WorldWideScience

Sample records for model run times

  1. Predictive modelling of running and dwell times in railway traffic

    NARCIS (Netherlands)

    Kecman, P.; Goverde, R.M.P.

    2015-01-01

    Accurate estimation of running and dwell times is important for all levels of planning and control of railway traffic. The availability of historical track occupation data with a high degree of granularity inspired a data-driven approach for estimating these process times. In this paper we present

  2. The Trick Simulation Toolkit: A NASA/Opensource Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.

    2016-01-01

    The Trick Simulation Toolkit is a simulation development environment used to create high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. Its purpose is to generate a simulation executable from a collection of user-supplied models and a simulation definition file. For each Trick-based simulation, Trick automatically provides job scheduling, numerical integration, the ability to write and restore human readable checkpoints, data recording, interactive variable manipulation, a run-time interpreter, and many other commonly needed capabilities. This allows simulation developers to concentrate on their domain expertise and the algorithms and equations of their models. Also included in Trick are tools for plotting recorded data and various other supporting utilities and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX computer operating systems. This paper describes Trick's design and use at NASA Johnson Space Center.

  3. EnergyPlus Run Time Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.

  4. RUN TO RUN CONTROL OF TIME-PRESSURE DISPENSING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Zhao Yixiang; Li Hanxiong; Ding Han; Xiong Youlun

    2004-01-01

    In electronics packaging the time-pressure dispensing system is widely used to squeeze the adhesive fluid in a syringe onto boards or sub-strates with the pressurized air.However,complexity of the process,which includes the air-fluid coupling and the nonlinear uncertainties,makes it diffi-cult to have a consistent process per-formance.An integrated dispensing process model is first introduced and then its input-output regression rela-tionship is used to design a run to run control methodology for this process.The controller takes EWMA scheme and its stability region is given.Ex-perimental results verify the effective-ness of the proposed run to run control method for dispensing process.

  5. The ATLAS RunTimeTester

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    The ATLAS RunTimeTester is a job based software test system. The RunTimeTester runs jobs, and optional tests on the job outputs. Job and test results are reported via a web site. The system currently runs $\\approx$ 8000 jobs daily, and the web site receives $\\approx$ 25K hits a week. This note provides an overview of the system.

  6. Addressing Thermal Model Run Time Concerns of the Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA)

    Science.gov (United States)

    Peabody, Hume; Guerrero, Sergio; Hawk, John; Rodriguez, Juan; McDonald, Carson; Jackson, Cliff

    2016-01-01

    The Wide Field Infrared Survey Telescope using Astrophysics Focused Telescope Assets (WFIRST-AFTA) utilizes an existing 2.4 m diameter Hubble sized telescope donated from elsewhere in the federal government for near-infrared sky surveys and Exoplanet searches to answer crucial questions about the universe and dark energy. The WFIRST design continues to increase in maturity, detail, and complexity with each design cycle leading to a Mission Concept Review and entrance to the Mission Formulation Phase. Each cycle has required a Structural-Thermal-Optical-Performance (STOP) analysis to ensure the design can meet the stringent pointing and stability requirements. As such, the models have also grown in size and complexity leading to increased model run time. This paper addresses efforts to reduce the run time while still maintaining sufficient accuracy for STOP analyses. A technique was developed to identify slews between observing orientations that were sufficiently different to warrant recalculation of the environmental fluxes to reduce the total number of radiation calculation points. The inclusion of a cryocooler fluid loop in the model also forced smaller time-steps than desired, which greatly increases the overall run time. The analysis of this fluid model required mitigation to drive the run time down by solving portions of the model at different time scales. Lastly, investigations were made into the impact of the removal of small radiation couplings on run time and accuracy. Use of these techniques allowed the models to produce meaningful results within reasonable run times to meet project schedule deadlines.

  7. Relationship between speed and time in running.

    Science.gov (United States)

    Hill, D W; Vingren, J L; Nakamura, F Y; Kokobun, E

    2011-07-01

    The purpose of this study was to evaluate the effect of using different mathematical models to describe the relationship between treadmill running speed and time to exhaustion. All models generated a value for an aerobic parameter (critical speed; S (critical)). 35 university students performed 5-7 constant-speed 0%-slope treadmill tests at speeds that elicited exhaustion in ∼3 min to ∼10 min. Speed and time data were fitted using 3 models: (1) a 2-parameter hyperbolic model; (2) a 3-parameter hyperbolic model; and (3) a hybrid 3-parameter hyperbolic+exponential model. The 2-parameter model generated values for S (critical) (mean (± SD): 186 ± 33 m·min (-1)) and anaerobic distance capacity (ADC; 251 ± 122 m) with a high level of statistical certainty (i.e., with small SEEs). The 3-parameter models generated parameter estimates that were unrealistic in magnitude and/or associated with large SEEs and little statistical certainty. Therefore, it was concluded that, for the range of exercise durations used in the present study, the 2-parameter model is preferred because it provides a parsimonious description of the relationship between velocity and time to fatigue, and it produces parameters of known physiological significance, with excellent confidence.

  8. Run-Time Data-Flow Analysis

    Institute of Scientific and Technical Information of China (English)

    李剑慧; 臧斌宇; 吴蓉; 朱传琪

    2002-01-01

    Parallelizing compilers have made great progress in recent years. However, there still remains a gap between the current ability of parallelizing compilers and their final goals.In order to achieve the maximum parallelism, run-time techniques were used in parallelizing compilers during last few years. First, this paper presents a basic run-time privatization method.The definition of run-time dead code is given and its side effect is discussed. To eliminate the imprecision caused by the run-time dead code, backward data-flow information must be used.Proteus Test, which can use backward information in run-time, is then presented to exploit more dynamic parallelism. Also, a variation of Proteus Test, the Advanced Proteus Test, is offered to achieve partial parallelism. Proteus Test was implemented on the parallelizing compiler AFT.In the end of this paper the program fpppp.f of Spec95fp Benchmark is taken as an example, to show the effectiveness of Proteus Test.

  9. Towards Run-time Assurance of Advanced Propulsion Algorithms

    Science.gov (United States)

    Wong, Edmond; Schierman, John D.; Schlapkohl, Thomas; Chicatelli, Amy

    2014-01-01

    This paper covers the motivation and rationale for investigating the application of run-time assurance methods as a potential means of providing safety assurance for advanced propulsion control systems. Certification is becoming increasingly infeasible for such systems using current verification practices. Run-time assurance systems hold the promise of certifying these advanced systems by continuously monitoring the state of the feedback system during operation and reverting to a simpler, certified system if anomalous behavior is detected. The discussion will also cover initial efforts underway to apply a run-time assurance framework to NASA's model-based engine control approach. Preliminary experimental results are presented and discussed.

  10. Effects of cognitive stimulation with a self-modeling video on time to exhaustion while running at maximal aerobic velocity: a pilot study.

    Science.gov (United States)

    Hagin, Vincent; Gonzales, Benoît R; Groslambert, Alain

    2015-04-01

    This study assessed whether video self-modeling improves running performance and influences the rate of perceived exertion and heart rate response. Twelve men (M age=26.8 yr., SD=6; M body mass index=22.1 kg.m(-2), SD=1) performed a time to exhaustion running test at 100 percent maximal aerobic velocity while focusing on a video self-modeling loop to synchronize their stride. Compared to the control condition, there was a significant increase of time to exhaustion. Perceived exertion was lower also, but there was no significant change in mean heart rate. In conclusion, the video self-modeling used as a pacer apparently increased endurance by decreasing perceived exertion without affecting the heart rate.

  11. Improved calendar time approach for measuring long-run anomalies

    Directory of Open Access Journals (Sweden)

    Anupam Dutta

    2015-12-01

    Full Text Available Although a large number of recent studies employ the buy-and-hold abnormal return (BHAR methodology and the calendar time portfolio approach to investigate the long-run anomalies, each of the methods is a subject to criticisms. In this paper, we show that a recently introduced calendar time methodology, known as Standardized Calendar Time Approach (SCTA,, controls well for heteroscedasticity problem which occurs in calendar time methodology due to varying portfolio compositions. In addition, we document that SCTA has higher power than the BHAR methodology and the Fama–French three-factor model while detecting the long-run abnormal stock returns. Moreover, when investigating the long-term performance of Canadian initial public offerings, we report that the market period (i.e. the hot and cold period markets does not have any significant impact on calendar time abnormal returns based on SCTA.

  12. Gravitational Baryogenesis in Running Vacuum models

    CERN Document Server

    Oikonomou, V K; Nunes, Rafael C

    2016-01-01

    We study the gravitational baryogenesis mechanism for generating baryon asymmetry in the context of running vacuum models. Regardless if these models can produce a viable cosmological evolution, we demonstrate that they produce a non-zero baryon-to-entropy ratio even if the Universe is filled with conformal matter. This is a sound difference between the running vacuum gravitational baryogenesis and the Einstein-Hilbert one, since in the latter case, the predicted baryon-to-entropy ratio is zero. We consider two running vacuum models and show that the resulting baryon-to-entropy ratio is compatible with the observational data.

  13. Thermodynamical aspects of running vacuum models

    Energy Technology Data Exchange (ETDEWEB)

    Lima, J.A.S. [Universidade de Sao Paulo, Departamento de Astronomia, Sao Paulo (Brazil); Basilakos, Spyros [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Athens (Greece); Sola, Joan [Univ. de Barcelona, High Energy Physics Group, Dept. d' Estructura i Constituents de la Materia, Institut de Ciencies del Cosmos (ICC), Barcelona, Catalonia (Spain)

    2016-04-15

    The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is Λ(H) ∝ H{sup n+2}, is discussed in detail. Specifically, by assuming that the ultrarelativistic particles produced by the vacuum decay emerge into space-time in such a way that its energy density ρ{sub r} ∝ T{sup 4}, the temperature evolution law and the increasing entropy function are analytically calculated. For the whole class of vacuum models explored here we find that the primeval value of the comoving radiation entropy density (associated to effectively massless particles) starts from zero and evolves extremely fast until reaching a maximum near the end of the vacuum decay phase, where it saturates. The late-time conservation of the radiation entropy during the adiabatic FRW phase also guarantees that the whole class of running vacuum models predicts the same correct value of the present day entropy, S{sub 0} ∝ 10{sup 87}-10{sup 88} (in natural units), independently of the initial conditions. In addition, by assuming Gibbons¨CHawking temperature as an initial condition, we find that the ratio between the late-time and primordial vacuum energy densities is in agreement with naive estimates from quantum field theory, namely, ρ{sub Λ0}/ρ{sub ΛI} 10{sup -123}. Such results are independent on the power n and suggests that the observed Universe may evolve smoothly between two extreme, unstable, non-singular de Sitter phases. (orig.)

  14. Designing Run-Time Environments to Have Predefined Global Dynamics

    Directory of Open Access Journals (Sweden)

    Massimo Monti

    2013-06-01

    Full Text Available The stability and the predictability of a computer network algorithm's performance are as important as themain functional purpose of networking software. However, asserting or deriving such properties from thefinite state machine implementations of protocols is hard and, except for singular cases like TCP, is notdone today. In this paper, we propose to design and study run-time environments for networking protocolswhich inherently enforce desirable, predictable global dynamics. To this end we merge two complementarydesign approaches: (i A design-time and bottom up approach that enables us to engineer algorithms basedon an analyzable (reaction flow model. (ii A run-time and top-down approach based on an autonomousstack composition framework, which switches among implementation alternatives to find optimal operationconfigurations. We demonstrate the feasibility of our self-optimizing system in both simulations and real-world Internet setups.

  15. A luminosity model of RHIC gold runs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.

    2011-11-01

    In this note, we present a luminosity model for RHIC gold runs. The model is applied to the physics fills in 2007 run without cooling, and with the longitudinal cooling applied to one beam only. Having good comparison, the model is used to project a fill with the longitudinal cooling applied to both beams. Further development and possible applications of the model are discussed. To maximize the integrated luminosity, usually the higher beam intensity, smaller longitudinal and transverse emittance, and smaller {beta} are the directions to work on. In past 10 years, the RHIC gold runs have demonstrated a path toward this goal. Most recently, a successful commissioning of the bunched beam stochastic cooling, both longitudinal and transverse, has offered a chance of further RHIC luminosity improvement. With so many factors involved, a luminosity model would be useful to identify and project gains in the machine development. In this article, a preliminary model is proposed. In Section 2, several secondary factors, which are not yet included in the model, are identified based on the RHIC operation condition and experience in current runs. In Section 3, the RHIC beam store parameters used in the model are listed, and validated. In Section 4, the factors included in the model are discussed, and the luminosity model is presented. In Section 5, typical RHIC gold fills without cooling, and with partial cooling are used for comparison with the model. Then a projection of fills with more coolings is shown. In Section 6, further development of the model is discussed.

  16. Numerical Modelling of Wave Run-Up

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke;

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...

  17. Numerical Modelling of Wave Run-Up

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...

  18. Combining Compile-Time and Run-Time Parallelization

    Directory of Open Access Journals (Sweden)

    Sungdo Moon

    1999-01-01

    Full Text Available This paper demonstrates that significant improvements to automatic parallelization technology require that existing systems be extended in two ways: (1 they must combine high‐quality compile‐time analysis with low‐cost run‐time testing; and (2 they must take control flow into account during analysis. We support this claim with the results of an experiment that measures the safety of parallelization at run time for loops left unparallelized by the Stanford SUIF compiler’s automatic parallelization system. We present results of measurements on programs from two benchmark suites – SPECFP95 and NAS sample benchmarks – which identify inherently parallel loops in these programs that are missed by the compiler. We characterize remaining parallelization opportunities, and find that most of the loops require run‐time testing, analysis of control flow, or some combination of the two. We present a new compile‐time analysis technique that can be used to parallelize most of these remaining loops. This technique is designed to not only improve the results of compile‐time parallelization, but also to produce low‐cost, directed run‐time tests that allow the system to defer binding of parallelization until run‐time when safety cannot be proven statically. We call this approach predicated array data‐flow analysis. We augment array data‐flow analysis, which the compiler uses to identify independent and privatizable arrays, by associating predicates with array data‐flow values. Predicated array data‐flow analysis allows the compiler to derive “optimistic” data‐flow values guarded by predicates; these predicates can be used to derive a run‐time test guaranteeing the safety of parallelization.

  19. ROX: Run-time optimization of XQueries

    NARCIS (Netherlands)

    Abdel Kader, R.; Boncz, P.A.; Manegold, S.; Keulen, M. van

    2009-01-01

    Optimization of complex XQueries combining many XPath steps and joins is currently hindered by the absence of good cardinality estimation and cost models for XQuery. Additionally, the state-of-the-art of even relational query optimization still struggles to cope with cost model estimation errors tha

  20. An Ada run-time control architecture for telerobots

    Science.gov (United States)

    Balaram, J.; Rodriguez, G.

    1987-01-01

    This paper describes the architecture and Ada language implementation of a process-level run-time control subystem for the Jet Propulsion Laboratory (JPL) telerobot system. The concept of run-time control in a combined robot-teleoperation environment is examined and the telerobot system at JPL is described. An Ada language implementation of the JPL Telerobot Run-Time Controller (RTC) is described by highlighting the functional behavior of the subsystem, defining the internal modules, and providing a functional flow time sequence of internal module activity.

  1. Time-varying determinants of long-run house prices

    NARCIS (Netherlands)

    Dröes, M.; van de Minne, A.

    2015-01-01

    The determinants of house prices change over time. This paper documents these changes using long-run historical data from Amsterdam from the year 1825 onwards. Because many houses in Amsterdam have survived until this day, we can construct a long-run repeat sales index and examine its determinants.

  2. Time-varying determinants of long-run house prices

    NARCIS (Netherlands)

    Dröes, M.; van de Minne, A.

    2015-01-01

    The determinants of house prices change over time. This paper documents these changes using long-run historical data from Amsterdam from the year 1825 onwards. Because many houses in Amsterdam have survived until this day, we can construct a long-run repeat sales index and examine its determinants.

  3. Constructing predictive models of human running.

    Science.gov (United States)

    Maus, Horst-Moritz; Revzen, Shai; Guckenheimer, John; Ludwig, Christian; Reger, Johann; Seyfarth, Andre

    2015-02-06

    Running is an essential mode of human locomotion, during which ballistic aerial phases alternate with phases when a single foot contacts the ground. The spring-loaded inverted pendulum (SLIP) provides a starting point for modelling running, and generates ground reaction forces that resemble those of the centre of mass (CoM) of a human runner. Here, we show that while SLIP reproduces within-step kinematics of the CoM in three dimensions, it fails to reproduce stability and predict future motions. We construct SLIP control models using data-driven Floquet analysis, and show how these models may be used to obtain predictive models of human running with six additional states comprising the position and velocity of the swing-leg ankle. Our methods are general, and may be applied to any rhythmic physical system. We provide an approach for identifying an event-driven linear controller that approximates an observed stabilization strategy, and for producing a reduced-state model which closely recovers the observed dynamics. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Running vacuum cosmological models: linear scalar perturbations

    Science.gov (United States)

    Perico, E. L. D.; Tamayo, D. A.

    2017-08-01

    In cosmology, phenomenologically motivated expressions for running vacuum are commonly parameterized as linear functions typically denoted by Λ(H2) or Λ(R). Such models assume an equation of state for the vacuum given by bar PΛ = - bar rhoΛ, relating its background pressure bar PΛ with its mean energy density bar rhoΛ ≡ Λ/8πG. This equation of state suggests that the vacuum dynamics is due to an interaction with the matter content of the universe. Most of the approaches studying the observational impact of these models only consider the interaction between the vacuum and the transient dominant matter component of the universe. We extend such models by assuming that the running vacuum is the sum of independent contributions, namely bar rhoΛ = Σibar rhoΛi. Each Λ i vacuum component is associated and interacting with one of the i matter components in both the background and perturbation levels. We derive the evolution equations for the linear scalar vacuum and matter perturbations in those two scenarios, and identify the running vacuum imprints on the cosmic microwave background anisotropies as well as on the matter power spectrum. In the Λ(H2) scenario the vacuum is coupled with every matter component, whereas the Λ(R) description only leads to a coupling between vacuum and non-relativistic matter, producing different effects on the matter power spectrum.

  5. Modelling surface run-off and trends analysis over India

    Science.gov (United States)

    Gupta, P. K.; Chauhan, S.; Oza, M. P.

    2016-08-01

    The present study is mainly concerned with detecting the trend of run-off over the mainland of India, during a time period of 35 years, from 1971-2005 (May-October). Rainfall, soil texture, land cover types, slope, etc., were processed and run-off modelling was done using the Natural Resources Conservation Service (NRCS) model with modifications and cell size of 5×5 km. The slope and antecedent moisture corrections were incorporated in the existing model. Trend analysis of estimated run-off was done by taking into account different analysis windows such as cell, medium and major river basins, meteorological sub-divisions and elevation zones across India. It was estimated that out of the average 1012.5 mm of rainfall over India (considering the study period of 35 years), 33.8% got converted to surface run-off. An exponential model was developed between the rainfall and the run-off that predicted the run-off with an R 2 of 0.97 and RMSE of 8.31 mm. The run-off trend analysed using the Mann-Kendall test revealed that a significant pattern exists in 22 medium, two major river basins and three meteorological sub-divisions, while there was no evidence of a statistically significant trend in the elevation zones. Among the medium river basins, the highest positive rate of change in the run-off was observed in the Kameng basin (13.6 mm/yr), while the highest negative trend was observed in the Tista upstream basin (-21.4 mm/yr). Changes in run-off provide valuable information for understanding the region's sensitivity to climatic variability.

  6. Modelling surface run-off and trends analysis over India

    Indian Academy of Sciences (India)

    P K Gupta; S Chauhan; M P Oza

    2016-08-01

    The present study is mainly concerned with detecting the trend of run-off over the mainland of India, during a time period of 35 years, from 1971–2005 May–October). Rainfall, soil texture, land cover types, slope, etc., were processed and run-off modelling was done using the Natural Resources ConservationService (NRCS) model with modifications and cell size of 5×5 km. The slope and antecedent moisture corrections were incorporated in the existing model. Trend analysis of estimated run-off was done by taking into account different analysis windows such as cell, medium and major river basins, meteorologicalsub-divisions and elevation zones across India. It was estimated that out of the average 1012.5 mm of rainfall over India (considering the study period of 35 years), 33.8% got converted to surface run-off. An exponential model was developed between the rainfall and the run-off that predicted the run-off with an $R^2$ of 0.97 and RMSE of 8.31 mm. The run-off trend analysed using the Mann–Kendall test revealed that a significant pattern exists in 22 medium, two major river basins and three meteorological subdivisions, while there was no evidence of a statistically significant trend in the elevation zones. Among the medium river basins, the highest positive rate of change in the run-off was observed in the Kameng basin (13.6 mm/yr), while the highest negative trend was observed in the Tista upstream basin (−21.4 mm/yr). Changes in run-off provide valuable information for understanding the region’s sensitivity to climatic variability.

  7. Model for radionuclide transport in running waters

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Karin; Elert, Mark [Kemakta Konsult AB, Stockholm (Sweden)

    2005-11-15

    Two sites in Sweden are currently under investigation by SKB for their suitability as places for deep repository of radioactive waste, the Forsmark and Simpevarp/Laxemar area. As a part of the safety assessment, SKB has formulated a biosphere model with different sub-models for different parts of the ecosystem in order to be able to predict the dose to humans following a possible radionuclide discharge from a future deep repository. In this report, a new model concept describing radionuclide transport in streams is presented. The main difference from the previous model for running water used by SKB, where only dilution of the inflow of radionuclides was considered, is that the new model includes parameterizations also of the exchange processes present along the stream. This is done in order to be able to investigate the effect of the retention on the transport and to be able to estimate the resulting concentrations in the different parts of the system. The concentrations determined with this new model could later be used for order of magnitude predictions of the dose to humans. The presented model concept is divided in two parts, one hydraulic and one radionuclide transport model. The hydraulic model is used to determine the flow conditions in the stream channel and is based on the assumption of uniform flow and quasi-stationary conditions. The results from the hydraulic model are used in the radionuclide transport model where the concentration is determined in the different parts of the stream ecosystem. The exchange processes considered are exchange with the sediments due to diffusion, advective transport and sedimentation/resuspension and uptake of radionuclides in biota. Transport of both dissolved radionuclides and sorbed onto particulates is considered. Sorption kinetics in the stream water phase is implemented as the time scale of the residence time in the stream water probably is short in comparison to the time scale of the kinetic sorption. In the sediment

  8. Time inhomogeneity in longest gap and longest run problems

    DEFF Research Database (Denmark)

    Asmussen, Søren; Ivanovs, Jevgenijs; Rønn-Nielsen, Anders

    2017-01-01

    into the discrete time framework of independent non-stationary Bernoulli trials where the analogue of DD is the waiting time for the first run of ones of length ℓ A main motivation comes from computer reliability, where D+ℓ represents the actual execution time of a program or transfer of a file of size ℓ...

  9. Collaborative Simulation Run-time Management Environment Based on HLA

    Institute of Scientific and Technical Information of China (English)

    王江云; 柴旭东; 王行仁

    2002-01-01

    The Collaborative Simulation Run-time Management Environment based on HLA (CSRME) mainly focuses on simulation problems for the system design of the complex distributed simulation. CSRME can integrate all the simulation tools and simulation applications that comply with the well-documented interface standards defined by CSRME. CSRME supports both the interoperability of different simulations and the integration of simulation tools, as well as provides simulation run-time management, simulation time management and simulation data management. Finally, the distributed command training system is analyzed and realized to validate the theories of CSRME.

  10. Run-time mapping: dynamic resource allocation in embedded systems

    NARCIS (Netherlands)

    Braak, ter Timon David

    2016-01-01

    Many desired features of computing platforms, such as increased fault tolerance, variable quality of service, and improved energy efficiency, can be achieved by postponing resource management decisions from design-time to run-time. While multiprocessing has been widespread in embedded systems for q

  11. Run-time mapping: dynamic resource allocation in embedded systems

    NARCIS (Netherlands)

    ter Braak, T.D.

    2016-01-01

    Many desired features of computing platforms, such as increased fault tolerance, variable quality of service, and improved energy efficiency, can be achieved by postponing resource management decisions from design-time to run-time. While multiprocessing has been widespread in embedded systems for

  12. Short-run and long-run effect of oil consumption on economic growth: ECM model

    Directory of Open Access Journals (Sweden)

    Sofyan Syahnur

    2014-04-01

    Full Text Available The aim of this study is to investigate the effect of oil consumption on economic growth of Aceh in the long-run and short-run by using Error Correction Model (ECM model during the period before the world commodity prices fall of 1985–2008. Four types of oil consumption will be focused on Avtur, Gasoline, Kerosene and Diesel. The data is collected from Central Bureau of Statistics of Aceh (BPS Aceh. The result of this study shows a merely positive effect of oil consumption type diesel to economic growth in Aceh both in the short run and the long run.

  13. Time inhomogeneity in longest gap and longest run problems

    DEFF Research Database (Denmark)

    Asmussen, Søren; Ivanovs, Jevgenijs; Rønn-Nielsen, Anders

    are translated into the discrete time framework of independent non-stationary Bernoulli trials where the analogue of D is the waiting time for the first run of ones of length l. A main motivation comes from computer reliability, where D + l represents the actual execution time of a program or transfer of a file...... of size ` in presence of failures (epochs of the process) which necessitate restart....

  14. Run-to-run variations, asymmetric pulses, and long time-scale transient phenomena in dielectric-barrier atmospheric pressure glow discharges

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jichul; Raja, Laxminarayan L [Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-05-21

    The dielectric-barrier (DB) discharge is an important approach to generate uniform non-equilibrium atmospheric-pressure glow discharges. We report run-to-run variations, asymmetric pulse formation and long time-scale transient phenomena in these discharges. For similar DB discharge geometric and operating conditions, we observe significant run-to-run variations as manifested in the different voltage-current waveforms at the start of each new run. These run-to-run variations are also accompanied by asymmetric pulses at the start of each run. The variations are observed to drift to a repeatable true steady-state condition on time scales of order tens of minutes to hours. Asymmetric pulse waveforms drift to a symmetric pulse waveform at the true steady state. We explore reasons for these phenomena and rule out thermal drift during a discharge run and gas-phase impurity buildup as potential causes. The most plausible explanation appears to be variations in the surface characteristics of the DBs between two consecutive runs owing to varying inter-run environmental exposure and the conditioning of the dielectric surface during a run owing to plasma-surface interactions. We speculate that the dielectric surface state affects the secondary electron emission coefficient of the surface which in turn is manifested in the discharge properties. A zero-dimensional model of the discharge is used to explore the effect of secondary electron emission.

  15. Combining monitoring with run-time assertion checking

    NARCIS (Netherlands)

    Gouw, Stijn de

    2013-01-01

    We develop a new technique for Run-time Checking for two object-oriented languages: Java and the Abstract Behavioral Specification language ABS. In object-oriented languages, objects communicate by sending each other messages. Assuming encapsulation, the behavior of objects is completely determine

  16. Do Running and Strength Exercises Reduce Daily Muscle Inactivity Time?

    Directory of Open Access Journals (Sweden)

    Taija Finni

    2016-09-01

    Full Text Available Understanding how a specific exercise changes daily activity patterns is important when designing physical activity interventions. We examined the effects of strength and interval running exercise sessions on daily activity patterns using recordings of quadriceps and hamstring muscle electromyographic (EMG activity and inactivity. Five male and five female subjects taking part in a 10-week training programme containing both strength and interval running training sessions were measured for daily muscle EMG activities during three days: on a strength day, an interval running day, and a day without exercise. EMG was measured using textile electrodes embedded into sport shorts that were worn 9.1 ± 1.4 hours/day and results are given as % of recording time. During the total measurement time the muscles were inactive 55 ± 26%, 53 ± 30% and 71 ± 12% during strength training day, interval running day, and day without exercise (n.s.. When compared to the day without exercise, the change in muscle inactivity correlated negatively with change in light muscle activity in strength (r = -0.971,p< 0.001 and interval running days (r = -0.965,p< 0.001. While interval running exercise bout induced a more systematic decrease in muscle inactivity time (from 62 ± 15% to 6 ± 6%,p< 0.001, reductions in muscle inactivity in response to strength exercise were highly individual (range 5–70 pp despite the same training programme. Strength, but not running exercise bout, increased muscle activity levels occurring above 50% MVC (p< 0.05 when compared to a similar period without exercise. The effect of strength exercise bout on totaldaily recording time increased the EMG amplitudes across the entire intensity spectrum. While strength and interval running exercise are effective in increasing muscle moderate-to-vigorous activity when compared to a similar period without exercise, it comprises only a small part of the day and does not seem to have a systematic effect

  17. LHCb's Time-Real Alignment in RunII

    CERN Multimedia

    Batozskaya, Varvara

    2015-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run 2. Data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configur...

  18. A Formal Approach to Run-Time Evaluation of Real-Time Behaviour in Distributed Process Control Systems

    DEFF Research Database (Denmark)

    Kristensen, C.H.

    a higher confidence in the system behaviour. We have proposed a combination of formal methods and supplemental fault-detection techniques which we call the Complementary Run-Time Evaluation Model. The basic idea in this model is to use the means of verification given by formal methods, to prove......This thesis advocates a formal approach to run-time evaluation of real-time behaviour in distributed process sontrol systems, motivated by a growing interest in applying the increasingly popular formal methods in the application area of distributed process control systems. We propose to evaluate...... the various models underlaying every formal method by declaring the design assumptions as a number of features or constraints, stated in the formal specification of system requirements, to be evaluated at run-time. It is assumed that if these constraints are ful-filled at run-time then it is fair to have...

  19. Test of the classic model for predicting endurance running performance.

    Science.gov (United States)

    McLaughlin, James E; Howley, Edward T; Bassett, David R; Thompson, Dixie L; Fitzhugh, Eugene C

    2010-05-01

    To compare the classic physiological variables linked to endurance performance (VO2max, %VO2max at lactate threshold (LT), and running economy (RE)) with peak treadmill velocity (PTV) as predictors of performance in a 16-km time trial. Seventeen healthy, well-trained distance runners (10 males and 7 females) underwent laboratory testing to determine maximal oxygen uptake (VO2max), RE, percentage of maximal oxygen uptake at the LT (%VO2max at LT), running velocity at LT, and PTV. Velocity at VO2max (vVO2max) was calculated from RE and VO2max. Three stepwise regression models were used to determine the best predictors (classic vs treadmill performance protocols) for the 16-km running time trial. Simple Pearson correlations of the variables with 16-km performance showed vVO2max to have the highest correlation (r = -0.972) and %VO2max at the LT the lowest (r = 0.136). The correlation coefficients for LT, VO2max, and PTV were very similar in magnitude (r = -0.903 to r = -0.892). When VO2max, %VO2max at LT, RE, and PTV were entered into SPSS stepwise analysis, VO2max explained 81.3% of the total variance, and RE accounted for an additional 10.7%. vVO2max was shown to be the best predictor of the 16-km performance, accounting for 94.4% of the total variance. The measured velocity at VO2max (PTV) was highly correlated with the estimated velocity at vVO2max (r = 0.8867). Among well-trained subjects heterogeneous in VO2max and running performance, vVO2max is the best predictor of running performance because it integrates both maximal aerobic power and the economy of running. The PTV is linked to the same physiological variables that determine vVO2max.

  20. LHCb's Real-Time Alignment in Run2

    CERN Multimedia

    Batozskaya, Varvara

    2015-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performances. During Run2, LHCb will have a new real-time detector alignment and calibration to reach equivalent performances in the online and offline reconstruction. This offers the opportunity to optimise the event selection by applying stronger constraints as well as hadronic particle identification at the trigger level. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger.

  1. Non performing loans (NPLs) in a crisis economy: Long-run equilibrium analysis with a real time VEC model for Greece (2001-2015)

    Science.gov (United States)

    Konstantakis, Konstantinos N.; Michaelides, Panayotis G.; Vouldis, Angelos T.

    2016-06-01

    As a result of domestic and international factors, the Greek economy faced a severe crisis which is directly comparable only to the Great Recession. In this context, a prominent victim of this situation was the country's banking system. This paper attempts to shed light on the determining factors of non-performing loans in the Greek banking sector. The analysis presents empirical evidence from the Greek economy, using aggregate data on a quarterly basis, in the time period 2001-2015, fully capturing the recent recession. In this work, we use a relevant econometric framework based on a real time Vector Autoregressive (VAR)-Vector Error Correction (VEC) model, which captures the dynamic interdependencies among the variables used. Consistent with international evidence, the empirical findings show that both macroeconomic and financial factors have a significant impact on non-performing loans in the country. Meanwhile, the deteriorating credit quality feeds back into the economy leading to a self-reinforcing negative loop.

  2. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, M.K.

    1994-06-01

    The purpose is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs (Ref. 7) and Quiet Time Runs Program (described in Section 3.6). The Filter/Stripper Test Runs and Quiet Time Runs program involves a 12,000 gallon feed tank containing an agitator, a 4,000 gallon flush tank, a variable speed pump, associated piping and controls, and equipment within both the Filter and the Stripper Building.

  3. LHCb’s Real-Time Alignment in Run II

    CERN Document Server

    Batozskaya, Varvara

    2015-01-01

    The LHCb collaboration has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. The data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and oine reconstruction, thus improving the correlation between triggered and oine selected events. This oers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configu...

  4. Error Correction and Long Run Equilibrium in Continuous Time

    OpenAIRE

    1988-01-01

    This paper deals with error correction models (ECM's) and cointegrated systems that are formulated in continuous time. Problems of representation, identification, estimation and time aggregation are discussed. It is shown that every ECM in continuous time has a discrete time equivalent model in ECM format. Moreover, both models may be written as triangular systems with stationary errors. This formulation simplifies both the continuous and the discrete time ECM representations and it helps to ...

  5. Long-run properties of some Danish macroeconometric models

    DEFF Research Database (Denmark)

    Harck, Søren H.

    This paper provides an analytical treatment of various long-run aspects of the MONA model as well as the SMEC model of the Danish economy. More specifically, the analysis lays bare the long-run and steady-state nexus between unemployment and, respectively, inflation and the wage share implied...

  6. AFSC/REFM: FEAST (Forage Euphausiid in Space and Time NPRB B.70 Model output for 1970-2009 Hindcast (Run V146), Kerim Aydin and Andre Punt

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Weekly biophysical and fish model output of FEAST. Part of The Bering Sea Project, FEAST is a high resolution (~10km2) spatial model that uses a Regional Ocean...

  7. Icelandic Public Pensions: Why time is running out

    Directory of Open Access Journals (Sweden)

    Ólafur Ísleifsson

    2011-12-01

    Full Text Available The aim of this paper is to analyse the Icelandic public sector pension system enjoying a third party guarantee. Defined benefit funds fundamentally differ from defined contribution pension funds without a third party guarantee as is the case with the Icelandic general labour market pension funds. We probe the special nature of the public sector pension funds and make a comparison to the defined contribution pension funds of the general labour market. We explore the financial and economic effects of the third party guarantee of the funds, their investment performance and other relevant factors. We seek an answer to the question why time is running out for the country’s largest pension fund that currently faces the prospect of becoming empty by the year 2022.

  8. Advanced overlay: sampling and modeling for optimized run-to-run control

    Science.gov (United States)

    Subramany, Lokesh; Chung, WoongJae; Samudrala, Pavan; Gao, Haiyong; Aung, Nyan; Gomez, Juan Manuel; Gutjahr, Karsten; Park, DongSuk; Snow, Patrick; Garcia-Medina, Miguel; Yap, Lipkong; Demirer, Onur Nihat; Pierson, Bill; Robinson, John C.

    2016-03-01

    In recent years overlay (OVL) control schemes have become more complicated in order to meet the ever shrinking margins of advanced technology nodes. As a result, this brings up new challenges to be addressed for effective run-to- run OVL control. This work addresses two of these challenges by new advanced analysis techniques: (1) sampling optimization for run-to-run control and (2) bias-variance tradeoff in modeling. The first challenge in a high order OVL control strategy is to optimize the number of measurements and the locations on the wafer, so that the "sample plan" of measurements provides high quality information about the OVL signature on the wafer with acceptable metrology throughput. We solve this tradeoff between accuracy and throughput by using a smart sampling scheme which utilizes various design-based and data-based metrics to increase model accuracy and reduce model uncertainty while avoiding wafer to wafer and within wafer measurement noise caused by metrology, scanner or process. This sort of sampling scheme, combined with an advanced field by field extrapolated modeling algorithm helps to maximize model stability and minimize on product overlay (OPO). Second, the use of higher order overlay models means more degrees of freedom, which enables increased capability to correct for complicated overlay signatures, but also increases sensitivity to process or metrology induced noise. This is also known as the bias-variance trade-off. A high order model that minimizes the bias between the modeled and raw overlay signature on a single wafer will also have a higher variation from wafer to wafer or lot to lot, that is unless an advanced modeling approach is used. In this paper, we characterize the bias-variance trade off to find the optimal scheme. The sampling and modeling solutions proposed in this study are validated by advanced process control (APC) simulations to estimate run-to-run performance, lot-to-lot and wafer-to- wafer model term monitoring to

  9. Implementation of a Learning Design Run-Time Environment for the .LRN Learning Management System

    Science.gov (United States)

    del Cid, Jose Pablo Escobedo; de la Fuente Valentin, Luis; Gutierrez, Sergio; Pardo, Abelardo; Kloos, Carlos Delgado

    2007-01-01

    The IMS Learning Design specification aims at capturing the complete learning flow of courses, without being restricted to a particular pedagogical model. Such flow description for a course, called a Unit of Learning, must be able to be reproduced in different systems using a so called run-time environment. In the last few years there has been…

  10. Pessimistic Predicate/Transform Model for Long Running Business Processes

    Institute of Scientific and Technical Information of China (English)

    WANG Jinling; JIN Beihong; LI Jing

    2005-01-01

    Many business processes in enterprise applications are both long running and transactional in nature. However, no current transaction model can provide full transaction support for such long running business processes. This paper proposes a new transaction model, the pessimistic predicate/transform (PP/T) model, which can provide full transaction support for long running business processes. A framework was proposed on the enterprise JavaBeans platform to implement the PP/T model. The framework enables application developers to focus on the business logic, with the underlying platform providing the required transactional semantics. The development and maintenance effort are therefore greatly reduced. Simulations show that the model has a sound concurrency management ability for long running business processes.

  11. Thermoregulation and endurance running in extinct hominins: Wheeler's models revisited.

    Science.gov (United States)

    Ruxton, Graeme D; Wilkinson, David M

    2011-08-01

    Thermoregulation is often cited as a potentially important influence on the evolution of hominins, thanks to a highly influential series of papers in the Journal of Human Evolution in the 1980s and 1990s by Peter Wheeler. These papers developed quantitative modeling of heat balance between different potential hominins and their environment. Here, we return to these models, update them in line with new developments and measurements in animal thermal biology, and modify them to represent a running hominin rather than the stationary form considered previously. In particular, we use our modified Wheeler model to investigate thermoregulatory aspects of the evolution of endurance running ability. Our model suggests that for endurance running to be possible, a hominin would need locomotive efficiency, sweating rates, and areas of hairless skin similar to modern humans. We argue that these restrictions suggest that endurance running may have been possible (from a thermoregulatory viewpoint) for Homo erectus, but is unlikely for any earlier hominins.

  12. Constrained Run-to-Run Optimization for Batch Process Based on Support Vector Regression Model

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An iterative (run-to-run) optimization method was presented for batch processes under input constraints. Generally it is very difficult to acquire an accurate mechanistic model for a batch process. Because support vector machine is powerful for the problems characterized by small samples, nonlinearity, high dimension and local minima, support vector regression models were developed for the end-point optimization of batch processes. Since there is no analytical way to find the optimal trajectory, an iterative method was used to exploit the repetitive nature of batch processes to determine the optimal operating policy. The optimization algorithm is proved convergent. The numerical simulation shows that the method can improve the process performance through iterations.

  13. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Directory of Open Access Journals (Sweden)

    Qi Liu

    2016-08-01

    Full Text Available Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs.

  14. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment

    Science.gov (United States)

    Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel

    2016-01-01

    Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs. PMID:27589753

  15. Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.

    Science.gov (United States)

    Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel

    2016-08-30

    Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs.

  16. Pairwise velocities in the "Running FLRW" cosmological model

    Science.gov (United States)

    Bibiano, Antonio; Croton, Darren J.

    2017-01-01

    We present an analysis of the pairwise velocity statistics from a suite of cosmological N-body simulations describing the "Running Friedmann-Lemaître-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends ΛCDM with a time-evolving vacuum energy density, ρ _Λ. To enforce local conservation of matter a time-evolving gravitational coupling is also included. Our results constitute the first study of velocities in the R-FLRW cosmology, and we also compare with other dark energy simulations suites, repeating the same analysis. We find a strong degeneracy between the pairwise velocity and σ8 at z = 0 for almost all scenarios considered, which remains even when we look back to epochs as early as z = 2. We also investigate various Coupled Dark Energy models, some of which show minimal degeneracy, and reveal interesting deviations from ΛCDM which could be readily exploited by future cosmological observations to test and further constrain our understanding of dark energy.

  17. Terror birds on the run: a mechanical model to estimate its maximum running speed

    Science.gov (United States)

    Blanco, R. Ernesto; Jones, Washington W

    2005-01-01

    ‘Terror bird’ is a common name for the family Phorusrhacidae. These large terrestrial birds were probably the dominant carnivores on the South American continent from the Middle Palaeocene to the Pliocene–Pleistocene limit. Here we use a mechanical model based on tibiotarsal strength to estimate maximum running speeds of three species of terror birds: Mesembriornis milneedwardsi, Patagornis marshi and a specimen of Phorusrhacinae gen. The model is proved on three living large terrestrial bird species. On the basis of the tibiotarsal strength we propose that Mesembriornis could have used its legs to break long bones and access their marrow. PMID:16096087

  18. Running times on railway sections with heterogeneous train traffic

    NARCIS (Netherlands)

    Boucherie, Richardus J.; Huisman, Tijs

    2001-01-01

    In contemporary railway traffic, different train services often run on the same track of a railway section. Since these train services generally travel at different speed, this may result in delays due to fast trains being caught behind slower ones. This note investigates these delays developing a s

  19. Running times on railway sections with heterogeneous train traffic

    NARCIS (Netherlands)

    Boucherie, Richardus J.; Huisman, Tijs

    In contemporary railway traffic, different train services often run on the same track of a railway section. Since these train services generally travel at different speed, this may result in delays due to fast trains being caught behind slower ones. This note investigates these delays developing a

  20. Numerical Modelling of Wave Run-Up: Regular Waves

    DEFF Research Database (Denmark)

    Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke;

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...

  1. Numerical Modelling of Wave Run-Up: Regular Waves

    DEFF Research Database (Denmark)

    Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...

  2. Long-Run Properties of Large-Scale Macroeconometric Models

    OpenAIRE

    Kenneth F. WALLIS-; John D. WHITLEY

    1987-01-01

    We consider alternative approaches to the evaluation of the long-run properties of dynamic nonlinear macroeconometric models, namely dynamic simulation over an extended database, or the construction and direct solution of the steady-state version of the model. An application to a small model of the UK economy is presented. The model is found to be unstable, but a stable form can be produced by simple alterations to the structure.

  3. Effects of individual aerobic performance on finish time in mountain running.

    Science.gov (United States)

    Heinrich, Dieter; Burtscher, Johannes; Burtscher, Martin

    2012-06-01

    It was hypothesized that for each mountain running competition, there is a certain individual performance level below which running times increase dramatically. The running times of 869 finishers of 3 international mountain running competitions have been analysed. A hyperbolic association was demonstrated between finish times in mountain running competitions and individual performance at the anaerobic threshold (VO2AT(Race)). Due to the non-linear association, there is an increasing effect on both the finish time and the change of finish time with decreasing aerobic performance. In all three competitions, the change of finish time is about 7 times more pronounced in mountain runners with the lowest VO2ATL,, compared to those with the highest values of VO2AT(Race). Both athletes and organizers should keep in mind these effects of decreasing aerobic performance on running times and potentially associated risks.

  4. The comparison of OPC performance and run time for dense versus sparse solutions

    Science.gov (United States)

    Abdo, Amr; Stobert, Ian; Viswanathan, Ramya; Burns, Ryan; Herold, Klaus; Kallingal, Chidam; Meiring, Jason; Oberschmidt, James; Mansfield, Scott

    2008-03-01

    The lithographic processes and resolution enhancement techniques (RET) needed to achieve pattern fidelity are becoming more complicated as the required critical dimensions (CDs) shrink. For technology nodes with smaller devices and tolerances, more complex models and proximity corrections are needed and these significantly increase the computational requirements. New simulation techniques are required to address these computational challenges. The new simulation technique we focus on in this work is dense optical proximity correction (OPC). Sparse OPC tools typically require a laborious, manual and time consuming OPC optimization approach. In contrast, dense OPC uses pixel-based simulation that does not need as much manual setup. Dense OPC was introduced because sparse simulation methodology causes run times to explode as the pattern density increases, since the number of simulation sites in a given optical radius increases. In this work, we completed a comparison of the OPC modeling performance and run time for the dense and the sparse solutions. The analysis found the computational run time to be highly design dependant. The result should lead to the improvement of the quality and performance of the OPC solution and shed light on the pros and cons of using dense versus sparse solution. This will help OPC engineers to decide which solution to apply to their particular situation.

  5. Matter density perturbation and power spectrum in running vacuum model

    CERN Document Server

    Geng, Chao-Qiang

    2016-01-01

    We investigate the matter density perturbation $\\delta_m$ and power spectrum $P(k)$ in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by $\\Lambda = \\Lambda_0 + 6 \\sigma H H_0+ 3\

  6. The running of the Universe and the quantum structure of time

    CERN Document Server

    Jaroszkiewicz, G A

    2001-01-01

    Some principles underpinning the running of the Universe are discussed. The most important, the machine principle, states that the Universe is a fully autonomous, self-organizing and self-testing quantum automaton. Continuous space and time, consciousness and the semi-classical observers of quantum mechanics are all emergent phenomena not operating at the fundamental level of the machine Universe. Quantum processes define the present, the interface between the future and the past, giving a time ordering to the running of the Universe which is non-integrable except on emergent scales. A diagrammatic approach is used to discuss the quantum topology of the EPR paradox, particle decays and scattering processes. A toy model of a self-referential universe is given.

  7. An approach to quantifying the run-time behaviour of Java GUI applications

    OpenAIRE

    Mitchell, Aine; Power, James F.

    2004-01-01

    This paper outlines a new technique for collecting dynamic trace information from Java GUI programs. The problems of collecting run-time information from such interactive applications in comparison with traditional batch style execution benchmark programs is outlined. The possible utility of such run-time information is discussed and from this a number of simple run-time metrics are suggested. The metrics results for a small CelsiusConverter Java GUI program are illustrated to ...

  8. Cosmological models with running cosmological term and decaying dark matter

    Science.gov (United States)

    Szydłowski, Marek; Stachowski, Aleksander

    2017-03-01

    We investigate the dynamics of the generalized ΛCDM model, which the Λ term is running with the cosmological time. On the example of the model Λ(t) =Λbare + α2/t2 we show the existence of a mechanism of the modification of the scaling law for energy density of dark matter: ρdm ∝a - 3 + λ(t). We use an approach developed by Urbanowski in which properties of unstable vacuum states are analyzed from the point of view of the quantum theory of unstable states. We discuss the evolution of Λ(t) term and pointed out that during the cosmic evolution there is a long phase in which this term is approximately constant. We also present the statistical analysis of both the Λ(t) CDM model with dark energy and decaying dark matter and the ΛCDM standard cosmological model. We use data such as Planck, SNIa, BAO, H(z) and AP test. While for the former we find the best fit value of the parameter Ωα2,0 is negative (energy transfer is from the dark matter to dark energy sector) and the parameter Ωα2,0 belongs to the interval (- 0 . 000040 , - 0 . 000383) at 2- σ level. The decaying dark matter causes to lowering a mass of dark matter particles which are lighter than CDM particles and remain relativistic. The rate of the process of decaying matter is estimated. Our model is consistent with the decaying mechanism producing unstable particles (e.g. sterile neutrinos) for which α2 is negative.

  9. Time limit and time at VO2max' during a continuous and an intermittent run.

    Science.gov (United States)

    Demarie, S; Koralsztein, J P; Billat, V

    2000-06-01

    The purpose of this study was to verify, by track field tests, whether sub-elite runners (n=15) could (i) reach their VO2max while running at v50%delta, i.e. midway between the speed associated with lactate threshold (vLAT) and that associated with maximal aerobic power (vVO2max), and (ii) if an intermittent exercise provokes a maximal and/or supra maximal oxygen consumption longer than a continuous one. Within three days, subjects underwent a multistage incremental test during which their vVO2max and vLAT were determined; they then performed two additional testing sessions, where continuous and intermittent running exercises at v50%delta were performed up to exhaustion. Subject's gas exchange and heart rate were continuously recorded by means of a telemetric apparatus. Blood samples were taken from fingertip and analysed for blood lactate concentration. In the continuous and the intermittent tests peak VO2 exceeded VO2max values, as determined during the incremental test. However in the intermittent exercise, peak VO2, time to exhaustion and time at VO2max reached significantly higher values, while blood lactate accumulation showed significantly lower values than in the continuous one. The v50%delta is sufficient to stimulate VO2max in both intermittent and continuous running. The intermittent exercise results better than the continuous one in increasing maximal aerobic power, allowing longer time at VO2max and obtaining higher peak VO2 with lower lactate accumulation.

  10. On the effect of timing errors in run length codes. [redundancy removal algorithms for digital channels

    Science.gov (United States)

    Wilkins, L. C.; Wintz, P. A.

    1975-01-01

    Many redundancy removal algorithms employ some sort of run length code. Blocks of timing words are coded with synchronization words inserted between blocks. The probability of incorrectly reconstructing a sample because of a channel error in the timing data is a monotonically nondecreasing function of time since the last synchronization word. In this paper we compute the 'probability that the accumulated magnitude of timing errors equal zero' as a function of time since the last synchronization word for a zero-order predictor (ZOP). The result is valid for any data source that can be modeled by a first-order Markov chain and any digital channel that can be modeled by a channel transition matrix. An example is presented.

  11. Arbitrary Symmetric Running Gait Generation for an Underactuated Biped Model

    Science.gov (United States)

    Esmaeili, Mohammad; Macnab, Chris

    2017-01-01

    This paper investigates generating symmetric trajectories for an underactuated biped during the stance phase of running. We use a point mass biped (PMB) model for gait analysis that consists of a prismatic force actuator on a massless leg. The significance of this model is its ability to generate more general and versatile running gaits than the spring-loaded inverted pendulum (SLIP) model, making it more suitable as a template for real robots. The algorithm plans the necessary leg actuator force to cause the robot center of mass to undergo arbitrary trajectories in stance with any arbitrary attack angle and velocity angle. The necessary actuator forces follow from the inverse kinematics and dynamics. Then these calculated forces become the control input to the dynamic model. We compare various center-of-mass trajectories, including a circular arc and polynomials of the degrees 2, 4 and 6. The cost of transport and maximum leg force are calculated for various attack angles and velocity angles. The results show that choosing the velocity angle as small as possible is beneficial, but the angle of attack has an optimum value. We also find a new result: there exist biped running gaits with double-hump ground reaction force profiles which result in less maximum leg force than single-hump profiles. PMID:28118401

  12. Run-time assertion checking of JML annotations in multithreaded applications with e-OpenJML

    NARCIS (Netherlands)

    Kandziora, Jorne; Huisman, Marieke; Bockisch, Christoph; Zaharieva-Stojanovski, Marina; Monahan, R.

    2015-01-01

    Run-time assertion checking of multithreaded programs is challenging, as assertion evaluation should not interfere with the execution of other threads. This paper describes the prototype implementation of a run-time assertion checker that achieves this by evaluating assertions over snapshots of the

  13. Comparison of Sprint and Run Times with Performance on the Wingate Anaerobic Test.

    Science.gov (United States)

    Tharp, Gerald D.; And Others

    1985-01-01

    Male volunteers were studied to examine the relationship between the Wingate Anaerobic Test (WAnT) and sprint-run times and to determine the influence of age and weight. Results indicate the WAnT is a moderate predictor of dash and run times but becomes a stronger predictor when adjusted for body weight. (Author/MT)

  14. Run-time Assertion Checking of JML Annotations in Multithreaded Applications with e-OpenJML

    NARCIS (Netherlands)

    Kandziora, Jorne; Huisman, Marieke; Bockisch, Christoph; Zaharieva, M.; Monahan, R.

    Run-time assertion checking of multithreaded programs is challenging, as assertion evaluation should not interfere with the execution of other threads. This paper describes the prototype implementation of a run-time assertion checker that achieves this by evaluating assertions over snapshots of the

  15. Time Series Analysis Based on Running Mann Whitney Z Statistics

    Science.gov (United States)

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  16. Dynamical system approach to running Λ cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Stachowski, Aleksander [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Szydlowski, Marek [Jagiellonian University, Astronomical Observatory, Krakow (Poland); Jagiellonian University, Mark Kac Complex Systems Research Centre, Krakow (Poland)

    2016-11-15

    We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g{sup αβ}∇{sub α}∇{sub β}φ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)

  17. Running of soft parameters in extra space-time dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuo; Kubo, Jisuke; Mondragon, Myriam; Zoupanos, George

    1999-06-14

    The evolution of the parameters including those in the soft supersymmetry-breaking (SSB) sector is studied in the minimal supersymmetric standard model (MSSM) with a certain set of Kaluza-Klein towers which has been recently considered by Dienes et al. We use the continuous Wilson renormalization group technique to derive the one-loop matching condition between the effective, renormalizable and original, unrenormalizable theories. We investigate whether the assumption of a large compactification radius in the model is consistent with the gauge coupling unification, the b-{tau} unification and the radiative breaking of the electroweak gauge symmetry with the universal SSB terms. We calculate the superpartner spectrum under the assumption of the universal SSB parameters to find differences between the model and the MSSM.

  18. Onboard Run-Time Goal Selection for Autonomous Operations

    Science.gov (United States)

    Rabideau, Gregg; Chien, Steve; McLaren, David

    2010-01-01

    We describe an efficient, online goal selection algorithm for use onboard spacecraft and its use for selecting goals at runtime. Our focus is on the re-planning that must be performed in a timely manner on the embedded system where computational resources are limited. In particular, our algorithm generates near optimal solutions to problems with fully specified goal requests that oversubscribe available resources but have no temporal flexibility. By using a fast, incremental algorithm, goal selection can be postponed in a "just-in-time" fashion allowing requests to be changed or added at the last minute. This enables shorter response cycles and greater autonomy for the system under control.

