project is led by a consortium of Care Peru and the University of Zurich with additional Swiss partners and its principal aim is to improve the capacity for integral adaptation and reduce the risk of disasters from glaciers and high-mountain areas, and effects of climate change, particularly in the regions of Cusco and Ancash. The paper shows how the so called "human dimension" on the one hand, and models from a range of disciplines, including climatology, glaciology, and hydrology on the other hand, were conceptualized and perceived by the different actors involved in the project. Important aspects have been, among others, the role of local knowledge including ancestral knowledge, demographic information, socio-economic indicators as well as the social, political and cultural framework and the historical background. Here we analyze the role and context of local knowledge and the historical background. The analysis of the implications of the differences and similarities of the perceptions of a range of actors contributes to the discussion about how, and to what extent scientific models can be contextualized, what kind of information can be helpful for the contextualization and how it can be

  6. Body Mass Index: A Scientific Evidence-Based Inquiry

    Directory of Open Access Journals (Sweden)

    Ricardo Djalma Rabelo

    2002-01-01

    Full Text Available OBJECTVE: To objectively and critically assess body mass index and to propose alternatives for relating body weight and height that are evidence-based and that eliminate or reduce the limitations of the body mass index. METHODS: To analyze the relations involving weight and height, we used 2 databases as follows: 1 children and adolescents from Brazil, the United States, and Switzerland; and 2 538 university students. We performed mathematical simulations with height data ranging from 115 to 190 cm and weight data ranging from 25 to 105 kg. We selected 3 methods to analyze the relation of weight and height as follows: body mass index - weight (kg/height (m²; reciprocal of the ponderal index - height (cm/weight1/3 (kg; and ectomorphy. Using the normal range from 20 to 25 kg/m² for the body mass index in the reference height of 170 cm, we identified the corresponding ranges of 41 to 44 cm/kg1/3 for the reciprocal of the ponderal index, and of 1.45 to 3.60 for ectomorphy. RESULTS: The mathematical simulations showed a strong association among the 3 methods with an absolute concordance to a height of 170 cm, but with a tendency towards discrepancy in the normal ranges, which had already been observed for the heights of 165 and 175 cm. This made the direct convertibility between the indices unfeasible. The reciprocal of the ponderal index and ectomorphy with their cut points comprised a larger age range in children and adolescents and a wider and more central range in the university students, both for the reported (current and desired weights. CONCLUSION: The reciprocal of the ponderal index and ectomorphy are stronger and are more mathematically logical than body mass index; in addition, they may be applied with the same cut points for normal from the age of 5 ½ years on.

  7. New York scientific a culture of inquiry, knowledge, and learning

    CERN Document Server

    Hargittai, Istvan

    2016-01-01

    This book introduces the reader to the visible memorabilia of science and scientists in all the five boroughs of New York City—statues, busts, plaques, buildings, and other artifacts. In addition, it extends to some scientists and institutions currently operating in the city. New York is a world center of commerce, finance, communications, transportation, and culture, and it is also a world center in science. It is home to worldrenowned universities and research laboratories, a museum of natural history and other museums related to science, a science academy, historical societies, botanical gardens and zoos, libraries, and a hall of science as well as a large number of world-renowned scientists. The eight chapters of the book cover the following areas. 1 Explorers and Naturalists; 2 Scientists and Innovators; 3 Learning: A sampler of high schools and some of their famous graduates; 4 Aiming Higher in Education: Colleges of City University and New York University; 5 City of Medicine: Biomedical research, tea...

  8. College science teachers' views of classroom inquiry

    Science.gov (United States)

    Brown, Patrick L.; Abell, Sandra K.; Demir, Abdulkadir; Schmidt, Francis J.