  19. Linking Fish Habitat Modelling and Sediment Transport in Running Waters

    Institute of Scientific and Technical Information of China (English)

    Andreas; EISNER; Silke; WIEPRECHT; Matthias; SCHNEIDER

    2005-01-01

    The assessment of ecological status for running waters is one of the major issues within an integrated river basin management and plays a key role with respect to the implementation of the European Water Frame- work Directive (WFD).One of the tools supporting the development of sustainable river management is physi- cal habitat modeling,e.g.,for fish,because fish population are one of the most important indicators for the e- colngical integrity of rivers.Within physical habitat models hydromorphological ...

  20. Timing influence of carbohydrate-protein ingestion on muscle soreness and next-day running performance.

    Science.gov (United States)

    Greer, Beau Kjerulf; Price, Anna; Jones, Brett

    2014-06-01

    The present study investigates timing effects of a carbohydrate-protein (CHO-PROT) beverage on indicators of muscle damage and next day running performance. Nine trained subjects completed three trials of a 30 min downhill run, followed by a 1.5 mile treadmill running time trial 24 hr later in a blinded, crossover design. Either a CHO-PROT or noncaloric placebo beverage was given 30 and 5 min prior to, at the 15 min mark during, immediately after, and 30 min after the downhill running protocol. In the first treatment (T1), a total of 360 kilocalories were given 30 and 5 min prior to downhill running, as well as at the 15 min mark, with placebos used at other time points. In the second treatment (T2), an isocaloric amount was given but only immediately after and 30 min after downhill running, with placebos used at other time points. In the placebo treatment, a placebo was given at all time points. There were no significant differences in the 1.5 mile time trial or soreness between trials (p > .05). Regardless of timing, the ingestion of a CHO-PROT beverage had no effect on next day running performance or muscular soreness versus a placebo.

  1. Safety, Liveness and Run-time Refinement for Modular Process-Aware Information Systems with Dynamic Sub Processes

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Slaats, Tijs

    2015-01-01

    and verification of flexible, run-time adaptable process-aware information systems, moved into practice via the Dynamic Condition Response (DCR) Graphs notation co-developed with our industrial partner. Our key contributions are: (1) A formal theory of dynamic sub-process instantiation for declarative, event......- responding to DCR Graphs (without dynamic sub-process instantiation) characterises exactly the languages that are the union of a regular and an omega-regular language; (3) a formalisation of run-time refinement and adaptation by composition for DCR* processes and a proof that such refinement is undecidable......We study modularity, run-time adaptation and refinement under safety and liveness constraints in event-based process models with dynamic sub-process instantiation. The study is part of a larger programme to provide semantically well-founded technologies for modelling, implementation...

  2. Dynamic sensitivity analysis of long running landslide models through basis set expansion and meta-modelling

    Science.gov (United States)

    Rohmer, Jeremy

    2016-04-01

    Predicting the temporal evolution of landslides is typically supported by numerical modelling. Dynamic sensitivity analysis aims at assessing the influence of the landslide properties on the time-dependent predictions (e.g., time series of landslide displacements). Yet two major difficulties arise: 1. Global sensitivity analysis require running the landslide model a high number of times (> 1000), which may become impracticable when the landslide model has a high computation time cost (> several hours); 2. Landslide model outputs are not scalar, but function of time, i.e. they are n-dimensional vectors with n usually ranging from 100 to 1000. In this article, I explore the use of a basis set expansion, such as principal component analysis, to reduce the output dimensionality to a few components, each of them being interpreted as a dominant mode of variation in the overall structure of the temporal evolution. The computationally intensive calculation of the Sobol' indices for each of these components are then achieved through meta-modelling, i.e. by replacing the landslide model by a "costless-to-evaluate" approximation (e.g., a projection pursuit regression model). The methodology combining "basis set expansion - meta-model - Sobol' indices" is then applied to the La Frasse landslide to investigate the dynamic sensitivity analysis of the surface horizontal displacements to the slip surface properties during the pore pressure changes. I show how to extract information on the sensitivity of each main modes of temporal behaviour using a limited number (a few tens) of long running simulations. In particular, I identify the parameters, which trigger the occurrence of a turning point marking a shift between a regime of low values of landslide displacements and one of high values.

  3. Strong Normalization by Type-Directed Partial Evaluation and Run-Time Code Generation

    DEFF Research Database (Denmark)

    Balat, Vincent; Danvy, Olivier

    1997-01-01

    We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

  4. Strong normalization by type-directed partial evaluation and run-time code generation

    DEFF Research Database (Denmark)

    Balat, Vincent; Danvy, Olivier

    1998-01-01

    We investigate the synergy between type-directed partial evaluation and run-time code generation for the Caml dialect of ML. Type-directed partial evaluation maps simply typed, closed Caml values to a representation of their long βη-normal form. Caml uses a virtual machine and has the capability...... to load byte code at run time. Representing the long βη-normal forms as byte code gives us the ability to strongly normalize higher-order values (i.e., weak head normal forms in ML), to compile the resulting strong normal forms into byte code, and to load this byte code all in one go, at run time. We...... conclude this note with a preview of our current work on scaling up strong normalization by run-time code generation to the Caml module language....

  5. ANALYSIS OF POSSIBILITY TO AVOID A RUNNING-DOW ACCIDENT TIMELY BRAKING

    Directory of Open Access Journals (Sweden)

    Sarayev, A.

    2013-06-01

    Full Text Available Such circumstances under which the drive can stop the vehicle by applying timely braking before reaching the pedestrian crossing or decrease the speed to the safe limit to avoid a running-down accident is considered.

  6. Response Time Comparisons among Four Base Running Starting Techniques in Slow Pitch Softball.

    Science.gov (United States)

    Israel, Richard G.; Brown, Rodney L.

    1981-01-01

    Response times among four starting techniques (cross-over step, jab step, standing sprinter's start, and momentum start) were compared. The results suggest that the momentum start was the fastest starting technique for optimum speed in running bases. (FG)

  7. System and Component Software Specification, Run-time Verification and Automatic Test Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The following background technology is described in Part 5: Run-time Verification (RV), White Box Automatic Test Generation (WBATG). Part 5 also describes how WBATG...

  8. Integrating spatio-temporal environmental models for planning ski runs

    NARCIS (Netherlands)

    Pfeffer, Karin

    2003-01-01

    The establishment of ski runs and ski lifts, the action of skiing and maintenance of ski runs may cause considerable environmental impact. Clearly, for improvements to be made in the planning of ski runs in alpine terrain a good understanding of the environmental system and the response of environme

  9. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsch, Harald [Nanyang Technological University, Institute for Advanced Study, Singapore (Singapore); Universitaet Muenchen, Physik-Department, Munich (Germany); Sola, Joan [Nanyang Technological University, Institute for Advanced Study, Singapore (Singapore); Universitat de Barcelona, Departament de Fisica Quantica i Astrofisica, Barcelona, Catalonia (Spain); Universitat de Barcelona (ICCUB), Institute of Cosmos Sciences, Barcelona, Catalonia (Spain); Nunes, Rafael C. [Universidade Federal de Juiz de Fora, Dept. de Fisica, Juiz de Fora, MG (Brazil)

    2017-03-15

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine-structure constant and Newton's constant) within the context of the so-called running vacuum models (RVMs) of the cosmic evolution. Recently, compelling evidence has been provided that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance ΛCDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level >or similar 3σ. Here we use such remarkable status of the RVMs to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time evolution of the dark matter particle masses should be crucially involved in the total mass variation of our Universe. A positive measurement of this kind of effects could be interpreted as strong support to the ''micro-macro connection'' (viz. the dynamical feedback between the evolution of the cosmological parameters and the time variation of the fundamental constants of the microscopic world), previously proposed by two of us (HF and JS). (orig.)

  10. The rating of perceived exertion during competitive running scales with time.

    Science.gov (United States)

    Faulkner, James; Parfitt, Gaynor; Eston, Roger

    2008-11-01

    This study assessed the relationship of the rating of perceived exertion (RPE) with heart rate and pacing strategy during competitive running races of differing distance and course elevation. Nine men and women competed in a 7-mile road race (7-MR) and the Great West Run half marathon (GWR; 13.1 miles). Heart rate, split mile time, and RPE were recorded throughout the races. The RPE was regressed against time and %time to complete the 7-MR and GWR. Although the rate of increase in RPE was greater in the 7-MR, there were no differences when expressed against %time (inferring that the brain uses a scalar timing mechanism). As the course elevation, distance, pacing strategy, and heart rate response varied between conditions, this study has provided evidence that the perceptual response may have distinct temporal characteristics during distance running. The results provide further evidence that RPE scales with the proportion of exercise time that remains.

  11. Design Flow Instantiation for Run-Time Reconfigurable Systems: A Case Study

    Directory of Open Access Journals (Sweden)

    Yang Qu

    2007-12-01

    Full Text Available Reconfigurable system is a promising alternative to deliver both flexibility and performance at the same time. New reconfigurable technologies and technology-dependent tools have been developed, but a complete overview of the whole design flow for run-time reconfigurable systems is missing. In this work, we present a design flow instantiation for such systems using a real-life application. The design flow is roughly divided into two parts: system level and implementation. At system level, our supports for hardware resource estimation and performance evaluation are applied. At implementation level, technology-dependent tools are used to realize the run-time reconfiguration. The design case is part of a WCDMA decoder on a commercially available reconfigurable platform. The results show that using run-time reconfiguration can save over 40% area when compared to a functionally equivalent fixed system and achieve 30 times speedup in processing time when compared to a functionally equivalent pure software design.

  12. Running vacuum in the Universe and the time variation of the fundamental constants of Nature

    CERN Document Server

    Fritzsch, Harald; Sola, Joan

    2016-01-01

    We compute the time variation of the fundamental constants (such as the ratio of the proton mass to the electron mass, the strong coupling constant, the fine structure constant and Newton's constant) within the context of the so-called running vacuum models (RVM's) of the cosmic evolution. Recently, compelling evidence has been provided showing that these models are able to fit the main cosmological data (SNIa+BAO+H(z)+LSS+BBN+CMB) significantly better than the concordance $\\Lambda$CDM model. Specifically, the vacuum parameters of the RVM (i.e. those responsible for the dynamics of the vacuum energy) prove to be nonzero at a confidence level of $\\gtrsim3\\sigma$. Here we use such remarkable status of the RVM's to make definite predictions on the cosmic time variation of the fundamental constants. It turns out that the predicted variations are close to the present observational limits. Furthermore, we find that the time variation of the dark matter particles should be necessarily involved in the total mass vari...

  13. Tsunami generation, propagation, and run-up with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2009-01-01

    In this work we extend a high-order Boussinesq-type (finite difference) model, capable of simulating waves out to wavenumber times depth kh landslide-induced tsunamis. The extension is straight forward, requiring only....... The Boussinesq-type model is then used to simulate numerous tsunami-type events generated from submerged landslides, in both one and two horizontal dimensions. The results again compare well against previous experiments and/or numerical simulations. The new extension compliments recently developed run...

  14. Methods of Run-Time Error Detection in Distributed Process Control Software

    DEFF Research Database (Denmark)

    Drejer, N.

    of generic run-time error types, design of methods of observing application software behaviorduring execution and design of methods of evaluating run time constraints. In the definition of error types it is attempted to cover all relevant aspects of the application softwaree behavior. Methods of observation...... and constraint evaluation is designed for the modt interesting error types. These include: a) semantical errors in data communicated between application tasks; b) errors in the execution of application tasks; and c) errors in the timing of distributed events emitted by the application software. The design......In this thesis, methods of run-time error detection in application software for distributed process control is designed. The error detection is based upon a monitoring approach in which application software is monitored by system software during the entire execution. The thesis includes definition...

  15. Run-Time and Compiler Support for Programming in Adaptive Parallel Environments

    Directory of Open Access Journals (Sweden)

    Guy Edjlali

    1997-01-01

    Full Text Available For better utilization of computing resources, it is important to consider parallel programming environments in which the number of available processors varies at run-time. In this article, we discuss run-time support for data-parallel programming in such an adaptive environment. Executing programs in an adaptive environment requires redistributing data when the number of processors changes, and also requires determining new loop bounds and communication patterns for the new set of processors. We have developed a run-time library to provide this support. We discuss how the run-time library can be used by compilers of high-performance Fortran (HPF-like languages to generate code for an adaptive environment. We present performance results for a Navier-Stokes solver and a multigrid template run on a network of workstations and an IBM SP-2. Our experiments show that if the number of processors is not varied frequently, the cost of data redistribution is not significant compared to the time required for the actual computation. Overall, our work establishes the feasibility of compiling HPF for a network of nondedicated workstations, which are likely to be an important resource for parallel programming in the future.

  16. Matter density perturbation and power spectrum in running vacuum model

    Science.gov (United States)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2016-10-01

    We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model (RVM) with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behavior as that in the ΛCDM model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > ( matter and dark energy. It is clear that the observational data rule out the cases with ν < 0 and ν + σ < 0, while the allowed window for the model parameters is extremely narrow with ν , |σ | ≲ {O}(10^{-7}).

  17. A model-experiment comparison of system dynamics for human walking and running.

    Science.gov (United States)

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Grimmer, Sten; Seyfarth, Andre

    2012-01-07

    The human musculo-skeletal system comprises high complexity which makes it difficult to identify underlying basic principles of bipedal locomotion. To tackle this challenge, a common approach is to strip away complexity and formulate a reductive model. With utter simplicity a bipedal spring-mass model gives good predictions of the human gait dynamics, however, it has not been fully investigated whether center of mass motion over time of walking and running is comparable between the model and the human body over a wide range of speed. To test the model's ability in this respect, we compare sagittal center of mass trajectories of model and human data for speeds ranging from 0.5 m/s to 4 m/s. For simulations, system parameters and initial conditions are extracted from experimental observations of 28 subjects. The leg parameters stiffness and length are extracted from functional fitting to the subjects' leg force-length curves. With small variations of the touch-down angle of the leg and the vertical position of the center of mass at apex, we find successful spring-mass simulations for moderate walking and medium running speeds. Predictions of the sagittal center of mass trajectories and ground reaction forces are good, but their amplitudes are overestimated, while contact time is underestimated. At faster walking speeds and slower running speeds we do not find successful model locomotion with the extent of allowed parameter variation. We conclude that the existing limitations may be improved by adding complexity to the model.

  18. Comparison of Particle Flow Code and Smoothed Particle Hydrodynamics Modelling of Landslide Run outs

    Science.gov (United States)

    Preh, A.; Poisel, R.; Hungr, O.

    2009-04-01

    In most continuum mechanics methods modelling the run out of landslides the moving mass is divided into a number of elements, the velocities of which can be established by numerical integration of Newtońs second law (Lagrangian solution). The methods are based on fluid mechanics modelling the movements of an equivalent fluid. In 2004, McDougall and Hungr presented a three-dimensional numerical model for rapid landslides, e.g. debris flows and rock avalanches, called DAN3D.The method is based on the previous work of Hungr (1995) and is using an integrated two-dimensional Lagrangian solution and meshless Smooth Particle Hydrodynamics (SPH) principle to maintain continuity. DAN3D has an open rheological kernel, allowing the use of frictional (with constant porepressure ratio) and Voellmy rheologies and gives the possibility to change material rheology along the path. Discontinuum (granular) mechanics methods model the run out mass as an assembly of particles moving down a surface. Each particle is followed exactly as it moves and interacts with the surface and with its neighbours. Every particle is checked on contacts with every other particle in every time step using a special cell-logic for contact detection in order to reduce the computational effort. The Discrete Element code PFC3D was adapted in order to make possible discontinuum mechanics models of run outs. Punta Thurwieser Rock Avalanche and Frank Slide were modelled by DAN as well as by PFC3D. The simulations showed correspondingly that the parameters necessary to get results coinciding with observations in nature are completely different. The maximum velocity distributions due to DAN3D reveal that areas of different maximum flow velocity are next to each other in Punta Thurwieser run out whereas the distribution of maximum flow velocity shows almost constant maximum flow velocity over the width of the run out regarding Frank Slide. Some 30 percent of total kinetic energy is rotational kinetic energy in

  19. Matter density perturbation and power spectrum in running vacuum model

    Science.gov (United States)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2017-01-01

    We investigate the matter density perturbation δm and power spectrum P(k) in the running vacuum model, with the cosmological constant being a function of the Hubble parameter, given by Λ = Λ0 + 6σHH0 + 3νH2, in which the linear and quadratic terms of H would originate from the QCD vacuum condensation and cosmological renormalization group, respectively. Taking the dark energy perturbation into consideration, we derive the evolution equation for δm and find a specific scale dcr = 2π/kcr, which divides the evolution of the universe into the sub-interaction and super-interaction regimes, corresponding to k ≪ kcr and k ≫ kcr, respectively. For the former, the evolution of δm has the same behaviour as that in the Λ cold dark model, while for the latter, the growth of δm is frozen (greatly enhanced) when ν + σ > (extremely narrow with ν , |σ | ≲ O(10^{-7}).

  20. First evidence of running cosmic vacuum: challenging the concordance model

    CERN Document Server

    Sola, Joan; Perez, Javier de Cruz

    2016-01-01

    Despite the fact that a rigid $\\Lambda$-term is a fundamental building block of the concordance $\\Lambda$CDM model, we show that a large class of cosmological scenarios with dynamical vacuum energy density $\\rho_{\\Lambda}$ and/or gravitational coupling $G$, together with a possible non-conservation of matter, are capable of seriously challenging the traditional phenomenological success of the $\\Lambda$CDM. In this Letter, we discuss these "running vacuum models" (RVM's), in which $\\rho_{\\Lambda}=\\rho_{\\Lambda}(H)$ consists of a nonvanishing constant term and a series of powers of the Hubble rate. Such generic structure is potentially linked to the quantum field theoretical description of the expanding Universe. By performing an overall fit to the cosmological observables $SNIa+BAO+H(z)+LSS+BBN+CMB$ (in which the WMAP9, Planck 2013 and Planck 2015 data are taken into account), we find that the RVM's appear definitely more favored than the $\\Lambda$CDM, namely at an unprecedented level of $\\sim 4\\sigma$, implyi...

  1. The family of c-bisection auctions: efficiency and running time

    OpenAIRE

    Grigorieva Elena; Herings P. Jean-Jacques; Müller Rudolf; Vermeulen Dries

    2006-01-01

    In this paper we analyze the performance of a recently proposed sequential auction, called the c-bisection auction, that can be used for a sale of a single indivisible object. We discuss the running time and the e±ciency in the ex-post equilibrium of the auction. We show that by changing the parameter c of the auction we can trade o® e±ciency against running time. Moreover, we show that the auction that gives the desired level of e±ciency in expectation takes the same number of rounds for any...

  2. Adaptive Embedded Systems – Challenges of Run-Time Resource Management

    DEFF Research Database (Denmark)

    Understanding and efficiently controlling the dynamic behavior of adaptive embedded systems is a challenging endavor. The challenges come from the often very complicated interplay between the application, the application mapping, and the underlying hardware architecture. With MPSoC, we have...... the technology to design and fabricate dynamically reconfigurable hardware platforms. However, such platforms will pose new challenges to tools and methods to efficiently explore these platforms at run-time. This talk will address some of the challenges of run-time resource management in adaptive embedded...... systems....

  3. SLUDGE BATCH SUPPLEMENTAL SRAT RUNS EFFECTS OF YIELD STRESS AND CYCLE TIME INCREASE

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-08-10

    The Defense Waste Processing Facility (DWPF) has transitioned from Sludge Batch 5 (SB5) processing to Sludge Batch 6 (SB6) processing. Phase III-Tank 40 Chemical Process Cell (CPC) flowsheet simulations have been completed to determine the initial processing conditions for the DWPF transition. The impact of higher yield stress (SB-25) and cycle time extension (SB6-26) on the physical and chemical effects of SB6 processing during the SRAT (Sludge Receipt and Adjustment Tank) cycle were evaluated. No significant impacts on the SRAT chemistry were noted during the higher yield stress run. In particular, no impact on mercury stripping was noted, indicating that settling of elemental mercury was not the primary factor in the low mercury recovery noted in the flowsheet testing. The SRAT product from this run retained the higher yield stress of the starting sludge. The run indicated that ultrasonication is an effective tool to increase the yield stress of simulants to targeted values and the chemistry of downstream processing is not impacted. Significant differences were noted in the cycle time extension test compared to the Phase III flowsheet baseline runs. Large decreases in the ammonia and hydrogen generation rates were noted along with reduced mercury stripping efficiency. The latter effect is similar to that of operating under a high acid stoichiometry. It is conceivable that, under the distinctly different conditions of high formic acid concentration (high acid run) or slow formic acid addition (extended run), that mercury could form amalgams with noble metals, possibly rendering both inert. Thus, the removal of free mercury and noble metals could decrease the rate of catalytic formic acid reactions which would decrease generation of ammonium and hydrogen. The potential underlying reasons for the behavior noted during this run would require additional testing.

  4. First Evidence of Running Cosmic Vacuum: Challenging the Concordance Model

    Science.gov (United States)

    Solà, Joan; Gómez-Valent, Adrià; de Cruz Pérez, Javier

    2017-02-01

    Despite the fact that a rigid {{Λ }}-term is a fundamental building block of the concordance ΛCDM model, we show that a large class of cosmological scenarios with dynamical vacuum energy density {ρ }{{Λ }} together with a dynamical gravitational coupling G or a possible non-conservation of matter, are capable of seriously challenging the traditional phenomenological success of the ΛCDM. In this paper, we discuss these “running vacuum models” (RVMs), in which {ρ }{{Λ }}={ρ }{{Λ }}(H) consists of a nonvanishing constant term and a series of powers of the Hubble rate. Such generic structure is potentially linked to the quantum field theoretical description of the expanding universe. By performing an overall fit to the cosmological observables SN Ia+BAO+H(z)+LSS+BBN+CMB (in which the WMAP9, Planck 2013, and Planck 2015 data are taken into account), we find that the class of RVMs appears significantly more favored than the ΛCDM, namely, at an unprecedented level of ≳ 4.2σ . Furthermore, the Akaike and Bayesian information criteria confirm that the dynamical RVMs are strongly preferred compared to the conventional rigid {{Λ }}-picture of the cosmic evolution.

  5. The running coupling of the minimal sextet composite Higgs model

    CERN Document Server

    Fodor, Zoltan; Kuti, Julius; Mondal, Santanu; Nogradi, Daniel; Wong, Chik Him

    2015-01-01

    We compute the renormalized running coupling of SU(3) gauge theory coupled to N_f = 2 flavors of massless Dirac fermions in the 2-index-symmetric (sextet) representation. This model is of particular interest as a minimal realization of the strongly interacting composite Higgs scenario. A recently proposed finite volume gradient flow scheme is used. The calculations are performed at several lattice spacings with two different implementations of the gradient flow allowing for a controlled continuum extrapolation and particular attention is paid to estimating the systematic uncertainties. For small values of the renormalized coupling our results for the beta-function agree with perturbation theory. For moderate couplings we observe a downward deviation relative to the 2-loop beta-function but in the coupling range where the continuum extrapolation is fully under control we do not observe an infrared fixed point. The explored range includes the locations of the zero of the 3-loop and the 4-loop beta-functions in ...

  6. The optimal production-run time for a stock-dependent imperfect production process

    Directory of Open Access Journals (Sweden)

    Jain Divya

    2013-01-01

    Full Text Available This paper develops an inventory model for a hypothesized volume flexible manufacturing system in which the production rate is stock-dependent and the system produces both perfect and imperfect quality items. The demand rate of perfect quality items is known and constant, whereas the demand rate of imperfect (non-conforming to specifications quality items is a function of discount offered in the selling price. In this paper, we determine an optimal production-run time and the optimal discount that should be offered in the selling price to influence the sale of imperfect quality items produced by the manufacturing system. The considered model aims to maximize the net profit obtained through the sales of both perfect and imperfect quality items subject to certain constraints of the system. The solution procedure suggests the use of ‘Interior Penalty Function Method’ to solve the associated constrained maximization problem. Finally, a numerical example demonstrating the applicability of proposed model has been included.

  7. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.

    2014-05-08

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard

  8. 2013 CEF RUN - PHASE 1 DATA ANALYSIS AND MODEL VALIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Choi, A.

    2014-05-08

    Phase 1 of the 2013 Cold cap Evaluation Furnace (CEF) test was completed on June 3, 2013 after a 5-day round-the-clock feeding and pouring operation. The main goal of the test was to characterize the CEF off-gas produced from a nitric-formic acid flowsheet feed and confirm whether the CEF platform is capable of producing scalable off-gas data necessary for the revision of the DWPF melter off-gas flammability model; the revised model will be used to define new safety controls on the key operating parameters for the nitric-glycolic acid flowsheet feeds including total organic carbon (TOC). Whether the CEF off-gas data were scalable for the purpose of predicting the potential flammability of the DWPF melter exhaust was determined by comparing the predicted H{sub 2} and CO concentrations using the current DWPF melter off-gas flammability model to those measured during Phase 1; data were deemed scalable if the calculated fractional conversions of TOC-to-H{sub 2} and TOC-to-CO at varying melter vapor space temperatures were found to trend and further bound the respective measured data with some margin of safety. Being scalable thus means that for a given feed chemistry the instantaneous flow rates of H{sub 2} and CO in the DWPF melter exhaust can be estimated with some degree of conservatism by multiplying those of the respective gases from a pilot-scale melter by the feed rate ratio. This report documents the results of the Phase 1 data analysis and the necessary calculations performed to determine the scalability of the CEF off-gas data. A total of six steady state runs were made during Phase 1 under non-bubbled conditions by varying the CEF vapor space temperature from near 700 to below 300°C, as measured in a thermowell (T{sub tw}). At each steady state temperature, the off-gas composition was monitored continuously for two hours using MS, GC, and FTIR in order to track mainly H{sub 2}, CO, CO{sub 2}, NO{sub x}, and organic gases such as CH{sub 4}. The standard

  9. Modelling of Muscle Force Distributions During Barefoot and Shod Running

    Directory of Open Access Journals (Sweden)

    Sinclair Jonathan

    2015-09-01

    Full Text Available Research interest in barefoot running has expanded considerably in recent years, based around the notion that running without shoes is associated with a reduced incidence of chronic injuries. The aim of the current investigation was to examine the differences in the forces produced by different skeletal muscles during barefoot and shod running. Fifteen male participants ran at 4.0 m·s-1 (± 5%. Kinematics were measured using an eight camera motion analysis system alongside ground reaction force parameters. Differences in sagittal plane kinematics and muscle forces between footwear conditions were examined using repeated measures or Freidman’s ANOVA. The kinematic analysis showed that the shod condition was associated with significantly more hip flexion, whilst barefoot running was linked with significantly more flexion at the knee and plantarflexion at the ankle. The examination of muscle kinetics indicated that peak forces from Rectus femoris, Vastus medialis, Vastus lateralis, Tibialis anterior were significantly larger in the shod condition whereas Gastrocnemius forces were significantly larger during barefoot running. These observations provide further insight into the mechanical alterations that runners make when running without shoes. Such findings may also deliver important information to runners regarding their susceptibility to chronic injuries in different footwear conditions.

  10. Modelling of Muscle Force Distributions During Barefoot and Shod Running.

    Science.gov (United States)

    Sinclair, Jonathan; Atkins, Stephen; Richards, Jim; Vincent, Hayley

    2015-09-29

    Research interest in barefoot running has expanded considerably in recent years, based around the notion that running without shoes is associated with a reduced incidence of chronic injuries. The aim of the current investigation was to examine the differences in the forces produced by different skeletal muscles during barefoot and shod running. Fifteen male participants ran at 4.0 m·s-1 (± 5%). Kinematics were measured using an eight camera motion analysis system alongside ground reaction force parameters. Differences in sagittal plane kinematics and muscle forces between footwear conditions were examined using repeated measures or Freidman's ANOVA. The kinematic analysis showed that the shod condition was associated with significantly more hip flexion, whilst barefoot running was linked with significantly more flexion at the knee and plantarflexion at the ankle. The examination of muscle kinetics indicated that peak forces from Rectus femoris, Vastus medialis, Vastus lateralis, Tibialis anterior were significantly larger in the shod condition whereas Gastrocnemius forces were significantly larger during barefoot running. These observations provide further insight into the mechanical alterations that runners make when running without shoes. Such findings may also deliver important information to runners regarding their susceptibility to chronic injuries in different footwear conditions.

  11. Running time supplements: Energy-efficient train control versus robust timetables

    NARCIS (Netherlands)

    Goverde, R.M.P.; Scheepmaker, G.M.

    2015-01-01

    Energy-efficient train operation is not yet included in the timetable design process in the Netherlands. Hence, running time supplements are not optimally distributed in the timetable. Therefore research has been conducted on the possibilities to better incorporate energy-efficient train operation i

  12. A Compiler and Run-time System for Network Programming Languages

    Science.gov (United States)

    2012-01-01

    A Compiler and Run-time System for Network Programming Languages Christopher Monsanto Princeton University Nate Foster Cornell University Rob...Foster, R. Harrison, M. Freedman, C. Monsanto , J. Rexford, A. Story, and D. Walker. Frenetic: A network programming language. In ICFP, Sep 2011. [10] A

  13. Efficient datapath merging for the overhead reduction of run-time reconfigurable systems

    NARCIS (Netherlands)

    Fazlali, M.; Zakerolhosseini, A.; Gaydadjiev, G.

    2010-01-01

    High latencies in FPGA reconfiguration are known as a major overhead in run-time reconfigurable systems. This overhead can be reduced by merging multiple data flow graphs representing different kernels of the original program into a single (merged) datapath that will be configured less often

  14. Efficient datapath merging for the overhead reduction of run-time reconfigurable systems

    NARCIS (Netherlands)

    Fazlali, M.; Zakerolhosseini, A.; Gaydadjiev, G.

    2010-01-01

    High latencies in FPGA reconfiguration are known as a major overhead in run-time reconfigurable systems. This overhead can be reduced by merging multiple data flow graphs representing different kernels of the original program into a single (merged) datapath that will be configured less often compare

  15. Force-Time Characteristics and Running Velocity of Male Sprinters During the Acceleration Phase of Sprinting.

    Science.gov (United States)

    Mero, Antti

    1988-01-01

    Investigation of the force-time characteristics of eight male sprinters during the acceleration phase of the sprint start suggested that the braking and propulsion phases occur immediately after the block phase and that muscle strength strongly affects running velocity in the sprint start. (Author/CB)

  16. Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue.

    Science.gov (United States)

    Vercruyssen, F; Suriano, R; Bishop, D; Hausswirth, C; Brisswalter, J

    2005-05-01

    To investigate the effect of cadence selection during the final minutes of cycling on metabolic responses, stride pattern, and subsequent running time to fatigue. Eight triathletes performed, in a laboratory setting, two incremental tests (running and cycling) to determine peak oxygen uptake (VO2PEAK) and the lactate threshold (LT), and three cycle-run combinations. During the cycle-run sessions, subjects completed a 30 minute cycling bout (90% of LT) at (a) the freely chosen cadence (FCC, 94 (5) rpm), (b) the FCC during the first 20 minutes and FCC-20% during the last 10 minutes (FCC-20%, 74 (3) rpm), or (c) the FCC during the first 20 minutes and FCC+20% during the last 10 minutes (FCC+20%, 109 (5) rpm). After each cycling bout, running time to fatigue (Tmax) was determined at 85% of maximal velocity. A significant increase in Tmax was found after FCC-20% (894 (199) seconds) compared with FCC and FCC+20% (651 (212) and 624 (214) seconds respectively). VO2, ventilation, heart rate, and blood lactate concentrations were significantly reduced after 30 minutes of cycling at FCC-20% compared with FCC+20%. A significant increase in VO2 was reported between the 3rd and 10th minute of all Tmax sessions, without any significant differences between sessions. Stride pattern and metabolic variables were not significantly different between Tmax sessions. The increase in Tmax after FCC-20% may be associated with the lower metabolic load during the final minutes of cycling compared with the other sessions. However, the lack of significant differences in metabolic responses and stride pattern between the run sessions suggests that other mechanisms, such as changes in muscular activity, probably contribute to the effects of cadence variation on Tmax

  17. Developing a run-time coupling between ESP-r and TRNSYS

    Science.gov (United States)

    Jost, Romain

    Rigorous modeling is essential to design buildings and deliver the next advances in energy efficiency and on-site renewable energy production. A great variety of energy simulation programs exists but they are, for the most part, specialized in one particular domain and they do not allow a complete analysis. Because all domains (heating, cooling, ventilation, lighting, acoustic) are interconnected and there is no global simulation environment existing that covers all of the system particularities with the same flexibility, it is often appropriate to proceed with software combination and/or coupling. This Master thesis describes the implementation of a run-time coupling between TRNSYS and ESP-r. In order to minimize the modifications to the source codes and create a tool able to support future development of each program, new components that receive and pass data to the other program were implemented in the two software programs. A multi DLL structure enables the coupling and exchange of information. A third piece of software, the Harmonizer, launches TRNSYS and ESP-r DLLS and manages the exchange of data. It is also responsible of the convergence handling and controls that both programs march through time together time step after time step. A new category of components, the Data Exchanger Types was implemented in TRNSYS. These components can work as standard TRNSYS Types and exchange data through their inputs and outputs but they can also impose the solver to continue iterating. This capability is essential to force TRNSYS to do more calculations at a specific time step when it has converged but co-simulation convergence requires more iterations. A component of this new category, Type 130, was created specifically for the coupling with ESP-r. Type 130 exchanges data with the Harmonizer on one side and with the TRNSYS network of Types on the other side. Testing of basic data exchange validates the data exchange method and the coupling. The co-simulator is able to

  18. Approaches in highly parameterized inversion - GENIE, a general model-independent TCP/IP run manager

    Science.gov (United States)

    Muffels, Christopher T.; Schreuder, Willem A.; Doherty, John E.; Karanovic, Marinko; Tonkin, Matthew J.; Hunt, Randall J.; Welter, David E.

    2012-01-01

    GENIE is a model-independent suite of programs that can be used to generally distribute, manage, and execute multiple model runs via the TCP/IP infrastructure. The suite consists of a file distribution interface, a run manage, a run executer, and a routine that can be compiled as part of a program and used to exchange model runs with the run manager. Because communication is via a standard protocol (TCP/IP), any computer connected to the Internet can serve in any of the capacities offered by this suite. Model independence is consistent with the existing template and instruction file protocols of the widely used PEST parameter estimation program. This report describes (1) the problem addressed; (2) the approach used by GENIE to queue, distribute, and retrieve model runs; and (3) user instructions, classes, and functions developed. It also includes (4) an example to illustrate the linking of GENIE with Parallel PEST using the interface routine.

  19. Strange matter and strange stars in a thermodynamically self-consistent perturbation model with running coupling and running strange quark mass

    CERN Document Server

    Xu, J F; Liu, F; Hou, D F; Chen, L W

    2015-01-01

    A quark model with running coupling and running strange quark mass, which is thermodynamically self-consistent at both high and lower densities, is presented and applied to study properties of strange quark matter and structure of compact stars. An additional term to the thermodynamic potential density is determined by meeting the fundamental differential equation of thermodynamics. It plays an important role in comparatively lower density and ignorable at extremely high density, acting as a chemical-potential dependent bag constant. In this thermodynamically enhanced perturbative QCD model, strange quark matter still has the possibility of being absolutely stable, while the pure quark star has a sharp surface with a maximum mass as large as about 2 times the solar mass and a maximum radius of about 11 kilometers.

  20. Run-time system based on LinSERCANS and Soft-PLC

    Institute of Scientific and Technical Information of China (English)

    Cunfeng KANG; Chong WANG; Chunmin MA; Xudong HUANG; Renyuan FEI

    2009-01-01

    Soft-PLC with open architecture is the direction of development in industrial automation. This paper discusses the method of communication between the interface functions of LinSERCANS under RTLinux and the external library of Soft-PLC under Windows. Based on the API HOOK theory, the communication between the interface functions of LinSERCANS and the external libraries of Soft-PLC is set up and it solves the calling functions of dynamic link libraries in different operation systems. It is able to combine LinSERCANS with the Soft-PLC, and a run-time system is developed based on the interface technology of the serial real-time communication system (SERCOS) and technology of soft-PLC. This run-time system has been used in all electronic injection molding machines and works very well.

  1. Novel Real-time Calibration and Alignment Procedure for LHCb Run II

    CERN Multimedia

    Prouve, Claire

    2016-01-01

    In order to achieve optimal detector performance the LHCb experiment has introduced a novel real-time detector alignment and calibration strategy for Run II of the LHC. For the alignment tasks, data is collected and processed at the beginning of each fill while the calibrations are performed for each run. This real time alignment and calibration allows the same constants being used in both the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. Additionally the newly computed alignment and calibration constants can be instantly used in the trigger, making it more efficient. The online alignment and calibration of the RICH detectors also enable the use of hadronic particle identification in the trigger. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the LHCb trigger. An overview of all alignment and calibration tasks is presented and their performance is shown.

  2. Continuous Time Model Estimation

    OpenAIRE

    Carl Chiarella; Shenhuai Gao

    2004-01-01

    This paper introduces an easy to follow method for continuous time model estimation. It serves as an introduction on how to convert a state space model from continuous time to discrete time, how to decompose a hybrid stochastic model into a trend model plus a noise model, how to estimate the trend model by simulation, and how to calculate standard errors from estimation of the noise model. It also discusses the numerical difficulties involved in discrete time models that bring about the unit ...

  3. Maximizing run time performance of deployed data flow graphs on a multiprocessor architecture

    Science.gov (United States)

    Tobias, Richard J.; Hunt, Peter D.

    1993-10-01

    This paper discusses a practical solution for supporting the deployment of data flow graphs onto the Loral/Rolm Computer Systems, Inc. vector processing multi-processor architecture. It outlines the support software (both workstation hosted and target system hosted) that is required to design, debug, and maximize deployed data flow graph performance on the multiprocessor architecture. The deployment process guarantees real-time deadlines, minimizes run time scheduling overhead, and minimizes designer partitioning input. It is known that determining effective run time data flow graph node schedules for multi-processor architectures is an NP-complete class of problem not well suited to real-time systems. Loral/Rolm Computer Systems, Inc.'s vector processing toolset recognizes this problem and this paper discusses a prescheduling and pre-assignment approach for partitioning data flow graphs to available hardware resources. In particular the toolset components (which are based upon an enhanced data flow graph language) of workstation pre-assignment, prescheduling, run time gross allocation and local compute element dispatching are discussed in detail.

  4. Time to exhaustion at continuous and intermittent maximal lactate steady state during running exercise.

    Science.gov (United States)

    Dittrich, Naiandra; de Lucas, Ricardo Dantas; Beneke, Ralph; Guglielmo, Luiz Guilherme

    2014-09-01

    The purpose of this study was to determine and compare the time to exhaustion (TE) and the physiological responses at continuous and intermittent (ratio 5:1) maximal lactate steady state (MLSS) in well-trained runners. Ten athletes (32.7 ± 6.9 y, VO2max 61.7 ± 3.9 mL · kg-1 · min-1) performed an incremental treadmill test, three to five 30-min constant-speed tests to determine the MLSS continuous and intermittent (5 min of running, interspaced by 1 min of passive rest), and 2 randomized TE tests at such intensities. Two-way ANOVA with repeated measures was used to compare the changes in physiological variables during the TE tests and between continuous and intermittent exercise. The intermittent MLSS velocity (MLSSint = 15.26 ± 0.97 km/h) was higher than in the continuous model (MLSScon = 14.53 ± 0.93 km/h), while the TE at MLSScon was longer than MLSSint (68 ± 11 min and 58 ± 15 min, P heart rate, ventilation, and rating of perceived exertion presented a significant increase in the last portion of the tests. The results showed a higher tolerance to exercising during MLSScon than during MLSSint in trained runners. Thus, the training volume of an extensive interval session (ratio 5:1) designed at MLSS intensity should take into consideration this higher speed at MLSS and also the lower TE than with continuous exercise.

  5. Determination of production run time and warranty length under system maintenance and trade credits

    Science.gov (United States)

    Tsao, Yu-Chung

    2012-12-01

    Manufacturers offer a warranty period within which they will fix failed products at no cost to customers. Manufacturers also perform system maintenance when a system is in an out-of-control state. Suppliers provide a credit period to settle the payment to manufacturers. This study considers manufacturer's production and warranty decisions for an imperfect production system under system maintenance and trade credit. Specifically, this study uses the economic production quantity to model the decisions under system maintenance and trade credit. These decisions involve how long the production run time and warranty length should be to maximise total profit. This study provides lemmas for the conditions of optimality and develops a theorem and an algorithm for solving the problems described. Numerical examples illustrate the solution procedures and provide a variety of managerial implications. Results show that simultaneously determining production and warranty decisions is superior to only determining production. This study also discusses the effects of the related parameters on manufacturer's decisions and profits. The results of this study are a useful reference for managerial decision-making and administration.

  6. Attosecond-resolution timing jitter characterization of free-running mode-locked lasers.

    Science.gov (United States)

    Kim, Jungwon; Chen, Jeff; Cox, Jonathan; Kärtner, Franz X

    2007-12-15

    Timing jitter characterization of optical pulse trains from free-running mode-locked lasers with attosecond resolution is demonstrated using balanced optical cross correlation in the timing detector and the timing delay configurations. In the timing detector configuration, the balanced cross correlation between two mode-locked lasers synchronized by a low-bandwidth phase-locked loop is used to measure the timing jitter spectral density outside the locking bandwidth. In addition, the timing delay configuration using a 325 m long timing-stabilized fiber link enables the characterization of timing jitter faster than the delay time. The limitation set by shot noise in this configuration is 2.2 x 10(-8) fs(2)/Hz corresponding to 470 as in 10 MHz bandwidth.

  7. Supporting Multiprocessors in the Icecap Safety-Critical Java Run-Time Environment

    DEFF Research Database (Denmark)

    Zhao, Shuai; Wellings, Andy; Korsholm, Stephan Erbs

    2015-01-01

    scheduled. As of yet, there is no official Reference Implementation for SCJ. However, the icecap project has produced a Safety-Critical Java Run-time Environment based on the Hardware-near Virtual Machine (HVM). This supports SCJ at all compliance levels and provides an implementation of the safety......-critical Java (javax.safetycritical) package. This is still work-in-progress and lacks certain key features. Among these is the ability to support multiprocessor platforms. In this paper, we explore two possible options to adding multiprocessor support to this environment: the “green thread” and the “native...... thread” approaches. The “native thread” approach is adopted and the design and implementation of a revised icecap SCJ run-time environment is discussed....

  8. Short-run and Current Analysis Model in Statistics

    Directory of Open Access Journals (Sweden)

    Constantin Anghelache

    2006-01-01

    Full Text Available Using the short-run statistic indicators is a compulsory requirement implied in the current analysis. Therefore, there is a system of EUROSTAT indicators on short run which has been set up in this respect, being recommended for utilization by the member-countries. On the basis of these indicators, there are regular, usually monthly, analysis being achieved in respect of: the production dynamic determination; the evaluation of the short-run investment volume; the development of the turnover; the wage evolution: the employment; the price indexes and the consumer price index (inflation; the volume of exports and imports and the extent to which the imports are covered by the exports and the sold of trade balance. The EUROSTAT system of indicators of conjuncture is conceived as an open system, so that it can be, at any moment extended or restricted, allowing indicators to be amended or even removed, depending on the domestic users requirements as well as on the specific requirements of the harmonization and integration. For the short-run analysis, there is also the World Bank system of indicators of conjuncture, which is utilized, relying on the data sources offered by the World Bank, The World Institute for Resources or other international organizations statistics. The system comprises indicators of the social and economic development and focuses on the indicators for the following three fields: human resources, environment and economic performances. At the end of the paper, there is a case study on the situation of Romania, for which we used all these indicators.

  9. Short-run and Current Analysis Model in Statistics

    Directory of Open Access Journals (Sweden)

    Constantin Mitrut

    2006-03-01

    Full Text Available Using the short-run statistic indicators is a compulsory requirement implied in the current analysis. Therefore, there is a system of EUROSTAT indicators on short run which has been set up in this respect, being recommended for utilization by the member-countries. On the basis of these indicators, there are regular, usually monthly, analysis being achieved in respect of: the production dynamic determination; the evaluation of the short-run investment volume; the development of the turnover; the wage evolution: the employment; the price indexes and the consumer price index (inflation; the volume of exports and imports and the extent to which the imports are covered by the exports and the sold of trade balance. The EUROSTAT system of indicators of conjuncture is conceived as an open system, so that it can be, at any moment extended or restricted, allowing indicators to be amended or even removed, depending on the domestic users requirements as well as on the specific requirements of the harmonization and integration. For the short-run analysis, there is also the World Bank system of indicators of conjuncture, which is utilized, relying on the data sources offered by the World Bank, The World Institute for Resources or other international organizations statistics. The system comprises indicators of the social and economic development and focuses on the indicators for the following three fields: human resources, environment and economic performances. At the end of the paper, there is a case study on the situation of Romania, for which we used all these indicators.

  10. Price Dispersion and Short Run Equilibrium in a Queuing Model

    OpenAIRE

    Michael Sattinger

    2003-01-01

    Price dispersion is analyzed in the context of a queuing market where customers enter queues to acquire a good or service and may experience delays. With menu costs, price dispersion arises and can persist in the medium and long run. The queuing market rations goods in the same way whether firm prices are optimal or not. Price dispersion reduces the rate at which customers get the good and reduces customer welfare.

  11. Worm-hole run-time reconfigurable processor field programmable gate array (FPGA)

    OpenAIRE

    1996-01-01

    Higher performance is gained through a new architecture which implements a new method of computational resource allocation, utilization and programming based on the concept of Worm-hole Run-Time Reconfiguration (RTR). A stream-driven Worm-hole RTR methodology extends contemporary data-flow paradigms to utilize the dynamic creation of operators and pathways, based upon stream processing in which parcels of data move through custom created pathways and interact with other parcels to achieve the...

  12. Operating Security System Support for Run-Time Security with a Trusted Execution Environment

    DEFF Research Database (Denmark)

    Gonzalez, Javier

    . In this thesis we introduce run-time security primitives that enable a number of trusted services in the context of Linux. These primitives mediate any action involving sensitive data or sensitive assets in order to guarantee their integrity and confidentiality. We introduce a general mechanism to protect...... in the Linux operating system. We are in the process of making this driver part of the mainline Linux kernel....

  13. Dynamical system approach to running $\\Lambda$ cosmological models

    CERN Document Server

    Stachowski, Aleksander

    2016-01-01

    We discussed the dynamics of cosmological models in which the cosmological constant term is a time dependent function through the scale factor $a(t)$, Hubble function $H(t)$, Ricci scalar $R(t)$ and scalar field $\\phi(t)$. We considered five classes of models; two non-covariant parametrization of $\\Lambda$: 1) $\\Lambda(H)$CDM cosmologies where $H(t)$ is the Hubble parameter, 2) $\\Lambda(a)$CDM cosmologies where $a(t)$ is the scale factor, and three covariant parametrization of $\\Lambda$: 3) $\\Lambda(R)$CDM cosmologies, where $R(t)$ is the Ricci scalar, 4) $\\Lambda(\\phi)$-cosmologies with diffusion, 5) $\\Lambda(X)$-cosmologies, where $X=\\frac{1}{2}g^{\\alpha\\beta}\

  14. Prosthetic model, but not stiffness or height, affects the metabolic cost of running for athletes with unilateral transtibial amputations.

    Science.gov (United States)

    Beck, Owen N; Taboga, Paolo; Grabowski, Alena M

    2017-07-01

    Running-specific prostheses enable athletes with lower limb amputations to run by emulating the spring-like function of biological legs. Current prosthetic stiffness and height recommendations aim to mitigate kinematic asymmetries for athletes with unilateral transtibial amputations. However, it is unclear how different prosthetic configurations influence the biomechanics and metabolic cost of running. Consequently, we investigated how prosthetic model, stiffness, and height affect the biomechanics and metabolic cost of running. Ten athletes with unilateral transtibial amputations each performed 15 running trials at 2.5 or 3.0 m/s while we measured ground reaction forces and metabolic rates. Athletes ran using three different prosthetic models with five different stiffness category and height combinations per model. Use of an Ottobock 1E90 Sprinter prosthesis reduced metabolic cost by 4.3 and 3.4% compared with use of Freedom Innovations Catapult [fixed effect (β) = -0.177; P forces, prolonged ground contact times (β = -4.349; P = 0.012), and decreased leg stiffness (β = 0.071; P forces (β = 0.007; P = 0.003) but was unrelated to stride kinematic symmetry (P ≥ 0.636). Therefore, prosthetic recommendations based on symmetric stride kinematics do not necessarily minimize the metabolic cost of running. Instead, an optimal prosthetic model, which improves overall biomechanics, minimizes the metabolic cost of running for athletes with unilateral transtibial amputations.NEW & NOTEWORTHY The metabolic cost of running for athletes with unilateral transtibial amputations depends on prosthetic model and is associated with lower peak and stance average vertical ground reaction forces, longer contact times, and reduced leg stiffness. Metabolic cost is unrelated to prosthetic stiffness, height, and stride kinematic symmetry. Unlike nonamputees who decrease leg stiffness with increased in-series surface stiffness, biological limb stiffness for athletes with unilateral

  15. LHCb : Novel real-time alignment and calibration of the LHCb Detector in Run2

    CERN Multimedia

    Tobin, Mark

    2015-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run 2. Data collected at the start of the fill will be processed in a few minutes and used to update the alignment, while the calibration constants will be evaluated for each run. This procedure will improve the quality of the online alignment. For example, the vertex locator is retracted and reinserted for stable beam collisions in each fill to be centred on the primary vertex position in the transverse plane. Consequently its position changes on a fill-by-fill basis. Critically, this new realtime alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The online calibration facilitates the use of hadronic particle identification using the RICH detectors at the trigger level. T...

  16. Pre-1994 Season Projection of Run-Timing Capabilities Using PIT-TAG Databases.

    Energy Technology Data Exchange (ETDEWEB)

    Skalski, J.R.; Tartakovsky, G.; Smith, S.G.; Westhagen, P.

    1994-04-01

    Regulating the timing and volume of water released from storage reservoirs (often referred to as flow augmentation) has become a central mitigation strategy for improving downstream migration conditions for juvenile salmonids in the Snake River. The success of the flow augmentation, in turn, depends on releasing reservoir waters when and where wild smolt will benefit the most. This requires the ability to predict in real time the status and trend in the outmigration of listed threatened and endangered stocks. This study evaluated the feasibility and the performance of two alternative statistical algorithms to predict outmigration status of Snake River wild spring chinook. Using historical trends in PIT-tag detections of wild chinook smolt at Lower Granite Dam, pattern recognition techniques were developed to predict the percent of the run-to-date and days to a specific percent of the run. The statistical methods are based on algorithms that smooth historical trends in PIT-tag arrivals and a generalized least squares decision criterion. The methods were evaluated for 16 different river runs of chinook, as well as composites over various river basins. A bootstrapping approach across historical years provided the means to measure the accuracy and precision of predictions and construct approximate interval estimates. The recommended predictors have an average error rate across stocks of fish and seasons, of {plus_minus}9.6% about the true percent of the run-to-date. The best performance was for Catherine Creek with an average error of {plus_minus}4.2%. The worst performance occurred at Big Creek with an average error of {plus_minus}19.0%. An interactive graphical analysis program written in C-language for an X-Windows{reg_sign} environment has been developed to analyze outmigration data for select stocks of Snake River spring chinook.

  17. Novel real-time alignment and calibration of the LHCb detector in Run II

    CERN Document Server

    Xu, Zhirui

    2015-01-01

    An automatic real-time alignment and calibration strategy of the LHCb detector was developed for the Run II. Thanks to the online calibration, tighter event selection criteria can be used in the trigger. Furthermore, the online calibration facilitates the use of hadronic particle identification using the Ring Imaging Cherenkov (RICH) detectors at the trigger level. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from both the operational and physics performance points of view. Specific challenges of this novel configuration are discussed, as well as the working procedures of the framework and its performance.

  18. Probabilistic landslide run-out assessment with a 2-D dynamic numerical model using a Monte Carlo method

    Science.gov (United States)

    Cepeda, Jose; Luna, Byron Quan; Nadim, Farrokh

    2013-04-01

    An essential component of a quantitative landslide hazard assessment is establishing the extent of the endangered area. This task requires accurate prediction of the run-out behaviour of a landslide, which includes the estimation of the run-out distance, run-out width, velocities, pressures, and depth of the moving mass and the final configuration of the deposits. One approach to run-out modelling is to reproduce accurately the dynamics of the propagation processes. A number of dynamic numerical models are able to compute the movement of the flow over irregular topographic terrains (3-D) controlled by a complex interaction between mechanical properties that may vary in space and time. Given the number of unknown parameters and the fact that most of the rheological parameters cannot be measured in the laboratory or field, the parametrization of run-out models is very difficult in practice. For this reason, the application of run-out models is mostly used for back-analysis of past events and very few studies have attempted to achieve forward predictions. Consequently all models are based on simplified descriptions that attempt to reproduce the general features of the failed mass motion through the use of parameters (mostly controlling shear stresses at the base of the moving mass) which account for aspects not explicitly described or oversimplified. The uncertainties involved in the run-out process have to be approached in a stochastic manner. It is of significant importance to develop methods for quantifying and properly handling the uncertainties in dynamic run-out models, in order to allow a more comprehensive approach to quantitative risk assessment. A method was developed to compute the variation in run-out intensities by using a dynamic run-out model (MassMov2D) and a probabilistic framework based on a Monte Carlo simulation in order to analyze the effect of the uncertainty of input parameters. The probability density functions of the rheological parameters

  19. NASA SPoRT Initialization Datasets for Local Model Runs in the Environmental Modeling System

    Science.gov (United States)

    Case, Jonathan L.; LaFontaine, Frank J.; Molthan, Andrew L.; Carcione, Brian; Wood, Lance; Maloney, Joseph; Estupinan, Jeral; Medlin, Jeffrey M.; Blottman, Peter; Rozumalski, Robert A.

    2011-01-01

    The NASA Short-term Prediction Research and Transition (SPoRT) Center has developed several products for its National Weather Service (NWS) partners that can be used to initialize local model runs within the Weather Research and Forecasting (WRF) Environmental Modeling System (EMS). These real-time datasets consist of surface-based information updated at least once per day, and produced in a composite or gridded product that is easily incorporated into the WRF EMS. The primary goal for making these NASA datasets available to the WRF EMS community is to provide timely and high-quality information at a spatial resolution comparable to that used in the local model configurations (i.e., convection-allowing scales). The current suite of SPoRT products supported in the WRF EMS include a Sea Surface Temperature (SST) composite, a Great Lakes sea-ice extent, a Greenness Vegetation Fraction (GVF) composite, and Land Information System (LIS) gridded output. The SPoRT SST composite is a blend of primarily the Moderate Resolution Imaging Spectroradiometer (MODIS) infrared and Advanced Microwave Scanning Radiometer for Earth Observing System data for non-precipitation coverage over the oceans at 2-km resolution. The composite includes a special lake surface temperature analysis over the Great Lakes using contributions from the Remote Sensing Systems temperature data. The Great Lakes Environmental Research Laboratory Ice Percentage product is used to create a sea-ice mask in the SPoRT SST composite. The sea-ice mask is produced daily (in-season) at 1.8-km resolution and identifies ice percentage from 0 100% in 10% increments, with values above 90% flagged as ice.

  20. Modeling the Frequency of Cyclists’ Red-Light Running Behavior Using Bayesian PG Model and PLN Model

    Directory of Open Access Journals (Sweden)

    Yao Wu

    2016-01-01

    Full Text Available Red-light running behaviors of bicycles at signalized intersection lead to a large number of traffic conflicts and high collision potentials. The primary objective of this study is to model the cyclists’ red-light running frequency within the framework of Bayesian statistics. Data was collected at twenty-five approaches at seventeen signalized intersections. The Poisson-gamma (PG and Poisson-lognormal (PLN model were developed and compared. The models were validated using Bayesian p values based on posterior predictive checking indicators. It was found that the two models have a good fit of the observed cyclists’ red-light running frequency. Furthermore, the PLN model outperformed the PG model. The model estimated results showed that the amount of cyclists’ red-light running is significantly influenced by bicycle flow, conflict traffic flow, pedestrian signal type, vehicle speed, and e-bike rate. The validation result demonstrated the reliability of the PLN model. The research results can help transportation professionals to predict the expected amount of the cyclists’ red-light running and develop effective guidelines or policies to reduce red-light running frequency of bicycles at signalized intersections.

  1. Two-Higgs-doublet model of type II confronted with the LHC run I and run II data

    Science.gov (United States)

    Wang, Lei; Zhang, Feng; Han, Xiao-Fang

    2017-06-01

    We examine the parameter space of the two-Higgs-doublet model of type II after imposing the relevant theoretical and experimental constraints from the precision electroweak data, B -meson decays, and the LHC run I and run II data. We find that the searches for Higgs bosons via the τ+τ- , W W , Z Z , γ γ , h h , h Z , H Z , and A Z channels can give strong constraints on the C P -odd Higgs A and heavy C P -even Higgs H , and the parameter space excluded by each channel is respectively carved out in detail assuming that either mA or mH are fixed to 600 or 700 GeV in the scans. The surviving samples are discussed in two different regions. (i) In the standard model-like coupling region of the 125 GeV Higgs, mA is allowed to be as low as 350 GeV, and a strong upper limit is imposed on tan β . mH is allowed to be as low as 200 GeV for the appropriate values of tan β , sin (β -α ), and mA, but is required to be larger than 300 GeV for mA=700 GeV . (ii) In the wrong-sign Yukawa coupling region of the 125 GeV Higgs, the b b ¯→A /H →τ+τ- channel can impose the upper limits on tan β and sin (β -α ), and the A →h Z channel can give the lower limits on tan β and sin (β -α ). mA and mH are allowed to be as low as 60 and 200 GeV, respectively, but 320 GeV

  2. Energy Efficient Run-Time Incremental Mapping for 3-D Networks-on-Chip

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hang Wang; Peng Liu; Mei Yang; Maurizio Palesi; Ying-Tao Jiang; Michael C Huang

    2013-01-01

    3-D Networks-on-Chip (NoC) emerge as a potent solution to address both the interconnection and design complexity problems facing future Multiprocessor System-on-Chips (MPSoCs).Effective run-time mapping on such 3-D NoC-based MPSoCs can be quite challenging,as the arrival order and task graphs of the target applications are typically not known a priori,which can be further complicated by stringent energy requirements for NoC systems.This paper thus presents an energy-aware run-time incremental mapping algorithm (ERIM) for 3-D NoC which can minimize the energy consumption due to the data communications among processor cores,while reducing the fragmentation effect on the incoming applications to be mapped,and simultaneously satisfying the thermal constraints imposed on each incoming application.Specifically,incoming applications are mapped to cuboid tile regions for lower energy consumption of communication and the minimal routing.Fragment tiles due to system fragmentation can be gleaned for better resource utilization.Extensive experiments have been conducted to evaluate the performance of the proposed algorithm ERIM,and the results are compared against the optimal mapping algorithm (branch-and-bound) and two heuristic algorithms (TB and TL).The experiments show that ERIM outperforms TB and TL methods with significant energy saving (more than 10%),much reduced average response time,and improved system utilization.

  3. Novel Real-time Alignment and Calibration of the LHCb detector in Run2

    CERN Document Server

    Martinelli, Maurizio

    2017-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run2. Data collected at the start of the fill are processed in a few minutes and used to update the alignment parameters, while the calibration constants are evaluated for each run. This procedure improves the quality of the online reconstruction. For example, the vertex locator is retracted and reinserted for stable beam conditions in each fill to be centred on the primary vertex position in the transverse plane. Consequently its position changes on a fill-by-fill basis. Critically, this new real-time alignment and calibration procedure allows identical constants to be used in the online and offline reconstruction, thus improving the correlation between triggered and offline-selected events. This offers the opportunity to optimise the event selection in the trigger by applying stronger constraints. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructur...

  4. Tsunami generation, propagation, and run-up with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2009-01-01

    In this work we extend a high-order Boussinesq-type (finite difference) model, capable of simulating waves out to wavenumber times depth kh tsunamis. The extension is straight forward, requiring only...... show that the long-time (fully nonlinear) evolution of waves resulting from an upthrusted bottom can eventually result in true solitary waves, consistent with theoretical predictions. It is stressed, however, that the nonlinearity used far exceeds that typical of geophysical tsunamis in the open ocean....... The Boussinesq-type model is then used to simulate numerous tsunami-type events generated from submerged landslides, in both one and two horizontal dimensions. The results again compare well against previous experiments and/or numerical simulations. The new extension compliments recently developed run...

  5. A versatile system for processing geostationary satellite data with run-time visualization capability

    Science.gov (United States)

    Landsfeld, M.; Gautier, C.; Figel, T.

    1995-01-01

    To better predict global climate change, scientists are developing climate models that require interdisciplinary and collaborative efforts in their building. We are currently involved in several such projects but will briefly discuss activities in support of two such complementary projects: the Atmospheric Radiation Measurement (ARM) program of the Department of Energy and Sequoia 2000, a joint venture of the University of California, the private sector, and government agencies. Our contribution to the ARM program is to investigate the role of clouds on the top of the atmosphere and on surface radiance fields through the data analysis of surface and satellite observations and complex modeling of the interaction of radiation with clouds. One of our first ARM research activities involves the computation of the broadband shortwave surface irradiance from satellite observations. Geostationary satellite images centered over the first ARM observation site are received hourly over the Internet network and processed in real time to compute hourly and daily composite shortwave irradiance fields. The images and the results are transferred via a high-speed network to the Sequoia 2000 storage facility in Berkeley, where they are archived These satellite-derived results are compared with the surface observations to evaluate the accuracy of the satellite estimate and the spatial representation of the surface observations. In developing the software involved in calculating the surface shortwave irradiance, we have produced an environment whereby we can easily modify and monitor the data processing as required. Through the principles of modular programming, we have developed software that is easily modified as new algorithms for computation are developed or input data availability changes. In addition, the software was designed so that it could be run from an interactive, icon-driven, graphical interface, TCL-TK, developed by Sequoia 2000 participants. In this way, the data flow

  6. Long-run growth rate in a random multiplicative model

    Energy Technology Data Exchange (ETDEWEB)

    Pirjol, Dan [Institute for Physics and Nuclear Engineering, 077125 Bucharest (Romania)

    2014-08-01

    We consider the long-run growth rate of the average value of a random multiplicative process x{sub i+1} = a{sub i}x{sub i} where the multipliers a{sub i}=1+ρexp(σW{sub i}₋1/2 σ²t{sub i}) have Markovian dependence given by the exponential of a standard Brownian motion W{sub i}. The average value (x{sub n}) is given by the grand partition function of a one-dimensional lattice gas with two-body linear attractive interactions placed in a uniform field. We study the Lyapunov exponent λ=lim{sub n→∞}1/n log(x{sub n}), at fixed β=1/2 σ²t{sub n}n, and show that it is given by the equation of state of the lattice gas in thermodynamical equilibrium. The Lyapunov exponent has discontinuous partial derivatives along a curve in the (ρ, β) plane ending at a critical point (ρ{sub C}, β{sub C}) which is related to a phase transition in the equivalent lattice gas. Using the equivalence of the lattice gas with a bosonic system, we obtain the exact solution for the equation of state in the thermodynamical limit n → ∞.

  7. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2015-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb will have a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  8. Real-time alignment and calibration of the LHCb Detector in Run II

    CERN Multimedia

    Dujany, Giulio

    2016-01-01

    Stable, precise spatial alignment and PID calibration are necessary to achieve optimal detector performance. During Run2, LHCb has a new real-time detector alignment and calibration to allow equivalent performance in the online and offline reconstruction to be reached. This offers the opportunity to optimise the event selection by applying stronger constraints, and to use hadronic particle identification at the trigger level. The computing time constraints are met through the use of a new dedicated framework using the multi-core farm infrastructure for the trigger. The motivation for a real-time alignment and calibration of the LHCb detector is discussed from the operative and physics performance point of view. Specific challenges of this configuration are discussed, as well as the designed framework and its performance.

  9. Hubble expansion and structure formation in the "running FLRW model" of the cosmic evolution

    CERN Document Server

    Grande, Javier; Basilakos, Spyros; Plionis, Manolis

    2011-01-01

    A new class of FLRW cosmological models with time-evolving fundamental parameters should emerge naturally from a description of the expansion of the universe based on the first principles of quantum field theory and string theory. Within this general paradigm, one expects that both the gravitational Newton's coupling, G, and the cosmological term, Lambda, should not be strictly constant but appear rather as smooth functions of the Hubble rate. This scenario ("running FLRW model") predicts, in a natural way, the existence of dynamical dark energy without invoking the participation of extraneous scalar fields. In this paper, we perform a detailed study of these models in the light of the latest cosmological data, which serves to illustrate the phenomenological viability of the new dark energy paradigm as a serious alternative to the traditional scalar field approaches. By performing a joint likelihood analysis of the recent SNIa data, the CMB shift parameter, and the BAOs traced by the Sloan Digital Sky Survey,...

  10. Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems

    Directory of Open Access Journals (Sweden)

    Sebastian Scholze

    2017-02-01

    Full Text Available Highly flexible manufacturing systems require continuous run-time (self- optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self- optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self- optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.

  11. Holistic Context-Sensitivity for Run-Time Optimization of Flexible Manufacturing Systems.

    Science.gov (United States)

    Scholze, Sebastian; Barata, Jose; Stokic, Dragan

    2017-02-24

    Highly flexible manufacturing systems require continuous run-time (self-) optimization of processes with respect to diverse parameters, e.g., efficiency, availability, energy consumption etc. A promising approach for achieving (self-) optimization in manufacturing systems is the usage of the context sensitivity approach based on data streaming from high amount of sensors and other data sources. Cyber-physical systems play an important role as sources of information to achieve context sensitivity. Cyber-physical systems can be seen as complex intelligent sensors providing data needed to identify the current context under which the manufacturing system is operating. In this paper, it is demonstrated how context sensitivity can be used to realize a holistic solution for (self-) optimization of discrete flexible manufacturing systems, by making use of cyber-physical systems integrated in manufacturing systems/processes. A generic approach for context sensitivity, based on self-learning algorithms, is proposed aiming at a various manufacturing systems. The new solution encompasses run-time context extractor and optimizer. Based on the self-learning module both context extraction and optimizer are continuously learning and improving their performance. The solution is following Service Oriented Architecture principles. The generic solution is developed and then applied to two very different manufacturing processes.

  12. Dark Matter Benchmark Models for Early LHC Run-2 Searches. Report of the ATLAS/CMS Dark Matter Forum

    Energy Technology Data Exchange (ETDEWEB)

    Abercrombie, Daniel [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). et al.

    2015-07-06

    One of the guiding principles of this report is to channel the efforts of the ATLAS and CMS collaborations towards a minimal basis of dark matter models that should influence the design of the early Run-2 searches. At the same time, a thorough survey of realistic collider signals of Dark Matter is a crucial input to the overall design of the search program.

  13. Biases in modeled surface snow BC mixing ratios in prescribed-aerosol climate model runs

    OpenAIRE

    Doherty, S. J.; C. M. Bitz; M. G. Flanner

    2014-01-01

    Black carbon (BC) in snow lowers its albedo, increasing the absorption of sunlight, leading to positive radiative forcing, climate warming and earlier snowmelt. A series of recent studies have used prescribed-aerosol deposition flux fields in climate model runs to assess the forcing by black carbon in snow. In these studies, the prescribed mass deposition flux of BC to surface snow is decoupled from the mass deposition flux of snow water to the surface. Here we compare progn...

  14. On Demand Runs Of Mesoscale Models : Météo-France multi-mission, multi-support GUI

    Science.gov (United States)

    Periard, C.; Pourret, V.; Chaupin, D.

    2009-09-01

    Numerous experiment campaigns have shown the interest of mesoscale models to represent weather conditions of the atmosphere as a support to various applications, from electromagnetic propagation to wind power atlas. However running mesoscale models requires high level knowledge on computing and modelling to define the different parameters for a given simulation. With the increase of the demands for mesoscale simulations, we decided to develop a GUI that enables to easily define and run type-experiments Ø at any location on the globe Ø on different types of computers (from Meteo-France Fujitsu to a PC Cluster) Ø with different choices of forcing models. The GUI developed in PHP, uses a map server to visualize the location of the experiment being defined and the different forcing models available for the simulation. The other parameters such as time steps, resolutions, sizes and number of embedded domains, etc … can be modified through checkboxes or multiple choices lists in the GUI. So far, the GUI has been used to run 3 different types of experiment : Ø for EM propagation purpose, during an experiment campaign near Toulon : the simulations were run on a PC Cluster in analyse mode. Ø for wind profiles prediction, in Afghanistan : the simulations are run on the Fujitsu in forecast mode. Ø for weather forecast, during a the F1 race in Japan : the simulations were run on a PC Cluster in forecast mode. During the presentation, I will first give some screen-prints of the different fill-in forms of the Gui and the way to define an experiment. Then I will focus on the 3 examples mentioned above showing different types of graphs and maps produced. There are tons of other applications where this tool is going to be useful especially in climatology: using weather type classification and downscaling, the Gui will help run the simulations of the different clusters representatives . The last thing to accomplish is find a name for the tool.

  15. Modeling Complex Time Limits

    Directory of Open Access Journals (Sweden)

    Oleg Svatos

    2013-01-01

    Full Text Available In this paper we analyze complexity of time limits we can find especially in regulated processes of public administration. First we review the most popular process modeling languages. There is defined an example scenario based on the current Czech legislature which is then captured in discussed process modeling languages. Analysis shows that the contemporary process modeling languages support capturing of the time limit only partially. This causes troubles to analysts and unnecessary complexity of the models. Upon unsatisfying results of the contemporary process modeling languages we analyze the complexity of the time limits in greater detail and outline lifecycles of a time limit using the multiple dynamic generalizations pattern. As an alternative to the popular process modeling languages there is presented PSD process modeling language, which supports the defined lifecycles of a time limit natively and therefore allows keeping the models simple and easy to understand.

  16. Running Large-Scale Air Pollution Models on Parallel Computers

    DEFF Research Database (Denmark)

    Georgiev, K.; Zlatev, Z.

    2000-01-01

    Proceedings of the 23rd NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held 28 September - 2 October 1998, in Varna, Bulgaria.......Proceedings of the 23rd NATO/CCMS International Technical Meeting on Air Pollution Modeling and Its Application, held 28 September - 2 October 1998, in Varna, Bulgaria....

  17. Proposal for an Extended Run of T2K to $20\\times10^{21}$ POT

    CERN Document Server

    Abe, K; Amji, A; Amey, J; Andreopoulos, C; Antonova, M; Aoki, S; Atherton, A; Ban, S; Barbato, F C T; Barbi, M; Barbato, F C T; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Berardi, V; Bhadra, S; Bienstock, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Avanzini, M Buizza; Calcutt, J; Calland, R G; Calvet, D; Campbell, T; Cao, S; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Checchia, C; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremonesi, L; Cudd, A; Dabrowska, A; Delbart, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dunkman, M; Dziewiecki, M; Emery-Schrenk, S; Fernanddez, P; Feusels, T; Finch, A J; Fiorentini, G A; Fiorillo, G; Fitton, M; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Garcia, A; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hansen, D; Harada, J; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Hiraki, T; Hiramoto, A; Hirota, S; Hogan, M; Holeczek, J; Hosomi, F; Huang, K; Ichikawa, A K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, H; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kormos, L L; Korzenev, A; Koshio, Y; Kowalik, K L; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Labarga, L; Lagoda, J; Lamont, I; Lamoureux, M; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Lou, T; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Nagai, Y; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakanishi, Y; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Parker, W; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Pickard, L; Pickering, L; Guerra, E S Pinzon; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Rossi, B; Roth, S; Ruggeri, A C; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Southwell, L; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, S Y; Suzuki, Y; Szeptycka, M; Tacik, R; Tada, M; Takeda, A; Takeuchi, Y; Tamura, R; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, M A; Uchida, Y; Vagins, M; Vacheret, A; Vallari, Z; Vasseur, G; Wachala, T; Walter, C W; Wark, D; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilson, J R; Wilson, R J; Wret, C; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M

    2016-01-01

    Recent measurements by the T2K neutrino oscillation experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We propose an extension to the currently approved T2K running from $7.8\\times 10^{21}~\\mbox{POT}$ to $20\\times 10^{21}~\\mbox{POT}$, aiming at initial observation of CP violation with 3$\\,\\sigma$ or higher significance for the case of maximum CP violation. The program also contains a measurement of mixing parameters, $\\theta_{23}$ and $\\Delta m^2_{32}$, with a precision of 1.7$^\\circ$ or better and 1%, respectively. With accelerator and beamline upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.

  18. Radionuclide inventories for short run-time space nuclear reactor systems

    Science.gov (United States)

    Coats, Richard L.

    1993-01-01

    Space Nuclear Reactor Systems, especially those used for propulsion, often have expected operation run times much shorter than those for land-based nuclear power plants. This produces substantially different radionuclide inventories to be considered in the safety analyses of space nuclear systems. This presentation describes an analysis utilizing ORIGEN2 and DKPOWER to provide comparisons among representative land-based and space systems. These comparisons enable early, conceptual considerations of safety issues and features in the preliminary design phases of operational systems, test facilities, and operations by identifying differences between the requirements for space systems and the established practice for land-based power systems. Early indications are that separation distance is much more effective as a safety measure for space nuclear systems than for power reactors because greater decay of the radionuclide activity occurs during the time to transport the inventory a given distance. In addition, the inventories of long-lived actinides are very low for space reactor systems.

  19. Optimal design and real time control of the integrated urban run-off system

    DEFF Research Database (Denmark)

    Harremoës, Poul; Rauch, Wolfgang

    1999-01-01

    Traditional design of urban run-off systems is based on fixed rules with respect to the points of demarcation between the three systems involved: the sewer system, the treatment plant and the receiving water. An alternative to fixed rules is to model the total system. There is still uncertainty...... with respect to a more rational formulation of demands on the performance of combined sewer overflows and the performance of separate drainage outlets during rain. There are two approaches to management: The prediction-design approach: models play an essential role in the prediction of performance...... and evaluation of competing alternatives for design. However, the complexity of these systems is such that the parameters associated with pollution are hardly identifiable on the basis of reasonable monitoring programmes. The empirical-iterative approach: structures are built on simplified assumptions...

  20. Model based control for run-of-river system. Part 2: Comparison of control structures

    Directory of Open Access Journals (Sweden)

    Liubomyr Vytvytskyi

    2015-10-01

    Full Text Available Optimal operation and control of a run-of-river hydro power plant depend on good knowledge of the elements of the plant in the form of models. Both the control architecture of the system, i.e. the choice of inputs and outputs, and to what degree a model is used, will affect the achievable control performance. Here, a model of a river reach based on the Saint Venant equations for open channel flow illustrates the dynamics of the run-of-river system. The hyperbolic partial differential equations are discretized using the Kurganov-Petrova central upwind scheme - see Part I for details. A comparison is given of achievable control performance using two alternative control signals: the inlet or the outlet volumetric flow rates to the system, in combination with a number of different control structures such as PI control, PI control with Smith predictor, and predictive control. The control objective is to keep the level just in front of the dam as high as possible, and with little variation in the level to avoid overflow over the dam. With a step change in the volumetric inflow to the river reach (disturbance and using the volumetric outflow as the control signal, PI control gives quite good performance. Model predictive control (MPC gives superior control in the sense of constraining the variation in the water level, at a cost of longer computational time and thus constraints on possible sample time. Details on controller tuning are given. With volumetric inflow to the river reach as control signal and outflow (production as disturbance, this introduces a considerable time delay in the control signal. Because of nonlinearity in the system (varying time delay, etc., it is difficult to achieve stable closed loop performance using a simple PI controller. However, by combining a PI controller with a Smith predictor based on a simple integrator + fixed time delay model, stable closed loop operation is possible with decent control performance. Still, an MPC

  1. Renormalisation running of masses and mixings in UED models

    CERN Document Server

    Cornell, A S; Liu, Lu-Xin; Tarhini, Ahmad

    2012-01-01

    We review the Universal Extra-Dimensional Model compactified on a S1/Z2 orbifold, and the renormalisation group evolution of quark and lepton masses, mixing angles and phases both in the UED extension of the Standard Model and of the Minimal Supersymmetric Standard Model. We consider two typical scenarios: all matter fields propagating in the bulk, and matter fields constrained to the brane. The resulting renormalisation group evolution equations in these scenarios are compared with the existing results in the literature, together with their implications.

  2. Building and Running the Yucca Mountain Total System Performance Model in a Quality Environment

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Kalinich; K.P. Lee; J.A. McNeish

    2005-01-09

    A Total System Performance Assessment (TSPA) model has been developed to support the Safety Analysis Report (SAR) for the Yucca Mountain High-Level Waste Repository. The TSPA model forecasts repository performance over a 20,000-year simulation period. It has a high degree of complexity due to the complexity of its underlying process and abstraction models. This is reflected in the size of the model (a 27,000 element GoldSim file), its use of dynamic-linked libraries (14 DLLs), the number and size of its input files (659 files totaling 4.7 GB), and the number of model input parameters (2541 input database entries). TSPA model development and subsequent simulations with the final version of the model were performed to a set of Quality Assurance (QA) procedures. Due to the complexity of the model, comments on previous TSPAs, and the number of analysts involved (22 analysts in seven cities across four time zones), additional controls for the entire life-cycle of the TSPA model, including management, physical, model change, and input controls were developed and documented. These controls did not replace the QA. procedures, rather they provided guidance for implementing the requirements of the QA procedures with the specific intent of ensuring that the model development process and the simulations performed with the final version of the model had sufficient checking, traceability, and transparency. Management controls were developed to ensure that only management-approved changes were implemented into the TSPA model and that only management-approved model runs were performed. Physical controls were developed to track the use of prototype software and preliminary input files, and to ensure that only qualified software and inputs were used in the final version of the TSPA model. In addition, a system was developed to name, file, and track development versions of the TSPA model as well as simulations performed with the final version of the model.

  3. Non-linear structure formation in the `Running FLRW' cosmological model

    Science.gov (United States)

    Bibiano, Antonio; Croton, Darren J.

    2016-07-01

    We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.

  4. Linking Search Space Structure, Run-Time Dynamics, and Problem Difficulty: A Step Toward Demystifying Tabu Search

    CERN Document Server

    Howe, A E; Whitley, L D; 10.1613/jair.1576

    2011-01-01

    Tabu search is one of the most effective heuristics for locating high-quality solutions to a diverse array of NP-hard combinatorial optimization problems. Despite the widespread success of tabu search, researchers have a poor understanding of many key theoretical aspects of this algorithm, including models of the high-level run-time dynamics and identification of those search space features that influence problem difficulty. We consider these questions in the context of the job-shop scheduling problem (JSP), a domain where tabu search algorithms have been shown to be remarkably effective. Previously, we demonstrated that the mean distance between random local optima and the nearest optimal solution is highly correlated with problem difficulty for a well-known tabu search algorithm for the JSP introduced by Taillard. In this paper, we discuss various shortcomings of this measure and develop a new model of problem difficulty that corrects these deficiencies. We show that Taillards algorithm can be modeled with ...

  5. Exploiting CMS data popularity to model the evolution of data management for Run-2 and beyond

    Science.gov (United States)

    Bonacorsi, D.; Boccali, T.; Giordano, D.; Girone, M.; Neri, M.; Magini, N.; Kuznetsov, V.; Wildish, T.

    2015-12-01

    During the LHC Run-1 data taking, all experiments collected large data volumes from proton-proton and heavy-ion collisions. The collisions data, together with massive volumes of simulated data, were replicated in multiple copies, transferred among various Tier levels, transformed/slimmed in format/content. These data were then accessed (both locally and remotely) by large groups of distributed analysis communities exploiting the WorldWide LHC Computing Grid infrastructure and services. While efficient data placement strategies - together with optimal data redistribution and deletions on demand - have become the core of static versus dynamic data management projects, little effort has so far been invested in understanding the detailed data-access patterns which surfaced in Run-1. These patterns, if understood, can be used as input to simulation of computing models at the LHC, to optimise existing systems by tuning their behaviour, and to explore next-generation CPU/storage/network co-scheduling solutions. This is of great importance, given that the scale of the computing problem will increase far faster than the resources available to the experiments, for Run-2 and beyond. Studying data-access patterns involves the validation of the quality of the monitoring data collected on the “popularity of each dataset, the analysis of the frequency and pattern of accesses to different datasets by analysis end-users, the exploration of different views of the popularity data (by physics activity, by region, by data type), the study of the evolution of Run-1 data exploitation over time, the evaluation of the impact of different data placement and distribution choices on the available network and storage resources and their impact on the computing operations. This work presents some insights from studies on the popularity data from the CMS experiment. We present the properties of a range of physics analysis activities as seen by the data popularity, and make recommendations for

  6. A two-runners model: optimization of running strategies according to the physiological parameters

    CERN Document Server

    Aftalion, Amandine

    2015-01-01

    In order to describe the velocity and the anaerobic energy of two runners competing against each other for middle-distance races, we present a mathematical model relying on an optimal control problem for a system of ordinary differential equations. The model is based on energy conservation and on Newton's second law: resistive forces, propulsive forces and variations in the maximal oxygen uptake are taken into account. The interaction between the runners provides a minimum for staying one meter behind one's competitor. We perform numerical simulations and show how a runner can win a race against someone stronger by taking advantage of staying behind, or how he can improve his personal record by running behind someone else. Our simulations show when it is the best time to overtake, depending on the difference between the athletes. Finally, we compare our numerical results with real data from the men's 1500 -- m finals of different competitions.

  7. Changes in spring-mass model characteristics during repeated running sprints.

    Science.gov (United States)

    Girard, Olivier; Micallef, Jean-Paul; Millet, Grégoire P

    2011-01-01

    This study investigated fatigue-induced changes in spring-mass model characteristics during repeated running sprints. Sixteen active subjects performed 12 × 40 m sprints interspersed with 30 s of passive recovery. Vertical and anterior-posterior ground reaction forces were measured at 5-10 m and 30-35 m and used to determine spring-mass model characteristics. Contact (P Stride frequency (P  0.05) increased with time. As a result, vertical stiffness decreased (P  0.05). Changes in vertical stiffness were correlated (r > 0.7; P stride frequency. When compared to 5-10 m, most of ground reaction force-related parameters were higher (P stride frequency, vertical and leg stiffness were lower (P run-based sprints are repeated, which alters impact parameters. Maintaining faster stride frequencies through retaining higher vertical stiffness is a prerequisite to improve performance during repeated sprinting.

  8. Short-Run Asset Selection using a Logistic Model

    Directory of Open Access Journals (Sweden)

    Walter Gonçalves Junior

    2011-06-01

    Full Text Available Investors constantly look for significant predictors and accurate models to forecast future results, whose occasional efficacy end up being neutralized by market efficiency. Regardless, such predictors are widely used for seeking better (and more unique perceptions. This paper aims to investigate to what extent some of the most notorious indicators have discriminatory power to select stocks, and if it is feasible with such variables to build models that could anticipate those with good performance. In order to do that, logistical regressions were conducted with stocks traded at Bovespa using the selected indicators as explanatory variables. Investigated in this study were the outputs of Bovespa Index, liquidity, the Sharpe Ratio, ROE, MB, size and age evidenced to be significant predictors. Also examined were half-year, logistical models, which were adjusted in order to check the potential acceptable discriminatory power for the asset selection.

  9. Non-linear structure formation in the "Running FLRW" cosmological model

    CERN Document Server

    Bibiano, Antonio

    2016-01-01

    We present a suite of cosmological N-body simulations describing the "Running Friedmann-Lema{\\"i}tre-Robertson-Walker" (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends {\\Lambda}CDM with a time-evolving vacuum density, {\\Lambda}(z), and time-evolving gravitational Newton's coupling, G(z). In this paper we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realisation of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalisation choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the...

  10. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00386283; The ATLAS collaboration

    2016-01-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL). ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  11. Supporting Multiprocessors in the Icecap Safety-Critical Java Run-Time Environment

    DEFF Research Database (Denmark)

    Zhao, Shuai; Wellings, Andy; Korsholm, Stephan Erbs

    2015-01-01

    The current version of the Safety Critical Java (SCJ) specification defines three compliance levels. Level 0 targets single processor programs while Level 1 and 2 can support multiprocessor platforms. Level 1 programs must be fully partitioned but Level 2 programs can also be more globally...... scheduled. As of yet, there is no official Reference Implementation for SCJ. However, the icecap project has produced a Safety-Critical Java Run-time Environment based on the Hardware-near Virtual Machine (HVM). This supports SCJ at all compliance levels and provides an implementation of the safety......-critical Java (javax.safetycritical) package. This is still work-in-progress and lacks certain key features. Among these is the ability to support multiprocessor platforms. In this paper, we explore two possible options to adding multiprocessor support to this environment: the “green thread” and the “native...

  12. Novel time-dependent alignment of the ATLAS Inner Detector in the LHC Run 2

    Science.gov (United States)

    Jiménez Peña, J.

    2016-11-01

    ATLAS is a multipurpose experiment at the LHC proton-proton collider. Its physics goals require an unbiased and high resolution measurement of the charged particle kinematic parameters. These critically depend on the layout and performance of the tracking system and the quality of the alignment of its components. For the LHC Run 2, the system has been upgraded with the installation of a new pixel layer, the Insertable B-layer (IBL) . ATLAS Inner Detector alignment framework has been adapted and upgraded to correct very short time scale movements of the sub-detectors. In particular, a mechanical distortion of the IBL staves up to 20 μm and a vertical displacement of the Pixel detector of ~ 6 μm have been observed during data-taking. The techniques used to correct for these effects and to match the required Inner Detector performance will be presented.

  13. Long-Running-Time (T{=}0.45 K) Germanium Bolometer for Far Infrared Spectroscopy

    Science.gov (United States)

    Satoh, Naoki; Tanaka, Yasumoto; Nagasaka, Keigo

    1990-01-01

    A long-running-time (T{=}0.45 K) germanium bolometer which has a compact charcoal adsorption pump with a novel 3He gas condenser has been constructed. The refrigerator provides continuous cooling of the bolometer element at 0.45 K for 24-hour measurements of spectra in the range 2 to 40 cm-1. Utilizing this bolometer system, transmission spectroscopy has been carried out successively, maintaining the temperature of the sample below 40 K and that of the bolometer element below 1.5 K without a thermal cycle. This experimental setup is essential for obtaining a reproducible spectrum of MEM(TCNQ)2. Thus, each resultant spectrum has good reproducibility even after one-week-long experiments.

  14. An efficient UNICOS run-time system for functional programs on a CRAY X-MP

    Energy Technology Data Exchange (ETDEWEB)

    Hammes, J.P.; Yantis, B.; Michelsen, R.; Fasel, J.H. III; Fasel, P.K. (Los Alamos National Lab., NM (USA))

    1989-01-01

    The ParaGraph (Parallel Graph reduction) project at Los Alamos National Laboratory is an investigation of the use of functional languages for scientific applications; efficient implementation strategies are a primary concern. The initial version of the ParaGraph run-time system, ParaGraph-RTS 1.0, was not targeted for the X-MP architecture specifically. We examine the new Cray X-MP UNICOS single processor implementation, ParaGraph-RTS 2.0, and describe the CRAY specific optimizations employed. Optimizations include novel use of the CRAY X-MP register set and the generation of optimized assembly code. Performance improvements over ParaGraph-RTS 1.0 have been significant; initial measurements are presented. 8 refs., 4 figs.

  15. Safety, Liveness and Run-time Refinement for Modular Process-Aware Information Systems with Dynamic Sub Processes

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Slaats, Tijs

    2015-01-01

    and verification of flexible, run-time adaptable process-aware information systems, moved into practice via the Dynamic Condition Response (DCR) Graphs notation co-developed with our industrial partner. Our key contributions are: (1) A formal theory of dynamic sub-process instantiation for declarative, event...... in general; and finally (4) a decidable and practically useful sub-class of run-time refinements. Our results are illustrated by a running example inspired by a recent Electronic Case Management solution based on DCR Graphs and delivered by our industrial partner. An online prototype implementation...

  16. Implementation of the ATLAS Run 2 event data model

    CERN Document Server

    Buckley, Andrew; Elsing, Markus; Gillberg, Dag Ingemar; Koeneke, Karsten; Krasznahorkay, Attila; Moyse, Edward; Nowak, Marcin; Snyder, Scott; van Gemmeren, Peter

    2015-01-01

    During the 2013--2014 shutdown of the Large Hadron Collider, ATLAS switched to a new event data model for analysis, called the xAOD. A key feature of this model is the separation of the object data from the objects themselves (the `auxiliary store'). Rather being stored as member variables of the analysis classes, all object data are stored separately, as vectors of simple values. Thus, the data are stored in a `structure of arrays' format, while the user still can access it as an `array of structures'. This organization allows for on-demand partial reading of objects, the selective removal of object properties, and the addition of arbitrary user-defined properties in a uniform manner. It also improves performance by increasing the locality of memory references in typical analysis code. The resulting data structures can be written to ROOT files with data properties represented as simple ROOT tree branches. This talk will focus on the design and implementation of the auxiliary store and its interaction with RO...

  17. The difference is in the start: impact of timing and start procedure on sprint running performance.

    Science.gov (United States)

    Haugen, Thomas A; Tønnessen, Espen; Seiler, Stephen K

    2012-02-01

    The difference is in the start: impact of timing and start procedure on sprint running performance. The purpose of this study was to compare different sprint start positions and to generate correction factors between popular timing triggering methods on 40-m/40-yd sprint time. Fourteen female athletes (17 ± 1 years), personal best 100 m: 13.26 (±0.68) seconds and 11 male athletes (20 ± 5 years), personal best 100 m: 11.58 (±0.74) seconds participated. They performed 2 series of 3 40-m sprints in randomized order: (a) start from the block, measured by means of Brower audio sensor (BAS) and Dartfish video timing (DVT), (b) 3-point start, measured by using hand release pod (HR) and DVT, and (c) standing start, triggered by both photocell across starting line (SFC), and foot release (FR) plus DVT. Video analysis was performed by 2 independent observers and averaged. Simultaneous measurements at national athletics competitions demonstrated that DVT and BAS were equivalent to Omega Timing within the limits of precision of video timing (±0.01 seconds). Hand and floor timer triggering showed small but significant biases compared with movement captured from video (0.02-0.04 seconds), presumably because of sensitivity of pressure thresholds. Coefficient of variation for test-retest timing using different starting positions ranged from 0.7 to 1.0%. Compared with block starts reacting to gunfire, HR, SFC, and FR starts yielded 0.17 ± 0.09, 0.27 ± 0.12, and 0.69 ± 0.11 second faster times, respectively, over 40 m (all p sprint performances.

  18. mr: A C++ library for the matching and running of the Standard Model parameters

    Science.gov (United States)

    Kniehl, Bernd A.; Pikelner, Andrey F.; Veretin, Oleg L.

    2016-09-01

    We present the C++ program library mr that allows us to reliably calculate the values of the running parameters in the Standard Model at high energy scales. The initial conditions are obtained by relating the running parameters in the MS bar renormalization scheme to observables at lower energies with full two-loop precision. The evolution is then performed in accordance with the renormalization group equations with full three-loop precision. Pure QCD corrections to the matching and running are included through four loops. We also provide a Mathematica interface for this program library.

  19. mr: a C++ library for the matching and running of the Standard Model parameters

    CERN Document Server

    Kniehl, Bernd A; Veretin, Oleg L

    2016-01-01

    We present the C++ program library mr that allows us to reliably calculate the values of the running parameters in the Standard Model at high energy scales. The initial conditions are obtained by relating the running parameters in the $\\overline{\\mathrm{MS}}$ renormalization scheme to observables at lower energies with full two-loop precision. The evolution is then performed in accordance with the renormalization group equations with full three-loop precision. Pure QCD corrections to the matching and running are included through four loops. We also provide a Mathematica interface for this program library.

  20. Effect of Light/Dark Cycle on Wheel Running and Responding Reinforced by the Opportunity to Run Depends on Postsession Feeding Time

    Science.gov (United States)

    Belke, T. W.; Mondona, A. R.; Conrad, K. M.; Poirier, K. F.; Pickering, K. L.

    2008-01-01

    Do rats run and respond at a higher rate to run during the dark phase when they are typically more active? To answer this question, Long Evans rats were exposed to a response-initiated variable interval 30-s schedule of wheel-running reinforcement during light and dark cycles. Wheel-running and local lever-pressing rates increased modestly during…

  1. Personal factors influencing the visual reaction time of pedestrians to detect turn indicators in the presence of Daytime Running Lamps.

    Science.gov (United States)

    Peña-García, Antonio; de Oña, Rocío; García, Pedro Antonio; de Oña, Juan

    2016-12-01

    Daytime running lamps (DRL) on vehicles have proven to be an effective measure to prevent accidents during the daytime, particularly when pedestrians and cyclists are involved. However, there are negative interactions of DRL with other functions in automotive lighting, such as delays in pedestrians' visual reaction time (VRT) when turn indicators are activated in the presence of DRL. These negative interactions need to be reduced. This work analyses the influence of variables inherent to pedestrians, such as height, gender and visual defects, on the VRT using a classification and regression tree as an exploratory analysis and a generalized linear model to validate the results. Some pedestrian characteristics, such as gender, alone or combined with the DRL colour, and visual defects, were found to have a statistically significant influence on VRT and, hence, on traffic safety. These results and conclusions concerning the interaction between pedestrians and vehicles are presented and discussed. Practitioner Summary: Visual interactions of vehicle daytime running lamps (DRL) with other functions in automotive lighting, such as turn indicators, have an important impact on a vehicle's conspicuity for pedestrians. Depending on several factors inherent to pedestrians, the visual reaction time (VRT) can be remarkably delayed, which has implications in traffic safety.

  2. Searching For Exotic Physics Beyond the Standard Model: Extrapolation Until the End of Run-3

    CERN Document Server

    Genest, Marie-Hel\\`ene; The ATLAS collaboration

    2017-01-01

    The prospects of looking for exotic beyond-the-Standard-Model physics with the ATLAS and CMS detectors at the LHC in the rest of Run-2 and in Run-3 will be reviewed. A few selected analyses will be discussed, showing the gain in sensitivity that can be achieved by accumulating more data and comparing the current limits with the predicted reach. Some limiting factors will be identified, along with ideas on how to improve on the searches.

  3. Biases in modeled surface snow BC mixing ratios in prescribed aerosol climate model runs

    OpenAIRE

    Doherty, S. J.; C. M. Bitz; M. G. Flanner

    2014-01-01

    A series of recent studies have used prescribed aerosol deposition flux fields in climate model runs to assess forcing by black carbon in snow. In these studies, the prescribed mass deposition flux of BC to surface snow is decoupled from the mass deposition flux of snow water to the surface. Here we use a series of offline calculations to show that this approach results, on average, in a~factor of about 1.5–2.5 high bias in annual-mean surface snow BC mixing ratios in three ...

  4. Convergent Validity of the One-Mile Run and PACER VO2MAX Prediction Models in Middle School Students

    Directory of Open Access Journals (Sweden)

    Ryan D. Burns

    2014-02-01

    Full Text Available FITNESSGRAM uses an equating method to convert Progressive Aerobic Cardiovascular Endurance Run (PACER laps to One-mile run/walk (1MRW times to estimate aerobic fitness (VO2MAX in children. However, other prediction models can more directly estimate VO2MAX from PACER performance. The purpose of this study was to examine the convergent validity and relative accuracy between 1MRW and various PACER models for predicting VO2MAX in middle school students. Aerobic fitness was assessed on 134 students utilizing the 1MRW and PACER on separate testing days. Pearson correlations, Bland–Altman plots, kappa statistics, proportion of agreement, and prediction error were used to assess associations and agreement among models. Correlation coefficients were strong (r ≥ .80, p .40 and agreement > .90. The results support that PACER models contain convergent validity and strong relative accuracy with the 1MRW model.

  5. Modeling driver stop/run behavior at the onset of a yellow indication considering driver run tendency and roadway surface conditions.

    Science.gov (United States)

    Elhenawy, Mohammed; Jahangiri, Arash; Rakha, Hesham A; El-Shawarby, Ihab

    2015-10-01

    The ability to model driver stop/run behavior at signalized intersections considering the roadway surface condition is critical in the design of advanced driver assistance systems. Such systems can reduce intersection crashes and fatalities by predicting driver stop/run behavior. The research presented in this paper uses data collected from two controlled field experiments on the Smart Road at the Virginia Tech Transportation Institute (VTTI) to model driver stop/run behavior at the onset of a yellow indication for different roadway surface conditions. The paper offers two contributions. First, it introduces a new predictor related to driver aggressiveness and demonstrates that this measure enhances the modeling of driver stop/run behavior. Second, it applies well-known artificial intelligence techniques including: adaptive boosting (AdaBoost), random forest, and support vector machine (SVM) algorithms as well as traditional logistic regression techniques on the data in order to develop a model that can be used by traffic signal controllers to predict driver stop/run decisions in a connected vehicle environment. The research demonstrates that by adding the proposed driver aggressiveness predictor to the model, there is a statistically significant increase in the model accuracy. Moreover the false alarm rate is significantly reduced but this reduction is not statistically significant. The study demonstrates that, for the subject data, the SVM machine learning algorithm performs the best in terms of optimum classification accuracy and false positive rates. However, the SVM model produces the best performance in terms of the classification accuracy only.

  6. Data-driven modelling of vertical dynamic excitation of bridges induced by people running

    Science.gov (United States)

    Racic, Vitomir; Morin, Jean Benoit

    2014-02-01

    With increasingly popular marathon events in urban environments, structural designers face a great deal of uncertainty when assessing dynamic performance of bridges occupied and dynamically excited by people running. While the dynamic loads induced by pedestrians walking have been intensively studied since the infamous lateral sway of the London Millennium Bridge in 2000, reliable and practical descriptions of running excitation are still very rare and limited. This interdisciplinary study has addressed the issue by bringing together a database of individual running force signals recorded by two state-of-the-art instrumented treadmills and two attempts to mathematically describe the measurements. The first modelling strategy is adopted from the available design guidelines for human walking excitation of structures, featuring perfectly periodic and deterministic characterisation of pedestrian forces presentable via Fourier series. This modelling approach proved to be inadequate for running loads due to the inherent near-periodic nature of the measured signals, a great inter-personal randomness of the dominant Fourier amplitudes and the lack of strong correlation between the amplitudes and running footfall rate. Hence, utilising the database established and motivated by the existing models of wind and earthquake loading, speech recognition techniques and a method of replicating electrocardiogram signals, this paper finally presents a numerical generator of random near-periodic running force signals which can reliably simulate the measurements. Such a model is an essential prerequisite for future quality models of dynamic loading induced by individuals, groups and crowds running under a wide range of conditions, such as perceptibly vibrating bridges and different combinations of visual, auditory and tactile cues.

  7. Sublingual Nucleotides Prolong Run Time to Exhaustion in Young Physically Active Men

    Directory of Open Access Journals (Sweden)

    Sergej M. Ostojic

    2013-11-01

    Full Text Available Although dietary nucleotides have been determined to be required for normal immune function, there is limited direct interventional evidence confirming performance-enhancing effects of sublingual nucleotides in humans. A double-blind, placebo-controlled, randomized trial was conducted to evaluate the effect of sublingual nucleotides (50 mg/day administered for 14 days in thirty young healthy physically active males, on endurance performance and immune responses. Fasting white blood cell count, natural killer cells (NKC number, NKC cytotoxic activity, and serum immunoglobulin (IgA, IgM, IgG, and time to exhaustion, peak rate of perceived exertion, peak heart rate, and peak running speed during the exercise test were measured at baseline (day 0 and post-intervention (day 14. Time to exhaustion, as well as serum immunoglobulin A and NKC cytotoxic activity, were significantly higher at day 14 (p < 0.05 in participants supplemented with nucleotides compared with those who consumed placebo. No significant differences in other parameters were observed between groups at post-intervention. No volunteers withdrew before the end of the study nor reported any vexatious side effects of supplementation. The results of the present study suggest that sublingual nucleotides may provide pertinent benefit as both an ergogenic and immunostimulatory additive in active males.

  8. Periodic Time Series Models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    2004-01-01

    textabstractThis book considers periodic time series models for seasonal data, characterized by parameters that differ across the seasons, and focuses on their usefulness for out-of-sample forecasting. Providing an up-to-date survey of the recent developments in periodic time series, the book

  9. Long-term running alleviates some behavioral and molecular abnormalities in Down syndrome mouse model Ts65Dn.

    Science.gov (United States)

    Kida, Elizabeth; Rabe, Ausma; Walus, Marius; Albertini, Giorgio; Golabek, Adam A

    2013-02-01

    Running may affect the mood, behavior and neurochemistry of running animals. In the present study, we investigated whether voluntary daily running, sustained over several months, might improve cognition and motor function and modify the brain levels of selected proteins (SOD1, DYRK1A, MAP2, APP and synaptophysin) in Ts65Dn mice, a mouse model for Down syndrome (DS). Ts65Dn and age-matched wild-type mice, all females, had free access to a running wheel either from the time of weaning (post-weaning cohort) or from around 7 months of age (adult cohort). Sedentary female mice were housed in similar cages, without running wheels. Behavioral testing and evaluation of motor performance showed that running improved cognitive function and motor skills in Ts65Dn mice. However, while a dramatic improvement in the locomotor functions and learning of motor skills was observed in Ts65Dn mice from both post-weaning and adult cohorts, improved object memory was seen only in Ts65Dn mice that had free access to the wheel from weaning. The total levels of APP and MAP2ab were reduced and the levels of SOD1 were increased in the runners from the post-weaning cohort, while only the levels of MAP2ab and α-cleaved C-terminal fragments of APP were reduced in the adult group in comparison with sedentary trisomic mice. Hence, our study demonstrates that Ts65Dn females benefit from sustained voluntary physical exercise, more prominently if running starts early in life, providing further support to the idea that a properly designed physical exercise program could be a valuable adjuvant to future pharmacotherapy for DS.

  10. Higher-order effects in asset-pricing models with long-run risks

    NARCIS (Netherlands)

    Pohl, W.; Schmedders, K.; Wilms, Ole

    2017-01-01

    This paper shows that the latest generation of asset pricing models with long-run risk exhibits economically significant nonlinearities, and thus the ubiquitous Campbell--Shiller log-linearization can generate large numerical errors. These errors in turn translate to considerable errors in the model

  11. Running Effects on Lepton Mixing Angles in Flavour Models with Type I Seesaw

    CERN Document Server

    Lin, Y; Paris, A

    2009-01-01

    We study renormalization group running effects on neutrino mixing patterns when a (type I) seesaw model is implemented by suitable flavour symmetries. We are particularly interested in mass-independent mixing patterns to which the widely studied tribimaximal mixing pattern belongs. In this class of flavour models, the running contribution from neutrino Yukawa coupling, which is generally dominant at energies above the seesaw threshold, can be absorbed by a small shift on neutrino mass eigenvalues leaving mixing angles unchanged. Consequently, in the whole running energy range, the change in mixing angles is due to the contribution coming from charged lepton sector. Subsequently, we analyze in detail these effects in an explicit flavour model for tribimaximal neutrino mixing based on an A4 discrete symmetry group. We find that for normally ordered light neutrinos, the tribimaximal prediction is essentially stable under renormalization group evolution. On the other hand, in the case of inverted hierarchy, the d...

  12. Development of a simulation model for compression ignition engine running with ignition improved blend

    Directory of Open Access Journals (Sweden)

    Sudeshkumar Ponnusamy Moranahalli

    2011-01-01

    Full Text Available Department of Automobile Engineering, Anna University, Chennai, India. The present work describes the thermodynamic and heat transfer models used in a computer program which simulates the diesel fuel and ignition improver blend to predict the combustion and emission characteristics of a direct injection compression ignition engine fuelled with ignition improver blend using classical two zone approach. One zone consists of pure air called non burning zone and other zone consist of fuel and combustion products called burning zone. First law of thermodynamics and state equations are applied in each of the two zones to yield cylinder temperatures and cylinder pressure histories. Using the two zone combustion model the combustion parameters and the chemical equilibrium composition were determined. To validate the model an experimental investigation has been conducted on a single cylinder direct injection diesel engine fuelled with 12% by volume of 2- ethoxy ethanol blend with diesel fuel. Addition of ignition improver blend to diesel fuel decreases the exhaust smoke and increases the thermal efficiency for the power outputs. It was observed that there is a good agreement between simulated and experimental results and the proposed model requires low computational time for a complete run.

  13. A Flexible System Level Design Methodology Targeting Run-Time Reconfigurable FPGAs

    Directory of Open Access Journals (Sweden)

    Houzet Dominique

    2007-01-01

    Full Text Available Abstract Reconfigurable computing is certainly one of the most important emerging research topics on digital processing architectures over the last few years. The introduction of run-time reconfiguration (RTR on FPGAs requires appropriate design flows and methodologies to fully exploit this new functionality. For that purpose, we present an automatic design generation methodology for heterogeneous architectures based on DSPs and FPGAs that ease and speed RTR implementation. We focus on how to take into account specificities of partially reconfigurable components from a high-level specification during the design generation steps. This method automatically generates designs for both fixed and partially reconfigurable parts of an FPGA with automatic management of the reconfiguration process. Furthermore, this automatic design generation enables a reconfiguration prefetching technique to minimize reconfiguration latency and buffer-merging techniques to minimize memory requirements of the generated design. This concept has been applied to different wireless access schemes, based on a combination of OFDM and CDMA techniques. This implementation example illustrates the benefits of the proposed design methodology.

  14. An MPSoC-Based QAM Modulation Architecture with Run-Time Load-Balancing

    Directory of Open Access Journals (Sweden)

    Doumenis Demosthenes

    2011-01-01

    Full Text Available QAM is a widely used multilevel modulation technique, with a variety of applications in data radio communication systems. Most existing implementations of QAM-based systems use high levels of modulation in order to meet the high data rate constraints of emerging applications. This work presents the architecture of a highly parallel QAM modulator, using MPSoC-based design flow and design methodology, which offers multirate modulation. The proposed MPSoC architecture is modular and provides dynamic reconfiguration of the QAM utilizing on-chip interconnection networks, offering high data rates (more than 1 Gbps, even at low modulation levels (16-QAM. Furthermore, the proposed QAM implementation integrates a hardware-based resource allocation algorithm that can provide better throughput and fault tolerance, depending on the on-chip interconnection network congestion and run-time faults. Preliminary results from this work have been published in the Proceedings of the 18th IEEE/IFIP International Conference on VLSI and System-on-Chip (VLSI-SoC 2010. The current version of the work includes a detailed description of the proposed system architecture, extends the results significantly using more test cases, and investigates the impact of various design parameters. Furthermore, this work investigates the use of the hardware resource allocation algorithm as a graceful degradation mechanism, providing simulation results about the performance of the QAM in the presence of faulty components.

  15. Models of production runs for multiple products in flexible manufacturing system

    Directory of Open Access Journals (Sweden)

    Ilić Oliver

    2011-01-01

    Full Text Available How to determine economic production runs (EPR for multiple products in flexible manufacturing systems (FMS is considered in this paper. Eight different although similar, models are developed and presented. The first four models are devoted to the cases when no shortage is allowed. The other four models are some kind of generalization of the previous ones when shortages may exist. The numerical examples are given as the illustration of the proposed models.

  16. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    CERN Document Server

    AUTHOR|(CDS)2091576

    2016-01-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of $2 \\times 10^{33}$ cm$^2$ s$^1$ and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance ...

  17. Novel real-time alignment and calibration of LHCb detector for Run II and tracking for the upgrade.

    Science.gov (United States)

    Quagliani, Renato; LHCb Collaboration

    2016-10-01

    LHCb has introduced a novel real-time detector alignment and calibration strategy for LHC Run II. Data collected at the start of the fill is processed in a few minutes and used to update the alignment, while the calibration constants are evaluated for each run. The procedure aims to improve the quality of the online selection and performance stability. The required computing time constraints are met thanks to a new dedicated framework using the multi-core farm infrastructure for the trigger. A similar scheme is planned to be used for Run III foreseen to start in 2020. At that time LHCb will run at an instantaneous luminosity of 2 x 1033 cm-2 s-1 and a fully software based trigger strategy will be used. The new running conditions and the tighter timing constraints in the software trigger (only 13 ms per event are available) represent a big challenge for track reconstruction. The new software based trigger strategy implies a full detector read-out at the collision rate of 40 MHz. High performance and timing constraints are ensured by a new tracking system and a fast and efficient track reconstruction strategy.