    2006-09-01

    The purposes of this study were to (a) gain an understanding of the views of inquiry held by faculty members involved in undergraduate science teaching and (b) describe the challenges, constraints, and opportunities that they perceived in designing and teaching inquiry-based laboratories. Participants included 19 college professors, representing both life and physical science disciplines, from (a) 2-year community college, (b) small, private nonprofit liberal arts college, (c) public master's granting university, and (d) public doctoral/research extensive university. We collected data through semistructured interviews and applied an iterative data analysis process. College science faculty members held a full and open inquiry view, seeing classroom inquiry as time consuming, unstructured, and student directed. They believed that inquiry was more appropriate for upper level science majors than for introductory or nonscience majors. Although faculty members valued inquiry, they perceived limitations of time, class size, student motivation, and student ability. These limitations, coupled with their view of inquiry, constrained them from implementing inquiry-based laboratories. Our proposed inquiry continuum represents a broader view of inquiry that recognizes the interaction between two dimensions of inquiry: (a) the degree of inquiry and (b) the level of student directedness, and provides for a range of inquiry-based classroom activities.

  9. Voices of Youth: Podcasting as a Means for Inquiry-Based Community Engagement

    Science.gov (United States)

    Bruce, Bertram; Lin, Ching-Chiu

    2009-01-01

    A youth community informatics (YCI) research project intersected an inquiry learning model with the making of audiovisual podcasts to foster personal growth and community engagement in a group of Mexican American youth enrolled in an afterschool program. Specifically, the article describes the cycle of inquiry together with the development of a…

  10. Kuwaiti Science Teachers' Beliefs and Intentions Regarding the Use of Inquiry-Based Instruction

    Science.gov (United States)

    Alhendal, Dalal; Marshman, Margaret; Grootenboer, Peter

    2016-01-01

    To improve the quality of education, the Kuwaiti Ministry of Education has encouraged schools to implement inquiry-based instruction. This study identifies psychosocial factors that predict teachers' intention to use inquiry-based instruction in their science classrooms. An adapted model of Ajzen's (1985) theory of planned behaviour--the Science…

  11. Student Connectedness and the Perception of Community of Inquiry Presences in Online Instruction

    Science.gov (United States)

    Sharp, Jennie

    2014-01-01

    This study examined student perceptions of effective online instruction, by means of the levels of student connectedness, within the context of the Community of Inquiry model. Both the Online Student Connectedness Survey (OSCS) and the Community of Inquiry (CoI) survey have been previously used to study student connectedness and student perception…

  12. Teaching and Learning in Public: Professional Development through Shared Inquiry. Technology, Education--Connections (TEC) Series

    Science.gov (United States)

    Sisk-Hilton, Stephanie

    2009-01-01

    This is the inspiring story of a group of teachers who used new technologies to document, analyze, and share an inquiry learning process together. The Supporting Knowledge Integration for Inquiry Practice (SKIIP) is an exciting new professional development model that brings together the strengths and benefits of several existing approaches:…

  13. Inquiry-Based Mathematics Curriculum Design for Young Children-Teaching Experiment and Reflection

    Science.gov (United States)

    Wu, Su-Chiao; Lin, Fou-Lai

    2016-01-01

    A group of teacher educators and practitioners in mathematics education and early childhood education generalized a set of inquiry-based mathematics models for Taiwanese young children of ages 3-6 and designed a series of inquiry-based mathematics curriculum tasks in cultivate the children's diverse mathematical concepts and mathematical power. In…

  14. The models of the future, climatic change and economical scenari: scientifical and political stakes

    International Nuclear Information System (INIS)

    Dahan Dalmedico, A.

    2007-01-01

    The years 1960-1970 are the opening of a debate, launching by the Club of Rome, on the growth and the limits of the earth resources. This report is at the origin of an intellectual topic based on mathematical simulation, about the today sustainable development. At the end of the years 80, arrives the global warming. After the Rio convention in 1992, a global governmental process is implementing especially with the Kyoto protocol. The hybridization grows up between scientists and politicians. This report presents the different aspects of the problem, scientifical, epidemiological, economical and political. It presents the prospective simulation tools and their political use. It analyzes the implementing of the climatic regime since 1988 and precises the bonds between scientifical expertise and global governance. (A.L.B.)