  18. NUMERICAL SIMULATION OF SOLITARY WAVE RUN-UP AND OVERTOPPING USING BOUSSINESQ-TYPE MODEL

    Institute of Scientific and Technical Information of China (English)

    TSUNG Wen-Shuo; HSIAO Shih-Chun; LIN Ting-Chieh

    2012-01-01

    In this article,the use of a high-order Boussinesq-type model and sets of laboratory experiments in a large scale flume of breaking solitary waves climbing up slopes with two inclinations are presented to study the shoreline behavior of breaking and non-breaking solitary waves on plane slopes.The scale effect on run-up height is briefly discussed.The model simulation capability is well validated against the available laboratory data and present experiments.Then,serial numerical tests are conducted to study the shoreline motion correlated with the effects of beach slope and wave nonlinearity for breaking and non-breaking waves.The empirical formula proposed by Hsiao et al.for predicting the maximum run-up height of a breaking solitary wave on plane slopes with a wide range of slope inclinations is confirmed to be cautious.Furthermore,solitary waves impacting and overtopping an impermeable sloping seawall at various water depths are investigated.Laboratory data of run-up height,shoreline motion,free surface elevation and overtopping discharge are presented.Comparisons of run-up,run-down,shoreline trajectory and wave overtopping discharge are made.A fairly good agreement is seen between numerical results and experimental data.It elucidates that the present depth-integrated model can be used as an efficient tool for predicting a wide spectrum of coastal problems.

  19. Parallelization and Performance of the NIM Weather Model Running on GPUs

    Science.gov (United States)

    Govett, Mark; Middlecoff, Jacques; Henderson, Tom; Rosinski, James

    2014-05-01

    The Non-hydrostatic Icosahedral Model (NIM) is a global weather prediction model being developed to run on the GPU and MIC fine-grain architectures. The model dynamics, written in Fortran, was initially parallelized for GPUs in 2009 using the F2C-ACC compiler and demonstrated good results running on a single GPU. Subsequent efforts have focused on (1) running efficiently on multiple GPUs, (2) parallelization of NIM for Intel-MIC using openMP, (3) assessing commercial Fortran GPU compilers now available from Cray, PGI and CAPS, (4) keeping the model up to date with the latest scientific development while maintaining a single source performance portable code, and (5) parallelization of two physics packages used in the NIM: the operational Global Forecast System (GFS) used operationally, and the widely used Weather Research and Forecast (WRF) model physics. The presentation will touch on each of these efforts, but highlight improvements in parallel performance of the NIM running on the Titan GPU cluster at ORNL, the ongong parallelization of model physics, and a recent evaluation of commercial GPU compilers using the F2C-ACC compiler as the baseline.

  20. A Monotonic Degradation Assessment Index of Rolling Bearings Using Fuzzy Support Vector Data Description and Running Time

    Directory of Open Access Journals (Sweden)

    Zhiwen Liu

    2012-07-01

    Full Text Available Performance degradation assessment based on condition monitoring plays an important role in ensuring reliable operation of equipment, reducing production downtime and saving maintenance costs, yet performance degradation has strong fuzziness, and the dynamic information is random and fuzzy, making it a challenge how to assess the fuzzy bearing performance degradation. This study proposes a monotonic degradation assessment index of rolling bearings using fuzzy support vector data description (FSVDD and running time. FSVDD constructs the fuzzy-monitoring coefficient  which is sensitive to the initial defect and stably increases as faults develop. Moreover, the parameter  describes the accelerating relationships between the damage development and running time. However, the index  with an oscillating trend disagrees with the irreversible damage development. The running time is introduced to form a monotonic index, namely damage severity index (DSI. DSI inherits all advantages of  and overcomes its disadvantage. A run-to-failure test is carried out to validate the performance of the proposed method. The results show that DSI reflects the growth of the damages with running time perfectly.

  1. Accuracy analysis of the State-of-Charge and remaining run-time determination for lithium-ion batteries

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Op het Veld, J.H.G.; Regtien, Paulus P.L.

    2008-01-01

    This paper describes the various error sources in a real-time State-of-Charge (SoC) evaluation system and their effects on the overall accuracy in the calculation of the remaining run-time of a battery-operated system. The SoC algorithm for Li-ion batteries studied in this paper combines direct meas

  2. Accuracy analysis of the State-of-Charge and remaining run-time determination for lithium-ion batteries

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Op het Veld, J.H.G.; Regtien, Paulus P.L.

    2008-01-01

    This paper describes the various error sources in a real-time State-of-Charge (SoC) evaluation system and their effects on the overall accuracy in the calculation of the remaining run-time of a battery-operated system. The SoC algorithm for Li-ion batteries studied in this paper combines direct

  3. Search for the standard model Higgs boson produced in vector boson fusion and decaying to bottom quarks using the Run1 and 2015 Run2 data samples.

    CERN Document Server

    Chernyavskaya, Nadezda

    2016-01-01

    A search for the standard model Higgs boson is presented in the Vector Boson Fusion production channel with decay to bottom quarks. A data sample comprising 2.2 fb$^-1$ of proton-proton collision at $\\sqrt{s}$ = 13 TeV collected during the 2015 running period has been analyzed. Production upper limits at 95\\% Confidence Level are derived for a Higgs boson mass of 125 GeV, as well as the fitted signal strength relative to the expectation for the standard model Higgs boson. Results are also combined with the ones obtained with Run1 sqrt(s) = 8 TeV data collected in 2012.

  4. Mutation Ant Colony Algorithm of Milk-Run Vehicle Routing Problem with Fastest Completion Time Based on Dynamic Optimization

    Directory of Open Access Journals (Sweden)

    Jianhua Ma

    2013-01-01

    Full Text Available The objective of vehicle routing problem is usually to minimize the total traveling distance or cost. But in practice, there are a lot of problems needed to minimize the fastest completion time. The milk-run vehicle routing problem (MRVRP is widely used in milk-run distribution. The mutation ACO is given to solve MRVRP with fastest completion time in this paper. The milk-run VRP with fastest completion time is introduced first, and then the customer division method based on dynamic optimization and split algorithm is given to transform this problem into finding the optimal customer order. At last the mutation ACO is given and the numerical examples verify the effectiveness of the algorithm.

  5. Static stretching alters neuromuscular function and pacing strategy, but not performance during a 3-km running time-trial.

    Directory of Open Access Journals (Sweden)

    Mayara V Damasceno

    Full Text Available Previous studies report that static stretching (SS impairs running economy. Assuming that pacing strategy relies on rate of energy use, this study aimed to determine whether SS would modify pacing strategy and performance in a 3-km running time-trial.Eleven recreational distance runners performed a a constant-speed running test without previous SS and a maximal incremental treadmill test; b an anthropometric assessment and a constant-speed running test with previous SS; c a 3-km time-trial familiarization on an outdoor 400-m track; d and e two 3-km time-trials, one with SS (experimental situation and another without (control situation previous static stretching. The order of the sessions d and e were randomized in a counterbalanced fashion. Sit-and-reach and drop jump tests were performed before the 3-km running time-trial in the control situation and before and after stretching exercises in the SS. Running economy, stride parameters, and electromyographic activity (EMG of vastus medialis (VM, biceps femoris (BF and gastrocnemius medialis (GA were measured during the constant-speed tests.The overall running time did not change with condition (SS 11:35±00:31 s; control 11:28±00:41 s, p = 0.304, but the first 100 m was completed at a significantly lower velocity after SS. Surprisingly, SS did not modify the running economy, but the iEMG for the BF (+22.6%, p = 0.031, stride duration (+2.1%, p = 0.053 and range of motion (+11.1%, p = 0.0001 were significantly modified. Drop jump height decreased following SS (-9.2%, p = 0.001.Static stretch impaired neuromuscular function, resulting in a slow start during a 3-km running time-trial, thus demonstrating the fundamental role of the neuromuscular system in the self-selected speed during the initial phase of the race.

  6. Model-Checking Real-Time Control Programs

    DEFF Research Database (Denmark)

    Iversen, T. K.; Kristoffersen, K. J.; Larsen, Kim Guldstrand

    2000-01-01

    In this paper, we present a method for automatic verification of real-time control programs running on LEGO(R) RCX(TM) bricks using the verification tool UPPALL. The control programs, consisting of a number of tasks running concurrently, are automatically translated into the mixed automata model...

  7. Deriving dynamic marketing effectiveness from econometric time series models

    NARCIS (Netherlands)

    C. Horváth (Csilla); Ph.H.B.F. Franses (Philip Hans)

    2003-01-01

    textabstractTo understand the relevance of marketing efforts, it has become standard practice to estimate the long-run and short-run effects of the marketing-mix, using, say, weekly scanner data. A common vehicle for this purpose is an econometric time series model. Issues that are addressed in the

  8. Strong Lensing Probabilities in a Cosmological Model with a Running Primordial Power Spectrum

    CERN Document Server

    Zhang, T J; Yang, Z L; He, X T; Zhang, Tong-Jie; Chen, Da-Ming; Yang, Zhi-Liang; He, Xiang-Tao

    2004-01-01

    The combination of the first-year Wilkinson Microwave Anisotropy Probe (WMAP) data with other finer scale cosmic microwave background (CMB) experiments (CBI and ACBAR) and two structure formation measurements (2dFGRS and Lyman $\\alpha$ forest) suggest a $\\Lambda$CDM cosmological model with a running spectral power index of primordial density fluctuations. Motivated by this new result on the index of primordial power spectrum, we present the first study on the predicted lensing probabilities of image separation in a spatially flat $\\Lambda$CDM model with a running spectral index (RSI-$\\Lambda$CDM model). It is shown that the RSI-$\\Lambda$CDM model suppress the predicted lensing probabilities on small splitting angles of less than about 4$^{''}$ compared with that of standard power-law $\\Lambda$CDM (PL-$\\Lambda$CDM) model.

  9. Running the running

    CERN Document Server

    Cabass, Giovanni; Melchiorri, Alessandro; Pajer, Enrico; Silk, Joseph

    2016-01-01

    We use the recent observations of Cosmic Microwave Background temperature and polarization anisotropies provided by the Planck satellite experiment to place constraints on the running $\\alpha_\\mathrm{s} = \\mathrm{d}n_{\\mathrm{s}} / \\mathrm{d}\\log k$ and the running of the running $\\beta_{\\mathrm{s}} = \\mathrm{d}\\alpha_{\\mathrm{s}} / \\mathrm{d}\\log k$ of the spectral index $n_{\\mathrm{s}}$ of primordial scalar fluctuations. We find $\\alpha_\\mathrm{s}=0.011\\pm0.010$ and $\\beta_\\mathrm{s}=0.027\\pm0.013$ at $68\\%\\,\\mathrm{CL}$, suggesting the presence of a running of the running at the level of two standard deviations. We find no significant correlation between $\\beta_{\\mathrm{s}}$ and foregrounds parameters, with the exception of the point sources amplitude at $143\\,\\mathrm{GHz}$, $A^{PS}_{143}$, which shifts by half sigma when the running of the running is considered. We further study the cosmological implications of this anomaly by including in the analysis the lensing amplitude $A_L$, the curvature parameter ...

  10. The Run up Tsunami Modeling in Bengkulu using the Spatial Interpolation of Kriging Technique

    Directory of Open Access Journals (Sweden)

    Yulian Fauzi

    2014-12-01

    Full Text Available This research aims to design a tsunami hazard zone with the scenario of tsunami run-up height variation based on land use, slope and distance from the shoreline. The method used in this research is spatial modelling with GIS via Ordinary Kriging interpolation technique. Kriging interpolation method that is the best in this study is shown by Circular Kriging method with good semivariogram and RMSE values which are small compared to other RMSE kriging methods. The results shows that the area affected by the tsunami inundation run-up height, slope and land use. In the run-up to 30 meters, flooded areas are about 3,148.99 hectares or 20.7% of the total area of the city of Bengkulu.

  11. Simulating run-up on steep slopes with operational Boussinesq models; capabilities, spurious effects and instabilities

    Directory of Open Access Journals (Sweden)

    F. Løvholt

    2013-06-01

    Full Text Available Tsunamis induced by rock slides plunging into fjords constitute a severe threat to local coastal communities. The rock slide impact may give rise to highly non-linear waves in the near field, and because the wave lengths are relatively short, frequency dispersion comes into play. Fjord systems are rugged with steep slopes, and modeling non-linear dispersive waves in this environment with simultaneous run-up is demanding. We have run an operational Boussinesq-type TVD (total variation diminishing model using different run-up formulations. Two different tests are considered, inundation on steep slopes and propagation in a trapezoidal channel. In addition, a set of Lagrangian models serves as reference models. Demanding test cases with solitary waves with amplitudes ranging from 0.1 to 0.5 were applied, and slopes were ranging from 10 to 50°. Different run-up formulations yielded clearly different accuracy and stability, and only some provided similar accuracy as the reference models. The test cases revealed that the model was prone to instabilities for large non-linearity and fine resolution. Some of the instabilities were linked with false breaking during the first positive inundation, which was not observed for the reference models. None of the models were able to handle the bore forming during drawdown, however. The instabilities are linked to short-crested undulations on the grid scale, and appear on fine resolution during inundation. As a consequence, convergence was not always obtained. It is reason to believe that the instability may be a general problem for Boussinesq models in fjords.

  12. Statistical Emulation of Climate Model Projections Based on Precomputed GCM Runs*

    KAUST Repository

    Castruccio, Stefano

    2014-03-01

    The authors describe a new approach for emulating the output of a fully coupled climate model under arbitrary forcing scenarios that is based on a small set of precomputed runs from the model. Temperature and precipitation are expressed as simple functions of the past trajectory of atmospheric CO2 concentrations, and a statistical model is fit using a limited set of training runs. The approach is demonstrated to be a useful and computationally efficient alternative to pattern scaling and captures the nonlinear evolution of spatial patterns of climate anomalies inherent in transient climates. The approach does as well as pattern scaling in all circumstances and substantially better in many; it is not computationally demanding; and, once the statistical model is fit, it produces emulated climate output effectively instantaneously. It may therefore find wide application in climate impacts assessments and other policy analyses requiring rapid climate projections.

  13. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons?: the flush model.

    Science.gov (United States)

    Millet, Guillaume Y

    2011-06-01

    While the industrialized world adopts a largely sedentary lifestyle, ultra-marathon running races have become increasingly popular in the last few years in many countries. The ability to run long distances is also considered to have played a role in human evolution. This makes the issue of ultra-long distance physiology important. In the ability to run multiples of 10 km (up to 1000 km in one stage), fatigue resistance is critical. Fatigue is generally defined as strength loss (i.e. a decrease in maximal voluntary contraction [MVC]), which is known to be dependent on the type of exercise. Critical task variables include the intensity and duration of the activity, both of which are very specific to ultra-endurance sports. They also include the muscle groups involved and the type of muscle contraction, two variables that depend on the sport under consideration. The first part of this article focuses on the central and peripheral causes of the alterations to neuromuscular function that occur in ultra-marathon running. Neuromuscular function evaluation requires measurements of MVCs and maximal electrical/magnetic stimulations; these provide an insight into the factors in the CNS and the muscles implicated in fatigue. However, such measurements do not necessarily predict how muscle function may influence ultra-endurance running and whether this has an effect on speed regulation during a real competition (i.e. when pacing strategies are involved). In other words, the nature of the relationship between fatigue as measured using maximal contractions/stimulation and submaximal performance limitation/regulation is questionable. To investigate this issue, we are suggesting a holistic model in the second part of this article. This model can be applied to all endurance activities, but is specifically adapted to ultra-endurance running: the flush model. This model has the following four components: (i) the ball-cock (or buoy), which can be compared with the rate of perceived

  14. Effects of physician-based emergency medical service dispatch in severe traumatic brain injury on prehospital run time

    NARCIS (Netherlands)

    Franschman, G.; Verburg, N.; Brens-Heldens, V.; Andriessen, T. M. J. C.; Van der Naalt, J.; Peerdeman, S. M.; Hoogerwerf, N.; Greuters, S.; Schober, P.; Vos, P. E.; Christiaans, H. M. T.; Boer, C.; Valk, J.P.

    2012-01-01

    Introduction: Prehospital care by physician-based helicopter emergency medical services (P-HEMS) may prolong total prehospital run time. This has raised an issue of debate about the benefits of these services in traumatic brain injury (TBI). We therefore investigated the effects of P-HEMS dispatch o

  15. Effects of physician-based emergency medical service dispatch in severe traumatic brain injury on prehospital run time

    NARCIS (Netherlands)

    Franschman, G.; Verburg, N.; Brens-Heldens, V.; Andriessen, T.M.J.C.; Naalt, J. van der; Peerdeman, S.M.; Valk, J.P.M. van der; Hoogerwerf, N.; Greuters, S.; Schober, P.; Vos, P.E.; Christiaans, H.M.; Boer, C.

    2012-01-01

    INTRODUCTION: Prehospital care by physician-based helicopter emergency medical services (P-HEMS) may prolong total prehospital run time. This has raised an issue of debate about the benefits of these services in traumatic brain injury (TBI). We therefore investigated the effects of P-HEMS dispatch o

  16. Psy Toolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments

    Science.gov (United States)

    Stoet, Gijsbert

    2017-01-01

    This article reviews PsyToolkit, a free web-based service designed for setting up, running, and analyzing online questionnaires and reaction-time (RT) experiments. It comes with extensive documentation, videos, lessons, and libraries of free-to-use psychological scales and RT experiments. It provides an elaborate interactive environment to use (or…

  17. Run-Time Assertion Checking of Data- and Protocol-Oriented Properties of Java Programs: An Industrial Case Study

    NARCIS (Netherlands)

    Gouw, C.P.T. de; Boer, F.S. de; Johnsen, E.B.; Kohn, A.; Wong, P.Y.H.

    2014-01-01

    Run-time assertion checking is one of the useful techniques for detecting faults, and can be applied during any program execution context, including debugging, testing, and production. In general, however, it is limited to checking state-based properties. We introduce SAGA, a general framework that

  18. On the Interplay between the Semantics of Java's Finally Clauses and the JML Run-Time Checker

    NARCIS (Netherlands)

    Huisman, M.; Banerjee, A.

    2009-01-01

    This paper discusses how a subtle interaction between the semantics of Java and the implementation of the JML run-time checker can cause the latter to fail to report errors. This problem is due to the well-known capability of finally clauses to implicitly override exceptions. We give some simple ex

  19. Psy Toolkit: A Novel Web-Based Method for Running Online Questionnaires and Reaction-Time Experiments

    Science.gov (United States)

    Stoet, Gijsbert

    2017-01-01

    This article reviews PsyToolkit, a free web-based service designed for setting up, running, and analyzing online questionnaires and reaction-time (RT) experiments. It comes with extensive documentation, videos, lessons, and libraries of free-to-use psychological scales and RT experiments. It provides an elaborate interactive environment to use (or…

  20. Human and avian running on uneven ground: a model-based comparison

    Science.gov (United States)

    Birn-Jeffery, A. V.; Blum, Y.

    2016-01-01

    Birds and humans are successful bipedal runners, who have individually evolved bipedalism, but the extent of the similarities and differences of their bipedal locomotion is unknown. In turn, the anatomical differences of their locomotor systems complicate direct comparisons. However, a simplifying mechanical model, such as the conservative spring–mass model, can be used to describe both avian and human running and thus, provides a way to compare the locomotor strategies that birds and humans use when running on level and uneven ground. Although humans run with significantly steeper leg angles at touchdown and stiffer legs when compared with cursorial ground birds, swing-leg adaptations (leg angle and leg length kinematics) used by birds and humans while running appear similar across all types of uneven ground. Nevertheless, owing to morphological restrictions, the crouched avian leg has a greater range of leg angle and leg length adaptations when coping with drops and downward steps than the straight human leg. On the other hand, the straight human leg seems to use leg stiffness adaptation when coping with obstacles and upward steps unlike the crouched avian leg posture. PMID:27655670

  1. Status of the Inert Doublet Model of dark matter after Run-1 of the LHC

    CERN Document Server

    Goudelis, Andreas

    2015-01-01

    The Inert Doublet Model (IDM) is one of the simplest extensions of the Standard Model that can provide a viable dark matter (DM) candidate. Despite its simplicity, it predicts a versatile phenomenology both for cosmology and for the Large Hadron Collider. We briefly summarize the status of searches for IDM dark matter in direct DM detection experiments and the LHC, focusing on the impact of the latter on the model parameter space. In particular, we discuss the consequences of the Higgs boson discovery as well as those of searches for dileptons accompanied by missing transverse energy during the first LHC Run and comment on the prospects of probing some of the hardest to test regions of the IDM parameter space during the 13 TeV Run.

  2. The Reliability of Running Performance in a 5 km Time Trial on a Non-motorized Treadmill.

    Science.gov (United States)

    Stevens, C J; Hacene, J; Sculley, D V; Taylor, L; Callister, R; Dascombe, B

    2015-08-01

    The purpose of the study was to establish the reliability of performance and physiological responses during a self-paced 5 km running time trial on a non-motorized treadmill. 17 male runners (age: 32±13 years, height: 177±7 cm, body mass: 71±9 kg, sum of 7 skinfolds: 55±21 mm) performed familiarization then 2 separate maximal 5 km running time trials on a non-motorized treadmill. Physiological responses measured included heart rate, oxygen uptake, expired air volume, blood lactate concentration, tissue saturation index and integrated electromyography. Running time (1,522±163 s vs. 1,519±162 s for trials 1 and 2, respectively) demonstrated a low CV of 1.2% and high ICC of 0.99. All physiological variables had CVs of less than 4% and ICCs of >0.92, with the exception of blood lactate concentration (7.0±2 mmol·L(-1) vs. 6.5±1.5 mmol·L(-1) for trials 1 and 2, respectively; CV: 12%, ICC: 0.83) and the electromyography measures (CV: 8-27%, ICC: 0.71-0.91). The data demonstrate that performance time in a 5 km running time trial on a non-motorized treadmill is a highly reliable test. Most physiological responses measured across the 5 km run also demonstrated good reliability.

  3. Modeling dynamic effects of promotion on interpurchase times

    NARCIS (Netherlands)

    D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)

    2002-01-01

    textabstractIn this paper we put forward a duration model to analyze the dynamic effects of marketing-mix variables on interpurchase times. We extend the accelerated failure-time model with an autoregressive structure. An important feature of our model is that it allows for different long-run and

  4. Modeling dynamic effects of promotion on interpurchase times

    NARCIS (Netherlands)

    D. Fok (Dennis); R. Paap (Richard); Ph.H.B.F. Franses (Philip Hans)

    2002-01-01

    textabstractIn this paper we put forward a duration model to analyze the dynamic effects of marketing-mix variables on interpurchase times. We extend the accelerated failure-time model with an autoregressive structure. An important feature of our model is that it allows for different long-run and

  5. Modelling effects of acid deposition and climate change on soil and run-off chemistry at Risdalsheia, Norway

    Directory of Open Access Journals (Sweden)

    J. P. Mol-Dijkstra

    2001-01-01

    Full Text Available Elevated carbon dioxide levels, caused by anthropogenic emissions of carbon dioxide to the atmosphere, and higher temperature may lead to increased plant growth and uptake of nitrogen, but increased temperature may lead to increased nitrogen mineralisation causing enhanced nitrogen leaching. The overall result of both counteracting effects is largely unknown. To gain insight into the long-term effects, the geochemical model SMART2 was applied using data from the catchment-scale experiments of the RAIN and CLIMEX projects, conducted on boreal forest ecosystems at Risdalsheia, southern Norway. These unique experiments at the ecosystem scale provide information on the short-term effects and interactions of nitrogen deposition and increased temperature and carbon dioxide on carbon and nitrogen cycling and especially the run-off chemistry. To predict changes in soil processes in response to climate change, the model was extended by including the temperature effect on mineralisation, nitrification, denitrification, aluminium dissolution and mineral weathering. The extended model was tested on the two manipulated catchments at Risdalsheia and long-term effects were evaluated by performing long-time runs. The effects of climate change treatment, which resulted in increased nitrogen fluxes at both catchments, were slightly overestimated by SMART2. The temperature dependency of mineralisation was simulated adequately but the temperature effect on nitrification was slightly overestimated. Monitored changes in base cation concentrations and pH were quite well simulated with SMART2. The long-term simulations indicate that the increase in nitrogen run-off is only a temporary effect; in the long-term, no effect on total nitrogen leaching is predicted. At higher deposition levels the temporary increase in nitrogen leaching lasts longer than at low deposition. Contrary to nitrogen leaching, temperature increase leads to a permanent decrease in aluminium

  6. Repo Runs

    NARCIS (Netherlands)

    Martin, A.; Skeie, D.; von Thadden, E.L.

    2010-01-01

    This paper develops a model of financial institutions that borrow short- term and invest into long-term marketable assets. Because these financial intermediaries perform maturity transformation, they are subject to runs. We endogenize the profits of the intermediary and derive distinct liquidity and

  7. Gap timing and the spectral timing model.

    Science.gov (United States)

    Hopson, J W

    1999-04-01

    A hypothesized mechanism underlying gap timing was implemented in the Spectral Timing Model [Grossberg, S., Schmajuk, N., 1989. Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Netw. 2, 79-102] , a neural network timing model. The activation of the network nodes was made to decay in the absence of the timed signal, causing the model to shift its peak response time in a fashion similar to that shown in animal subjects. The model was then able to accurately simulate a parametric study of gap timing [Cabeza de Vaca, S., Brown, B., Hemmes, N., 1994. Internal clock and memory processes in aminal timing. J. Exp. Psychol.: Anim. Behav. Process. 20 (2), 184-198]. The addition of a memory decay process appears to produce the correct pattern of results in both Scalar Expectancy Theory models and in the Spectral Timing Model, and the fact that the same process should be effective in two such disparate models argues strongly that process reflects a true aspect of animal cognition.

  8. Determinants Of Savings Behavior In Pakistan: Long Run - Short Run Association And Causality

    OpenAIRE

    Ahmad Fawad

    2015-01-01

    The existing studies on private savings have mostly investigated the long run and short association of different variables with private savings, whereas no known study has investigated both long run and short run causality of variables against private savings by using data of Pakistan. The current study used time series data of Pakistan over the period of 1972 to 2012 and employed long run cointegration test, first normalized equation for long run association, vector error correction model fo...

  9. Method of Running Sines: Modeling Variability in Long-Period Variables

    CERN Document Server

    Andronov, Ivan L

    2013-01-01

    We review one of complementary methods for time series analysis - the method of "Running Sines". "Crash tests" of the method include signals with a large period variation and with a large trend. The method is most effective for "nearly periodic" signals, which exhibit "wavy shape" with a "cycle length" varying within few dozen per cent (i.e. oscillations of low coherence). This is a typical case for brightness variations of long-period pulsating variables and resembles QPO (Quasi-Periodic Oscillations) and TPO (Transient Periodic Oscillations) in interacting binary stars - cataclysmic variables, symbiotic variables, low-mass X-Ray binaries etc. General theory of "running approximations" was described by Andronov (1997A &AS..125..207A), one of realizations of which is the method of "running sines". The method is related to Morlet-type wavelet analysis improved for irregularly spaced data (Andronov, 1998KFNT...14..490A, 1999sss..conf...57A), as well as to a classical "running mean" (="moving average"). The ...

  10. Modeling the milling tool wear by using an evolutionary SVM-based model from milling runs experimental data

    Science.gov (United States)

    Nieto, Paulino José García; García-Gonzalo, Esperanza; Vilán, José Antonio Vilán; Robleda, Abraham Segade

    2015-12-01

    The main aim of this research work is to build a new practical hybrid regression model to predict the milling tool wear in a regular cut as well as entry cut and exit cut of a milling tool. The model was based on Particle Swarm Optimization (PSO) in combination with support vector machines (SVMs). This optimization mechanism involved kernel parameter setting in the SVM training procedure, which significantly influences the regression accuracy. Bearing this in mind, a PSO-SVM-based model, which is based on the statistical learning theory, was successfully used here to predict the milling tool flank wear (output variable) as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. To accomplish the objective of this study, the experimental dataset represents experiments from runs on a milling machine under various operating conditions. In this way, data sampled by three different types of sensors (acoustic emission sensor, vibration sensor and current sensor) were acquired at several positions. A second aim is to determine the factors with the greatest bearing on the milling tool flank wear with a view to proposing milling machine's improvements. Firstly, this hybrid PSO-SVM-based regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the flank wear (output variable) and input variables (time, depth of cut, feed, etc.). Indeed, regression with optimal hyperparameters was performed and a determination coefficient of 0.95 was obtained. The agreement of this model with experimental data confirmed its good performance. Secondly, the main advantages of this PSO-SVM-based model are its capacity to produce a simple, easy-to-interpret model, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, the main conclusions of this study are exposed.

  11. Accuracy of PARTwear Inertial Sensor and Optojump Optical Measurement System for Measuring Ground Contact Time During Running.

    Science.gov (United States)

    Ammann, Rahel; Taube, Wolfgang; Wyss, Thomas

    2016-07-01

    Ammann, R, Taube, W, and Wyss, T. Accuracy of PARTwear inertial sensor and Optojump optical measurement system for measuring ground contact time during running. J Strength Cond Res 30(7): 2057-2063, 2016-The aim of this study was to validate the detection of ground contact time (GCT) during running in 2 differently working systems: a small inertial measurement sensor, PARTwear (PW), worn on the shoe laces, and the optical measurement system, Optojump (OJ), placed on the track. Twelve well-trained subjects performed 12 runs each on an indoor track at speeds ranging from 3.0 to 9.0 m·s. GCT of one step per run (total 144) was simultaneously obtained by the PW, the OJ, and a high-speed video camera (HSC), whereby the latter served as reference system. The sampling rate was 1,000 Hz for all methods. Compared with the HSC, the PW and the OJ systems underestimated GCT by -1.3 ± 6.1% and -16.5 ± 6.7% (p-values ≤ 0.05), respectively. The intraclass correlation coefficients between PW and HSC and between OJ and HSC were 0.984 and 0.853 (p-values measurement systems.

  12. Running Away

    Science.gov (United States)

    ... Emergency Room? What Happens in the Operating Room? Running Away KidsHealth > For Kids > Running Away Print A ... life on the streets. continue The Reality of Running Away When you think about running away, you ...

  13. Effects of Yaw Error on Wind Turbine Running Characteristics Based on the Equivalent Wind Speed Model

    Directory of Open Access Journals (Sweden)

    Shuting Wan

    2015-06-01

    Full Text Available Natural wind is stochastic, being characterized by its speed and direction which change randomly and frequently. Because of the certain lag in control systems and the yaw body itself, wind turbines cannot be accurately aligned toward the wind direction when the wind speed and wind direction change frequently. Thus, wind turbines often suffer from a series of engineering issues during operation, including frequent yaw, vibration overruns and downtime. This paper aims to study the effects of yaw error on wind turbine running characteristics at different wind speeds and control stages by establishing a wind turbine model, yaw error model and the equivalent wind speed model that includes the wind shear and tower shadow effects. Formulas for the relevant effect coefficients Tc, Sc and Pc were derived. The simulation results indicate that the effects of the aerodynamic torque, rotor speed and power output due to yaw error at different running stages are different and that the effect rules for each coefficient are not identical when the yaw error varies. These results may provide theoretical support for optimizing the yaw control strategies for each stage to increase the running stability of wind turbines and the utilization rate of wind energy.

  14. Changes in spring-mass model parameters and energy cost during track running to exhaustion.

    Science.gov (United States)

    Slawinski, Jean; Heubert, Richard; Quievre, Jacques; Billat, Véronique; Hanon, Christine; Hannon, Christine

    2008-05-01

    The purpose of this study was to determine whether exhaustion modifies the stiffness characteristics, as defined in the spring-mass model, during track running. We also investigated whether stiffer runners are also the most economical. Nine well-trained runners performed an exhaustive exercise over 2000 meters on an indoor track. This exhaustive exercise was preceded by a warm-up and was followed by an active recovery. Throughout all the exercises, the energy cost of running (Cr) was measured. Vertical and leg stiffness was measured with a force plate (Kvert and Kleg, respectively) integrated into the track. The results show that Cr increases significantly after the 2000-meter run (0.192 +/- 0.006 to 0.217 +/- 0.013 mL x kg(-1) x m(-1)). However, Kvert and Kleg remained constant (32.52 +/- 6.42 to 32.59 +/- 5.48 and 11.12 +/- 2.76 to 11.14 +/- 2.48 kN.m, respectively). An inverse correlation was observed between Cr and Kleg, but only during the 2000-meter exercise (r = -0.67; P < or = 0.05). During the warm-up or the recovery, Cr and Kleg, were not correlated (r = 0.354; P = 0.82 and r = 0.21; P = 0.59, respectively). On track, exhaustion induced by a 2000-meter run has no effect on Kleg or Kvert. The inverse correlation was only observed between Cr and Kleg during the 2000-meter run and not before or after the exercise, suggesting that the stiffness of the runner may be not associated with the Cr.

  15. Impacts of the driver's bounded rationality on the traffic running cost under the car-following model

    Science.gov (United States)

    Tang, Tie-Qiao; Luo, Xiao-Feng; Liu, Kai

    2016-09-01

    The driver's bounded rationality has significant influences on the micro driving behavior and researchers proposed some traffic flow models with the driver's bounded rationality. However, little effort has been made to explore the effects of the driver's bounded rationality on the trip cost. In this paper, we use our recently proposed car-following model to study the effects of the driver's bounded rationality on his running cost and the system's total cost under three traffic running costs. The numerical results show that considering the driver's bounded rationality will enhance his each running cost and the system's total cost under the three traffic running costs.

  16. AschFlow - A dynamic landslide run-out model for medium scale hazard analysis.

    Science.gov (United States)

    Luna, Byron Quan; Blahut, Jan; van Asch, Theo; van Westen, Cees; Kappes, Melanie

    2015-04-01

    Landslides and debris flow hazard assessments require a scale-dependent analysis in order to mitigate damage and other negative consequences at the respective scales of occurrence. Medium or large scale landslide run-out modelling for many possible landslide initiation areas has been a cumbersome task in the past. This arises from the difficulty to precisely define the location and volume of the released mass and from the inability of the run-out models to compute the displacement with a large amount of individual initiation areas (computational exhaustive). Most of the existing physically based run-out models have complications in handling such situations and therefore empirical methods have been used as a practical mean to predict landslides mobility at a medium scale (1:10,000 to 1:50,000). In this context, a simple medium scale numerical model for rapid mass movements in urban and mountainous areas was developed. The deterministic nature of the approach makes it possible to calculate the velocity, height and increase in mass by erosion, resulting in the estimation of various forms of impacts exerted by debris flows at the medium scale The established and implemented model ("AschFlow") is a 2-D one-phase continuum model that simulates, the entrainment, spreading and deposition process of a landslide or debris flow at a medium scale. The flow is thus treated as a single phase material, whose behavior is controlled by rheology (e.g. Voellmy or Bingham). The developed regional model "AschFlow" was applied and evaluated in well documented areas with known past debris flow events.

  17. Quantitative assessment of changes in landslide risk using a regional scale run-out model

    Science.gov (United States)

    Hussin, Haydar; Chen, Lixia; Ciurean, Roxana; van Westen, Cees; Reichenbach, Paola; Sterlacchini, Simone

    2015-04-01

    The risk of landslide hazard continuously changes in time and space and is rarely a static or constant phenomena in an affected area. However one of the main challenges of quantitatively assessing changes in landslide risk is the availability of multi-temporal data for the different components of risk. Furthermore, a truly "quantitative" landslide risk analysis requires the modeling of the landslide intensity (e.g. flow depth, velocities or impact pressures) affecting the elements at risk. Such a quantitative approach is often lacking in medium to regional scale studies in the scientific literature or is left out altogether. In this research we modelled the temporal and spatial changes of debris flow risk in a narrow alpine valley in the North Eastern Italian Alps. The debris flow inventory from 1996 to 2011 and multi-temporal digital elevation models (DEMs) were used to assess the susceptibility of debris flow triggering areas and to simulate debris flow run-out using the Flow-R regional scale model. In order to determine debris flow intensities, we used a linear relationship that was found between back calibrated physically based Flo-2D simulations (local scale models of five debris flows from 2003) and the probability values of the Flow-R software. This gave us the possibility to assign flow depth to a total of 10 separate classes on a regional scale. Debris flow vulnerability curves from the literature and one curve specifically for our case study area were used to determine the damage for different material and building types associated with the elements at risk. The building values were obtained from the Italian Revenue Agency (Agenzia delle Entrate) and were classified per cadastral zone according to the Real Estate Observatory data (Osservatorio del Mercato Immobiliare, Agenzia Entrate - OMI). The minimum and maximum market value for each building was obtained by multiplying the corresponding land-use value (€/msq) with building area and number of floors

  18. Exploiting CMS data popularity to model the evolution of data management for Run-2 and beyond

    CERN Document Server

    Bonacorsi, D; Giordano, D; Girone, M; Neri, M; Magini, N; Kuznetsov, V; Wildish, T

    2015-01-01

    During the LHC Run-1 data taking, all experiments collected large data volumes from proton-proton and heavy-ion collisions. The collisions data, together with massive volumes of simulated data, were replicated in multiple copies, transferred among various Tier levels, transformed/slimmed in format/content. These data were then accessed (both locally and remotely) by large groups of distributed analysis communities exploiting the WorldWide LHC Computing Grid infrastructure and services. While efficient data placement strategies - together with optimal data redistribution and deletions on demand - have become the core of static versus dynamic data management projects, little effort has so far been invested in understanding the detailed data-access patterns which surfaced in Run-1. These patterns, if understood, can be used as input to simulation of computing models at the LHC, to optimise existing systems by tuning their behaviour, and to explore next-generation CPU/storage/network co-scheduling solutions. This...

  19. Running climate model on a commercial cloud computing environment: A case study using Community Earth System Model (CESM) on Amazon AWS

    Science.gov (United States)

    Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock

    2017-01-01

    The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.

  20. Kinetic study of run-away burn in ICF capsule using a quasi-1D model

    Science.gov (United States)

    Huang, Chengkun; Molvig, K.; Albright, B. J.; Dodd, E. S.; Hoffman, N. M.; Vold, E. L.; Kagan, G.

    2016-10-01

    The effect of reduced fusion reactivity resulting from the loss of fuel ions in the Gamow peak in the ignition, run-away burn and disassembly stages of an inertial confinement fusion D-T capsule is investigated with a quasi-1D hybrid model that includes kinetic ions, fluid electrons and Planckian radiation photons. The fuel ion loss through the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model developed in Molvig et al.. The tail refilling and relaxation of the fuel ion distribution are evolved with a nonlinear Fokker-Planck solver. The Krokhin & Rozanov model is used for the finite alpha range beyond the fuel region, while alpha heating to the fuel ions and the fluid electrons is modeled kinetically. For an energetic pusher (40kJ), the simulation shows that the reduced fusion reactivity can lead to substantially lower ion temperature during run-away burn, while the final yield decreases more modestly. Possible improvements to the present model, including the non-Planckian radiation emission and alpha-driven fuel disassembly, are discussed. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Work supported by the ASC TBI project at LANL.

  1. Running Exercise Alleviates Pain and Promotes Cell Proliferation in a Rat Model of Intervertebral Disc Degeneration

    Directory of Open Access Journals (Sweden)

    Shuo Luan

    2015-01-01

    Full Text Available Chronic low back pain accompanied by intervertebral disk degeneration is a common musculoskeletal disorder. Physical exercise, which is clinically recommended by international guidelines, has proven to be effective for degenerative disc disease (DDD patients. However, the mechanism underlying the analgesic effects of physical exercise on DDD remains largely unclear. The results of the present study showed that mechanical withdrawal thresholds of bilateral hindpaw were significantly decreased beginning on day three after intradiscal complete Freund’s adjuvant (CFA injection and daily running exercise remarkably reduced allodynia in the CFA exercise group beginning at day 28 compared to the spontaneous recovery group (controls. The hindpaw withdrawal thresholds of the exercise group returned nearly to baseline at the end of experiment, but severe pain persisted in the control group. Histological examinations performed on day 70 revealed that running exercise restored the degenerative discs and increased the cell densities of the annulus fibrosus (AF and nucleus pulposus (NP. Furthermore, immunofluorescence labeling revealed significantly higher numbers of 5-bromo-2-deoxyuridine (BrdU-positive cells in the exercise group on days 28, 42, 56 and 70, which indicated more rapid proliferation compared to the control at the corresponding time points. Taken together, these results suggest that running exercise might alleviate the mechanical allodynia induced by intradiscal CFA injection via disc repair and cell proliferation, which provides new evidence for future clinical use.

  2. Large Scale Model Test Investigation on Wave Run-Up in Irregular Waves at Slender Piles

    DEFF Research Database (Denmark)

    Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke

    2013-01-01

    from high speed video recordings. Based on the measured run-up heights different types of prediction formulae for run-up in irregular waves were evaluated. In conclusion scale effects on run-up levels seems small except for differences in spray. However, run-up of individual waves is difficult...

  3. Influential factors of red-light running at signalized intersection and prediction using a rare events logistic regression model.

    Science.gov (United States)

    Ren, Yilong; Wang, Yunpeng; Wu, Xinkai; Yu, Guizhen; Ding, Chuan

    2016-10-01

    Red light running (RLR) has become a major safety concern at signalized intersection. To prevent RLR related crashes, it is critical to identify the factors that significantly impact the drivers' behaviors of RLR, and to predict potential RLR in real time. In this research, 9-month's RLR events extracted from high-resolution traffic data collected by loop detectors from three signalized intersections were applied to identify the factors that significantly affect RLR behaviors. The data analysis indicated that occupancy time, time gap, used yellow time, time left to yellow start, whether the preceding vehicle runs through the intersection during yellow, and whether there is a vehicle passing through the intersection on the adjacent lane were significantly factors for RLR behaviors. Furthermore, due to the rare events nature of RLR, a modified rare events logistic regression model was developed for RLR prediction. The rare events logistic regression method has been applied in many fields for rare events studies and shows impressive performance, but so far none of previous research has applied this method to study RLR. The results showed that the rare events logistic regression model performed significantly better than the standard logistic regression model. More importantly, the proposed RLR prediction method is purely based on loop detector data collected from a single advance loop detector located 400 feet away from stop-bar. This brings great potential for future field applications of the proposed method since loops have been widely implemented in many intersections and can collect data in real time. This research is expected to contribute to the improvement of intersection safety significantly.

  4. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain tr

  5. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain

  6. Modelling urban travel times

    NARCIS (Netherlands)

    Zheng, F.

    2011-01-01

    Urban travel times are intrinsically uncertain due to a lot of stochastic characteristics of traffic, especially at signalized intersections. A single travel time does not have much meaning and is not informative to drivers or traffic managers. The range of travel times is large such that certain tr

  7. Modeling and simulation of Cobot based on double over-running clutches

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-hong; ZHANG Li-xun

    2008-01-01

    In order to analyze characteristics of Cobot cooperation with a human in a shared workspacce, the model of a non-holonormic constraint joint mechanism and its control model were constructed based on double o-ver-running clutches. The simulation analysis was carried out and it validated passive and constraint features of the joint mechanism. In terms of Cobot components, the control model of Cobot following a desired trajectory was built up. The simulation studies illustrate that the Cobot can track a desired trajectory and possess passive and constraint features; a human supplies operation force that makes Cobot move, and a computer system con-trois its motion trajectory. So it can meet the requirements of Cobot collaboration with an operator. The Cobot model can be used in applications of material moving, parts assembly and some situations requiring man-ma-chine cooperation and so on.

  8. Hydrologic and water-quality characterization and modeling of the Chenoweth Run basin, Jefferson County, Kentucky

    Science.gov (United States)

    Martin, Gary R.; Zarriello, Phillip J.; Shipp, Allison A.

    2001-01-01

    Rainfall, streamflow, and water-quality data collected in the Chenoweth Run Basin during February 1996?January 1998, in combination with the available historical sampling data, were used to characterize hydrologic conditions and to develop and calibrate a Hydrological Simulation Program?Fortran (HSPF) model for continuous simulation of rainfall, streamflow, suspended-sediment, and total-orthophosphate (TPO4) transport relations. Study results provide an improved understanding of basin hydrology and a hydrologic-modeling framework with analytical tools for use in comprehensive waterresource planning and management. Chenoweth Run Basin, encompassing 16.5 mi2 in suburban eastern Jefferson County, Kentucky, contains expanding urban development, particularly in the upper third of the basin. Historical water-quality problems have interfered with designated aquatic-life and recreation uses in the stream main channel (approximately 9 mi in length) and have been attributed to organic enrichment, nutrients, metals, and pathogens in urban runoff and wastewater inflows. Hydrologic conditions in Jefferson County are highly varied. In the Chenoweth Run Basin, as in much of the eastern third of the county, relief is moderately sloping to steep. Also, internal drainage in pervious areas is impeded by the shallow, fine-textured subsoils that contain abundant silts and clays. Thus, much of the precipitation here tends to move rapidly as overland flow and (or) shallow subsurface flow (interflow) to the stream channels. Data were collected at two streamflowgaging stations, one rain gage, and four waterquality- sampling sites in the basin. Precipitation, streamflow, and, consequently, constituent loads were above normal during the data-collection period of this study. Nonpoint sources contributed the largest portion of the sediment loads. However, the three wastewatertreatment plants (WWTP?s) were the source of the majority of estimated total phosphorus (TP) and TPO4 transport

  9. Introduction to Time Series Modeling

    CERN Document Server

    Kitagawa, Genshiro

    2010-01-01

    In time series modeling, the behavior of a certain phenomenon is expressed in relation to the past values of itself and other covariates. Since many important phenomena in statistical analysis are actually time series and the identification of conditional distribution of the phenomenon is an essential part of the statistical modeling, it is very important and useful to learn fundamental methods of time series modeling. Illustrating how to build models for time series using basic methods, "Introduction to Time Series Modeling" covers numerous time series models and the various tools f

  10. Up and running with AutoCAD 2014 2D and 3D drawing and modeling

    CERN Document Server

    Gindis, Elliot

    2013-01-01

    Get ""Up and Running"" with AutoCAD using Gindis's combination of step-by-step instruction, examples, and insightful explanations. The emphasis from the beginning is on core concepts and practical application of AutoCAD in architecture, engineering and design. Equally useful in instructor-led classroom training, self-study, or as a professional reference, the book is written with the user in mind by a long-time AutoCAD professional and instructor based on what works in the industry and the classroom. Strips away complexities, both real and perceived, and reduces AutoCAD t

  11. Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC

    CERN Document Server

    Belanger, G; Goudelis, A; Herrmann, B; Kraml, S; Sengupta, D

    2015-01-01

    Searches in final states with two leptons plus missing transverse energy, targeting supersymmetric particles or invisible decays of the Higgs boson, were performed during Run 1 of the LHC. Recasting the results of these analyses in the context of the Inert Doublet Model (IDM) using MadAnalysis 5, we show that they provide constraints on inert scalars that significantly extend previous limits from LEP. Moreover, these LHC constraints allow to test the IDM in the limit of very small Higgs-inert scalar coupling, where the constraints from direct detection of dark matter and the invisible Higgs width vanish.

  12. Comparison of a priori calibration models for respiratory inductance plethysmography during running.

    Science.gov (United States)

    Leutheuser, Heike; Heyde, Christian; Gollhofer, Albert; Eskofier, Bjoern M

    2014-01-01

    Respiratory inductive plethysmography (RIP) has been introduced as an alternative for measuring ventilation by means of body surface displacement (diameter changes in rib cage and abdomen). Using a posteriori calibration, it has been shown that RIP may provide accurate measurements for ventilatory tidal volume under exercise conditions. Methods for a priori calibration would facilitate the application of RIP. Currently, to the best knowledge of the authors, none of the existing ambulant procedures for RIP calibration can be used a priori for valid subsequent measurements of ventilatory volume under exercise conditions. The purpose of this study is to develop and validate a priori calibration algorithms for ambulant application of RIP data recorded in running exercise. We calculated Volume Motion Coefficients (VMCs) using seven different models on resting data and compared the root mean squared error (RMSE) of each model applied on running data. Least squares approximation (LSQ) without offset of a two-degree-of-freedom model achieved the lowest RMSE value. In this work, we showed that a priori calibration of RIP exercise data is possible using VMCs calculated from 5 min resting phase where RIP and flowmeter measurements were performed simultaneously. The results demonstrate that RIP has the potential for usage in ambulant applications.

  13. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2013-01-01

    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  14. Reducing the worst case running times of a family of RNA and CFG problems, using Valiant's approach

    Directory of Open Access Journals (Sweden)

    Ziv-Ukelson Michal

    2011-08-01

    Full Text Available Abstract Background RNA secondary structure prediction is a mainstream bioinformatic domain, and is key to computational analysis of functional RNA. In more than 30 years, much research has been devoted to defining different variants of RNA structure prediction problems, and to developing techniques for improving prediction quality. Nevertheless, most of the algorithms in this field follow a similar dynamic programming approach as that presented by Nussinov and Jacobson in the late 70's, which typically yields cubic worst case running time algorithms. Recently, some algorithmic approaches were applied to improve the complexity of these algorithms, motivated by new discoveries in the RNA domain and by the need to efficiently analyze the increasing amount of accumulated genome-wide data. Results We study Valiant's classical algorithm for Context Free Grammar recognition in sub-cubic time, and extract features that are common to problems on which Valiant's approach can be applied. Based on this, we describe several problem templates, and formulate generic algorithms that use Valiant's technique and can be applied to all problems which abide by these templates, including many problems within the world of RNA Secondary Structures and Context Free Grammars. Conclusions The algorithms presented in this paper improve the theoretical asymptotic worst case running time bounds for a large family of important problems. It is also possible that the suggested techniques could be applied to yield a practical speedup for these problems. For some of the problems (such as computing the RNA partition function and base-pair binding probabilities, the presented techniques are the only ones which are currently known for reducing the asymptotic running time bounds of the standard algorithms.

  15. Population growth and economic development in the very long run: a simulation model of three revolutions.

    Science.gov (United States)

    Steinmann, G; Komlos, J

    1988-08-01

    The authors propose an economic model capable of simulating the 4 main historical stages of civilization: hunting, agricultural, industrial, and postindustrial. An output-maximizing society to respond to changes in factor endowments by switching technologies. Changes in factor proportions arise through population growth and capital accumulation. A slow rate of exogenous technical process is assumed. The model synthesizes Malthusian and Boserupian notions of the effect of population growth on per capita output. Initially the capital-diluting effect of population growth dominates. As population density increases, however, and a threshold is reached, the Boserupian effect becomes crucial, and a technological revolution occurs. The cycle is thereafter repeated. After the second economic revolution, however, the Malthusian constraint dissolves permanently, as population growth can continue without being constrained by diminishing returns to labor. By synthesizing Malthusian and Boserupian notions, the model is able to capture the salient features of economic development in the very long run.

  16. Long Run Estimations for the Volatility of Time Series in the Brazilian Financial Market

    Directory of Open Access Journals (Sweden)

    Alex Sandro Monteiro de Moraes

    2014-03-01

    Full Text Available The models of the GARCH family, normally used for the estimates of volatility for longer periods, keep unchanged the relative weights assigned to the observations both old and new, regardless of the volatility´s forecasted horizon. The purpose of this article is to verify if the increase in relative weights assigned to the earlier observations due to the increase of the forecast horizon results in better estimates of volatility. Through the use of seven forecasting models of volatility and return series of financial markets assets, the estimates obtained in the sample (in-sample were compared with observations outside the sample (out-of-sample. Based on this comparison, it was found that the best estimates of expected volatility were obtained by the modified EGARCH model and the ARLS model. We conclude that the use of traditional forecasting models of volatility, which keep unchanged relative weights assigned to both old and new observations, was inappropriate.

  17. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics.

    Science.gov (United States)

    Barnhoorn, Jonathan S; Haasnoot, Erwin; Bocanegra, Bruno R; van Steenbergen, Henk

    2015-12-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this article, we introduce the Qualtrics Reaction Time Engine (QRTEngine), an open-source JavaScript engine that can be embedded in the online survey development environment Qualtrics. The QRTEngine can be used to easily develop browser-based online reaction time experiments with accurate timing within current browser capabilities, and it requires only minimal programming skills. After introducing the QRTEngine, we briefly discuss how to create and distribute a Stroop task. Next, we describe a study in which we investigated the timing accuracy of the engine under different processor loads using external chronometry. Finally, we show that the QRTEngine can be used to reproduce classic behavioral effects in three reaction time paradigms: a Stroop task, an attentional blink task, and a masked-priming task. These findings demonstrate that QRTEngine can be used as a tool for conducting online behavioral research even when this requires accurate stimulus presentation times.

  18. QRTEngine: An easy solution for running online reaction time experiments using Qualtrics

    NARCIS (Netherlands)

    Barnhoorn, Jonathan Sebastiaan; Haasnoot, Erwin; Bocanegra, Bruno R.; van Steenbergen, Henk

    2015-01-01

    Performing online behavioral research is gaining increased popularity among researchers in psychological and cognitive science. However, the currently available methods for conducting online reaction time experiments are often complicated and typically require advanced technical skills. In this

  19. CRAUL: Compiler and Run-Time Integration for Adaptation under Load

    Directory of Open Access Journals (Sweden)

    Sotiris Ioannidis

    1999-01-01

    Full Text Available Clusters of workstations provide a cost‐effective, high performance parallel computing environment. These environments, however, are often shared by multiple users, or may consist of heterogeneous machines. As a result, parallel applications executing in these environments must operate despite unequal computational resources. For maximum performance, applications should automatically adapt execution to maximize use of the available resources. Ideally, this adaptation should be transparent to the application programmer. In this paper, we present CRAUL (Compiler and Run‐Time Integration for Adaptation Under Load, a system that dynamically balances computational load in a parallel application. Our target run‐time is software‐based distributed shared memory (SDSM. SDSM is a good target for parallelizing compilers since it reduces compile‐time complexity by providing data caching and other support for dynamic load balancing. CRAUL combines compile‐time support to identify data access patterns with a run‐time system that uses the access information to intelligently distribute the parallel workload in loop‐based programs. The distribution is chosen according to the relative power of the processors and so as to minimize SDSM overhead and maximize locality. We have evaluated the resulting load distribution in the presence of different types of load – computational, computational and memory intensive, and network load. CRAUL performs within 5–23% of ideal in the presence of load, and is able to improve on naive compiler‐based work distribution that does not take locality into account even in the absence of load.

  20. Discrete-time modelling of musical instruments

    Science.gov (United States)

    Välimäki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti

    2006-01-01

    This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.

  1. Discrete-time modelling of musical instruments

    Energy Technology Data Exchange (ETDEWEB)

    Vaelimaeki, Vesa; Pakarinen, Jyri; Erkut, Cumhur; Karjalainen, Matti [Laboratory of Acoustics and Audio Signal Processing, Helsinki University of Technology, PO Box 3000, FI-02015 TKK, Espoo (Finland)

    2006-01-01

    This article describes physical modelling techniques that can be used for simulating musical instruments. The methods are closely related to digital signal processing. They discretize the system with respect to time, because the aim is to run the simulation using a computer. The physics-based modelling methods can be classified as mass-spring, modal, wave digital, finite difference, digital waveguide and source-filter models. We present the basic theory and a discussion on possible extensions for each modelling technique. For some methods, a simple model example is chosen from the existing literature demonstrating a typical use of the method. For instance, in the case of the digital waveguide modelling technique a vibrating string model is discussed, and in the case of the wave digital filter technique we present a classical piano hammer model. We tackle some nonlinear and time-varying models and include new results on the digital waveguide modelling of a nonlinear string. Current trends and future directions in physical modelling of musical instruments are discussed.