  15. Theoretical perspectives on narrative inquiry.

    Science.gov (United States)

    Emden, C

    1998-04-01

    Narrative inquiry is gaining momentum in the field of nursing. As a research approach it does not have any single heritage of methodology and its practitioners draw upon diverse sources of influence. Central to all narrative inquiry however, is attention to the potential of stories to give meaning to people's lives, and the treatment of data as stories. This is the first of two papers on the topic and addresses the theoretical influences upon a particular narrative inquiry into nursing scholars and scholarship. The second paper, Conducting a narrative analysis, describes the actual narrative analysis as it was conducted in this same study. Together, the papers provide sufficient detail for others wishing to pursue a similar approach to do so, or to develop the ideas and procedures according to their own way of thinking. Within this first theoretical paper, perspectives from Jerome Bruner (1987) and Wade Roof (1993) are outlined. These relate especially to the notion of stories as 'imaginative constructions' and as 'cultural narratives' and as such, highlight the profound importance of stories as being individually and culturally meaningful. As well, perspectives on narrative inquiry from nursing literature are highlighted. Narrative inquiry in this instance lies within the broader context of phenomenology.

  16. Impact of Including Authentic Inquiry Experiences in Methods Courses for Pre-Service Secondary Teachers

    Science.gov (United States)

    Slater, T. F.; Elfring, L.; Novodvorsky, I.; Talanquer, V.; Quintenz, J.

    2007-12-01

    Science education reform documents universally call for students to have authentic and meaningful experiences using real data in the context of their science education. The underlying philosophical position is that students analyzing data can have experiences that mimic actual research. In short, research experiences that reflect the scientific spirit of inquiry potentially can: prepare students to address real world complex problems; develop students' ability to use scientific methods; prepare students to critically evaluate the validity of data or evidence and of the consequent interpretations or conclusions; teach quantitative skills, technical methods, and scientific concepts; increase verbal, written, and graphical communication skills; and train students in the values and ethics of working with scientific data. However, it is unclear what the broader pre-service teacher preparation community is doing in preparing future teachers to promote, manage, and successful facilitate their own students in conducting authentic scientific inquiry. Surveys of undergraduates in secondary science education programs suggests that students have had almost no experiences themselves in conducting open scientific inquiry where they develop researchable questions, design strategies to pursue evidence, and communicate data-based conclusions. In response, the College of Science Teacher Preparation Program at the University of Arizona requires all students enrolled in its various science teaching methods courses to complete an open inquiry research project and defend their findings at a specially designed inquiry science mini-conference at the end of the term. End-of-term surveys show that students enjoy their research experience and believe that this experience enhances their ability to facilitate their own future students in conducting open inquiry.

  17. The theory of chronic stress as a scientific model in Cognitive Neuroscience

    OpenAIRE

    Moscoso, Manolete; University of South Florida, Tampa Bay; Delgado, Eliana; Universidad Nacional Mayor de San Marcos

    2016-01-01

    The scientific study of stress presents serious conceptual and methodological limitations. The theory and concepts of allostasis and allostasis load allowed a new integrative framework of the concept of chronic stress, that identifies the brain as the mediator of the interactions among the central nervous system and immune system in the development of disease. We examined the negative impact of chronic stress and the perceived emotional distress on illness. Our research on the Mindfulness Bas...

  18. Qualitative Assessment of Inquiry-Based Teaching Methods

    Science.gov (United States)

    Briggs, Michael; Long, George; Owens, Katrina

    2011-01-01

    A new approach to teaching method assessment using student focused qualitative studies and the theoretical framework of mental models is proposed. The methodology is considered specifically for the advantages it offers when applied to the assessment of inquiry-based teaching methods. The theoretical foundation of mental models is discussed, and…

  19. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  20. Beyond effective teaching: Enhancing students’ metacognitive skill through guided inquiry

    Science.gov (United States)

    Adnan; Bahri, Arsad

    2018-01-01

    This research was quasi experimental with pretest posttes non-equivalent control group design. This research aimed to compare metacognitive skill of students between tought by guided inquiry and traditional teaching. Sample of this research was the students at even semester at the first year, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Makassar, Indonesia. The data of students’ metacognitive skill was measured by essay test. The data was analyzed by inferential statistic of ANCOVA test. The result of research showed that there was the effect of teaching model towards metacognitive skill of students. Students were tought by guided inquiry had higher metacognitive skill than tought by traditional teaching. The lecturer can use the guided inquiry model in others courses with considering the course materials and also student characteristics.