  2. Simple, efficient allocation of modelling runs on heterogeneous clusters with MPI

    Science.gov (United States)

    Donato, David I.

    2017-01-01

    In scientific modelling and computation, the choice of an appropriate method for allocating tasks for parallel processing depends on the computational setting and on the nature of the computation. The allocation of independent but similar computational tasks, such as modelling runs or Monte Carlo trials, among the nodes of a heterogeneous computational cluster is a special case that has not been specifically evaluated previously. A simulation study shows that a method of on-demand (that is, worker-initiated) pulling from a bag of tasks in this case leads to reliably short makespans for computational jobs despite heterogeneity both within and between cluster nodes. A simple reference implementation in the C programming language with the Message Passing Interface (MPI) is provided.

  3. Effects of intermediate scales on renormalization group running of fermion observables in an SO(10) model

    CERN Document Server

    Meloni, Davide; Riad, Stella

    2014-01-01

    In the context of non-supersymmetric SO(10) models, we analyze the renormalization group equations for the fermions (including neutrinos) from the GUT energy scale down to the electroweak energy scale, explicitly taking into account the effects of an intermediate energy scale induced by a Pati--Salam gauge group. To determine the renormalization group running, we use a numerical minimization procedure based on a nested sampling algorithm that randomly generates the values of 19 model parameters at the GUT scale, evolves them, and finally constructs the values of the physical observables and compares them to the existing experimental data at the electroweak scale. We show that the evolved fermion masses and mixings present sizable deviations from the values obtained without including the effects of the intermediate scale.

  4. Effects of intermediate scales on renormalization group running of fermion observables in an SO(10) model

    Science.gov (United States)

    Meloni, Davide; Ohlsson, Tommy; Riad, Stella

    2014-12-01

    In the context of non-supersymmetric SO(10) models, we analyze the renormalization group equations for the fermions (including neutrinos) from the GUT energy scale down to the electroweak energy scale, explicitly taking into account the effects of an intermediate energy scale induced by a Pati-Salam gauge group. To determine the renormalization group running, we use a numerical minimization procedure based on a nested sampling algorithm that randomly generates the values of 19 model parameters at the GUT scale, evolves them, and finally constructs the values of the physical observables and compares them to the existing experimental data at the electroweak scale. We show that the evolved fermion masses and mixings present sizable deviations from the values obtained without including the effects of the intermediate scale.

  5. Minkowski space pion model inspired by lattice QCD running quark mass

    Science.gov (United States)

    Mello, Clayton S.; de Melo, J. P. B. C.; Frederico, T.

    2017-03-01

    The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe-Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward-Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.

  6. Analysis of timed and long-run objectives for Markov automata

    NARCIS (Netherlands)

    Guck, Dennis; Hatefi, Hassan; Hermanns, Holger; Katoen, Joost-Pieter; Timmer, Mark

    2014-01-01

    Markov automata (MAs) extend labelled transition systems with random delays and probabilistic branching. Action-labelled transitions are instantaneous and yield a distribution over states, whereas timed transitions impose a random delay governed by an exponential distribution. MAs are thus a nondete

  7. Mapping streaming applications on a reconfigurable MPSoC platform at run-time

    NARCIS (Netherlands)

    Hölzenspies, P.K.F.; Smit, G.J.M.; Kuper, J.

    2007-01-01

    In this paper we present a method for mapping streaming applications, with real-time requirements, onto a reconfigurable MPSoC. In this method, the performance of the hardware architecture (the reconfigurable Processing Element, the Network Interface and the Network-on-Chip) is integrated in the per

  8. Run-time Adaptable VLIW Processors: Resources, Performance, Power Consumption, and Reliability Trade-offs

    NARCIS (Netherlands)

    Anjam, F.

    2013-01-01

    In this dissertation, we propose to combine programmability with reconfigurability by implementing an adaptable programmable VLIW processor in a reconfigurable hardware. The approach allows applications to be developed at high-level (C language level), while at the same time, the processor organizat

  9. Run-time Adaptable VLIW Processors: Resources, Performance, Power Consumption, and Reliability Trade-offs

    NARCIS (Netherlands)

    Anjam, F.

    2013-01-01

    In this dissertation, we propose to combine programmability with reconfigurability by implementing an adaptable programmable VLIW processor in a reconfigurable hardware. The approach allows applications to be developed at high-level (C language level), while at the same time, the processor

  10. Classically conformal U(1 ) ' extended standard model, electroweak vacuum stability, and LHC Run-2 bounds

    Science.gov (United States)

    Das, Arindam; Oda, Satsuki; Okada, Nobuchika; Takahashi, Dai-suke

    2016-06-01

    We consider the minimal U(1 ) ' extension of the standard model (SM) with the classically conformal invariance, where an anomaly-free U(1 ) ' gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1 ) ' Higgs field. Since the classically conformal symmetry forbids all dimensional parameters in the model, the U(1 ) ' gauge symmetry is broken by the Coleman-Weinberg mechanism, generating the mass terms of the U(1 ) ' gauge boson (Z' boson) and the right-handed neutrinos. Through a mixing quartic coupling between the U(1 ) ' Higgs field and the SM Higgs doublet field, the radiative U(1 ) ' gauge symmetry breaking also triggers the breaking of the electroweak symmetry. In this model context, we first investigate the electroweak vacuum instability problem in the SM. Employing the renormalization group equations at the two-loop level and the central values for the world average masses of the top quark (mt=173.34 GeV ) and the Higgs boson (mh=125.09 GeV ), we perform parameter scans to identify the parameter region for resolving the electroweak vacuum instability problem. Next we interpret the recent ATLAS and CMS search limits at the LHC Run-2 for the sequential Z' boson to constrain the parameter region in our model. Combining the constraints from the electroweak vacuum stability and the LHC Run-2 results, we find a bound on the Z' boson mass as mZ'≳3.5 TeV . We also calculate self-energy corrections to the SM Higgs doublet field through the heavy states, the right-handed neutrinos and the Z' boson, and find the naturalness bound as mZ'≲7 TeV , in order to reproduce the right electroweak scale for the fine-tuning level better than 10%. The resultant mass range of 3.5 TeV ≲mZ'≲7 TeV will be explored at the LHC Run-2 in the near future.

  11. Modelling of flexi-coil springs with rubber-metal pads in a locomotive running gear

    Directory of Open Access Journals (Sweden)

    Michálek T.

    2015-06-01

    Full Text Available Nowadays, flexi-coil springs are commonly used in the secondary suspension stage of railway vehicles. Lateral stiffness of these springs is influenced by means of their design parameters (number of coils, height, mean diameter of coils, wire diameter etc. and it is often suitable to modify this stiffness in such way, that the suspension shows various lateral stiffness in different directions (i.e., longitudinally vs. laterally in the vehicle-related coordinate system. Therefore, these springs are often supplemented with some kind of rubber-metal pads. This paper deals with modelling of the flexi-coil springs supplemented with tilting rubber-metal tilting pads applied in running gear of an electric locomotive as well as with consequences of application of that solution of the secondary suspension from the point of view of the vehicle running performance. This analysis is performed by means of multi-body simulations and the description of lateral stiffness characteristics of the springs is based on results of experimental measurements of these characteristics performed in heavy laboratories of the Jan Perner Transport Faculty of the University of Pardubice.

  12. Design and Development of a Run-Time Monitor for Multi-Core Architectures in Cloud Computing

    Directory of Open Access Journals (Sweden)

    Junghoon Lee

    2011-03-01

    Full Text Available Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  13. Design and development of a run-time monitor for multi-core architectures in cloud computing.

    Science.gov (United States)

    Kang, Mikyung; Kang, Dong-In; Crago, Stephen P; Park, Gyung-Leen; Lee, Junghoon

    2011-01-01

    Cloud computing is a new information technology trend that moves computing and data away from desktops and portable PCs into large data centers. The basic principle of cloud computing is to deliver applications as services over the Internet as well as infrastructure. A cloud is a type of parallel and distributed system consisting of a collection of inter-connected and virtualized computers that are dynamically provisioned and presented as one or more unified computing resources. The large-scale distributed applications on a cloud require adaptive service-based software, which has the capability of monitoring system status changes, analyzing the monitored information, and adapting its service configuration while considering tradeoffs among multiple QoS features simultaneously. In this paper, we design and develop a Run-Time Monitor (RTM) which is a system software to monitor the application behavior at run-time, analyze the collected information, and optimize cloud computing resources for multi-core architectures. RTM monitors application software through library instrumentation as well as underlying hardware through a performance counter optimizing its computing configuration based on the analyzed data.

  14. Precise and accurate train run data: Approximation of actual arrival and departure times

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    trains have come to a halt nor when trains have set in motion again. Thus the measurements are inaccurate and do not express the experience of the passengers. A commonly accepted method to make this measurement possible is to construct a correction function to the track circuit based measurement....... This function estimates the inaccuracy or bias of the measurement and thus which offset is needed to approximate the actual arrival and departure times. The development of such a function is described in this paper. The development is based on international best practices combined with what is technically...

  15. Parasites, proteomes and systems: has Descartes' clock run out of time?

    Science.gov (United States)

    Wastling, J M; Armstrong, S D; Krishna, R; Xia, D

    2012-08-01

    Systems biology aims to integrate multiple biological data types such as genomics, transcriptomics and proteomics across different levels of structure and scale; it represents an emerging paradigm in the scientific process which challenges the reductionism that has dominated biomedical research for hundreds of years. Systems biology will nevertheless only be successful if the technologies on which it is based are able to deliver the required type and quality of data. In this review we discuss how well positioned is proteomics to deliver the data necessary to support meaningful systems modelling in parasite biology. We summarise the current state of identification proteomics in parasites, but argue that a new generation of quantitative proteomics data is now needed to underpin effective systems modelling. We discuss the challenges faced to acquire more complete knowledge of protein post-translational modifications, protein turnover and protein-protein interactions in parasites. Finally we highlight the central role of proteome-informatics in ensuring that proteomics data is readily accessible to the user-community and can be translated and integrated with other relevant data types.

  16. Changes in running economy following downhill running.

    Science.gov (United States)

    Chen, Trevor C; Nosaka, Kazunori; Tu, Jui-Hung

    2007-01-01

    In this study, we examined the time course of changes in running economy following a 30-min downhill (-15%) run at 70% peak aerobic power (VO2peak). Ten young men performed level running at 65, 75, and 85% VO2peak (5 min for each intensity) before, immediately after, and 1 - 5 days after the downhill run, at which times oxygen consumption (VO2), minute ventilation, the respiratory exchange ratio (RER), heart rate, ratings of perceived exertion (RPE), and blood lactate concentration were measured. Stride length, stride frequency, and range of motion of the ankle, knee, and hip joints during the level runs were analysed using high-speed (120-Hz) video images. Downhill running induced reductions (7 - 21%, P run. Oxygen consumption increased (4 - 7%, P stride frequency, as well as reductions in stride length and range of motion of the ankle and knee. The results suggest that changes in running form and compromised muscle function due to muscle damage contribute to the reduction in running economy for 3 days after downhill running.

  17. Analysis of the traditional vehicle’s running cost and the electric vehicle’s running cost under car-following model

    Science.gov (United States)

    Tang, Tie-Qiao; Xu, Ke-Wei; Yang, Shi-Chun; Shang, Hua-Yan

    2016-03-01

    In this paper, we use car-following theory to study the traditional vehicle’s running cost and the electric vehicle’s running cost. The numerical results illustrate that the traditional vehicle’s running cost is larger than that of the electric vehicle and that the system’s total running cost drops with the increase of the electric vehicle’s proportion, which shows that the electric vehicle is better than the traditional vehicle from the perspective of the running cost.

  18. Real time analysis with the upgraded LHCb trigger in Run-III

    CERN Multimedia

    Szumlak, Tomasz

    2016-01-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC bunch-crossing rate of 40 MHz to 1 MHz, a rate at which the entire detector is read out. A second level, implemented in a farm of around 20k parallel processing CPUs, the event rate is reduced to around 12.5 kHz. The LHCb experiment plans a major upgrade of the detector and DAQ system in the LHC long shutdown II (2018-2019 ). In this upgrade, a purely software based trigger system is being developed and it will have to process the full 30 MHz of bunch crossings with inelastic collisions. LHCb will also receive a factor of 5 increase in the instantaneous luminosity, which further contributes to the challenge of reconstructing and selecting events in real time with the CPU farm. We discuss the plans and progress towards achieving efficient reconstruction and selection with a 30 MHz throughput. Another challenge is to exploit the increased signal rate that results from removing the 1 MHz readout bottleneck, combined with the high...

  19. Renormalization group running of dimension-six sources of parity and time-reversal violation

    Science.gov (United States)

    Dekens, W.; de Vries, J.

    2013-05-01

    We perform a systematic study of flavor-diagonal parity- and time-reversal-violating operators of dimension six which could arise from physics beyond the SM. We begin at the unknown high-energy scale where these operators originate. At this scale the operators are constrained by gauge invariance which has important consequences for the form of effective operators at lower energies. In particular for the four-quark operators. We calculate one-loop QCD and, when necessary, electroweak corrections to the operators and evolve them down to the electroweak scale and subsequently to hadronic scales. We find that for most operators QCD corrections are not particularly significant. We derive a set of operators at low energy which is expected to dominate hadronic and nuclear EDMs due to physics beyond the SM and obtain quantitative relations between these operators and the original dimension-six operators at the high-energy scale. We use the limit on the neutron EDM to set bounds on the dimension-six operators.

  20. Towards a numerical run-out model for quick-clay slides

    Science.gov (United States)

    Issler, Dieter; L'Heureux, Jean-Sébastien; Cepeda, José M.; Luna, Byron Quan; Gebreslassie, Tesfahunegn A.

    2015-04-01

    Highly sensitive glacio-marine clays occur in many relatively low-lying areas near the coasts of eastern Canada, Scandinavia and northern Russia. If the load exceeds the yield stress of these clays, they quickly liquefy, with a reduction of the yield strength and the viscosity by several orders of magnitude. Leaching, fluvial erosion, earthquakes and man-made overloads, by themselves or combined, are the most frequent triggers of quick-clay slides, which are hard to predict and can attain catastrophic dimensions. The present contribution reports on two preparatory studies that were conducted with a view to creating a run-out model tailored to the characteristics of quick-clay slides. One study analyzed the connections between the morphological and geotechnical properties of more than 30 well-documented Norwegian quick-clay slides and their run-out behavior. The laboratory experiments by Locat and Demers (1988) suggest that the behavior of quick clays can be reasonably described by universal relations involving the liquidity index, plastic index, remolding energy, salinity and sensitivity. However, these tests should be repeated with Norwegian clays and analyzed in terms of a (shear-thinning) Herschel-Bulkley fluid rather than a Bingham fluid because the shear stress appears to grow in a sub-linear fashion with the shear rate. Further study is required to understand the discrepancy between the material parameters obtained in laboratory tests of material from observed slides and in back-calculations of the same slides with the simple model by Edgers & Karlsrud (1982). The second study assessed the capability of existing numerical flow models to capture the most important aspects of quick-clay slides by back-calculating three different, well documented events in Norway: Rissa (1978), Finneidfjord (1996) and Byneset (2012). The numerical codes were (i) BING, a quasi-two-dimensional visco-plastic model, (ii) DAN3D (2009 version), and (iii) MassMov2D. The latter two are

  1. A comparison between conventional and LANDSAT based hydrologic modeling: The Four Mile Run case study

    Science.gov (United States)

    Ragan, R. M.; Jackson, T. J.; Fitch, W. N.; Shubinski, R. P.

    1976-01-01

    Models designed to support the hydrologic studies associated with urban water resources planning require input parameters that are defined in terms of land cover. Estimating the land cover is a difficult and expensive task when drainage areas larger than a few sq. km are involved. Conventional and LANDSAT based methods for estimating the land cover based input parameters required by hydrologic planning models were compared in a case study of the 50.5 sq. km (19.5 sq. mi) Four Mile Run Watershed in Virginia. Results of the study indicate that the LANDSAT based approach is highly cost effective for planning model studies. The conventional approach to define inputs was based on 1:3600 aerial photos, required 110 man-days and a total cost of $14,000. The LANDSAT based approach required 6.9 man-days and cost $2,350. The conventional and LANDSAT based models gave similar results relative to discharges and estimated annual damages expected from no flood control, channelization, and detention storage alternatives.

  2. Validation of a Torso-Mounted Accelerometer for Measures of Vertical Oscillation and Ground Contact Time During Treadmill Running.

    Science.gov (United States)

    Watari, Ricky; Hettinga, Blayne; Osis, Sean; Ferber, Reed

    2016-06-01

    The purpose of this study was to validate measures of vertical oscillation (VO) and ground contact time (GCT) derived from a commercially-available, torso-mounted accelerometer compared with single marker kinematics and kinetic ground reaction force (GRF) data. Twenty-two semi-elite runners ran on an instrumented treadmill while GRF data (1000 Hz) and three-dimensional kinematics (200 Hz) were collected for 60 s across 5 different running speeds ranging from 2.7 to 3.9 m/s. Measurement agreement was assessed by Bland-Altman plots with 95% limits of agreement and by concordance correlation coefficient (CCC). The accelerometer had excellent CCC agreement (> 0.97) with marker kinematics, but only moderate agreement, and overestimated measures between 16.27 mm to 17.56 mm compared with GRF VO measures. The GCT measures from the accelerometer had very good CCC agreement with GRF data, with less than 6 ms of mean bias at higher speeds. These results indicate a torso-mounted accelerometer provides valid and accurate measures of torso-segment VO, but both a marker placed on the torso and the accelerometer yield systematic overestimations of center of mass VO. Measures of GCT from the accelerometer are valid when compared with GRF data, particularly at faster running speeds.

  3. Wheel running from a juvenile age delays onset of specific motor deficits but does not alter protein aggregate density in a mouse model of Huntington's disease

    Directory of Open Access Journals (Sweden)

    Spires Tara L

    2008-04-01

    Full Text Available Abstract Background Huntington's disease (HD is a neurodegenerative disorder predominantly affecting the cerebral cortex and striatum. Transgenic mice (R6/1 line, expressing a CAG repeat encoding an expanded polyglutamine tract in the N-terminus of the huntingtin protein, closely model HD. We have previously shown that environmental enrichment of these HD mice delays the onset of motor deficits. Furthermore, wheel running initiated in adulthood ameliorates the rear-paw clasping motor sign, but not an accelerating rotarod deficit. Results We have now examined the effects of enhanced physical activity via wheel running, commenced at a juvenile age (4 weeks, with respect to the onset of various behavioral deficits and their neuropathological correlates in R6/1 HD mice. HD mice housed post-weaning with running wheels only, to enhance voluntary physical exercise, have delayed onset of a motor co-ordination deficit on the static horizontal rod, as well as rear-paw clasping, although the accelerating rotarod deficit remains unaffected. Both wheel running and environmental enrichment rescued HD-induced abnormal habituation of locomotor activity and exploratory behavior in the open field. We have found that neither environment enrichment nor wheel running ameliorates the shrinkage of the striatum and anterior cingulate cortex (ACC in HD mice, nor the overall decrease in brain weight, measured at 9 months of age. At this age, the density of ubiquitinated protein aggregates in the striatum and ACC is also not significantly ameliorated by environmental enrichment or wheel running. Conclusion These results indicate that enhanced voluntary physical activity, commenced at an early presymptomatic stage, contributes to the positive effects of environmental enrichment. However, sensory and cognitive stimulation, as well as motor stimulation not associated with running, may constitute major components of the therapeutic benefits associated with enrichment

  4. Vmax estimate from three-parameter critical velocity models: validity and impact on 800 m running performance prediction.

    Science.gov (United States)

    Bosquet, Laurent; Duchene, Antoine; Lecot, François; Dupont, Grégory; Leger, Luc

    2006-05-01

    The purpose of this study was to evaluate the validity of maximal velocity (Vmax) estimated from three-parameter systems models, and to compare the predictive value of two- and three-parameter models for the 800 m. Seventeen trained male subjects (VO2max=66.54+/-7.29 ml min(-1) kg(-1)) performed five randomly ordered constant velocity tests (CVT), a maximal velocity test (mean velocity over the last 10 m portion of a 40 m sprint) and a 800 m time trial (V 800 m). Five systems models (two three-parameter and three two-parameter) were used to compute V max (three-parameter models), critical velocity (CV), anaerobic running capacity (ARC) and V800m from times to exhaustion during CVT. Vmax estimates were significantly lower than (0.19Critical velocity (CV) alone explained 40-62% of the variance in V800m. Combining CV with other parameters of each model to produce a calculated V800m resulted in a clear improvement of this relationship (0.83models had a better association (0.93models (0.83models appear to have a better predictive value for short duration events such as the 800 m, the fact the Vmax is not associated with the ability it is supposed to reflect suggests that they are more empirical than systems models.

  5. Short-run analysis of fiscal policy and the current account in a finite horizon model

    OpenAIRE

    Heng-fu Zou

    1995-01-01

    This paper utilizes a technique developed by Judd to quantify the short-run effects of fiscal policies and income shocks on the current account in a small open economy. It is found that: (1) a future increase in government spending improves the short-run current account; (2) a future tax increase worsens the short-run current account; (3) a present increase in the government spending worsens the short-run current account dollar by dollar, while a present increase in the income improves the cu...

  6. Equator To Pole in the Cretaceous: A Comparison of Clumped Isotope Data and CESM Model Runs

    Science.gov (United States)

    Petersen, S. V.; Tabor, C. R.; Meyer, K.; Lohmann, K. C.; Poulsen, C. J.; Carpenter, S. J.

    2015-12-01

    An outstanding issue in the field of paleoclimate is the inability of models to reproduce the shallower equator-to-pole temperature gradients suggested by proxies for past greenhouse periods. Here, we focus on the Late Cretaceous (Maastrichtian, 72-66 Ma), when estimated CO2 levels were ~400-1000ppm. New clumped isotope temperature data from more than 10 sites spanning 65°S to 48°N are used to reconstruct the Maastrichtian equator-to-pole temperature gradient. This data is compared to CESM model simulations of the Maastrichtian, run using relevant paleogeography and atmospheric CO2 levels of 560 and 1120 ppm. Due to a reduced "proxy toolkit" this far in the past, much of our knowledge of Cretaceous climate comes from the oxygen isotope paleothermometer, which incorporates an assumption about the oxygen isotopic composition of seawater (δ18Osw), a quantity often related to salinity. With the clumped isotope paleothermometer, we can directly calculate δ18Osw. This will be used to test commonly applied assumptions about water composition, and will be compared to modeled ocean salinity. We also discuss basin-to-basin differences and their implications for paleo-circulation patterns.

  7. Phase-step calibration technique based on a two-run-times-two-frame phase-shift method.

    Science.gov (United States)

    Zhong, Xianghong

    2006-12-10

    A novel phase-step calibration technique is presented on the basis of a two-run-times-two-frame phase-shift method. First the symmetry factor M is defined to describe the distribution property of the distorted phase due to phase-shifter miscalibration; then the phase-step calibration technique, in which two sets of two interferograms with a straight fringe pattern are recorded and the phase step is obtained by calculating M of the wrapped phase map, is developed. With this technique, a good mirror is required, but no uniform illumination is needed and no complex mathematical operation is involved. This technique can be carried out in situ and is applicable to any phase shifter, whether linear or nonlinear.

  8. Running in Hard Times

    Science.gov (United States)

    Berry, John N., III

    2009-01-01

    Roberta Stevens and Kent Oliver are campaigning hard for the presidency of the American Library Association (ALA). Stevens is outreach projects and partnerships officer at the Library of Congress. Oliver is executive director of the Stark County District Library in Canton, Ohio. They have debated, discussed, and posted web sites, Facebook pages,…

  9. IPSL-CM5A2. An Earth System Model designed to run long simulations for past and future climates.

    Science.gov (United States)

    Sepulchre, Pierre; Caubel, Arnaud; Marti, Olivier; Hourdin, Frédéric; Dufresne, Jean-Louis; Boucher, Olivier

    2017-04-01

    The IPSL-CM5A model was developed and released in 2013 "to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5)" [Dufresne et al., 2013]. Although this model also has been used for numerous paleoclimate studies, a major limitation was its computation time, which averaged 10 model-years / day on 32 cores of the Curie supercomputer (on TGCC computing center, France). Such performances were compatible with the experimental designs of intercomparison projects (e.g. CMIP, PMIP) but became limiting for modelling activities involving several multi-millenial experiments, which are typical for Quaternary or "deeptime" paleoclimate studies, in which a fully-equilibrated deep-ocean is mandatory. Here we present the Earth-System model IPSL-CM5A2. Based on IPSL-CM5A, technical developments have been performed both on separate components and on the coupling system in order to speed up the whole coupled model. These developments include the integration of hybrid parallelization MPI-OpenMP in LMDz atmospheric component, the use of a new input-ouput library to perform parallel asynchronous input/output by using computing cores as "IO servers", the use of a parallel coupling library between the ocean and the atmospheric components. Running on 304 cores, the model can now simulate 55 years per day, opening new gates towards multi-millenial simulations. Apart from obtaining better computing performances, one aim of setting up IPSL-CM5A2 was also to overcome the cold bias depicted in global surface air temperature (t2m) in IPSL-CM5A. We present the tuning strategy to overcome this bias as well as the main characteristics (including biases) of the pre-industrial climate simulated by IPSL-CM5A2. Lastly, we shortly present paleoclimate simulations run with this model, for the Holocene and for deeper timescales in the Cenozoic, for which the particular continental configuration

  10. Improving NPP availability using thermalhydraulic integral plant models. Assessment and application of turbine run back scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Reventos, F. [ANACNV, l' Hospitalet de l' Infant, Tarragona (Spain)]|[Technical University of Catalonia, UPC (Spain); Llopis, C.; Pretel, C. [Technical University of Catalonia, UPC (Spain); Posada, J.M.; Moreno, P. [Pablo Moreno S.A. (Spain)

    2001-07-01

    ANAV is the utility responsible of Asco and Vandellos Nuclear Power Plants, a two-unit and a single unit 1000 MW PWR plant, respectively. Both plants, Asco and Vandellos, are in normal operation since 1983 and 1987 and have undergone different important improvements like: steam generators and turbine substitution, power up-rating... Best estimate simulation by means of the thermal-hydraulic integral models of operating nuclear power plants are today impressively helpful for utilities in their purpose of improving availability and keeping safety level. ANAV is currently using Relap5/mod3.2 models of both plants for different purposes related to safety, operation, engineering and training. Turbine run-back system is designed to avoid reactor trips, and it does so in the existing plants, when the key parameters are correctly adjusted. The fine adjustment of such parameters was traditionally performed following the results of control simulators. Such simulators used a fully developed set of control equations and a quite simplified thermal-hydraulic feed-back. Boundary scenarios were considered in order to overcome the difficulties generated by simplification. (author)

  11. Assessing the debris flow run-out frequency of a catchment in the French Alps using a parameterization analysis with the RAMMS numerical run-out model

    NARCIS (Netherlands)

    Hussin, Y.A.; Quan Luna, B.; Van Westen, C.J.; Christen, M.; Malet, J.P.; Asch, Th.W.J. van

    2012-01-01

    Debris flows occurring in the European Alps frequently cause significant damage to settlements, power-lines and transportation infrastructure which has led to traffic disruptions, economic loss and even death. Estimating the debris flow run-out extent and the parameter uncertainty related to run-out

  12. Exploring business process modelling paradigms and design-time to run-time transitions

    Science.gov (United States)

    Caron, Filip; Vanthienen, Jan

    2016-09-01

    The business process management literature describes a multitude of approaches (e.g. imperative, declarative or event-driven) that each result in a different mix of process flexibility, compliance, effectiveness and efficiency. Although the use of a single approach over the process lifecycle is often assumed, transitions between approaches at different phases in the process lifecycle may also be considered. This article explores several business process strategies by analysing the approaches at different phases in the process lifecycle as well as the various transitions.

  13. Models for dependent time series

    CERN Document Server

    Tunnicliffe Wilson, Granville; Haywood, John

    2015-01-01

    Models for Dependent Time Series addresses the issues that arise and the methodology that can be applied when the dependence between time series is described and modeled. Whether you work in the economic, physical, or life sciences, the book shows you how to draw meaningful, applicable, and statistically valid conclusions from multivariate (or vector) time series data.The first four chapters discuss the two main pillars of the subject that have been developed over the last 60 years: vector autoregressive modeling and multivariate spectral analysis. These chapters provide the foundational mater

  14. Effects of independently altering body weight and mass on the energetic cost of a human running model.

    Science.gov (United States)

    Ackerman, Jeffrey; Seipel, Justin

    2016-03-21

    The mechanisms underlying the metabolic cost of running, and legged locomotion in general, remain to be well understood. Prior experimental studies show that the metabolic cost of human running correlates well with the vertical force generated to support body weight, the mechanical work done, and changes in the effective leg stiffness. Further, previous work shows that the metabolic cost of running decreases with decreasing body weight, increases with increasing body weight and mass, and does not significantly change with changing body mass alone. In the present study, we seek to uncover the basic mechanism underlying this existing experimental data. We find that an actuated spring-mass mechanism representing the effective mechanics of human running provides a mechanistic explanation for the previously reported changes in the metabolic cost of human running if the dimensionless relative leg stiffness (effective stiffness normalized by body weight and leg length) is regulated to be constant. The model presented in this paper provides a mechanical explanation for the changes in metabolic cost due to changing body weight and mass which have been previously measured experimentally and highlights the importance of active leg stiffness regulation during human running.

  15. Enhancement of GABAA-current run-down in the hippocampus occurs at the first spontaneous seizure in a model of temporal lobe epilepsy

    Science.gov (United States)

    Mazzuferi, Manuela; Palma, Eleonora; Martinello, Katiuscia; Maiolino, Francesca; Roseti, Cristina; Fucile, Sergio; Fabene, Paolo F.; Schio, Federica; Pellitteri, Michele; Sperk, Guenther; Miledi, Ricardo; Eusebi, Fabrizio; Simonato, Michele

    2010-01-01

    Refractory temporal lobe epilepsy (TLE) is associated with a dysfunction of inhibitory signaling mediated by GABAA receptors. In particular, the use-dependent decrease (run-down) of the currents (IGABA) evoked by the repetitive activation of GABAA receptors is markedly enhanced in hippocampal and cortical neurons of TLE patients. Understanding the role of IGABA run-down in the disease, and its mechanisms, may allow development of medical alternatives to surgical resection, but such mechanistic insights are difficult to pursue in surgical human tissue. Therefore, we have used an animal model (pilocarpine-treated rats) to identify when and where the increase in IGABA run-down occurs in the natural history of epilepsy. We found: (i) that the increased run-down occurs in the hippocampus at the time of the first spontaneous seizure (i.e., when the diagnosis of epilepsy is made), and then extends to the neocortex and remains constant in the course of the disease; (ii) that the phenomenon is strictly correlated with the occurrence of spontaneous seizures, because it is not observed in animals that do not become epileptic. Furthermore, initial exploration of the molecular mechanism disclosed a relative increase in α4-, relative to α1-containing GABAA receptors, occurring at the same time when the increased run-down appears, suggesting that alterations in the molecular composition of the GABA receptors may be responsible for the occurrence of the increased run-down. These observations disclose research opportunities in the field of epileptogenesis that may lead to a better understanding of the mechanism whereby a previously normal tissue becomes epileptic. PMID:20133704

  16. Recent updates in the aerosol component of the C-IFS model run by ECMWF

    Science.gov (United States)

    Remy, Samuel; Boucher, Olivier; Hauglustaine, Didier; Kipling, Zak; Flemming, Johannes

    2017-04-01

    The Composition-Integrated Forecast System (C-IFS) is a global atmospheric composition forecasting tool, run by ECMWF within the framework of the Copernicus Atmospheric Monitoring Service (CAMS). The aerosol model of C-IFS is a simple bulk scheme that forecasts 5 species: dust, sea-salt, black carbon, organic matter and sulfate. Three bins represent the dust and sea-salt, for the super-coarse, coarse and fine mode of these species (Morcrette et al., 2009). This talk will present recent updates of the aerosol model, and also introduce forthcoming developments. It will also present the impact of these changes as measured scores against AERONET Aerosol Optical Depth (AOD) and Airbase PM10 observations. The next cycle of C-IFS will include a mass fixer, because the semi-Lagrangian advection scheme used in C-IFS is not mass-conservative. C-IFS now offers the possibility to emit biomass-burning aerosols at an injection height that is provided by a new version of the Global Fire Assimilation System (GFAS). Secondary Organic Aerosols (SOA) production will be scaled on non-biomass burning CO fluxes. This approach allows to represent the anthropogenic contribution to SOA production; it brought a notable improvement in the skill of the model, especially over Europe. Lastly, the emissions of SO2 are now provided by the MACCity inventory instead of and older version of the EDGAR dataset. The seasonal and yearly variability of SO2 emissions are better captured by the MACCity dataset. Upcoming developments of the aerosol model of C-IFS consist mainly in the implementation of a nitrate and ammonium module, with 2 bins (fine and coarse) for nitrate. Nitrate and ammonium sulfate particle formation from gaseous precursors is represented following Hauglustaine et al. (2014); formation of coarse nitrate over pre-existing sea-salt or dust particles is also represented. This extension of the forward model improved scores over heavily populated areas such as Europe, China and Eastern

  17. Support for the Logical Execution Time Model on a Time-predictable Multicore Processor

    DEFF Research Database (Denmark)

    Kluge, Florian; Schoeberl, Martin; Ungerer, Theo

    2016-01-01

    The logical execution time (LET) model increases the compositionality of real-time task sets. Removal or addition of tasks does not influence the communication behavior of other tasks. In this work, we extend a multicore operating system running on a time-predictable multicore processor to support...... the LET model. For communication between tasks we use message passing on a time-predictable network-on-chip to avoid the bottleneck of shared memory. We report our experiences and present results on the costs in terms of memory and execution time....

  18. How to run 100 meters?

    CERN Document Server

    Aftalion, Amandine

    2016-01-01

    The aim of this paper is to bring a mathematical justification to the optimal way of organizing one's effort when running. It is well known from physiologists that all running exercises of duration less than 3mn are run with a strong initial acceleration and a decelerating end; on the contrary, long races are run with a final sprint. This can be explained using a mathematical model describing the evolution of the velocity, the anaerobic energy, and the propulsive force: a system of ordinary differential equations, based on Newton's second law and energy conservation, is coupled to the condition of optimizing the time to run a fixed distance. We show that the monotony of the velocity curve vs time is the opposite of that of the oxygen uptake (V O2) vs time. Since the oxygen uptake is monotone increasing for a short run, we prove that the velocity is exponentially increasing to its maximum and then decreasing. For longer races, the oxygen uptake has an increasing start and a decreasing end and this accounts for...

  19. Study of the ion kinetic effects in ICF run-away burn using a quasi-1D hybrid model

    Science.gov (United States)

    Huang, C.-K.; Molvig, K.; Albright, B. J.; Dodd, E. S.; Vold, E. L.; Kagan, G.; Hoffman, N. M.

    2017-02-01

    The loss of fuel ions in the Gamow peak and other kinetic effects related to the α particles during ignition, run-away burn, and disassembly stages of an inertial confinement fusion D-T capsule are investigated with a quasi-1D hybrid volume ignition model that includes kinetic ions, fluid electrons, Planckian radiation photons, and a metallic pusher. The fuel ion loss due to the Knudsen effect at the fuel-pusher interface is accounted for by a local-loss model by Molvig et al. [Phys. Rev. Lett. 109, 095001 (2012)] with an albedo model for ions returning from the pusher wall. The tail refilling and relaxation of the fuel ion distribution are captured with a nonlinear Fokker-Planck solver. Alpha heating of the fuel ions is modeled kinetically while simple models for finite alpha range and electron heating are used. This dynamical model is benchmarked with a 3 T hydrodynamic burn model employing similar assumptions. For an energetic pusher (˜40 kJ) that compresses the fuel to an areal density of ˜1.07 g/cm 2 at ignition, the simulation shows that the Knudsen effect can substantially limit ion temperature rise in runaway burn. While the final yield decreases modestly from kinetic effects of the α particles, large reduction of the fuel reactivity during ignition and runaway burn may require a higher Knudsen loss rate compared to the rise time of the temperatures above ˜25 keV when the broad D-T Gamow peak merges into the bulk Maxwellian distribution.

  20. Multiple-step model-experiment matching allows precise definition of dynamical leg parameters in human running.

    Science.gov (United States)

    Ludwig, C; Grimmer, S; Seyfarth, A; Maus, H-M

    2012-09-21

    The spring-loaded inverted pendulum (SLIP) model is a well established model for describing bouncy gaits like human running. The notion of spring-like leg behavior has led many researchers to compute the corresponding parameters, predominantly stiffness, in various experimental setups and in various ways. However, different methods yield different results, making the comparison between studies difficult. Further, a model simulation with experimentally obtained leg parameters typically results in comparatively large differences between model and experimental center of mass trajectories. Here, we pursue the opposite approach which is calculating model parameters that allow reproduction of an experimental sequence of steps. In addition, to capture energy fluctuations, an extension of the SLIP (ESLIP) is required and presented. The excellent match of the models with the experiment validates the description of human running by the SLIP with the obtained parameters which we hence call dynamical leg parameters.

  1. RTMOD: Real-Time MODel evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Graziani, G; Galmarini, S. [Joint Research centre, Ispra (Italy); Mikkelsen, T. [Risoe National Lab., Wind Energy and Atmospheric Physics Dept. (Denmark)

    2000-01-01

    The 1998 - 1999 RTMOD project is a system based on an automated statistical evaluation for the inter-comparison of real-time forecasts produced by long-range atmospheric dispersion models for national nuclear emergency predictions of cross-boundary consequences. The background of RTMOD was the 1994 ETEX project that involved about 50 models run in several Institutes around the world to simulate two real tracer releases involving a large part of the European territory. In the preliminary phase of ETEX, three dry runs (i.e. simulations in real-time of fictitious releases) were carried out. At that time, the World Wide Web was not available to all the exercise participants, and plume predictions were therefore submitted to JRC-Ispra by fax and regular mail for subsequent processing. The rapid development of the World Wide Web in the second half of the nineties, together with the experience gained during the ETEX exercises suggested the development of this project. RTMOD featured a web-based user-friendly interface for data submission and an interactive program module for displaying, intercomparison and analysis of the forecasts. RTMOD has focussed on model intercomparison of concentration predictions at the nodes of a regular grid with 0.5 degrees of resolution both in latitude and in longitude, the domain grid extending from 5W to 40E and 40N to 65N. Hypothetical releases were notified around the world to the 28 model forecasters via the web on a one-day warning in advance. They then accessed the RTMOD web page for detailed information on the actual release, and as soon as possible they then uploaded their predictions to the RTMOD server and could soon after start their inter-comparison analysis with other modelers. When additional forecast data arrived, already existing statistical results would be recalculated to include the influence by all available predictions. The new web-based RTMOD concept has proven useful as a practical decision-making tool for realtime

  2. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot.

    Science.gov (United States)

    Huang, Ke-Jung; Huang, Chun-Kai; Lin, Pei-Chun

    2014-10-07

    We report on the development of a robot's dynamic locomotion based on a template which fits the robot's natural dynamics. The developed template is a low degree-of-freedom planar model for running with rolling contact, which we call rolling spring loaded inverted pendulum (R-SLIP). Originating from a reduced-order model of the RHex-style robot with compliant circular legs, the R-SLIP model also acts as the template for general dynamic running. The model has a torsional spring and a large circular arc as the distributed foot, so during locomotion it rolls on the ground with varied equivalent linear stiffness. This differs from the well-known spring loaded inverted pendulum (SLIP) model with fixed stiffness and ground contact points. Through dimensionless steps-to-fall and return map analysis, within a wide range of parameter spaces, the R-SLIP model is revealed to have self-stable gaits and a larger stability region than that of the SLIP model. The R-SLIP model is then embedded as the reduced-order 'template' in a more complex 'anchor', the RHex-style robot, via various mapping definitions between the template and the anchor. Experimental validation confirms that by merely deploying the stable running gaits of the R-SLIP model on the empirical robot with simple open-loop control strategy, the robot can easily initiate its dynamic running behaviors with a flight phase and can move with similar body state profiles to those of the model, in all five testing speeds. The robot, embedded with the SLIP model but performing walking locomotion, further confirms the importance of finding an adequate template of the robot for dynamic locomotion.

  3. An integrated model to assess critical rain fall thresholds for the critical run-out distances of debris flows

    NARCIS (Netherlands)

    van Asch, Th.W.J.; Tang, C.; Alkema, D.; Zhu, J.; Zhou, W.

    2013-01-01

    A dramatic increase in debris flows occurred in the years after the 2008 Wenchuan earthquake in SW China due to the deposition of loose co-seismic landslide material. This paper proposes a preliminary integrated model, which describes the relationship between rain input and debris flow run-out in or

  4. Running Club

    CERN Multimedia

    Running Club

    2010-01-01

    The 2010 edition of the annual CERN Road Race will be held on Wednesday 29th September at 18h. The 5.5km race takes place over 3 laps of a 1.8 km circuit in the West Area of the Meyrin site, and is open to everyone working at CERN and their families. There are runners of all speeds, with times ranging from under 17 to over 34 minutes, and the race is run on a handicap basis, by staggering the starting times so that (in theory) all runners finish together. Children (< 15 years) have their own race over 1 lap of 1.8km. As usual, there will be a “best family” challenge (judged on best parent + best child). Trophies are awarded in the usual men’s, women’s and veterans’ categories, and there is a challenge for the best age/performance. Every adult will receive a souvenir prize, financed by a registration fee of 10 CHF. Children enter free (each child will receive a medal). More information, and the online entry form, can be found at http://cern.ch/club...

  5. Search for non-standard model signatures in the WZ/ZZ final state at CDF run II

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Matthew [Univ. of California, San Diego, CA (United States)

    2009-01-01

    This thesis discusses a search for non-Standard Model physics in heavy diboson production in the dilepton-dijet final state, using 1.9 fb -1 of data from the CDF Run II detector. New limits are set on the anomalous coupling parameters for ZZ and WZ production based on limiting the production cross-section at high š. Additionally limits are set on the direct decay of new physics to ZZ andWZ diboson pairs. The nature and parameters of the CDF Run II detector are discussed, as are the influences that it has on the methods of our analysis.

  6. Running of the Running and Entropy Perturbations During Inflation

    CERN Document Server

    van de Bruck, Carsten

    2016-01-01

    In single field slow-roll inflation, one expects that the spectral index $n_s -1$ is first order in slow-roll parameters. Similarly, its running $\\alpha_s = dn_s/d \\log k$ and the running of the running $\\beta_s = d\\alpha_s/d \\log k$ are second and third order and therefore expected to be progressively smaller, and usually negative. Hence, such models of inflation are in considerable tension with a recent analysis hinting that $\\beta_s$ may actually be positive, and larger than $\\alpha_s$. Motivated by this, in this work we ask the question of what kinds of inflationary models may be useful in achieving such a hierarchy of runnings, particularly focusing on two--field models of inflation in which the late-time transfer of power from isocurvature to curvature modes allows for a much more diverse range of phenomenology. We calculate the runnings due to this effect and briefly apply our results to assessing the feasibility of finding $|\\beta_s| \\gtrsim |\\alpha_s|$ in some specific models.

  7. Measuring Short- and Long-run Promotional Effectiveness on Scanner Data Using Persistence Modeling

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); D.M. Hanssens (Dominique); V.R. Nijs; J-B.E.M. Steenkamp (Jan-Benedict)

    2003-01-01

    textabstractThe use of price promotions to stimulate brand and firm performance is increasing. We discuss how (i) the availability of longer scanner data time series, and (ii) persistence modeling, have lead to greater insights into the dynamic effects of price promotions, as one can now quantify th

  8. On the duality between long-run relations and common trends in the I(1) versus I(2) model

    DEFF Research Database (Denmark)

    Juselius, Katarina

    1994-01-01

    Long-run relations and common trends are discussed in terms of the multivariate cointegration model given in the autoregressive and the moving average form. The basic results needed for the analysis of I(1) and 1(2)processes are reviewed and the results applied to Danish monetary data. The test p......, "excess money" is estimated and its effect on the other determinants of the system is investigated. In particular, it is found that "excess money" has no effect on price inflation...... procedures reveal that nominal money stock is essentially I(2). Long-run price homogeneity is supported by the data and imposed on the system. It is found that the bond rate is weakly exogenous for the long-run parameters and therefore act as a driving trend. Using the nonstationarity property of the data...

  9. Characterization of timing jitter spectra in free-running mode-locked lasers with 340 dB dynamic range over 10 decades of Fourier frequency

    CERN Document Server

    Jung, Kwangyun

    2014-01-01

    We demonstrate a method that enables accurate timing jitter spectral density characterization of free-running mode-locked laser oscillators over more than 10-decade of Fourier frequency from mHz to tens MHz range. The method is based on analyzing both the input voltage noise to the slave laser and the output voltage noise from the balanced optical cross- correlator (BOC), when two mode-locked lasers are synchronized in repetition rate by the BOC. As a demonstration experiment, timing jitter spectrum of a free-running mode-locked Er-fiber laser with a dynamic range of >340 dB is measured over Fourier frequency ranging from 1 mHz to 38.5 MHz (Nyquist frequency). The demonstrated method can resolve different noise mechanisms that cause specific jitter characteristics in free-running mode-locked laser oscillators for a vast range of time scales from 1000-s.

  10. Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

    CERN Document Server

    Aceto, Luca; Ingolfsdottir, Anna; Reynisson, Arni Hermann; Sigurdarson, Steinar Hugi; Sirjani, Marjan; 10.4204/EPTCS.58.1

    2011-01-01

    In this paper we propose an extension of the Rebeca language that can be used to model distributed and asynchronous systems with timing constraints. We provide the formal semantics of the language using Structural Operational Semantics, and show its expressiveness by means of examples. We developed a tool for automated translation from timed Rebeca to the Erlang language, which provides a first implementation of timed Rebeca. We can use the tool to set the parameters of timed Rebeca models, which represent the environment and component variables, and use McErlang to run multiple simulations for different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based paradigm, where the structure of the model represents the service oriented architecture, while the computational model matches the network infrastructure. Simulation is shown to be an effective analysis support, specially where model checking faces almost immediate state explosion in an asynchronous setting.

  11. RUN COORDINATION

    CERN Multimedia

    Christophe Delaere

    2012-01-01

      On Wednesday 14 March, the machine group successfully injected beams into LHC for the first time this year. Within 48 hours they managed to ramp the beams to 4 TeV and proceeded to squeeze to β*=0.6m, settings that are used routinely since then. This brought to an end the CMS Cosmic Run at ~Four Tesla (CRAFT), during which we collected 800k cosmic ray events with a track crossing the central Tracker. That sample has been since then topped up to two million, allowing further refinements of the Tracker Alignment. The LHC started delivering the first collisions on 5 April with two bunches colliding in CMS, giving a pile-up of ~27 interactions per crossing at the beginning of the fill. Since then the machine has increased the number of colliding bunches to reach 1380 bunches and peak instantaneous luminosities around 6.5E33 at the beginning of fills. The average bunch charges reached ~1.5E11 protons per bunch which results in an initial pile-up of ~30 interactions per crossing. During the ...

  12. Driving-Simulator-Based Test on the Effectiveness of Auditory Red-Light Running Vehicle Warning System Based on Time-To-Collision Sensor

    Directory of Open Access Journals (Sweden)

    Xuedong Yan

    2014-02-01

    Full Text Available The collision avoidance warning system is an emerging technology designed to assist drivers in avoiding red-light running (RLR collisions at intersections. The aim of this paper is to evaluate the effect of auditory warning information on collision avoidance behaviors in the RLR pre-crash scenarios and further to examine the casual relationships among the relevant factors. A driving-simulator-based experiment was designed and conducted with 50 participants. The data from the experiments were analyzed by approaches of ANOVA and structural equation modeling (SEM. The collisions avoidance related variables were measured in terms of brake reaction time (BRT, maximum deceleration and lane deviation in this study. It was found that the collision avoidance warning system can result in smaller collision rates compared to the without-warning condition and lead to shorter reaction times, larger maximum deceleration and less lane deviation. Furthermore, the SEM analysis illustrate that the audio warning information in fact has both direct and indirect effect on occurrence of collisions, and the indirect effect plays a more important role on collision avoidance than the direct effect. Essentially, the auditory warning information can assist drivers in detecting the RLR vehicles in a timely manner, thus providing drivers more adequate time and space to decelerate to avoid collisions with the conflicting vehicles.

  13. Evaluation of land surface model representation of phenology: an analysis of model runs submitted to the NACP Interim Site Synthesis

    Science.gov (United States)

    Richardson, A. D.; Nacp Interim Site Synthesis Participants

    2010-12-01

    Phenology represents a critical intersection point between organisms and their growth environment. It is for this reason that phenology is a sensitive and robust integrator of the biological impacts of year-to-year climate variability and longer-term climate change on natural systems. However, it is perhaps equally important that phenology, by controlling the seasonal activity of vegetation on the land surface, plays a fundamental role in regulating ecosystem processes, competitive interactions, and feedbacks to the climate system. Unfortunately, the phenological sub-models implemented in most state-of-the-art ecosystem models and land surface schemes are overly simplified. We quantified model errors in the representation of the seasonal cycles of leaf area index (LAI), gross ecosystem photosynthesis (GEP), and net ecosystem exchange of CO2. Our analysis was based on site-level model runs (14 different models) submitted to the North American Carbon Program (NACP) Interim Synthesis, and long-term measurements from 10 forested (5 evergreen conifer, 5 deciduous broadleaf) sites within the AmeriFlux and Fluxnet-Canada networks. Model predictions of the seasonality of LAI and GEP were unacceptable, particularly in spring, and especially for deciduous forests. This is despite an historical emphasis on deciduous forest phenology, and the perception that controls on spring phenology are better understood than autumn phenology. Errors of up to 25 days in predicting “spring onset” transition dates were common, and errors of up to 50 days were observed. For deciduous sites, virtually every model was biased towards spring onset being too early, and autumn senescence being too late. Thus, models predicted growing seasons that were far too long for deciduous forests. For most models, errors in the seasonal representation of deciduous forest LAI were highly correlated with errors in the seasonality of both GPP and NEE, indicating the importance of getting the underlying

  14. Simulation of nonlinear wave run-up with a high-order Boussinesq model

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2008-01-01

    cases involving long wave resonance in a parabolic basin, solitary wave evolution in a triangular channel, and solitary wave run-up on a circular conical island are considered. In each case the computed results compare well against available analytical solutions or experimental measurements. The ability...

  15. MODELLING GASOLINE DEMAND IN GHANA: A STRUCTURAL TIME SERIES ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ishmael Ackah

    2014-01-01

    Full Text Available Concerns about the role of energy consumption in global warming have led to policy designs that seek to reduce fossil fuel consumption or find a less polluting alternative especiallyfor the transport sector. This study seeks to estimate the elasticities of price, income, education and technology on transport gasoline demand sector inGhana. The Structural Time Series Model reports a short-run price and income elasticities of -0.0088 and 0.713. Total factor productivity is -0.408 whilstthe elasticity for education is 2.33. In the long run, the reported price and income elasticities are -0.065 and 5.129 respectively. The long run elasticityfor productivity is -2.935. The study recommends that in order to enhanceefficiency in gasoline consumption in the transport sector, there should beinvestment in productivity.

  16. Run-based multi-model interannual variability assessment of precipitation and temperature over Pakistan using two IPCC AR4-based AOGCMs

    Science.gov (United States)

    Asmat, U.; Athar, H.

    2017-01-01

    The interannual variability of precipitation and temperature is derived from all runs of the Intergovernmental Panel on Climate Change (IPCC) fourth Assessment Report (AR4)-based two Atmospheric Oceanic General Circulation Model (AOGCM) simulations, over Pakistan, on an annual basis. The models are the CM2.0 and CM2.1 versions of Geophysical Fluid Dynamics Laboratory (GFDL)-based AOGCM. Simulations for a recent 22-year period (1979-2000) are validated using Climate Research Unit (CRU) and NCEP/NCAR datasets over Pakistan, for the first time. The study area of Pakistan is divided into three regions: all Pakistan, northern Pakistan, and southern Pakistan. Bias, root mean square error, one sigma standard deviation, and coefficient of variance are used as validation metrics. For all Pakistan and northern Pakistan, all three runs of GFDL-CM2.0 perform better under the above metrics, both for precipitation and temperature (except for one sigma standard deviation and coefficient of variance), whereas for southern Pakistan, third run of GFDL-CM2.1 perform better expect for the root mean square error for temperature. A mean and variance-based bias correction is applied to bias in modeled precipitation and temperature variables. This resulted in a reduced bias, except for the months of June, July, and August, when the reduction in bias is relatively lower.

  17. Running and addiction: precipitated withdrawal in a rat model of activity-based anorexia

    OpenAIRE

    Kanarek, Robin B.; D'Anci, Kristen E.; Jurdak, Nicole; Mathes, Wendy Foulds

    2009-01-01

    Physical activity improves cardiovascular health, strengthens muscles and bones, stimulates neuroplasticity, and promotes feelings of well-being and self-esteem. However, when taken to extremes, exercise can develop into an addictive-like behavior. To further assess the addictive potential of physical activity, the present experiments assessed whether running wheel activity in rats would lead to physical dependence similar to that observed after chronic morphine administration. Active male an...

  18. MathRun: An Adaptive Mental Arithmetic Game Using A Quantitative Performance Model

    OpenAIRE

    Chen, L.; Tang, Wen

    2016-01-01

    Pedagogy and the way children learn are changing rapidly with the introduction of widely accessible computer technologies, from mobile apps to interactive educational games. Digital games have the capacity to embed many learning supports using the widely accredited VARK (visual, auditory, reading, and kinaesthetic) learning style. In this paper, we present a mathematics educational game MathRun for children age between 7-11 years old to practice mental arithmetic. We build the game as an inte...