  1. Useless arithmetic or useful scientific tools? Evaluation of the current state and future perspectives of aquatic biogeochemical modeling

    Science.gov (United States)

    Arhonditsis, G.

    2009-04-01

    What is the capacity of the current models to simulate the dynamics of environmental systems? How carefully do modelers develop their models? Which model features primarily determine our decision to utilize a specific model? How rigorously do we assess what a model can or cannot predict? The first part of my presentation is to answer some of these questions by reviewing the state of aquatic biogeochemical modeling; a research tool that has been extensively used for understanding and quantitatively describing aquatic ecosystems. Mechanistic aquatic biogeochemical models have form the scientific basis for environmental management decisions by providing a predictive link between management actions and ecosystem response; they have provided an important tool for elucidating the interactions between climate variability and plankton communities, and thus for addressing questions regarding the pace and impacts of climate change. The sizable number of aquatic ecosystem modeling studies which successfully passed the scrutiny of the peer-review process along with the experience gained from addressing a breadth of management problems can objectively reveal the systematic biases, methodological inconsistencies, and common misconceptions characterizing the modeling practice in environmental science. My arguments are that (i) models are not always developed in a consistent manner, clearly stated purpose, and predetermined acceptable model performance level, (ii) the potential "customers" select models without properly assessing their technical value, and (iii) oceanic modeling is a dynamic area of the current modeling practice whereas, model application for addressing environmental management issues on a local scale faces challenges as a scientific tool. The second part of my presentation argues that (i) the development of novel methods for rigorously assessing the uncertainty underlying model predictions should be a top priority of the modeling community, and (ii) the model

  2. Developing Students' Reflections on the Function and Status of Mathematical Modeling in Different Scientific Practices: History as a Provider of Cases

    Science.gov (United States)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Mathematical models and mathematical modeling play different roles in the different areas and problems in which they are used. The function and status of mathematical modeling and models in the different areas depend on the scientific practice as well as the underlying philosophical and theoretical position held by the modeler(s) and the…

  3. Understanding students' practical epistemologies and their influence on learning through inquiry

    Science.gov (United States)

    Sandoval, William A.

    2005-07-01

    It has long been a goal of science education in the United States that students leave school with a robust understanding of the nature of science. Decades of research show that this does not happen. Inquiry-based instruction is advocated as a means for developing such understanding, although there is scant direct evidence that it does. There is a gap between what is known about students' inquiry practices and their epistemological beliefs about science. Studies of students' ideas about epistemological aspects of formal science are unlikely to shed any light on how they perceive their own inquiry efforts. Conversely, inquiry-based instruction that does not account for the epistemological beliefs that guide students' inquiry stands very little chance of helping students to understand professional science. This paper reviews largely independent lines of research into students' beliefs about the nature of science and their practices of inquiry to argue that students' inquiry is guided by practical epistemologies that are in need of study. An approach to studying practical epistemologies is proposed that has the potential to produce a better psychological theory of epistemological development, as well as to realize goals of a science education that develops scientifically informed citizens.

  4. Teacher Collaborative Inquiry in the Context of Literacy Education: Examining the Effects on Teacher Self-Efficacy, Instructional and Assessment Practices

    Science.gov (United States)

    Ciampa, Katia; Gallagher, Tiffany L.

    2016-01-01

    This case study research reports on elementary (grade 8) and secondary school (grade 9) teachers' participation in job-embedded, professional learning and engagement in collaborative inquiry. Teachers constructed an inquiry-oriented media literacy unit following the collaborative inquiry model. The current study sought to investigate how…

  5. International workshop on learning by modelling in science education

    NARCIS (Netherlands)

    Bredeweg, B.; Salles, P.; Biswas, G.; Bull, S.; Kay, J.; Mitrovic, A.

    2011-01-01

    Modelling is nowadays a well-established methodology in the sciences, supporting the inquiry and understanding of complex phenomena and systems in the natural, social and artificial worlds. Hence its strong potential as pedagogical approach fostering students' learning of scientific concepts and

  6. Teaching the Anatomy of a Scientific Journal Article

    Science.gov (United States)

    Schinske, Jeffrey N.; Clayman, Karen; Busch, Allison K.; Tanner, Kimberly D.

    2008-01-01

    To promote inquiry-based learning, the authors integrate the anatomy of a scientific journal article into their secondary science curriculum. In this article, they present three classroom activities used to teach students about the function and format of scientific journal articles. The first focuses on journal article figures, the second on…

  7. Inquiry-based science education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino; Sillasen, Martin Krabbe; Hagelskjær, Jens

    2010-01-01

    Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret naturfagsundervisnings......Inquiry-based science education (IBSE) er en internationalt afprøvet naturfagsdidaktisk metode der har til formål at øge elevernes interesse for og udbytte af naturfag. I artiklen redegøres der for metoden, der kan betegnes som en elevstyret problem- og undersøgelsesbaseret...

  8. Merging reflective inquiry and self-study as a framework for enhancing the scholarship of teaching.

    Science.gov (United States)

    Drevdahl, Denise J; Stackman, Richard W; Purdy, Jill M; Louie, Belinda Y

    2002-09-01

    This article provides a model for improving teaching practice and developing new knowledge about teaching. The reflective self-study approach to pedagogical inquiry is rooted in reflective inquiry and self-study as found in nursing and education literature, respectively. The model offers nurse educators a mechanism by which they can better understand themselves as teachers and how their teaching affects students. Essential features of the model include interdisciplinarity and collaboration. Using the framework outlined in this article will help establish reflective self-study research as an accepted model of inquiry and further the dialogue on teaching in higher education.

  9. Trends in computational tools for biomagnetism: from procedural codes to intelligent scientific models.

    Science.gov (United States)

    Ioannides, A A

    1987-01-01

    The nature of the available computing tools strongly influences modern scientific investigations. The sources of well known problems associated with the use of procedural computer languages are traced and their consequences investigated. The likely impact of recent quantitative and qualitative advances in software and hardware is examined with emphasis on its relevance to the biomagnetic inverse problem. Gradual changes in the use of computers, some already employed in a recent study of a specific biomagnetic inverse problem, are outlined which take into account the large investment in conventional codes.

  10. Inquiry-Based Science Education Competencies of Primary School Teachers: A Literature Study and Critical Review of the American National Science Education Standards

    Science.gov (United States)

    Alake-Tuenter, Ester; Biemans, Harm J. A.; Tobi, Hilde; Wals, Arjen E. J.; Oosterheert, Ida; Mulder, Martin

    2012-01-01

    Inquiry-based science education is an important innovation. Researchers and teachers consider it to be stimulating for pupils' application of research skills, construction of meaning and acquiring scientific knowledge. However, there is ambiguity as to what competencies are required to teach inquiry-based science. Our purpose is to develop a…

  11. Performance Modeling of Hybrid MPI/OpenMP Scientific Applications on Large-scale Multicore Cluster Systems

    KAUST Repository

    Wu, Xingfu

    2011-08-01

    In this paper, we present a performance modeling framework based on memory bandwidth contention time and a parameterized communication model to predict the performance of OpenMP, MPI and hybrid applications with weak scaling on three large-scale multicore clusters: IBM POWER4, POWER5+ and Blue Gene/P, and analyze the performance of these MPI, OpenMP and hybrid applications. We use STREAM memory benchmarks to provide initial performance analysis and model validation of MPI and OpenMP applications on these multicore clusters because the measured sustained memory bandwidth can provide insight into the memory bandwidth that a system should sustain on scientific applications with the same amount of workload per core. In addition to using these benchmarks, we also use a weak-scaling hybrid MPI/OpenMP large-scale scientific application: Gyro kinetic Toroidal Code in magnetic fusion to validate our performance model of the hybrid application on these multicore clusters. The validation results for our performance modeling method show less than 7.77% error rate in predicting the performance of hybrid MPI/OpenMP GTC on up to 512 cores on these multicore clusters. © 2011 IEEE.