  19. Treadmill running improves spatial memory in an animal model of Alzheimer's disease.

    Science.gov (United States)

    Hoveida, Reihaneh; Alaei, Hojjatallah; Oryan, Shahrbanoo; Parivar, Kazem; Reisi, Parham

    2011-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease that is characterized by a decline in cognitive function and severe neuronal loss in the cerebral cortex and certain subcortical regions of the brain including nucleus basalis magnocellularis (NBM) that play an important role in learning and memory. There are few therapeutic regimens that influence the underlying pathogenic phenotypes of AD, however, of the currently available therapies, exercise training is considered to be one of the best strategies for attenuating the pathological phenotypes of AD for people with AD. Here, we sought to investigate the effect of treadmill running on spatial memory in Alzheimer-induced rats. Male Wistar rats were split into two groups namely shams (n=7) and lesions with the lesion group subdivided further into the lesion-rest (n=7) and lesion-exercise (n=7). The lesion-exercise and shams were subjected to treadmill running at 17 meters per minute (m/min) for 60 min per day (min/day), 7 days per week (days/wk), for 60 days. Spatial memory was investigated using the Morris Water Maze test in the rats after 60 days of Alzheimer induction and the exercise. Our data demonstrated that spatial memory was indeed impaired in the lesion group compared with the shams. However, exercise notably improved spatial memory in the lesion-exercised rats compared to lesion-rested group. The present results suggest that spatial memory is affected under Alzheimer conditions and that treadmill running improves these effects. Our data suggested that treadmill running contributes to the alleviation of the cognitive decline in AD.

  20. Voluntary Running Attenuates Memory Loss, Decreases Neuropathological Changes and Induces Neurogenesis in a Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Tapia-Rojas, Cheril; Aranguiz, Florencia; Varela-Nallar, Lorena; Inestrosa, Nibaldo C

    2016-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by loss of memory and cognitive abilities, and the appearance of amyloid plaques composed of the amyloid-β peptide (Aβ) and neurofibrillary tangles formed of tau protein. It has been suggested that exercise might ameliorate the disease; here, we evaluated the effect of voluntary running on several aspects of AD including amyloid deposition, tau phosphorylation, inflammatory reaction, neurogenesis and spatial memory in the double transgenic APPswe/PS1ΔE9 mouse model of AD. We report that voluntary wheel running for 10 weeks decreased Aβ burden, Thioflavin-S-positive plaques and Aβ oligomers in the hippocampus. In addition, runner APPswe/PS1ΔE9 mice showed fewer phosphorylated tau protein and decreased astrogliosis evidenced by lower staining of GFAP. Further, runner APPswe/PS1ΔE9 mice showed increased number of neurons in the hippocampus and exhibited increased cell proliferation and generation of cells positive for the immature neuronal protein doublecortin, indicating that running increased neurogenesis. Finally, runner APPswe/PS1ΔE9 mice showed improved spatial memory performance in the Morris water maze. Altogether, our findings indicate that in APPswe/PS1ΔE9 mice, voluntary running reduced all the neuropathological hallmarks of AD studied, reduced neuronal loss, increased hippocampal neurogenesis and reduced spatial memory loss. These findings support that voluntary exercise might have therapeutic value on AD.

  1. Dual-use tools and systematics-aware analysis workflows in the ATLAS Run-2 analysis model

    CERN Document Server

    FARRELL, Steven; The ATLAS collaboration; Calafiura, Paolo; Delsart, Pierre-Antoine; Elsing, Markus; Koeneke, Karsten; Krasznahorkay, Attila; Krumnack, Nils; Lancon, Eric; Lavrijsen, Wim; Laycock, Paul; Lei, Xiaowen; Strandberg, Sara Kristina; Verkerke, Wouter; Vivarelli, Iacopo; Woudstra, Martin

    2015-01-01

    The ATLAS analysis model has been overhauled for the upcoming run of data collection in 2015 at 13 TeV. One key component of this upgrade was the Event Data Model (EDM), which now allows for greater flexibility in the choice of analysis software framework and provides powerful new features that can be exploited by analysis software tools. A second key component of the upgrade is the introduction of a dual-use tool technology, which provides abstract interfaces for analysis software tools to run in either the Athena framework or a ROOT-based framework. The tool interfaces, including a new interface for handling systematic uncertainties, have been standardized for the development of improved analysis workflows and consolidation of high-level analysis tools. This paper will cover the details of the dual-use tool functionality, the systematics interface, and how these features fit into a centrally supported analysis environment.

  2. Timing analysis by model checking

    Science.gov (United States)

    Naydich, Dimitri; Guaspari, David

    2000-01-01

    The safety of modern avionics relies on high integrity software that can be verified to meet hard real-time requirements. The limits of verification technology therefore determine acceptable engineering practice. To simplify verification problems, safety-critical systems are commonly implemented under the severe constraints of a cyclic executive, which make design an expensive trial-and-error process highly intolerant of change. Important advances in analysis techniques, such as rate monotonic analysis (RMA), have provided a theoretical and practical basis for easing these onerous restrictions. But RMA and its kindred have two limitations: they apply only to verifying the requirement of schedulability (that tasks meet their deadlines) and they cannot be applied to many common programming paradigms. We address both these limitations by applying model checking, a technique with successful industrial applications in hardware design. Model checking algorithms analyze finite state machines, either by explicit state enumeration or by symbolic manipulation. Since quantitative timing properties involve a potentially unbounded state variable (a clock), our first problem is to construct a finite approximation that is conservative for the properties being analyzed-if the approximation satisfies the properties of interest, so does the infinite model. To reduce the potential for state space explosion we must further optimize this finite model. Experiments with some simple optimizations have yielded a hundred-fold efficiency improvement over published techniques.

  3. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

    CERN Document Server

    Abercrombie, Daniel; Akilli, Ece; Alcaraz Maestre, Juan; Allen, Brandon; Alvarez Gonzalez, Barbara; Andrea, Jeremy; Arbey, Alexandre; Azuelos, Georges; Azzi, Patrizia; Backovic, Mihailo; Bai, Yang; Banerjee, Swagato; Beacham, James; Belyaev, Alexander; Boveia, Antonio; Brennan, Amelia Jean; Buchmueller, Oliver; Buckley, Matthew R.; Busoni, Giorgio; Buttignol, Michael; Cacciapaglia, Giacomo; Caputo, Regina; Carpenter, Linda; Filipe Castro, Nuno; Gomez Ceballos, Guillelmo; Cheng, Yangyang; Chou, John Paul; Cortes Gonzalez, Arely; Cowden, Chris; D'Eramo, Francesco; De Cosa, Annapaola; De Gruttola, Michele; De Roeck, Albert; De Simone, Andrea; Deandrea, Aldo; Demiragli, Zeynep; DiFranzo, Anthony; Doglioni, Caterina; du Pree, Tristan; Erbacher, Robin; Erdmann, Johannes; Fischer, Cora; Flaecher, Henning; Fox, Patrick J.; Fuks, Benjamin; Genest, Marie-Helene; Gomber, Bhawna; Goudelis, Andreas; Gramling, Johanna; Gunion, John; Hahn, Kristian; Haisch, Ulrich; Harnik, Roni; Harris, Philip C.; Hoepfner, Kerstin; Hoh, Siew Yan; Hsu, Dylan George; Hsu, Shih-Chieh; Iiyama, Yutaro; Ippolito, Valerio; Jacques, Thomas; Ju, Xiangyang; Kahlhoefer, Felix; Kalogeropoulos, Alexis; Kaplan, Laser Seymour; Kashif, Lashkar; Khoze, Valentin V.; Khurana, Raman; Kotov, Khristian; Kovalskyi, Dmytro; Kulkarni, Suchita; Kunori, Shuichi; Kutzner, Viktor; Lee, Hyun Min; Lee, Sung-Won; Liew, Seng Pei; Lin, Tongyan; Lowette, Steven; Madar, Romain; Malik, Sarah; Maltoni, Fabio; Martinez Perez, Mario; Mattelaer, Olivier; Mawatari, Kentarou; McCabe, Christopher; Megy, Theo; Morgante, Enrico; Mrenna, Stephen; Narayanan, Siddharth M.; Nelson, Andy; Novaes, Sergio F.; Padeken, Klaas Ole; Pani, Priscilla; Papucci, Michele; Paulini, Manfred; Paus, Christoph; Pazzini, Jacopo; Penning, Bjorn; Peskin, Michael E.; Pinna, Deborah; Procura, Massimiliano; Qazi, Shamona F.; Racco, Davide; Re, Emanuele; Riotto, Antonio; Rizzo, Thomas G.; Roehrig, Rainer; Salek, David; Sanchez Pineda, Arturo; Sarkar, Subir; Schmidt, Alexander; Schramm, Steven Randolph; Shepherd, William; Singh, Gurpreet; Soffi, Livia; Srimanobhas, Norraphat; Sung, Kevin; Tait, Tim M.P.; Theveneaux-Pelzer, Timothee; Thomas, Marc; Tosi, Mia; Trocino, Daniele; Undleeb, Sonaina; Vichi, Alessandro; Wang, Fuquan; Wang, Lian-Tao; Wang, Ren-Jie; Whallon, Nikola; Worm, Steven; Wu, Mengqing; Wu, Sau Lan; Yang, Hongtao; Yang, Yong; Yu, Shin-Shan; Zaldivar, Bryan; Zanetti, Marco; Zhang, Zhiqing; Zucchetta, Alberto

    2015-01-01

    This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.

  4. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

    OpenAIRE

    Abercrombie, Daniel; Akchurin, Nural; Akilli, Ece; Maestre, Juan Alcaraz; Allen, Brandon; Gonzalez, Barbara Alvarez; Andrea, Jeremy; Arbey, Alexandre; Azuelos, Georges; Azzi, Patrizia; Backović, Mihailo; Bai, Yang; Banerjee, Swagato; Beacham, James; Belyaev, Alexander

    2015-01-01

    This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report als...

  5. Fast Atmosphere-Ocean Model Runs with Large Changes in CO2

    Science.gov (United States)

    Russell, Gary L.; Lacis, Andrew A.; Rind, David H.; Colose, Christopher; Opstbaum, Roger F.

    2013-01-01

    How does climate sensitivity vary with the magnitude of climate forcing? This question was investigated with the use of a modified coupled atmosphere-ocean model, whose stability was improved so that the model would accommodate large radiative forcings yet be fast enough to reach rapid equilibrium. Experiments were performed in which atmospheric CO2 was multiplied by powers of 2, from 1/64 to 256 times the 1950 value. From 8 to 32 times, the 1950 CO2, climate sensitivity for doubling CO2 reaches 8 C due to increases in water vapor absorption and cloud top height and to reductions in low level cloud cover. As CO2 amount increases further, sensitivity drops as cloud cover and planetary albedo stabilize. No water vapor-induced runaway greenhouse caused by increased CO2 was found for the range of CO2 examined. With CO2 at or below 1/8 of the 1950 value, runaway sea ice does occur as the planet cascades to a snowball Earth climate with fully ice covered oceans and global mean surface temperatures near 30 C.

  6. Models for Pooled Time-Series Cross-Section Data

    Directory of Open Access Journals (Sweden)

    Lawrence E Raffalovich

    2015-07-01

    Full Text Available Several models are available for the analysis of pooled time-series cross-section (TSCS data, defined as “repeated observations on fixed units” (Beck and Katz 1995. In this paper, we run the following models: (1 a completely pooled model, (2 fixed effects models, and (3 multi-level/hierarchical linear models. To illustrate these models, we use a Generalized Least Squares (GLS estimator with cross-section weights and panel-corrected standard errors (with EViews 8 on the cross-national homicide trends data of forty countries from 1950 to 2005, which we source from published research (Messner et al. 2011. We describe and discuss the similarities and differences between the models, and what information each can contribute to help answer substantive research questions. We conclude with a discussion of how the models we present may help to mitigate validity threats inherent in pooled time-series cross-section data analysis.

  7. An improved Peronnet-Thibault mathematical model of human running performance.

    Science.gov (United States)

    Alvarez-Ramirez, Jose

    2002-04-01

    Using an improved Peronnet-Thibault model to analyse the maximal power available during exercise, it was found that a 3rd-order relaxation process for the decreasing dynamics of aerobic power can describe accurately the data available for world track records and aerobic-to-total energy ratio (ATER). It was estimated that the time-scales for the decreasing dynamics are around 25 s for anaerobic power output and that they range from 2.12 h to 7.8 days for aerobic power output. In agreement with experimental evidence, the ATER showed a rapid increase during the first 300 s of exercise duration, to achieve an asymptote close to 100% after 1,000 s. In addition, the transition time when the ATER rose above 50% was found to be at a race duration of about 100 s, which would correspond to race distances of about 800 m. The results suggest that the aerobic power output achieves its maximal value at 300-400 s, and reaches a plateau at 26-28 W.kg(-1) that lasts about 5,000 s. After this period, the aerobic power output decreases slowly due to the contribution of long time-scale metabolic processes having smaller energy contributions (about 30% to 40% of the total aerobic power output).

  8. Physical modeling of long-wave run-up mitigation using submerged breakwaters

    Science.gov (United States)

    Lee, Yu-Ting; Wu, Yun-Ta; Hwung, Hwung-Hweng; Yang, Ray-Yeng

    2016-04-01

    Natural hazard due to tsunami inundation inland has been viewed as a crucial issue for coastal engineering community. The 2004 India Ocean tsunami and the 2011 Tohoku earthquake tsunami were caused by mega scale earthquakes that brought tremendous catastrophe in the disaster regions. It is thus of great importance to develop innovative approach to achieve the reduction and mitigation of tsunami hazards. In this study, new experiments have been carried out in a laboratory-scale to investigate the physical process of long-wave through submerged breakwaters built upon a mild slope. Solitary-wave is employed to represent the characteristic of long-wave with infinite wavelength and wave period. Our goal is twofold. First of all, through changing the positions of single breakwater and multiple breakwaters upon a mild slope, the optimal locations of breakwaters can be pointed out by means of maximum run-up reduction. Secondly, through using a state-of-the-art measuring technique Bubble Image Velocimetry, which features non-intrusive and image-based measurement, the wave kinematics in the highly aerated region due to solitary-wave shoaling, breaking and uprush can be quantitated. Therefore, the mitigation of long-wave due to the construction of submerged breakwaters built upon a mild slope can be evaluated not only for imaging run-up and run-down characteristics but also for measuring turbulent velocity fields due to breaking wave. Although we understand the most devastating tsunami hazards cannot be fully mitigated with impossibility, this study is to provide quantitated information on what kind of artificial coastal structure that can withstand which level of wave loads.

  9. Classical running and symmetry breaking in models with two extra dimensions

    CERN Document Server

    Papineau, C

    2007-01-01

    We consider a codimension two scalar theory with brane-localised Higgs type potential. The six-dimensional field has Dirichlet boundary condition on the bounds of the transverse compact space. The regularisation of the brane singularity yields renormalisation group evolution for the localised couplings at the classical level. In particular, a tachyonic mass term grows at large distances and hits a Landau pole. We exhibit a peculiar value of the bare coupling such that the running mass parameter becomes large precisely at the compactification scale, and the effective four-dimensional zero mode is massless. Above the critical coupling, spontaneous symmetry breaking occurs and there is a very light state.

  10. Running Linux

    CERN Document Server

    Dalheimer, Matthias Kalle

    2006-01-01

    The fifth edition of Running Linux is greatly expanded, reflecting the maturity of the operating system and the teeming wealth of software available for it. Hot consumer topics such as audio and video playback applications, groupware functionality, and spam filtering are covered, along with the basics in configuration and management that always made the book popular.

  11. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2013-01-01

    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...

  12. NASA AVOSS Fast-Time Wake Prediction Models: User's Guide

    Science.gov (United States)

    Ahmad, Nash'at N.; VanValkenburg, Randal L.; Pruis, Matthew

    2014-01-01

    The National Aeronautics and Space Administration (NASA) is developing and testing fast-time wake transport and decay models to safely enhance the capacity of the National Airspace System (NAS). The fast-time wake models are empirical algorithms used for real-time predictions of wake transport and decay based on aircraft parameters and ambient weather conditions. The aircraft dependent parameters include the initial vortex descent velocity and the vortex pair separation distance. The atmospheric initial conditions include vertical profiles of temperature or potential temperature, eddy dissipation rate, and crosswind. The current distribution includes the latest versions of the APA (3.4) and the TDP (2.1) models. This User's Guide provides detailed information on the model inputs, file formats, and the model output. An example of a model run and a brief description of the Memphis 1995 Wake Vortex Dataset is also provided.

  13. Integrating Geo-Spatial Data for Regional Landslide Susceptibility Modeling in Consideration of Run-Out Signature

    Science.gov (United States)

    Lai, J.-S.; Tsai, F.; Chiang, S.-H.

    2016-06-01

    This study implements a data mining-based algorithm, the random forests classifier, with geo-spatial data to construct a regional and rainfall-induced landslide susceptibility model. The developed model also takes account of landslide regions (source, non-occurrence and run-out signatures) from the original landslide inventory in order to increase the reliability of the susceptibility modelling. A total of ten causative factors were collected and used in this study, including aspect, curvature, elevation, slope, faults, geology, NDVI (Normalized Difference Vegetation Index), rivers, roads and soil data. Consequently, this study transforms the landslide inventory and vector-based causative factors into the pixel-based format in order to overlay with other raster data for constructing the random forests based model. This study also uses original and edited topographic data in the analysis to understand their impacts to the susceptibility modeling. Experimental results demonstrate that after identifying the run-out signatures, the overall accuracy and Kappa coefficient have been reached to be become more than 85 % and 0.8, respectively. In addition, correcting unreasonable topographic feature of the digital terrain model also produces more reliable modelling results.

  14. Modelling of Attentional Dwell Time

    DEFF Research Database (Denmark)

    Petersen, Anders; Kyllingsbæk, Søren; Bundesen, Claus

    2009-01-01

    into the temporal domain. In the neural interpretation of TVA (NTVA; Bundesen, Habekost and Kyllingsbæk, 2005), processing resources are implemented as allocation of cortical cells to objects in the visual field. A feedback mechanism is then used to keep encoded objects in VSTM alive. The proposed model...... of attentional dwell time extends these mechanisms by proposing that the processing resources (cells) already engaged in a feedback loop (i.e. allocated to an object) are locked in VSTM and therefore cannot be allocated to other objects in the visual field before the encoded object has been released...

  15. [Research and implementation of a real-time monitoring system for running status of medical monitors based on the internet of things].

    Science.gov (United States)

    Li, Yiming; Qian, Mingli; Li, Long; Li, Bin

    2014-07-01

    This paper proposed a real-time monitoring system for running status of medical monitors based on the internet of things. In the aspect of hardware, a solution of ZigBee networks plus 470 MHz networks is proposed. In the aspect of software, graphical display of monitoring interface and real-time equipment failure alarm is implemented. The system has the function of remote equipment failure detection and wireless localization, which provides a practical and effective method for medical equipment management.

  16. The Tourism Market of Australia – A Model of Managerial Performance in Running an Exotic Tourist Destination

    Directory of Open Access Journals (Sweden)

    Mihai Daniela

    2012-12-01

    Full Text Available The purpose of this paper is to illustrate the performance management that government decision-making bodies involve in organizing tourism in Australia. The proposed quantitative indicators evaluate the managerial performance in running this system: macroeconomic indicators of domestic and international tourist flows and their impact on the Australian economy. The conclusion is that the national tourism development strategy adopted in Australia, through its objectives and identified strategic options, offers the potential to enhance the competitiveness of the tourism industry. The interim results of its implementation demonstrate its effectiveness: in Australia, tourism has become the real driver of socioeconomic progress, thus a model of performance management in running a potentially valuable tourist destinations.

  17. Modeling Fall Run Chinook Salmon Populations in the San Joaquin River Basin Using an Artificial Neural Network

    Science.gov (United States)

    Keyantash, J.; Quinn, N. W.; Hidalgo, H. G.; Dracup, J. A.

    2002-12-01

    The number of chinook salmon returning to spawn during the fall run (September-November) were separately modeled for three San Joaquin River tributaries-the Stanislaus, Tuolumne, and Merced Rivers-to determine the sensitivity of salmon populations to hydrologic alterations associated with potential climate change. The modeling was accomplished using a feed-forward artificial neural network (ANN) with error backpropagation. Inputs to the ANN included modeled monthly river temperature and streamflow data for each tributary, and were lagged multiple years to include the effects of antecedent environmental conditions upon populations of salmon throughout their life histories. Temperature and streamflow conditions at downstream locations in each tributary were computed using the California Dept. of Water Resources' DSM-2 model. Inputs to the DSM-2 model originated from regional climate modeling under a CO2 doubling scenario. Annual population data for adult chinook salmon (1951-present) were provided by the California Dept. of Fish and Game, and were used for supervised training of the ANN. It was determined that Stanislaus, Tuolumne and Merced River chinook runs could be impacted by alterations to the hydroclimatology of the San Joaquin basin.

  18. Spectral Running and Non-Gaussianity from Slow-Roll Inflation in Generalised Two--Field Models

    CERN Document Server

    Choi, Ki-Young; van de Bruck, Carsten

    2008-01-01

    Theories beyond the standard model such as string theory motivate low energy effective field theories with several scalar fields which are not only coupled through a potential but also through their kinetic terms. For such theories we derive the general formulae for the running of the spectral indices for the adiabatic, isocurvature and correlation spectra in the case of two field inflation. We also compute the expected non-Gaussianity in such models for specific forms of the potentials. We find that the coupling has little impact on the level of non-Gaussianity during inflation.

  19. Hourly Comparison of GPM-IMERG-Final-Run and IMERG-Real-Time (V-03) over a Dense Surface Network in Northeastern Austria

    Science.gov (United States)

    Sharifi, Ehsan; Steinacker, Reinhold; Saghafian, Bahram

    2017-04-01

    Accurate quantitative daily precipitation estimation is key to meteorological and hydrological applications in hazards forecast and management. In-situ observations over mountainous areas are mostly limited, however, currently available satellite precipitation products can potentially provide the precipitation estimation needed for meteorological and hydrological applications. Over the years, blended methods that use multi-satellites and multi-sensors have been developed for estimating of global precipitation. One of the latest satellite precipitation products is GPM-IMERG (Global Precipitation Measurement with 30-minute temporal and 0.1-degree spatial resolutions) which consists of three products: Final-Run (aimed for research), Real-Time early run, and Real-Time late run. The Integrated Multisatellite Retrievals for GPM (IMERG) products built upon the success of TRMM's Multisatellite Precipitation Analysis (TMPA) products continue to make improvements in spatial and temporal resolutions and snowfall estimates. Recently, researchers who evaluated IMERG-Final-Run V-03 and other precipitation products indicated better performance for IMERG-Final-Run against other similar products. In this study two GPM-IMERG products, namely final run and real time-late run, were evaluated against a dense synoptic stations network (62 stations) over Northeastern Austria for mid-March 2015 to end of January 2016 period at hourly time-scale. Both products were examined against the reference data (stations) in capturing the occurrence of precipitation and statistical characteristics of precipitation intensity. Both satellite precipitation products underestimated precipitation events of 0.1 mm/hr to 0.4 mm/hr in intensity. For precipitations 0.4 mm/hr and greater, the trend was reversed and both satellite products overestimated than station recorded data. IMERG-RT outperformed IMERG-FR for precipitation intensity in the range of 0.1 mm/hr to 0.4 mm/hr while in the range of 1.1 to 1.8 mm

  20. Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    Science.gov (United States)

    Gigou, Pierre-Yves; Dion, Tommy; Asselin, Audrey; Berrigan, Felix; Goulet, Eric D. B.

    2012-01-01

    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (P Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (P running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise. PMID:23016126

  1. A mechanistic model on the role of "radially-running" collagen fibers on dissection properties of human ascending thoracic aorta.

    Science.gov (United States)

    Pal, Siladitya; Tsamis, Alkiviadis; Pasta, Salvatore; D'Amore, Antonio; Gleason, Thomas G; Vorp, David A; Maiti, Spandan

    2014-03-21

    Aortic dissection (AoD) is a common condition that often leads to life-threatening cardiovascular emergency. From a biomechanics viewpoint, AoD involves failure of load-bearing microstructural components of the aortic wall, mainly elastin and collagen fibers. Delamination strength of the aortic wall depends on the load-bearing capacity and local micro-architecture of these fibers, which may vary with age, disease and aortic location. Therefore, quantifying the role of fiber micro-architecture on the delamination strength of the aortic wall may lead to improved understanding of AoD. We present an experimentally-driven modeling paradigm towards this goal. Specifically, we utilize collagen fiber micro-architecture, obtained in a parallel study from multi-photon microscopy, in a predictive mechanistic framework to characterize the delamination strength. We then validate our model against peel test experiments on human aortic strips and utilize the model to predict the delamination strength of separate aortic strips and compare with experimental findings. We observe that the number density and failure energy of the radially-running collagen fibers control the peel strength. Furthermore, our model suggests that the lower delamination strength previously found for the circumferential direction in human aorta is related to a lower number density of radially-running collagen fibers in that direction. Our model sets the stage for an expanded future study that could predict AoD propagation in patient-specific aortic geometries and better understand factors that may influence propensity for occurrence.

  2. Running Club

    CERN Multimedia

    Running Club

    2011-01-01

    The cross country running season has started well this autumn with two events: the traditional CERN Road Race organized by the Running Club, which took place on Tuesday 5th October, followed by the ‘Cross Interentreprises’, a team event at the Evaux Sports Center, which took place on Saturday 8th October. The participation at the CERN Road Race was slightly down on last year, with 65 runners, however the participants maintained the tradition of a competitive yet friendly atmosphere. An ample supply of refreshments before the prize giving was appreciated by all after the race. Many thanks to all the runners and volunteers who ensured another successful race. The results can be found here: https://espace.cern.ch/Running-Club/default.aspx CERN participated successfully at the cross interentreprises with very good results. The teams succeeded in obtaining 2nd and 6th place in the Mens category, and 2nd place in the Mixed category. Congratulations to all. See results here: http://www.c...

  3. RUN COORDINATION

    CERN Multimedia

    M. Chamizo

    2012-01-01

      On 17th January, as soon as the services were restored after the technical stop, sub-systems started powering on. Since then, we have been running 24/7 with reduced shift crew — Shift Leader and DCS shifter — to allow sub-detectors to perform calibration, noise studies, test software upgrades, etc. On 15th and 16th February, we had the first Mid-Week Global Run (MWGR) with the participation of most sub-systems. The aim was to bring CMS back to operation and to ensure that we could run after the winter shutdown. All sub-systems participated in the readout and the trigger was provided by a fraction of the muon systems (CSC and the central RPC wheel). The calorimeter triggers were not available due to work on the optical link system. Initial checks of different distributions from Pixels, Strips, and CSC confirmed things look all right (signal/noise, number of tracks, phi distribution…). High-rate tests were done to test the new CSC firmware to cure the low efficiency ...

  4. REAL STOCK PRICES AND THE LONG-RUN MONEY DEMAND FUNCTION IN MALAYSIA: Evidence from Error Correction Model

    Directory of Open Access Journals (Sweden)

    Naziruddin Abdullah

    2004-06-01

    Full Text Available This study adopts the error correction model to empirically investigate the role of real stock prices in the long run-money demand in the Malaysian financial or money market for the period 1977: Q1-1997: Q2. Specifically, an attempt is made to check whether the real narrow money (M1/P is cointegrated with the selected variables like industrial production index (IPI, one-year T-Bill rates (TB12, and real stock prices (RSP. If a cointegration between the variables, i.e., the dependent and independent variables, is found to be the case, it may imply that there exists a long-run co-movement among these variables in the Malaysian money market. From the empirical results it is found that the cointegration between money demand and real stock prices (RSP is positive, implying that in the long run there is a positive association between real stock prices (RSP and demand for real narrow money (M1/P. The policy implication that can be extracted from this study is that an increase in stock prices is likely to necessitate an expansionary monetary policy to prevent nominal income or inflation target from undershooting.

  5. 开放网络环境下软件运行时故障诊断研究%Research on Diagnosing the Fault of Run-time Software in an Open Network Environment

    Institute of Scientific and Technical Information of China (English)

    文志诚; 李长云; 满君丰

    2012-01-01

    In an open environment, diagnosing software fault in run-time is essential in a practical application. It is a good idea to build a hidden Markov model ( HMM) with some external features of run-time software and all possible fault. Collecting the run-time value of some external features, we can diagnose the software fault in run-time that general methods don't find it easily. In the HMM-building process, this paper proposes a so-called "3a principle" to make the continuous random variable be discrete, which has two unique advantages in making variable be discrete and determining the priori parameters of hidden Markov mode. The "3ct principle" accords to actual situation of run-time software and operates easily, which has a rigorous theoretical foundation. At the same time, this paper proposes an actual application case in open network environment. The experiments illuminate that the method proposed in this paper has unique advantage in diagnosing software fault in run-time.%在开放网络环境中,软件运行时的故障诊断与查找是必要的.利用软件运行时的外在表现特征与所有可能的故障建立隐马尔可夫模型,在应用中收集软件运行时外在表现特征的数据,可以诊断出用普通方法不易诊断出的软件故障.在建立隐马尔可夫模型过程中,文中提出使用”3σ原则”来离散化连续型随机变量,其在变量离散化及确定参数先验值方面具有独特优势,操作既方便又符合实际情况,且具有严格的理论依据;同时,给出一个开放网络环境的应用案例.通过仿真实验,证实本文所提出的方法在软件运行时故障诊断方面较其他方法具有独特的优势.

  6. The 14 TeV LHC Takes Aim at SUSY: A No-Scale Supergravity Model for LHC Run 2

    CERN Document Server

    Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W

    2015-01-01

    The Supergravity model named No-Scale ${\\cal F}$-$SU(5)$, which is based upon the flipped $SU$(5) Grand Unified Theory (GUT) with additional TeV-scale vector-like flippon multiplets, has been partially probed during the LHC Run 1 at 7-8 TeV, though the majority of its model space remains viable and should be accessible by the 13-14 TeV LHC during Run 2. The model framework possesses the rather unique capacity to provide a light CP-even Higgs boson mass in the favored 124-126 GeV window while simultaneously retaining a testably light supersymmetry (SUSY) spectrum. We summarize the outlook for No-Scale ${\\cal F}$-$SU(5)$ at the 13-14 TeV LHC and review a promising methodology for the discrimination of its long-chain cascade decay signature. We further show that proportional dependence of all model scales upon the unified gaugino mass $M_{1/2}$ minimizes electroweak fine-tuning, allowing the $Z$-boson mass $M_Z$ to be expressed as an explicit function of $M_{1/2}$, $M_Z^2 = M_Z^2 (M_{1/2}^2)$, with implicit depe...

  7. Passenger Sharing of the High-Speed Railway from Sensitivity Analysis Caused by Price and Run-time Based on the Multi-Agent System

    Directory of Open Access Journals (Sweden)

    Ma Ning

    2013-09-01

    Full Text Available Purpose: Nowadays, governments around the world are active in constructing the high-speed railway. Therefore, it is significant to make research on this increasingly prevalent transport.Design/methodology/approach: In this paper, we simulate the process of the passenger’s travel mode choice by adjusting the ticket fare and the run-time based on the multi-agent system (MAS.Findings: From the research we get the conclusion that increasing the run-time appropriately and reducing the ticket fare in some extent are effective ways to enhance the passenger sharing of the high-speed railway.Originality/value: We hope it can provide policy recommendations for the railway sectors in developing the long-term plan on high-speed railway in the future.

  8. Using Simulated Partial Dynamic Run-Time Reconfiguration to Share Embedded FPGA Compute and Power Resources across a Swarm of Unpiloted Airborne Vehicles

    Directory of Open Access Journals (Sweden)

    Kearney David

    2007-01-01

    Full Text Available We show how the limited electrical power and FPGA compute resources available in a swarm of small UAVs can be shared by moving FPGA tasks from one UAV to another. A software and hardware infrastructure that supports the mobility of embedded FPGA applications on a single FPGA chip and across a group of networked FPGA chips is an integral part of the work described here. It is shown how to allocate a single FPGA's resources at run time and to share a single device through the use of application checkpointing, a memory controller, and an on-chip run-time reconfigurable network. A prototype distributed operating system is described for managing mobile applications across the swarm based on the contents of a fuzzy rule base. It can move applications between UAVs in order to equalize power use or to enable the continuous replenishment of fully fueled planes into the swarm.

  9. Using Simulated Partial Dynamic Run-Time Reconfiguration to Share Embedded FPGA Compute and Power Resources across a Swarm of Unpiloted Airborne Vehicles

    Directory of Open Access Journals (Sweden)

    David Kearney

    2007-02-01

    Full Text Available We show how the limited electrical power and FPGA compute resources available in a swarm of small UAVs can be shared by moving FPGA tasks from one UAV to another. A software and hardware infrastructure that supports the mobility of embedded FPGA applications on a single FPGA chip and across a group of networked FPGA chips is an integral part of the work described here. It is shown how to allocate a single FPGA's resources at run time and to share a single device through the use of application checkpointing, a memory controller, and an on-chip run-time reconfigurable network. A prototype distributed operating system is described for managing mobile applications across the swarm based on the contents of a fuzzy rule base. It can move applications between UAVs in order to equalize power use or to enable the continuous replenishment of fully fueled planes into the swarm.

  10. A numerical study of tsunami wave impact and run-up on coastal cliffs using a CIP-based model

    Science.gov (United States)

    Zhao, Xizeng; Chen, Yong; Huang, Zhenhua; Hu, Zijun; Gao, Yangyang

    2017-05-01

    There is a general lack of understanding of tsunami wave interaction with complex geographies, especially the process of inundation. Numerical simulations are performed to understand the effects of several factors on tsunami wave impact and run-up in the presence of gentle submarine slopes and coastal cliffs, using an in-house code, a constrained interpolation profile (CIP)-based model. The model employs a high-order finite difference method, the CIP method, as the flow solver; utilizes a VOF-type method, the tangent of hyperbola for interface capturing/slope weighting (THINC/SW) scheme, to capture the free surface; and treats the solid boundary by an immersed boundary method. A series of incident waves are arranged to interact with varying coastal geographies. Numerical results are compared with experimental data and good agreement is obtained. The influences of gentle submarine slope, coastal cliff and incident wave height are discussed. It is found that the tsunami amplification factor varying with incident wave is affected by gradient of cliff slope, and the critical value is about 45°. The run-up on a toe-erosion cliff is smaller than that on a normal cliff. The run-up is also related to the length of a gentle submarine slope with a critical value of about 2.292 m in the present model for most cases. The impact pressure on the cliff is extremely large and concentrated, and the backflow effect is non-negligible. Results of our work are highly precise and helpful in inverting tsunami source and forecasting disaster.

  11. Parallel runs of a large air pollution model on a grid of Sun computers

    DEFF Research Database (Denmark)

    Alexandrov, V.N.; Owczarz, W.; Thomsen, Per Grove

    2004-01-01

    Large -scale air pollution models can successfully be used in different environmental studies. These models are described mathematically by systems of partial differential equations. Splitting procedures followed by discretization of the spatial derivatives leads to several large systems of ordin...

  12. A Swiss Watch Running on Chilean Time: A Progress Report on Two New Automated CORALIE RV Pipelines

    CERN Document Server

    Jenkins, James S

    2010-01-01

    We present the current status of two new fully automated reduction and analysis pipelines, built for the Euler telescope and the CORALIE spectrograph. Both pipelines have been designed and built independently at the Universidad de Chile and Universidad Catolica by the two authors. Each pipeline has also been written on two different platforms, IDL and Python, and both can run fully automatically through full reduction and analysis of CORALIE datasets. The reduction goes through all standard steps from bias subtraction, flat-fielding, scattered light removal, optimal extraction and full wavelength calibration of the data using well exposed ThAr arc lamps. The reduced data are then cross-correlated with a binary template matched to the spectral type of each star and the cross-correlation functions are fit with a Gaussian to extract precision radial-velocities. For error analysis we are currently testing bootstrap, jackknifing and cross validation methods to properly determine uncertainties directly from the dat...

  13. Modelling Energy Loss Mechanisms and a Determination of the Electron Energy Scale for the CDF Run II W Mass Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Riddick, Thomas [Univ. College London, Bloomsbury (United Kingdom)

    2012-06-15

    The calibration of the calorimeter energy scale is vital to measuring the mass of the W boson at CDF Run II. For the second measurement of the W boson mass at CDF Run II, two independent simulations were developed. This thesis presents a detailed description of the modification and validation of Bremsstrahlung and pair production modelling in one of these simulations, UCL Fast Simulation, comparing to both geant4 and real data where appropriate. The total systematic uncertainty on the measurement of the W boson mass in the W → eve channel from residual inaccuracies in Bremsstrahlung modelling is estimated as 6.2 ±3.2 MeV/c2 and the total systematic uncertainty from residual inaccuracies in pair production modelling is estimated as 2.8± 2.7 MeV=c2. Two independent methods are used to calibrate the calorimeter energy scale in UCL Fast Simulation; the results of these two methods are compared to produce a measurement of the Z boson mass as a cross-check on the accuracy of the simulation.

  14. Modeling Changes in Bed Surface Texture and Aquatic Habitat Caused by Run-of-River Hydropower Development

    Science.gov (United States)

    Fuller, T. K.; Venditti, J. G.; Nelson, P. A.; Popescu, V.; Palen, W.

    2014-12-01

    Run-of-river (RoR) hydropower has emerged as an important alternative to large reservoir-based dams in the renewable energy portfolios of China, India, Canada, and other areas around the globe. RoR projects generate electricity by diverting a portion of the channel discharge through a large pipe for several kilometers downhill where it is used to drive turbines before being returned to the channel. Individual RoR projects are thought to be less disruptive to local ecosystems than large hydropower because they involve minimal water storage, more closely match the natural hydrograph downstream of the project, and are capable of bypassing trapped sediment. However, there is concern that temporary sediment supply disruption may degrade the productivity of salmon spawning habitat downstream of the dam by causing changes in the grain size distribution of bed surface sediment. We hypothesize that salmon populations will be most susceptible to disruptions in sediment supply in channels where; 1) sediment supply is high relative to transport capacity prior to RoR development, and 2) project design creates substantial sediment storage volume. Determining the geomorphic effect of RoR development on aquatic habitat requires many years of field data collection, and even then it can be difficult to link geomorphic change to RoR development alone. As an alternative, we used a one-dimensional morphodynamic model to test our hypothesis across a range of pre-development sediment supply conditions and sediment storage volumes. Our results confirm that coarsening of the median surface grain-size is greatest in cases where pre-development sediment supply was highest and sediment storage volumes were large enough to disrupt supply over the course of the annual hydrograph or longer. In cases where the pre-development sediment supply is low, coarsening of the median surface grain-size is less than 2 mm over a multiple-year disruption period. When sediment supply is restored, our results

  15. RUN COORDINATION

    CERN Multimedia

    G. Rakness.

    2013-01-01

    After three years of running, in February 2013 the era of sub-10-TeV LHC collisions drew to an end. Recall, the 2012 run had been extended by about three months to achieve the full complement of high-energy and heavy-ion physics goals prior to the start of Long Shutdown 1 (LS1), which is now underway. The LHC performance during these exciting years was excellent, delivering a total of 23.3 fb–1 of proton-proton collisions at a centre-of-mass energy of 8 TeV, 6.2 fb–1 at 7 TeV, and 5.5 pb–1 at 2.76 TeV. They also delivered 170 μb–1 lead-lead collisions at 2.76 TeV/nucleon and 32 nb–1 proton-lead collisions at 5 TeV/nucleon. During these years the CMS operations teams and shift crews made tremendous strides to commission the detector, repeatedly stepping up to meet the challenges at every increase of instantaneous luminosity and energy. Although it does not fully cover the achievements of the teams, a way to quantify their success is the fact that that...

  16. Coupled models of heat transfer and phase transformation for the run-out table in hot rolling

    Institute of Scientific and Technical Information of China (English)

    Shui-xuan CHEN; Jun ZOU; Xin FU

    2008-01-01

    Mathematical models are been proposed to simulate the thermal and metallurgical behaviors of the strip occurring on the run-out table (ROT) in a hot strip mill. A variational method is utilized for the discretization of the governing transient conduction-convection equation, with heat transfer coefficients adaptively determined by the actual mill data. To consider the thermal effect of phase transformation during cooling, a constitutive equation for describing austenite decomposition kinetics of steel in air and water cooling zones is coupled with the heat transfer model. As the basic required inputs in the numerical simulations, thermal material properties are experimentally measured for three carbon steels and the least squares method is used to statistically derive regression models for the properties, including specific heat and thermal conductivity. The numerical simulation and experimental results show that the setup accuracy of the temperature prediction system of ROT is effectively improved.

  17. Fuzzy rule-based macroinvertebrate habitat suitability models for running waters

    NARCIS (Netherlands)

    Broekhoven, Van E.; Adriaenssens, V.; Baets, De B.; Verdonschot, P.F.M.

    2006-01-01

    A fuzzy rule-based approach was applied to a macroinvertebrate habitat suitability modelling problem. The model design was based on a knowledge base summarising the preferences and tolerances of 86 macroinvertebrate species for four variables describing river sites in springs up to small rivers in t

  18. Pre-exercise hyperhydration-induced bodyweight gain does not alter prolonged treadmill running time-trial performance in warm ambient conditions.

    Science.gov (United States)

    Gigou, Pierre-Yves; Dion, Tommy; Asselin, Audrey; Berrigan, Felix; Goulet, Eric D B

    2012-08-01

    This study compared the effect of pre-exercise hyperhydration (PEH) and pre-exercise euhydration (PEE) upon treadmill running time-trial (TT) performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%-30% RH) on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW) of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA). PEH increased BW by 1.00 ± 0.34 kg (P < 0.01) and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH) to 1.4% ± 0.4% (HYP) (P < 0.01) during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82). Heart rate (5 ± 1 beats/min) and rectal (0.3 ± 0.1 °C) and body (0.2 ± 0.1 °C) temperatures of PEE were higher than those of PEH (P < 0.05). There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80-90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise.

  19. Pre-Exercise Hyperhydration-Induced Bodyweight Gain Does Not Alter Prolonged Treadmill Running Time-Trial Performance in Warm Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Eric D. B. Goulet

    2012-08-01

    Full Text Available This study compared the effect of pre-exercise hyperhydration (PEH and pre-exercise euhydration (PEE upon treadmill running time-trial (TT performance in the heat. Six highly trained runners or triathletes underwent two 18 km TT runs (~28 °C, 25%–30% RH on a motorized treadmill, in a randomized, crossover fashion, while being euhydrated or after hyperhydration with 26 mL/kg bodyweight (BW of a 130 mmol/L sodium solution. Subjects then ran four successive 4.5 km blocks alternating between 2.5 km at 1% and 2 km at 6% gradient, while drinking a total of 7 mL/kg BW of a 6% sports drink solution (Gatorade, USA. PEH increased BW by 1.00 ± 0.34 kg (P < 0.01 and, compared with PEE, reduced BW loss from 3.1% ± 0.3% (EUH to 1.4% ± 0.4% (HYP (P < 0.01 during exercise. Running TT time did not differ between groups (PEH: 85.6 ± 11.6 min; PEE: 85.3 ± 9.6 min, P = 0.82. Heart rate (5 ± 1 beats/min and rectal (0.3 ± 0.1 °C and body (0.2 ± 0.1 °C temperatures of PEE were higher than those of PEH (P < 0.05. There was no significant difference in abdominal discomfort and perceived exertion or heat stress between groups. Our results suggest that pre-exercise sodium-induced hyperhydration of a magnitude of 1 L does not alter 80–90 min running TT performance under warm conditions in highly-trained runners drinking ~500 mL sports drink during exercise.

  20. A Swiss Watch Running on Chilean Time: A Progress Report on Two New Automated CORALIE RV Pipelines

    Science.gov (United States)

    Jenkins, J. S.; Jordán, A.

    2011-12-01

    We present the current status of two new fully automated reduction and analysis pipelines, built for the Euler telescope and the CORALIE spectrograph. Both pipelines have been designed and built independently at the Universidad de Chile and Universidad Catolica by the two authors. Each pipeline has also been written on two different platforms, IDL and Python, and both can run fully automatically through full reduction and analysis of CORALIE datasets. The reduction goes through all standard steps from bias subtraction, flat-fielding, scattered light removal, optimal extraction and full wavelength calibration of the data using well exposed ThAr arc lamps. The reduced data are then cross-correlated with a binary template matched to the spectral type of each star and the cross-correlation functions are fit with a Gaussian to extract precision radial-velocities. For error analysis we are currently testing bootstrap, jackknifing and cross validation methods to properly determine uncertainties directly from the data. Our pipelines currently show long term stability at the 12-15m/s level, measured by observations of two known radial-velocity standard stars. In the near future we plan to get the stability down to the 5-6m/s level and also transfer these pipelines to other instruments like HARPS.

  1. Impact of Different Time Series Streamflow Data on Energy Generation of a Run-of-River Hydropower Plant

    Science.gov (United States)

    Kentel, E.; Cetinkaya, M. A.

    2013-12-01

    Global issues such as population increase, power supply crises, oil prices, social and environmental concerns have been forcing countries to search for alternative energy sources such as renewable energy to satisfy the sustainable development goals. Hydropower is the most common form of renewable energy in the world. Hydropower does not require any fuel, produces relatively less pollution and waste and it is a reliable energy source with relatively low operating cost. In order to estimate the average annual energy production of a hydropower plant, sufficient and dependable streamflow data is required. The goal of this study is to investigate impact of streamflow data on annual energy generation of Balkusan HEPP which is a small run-of-river hydropower plant at Karaman, Turkey. Two different stream gaging stations are located in the vicinity of Balkusan HEPP and these two stations have different observation periods: one from 1986 to 2004 and the other from 2000 to 2009. These two observation periods show different climatic characteristics. Thus, annual energy estimations based on data from these two different stations differ considerably. Additionally, neither of these stations is located at the power plant axis, thus streamflow observations from these two stream gaging stations need to be transferred to the plant axis. This requirement introduces further errors into energy estimations. Impact of different streamflow data and transfer of streamflow observations to plant axis on annual energy generation of a small hydropower plant is investigated in this study.

  2. Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper describes how damage propagation can be modeled within the modules of aircraft gas turbine engines. To that end, response surfaces of all sensors are...

  3. Impact of treadmill running and sex on hippocampal neurogenesis in the mouse model of amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Xiaoxing Ma

    Full Text Available Hippocampal neurogenesis in the subgranular zone (SGZ of dentate gyrus (DG occurs throughout life and is regulated by pathological and physiological processes. The role of oxidative stress in hippocampal neurogenesis and its response to exercise or neurodegenerative diseases remains controversial. The present study was designed to investigate the impact of oxidative stress, treadmill exercise and sex on hippocampal neurogenesis in a murine model of heightened oxidative stress (G93A mice. G93A and wild type (WT mice were randomized to a treadmill running (EX or a sedentary (SED group for 1 or 4 wk. Immunohistochemistry was used to detect bromodeoxyuridine (BrdU labeled proliferating cells, surviving cells, and their phenotype, as well as for determination of oxidative stress (3-NT; 8-OHdG. BDNF and IGF1 mRNA expression was assessed by in situ hybridization. Results showed that: (1 G93A-SED mice had greater hippocampal neurogenesis, BDNF mRNA, and 3-NT, as compared to WT-SED mice. (2 Treadmill running promoted hippocampal neurogenesis and BDNF mRNA content and lowered DNA oxidative damage (8-OHdG in WT mice. (3 Male G93A mice showed significantly higher cell proliferation but a lower level of survival vs. female G93A mice. We conclude that G93A mice show higher hippocampal neurogenesis, in association with higher BDNF expression, yet running did not further enhance these phenomena in G93A mice, probably due to a 'ceiling effect' of an already heightened basal levels of hippocampal neurogenesis and BDNF expression.

  4. Comparing the performance of SIMD computers by running large air pollution models

    DEFF Research Database (Denmark)

    Brown, J.; Hansen, Per Christian; Wasniewski, J.

    1996-01-01

    To compare the performance and use of three massively parallel SIMD computers, we implemented a large air pollution model on these computers. Using a realistic large-scale model, we gained detailed insight about the performance of the computers involved when used to solve large-scale scientific...... problems that involve several types of numerical computations. The computers used in our study are the Connection Machines CM-200 and CM-5, and the MasPar MP-2216...

  5. runmlwin : A Program to Run the MLwiN Multilevel Modeling Software from within Stata

    Directory of Open Access Journals (Sweden)

    George Leckie

    2013-03-01

    Full Text Available We illustrate how to fit multilevel models in the MLwiN package seamlessly from within Stata using the Stata program runmlwin. We argue that using MLwiN and Stata in combination allows researchers to capitalize on the best features of both packages. We provide examples of how to use runmlwin to fit continuous, binary, ordinal, nominal and mixed response multilevel models by both maximum likelihood and Markov chain Monte Carlo estimation.

  6. Calcaneal loading during walking and running

    Science.gov (United States)

    Giddings, V. L.; Beaupre, G. S.; Whalen, R. T.; Carter, D. R.

    2000-01-01

    PURPOSE: This study of the foot uses experimentally measured kinematic and kinetic data with a numerical model to evaluate in vivo calcaneal stresses during walking and running. METHODS: External ground reaction forces (GRF) and kinematic data were measured during walking and running using cineradiography and force plate measurements. A contact-coupled finite element model of the foot was developed to assess the forces acting on the calcaneus during gait. RESULTS: We found that the calculated force-time profiles of the joint contact, ligament, and Achilles tendon forces varied with the time-history curve of the moment about the ankle joint. The model predicted peak talocalcaneal and calcaneocuboid joint loads of 5.4 and 4.2 body weights (BW) during walking and 11.1 and 7.9 BW during running. The maximum predicted Achilles tendon forces were 3.9 and 7.7 BW for walking and running. CONCLUSIONS: Large magnitude forces and calcaneal stresses are generated late in the stance phase, with maximum loads occurring at approximately 70% of the stance phase during walking and at approximately 60% of the stance phase during running, for the gait velocities analyzed. The trajectories of the principal stresses, during both walking and running, corresponded to each other and qualitatively to the calcaneal trabecular architecture.

  7. A description of the FAMOUS (version XDBUA climate model and control run

    Directory of Open Access Journals (Sweden)

    A. Osprey

    2008-12-01

    Full Text Available FAMOUS is an ocean-atmosphere general circulation model of low resolution, capable of simulating approximately 120 years of model climate per wallclock day using current high performance computing facilities. It uses most of the same code as HadCM3, a widely used climate model of higher resolution and computational cost, and has been tuned to reproduce the same climate reasonably well. FAMOUS is useful for climate simulations where the computational cost makes the application of HadCM3 unfeasible, either because of the length of simulation or the size of the ensemble desired. We document a number of scientific and technical improvements to the original version of FAMOUS. These improvements include changes to the parameterisations of ozone and sea-ice which alleviate a significant cold bias from high northern latitudes and the upper troposphere, and the elimination of volume-averaged drifts in ocean tracers. A simple model of the marine carbon cycle has also been included. A particular goal of FAMOUS is to conduct millennial-scale paleoclimate simulations of Quaternary ice ages; to this end, a number of useful changes to the model infrastructure have been made.

  8. Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model

    Science.gov (United States)

    Meloni, Davide; Ohlsson, Tommy; Riad, Stella

    2017-03-01

    We investigate the renormalization group evolution of fermion masses, mixings and quartic scalar Higgs self-couplings in an extended non-supersymmetric SO(10) model, where the Higgs sector contains the 10 H, 120 H, and 126 H representations. The group SO(10) is spontaneously broken at the GUT scale to the Pati-Salam group and subsequently to the Standard Model (SM) at an intermediate scale M I. We explicitly take into account the effects of the change of gauge groups in the evolution. In particular, we derive the renormalization group equations for the different Yukawa couplings. We find that the computed physical fermion observables can be successfully matched to the experimental measured values at the electroweak scale. Using the same Yukawa couplings at the GUT scale, the measured values of the fermion observables cannot be reproduced with a SM-like evolution, leading to differences in the numerical values up to around 80%. Furthermore, a similar evolution can be performed for a minimal SO(10) model, where the Higgs sector consists of the 10 H and 126 H representations only, showing an equally good potential to describe the low-energy fermion observables. Finally, for both the extended and the minimal SO(10) models, we present predictions for the three Dirac and Majorana CP-violating phases as well as three effective neutrino mass parameters.

  9. Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1.

    Science.gov (United States)

    Blanke, Monika; Buras, Andrzej J; Recksiegel, Stefan

    2016-01-01

    The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard [Formula: see text] and [Formula: see text] gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Taking into account the constraints from [Formula: see text] processes, significant departures from the SM predictions for [Formula: see text] and [Formula: see text] are possible, while the effects in B decays are much smaller. In particular, the LHT model favours [Formula: see text], which is not supported by the data, and the present anomalies in [Formula: see text] decays cannot be explained in this model. With the recent lattice and large N input the imposition of the [Formula: see text] constraint implies a significant suppression of the branching ratio for [Formula: see text] with respect to its SM value while allowing only for small modifications of [Formula: see text]. Finally, we investigate how the LHT physics could be distinguished from other models by means of indirect measurements and

  10. Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1

    Science.gov (United States)

    Blanke, Monika; Buras, Andrzej J.; Recksiegel, Stefan

    2016-04-01

    The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard W^± and Z^0 gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes K^+→ π ^+ν bar{ν }, KL→ π ^0ν bar{ν }, K_L→ μ ^+μ ^-, B→ X_sγ , B_{s,d}→ μ ^+μ ^-, B→ K^{(*)}ℓ ^+ℓ ^-, B→ K^{(*)}ν bar{ν }, and \\varepsilon '/\\varepsilon . Taking into account the constraints from Δ F=2 processes, significant departures from the SM predictions for K^+→ π ^+ν bar{ν } and KL→ π ^0ν bar{ν } are possible, while the effects in B decays are much smaller. In particular, the LHT model favours B(Bs→ μ ^+μ ^-) ≥ B(Bs→ μ ^+μ ^-)_SM, which is not supported by the data, and the present anomalies in B→ K^{(*)}ℓ ^+ℓ ^- decays cannot be explained in this model. With the recent lattice and large N input the imposition of the \\varepsilon '/\\varepsilon constraint implies a significant suppression of the branching ratio for KL→ π ^0ν bar{ν } with respect to its SM value while allowing only for small modifications of K^+→ π ^+ν bar{ν }. Finally, we investigate how the LHT physics could be distinguished from other models by means of

  11. Run off-on-out method and models for soil infiltrability on hill-slope under rainfall conditions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The soil infiltrability of hill-slope is important to such studies and practices as hydrological process, crop water supply, irrigation practices, and soil erosion. A new method for measuring soil infiltrability on hill-slope under rainfall condition with run off-on-out was advanced. Based on water (mass) balance, the mathematic models for soil infiltrability estimated from the advances of runoff on soil surface and the water running out of the slope were derived. Experiments of 2 cases were conducted. Case I was done under a rainfall intensity of 20 mm/h, at a slope gradient of about 0° with a runoff/on length (area) ratio of 1 : 1. Case II was under a rainfall intensity of 60 mm/h and a slope of 20° with a runoff/on length (area) ratio of 1 : 1. Double ring method was also used to measure the infiltrability for comparison purposes. The experiments were done with soil moisture of 10%. Required data were collected from laboratory experiments. The infiltrability curves were computed from the experimental data. The results indicate that the method can well conceptually represent the transient infiltrability process, with capability to simulate the very high initial soil infiltrability. The rationalities of the method and the models were validated. The errors of the method for the two cases were 1.82%/1.39% and 4.49%/3.529% (Experimental/Model) respectively, as estimated by comparing the rainfall amount with the infiltrated volume, to demonstrate the accuracy of the method. The transient and steady infiltrability measured with double ring was much lower than those with this new method, due to water supply limit and soil aggregates breaking down at initial infiltration stage. The method can overcome the short backs of the traditional sprinkler method and double ring method for soil infiltraility. It can be used to measure the infiltrability of sloped surface under rainfall-runoff-erosion conditions, in the related studies.