  12. 10 CFR 1022.6 - Public inquiries.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Public inquiries. 1022.6 Section 1022.6 Energy DEPARTMENT... REQUIREMENTS General § 1022.6 Public inquiries. Inquiries regarding DOE's floodplain and wetland environmental... at 1-800-472-2756, toll free. ...

  13. Sustaining a Mature Teacher Inquiry Network

    Science.gov (United States)

    Satter, Sarah Bea

    2014-01-01

    This research consisted of a case study of an active network for teacher inquiry. Specifically, I investigated how an organization dedicated to teacher inquiry had provided the structure, leadership, and resources to sustain, maintain, and expand the network. The group studied was the Mid-Ohio Writing Project, a teacher inquiry network affiliated…

  14. Introducing Dramatic Inquiry as Visual Art Education

    Science.gov (United States)

    Rhoades, Mindi; Daiello, Vittoria S.

    2016-01-01

    This article defines dramatic inquiry, exploring its possible contributions to discourses on subjectivity, embodied pedagogy, and relational knowing in art education. As a communal, ensemble endeavor emerging from the discipline of drama education, dramatic inquiry offers strategies for enhancing arts education's critical inquiries by facilitating…

  15. 48 CFR 22.806 - Inquiries.

    Science.gov (United States)

    2010-10-01

    ... APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Equal Employment Opportunity 22.806 Inquiries. (a) An inquiry from a contractor regarding status of its compliance with E.O. 11246, or rights of appeal to any of the actions in 22.809, shall be referred to the OFCCP regional office. (b) Labor union inquiries...

  16. Strategies of Qualitative Inquiry. Third Edition

    Science.gov (United States)

    Denzin, Norman K., Ed.; Lincoln, Yvonna S., Ed.

    2007-01-01

    "Strategies of Qualitative Inquiry, Third Edition," the second volume in the paperback version of "The SAGE Handbook of Qualitative Research, 3rd Edition," consists of Part III of the handbook ("Strategies of Inquiry"). "Strategies of Qualitative Inquiry, Third Edition" presents the major tactics--historically, the research methods--that…

  17. Evaluating alternative systems of peer review: a large-scale agent-based modelling approach to scientific publication.

    Science.gov (United States)

    Kovanis, Michail; Trinquart, Ludovic; Ravaud, Philippe; Porcher, Raphaël

    2017-01-01

    The debate on whether the peer-review system is in crisis has been heated recently. A variety of alternative systems have been proposed to improve the system and make it sustainable. However, we lack sufficient evidence and data related to these issues. Here we used a previously developed agent-based model of the scientific publication and peer-review system calibrated with empirical data to compare the efficiency of five alternative peer-review systems with the conventional system. We modelled two systems of immediate publication, with and without online reviews (crowdsourcing), a system with only one round of reviews and revisions allowed (re-review opt-out) and two review-sharing systems in which rejected manuscripts are resubmitted along with their past reviews to any other journal (portable) or to only those of the same publisher but of lower impact factor (cascade). The review-sharing systems outperformed or matched the performance of the conventional one in all peer-review efficiency, reviewer effort and scientific dissemination metrics we used. The systems especially showed a large decrease in total time of the peer-review process and total time devoted by reviewers to complete all reports in a year. The two systems with immediate publication released more scientific information than the conventional one but provided almost no other benefit. Re-review opt-out decreased the time reviewers devoted to peer review but had lower performance on screening papers that should not be published and relative increase in intrinsic quality of papers due to peer review than the conventional system. Sensitivity analyses showed consistent findings to those from our main simulations. We recommend prioritizing a system of review-sharing to create a sustainable scientific publication and peer-review system.