  12. Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1

    CERN Document Server

    Blanke, Monika; Recksiegel, Stefan

    2016-01-01

    The Littlest Higgs Model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. We present a new analysis of quark observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare $K$ and $B$ decays are still allowed to depart from their SM values. This includes $K^+\\to\\pi^+\

  13. RUN COORDINATION

    CERN Multimedia

    C. Delaere

    2012-01-01

      With the analysis of the first 5 fb–1 culminating in the announcement of the observation of a new particle with mass of around 126 GeV/c2, the CERN directorate decided to extend the LHC run until February 2013. This adds three months to the original schedule. Since then the LHC has continued to perform extremely well, and the total luminosity delivered so far this year is 22 fb–1. CMS also continues to perform excellently, recording data with efficiency higher than 95% for fills with the magnetic field at nominal value. The highest instantaneous luminosity achieved by LHC to date is 7.6x1033 cm–2s–1, which translates into 35 interactions per crossing. On the CMS side there has been a lot of work to handle these extreme conditions, such as a new DAQ computer farm and trigger menus to handle the pile-up, automation of recovery procedures to minimise the lost luminosity, better training for the shift crews, etc. We did suffer from a couple of infrastructure ...

  14. The Effect of Treadmill Running on Passive Avoidance Learning in Animal Model of Alzheimer Disease

    OpenAIRE

    Nasrin Hosseini; Hojjatallah Alaei; Parham Reisi; Maryam Radahmadi

    2013-01-01

    Background : Alzheimer′s disease was known as a progressive neurodegenerative disorder in the elderly and is characterized by dementia and severe neuronal loss in the some regions of brain such as nucleus basalis magnocellularis. It plays an important role in the brain functions such as learning and memory. Loss of cholinergic neurons of nucleus basalis magnocellularis by ibotenic acid can commonly be regarded as a suitable model of Alzheimer′s disease. Previous studies reported that exercise...

  15. Classically conformal U(1)' extended standard model, electroweak vacuum stability, and LHC Run-2 bounds

    CERN Document Server

    Das, Arindam; Okada, Nobuchika; Takahashi, Dai-suke

    2016-01-01

    We consider the minimal U(1)' extension of the Standard Model (SM) with the classically conformal invariance, where an anomaly free U(1)' gauge symmetry is introduced along with three generations of right-handed neutrinos and a U(1)' Higgs field. Since the classically conformal symmetry forbids all dimensional parameters in the model, the U(1)' gauge symmetry is broken through the Coleman-Weinberg mechanism, generating the mass terms of the U(1)' gauge boson (Z' boson) and the right-handed neutrinos. Through a mixing quartic coupling between the U(1)' Higgs field and the SM Higgs doublet field, the radiative U(1)' gauge symmetry breaking also triggers the breaking of the electroweak symmetry. In this model context, we first investigate the electroweak vacuum instability problem in the SM. Employing the renormalization group equations at the two-loop level and the central values for the world average masses of the top quark ($m_t=173.34$ GeV) and the Higgs boson ($m_h=125.09$ GeV), we perform parameter scans t...

  16. Mathematical Models of Waiting Time.

    Science.gov (United States)

    Gordon, Sheldon P.; Gordon, Florence S.

    1990-01-01

    Considered are several mathematical models that can be used to study different waiting situations. Problems involving waiting at a red light, bank, restaurant, and supermarket are discussed. A computer program which may be used with these problems is provided. (CW)

  17. Ruin Probability in Linear Time Series Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lihong

    2005-01-01

    This paper analyzes a continuous time risk model with a linear model used to model the claim process. The time is discretized stochastically using the times when claims occur, using Doob's stopping time theorem and martingale inequalities to obtain expressions for the ruin probability as well as both exponential and non-exponential upper bounds for the ruin probability for an infinite time horizon. Numerical results are included to illustrate the accuracy of the non-exponential bound.

  18. Analysis and Design of Bi-Directional DC-DC Converter in the Extended Run Time DC UPS System Based on Fuel Cell and Supercapacitor

    DEFF Research Database (Denmark)

    Zhang, Zhe; Thomsen, Ole Cornelius; Andersen, Michael A. E.

    2009-01-01

    input voltage combined with load current feedback using PI controller with anti-windup scheme to realize closed-loop control of the whole system, and verify the feasibility of the control scheme proposed by simulation. A 1kW prototype controlled by TMS320F2808 DSP is implemented and tested. Experimental......Abstract-In this paper, an extended run time DC UPS system structure with fuel cell and supercapacitor is investigated. A wide input range bi-directional dc-dc converter is described along with the phase-shift modulation scheme and phase-shift with duty cycle control, in different modes...

  19. Dynamic models in space and time

    NARCIS (Netherlands)

    Elhorst, J.P.

    2001-01-01

    This paper presents a first-order autoregressive distributed lag model in both space and time. It is shown that this model encompasses a wide series of simpler models frequently used in the analysis of space-time data as well as models that better fit the data and have never been used before. A fram

  20. Time lags in biological models

    CERN Document Server

    MacDonald, Norman

    1978-01-01

    In many biological models it is necessary to allow the rates of change of the variables to depend on the past history, rather than only the current values, of the variables. The models may require discrete lags, with the use of delay-differential equations, or distributed lags, with the use of integro-differential equations. In these lecture notes I discuss the reasons for including lags, especially distributed lags, in biological models. These reasons may be inherent in the system studied, or may be the result of simplifying assumptions made in the model used. I examine some of the techniques available for studying the solution of the equations. A large proportion of the material presented relates to a special method that can be applied to a particular class of distributed lags. This method uses an extended set of ordinary differential equations. I examine the local stability of equilibrium points, and the existence and frequency of periodic solutions. I discuss the qualitative effects of lags, and how these...

  1. TIME INCONSISTENCY AND REPUTATION IN MONETARY POLICY: A STRATEGIC MODELLING IN CONTINUOUS TIME

    Institute of Scientific and Technical Information of China (English)

    Li Jingyuan; Tian Guoqiang

    2008-01-01

    This article develops a model to examine the equilibrium behavior of the time inconsistency problem in a continuous time economy with stochastic and endogenized dis-tortion. First, the authors introduce the notion of sequentially rational equilibrium, and show that the time inconsistency problem may be solved with trigger reputation strategies for stochastic setting. The conditions for the existence of sequentially rational equilibrium are provided. Then, the concept of sequentially rational stochastically stable equilibrium is introduced. The authors compare the relative stability between the cooperative behavior and uncooperative behavior, and show that the cooperative equilibrium in this monetary policy game is a sequentially rational stochastically stable equilibrium and the uncooper-ative equilibrium is sequentially rational stochastically unstable equilibrium. In the long run, the zero inflation monetary policies are inherently more stable than the discretion rules, and once established, they tend to persist for longer periods of the time.

  2. Regional on-road vehicle running emissions modeling and evaluation for conventional and alternative vehicle technologies.

    Science.gov (United States)

    Frey, H Christopher; Zhai, Haibo; Rouphail, Nagui M

    2009-11-01

    This study presents a methodology for estimating high-resolution, regional on-road vehicle emissions and the associated reductions in air pollutant emissions from vehicles that utilize alternative fuels or propulsion technologies. The fuels considered are gasoline, diesel, ethanol, biodiesel, compressed natural gas, hydrogen, and electricity. The technologies considered are internal combustion or compression engines, hybrids, fuel cell, and electric. Road link-based emission models are developed using modal fuel use and emission rates applied to facility- and speed-specific driving cycles. For an urban case study, passenger cars were found to be the largest sources of HC, CO, and CO(2) emissions, whereas trucks contributed the largest share of NO(x) emissions. When alternative fuel and propulsion technologies were introduced in the fleet at a modest market penetration level of 27%, their emission reductions were found to be 3-14%. Emissions for all pollutants generally decreased with an increase in the market share of alternative vehicle technologies. Turnover of the light duty fleet to newer Tier 2 vehicles reduced emissions of HC, CO, and NO(x) substantially. However, modest improvements in fuel economy may be offset by VMT growth and reductions in overall average speed.

  3. 磁悬浮列车跨系统运行Petri网模型%Petri net model of maglev train running across different control systems

    Institute of Scientific and Technical Information of China (English)

    郑伟

    2012-01-01

    The general framework of running control system on maglev train was studied according to the running requirements of maglev train running across different control systems.Functional subsystems need to be added was defined.The hierarchical models of system key attributes,maglev operation procedures and the subsystem function were built based on the system theory by using Petri net.The key attributes of whole system were described by the highest model,and the operation procedures of maglev train and the reliabilities of subsystems were presented in the lower level model.The relationship between the failure rates of maglev train running across different control systems and the reliabilities of subsystem components was quantitatively analyzed with the model.It is pointed that the loss ratio of network connecting neibouring control systems should be lower than 10-6 times per hour when the required failure number of maglev train running across different systems is no more than 1 time per year.The failure rates of maglev train running across different control systems are 1.95×10-5 and 1.65×10-5 times per hour when the triggering times equal 0.2 and 2.0 min respectively,and the stepping times equal 4 and 16 min respectively.Simulation result shows that the failure rates of train running across the boundary decrease when the reliabilities of a and b networks are improved,or the triggering time and stepping time of train are prolonged.The reliability requirements of subsystem components based on the required key attributes of system level are quantantatively identified by using the proposed approach.9 figs,14 refs.%根据磁悬浮列车跨系统运行需求,研究了其运行控制系统的总体框架,明确了需要增加的功能子系统。基于系统理论,采用Petri网对系统关键属性、列车运行过程及各子系统的功能进行了层次化的建模。最高层模型描述系统整体关键属性,低层模型描述列车运行过程及可靠性。此模

  4. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    Science.gov (United States)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  5. Using a two-step matrix solution to reduce the run time in KULL's magnetic diffusion package

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, T A; Kolev, T V

    2010-12-17

    Recently a Resistive Magnetohydrodynamics (MHD) package has been added to the KULL code. In order to be compatible with the underlying hydrodynamics algorithm, a new sub-zonal magnetics discretization was developed that supports arbitrary polygonal and polyhedral zones. This flexibility comes at the cost of many more unknowns per zone - approximately ten times more for a hexahedral mesh. We can eliminate some (or all, depending on the dimensionality) of the extra unknowns from the global matrix during assembly by using a Schur complement approach. This trades expensive global work for cache-friendly local work, while still allowing solution for the full system. Significant improvements in the solution time are observed for several test problems.

  6. Metrological characteristics of the flat voltammetric electrode in time domain with a reversible electrochemical reaction running on the surface

    Science.gov (United States)

    Suchocki, Krzysztof

    2016-11-01

    The study deals with metrological characteristics of the flat voltammetric electrode used for determination of ions concentration by the DC voltammetric method, where a reversible reaction of electrochemical oxidation/reduction takes place on the surface. The analysis shows that such voltammetric electrode acts as a transducer of the first order, where the input signal is a concentration of marked ions in tested solution and the output signal is the current associated with a reversible reaction of oxidation / reduction. Metrological characteristics of such electrode in the time domain are determined by its sensitivity and time constant. The values of these parameters are defined by measurements of characteristics of the voltammetric electrode, polarization voltage and marked ions. To determine the effect of a particular volume of each of these parameters several numerical simulations are presented.

  7. From Walking to Running

    Science.gov (United States)

    Rummel, Juergen; Blum, Yvonne; Seyfarth, Andre

    The implementation of bipedal gaits in legged robots is still a challenge in state-of-the-art engineering. Human gaits could be realized by imitating human leg dynamics where a spring-like leg behavior is found as represented in the bipedal spring-mass model. In this study we explore the gap between walking and running by investigating periodic gait patterns. We found an almost continuous morphing of gait patterns between walking and running. The technical feasibility of this transition is, however, restricted by the duration of swing phase. In practice, this requires an abrupt gait transition between both gaits, while a change of speed is not necessary.

  8. Connectionist and diffusion models of reaction time.

    Science.gov (United States)

    Ratcliff, R; Van Zandt, T; McKoon, G

    1999-04-01

    Two connectionist frameworks, GRAIN (J. L. McClelland, 1993) and brain-state-in-a-box (J. A. Anderson, 1991), and R. Ratcliff's (1978) diffusion model were evaluated using data from a signal detection task. Dependent variables included response probabilities, reaction times for correct and error responses, and shapes of reaction-time distributions. The diffusion model accounted for all aspects of the data, including error reaction times that had previously been a problem for all response-time models. The connectionist models accounted for many aspects of the data adequately, but each failed to a greater or lesser degree in important ways except for one model that was similar to the diffusion model. The findings advance the development of the diffusion model and show that the long tradition of reaction-time research and theory is a fertile domain for development and testing of connectionist assumptions about how decisions are generated over time.

  9. Time-Weighted Balanced Stochastic Model Reduction

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat; Shaker, Hamid Reza

    2011-01-01

    A new relative error model reduction technique for linear time invariant (LTI) systems is proposed in this paper. Both continuous and discrete time systems can be reduced within this framework. The proposed model reduction method is mainly based upon time-weighted balanced truncation and a recent...

  10. Model checking timed automata : techniques and applications

    NARCIS (Netherlands)

    Hendriks, Martijn.

    2006-01-01

    Model checking is a technique to automatically analyse systems that have been modeled in a formal language. The timed automaton framework is such a formal language. It is suitable to model many realistic problems in which time plays a central role. Examples are distributed algorithms, protocols, emb

  11. Lag space estimation in time series modelling

    DEFF Research Database (Denmark)

    Goutte, Cyril

    1997-01-01

    The purpose of this article is to investigate some techniques for finding the relevant lag-space, i.e. input information, for time series modelling. This is an important aspect of time series modelling, as it conditions the design of the model through the regressor vector a.k.a. the input layer...

  12. Comparative adaptations in oxidative and glycolytic muscle fibers in a low voluntary wheel running rat model performing three levels of physical activity.

    Science.gov (United States)

    Hyatt, Hayden W; Toedebusch, Ryan G; Ruegsegger, Greg; Mobley, C Brooks; Fox, Carlton D; McGinnis, Graham R; Quindry, John C; Booth, Frank W; Roberts, Michael D; Kavazis, Andreas N

    2015-11-01

    A unique polygenic model of rat physical activity has been recently developed where rats were selected for the trait of low voluntary wheel running. We utilized this model to identify differences in soleus and plantaris muscles of sedentary low voluntary wheel running rats and physically active low voluntary wheel running rats exposed to moderate amounts of treadmill training. Three groups of 28-day-old male Wistar rats were used: (1) rats without a running wheel (SEDENTARY, n = 7), (2) rats housed with a running wheel (WHEEL, n = 7), and (3) rats housed with a running wheel and exercised on the treadmill (5 days/week for 20 min/day at 15.0 m/min) (WHEEL + TREADMILL, n = 7). Animals were euthanized 5 weeks after the start of the experiment and the soleus and plantaris muscles were excised and used for analyses. Increases in skeletal muscle gene expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha and fibronectin type III domain-containing protein 5 in WHEEL + TREADMILL group were observed. Also, WHEEL + TREADMILL had higher protein levels of superoxide dismutase 2 and decreased levels of oxidative damage. Our data demonstrate that the addition of treadmill training induces beneficial muscular adaptations compared to animals with wheel access alone. Furthermore, our data expand our understanding of differential muscular adaptations in response to exercise in mitochondrial, antioxidant, and metabolic markers.

  13. Multi-user Motion JPEG2000 over wireless LAN: run-time performance-energy optimization with application-aware cross-layer scheduling

    Institute of Scientific and Technical Information of China (English)

    JI Xin; POLLIN Sofie; LENOIR Gregory; LAFRUIT Gauthier; DEJONGHE Antoine; CATTHOOR Francky

    2006-01-01

    This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the access point of a WiFi wireless local area network and extends the PHY-MAC run-time cross-layer scheduling strategy that we introduced in (Mangharam et al., 2005; Pollin et al., 2005) to also consider congested network situations where video packets have to be dropped. We show that an optimal solution at PHY-MAC level can be highly suboptimal at application level, and then show that making the cross-layer framework application-aware through a prioritized dropping policy capitalizing on the inherent scalability of Motion JPEG2000 video streams leads to drastic average video quality improvements and inter-user quality variation reductions of as much as 10 dB PSNR, without affecting the overall energy consumption requirements.

  14. Sensitivity of the T2K accelerator-based neutrino experiment with an Extended run to $20\\times10^{21}$ POT

    CERN Document Server

    Abe, K; Antonova, M; Aoki, S; Ariga, A; Autiero, D; Ban, S; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Batkiewicz, M; Berardi, V; Berkman, S; Bhadra, S; Bienstock, S; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Avanzini, M Buizza; Calland, R G; Campbell, T; Cao, S; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Chikuma, N; Christodoulou, G; Clifton, A; Coleman, J; Collazuol, G; Coplowe, D; Cremonesi, L; Dabrowska, A; De Rosa, G; Dealtry, T; Denner, P F; Dennis, S R; Densham, C; Dewhurst, D; Di Lodovico, F; Di Luise, S; Dolan, S; Drapier, O; Duffy, K E; Dumarchez, J; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, D; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giganti, C; Gizzarelli, F; Gonin, M; Grant, N; Hadley, D R; Haegel, L; Haigh, M D; Hansen, D; Harada, J; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hillairet, A; Hiraki, T; Hiramoto, A; Hirota, S; Hogan, M; Holeczek, J; Hosomi, F; Huang, K; Ichikawa, A K; Ikeda, M; Imber, J; Insler, J; Intonti, R A; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Izmaylov, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kim, H; Kim, J; King, S; Kisiel, J; Knight, A; Knox, A; Kobayashi, T; Koch, L; Koga, T; Konaka, A; Kondo, K; Kopylov, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Lamoureux, M; Larkin, E; Lasorak, P; Laveder, M; Lawe, M; Lindner, T; Liptak, Z J; Litchfield, R P; Li, X; Longhin, A; Lopez, J P; Lou, T; Ludovici, L; Lu, X; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Ma, W Y; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Minamino, A; Mineev, O; Mine, S; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakamura, K D; Nakanishi, Y; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Novella, P; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Patel, N D; Pavin, M; Payne, D; Perkin, J D; Petrov, Y; Pickard, L; Pickering, L; Guerra, E S Pinzon; Pistillo, C; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radermacher, T; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reinherz-Aronis, E; Riccio, C; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Rychter, A; Sacco, R; Sakashita, K; Sánchez, F; Scantamburlo, E; Scholberg, K; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaikhiev, A; Shaker, F; Shaw, D; Shiozawa, M; Shirahige, T; Short, S; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Steinmann, J; Stewart, T; Stowell, P; Suda, Y; Suvorov, S; Suzuki, A; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Terhorst, D; Terri, R; Thakore, T; Thompson, L F; Tobayama, S; Toki, W; Tomura, T; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vagins, M; Vallari, Z; Vasseur, G; Wachala, T; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Wilson, J R; Wilson, R J; Yamada, Y; Yamamoto, K; Yamamoto, M; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoo, J; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Żmuda, J

    2016-01-01

    Recent measurements at the T2K experiment indicate that CP violation in neutrino mixing may be observed in the future by long-baseline neutrino oscillation experiments. We explore the physics program of an extension to the currently approved T2K running of $7.8\\times 10^{21}$ protons-on-target to $20\\times 10^{21}$ protons-on-target,aiming at initial observation of CP violation with 3$\\,\\sigma$ or higher significance for the case of maximum CP violation. With accelerator and beam line upgrades, as well as analysis improvements, this program would occur before the next generation of long-baseline neutrino oscillation experiments that are expected to start operation in 2026.

  15. 26 CFR 301.6503(d)-1 - Suspension of running of period of limitation; extension of time for payment of estate tax.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Suspension of running of period of limitation... ADMINISTRATION Limitations Limitations on Assessment and Collection § 301.6503(d)-1 Suspension of running of... payment of any estate tax, the running of the period of limitations for collection of such tax...

  16. Nonlinear time series modelling: an introduction

    OpenAIRE

    Simon M. Potter

    1999-01-01

    Recent developments in nonlinear time series modelling are reviewed. Three main types of nonlinear models are discussed: Markov Switching, Threshold Autoregression and Smooth Transition Autoregression. Classical and Bayesian estimation techniques are described for each model. Parametric tests for nonlinearity are reviewed with examples from the three types of models. Finally, forecasting and impulse response analysis is developed.

  17. A Simple Fuzzy Time Series Forecasting Model

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2016-01-01

    In this paper we describe a new first order fuzzy time series forecasting model. We show that our automatic fuzzy partitioning method provides an accurate approximation to the time series that when combined with rule forecasting and an OWA operator improves forecasting accuracy. Our model does...... not attempt to provide the best results in comparison with other forecasting methods but to show how to improve first order models using simple techniques. However, we show that our first order model is still capable of outperforming some more complex higher order fuzzy time series models....

  18. Time series modeling, computation, and inference

    CERN Document Server

    Prado, Raquel

    2010-01-01

    The authors systematically develop a state-of-the-art analysis and modeling of time series. … this book is well organized and well written. The authors present various statistical models for engineers to solve problems in time series analysis. Readers no doubt will learn state-of-the-art techniques from this book.-Hsun-Hsien Chang, Computing Reviews, March 2012My favorite chapters were on dynamic linear models and vector AR and vector ARMA models.-William Seaver, Technometrics, August 2011… a very modern entry to the field of time-series modelling, with a rich reference list of the current lit

  19. Web服务化的分布仿真运行支撑环境%Run-time infrastructure of distributed simulation based on Web Services

    Institute of Scientific and Technical Information of China (English)

    吴泽彬; 吴慧中; 李蔚清

    2009-01-01

    为提高高层体系结构的重用性和互操作性,对传统高层体系结构分布仿真模型进行去耦处理,引入仿真应用层和仿真通讯层,把仿真模型和本地运行支撑环境组件分离开来,提出低耦合的高层体系结构分布仿真模型和基于web服务的高层体系结构分布仿真体系结构.据此进行Web服务化运行支撑环境的设计和原型系统开发,并给出其意义和相关性能分析.使用基于超文本传输协议的简单对象访问协议,使高层体系结构兼容的仿真联邦成员能够与运行时间框架在广域网、局域网等各类网络上通讯,屏蔽防火墙等安全限制对通讯的影响.提出运行时间框架和仿真成员Web服务化的思路,为实现仿真应用动态组合提供技术支撑.在一定的实时性能损失前提下,Web服务化的运行时间框架能够大大提高高层体系结构分布仿真的重用性和互操作性.研究结果表明,Web服务化的运行支撑环境适用于广域网范围下粗粒度的分布仿真应用.%To improve reusability and interoperability of High Level Architecture(HLA),traditional HLA distributed simulation model was decoupled by using simulation application layer and simulation communication layer to separate simulation model and local Run-Time lnfrastructure(RTI)component.A model of HLA distributed simulation with low coupling and HLA distributed simulation architecture based on Web Services was proposed.RTI based on Web Services(RTI-WS)was designed and its prototype was developed,the significance and corresponding performanee analysis was explained subsequently.HLA-compatible federates could communicate with RTI on both wide area network and local area network by Simple Object Access Protocol(SOAP)/HyperText Transport Protocol(HTTP)through most firewalls.RTl and federates were deployed as Web Services and could be integrated easily over the In ternet.RTI-WS could enhance the reusability and

  20. Climate sensitivity runs and regional hydrologic modeling for predicting the response of the greater Florida Everglades ecosystem to climate change.

    Science.gov (United States)

    Obeysekera, Jayantha; Barnes, Jenifer; Nungesser, Martha

    2015-04-01

    It is important to understand the vulnerability of the water management system in south Florida and to determine the resilience and robustness of greater Everglades restoration plans under future climate change. The current climate models, at both global and regional scales, are not ready to deliver specific climatic datasets for water resources investigations involving future plans and therefore a scenario based approach was adopted for this first study in restoration planning. We focused on the general implications of potential changes in future temperature and associated changes in evapotranspiration, precipitation, and sea levels at the regional boundary. From these, we developed a set of six climate and sea level scenarios, used them to simulate the hydrologic response of the greater Everglades region including agricultural, urban, and natural areas, and compared the results to those from a base run of current conditions. The scenarios included a 1.5 °C increase in temperature, ±10 % change in precipitation, and a 0.46 m (1.5 feet) increase in sea level for the 50-year planning horizon. The results suggested that, depending on the rainfall and temperature scenario, there would be significant changes in water budgets, ecosystem performance, and in water supply demands met. The increased sea level scenarios also show that the ground water levels would increase significantly with associated implications for flood protection in the urbanized areas of southeastern Florida.

  1. Measuring Regional Spillovers in Long- and Short-Run Models of Total Factor Productivity, Trade, and FDI

    DEFF Research Database (Denmark)

    Mitze, Timo Friedel

    2014-01-01

    This article applies the novel concept of global panel cointegration to analyze the role played by trade and foreign direct investment (FDI) activity in driving regional total factor productivity (TFP). Using West German state-level data for the period 1976–2008, the approach allows us to ident......This article applies the novel concept of global panel cointegration to analyze the role played by trade and foreign direct investment (FDI) activity in driving regional total factor productivity (TFP). Using West German state-level data for the period 1976–2008, the approach allows us...... to identify the magnitude of direct trade and FDI effects as well as spatial spillovers from these variables. The author finds that the inclusion of spatial lags significantly improves the fit of the empirical model and allows us to strongly reject the null of no cointegration among the variables in the full...... spatial specification. For the long-run cointegration equation, the empirical results hint at export- and FDI-led growth. Additionally, outward FDI activity shows to have positive spatial spillover effects among German regions, while the spatial patterns of import and inward FDI activity indicate...

  2. Of faeces and sweat. How much a mouse is willing to run: having a hard time measuring spontaneous physical activity in different mouse sub-strains

    Directory of Open Access Journals (Sweden)

    Dario Coletti

    2017-03-01

    Full Text Available Physical activity has multiple beneficial effects in the physiology and pathology of the organism. In particular, we and other groups have shown that running counteracts cancer cachexia in both humans and rodents. The latter are prone to exercise in wheel-equipped cages even at advanced stages of cachexia. However, when we wanted to replicate the experimental model routinely used at the University of Rome in a different laboratory (i.e. at Paris 6 University, we had to struggle with puzzling results due to unpredicted mouse behavior. Here we report the experience and offer the explanation underlying these apparently irreproducible results. The original data are currently used for teaching purposes in undergraduate student classes of biological sciences.

  3. Delivery Time Reliability Model of Logistics Network

    OpenAIRE

    Liusan Wu; Qingmei Tan; Yuehui Zhang

    2013-01-01

    Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assum...

  4. Continuous-Time Modeling with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.H.L.; Folmer, H.; Patuelli, R.; Nijkamp, P.

    2012-01-01

    (Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete

  5. Continuous-Time Modeling with Spatial Dependence

    NARCIS (Netherlands)

    Oud, J.; Folmer, H.; Patuelli, R.; Nijkamp, P.

    (Spatial) panel data are routinely modeled in discrete time (DT). However, compelling arguments exist for continuous-time (CT) modeling of (spatial) panel data. Particularly, most social processes evolve in CT, so that statistical analysis in DT is an oversimplification, gives an incomplete

  6. Impact of time displaced precipitation estimates for on-line updated models

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen

    2012-01-01

    is forced upon the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple timearea model and historic rain series...... that are either displaced in time or affected with a bias. The results show that for a 10 minute forecast, time displacements of 5 and 10 minutes compare to biases of 60% and 100%, respectively, independent of the catchments time of concentration....

  7. Motivation dimensions for running a marathon: A new model emerging from the Motivation of Marathon Scale (MOMS

    Directory of Open Access Journals (Sweden)

    Sima Zach

    2017-09-01

    Conclusion: This study provides a sound and solid framework for studying motivation for physically demanding tasks such as marathon runs, and needs to be similarly applied and tested in studies incorporating physical tasks which vary in mental demands.

  8. Measuring Regional Spillovers in Long- and Short-Run Models of Total Factor Productivity, Trade, and FDI

    DEFF Research Database (Denmark)

    Mitze, Timo Friedel

    2014-01-01

    throughout the analysis. Finally, summing over the four variables to get a direct and indirect net effect of internationalization activity, the author finds that the direct effect is always positive, while the indirect net effect is positive in the short run but slightly negative in the long-run equation....... spatial specification. For the long-run cointegration equation, the empirical results hint at export- and FDI-led growth. Additionally, outward FDI activity shows to have positive spatial spillover effects among German regions, while the spatial patterns of import and inward FDI activity indicate...... substitution effects of interregional input–output linkages in favor of international ones over the sample period 1976–2008. In the short run, TFP growth is predominantly affected by changes in exports, inward and outward FDI stocks, where the latter variable also provokes positive spillovers. The author...

  9. Bayesian inference for pulsar timing models

    CERN Document Server

    Vigeland, Sarah J

    2013-01-01

    The extremely regular, periodic radio emission from millisecond pulsars make them useful tools for studying neutron star astrophysics, general relativity, and low-frequency gravitational waves. These studies require that the observed pulse time of arrivals are fit to complicated timing models that describe numerous effects such as the astrometry of the source, the evolution of the pulsar's spin, the presence of a binary companion, and the propagation of the pulses through the interstellar medium. In this paper, we discuss the benefits of using Bayesian inference to obtain these timing solutions. These include the validation of linearized least-squares model fits when they are correct, and the proper characterization of parameter uncertainties when they are not; the incorporation of prior parameter information and of models of correlated noise; and the Bayesian comparison of alternative timing models. We describe our computational setup, which combines the timing models of tempo2 with the nested-sampling integ...

  10. Mixed continuous/discrete time modelling with exact time adjustments

    NARCIS (Netherlands)

    Rovers, K.C.; Kuper, Jan; van de Burgwal, M.D.; Kokkeler, Andre B.J.; Smit, Gerardus Johannes Maria

    2011-01-01

    Many systems interact with their physical environment. Design of such systems need a modelling and simulation tool which can deal with both the continuous and discrete aspects. However, most current tools are not adequately able to do so, as they implement both continuous and discrete time signals

  11. Determining the Marker Configuration and Modeling Technique to Optimize the Biomechanical Analysis of Running-Specific Prostheses

    Science.gov (United States)

    2012-03-01

    Prosthetics; 2005. 13. Nolan L. Carbon fibre prostheses and running in amputees: A review. Foot and Ankle Surgery 2008;14:125-9. 14. Gailey R...activity level may be insufficient guidelines for prescribing a stiffness category. A stiffer forefoot , wider c-curve, and thinner lay-up resulted... Surgery 2008;14:125-9. 14. Gailey R. Optimizing prosthetic running performance of the transtibial amputee. Proceedings of the Proceedings of the

  12. Preliminary Results of a U.S. Deep South Modeling Experiment Using NASA SPoRT Initialization Datasets for Operational National Weather Service Local Model Runs

    Science.gov (United States)

    Wood, Lance; Medlin, Jeffrey M.; Case, Jon

    2012-01-01

    A joint collaborative modeling effort among the NWS offices in Mobile, AL, and Houston, TX, and NASA Short-term Prediction Research and Transition (SPoRT) Center began during the 2011-2012 cold season, and continued into the 2012 warm season. The focus was on two frequent U.S. Deep South forecast challenges: the initiation of deep convection during the warm season; and heavy precipitation during the cold season. We wanted to examine the impact of certain NASA produced products on the Weather Research and Forecasting Environmental Modeling System in improving the model representation of mesoscale boundaries such as the local sea-, bay- and land-breezes (which often leads to warm season convective initiation); and improving the model representation of slow moving, or quasi-stationary frontal boundaries (which focus cold season storm cell training and heavy precipitation). The NASA products were: the 4-km Land Information System, a 1-km sea surface temperature analysis, and a 4-km greenness vegetation fraction analysis. Similar domains were established over the southeast Texas and Alabama coastlines, each with an outer grid with a 9 km spacing and an inner nest with a 3 km grid spacing. The model was run at each NWS office once per day out to 24 hours from 0600 UTC, using the NCEP Global Forecast System for initial and boundary conditions. Control runs without the NASA products were made at the NASA SPoRT Center. The NCAR Model Evaluation Tools verification package was used to evaluate both the positive and negative impacts of the NASA products on the model forecasts. Select case studies will be presented to highlight the influence of the products.

  13. Discounting Models for Outcomes over Continuous Time

    DEFF Research Database (Denmark)

    Harvey, Charles M.; Østerdal, Lars Peter

    Events that occur over a period of time can be described either as sequences of outcomes at discrete times or as functions of outcomes in an interval of time. This paper presents discounting models for events of the latter type. Conditions on preferences are shown to be satisfied if and only if t...

  14. Selective Maintenance Model Considering Time Uncertainty

    OpenAIRE

    Le Chen; Zhengping Shu; Yuan Li; Xuezhi Lv

    2012-01-01

    This study proposes a selective maintenance model for weapon system during mission interval. First, it gives relevant definitions and operational process of material support system. Then, it introduces current research on selective maintenance modeling. Finally, it establishes numerical model for selecting corrective and preventive maintenance tasks, considering time uncertainty brought by unpredictability of maintenance procedure, indetermination of downtime for spares and difference of skil...

  15. 循环取货带有时间窗约束的入库道口车辆调度%Vehicle Scheduling with Time Windows and Inbound Crossing Restrictions in the Milk Run

    Institute of Scientific and Technical Information of China (English)

    蔺宇; 徐天依

    2015-01-01

    研究了循环取货模式下带有时间窗约束的入库道口车辆调度问题,为使车辆运输成本和取货时间成本、卸货时间成本最小,建立混合整数规划数学模型,设计了两阶段算法求解模型,第一阶段产生满足容量约束的较好初始解,第二阶段通过发车时间与路径同时编码的模拟退火算法进行求解,根据某汽车制造商循环取货的实际运作情况,构造算例并验证了该模型和算法的有效性。结论表明,制造商处的道口限制对循环取货发车时间与路径调度有较大影响,同时对发车时间和路径进行调度更有利于降低循环取货的运输费用。%With the objective of minimize transportation costs and pickup time costs, unloading time costs,a mathematical model of mixed integer programming is set up for the problem of the vehicle scheduling with time windows and inbound crossing restrictions in the milk run.And a two-phase algorithm model is designed to solve the model.In the first phase a good initial solution is produced to meet capacity constraints.In the next phase,based on departure time and path coding,a simulated annealing algorithm is designed to deal with the model.Combined with the actual operation of an automobile manufacturer,an example is given to prove that the model and the algorithm are effective.The conclusions indicate that the crossing restrictions of manufacturer can influence scheduling departure time and path.Scheduling departure time and path at the same time is helpful to reduce the milk-run transportation costs.

  16. Survey of time preference, delay discounting models

    Directory of Open Access Journals (Sweden)

    John R. Doyle

    2013-03-01

    Full Text Available The paper surveys over twenty models of delay discounting (also known as temporal discounting, time preference, time discounting, that psychologists and economists have put forward to explain the way people actually trade off time and money. Using little more than the basic algebra of powers and logarithms, I show how the models are derived, what assumptions they are based upon, and how different models relate to each other. Rather than concentrate only on discount functions themselves, I show how discount functions may be manipulated to isolate rate parameters for each model. This approach, consistently applied, helps focus attention on the three main components in any discounting model: subjectively perceived money; subjectively perceived time; and how these elements are combined. We group models by the number of parameters that have to be estimated, which means our exposition follows a trajectory of increasing complexity to the models. However, as the story unfolds it becomes clear that most models fall into a smaller number of families. We also show how new models may be constructed by combining elements of different models. The surveyed models are: Exponential; Hyperbolic; Arithmetic; Hyperboloid (Green and Myerson, Rachlin; Loewenstein and Prelec Generalized Hyperboloid; quasi-Hyperbolic (also known as beta-delta discounting; Benhabib et al's fixed cost; Benhabib et al's Exponential / Hyperbolic / quasi-Hyperbolic; Read's discounting fractions; Roelofsma's exponential time; Scholten and Read's discounting-by-intervals (DBI; Ebert and Prelec's constant sensitivity (CS; Bleichrodt et al.'s constant absolute decreasing impatience (CADI; Bleichrodt et al.'s constant relative decreasing impatience (CRDI; Green, Myerson, and Macaux's hyperboloid over intervals models; Killeen's additive utility; size-sensitive additive utility; Yi, Landes, and Bickel's memory trace models; McClure et al.'s two exponentials; and Scholten and Read's trade

  17. Modeling the short-run effect of fiscal stimuli on GDP : A new semi-closed input-output model

    NARCIS (Netherlands)

    Chen, Quanrun; Dietzenbacher, Erik; Los, Bart; Yang, Cuihong

    2016-01-01

    In this study, we propose a new semi-closed input-output model, which reconciles input-output analysis with modern consumption theories. It can simulate changes in household consumption behavior when exogenous stimulus policies lead to higher disposable income levels. It is useful for quantifying

  18. IMPLEMENTING FISCAL OR MONETARY POLICY IN TIME OF CRISIS? RUNNING GRANGER CAUSALITY TO TEST THE PHILLIPS CURVE IN SOME EURO ZONE COUNTRIES

    Directory of Open Access Journals (Sweden)

    Nico Gianluigi

    2014-12-01

    Full Text Available This paper aims to provide empirical evidence about the theoretical relationship between inflation and unemployment in 9 European countries. Based on two major goals for economic policymakers namely, to keep both inflation and unemployment low, we use the ingredients of the Phillips curve to orient fiscal and monetary policies. These policies are prerogative for the achievement of a desirable combination of unemployment and inflation. More in detail, we attempt to address two basic issues. One strand of the study examines the size and sign of the impact of unemployment rate on percentage changes in inflation. In our preferred econometric model, we have made explicit the evidence according to which one unit increase (% in unemployment reduces inflation of roughly 0.73 percent, on average. Next, we turn to the question concerning the causal link between inflation and unemployment and we derive a political framework enables to orient European policymakers in the implementation of either fiscal or monetary policy. In this context, by means of the Granger causality test, we mainly find evidence of a directional causality which runs from inflation to unemployment in 4 out of 9 European countries under analysis. This result implies that political authorities of Austria, Belgium, Germany and Italy should implement monetary policy in order to achieve pre-established targets of unemployment and inflation. In the same context, a directional causality running from unemployment to inflation has been found in France and Cyprus suggesting that a reduction in the unemployment level can be achieved through controlling fiscal policy. However, succeeding in this goal may lead to an increasing demand for goods and services which, in turn, might cause a higher inflation than expected. Finally, while there is no statistical evidence of a causal link between unemployment and inflation in Finland and Greece, a bidirectional causality has been found in Estonia. This

  19. Model Epidemi Sirs Dengan Time Delay

    OpenAIRE

    Sinuhaji, Ferdinand

    2016-01-01

    The epidemic is an outbreak of an infectious disease situation in the population at a place that exceeds the normal approximation in a short period. When the disease is always contained in any place as well as with the causes, it is called endemic. This study discusses decrease SIRS epidemic models with time delay through a mathematical model based on the model of SIRS epidemic (Susceptible, Infective, Recovered, Susceptible). SIRS models used in this study with the assumption ...

  20. 一种仿人机器人跑步状态分析模型%A Running State Analysis Model for Humanoid Robot

    Institute of Scientific and Technical Information of China (English)

    王险峰; 洪炳镕; 朴松昊; 钟秋波

    2011-01-01

    In this paper, according to the dynamics of running humanoid robot, a probability model of running state analysis for humanoid robot is proposed based on the feedback of virtual acceleration sensor. Inertial force affects the running state of humanoid robot during the course of running. The value of acceleration can express inertial force. So we can obtain dynamic feedback from the virtual acceleration sensor built in humanoid robot to illustrate the running state of humanoid robot, and can analyse dynamic feedback from virtual acceleration sensor by using wavelet transform and fast Fourier transform. The probability model of running state analysis for humanoid robot is formulated by energy eigenvalue abstracted in freqency field. Using Mahalanobis distance as a criteria for stable running of humanoid robot, this model can express humanoid robot running state quantitatively. Simulation is conduct for humanoid robot model built with ADAMS, and the virtual acceleration sensor is built in the center of mass for humanoid robot. The experimental results show that this model is able to describe the running of humanoid robot and express the running state of humanoid robot during the course of running including start gait and stop gait, and it can help humanoid robot adjust their gaits with the change of environment to ensure their running stability.%依据仿人机器人跑步的动力学特性,通过对仿人机器人虚拟加速度传感器输出的信号进行分析,建立了仿人机器人跑步相关特征值的概率模型.针对仿人机器人的结构,分析了在整个跑步过程中惯性力和弯矩的作用,对跑步状态的影响,获取虚拟加速度传感器输出的信号,采用小波变换分析动态信号,同时进行快速傅里叶变换,在频域上提取能量特征值.使用马氏距离作为稳定跑步的判定标准,并给出了定量描述,在ADAMS软件中搭建仿人机器人,虚拟加速度传感器设置在质心处,进行跑步仿真实

  1. Comparison of extracorporeal shock wave lithotripsy running models between outsourcing cooperation and rental cooperation conducted in Taiwan.

    Science.gov (United States)

    Liu, Chih-Kuang; Ko, Ming-Chung; Chen, Shiou-Sheng; Lee, Wen-Kai; Shia, Ben-Chang; Chiang, Han-Sun

    2015-02-01

    We conducted a retrospective study to compare the cost and effectiveness between two different running models for extracorporeal shock wave lithotripsy (SWL), including the outsourcing cooperation model (OC) and the rental cooperation model (RC). Between January 1999 and December 2005, we implemented OC for the SWL, and from January 2006 to October 2011, RC was utilized. With OC, the cooperative company provided a machine and shared a variable payment with the hospital, according to treatment sessions. With RC, the cooperative company provided a machine and received a fixed rent from the hospital. We calculated the cost of each treatment session, and evaluated the break-even point to estimate the lowest number of treatment sessions to make the balance between revenue and cost every month. Effectiveness parameters, including the stone-free rate, the retreatment rate, the rate of additional procedures and complications, were evaluated. Compared with OC there were significantly less treatment sessions for RC every month (42.6±7.8 vs. 36.8±6.5, p=0.01). The cost of each treatment session was significantly higher for OC than for RC (751.6±20.0 USD vs. 684.7±16.7 USD, p=0.01). The break-even point for the hospital was 27.5 treatment sessions/month for OC, when the hospital obtained 40% of the payment, and it could be reduced if the hospital got a greater percentage. The break-even point for the hospital was 27.3 treatment sessions/month for RC. No significant differences were noticed for the stone-free rate, the retreatment rate, the rate of additional procedures and complications. Our study revealed that RC had a lower cost for every treatment session, and fewer treatment sessions of SWL/month than OC. The study might provide a managerial implication for healthcare organization managers, when they face a situation of high price equipment investment. Copyright © 2012. Published by Elsevier B.V.

  2. Delivery Time Reliability Model of Logistics Network

    Directory of Open Access Journals (Sweden)

    Liusan Wu

    2013-01-01

    Full Text Available Natural disasters like earthquake and flood will surely destroy the existing traffic network, usually accompanied by delivery delay or even network collapse. A logistics-network-related delivery time reliability model defined by a shortest-time entropy is proposed as a means to estimate the actual delivery time reliability. The less the entropy is, the stronger the delivery time reliability remains, and vice versa. The shortest delivery time is computed separately based on two different assumptions. If a path is concerned without capacity restriction, the shortest delivery time is positively related to the length of the shortest path, and if a path is concerned with capacity restriction, a minimax programming model is built to figure up the shortest delivery time. Finally, an example is utilized to confirm the validity and practicality of the proposed approach.

  3. Building Chaotic Model From Incomplete Time Series

    Science.gov (United States)

    Siek, Michael; Solomatine, Dimitri

    2010-05-01

    This paper presents a number of novel techniques for building a predictive chaotic model from incomplete time series. A predictive chaotic model is built by reconstructing the time-delayed phase space from observed time series and the prediction is made by a global model or adaptive local models based on the dynamical neighbors found in the reconstructed phase space. In general, the building of any data-driven models depends on the completeness and quality of the data itself. However, the completeness of the data availability can not always be guaranteed since the measurement or data transmission is intermittently not working properly due to some reasons. We propose two main solutions dealing with incomplete time series: using imputing and non-imputing methods. For imputing methods, we utilized the interpolation methods (weighted sum of linear interpolations, Bayesian principle component analysis and cubic spline interpolation) and predictive models (neural network, kernel machine, chaotic model) for estimating the missing values. After imputing the missing values, the phase space reconstruction and chaotic model prediction are executed as a standard procedure. For non-imputing methods, we reconstructed the time-delayed phase space from observed time series with missing values. This reconstruction results in non-continuous trajectories. However, the local model prediction can still be made from the other dynamical neighbors reconstructed from non-missing values. We implemented and tested these methods to construct a chaotic model for predicting storm surges at Hoek van Holland as the entrance of Rotterdam Port. The hourly surge time series is available for duration of 1990-1996. For measuring the performance of the proposed methods, a synthetic time series with missing values generated by a particular random variable to the original (complete) time series is utilized. There exist two main performance measures used in this work: (1) error measures between the actual

  4. Product mass transfer resistance directly determined during freeze-drying cycle runs using tunable diode laser absorption spectroscopy (TDLAS) and pore diffusion model.

    Science.gov (United States)

    Kuu, Wei Y; O'Bryan, Kevin R; Hardwick, Lisa M; Paul, Timothy W

    2011-08-01

    The pore diffusion model is used to express the dry layer mass transfer resistance, [Formula: see text], as a function of the ratio r(e)/?, where r(e) is the effective pore radius and ? is the tortuosity factor of the dry layer. Using this model, the effective pore radius of the dry layer can be estimated from the sublimation rate and product temperature profiles measured during primary drying. Freeze-drying cycle runs were performed using the LyoStar II dryer (FTS Systems), with real-time sublimation rate profiles during freeze drying continuously measured by tunable diode laser absorption spectroscopy (TDLAS). The formulations chosen for demonstration of the proposed approach include 5% mannitol, 5% sucrose, 5% lactose, 3% mannitol plus 2% sucrose, and a parenteral nutrition formulation denoted VitaM12. The three different methods used for determination of the product resistance are: (1) Using both the sublimation rate and product temperature profiles, (2) using the sublimation rate profile alone, and (3) using the product temperate profile alone. Unlike the second and third methods, the computation procedure of first method does not need solution of the complex heat and mass transfer equations.

  5. Multi-model Cross Pollination in Time

    CERN Document Server

    Du, Hailiang

    2016-01-01

    Predictive skill of complex models is often not uniform in model-state space; in weather forecasting models, for example, the skill of the model can be greater in populated regions of interest than in "remote" regions of the globe. Given a collection of models, a multi-model forecast system using the cross pollination in time approach can be generalised to take advantage of instances where some models produce systematically more accurate forecast of some components of the model-state. This generalisation is stated and then successfully demonstrated in a moderate ~40 dimensional nonlinear dynamical system suggested by Lorenz. In this demonstration four imperfect models, each with similar global forecast skill, are used. Future applications in weather forecasting and in economic forecasting are discussed. The demonstration establishes that cross pollinating forecast trajectories to enrich the collection of simulations upon which the forecast is built can yield a new forecast system with significantly more skill...

  6. CDF RunRun Control and Online Monitor

    Institute of Scientific and Technical Information of China (English)

    T.Arisawa; W.Badgett; 等

    2001-01-01

    In this paper,we discuss the CDF RunRun Control and online event monitoring system.Run Control is the top level application that controls the data acquisition activities across 150 front end VME crates and related service processes,Run Control is a real-time multi-threaded application implemented in Java with flexible state machines,using JDBC database connections to configure clients,and including a user friendly and powerful graphical user interface.The CDF online event monitoring system consists of several parts;the eent monitoring programs,the display to browse their results,the server program which communicates with the display via socket connections ,the error receiver which displays error messages and communicates with run Control,and the state manager which monitors the state of the monitor programs.

  7. Feature Matching in Time Series Modelling

    CERN Document Server

    Xia, Yingcun

    2011-01-01

    Using a time series model to mimic an observed time series has a long history. However, with regard to this objective, conventional estimation methods for discrete-time dynamical models are frequently found to be wanting. In the absence of a true model, we prefer an alternative approach to conventional model fitting that typically involves one-step-ahead prediction errors. Our primary aim is to match the joint probability distribution of the observable time series, including long-term features of the dynamics that underpin the data, such as cycles, long memory and others, rather than short-term prediction. For want of a better name, we call this specific aim {\\it feature matching}. The challenges of model mis-specification, measurement errors and the scarcity of data are forever present in real time series modelling. In this paper, by synthesizing earlier attempts into an extended-likelihood, we develop a systematic approach to empirical time series analysis to address these challenges and to aim at achieving...

  8. Modeling noisy time series Physiological tremor

    CERN Document Server

    Timmer, J

    1998-01-01

    Empirical time series often contain observational noise. We investigate the effect of this noise on the estimated parameters of models fitted to the data. For data of physiological tremor, i.e. a small amplitude oscillation of the outstretched hand of healthy subjects, we compare the results for a linear model that explicitly includes additional observational noise to one that ignores this noise. We discuss problems and possible solutions for nonlinear deterministic as well as nonlinear stochastic processes. Especially we discuss the state space model applicable for modeling noisy stochastic systems and Bock's algorithm capable for modeling noisy deterministic systems.

  9. Modeling discrete time-to-event data

    CERN Document Server

    Tutz, Gerhard

    2016-01-01

    This book focuses on statistical methods for the analysis of discrete failure times. Failure time analysis is one of the most important fields in statistical research, with applications affecting a wide range of disciplines, in particular, demography, econometrics, epidemiology and clinical research. Although there are a large variety of statistical methods for failure time analysis, many techniques are designed for failure times that are measured on a continuous scale. In empirical studies, however, failure times are often discrete, either because they have been measured in intervals (e.g., quarterly or yearly) or because they have been rounded or grouped. The book covers well-established methods like life-table analysis and discrete hazard regression models, but also introduces state-of-the art techniques for model evaluation, nonparametric estimation and variable selection. Throughout, the methods are illustrated by real life applications, and relationships to survival analysis in continuous time are expla...

  10. Estimating High-Dimensional Time Series Models

    DEFF Research Database (Denmark)

    Medeiros, Marcelo C.; Mendes, Eduardo F.

    We study the asymptotic properties of the Adaptive LASSO (adaLASSO) in sparse, high-dimensional, linear time-series models. We assume both the number of covariates in the model and candidate variables can increase with the number of observations and the number of candidate variables is, possibly...

  11. Forecasting with periodic autoregressive time series models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1999-01-01

    textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption

  12. Forecasting with periodic autoregressive time series models

    NARCIS (Netherlands)

    Ph.H.B.F. Franses (Philip Hans); R. Paap (Richard)

    1999-01-01

    textabstractThis paper is concerned with forecasting univariate seasonal time series data using periodic autoregressive models. We show how one should account for unit roots and deterministic terms when generating out-of-sample forecasts. We illustrate the models for various quarterly UK consumption

  13. Muscular strategy shift in human running: dependence of running speed on hip and ankle muscle performance.

    Science.gov (United States)

    Dorn, Tim W; Schache, Anthony G; Pandy, Marcus G

    2012-06-01

    Humans run faster by increasing a combination of stride length and stride frequency. In slow and medium-paced running, stride length is increased by exerting larger support forces during ground contact, whereas in fast running and sprinting, stride frequency is increased by swinging the legs more rapidly through the air. Many studies have investigated the mechanics of human running, yet little is known about how the individual leg muscles accelerate the joints and centre of mass during this task. The aim of this study was to describe and explain the synergistic actions of the individual leg muscles over a wide range of running speeds, from slow running to maximal sprinting. Experimental gait data from nine subjects were combined with a detailed computer model of the musculoskeletal system to determine the forces developed by the leg muscles at different running speeds. For speeds up to 7 m s(-1), the ankle plantarflexors, soleus and gastrocnemius, contributed most significantly to vertical support forces and hence increases in stride length. At speeds greater than 7 m s(-1), these muscles shortened at relatively high velocities and had less time to generate the forces needed for support. Thus, above 7 m s(-1), the strategy used to increase running speed shifted to the goal of increasing stride frequency. The hip muscles, primarily the iliopsoas, gluteus maximus and hamstrings, achieved this goal by accelerating the hip and knee joints more vigorously during swing. These findings provide insight into the strategies used by the leg muscles to maximise running performance and have implications for the design of athletic training programs.

  14. Flexible boosting of accelerated failure time models

    Directory of Open Access Journals (Sweden)

    Hothorn Torsten

    2008-06-01

    Full Text Available Abstract Background When boosting algorithms are used for building survival models from high-dimensional data, it is common to fit a Cox proportional hazards model or to use least squares techniques for fitting semiparametric accelerated failure time models. There are cases, however, where fitting a fully parametric accelerated failure time model is a good alternative to these methods, especially when the proportional hazards assumption is not justified. Boosting algorithms for the estimation of parametric accelerated failure time models have not been developed so far, since these models require the estimation of a model-specific scale parameter which traditional boosting algorithms are not able to deal with. Results We introduce a new boosting algorithm for censored time-to-event data which is suitable for fitting parametric accelerated failure time models. Estimation of the predictor function is carried out simultaneously with the estimation of the scale parameter, so that the negative log likelihood of the survival distribution can be used as a loss function for the boosting algorithm. The estimation of the scale parameter does not affect the favorable properties of boosting with respect to variable selection. Conclusion The analysis of a high-dimensional set of microarray data demonstrates that the new algorithm is able to outperform boosting with the Cox partial likelihood when the proportional hazards assumption is questionable. In low-dimensional settings, i.e., when classical likelihood estimation of a parametric accelerated failure time model is possible, simulations show that the new boosting algorithm closely approximates the estimates obtained from the maximum likelihood method.