  18. High school students' scientific epistemological beliefs, self-efficacy in learning physics and attitudes toward physics: a structural equation model

    Science.gov (United States)

    Kapucu, Serkan; Bahçivan, Eralp

    2015-05-01

    Background: There are some theoretical evidences that explain the relationships between core beliefs (i.e., epistemological beliefs) and peripheral beliefs (self-efficacy in learning) in the literature. The close relationships of such type of beliefs with attitudes are also discussed by some researchers. Constructing a model that investigates these relationships by considering theoretical and empirical evidences can empower researchers to discuss these relationships more comprehensively. Purpose: The purpose of this study is to explore the relationships among Turkish high school students' scientific epistemological beliefs, self-efficacy in learning physics and their attitudes toward physics. Sample: A total of 632 high school students participated in this study; however, 269 female and 229 male (a total of 498) high school students' data were used. Design and methods: Three distinct instruments that measure scientific epistemological beliefs, self-efficacy in learning physics and attitudes toward physics were combined into a unique questionnaire form and it was distributed to high school students. To explore the relationships among these variables, structural equation modeling was used. Results: The results showed that scientific epistemological belief dimensions uncovered by the nature of knowing (source and justification) significantly and positively related to both self-efficacy in learning physics and attitudes toward other important physics dimensions. Additionally, self-efficacy in learning physics significantly and positively predicted attitudes toward multiple physics dimensions (importance, comprehension and requirement). However, epistemological belief dimensions related to the nature of knowledge (certainty and development) did not have significant impact on self-efficacy in learning physics or attitudes toward physics. Conclusions: This study concludes that there are positive and significant relationships among Turkish high school students' scientific

  19. Ensuring quality in qualitative inquiry: using key concepts as guidelines

    Directory of Open Access Journals (Sweden)

    Debra Frances Campbell

    2013-09-01

    Full Text Available The field of qualitative scientific inquiry employs a fast-growing variety of approaches, whose traditions, procedures, and structures vary, depending on the type of study design and methodology (i.e., phenomenological, ethnographic, grounded theory, case study, action research, etc.. With the interpretive approach, researchers do not utilize the same measures of validity used in positivist approaches to scientific inquiry, since there is "...no one standard or accepted structure as one typically finds in quantitative research" (Creswell, 2007. With the absence of a single standard, how, then, is it possible for qualitative researchers to know whether or not their study was done with rigor, that it has validity, that it is ready to submit to their peers? The research literature is sprinkled with references to quality in qualitative inquiry, which helps to construe a study's validity. Markula (2008 suggests that we validate our study's findings by assuring readers that it was done "in the best possible way." While each research tradition has its own set of criteria for judging quality, we present here general concepts drawn from the literature. We hope this article will provide a framework from which qualitative researchers can judge their work before submitting it to their peers¸ one which will help ensure that their study was done "in the best possible way."

  20. Differential Performance by English Language Learners on an Inquiry-Based Science Assessment

    Science.gov (United States)

    Turkan, Sultan; Liu, Ou Lydia

    2012-10-01

    The performance of English language learners (ELLs) has been a concern given the rapidly changing demographics in US K-12 education. This study aimed to examine whether students' English language status has an impact on their inquiry science performance. Differential item functioning (DIF) analysis was conducted with regard to ELL status on an inquiry-based science assessment, using a multifaceted Rasch DIF model. A total of 1,396 seventh- and eighth-grade students took the science test, including 313 ELL students. The results showed that, overall, non-ELLs significantly outperformed ELLs. Of the four items that showed DIF, three favored non-ELLs while one favored ELLs. The item that favored ELLs provided a graphic representation of a science concept within a family context. There is some evidence that constructed-response items may help ELLs articulate scientific reasoning using their own words. Assessment developers and teachers should pay attention to the possible interaction between linguistic challenges and science content when designing assessment for and providing instruction to ELLs.