  15. Alternative time representation in dopamine models.

    Science.gov (United States)

    Rivest, François; Kalaska, John F; Bengio, Yoshua

    2010-02-01

    Dopaminergic neuron activity has been modeled during learning and appetitive behavior, most commonly using the temporal-difference (TD) algorithm. However, a proper representation of elapsed time and of the exact task is usually required for the model to work. Most models use timing elements such as delay-line representations of time that are not biologically realistic for intervals in the range of seconds. The interval-timing literature provides several alternatives. One of them is that timing could emerge from general network dynamics, instead of coming from a dedicated circuit. Here, we present a general rate-based learning model based on long short-term memory (LSTM) networks that learns a time representation when needed. Using a naïve network learning its environment in conjunction with TD, we reproduce dopamine activity in appetitive trace conditioning with a constant CS-US interval, including probe trials with unexpected delays. The proposed model learns a representation of the environment dynamics in an adaptive biologically plausible framework, without recourse to delay lines or other special-purpose circuits. Instead, the model predicts that the task-dependent representation of time is learned by experience, is encoded in ramp-like changes in single-neuron activity distributed across small neural networks, and reflects a temporal integration mechanism resulting from the inherent dynamics of recurrent loops within the network. The model also reproduces the known finding that trace conditioning is more difficult than delay conditioning and that the learned representation of the task can be highly dependent on the types of trials experienced during training. Finally, it suggests that the phasic dopaminergic signal could facilitate learning in the cortex.

  16. Real-time model for simulating a tracked vehicle on deformable soils

    Directory of Open Access Journals (Sweden)

    Martin Meywerk

    2016-05-01

    Full Text Available Simulation is one possibility to gain insight into the behaviour of tracked vehicles on deformable soils. A lot of publications are known on this topic, but most of the simulations described there cannot be run in real-time. The ability to run a simulation in real-time is necessary for driving simulators. This article describes an approach for real-time simulation of a tracked vehicle on deformable soils. The components of the real-time model are as follows: a conventional wheeled vehicle simulated in the Multi Body System software TRUCKSim, a geometric description of landscape, a track model and an interaction model between track and deformable soils based on Bekker theory and Janosi–Hanamoto, on one hand, and between track and vehicle wheels, on the other hand. Landscape, track model, soil model and the interaction are implemented in MATLAB/Simulink. The details of the real-time model are described in this article, and a detailed description of the Multi Body System part is omitted. Simulations with the real-time model are compared to measurements and to a detailed Multi Body System–finite element method model of a tracked vehicle. An application of the real-time model in a driving simulator is presented, in which 13 drivers assess the comfort of a passive and an active suspension of a tracked vehicle.

  17. Running Parallel Discrete Event Simulators on Sierra

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jefferson, D. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  18. Hybrid ABC Optimized MARS-Based Modeling of the Milling Tool Wear from Milling Run Experimental Data

    Directory of Open Access Journals (Sweden)

    Paulino José García Nieto

    2016-01-01

    Full Text Available Milling cutters are important cutting tools used in milling machines to perform milling operations, which are prone to wear and subsequent failure. In this paper, a practical new hybrid model to predict the milling tool wear in a regular cut, as well as entry cut and exit cut, of a milling tool is proposed. The model was based on the optimization tool termed artificial bee colony (ABC in combination with multivariate adaptive regression splines (MARS technique. This optimization mechanism involved the parameter setting in the MARS training procedure, which significantly influences the regression accuracy. Therefore, an ABC–MARS-based model was successfully used here to predict the milling tool flank wear (output variable as a function of the following input variables: the time duration of experiment, depth of cut, feed, type of material, etc. Regression with optimal hyperparameters was performed and a determination coefficient of 0.94 was obtained. The ABC–MARS-based model's goodness of fit to experimental data confirmed the good performance of this model. This new model also allowed us to ascertain the most influential parameters on the milling tool flank wear with a view to proposing milling machine's improvements. Finally, conclusions of this study are exposed.

  19. Intrapersonal Achievement Goals and Underlying Reasons among Long Distance Runners: Their Relation with Race Experience, Self-Talk, and Running Time

    Directory of Open Access Journals (Sweden)

    Jochen Delrue

    2016-07-01

    Full Text Available In a sample of long distance runners, we examined the role of type of intrapersonal achievement goals (i.e., approach versus avoidance and type of underlying reasons (i.e., autonomous and controlled, assessed prior to the race, as predictors of both pre-race (e.g., race appraisals and post-race (e.g., flow experience outcomes. Of 221 (62.4% males runners, 111 reported pursuing an intrapersonal-approach goal (i.e., doing better than before as their dominant or preferred achievement goal for the race, while 86 prioritized intrapersonal-avoidance goals (i.e., avoiding to perform worse than before. Regression and path analyses showed that the type of achievement goals predicted none of the outcomes except for running time, with approach goals predicting better performance when compared to avoidance goals. Path analyses revealed that autonomous reasons underlying intrapersonal goal pursuit related positively to pre-race challenge appraisals, performance and, via need satisfaction, to flow experience. Interestingly, controlled reasons positively related to pre-race threat appraisals and positively predicted both positive and negative self-talk, with both yielding opposing relations with flow. These findings complement past research on the intersection between the Achievement Goal Approach and Self-Determination Theory and highlight the value of studying the reasons underlying intrapersonal achievement goals.

  20. Mechanical spring technology improves running economy in endurance runners

    OpenAIRE

    Riess, Kenneth James

    2014-01-01

    In recent years there has been an increase in participation in timed running events. With this increase, the motivation for individuals to run their best has motivated the running shoe industry to make design changes to traditional running foot wear in an effort to improve running economy (RE) and decrease running times. One such design change has been to incorporate mechanical springs (MS) into the midsole of the running shoe. Evaluation of this technology has yet to be performed. This study...

  1. Markov chain modeling of precipitation time series: Modeling waiting times between tipping bucket rain gauge tips

    DEFF Research Database (Denmark)

    Sørup, Hjalte Jomo Danielsen; Madsen, Henrik; Arnbjerg-Nielsen, Karsten

    2011-01-01

    A very fine temporal and volumetric resolution precipitation time series is modeled using Markov models. Both 1st and 2nd order Markov models as well as seasonal and diurnal models are investigated and evaluated using likelihood based techniques. The 2nd order Markov model is found to be insignif...

  2. Using Real Time Workshop for rapid and reliable control implementation in the Frascati Tokamak Upgrade Feedback Control System running under RTAI-GNU/Linux

    Energy Technology Data Exchange (ETDEWEB)

    Centioli, C. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Iannone, F. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Ledauphin, M. [Ecole Superieure d' Ingenieurs d' Annecy, 5 Chemin de Bellevue, 74940 Annecy le Vieux (France); Panella, M. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Pangione, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)]. E-mail: pangione@frascati.enea.it; Podda, S. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Vitale, V. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, Via E. Fermi 45, CP 65, 00044 Frascati, Rome (Italy); Zaccarian, L. [Dipartimento di Informatica, Sistemi e Produzione, Universita di Roma, Tor Vergata, Via del Politecnico 1, 00133 Rome (Italy)

    2005-11-15

    The Feedback Control System running at FTU has been recently ported from a commercial platform (based on LynxOS) to an open-source GNU/Linux-based RTAI-LXRT platform, thereby, obtaining significant performance and cost improvements. Based on the new open-source platform, it is now possible to experiment novel control strategies aimed at improving the robustness and accuracy of the feedback control. Nevertheless, the implementation of control ideas still requires a great deal of coding of the control algorithms that, if carried out manually, may be prone to coding errors, therefore time consuming both in the development phase and in the subsequent validation tests consisting of dedicated experiments carried out on FTU. In this paper, we report on recent developments based on Mathworks' Simulink and Real Time Workshop (RTW) packages to obtain a user-friendly environment where the real time code implementing novel control algorithms can be easily generated, tested and validated. Thanks to this new tool, the control designer only needs to specify the block diagram of the control task (namely, a high level and functional description of the new algorithm under consideration) and the corresponding real time code generation and testing is completely automated without any need of dedicated experiments. In the paper, the necessary work carried out to adapt the Real Time Workshop to our RTAI-LXRT context will be illustrated. A necessary re-organization of the previous real time software, aimed at incorporating the code coming from the adapted RTW, will also be discussed. Moreover, we will report on a performance comparison between the code obtained using the automated RTW-based procedure and the hand-written C code, appropriately optimised; at the moment, a preliminary performance comparison consisting of dummy algorithms has shown that the code automatically generated from RTW is faster (about 30% up) than the manually written one. This preliminary result combined with

  3. Comparing the impact of time displaced and biased precipitation estimates for online updated urban runoff models

    DEFF Research Database (Denmark)

    2013-01-01

    When an online runoff model is updated from system measurements, the requirements of the precipitation input change. Using rain gauge data as precipitation input there will be a displacement between the time when the rain hits the gauge and the time where the rain hits the actual catchment, due...... to the time it takes for the rain cell to travel from the rain gauge to the catchment. Since this time displacement is not present for system measurements the data assimilation scheme might already have updated the model to include the impact from the particular rain cell when the rain data is forced upon...... the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple time-area model and historic rain series that are either...

  4. Relationship between running kinematic changes and time limit at vVO2max. DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n4p428

    Directory of Open Access Journals (Sweden)

    Sebastião Iberes Lopes Melo

    2012-07-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2012v14n4p428Exhaustive running at maximal oxygen uptake velocity (vVO2max can alter running kinematic parameters and increase energy cost along the time. The aims of the present study were to compare characteristics of ankle and knee kinematics during running at vVO2max and to verify the relationship between changes in kinematic variables and time limit (Tlim. Eleven male volunteers, recreational players of team sports, performed an incremental running test until volitional exhaustion to determine vVO2max and a constant velocity test at vVO2max. Subjects were filmed continuously from the left sagittal plane at 210 Hz for further kinematic analysis. The maximal plantar flexion during swing (p<0.01 was the only variable that increased significantly from beginning to end of the run. Increase in ankle angle at contact was the only variable related to Tlim (r=0.64; p=0.035 and explained 34% of the performance in the test. These findings suggest that the individuals under study maintained a stable running style at vVO2max and that increase in plantar flexion explained the performance in this test when it was applied in non-runners.

  5. Time-frequency representation based on time-varying autoregressive model with applications to non-stationary rotor vibration analysis

    Indian Academy of Sciences (India)

    Long Zhang; Guoliang Xiong; Hesheng Liu; Huijun Zou; Weizhong Guo

    2010-04-01

    A parametric time-frequency representation is presented based on timevarying autoregressive model (TVAR), followed by applications to non-stationary vibration signal processing. The identification of time-varying model coefficients and the determination of model order, are addressed by means of neural networks and genetic algorithms, respectively. Firstly, a simulated signal which mimic the rotor vibration during run-up stages was processed for a comparative study on TVAR and other non-parametric time-frequency representations such as Short Time Fourier Transform, Continuous Wavelet Transform, Empirical Mode Decomposition, Wigner–Ville Distribution and Choi–Williams Distribution, in terms of their resolutions, accuracy, cross term suppression as well as noise resistance. Secondly, TVAR was applied to analyse non-stationary vibration signals collected from a rotor test rig during run-up stages, with an aim to extract fault symptoms under non-stationary operating conditions. Simulation and experimental results demonstrate that TVAR is an effective solution to non-stationary signal analysis and has strong capability in signal time-frequency feature extraction.

  6. Can Unshod Running Reduce Running Injuries?

    Science.gov (United States)

    2012-06-08

    quadrupeds run, their internal organs expand and contract like an accordion as they stride when running. As a cheetah strides forward, its lungs expand...and take in air. When the cheetah compresses its stride, the lungs are collapsed and the cheetah breathes out. This take-a-step and take-a- breath

  7. From Discrete-Time Models to Continuous-Time, Asynchronous Models of Financial Markets

    NARCIS (Netherlands)

    K. Boer-Sorban (Katalin); U. Kaymak (Uzay); J. Spiering (Jaap)

    2006-01-01

    textabstractMost agent-based simulation models of financial markets are discrete-time in nature. In this paper, we investigate to what degree such models are extensible to continuous-time, asynchronous modelling of financial markets. We study the behaviour of a learning market maker in a market with

  8. From Discrete-Time Models to Continuous-Time, Asynchronous Models of Financial Markets

    NARCIS (Netherlands)

    K. Boer-Sorban (Katalin); U. Kaymak (Uzay); J. Spiering (Jaap)

    2006-01-01

    textabstractMost agent-based simulation models of financial markets are discrete-time in nature. In this paper, we investigate to what degree such models are extensible to continuous-time, asynchronous modelling of financial markets. We study the behaviour of a learning market maker in a market with

  9. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model

    DEFF Research Database (Denmark)

    van de Weert-van Leeuwen, Pauline B; de Vrankrijker, Angélica M M; Fentz, Joachim

    2013-01-01

    moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa) load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should......Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim...... of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa) affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28...

  10. Non-Poissonian run-and-turn motions

    Science.gov (United States)

    Detcheverry, Francois

    Swimming bacteria exhibit a variety of motion patterns (run-and-tumble, run-reverse, run-reverse-flick), in which persistent runs are punctuated by sudden turning events. What are the properties of such random motions? If a complete answer has been given when the turning events follow a Poisson process, it has remained elusive outside this particular case. We present a generic framework for such non-Poissonian run-and-turn random motions. We obtain the generating function of moments by building on the framework of continuous time random walks and using non-commutative calculus. The approach is applied to a bimodal model of persistent motion that is directly applicable to swimming patterns and cell motility.

  11. Time-varying modeling of cerebral hemodynamics.

    Science.gov (United States)

    Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa; Rong Zhang

    2014-03-01

    The scientific and clinical importance of cerebral hemodynamics has generated considerable interest in their quantitative understanding via computational modeling. In particular, two aspects of cerebral hemodynamics, cerebral flow autoregulation (CFA) and CO2 vasomotor reactivity (CVR), have attracted much attention because they are implicated in many important clinical conditions and pathologies (orthostatic intolerance, syncope, hypertension, stroke, vascular dementia, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative diseases with cerebrovascular components). Both CFA and CVR are dynamic physiological processes by which cerebral blood flow is regulated in response to fluctuations in cerebral perfusion pressure and blood CO2 tension. Several modeling studies to date have analyzed beat-to-beat hemodynamic data in order to advance our quantitative understanding of CFA-CVR dynamics. A confounding factor in these studies is the fact that the dynamics of the CFA-CVR processes appear to vary with time (i.e., changes in cerebrovascular characteristics) due to neural, endocrine, and metabolic effects. This paper seeks to address this issue by tracking the changes in linear time-invariant models obtained from short successive segments of data from ten healthy human subjects. The results suggest that systemic variations exist but have stationary statistics and, therefore, the use of time-invariant modeling yields "time-averaged models" of physiological and clinical utility.

  12. Modeling of the time sharing for lecturers

    Directory of Open Access Journals (Sweden)

    E. Yu. Shakhova

    2017-01-01

    Full Text Available In the context of modernization of the Russian system of higher education, it is necessary to analyze the working time of the university lecturers, taking into account both basic job functions as the university lecturer, and others.The mathematical problem is presented for the optimal working time planning for the university lecturers. The review of the documents, native and foreign works on the study is made. Simulation conditions, based on analysis of the subject area, are defined. Models of optimal working time sharing of the university lecturers («the second half of the day» are developed and implemented in the system MathCAD. Optimal solutions have been obtained.Three problems have been solved:1 to find the optimal time sharing for «the second half of the day» in a certain position of the university lecturer;2 to find the optimal time sharing for «the second half of the day» for all positions of the university lecturers in view of the established model of the academic load differentiation;3 to find the volume value of the non-standardized part of time work in the department for the academic year, taking into account: the established model of an academic load differentiation, distribution of the Faculty number for the positions and the optimal time sharing «the second half of the day» for the university lecturers of the department.Examples are given of the analysis results. The practical application of the research: the developed models can be used when planning the working time of an individual professor in the preparation of the work plan of the university department for the academic year, as well as to conduct a comprehensive analysis of the administrative decisions in the development of local university regulations.

  13. Piketty in the long run.

    Science.gov (United States)

    Cowell, Frank A

    2014-12-01

    I examine the idea of 'the long run' in Piketty (2014) and related works. In contrast to simplistic interpretations of long-run models of income- and wealth-distribution Piketty (2014) draws on a rich economic analysis that models the intra- and inter-generational processes that underly the development of the wealth distribution. These processes inevitably involve both market and non-market mechanisms. To understand this approach, and to isolate the impact of different social and economic factors on inequality in the long run, we use the concept of an equilibrium distribution. However the long-run analysis of policy should not presume that there is an inherent tendency for the wealth distribution to approach equilibrium.

  14. Forecasting with nonlinear time series models

    DEFF Research Database (Denmark)

    Kock, Anders Bredahl; Teräsvirta, Timo

    and two versions of a simple artificial neural network model. Techniques for generating multi-period forecasts from nonlinear models recursively are considered, and the direct (non-recursive) method for this purpose is mentioned as well. Forecasting with com- plex dynamic systems, albeit less frequently...... applied to economic fore- casting problems, is briefly highlighted. A number of large published studies comparing macroeconomic forecasts obtained using different time series models are discussed, and the paper also contains a small simulation study comparing recursive and direct forecasts in a partic...

  15. Impact of time displaced precipitation estimates for on-line updated models

    DEFF Research Database (Denmark)

    Borup, Morten; Grum, Morten; Mikkelsen, Peter Steen

    2012-01-01

    catchment, due to the time it takes for the rain cell to travel from the rain gauge to the catchment. Since this time displacement is not present for system measurements the data assimilation scheme might already have updated the model to include the impact from the particular rain cell when the rain data......When an online runoff model is updated from system measurements the requirements to the precipitation estimates change. Using rain gauge data as precipitation input there will be a displacement between the time where the rain intensity hits the gauge and the time where the rain hits the actual...... is forced upon the model, which therefore will end up including the same rain twice in the model run. This paper compares forecast accuracy of updated models when using time displaced rain input to that of rain input with constant biases. This is done using a simple timearea model and historic rain series...

  16. Formal Modeling and Analysis of Timed Systems

    DEFF Research Database (Denmark)

    Larsen, Kim Guldstrand; Niebert, Peter

    This book constitutes the thoroughly refereed post-proceedings of the First International Workshop on Formal Modeling and Analysis of Timed Systems, FORMATS 2003, held in Marseille, France in September 2003. The 19 revised full papers presented together with an invited paper and the abstracts...

  17. Modeling biological rhythms in failure time data

    Directory of Open Access Journals (Sweden)

    Myles James D

    2006-11-01

    Full Text Available Abstract Background The human body exhibits a variety of biological rhythms. There are patterns that correspond, among others, to the daily wake/sleep cycle, a yearly seasonal cycle and, in women, the menstrual cycle. Sine/cosine functions are often used to model biological patterns for continuous data, but this model is not appropriate for analysis of biological rhythms in failure time data. Methods We adapt the cosinor method to the proportional hazards model and present a method to provide an estimate and confidence interval of the time when the minimum hazard is achieved. We then apply this model to data taken from a clinical trial of adjuvant of pre-menopausal breast cancer patients. Results The application of this technique to the breast cancer data revealed that the optimal day for pre-resection incisional or excisional biopsy of 28-day cycle (i. e. the day associated with the lowest recurrence rate is day 8 with 95% confidence interval of 4–12 days. We found that older age, fewer positive nodes, smaller tumor size, and experimental treatment were predictive of longer relapse-free survival. Conclusion In this paper we have described a method for modeling failure time data with an underlying biological rhythm. The advantage of adapting a cosinor model to proportional hazards model is its ability to model right censored data. We have presented a method to provide an estimate and confidence interval of the day in the menstrual cycle where the minimum hazard is achieved. This method is not limited to breast cancer data, and may be applied to any biological rhythms linked to right censored data.

  18. Reduced Resolution Groundwater Modeling in the Rio Grande for Real Time Scenario Evaluation

    Science.gov (United States)

    Roach, J. D.; Tidwell, V. C.

    2006-12-01

    As the finite, and often over-allocated water resources of the western United States are challenged by growing demands, computer based simulations can provide a powerful tool for evaluating potential water use scenarios in support of hydrologic decision making and water policy analysis. To represent the complexities of water resource management, a model should capture the salient behaviors and interactions between, the groundwater, surface water, and human behavioral systems, while to effectively connect science to the decision process, the model should run quickly enough to allow real time evaluation of a wide range of scenarios by stakeholders and decision makers themselves. As these potentially mutually exclusive objectives are pursued, the tradeoffs between resolution, run time, and the degree of coupling between modeled systems must be considered. In the Upper Rio Grande in New Mexico, three MODFLOW based, distributed groundwater models of the Espanola, Albuquerque, and Socorro groundwater basins have been used to calibrate a spatially simplified representation of the groundwater system in the region. The groundwater model is dynamically coupled to surface water and human behavioral systems as part of an integrated system dynamics based model which runs quickly enough to support rapid basin scale water policy scenario evaluation. This presentation will focus on development of the simplified groundwater model, and the performance tradeoffs and gains associated with spatial aggregation and dynamic coupling to the surface water system.

  19. Time models and cognitive processes: a review

    Directory of Open Access Journals (Sweden)

    Michail eManiadakis

    2014-02-01

    Full Text Available The sense of time is an essential capacity of humans, with a major role in many of the cognitive processes expressed in our daily lifes. So far, in cognitive science and robotics research, mental capacities have been investigated in a theoretical and modelling framework that largely neglects the flow of time. Only recently there has been a small but constantly increasing interest in the temporal aspects of cognition, integrating time into a range of different models of perceptuo-motor capacities. The current paper aims to review existing works in the field and suggest directions for fruitful future work. This is particularly important for the newly developed field of artificial temporal cognition that is expected to significantly contribute in the development of sophisticated artificial agents seamlessly integrated into human societies.

  20. Constitutive model with time-dependent deformations

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1998-01-01

    are common in time as well as size. This problem is adressed by means of a new constitutive model for soils. It is able to describe the behavior of soils at different deformation rates. The model defines time-dependent and stress-related deformations separately. They are related to each other and they occur......In many geological and Engineering problems it is necessary to transform information from one scale to another. Data collected at laboratory scale are often used to evaluate field problems on a much larger scale. This is certainly true for geological problems where extreme scale differences...... simultanelously. The model is based on concepts from elasticity and viscoplasticity theories. In addition to Hooke's law for the elastic behavior, the framework for the viscoplastic behavior consists, in the general case (two-dimensional or three-dimensional), of a yield surface, an associated flow rule...

  1. Using modeling to understand how athletes in different disciplines solve the same problem: swimming versus running versus speed skating.

    Science.gov (United States)

    de Koning, Jos J; Foster, Carl; Lucia, Alejandro; Bobbert, Maarten F; Hettinga, Florentina J; Porcari, John P

    2011-06-01

    Every new competitive season offers excellent examples of human locomotor abilities, regardless of the sport. As a natural consequence of competitions, world records are broken every now and then. World record races not only offer spectators the pleasure of watching very talented and highly trained athletes performing muscular tasks with remarkable skill, but also represent natural models of the ultimate expression of human integrated muscle biology, through strength, speed, or endurance performances. Given that humans may be approaching our species limit for muscular power output, interest in how athletes improve on world records has led to interest in the strategy of how limited energetic resources are best expended over a race. World record performances may also shed light on how athletes in different events solve exactly the same problem-minimizing the time required to reach the finish line. We have previously applied mathematical modeling to the understanding of world record performances in terms of improvements in facilities/equipment and improvements in the athletes' physical capacities. In this commentary, we attempt to demonstrate that differences in world record performances in various sports can be explained using a very simple modeling process.

  2. Wave Run-Up on Rubble Breakwaters

    DEFF Research Database (Denmark)

    Van de Walle, Bjorn; De Rouck, Julien; Troch, Peter

    2005-01-01

    Seven sets of data for wave run-up on a rubble mound breakwater were combined and re-analysed, with full-scale, large-scale and small-scale model test results being taken into account. The dimensionless wave run-up value Ru-2%/Hm0 was considered, where R u-2% is the wave run-up height exceeded by...

  3. FLUKA predictions of the absorbed dose in the HCAL Endcap scintillators using a Run1 (2012) CMS FLUKA model

    CERN Document Server

    CMS Collaboration

    2016-01-01

    Estimates of absorbed dose in HCAL Endcap (HE) region as predicted by FLUKA Monte Carlo code. Dose is calculated in an R-phi-Z grid overlaying HE region, with resolution 1cm in R, 1mm in Z, and a single 360 degree bin in phi. This allows calculation of absorbed dose within a single 4mm thick scintillator layer without including other regions or materials. This note shows estimates of the cumulative dose in scintillator layers 1 and 7 during the 2012 run.

  4. A Globally Convergent Algorithm for the Run-to-Run Control of Systems with Sector Nonlinearities

    OpenAIRE

    François, Grégory; Srinivasan, Balasubrahmanya; Bonvin, Dominique

    2011-01-01

    Run-to-run control is a technique that exploits the repetitive nature of processes to iteratively adjust the inputs and drive the run-end outputs to their reference values. It can be used to control both static and finite-time dynamic systems. Although the run-end outputs of dynamic systems result from the integration of process dynamics during the run, the relationship between the input parameters p (fixed at the beginning of the run) and the run-end outputs z (available at the end of t...

  5. Fisher Information Framework for Time Series Modeling

    CERN Document Server

    Venkatesan, R C

    2016-01-01

    A robust prediction model invoking the Takens embedding theorem, whose \\textit{working hypothesis} is obtained via an inference procedure based on the minimum Fisher information principle, is presented. The coefficients of the ansatz, central to the \\textit{working hypothesis} satisfy a time independent Schr\\"{o}dinger-like equation in a vector setting. The inference of i) the probability density function of the coefficients of the \\textit{working hypothesis} and ii) the establishing of constraint driven pseudo-inverse condition for the modeling phase of the prediction scheme, is made, for the case of normal distributions, with the aid of the quantum mechanical virial theorem. The well-known reciprocity relations and the associated Legendre transform structure for the Fisher information measure (FIM, hereafter)-based model in a vector setting (with least square constraints) are self-consistently derived. These relations are demonstrated to yield an intriguing form of the FIM for the modeling phase, which defi...

  6. The Short-Run and Long-Run Relationships between Mortality and the Business Cycle in Canada

    Directory of Open Access Journals (Sweden)

    Zuzana Janko

    2013-01-01

    Full Text Available This paper investigates the relationship between health and the business cycle for the Canadian economy. The majority of existing literature shows a procyclical relationship between death rates and indicators of the business cycle, suggesting that recessions are good for one’s health. We use a time series error correction model to determine the short-run and long-run impacts of the unemployment rates on death rates. Our results indicate that temporary slowdowns in economic activity are associated with lower death rates. Moreover, once we stratify the data by sex, we find a long-run negative relationship between the unemployment rate and death rates for both sexes.

  7. Further investigation of the model-independent probe of heavy neutral Higgs bosons at LHC Run 2

    Science.gov (United States)

    Kuang, Yu-Ping; Ren, Hong-Yu; Xia, Ling-Hao

    2016-02-01

    In one of our previous papers, we provided general, effective Higgs interactions for the lightest Higgs boson h (SM-like) and a heavier neutral Higgs boson H based on the effective Lagrangian formulation up to the dim-6 interactions, and then proposed two sensitive processes for probing H. We showed in several examples that the resonance peak of H and its dim-6 effective coupling constants (ECC) can be detected at LHC Run 2 with reasonable integrated luminosity. In this paper, we further perform a more thorough study of the most sensitive process, pp→ VH* → VVV, providing information about the relations between the 1σ, 3σ, 5σ statistical significance and the corresponding ranges of the Higgs ECC for an integrated luminosity of 100 fb-1. These results have two useful applications in LHC Run 2: (A) realizing the experimental determination of the ECC in the dim-6 interactions if H is found and, (B) obtaining the theoretical exclusion bounds if H is not found. Some alternative processes sensitive for certain ranges of the ECC are also analyzed. Supported by National Natural Science Foundation of China (11135003 and 11275102)

  8. Further Investigation on Model-Independent Probe of Heavy Neutral Higgs Bosons at the LHC Run 2

    CERN Document Server

    Kuang, Yu-Ping; Xia, Ling-Hao

    2015-01-01

    In our previous paper, we provided general effective Higgs interactions for the lightest Higgs boson $h$ (SM-like) and a heavier neutral Higgs boson $H$ based on the effective Lagrangian formulation up to the dim-6 interactions, and then proposed two sensitive processes for probing $H$. We showed in several examples that the resonance peak of $H$ and its dim-6 effective coupling constants (ECC) can be detected at the LHC Run 2 with reasonable integrated luminosity. In this paper, we further perform a more thorough study of the most sensitive process, $pp\\to VH^\\ast\\to VVV$, on the information about the relations between the $1\\sigma,\\,3\\sigma,\\,5\\sigma$ statistical significance and the corresponding ranges of the Higgs ECC for an integrated luminosity of 100 fb$^{-1}$. These results have two useful applications in the LHC Run 2: (A) realizing the experimental determination of the ECC in the dim-6 interactions if $H$ is found and, (B) obtaining the theoretical exclusion bounds if $H$ is not found. Some alterna...

  9. Effect of long-term voluntary exercise wheel running on susceptibility to bacterial pulmonary infections in a mouse model.

    Directory of Open Access Journals (Sweden)

    Pauline B van de Weert-van Leeuwen

    Full Text Available Regular moderate exercise has been suggested to exert anti-inflammatory effects and improve immune effector functions, resulting in reduced disease incidence and viral infection susceptibility. Whether regular exercise also affects bacterial infection susceptibility is unknown. The aim of this study was to investigate whether regular voluntary exercise wheel running prior to a pulmonary infection with bacteria (P. aeruginosa affects lung bacteriology, sickness severity and phagocyte immune function in mice. Balb/c mice were randomly placed in a cage with or without a running wheel. After 28 days, mice were intranasally infected with P. aeruginosa. Our study showed that regular exercise resulted in a higher sickness severity score and bacterial (P. aeruginosa loads in the lungs. The phagocytic capacity of monocytes and neutrophils from spleen and lungs was not affected. Although regular moderate exercise has many health benefits, healthy mice showed increased bacterial (P. aeruginosa load and symptoms, after regular voluntary exercise, with perseverance of the phagocytic capacity of monocytes and neutrophils. Whether patients, suffering from bacterial infectious diseases, should be encouraged to engage in exercise and physical activities with caution requires further research.

  10. Linear Parametric Model Checking of Timed Automata

    DEFF Research Database (Denmark)

    Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle

    2001-01-01

    of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach......We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...

  11. Time series modeling for automatic target recognition

    Science.gov (United States)

    Sokolnikov, Andre

    2012-05-01

    Time series modeling is proposed for identification of targets whose images are not clearly seen. The model building takes into account air turbulence, precipitation, fog, smoke and other factors obscuring and distorting the image. The complex of library data (of images, etc.) serving as a basis for identification provides the deterministic part of the identification process, while the partial image features, distorted parts, irrelevant pieces and absence of particular features comprise the stochastic part of the target identification. The missing data approach is elaborated that helps the prediction process for the image creation or reconstruction. The results are provided.

  12. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.C. [Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Chang, M.W. [Department of Electrical Engineering, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Chang, C.P. [Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan (China); Chan, S.C.; Chang, W.Y.; Yang, C.L. [Department of Electrical Engineering, National Cheng-Kung University, Tainan, Taiwan (China); Lin, M.T. [Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan (China)

    2014-08-15

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  13. A forced running wheel system with a microcontroller that provides high-intensity exercise training in an animal ischemic stroke model.

    Science.gov (United States)

    Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T

    2014-10-01

    We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.

  14. Biomechanics of Distance Running.

    Science.gov (United States)

    Cavanagh, Peter R., Ed.

    Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…

  15. Modelling of Patterns in Space and Time

    CERN Document Server

    Murray, James

    1984-01-01

    This volume contains a selection of papers presented at the work­ shop "Modelling of Patterns in Space and Time", organized by the 80nderforschungsbereich 123, "8tochastische Mathematische Modelle", in Heidelberg, July 4-8, 1983. The main aim of this workshop was to bring together physicists, chemists, biologists and mathematicians for an exchange of ideas and results in modelling patterns. Since the mathe­ matical problems arising depend only partially on the particular field of applications the interdisciplinary cooperation proved very useful. The workshop mainly treated phenomena showing spatial structures. The special areas covered were morphogenesis, growth in cell cultures, competition systems, structured populations, chemotaxis, chemical precipitation, space-time oscillations in chemical reactors, patterns in flames and fluids and mathematical methods. The discussions between experimentalists and theoreticians were especially interesting and effective. The editors hope that these proceedings reflect ...

  16. Time Series Modelling using Proc Varmax

    DEFF Research Database (Denmark)

    Milhøj, Anders

    2007-01-01

    In this paper it will be demonstrated how various time series problems could be met using Proc Varmax. The procedure is rather new and hence new features like cointegration, testing for Granger causality are included, but it also means that more traditional ARIMA modelling as outlined by Box & Je...... & Jenkins is performed in a more modern way using the computer resources which are now available...

  17. Time series modeling for syndromic surveillance

    Directory of Open Access Journals (Sweden)

    Mandl Kenneth D

    2003-01-01

    Full Text Available Abstract Background Emergency department (ED based syndromic surveillance systems identify abnormally high visit rates that may be an early signal of a bioterrorist attack. For example, an anthrax outbreak might first be detectable as an unusual increase in the number of patients reporting to the ED with respiratory symptoms. Reliably identifying these abnormal visit patterns requires a good understanding of the normal patterns of healthcare usage. Unfortunately, systematic methods for determining the expected number of (ED visits on a particular day have not yet been well established. We present here a generalized methodology for developing models of expected ED visit rates. Methods Using time-series methods, we developed robust models of ED utilization for the purpose of defining expected visit rates. The models were based on nearly a decade of historical data at a major metropolitan academic, tertiary care pediatric emergency department. The historical data were fit using trimmed-mean seasonal models, and additional models were fit with autoregressive integrated moving average (ARIMA residuals to account for recent trends in the data. The detection capabilities of the model were tested with simulated outbreaks. Results Models were built both for overall visits and for respiratory-related visits, classified according to the chief complaint recorded at the beginning of each visit. The mean absolute percentage error of the ARIMA models was 9.37% for overall visits and 27.54% for respiratory visits. A simple detection system based on the ARIMA model of overall visits was able to detect 7-day-long simulated outbreaks of 30 visits per day with 100% sensitivity and 97% specificity. Sensitivity decreased with outbreak size, dropping to 94% for outbreaks of 20 visits per day, and 57% for 10 visits per day, all while maintaining a 97% benchmark specificity. Conclusions Time series methods applied to historical ED utilization data are an important tool

  18. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  19. A generalized additive regression model for survival times

    DEFF Research Database (Denmark)

    Scheike, Thomas H.

    2001-01-01

    Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models......Additive Aalen model; counting process; disability model; illness-death model; generalized additive models; multiple time-scales; non-parametric estimation; survival data; varying-coefficient models...

  20. Greenhouse Modeling Using Continuous Timed Petri Nets

    Directory of Open Access Journals (Sweden)

    José Luis Tovany

    2013-01-01

    Full Text Available This paper presents a continuous timed Petri nets (ContPNs based greenhouse modeling methodology. The presented methodology is based on the definition of elementary ContPN modules which are designed to capture the components of a general energy and mass balance differential equation, like parts that are reducing or increasing variables, such as heat, CO2 concentration, and humidity. The semantics of ContPN is also extended in order to deal with variables depending on external greenhouse variables, such as solar radiation. Each external variable is represented by a place whose marking depends on an a priori known function, for instance, the solar radiation function of the greenhouse site, which can be obtained statistically. The modeling methodology is illustrated with a greenhouse modeling example.

  1. Modeling utilization distributions in space and time.

    Science.gov (United States)

    Keating, Kim A; Cherry, Steve

    2009-07-01

    W. Van Winkle defined the utilization distribution (UD) as a probability density that gives an animal's relative frequency of occurrence in a two-dimensional (x, y) plane. We extend Van Winkle's work by redefining the UD as the relative frequency distribution of an animal's occurrence in all four dimensions of space and time. We then describe a product kernel model estimation method, devising a novel kernel from the wrapped Cauchy distribution to handle circularly distributed temporal covariates, such as day of year. Using Monte Carlo simulations of animal movements in space and time, we assess estimator performance. Although not unbiased, the product kernel method yields models highly correlated (Pearson's r = 0.975) with true probabilities of occurrence and successfully captures temporal variations in density of occurrence. In an empirical example, we estimate the expected UD in three dimensions (x, y, and t) for animals belonging to each of two distinct bighorn sheep (Ovis canadensis) social groups in Glacier National Park, Montana, USA. Results show the method can yield ecologically informative models that successfully depict temporal variations in density of occurrence for a seasonally migratory species. Some implications of this new approach to UD modeling are discussed.

  2. Effects of Obstacles on the Dynamics of Kinesins, Including Velocity and Run Length, Predicted by a Model of Two Dimensional Motion.

    Directory of Open Access Journals (Sweden)

    Woochul Nam

    Full Text Available Kinesins are molecular motors which walk along microtubules by moving their heads to different binding sites. The motion of kinesin is realized by a conformational change in the structure of the kinesin molecule and by a diffusion of one of its two heads. In this study, a novel model is developed to account for the 2D diffusion of kinesin heads to several neighboring binding sites (near the surface of microtubules. To determine the direction of the next step of a kinesin molecule, this model considers the extension in the neck linkers of kinesin and the dynamic behavior of the coiled-coil structure of the kinesin neck. Also, the mechanical interference between kinesins and obstacles anchored on the microtubules is characterized. The model predicts that both the kinesin velocity and run length (i.e., the walking distance before detaching from the microtubule are reduced by static obstacles. The run length is decreased more significantly by static obstacles than the velocity. Moreover, our model is able to predict the motion of kinesin when other (several motors also move along the same microtubule. Furthermore, it suggests that the effect of mechanical interaction/interference between motors is much weaker than the effect of static obstacles. Our newly developed model can be used to address unanswered questions regarding degraded transport caused by the presence of excessive tau proteins on microtubules.

  3. Modelling tourists arrival using time varying parameter

    Science.gov (United States)

    Suciptawati, P.; Sukarsa, K. G.; Kencana, Eka N.

    2017-06-01

    The importance of tourism and its related sectors to support economic development and poverty reduction in many countries increase researchers’ attentions to study and model tourists’ arrival. This work is aimed to demonstrate time varying parameter (TVP) technique to model the arrival of Korean’s tourists to Bali. The number of Korean tourists whom visiting Bali for period January 2010 to December 2015 were used to model the number of Korean’s tourists to Bali (KOR) as dependent variable. The predictors are the exchange rate of Won to IDR (WON), the inflation rate in Korea (INFKR), and the inflation rate in Indonesia (INFID). Observing tourists visit to Bali tend to fluctuate by their nationality, then the model was built by applying TVP and its parameters were approximated using Kalman Filter algorithm. The results showed all of predictor variables (WON, INFKR, INFID) significantly affect KOR. For in-sample and out-of-sample forecast with ARIMA’s forecasted values for the predictors, TVP model gave mean absolute percentage error (MAPE) as much as 11.24 percent and 12.86 percent, respectively.

  4. Study on social capital running healthcare providers model in China%我国社会资本举办医疗机构模式研究

    Institute of Scientific and Technical Information of China (English)

    魏超; 叶睿; 孟开; 汝宇龙; 王若蒙

    2014-01-01

    基于案例分析法,对收集的11个社会资本办医典型案例从14个方面进行分析。根据合作对象、产权、合作方式提出了社会资本办医模式的5种分类标准,并将社会资本办医模式分为社会资本直接举办医院、银行贷款、国外贷款、融资租赁、业务托管、国内资本合作、中外合资、原有公立医院股份制改造、股份合作制和整体转让等10种模式。%In this paper, eleven typical cases of social capital running healthcare providers are collected and analyzed from fourteen aspects based on case analysis methods and proposes five standards of classification based on cooperating object, property right, cooperative way. According to above standards, social capital running healthcare providers models are divided into ten categories:social capital run hospital directly, bank loan, foreign loan, finance lease, business hosting, domestic capital cooperation, sino-foreign joint, joint-stock reform of public hospitals, stock cooperative system and overall transfer. The results of the study can be used as a reference for social capital running healthcare providers.

  5. Linking Time and Space Scales in Distributed Hydrological Modelling - a case study for the VIC model

    Science.gov (United States)

    Melsen, Lieke; Teuling, Adriaan; Torfs, Paul; Zappa, Massimiliano; Mizukami, Naoki; Clark, Martyn; Uijlenhoet, Remko

    2015-04-01

    /24 degree, if in the end you only look at monthly runoff? In this study an attempt is made to link time and space scales in the VIC model, to study the added value of a higher spatial resolution-model for different time steps. In order to do this, four different VIC models were constructed for the Thur basin in North-Eastern Switzerland (1700 km²), a tributary of the Rhine: one lumped model, and three spatially distributed models with a resolution of respectively 1x1 km, 5x5 km, and 10x10 km. All models are run at an hourly time step and aggregated and calibrated for different time steps (hourly, daily, monthly, yearly) using a novel Hierarchical Latin Hypercube Sampling Technique (Vořechovský, 2014). For each time and space scale, several diagnostics like Nash-Sutcliffe efficiency, Kling-Gupta efficiency, all the quantiles of the discharge etc., are calculated in order to compare model performance over different time and space scales for extreme events like floods and droughts. Next to that, the effect of time and space scale on the parameter distribution can be studied. In the end we hope to find a link for optimal time and space scale combinations.

  6. The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model

    Science.gov (United States)

    Penny, S. G.; Kalnay, E.; Carton, J. A.; Hunt, B. R.; Ide, K.; Miyoshi, T.; Chepurin, G. A.

    2013-11-01

    The most widely used methods of data assimilation in large-scale oceanography, such as the Simple Ocean Data Assimilation (SODA) algorithm, specify the background error covariances and thus are unable to refine the weights in the assimilation as the circulation changes. In contrast, the more computationally expensive Ensemble Kalman Filters (EnKF) such as the Local Ensemble Transform Kalman Filter (LETKF) use an ensemble of model forecasts to predict changes in the background error covariances and thus should produce more accurate analyses. The EnKFs are based on the approximation that ensemble members reflect a Gaussian probability distribution that is transformed linearly during the forecast and analysis cycle. In the presence of nonlinearity, EnKFs can gain from replacing each analysis increment by a sequence of smaller increments obtained by recursively applying the forecast model and data assimilation procedure over a single analysis cycle. This has led to the development of the "running in place" (RIP) algorithm by Kalnay and Yang (2010) and Yang et al. (2012a,b) in which the weights computed at the end of each analysis cycle are used recursively to refine the ensemble at the beginning of the analysis cycle. To date, no studies have been carried out with RIP in a global domain with real observations. This paper provides a comparison of the aforementioned assimilation methods in a set of experiments spanning seven years (1997-2003) using identical forecast models, initial conditions, and observation data. While the emphasis is on understanding the similarities and differences between the assimilation methods, comparisons are also made to independent ocean station temperature, salinity, and velocity time series, as well as ocean transports, providing information about the absolute error of each. Comparisons to independent observations are similar for the assimilation methods but the observation-minus-background temperature differences are distinctly lower for

  7. Modeling ventilation time in forage tower silos.

    Science.gov (United States)

    Bahloul, A; Chavez, M; Reggio, M; Roberge, B; Goyer, N

    2012-10-01

    The fermentation process in forage tower silos produces a significant amount of gases, which can easily reach dangerous concentrations and constitute a hazard for silo operators. To maintain a non-toxic environment, silo ventilation is applied. Literature reviews show that the fermentation gases reach high concentrations in the headspace of a silo and flow down the silo from the chute door to the feed room. In this article, a detailed parametric analysis of forced ventilation scenarios built via numerical simulation was performed. The methodology is based on the solution of the Navier-Stokes equations, coupled with transport equations for the gas concentrations. Validation was achieved by comparing the numerical results with experimental data obtained from a scale model silo using the tracer gas testing method for O2 and CO2 concentrations. Good agreement was found between the experimental and numerical results. The set of numerical simulations made it possible to establish a simple analytical model to predict the minimum time required to ventilate a silo to make it safe to enter. This ventilation time takes into account the headspace above the forage, the airflow rate, and the initial concentrations of O2 and CO2. The final analytical model was validated with available results from the literature.

  8. A Modeling Method of Agent Based on Milk-run in Automobile Parts%基于Agent的汽车零部件循环取货模型

    Institute of Scientific and Technical Information of China (English)

    屈新怀; 盛敏; 丁必荣

    2013-01-01

    Milk-Run,as a new method in supply system management in automobile pasts inbound logistic,can be considered as a kind of complex adaptive system.It is composed of suppliers,3PL,and automobile firm.According to its conceptual model,the agent-based model method has been used.After define the research purpose,the abstract lever of these agents focus on the corporate sector in the milk-run system,such as the product Agent,purchase Agent,schedule Agent etc.First to analysis the internal model of all agents,then to adopt the formalization description method to describe the agent behaviors.At last interactive processing between these agents are been explained in Agent UML.Apparently,the agent-based modeling method has a strong performer on the principle of milk-run system.It will be easy to achieve the simulation about the milk-run based on the agent model.%汽车零部件的循环取货模式作为一种新型物料供应体系,是由供应商、3PL、主机厂多个主体组成,属于复杂适应性系统.根据循环取货的概念模型,采用多Agent建模理论对循环取货进行建模.将目标系统的Agent粒度抽象为企业级以下的职能部门,设计生产Agent、采购Agent、调度Agent等几类主体.分析Agent内部模型,并采用形式化方法对主体行为进行描述,应用Agent UML分析主体之间的动态交互行为.基于Agent的建模描述了循环取货的运行机制,从而为后续的计算机仿真实现提供基础.

  9. ctypes. ctypes run!

    Directory of Open Access Journals (Sweden)

    2008-06-01

    Full Text Available

    One of the new features of Python 2.5 is the introduction of ctypes as a standard library module. At the simplest level, ctypes adds the standard C types to Python: signed and unsigned bytes, shorts, ints and longs; as well as structs, unions, pointers and functions. At run-time it can load a shared library (DLL and import its symbols, allowing a Python application to make function calls into the library without any special preparation.  ctypes can be used to wrap native libraries in place of interface generators such as SWIG, to manipulate memory and Python objects at the lowest level, and to prototype application development in other languages.

    This paper begins with a quick introduction to ctypes, shows some advanced techniques, and describes some examples of how it has been used by the author in his recent work.

  10. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    Science.gov (United States)

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion.

  11. Regularity in time of the time dependent maxwell equations; Modeles nucleaires, modeles stellaires et hydrodynamique autogravitante

    Energy Technology Data Exchange (ETDEWEB)

    Ducomet, B

    2000-07-01

    We review some models of self-gravitating fluids, used to described in a unified frame work collective vibration modes of heavy nuclei, and large time evolution of radiation and reacting stars. (authors)

  12. 随机提前期下考虑循环取货的最优采购策略%Optimal Procurement Policies Considering Milk-Run Delivery with Stochastic Lead Time

    Institute of Scientific and Technical Information of China (English)

    周欣; 霍佳震

    2011-01-01

    To cope with small lot sizes and frequent deliveries in lean logistics, manufacturers have the choices of direct shipping or milk runs in inbound logistics. The variances of total lead time caused by the uncertainty in each supplier's production processes are different in these two delivery modes and directly affect the optimal procurement policies and the choices of delivery modes. A multi-item supply chain consisting of one manufacturer and multiple suppliers was considered. Considering the effect of variance of total lead time on procurement policies and the choices of delivery modes, we develop inventories models based on stochastic lead time and limited capacities in direct shipping and milk runs, respectively, and obtain the optimal procurement policies. A numerical example is presented to illustrate the results. Comparing the effect of parameter change on the total costs, the conditions are given for these two delivery modes.%为适应精益化物流小批量、多频次的配送作业运作要求,很多企业在供应物流环节面临着是循环取货还是直接运输的选择.配送过程中各供应商生产过程的不确定性导致了总提前期的波动,由于在2种配送方式下总提前期的波动不同,因此,提前期的波动直接影响到最优采购策略以及配送方式的选择.以由制造商和多供应商组成的多产品供应链为背景展开研究,考虑到提前期的波动对采购方式和采购策略的影响,基于随机提前期且考虑车载量约束,分别建立了直接运输和循环取货2种配送方式下的库存优化模型,并进一步求解得出了各自的最优采购策略.最后,通过数值分析对上述研究结果进行了论证,并比较了参数变化对2种配送方式下总成本的影响,给出了2种配送方式的具体适用条件.

  13. Outlier Detection in Structural Time Series Models

    DEFF Research Database (Denmark)

    Marczak, Martyna; Proietti, Tommaso

    investigate via Monte Carlo simulations how this approach performs for detecting additive outliers and level shifts in the analysis of nonstationary seasonal time series. The reference model is the basic structural model, featuring a local linear trend, possibly integrated of order two, stochastic seasonality......Structural change affects the estimation of economic signals, like the underlying growth rate or the seasonally adjusted series. An important issue, which has attracted a great deal of attention also in the seasonal adjustment literature, is its detection by an expert procedure. The general...... and a stationary component. Further, we apply both kinds of indicator saturation to detect additive outliers and level shifts in the industrial production series in five European countries....

  14. RTMOD: Real-Time MODel evaluation

    DEFF Research Database (Denmark)

    Graziani, G.; Galmarini, S.; Mikkelsen, Torben

    2000-01-01

    . At that time, the World Wide Web was not available to all the exercise participants, and plume predictions were therefore submitted to JRC-Ispra by fax andregular mail for subsequent processing. The rapid development of the World Wide Web in the second half of the nineties, together with the experience gained...... the RTMOD web page for detailed information on the actual release, and as soon as possible they then uploaded their predictions to the RTMOD server and could soon after start their inter-comparison analysis with other modellers. When additionalforecast data arrived, already existing statistical results...

  15. Are multiple runs better than one?

    Energy Technology Data Exchange (ETDEWEB)

    Cantu-Paz, E

    2001-01-04

    This paper investigates whether it is better to use a certain constant amount of computational resources in a single run with a large population, or in multiple runs with smaller populations. The paper presents the primary tradeoffs involved in this problem and identifies the conditions under which there is an advantage to use multiple small runs. The paper uses an existing model that relates the quality of the solutions reached by a GA with its population size. The results suggest that in most cases a single run with the largest population possible reaches a better solution than multiple isolated runs. The findings are validated with experiments on functions of varying difficulty.

  16. Runs of homozygosity associated with speech delay in autism in a taiwanese han population: evidence for the recessive model.

    Directory of Open Access Journals (Sweden)

    Ping-I Lin

    Full Text Available Runs of homozygosity (ROH may play a role in complex diseases. In the current study, we aimed to test if ROHs are linked to the risk of autism and related language impairment. We analyzed 546,080 SNPs in 315 Han Chinese affected with autism and 1,115 controls. ROH was defined as an extended homozygous haplotype spanning at least 500 kb. Relative extended haplotype homozygosity (REHH for the trait-associated ROH region was calculated to search for the signature of selection sweeps. Totally, we identified 676 ROH regions. An ROH region on 11q22.3 was significantly associated with speech delay (corrected p = 1.73×10(-8. This region contains the NPAT and ATM genes associated with ataxia telangiectasia characterized by language impairment; the CUL5 (culin 5 gene in the same region may modulate the neuronal migration process related to language functions. These three genes are highly expressed in the cerebellum. No evidence for recent positive selection was detected on the core haplotypes in this region. The same ROH region was also nominally significantly associated with speech delay in another independent sample (p = 0.037; combinatorial analysis Stouffer's z trend = 0.0005. Taken together, our findings suggest that extended recessive loci on 11q22.3 may play a role in language impairment in autism. More research is warranted to investigate if these genes influence speech pathology by perturbing cerebellar functions.

  17. Runs of homozygosity associated with speech delay in autism in a taiwanese han population: evidence for the recessive model.

    Science.gov (United States)

    Lin, Ping-I; Kuo, Po-Hsiu; Chen, Chia-Hsiang; Wu, Jer-Yuarn; Gau, Susan S-F; Wu, Yu-Yu; Liu, Shih-Kai

    2013-01-01

    Runs of homozygosity (ROH) may play a role in complex diseases. In the current study, we aimed to test if ROHs are linked to the risk of autism and related language impairment. We analyzed 546,080 SNPs in 315 Han Chinese affected with autism and 1,115 controls. ROH was defined as an extended homozygous haplotype spanning at least 500 kb. Relative extended haplotype homozygosity (REHH) for the trait-associated ROH region was calculated to search for the signature of selection sweeps. Totally, we identified 676 ROH regions. An ROH region on 11q22.3 was significantly associated with speech delay (corrected p = 1.73×10(-8)). This region contains the NPAT and ATM genes associated with ataxia telangiectasia characterized by language impairment; the CUL5 (culin 5) gene in the same region may modulate the neuronal migration process related to language functions. These three genes are highly expressed in the cerebellum. No evidence for recent positive selection was detected on the core haplotypes in this region. The same ROH region was also nominally significantly associated with speech delay in another independent sample (p = 0.037; combinatorial analysis Stouffer's z trend = 0.0005). Taken together, our findings suggest that extended recessive loci on 11q22.3 may play a role in language impairment in autism. More research is warranted to investigate if these genes influence speech pathology by perturbing cerebellar functions.

  18. Running surface couplings

    OpenAIRE

    1995-01-01

    We discuss the renormalization group improved effective action and running surface couplings in curved spacetime with boundary. Using scalar self-interacting theory as an example, we study the influence of the boundary effects to effective equations of motion in spherical cap and the relevance of surface running couplings to quantum cosmology and symmetry breaking phenomenon. Running surface couplings in the asymptotically free SU(2) gauge theory are found.

  19. Real-time DIRCM system modeling

    Science.gov (United States)

    Petersson, Mikael

    2004-12-01

    Directed infrared countermeasures (DIRCM) play an increasingly important role in electronic warfare to counteract threats posed by infrared seekers. The usefulness and performance of such countermeasures depend, for example, on atmospheric conditions (attenuation and turbulence) and platform vibrations, causing pointing and tracking errors for the laser beam and reducing the power transferred to the seeker aperture. These problems make it interesting to simulate the performance of a DIRCM system in order to understand how easy or difficult it is to counteract an approaching threat and evaluate limiting factors in various situations. This paper describes a DIRCM model that has been developed, including atmospheric effects such as attenuation and turbulence as well as closed loop tracking algorithms, where the retro reflex of the laser is used for the pointing control of the beam. The DIRCM model is part of a large simulation framework (EWSim), which also incorporates several descriptions of different seekers (e.g. reticle, rosette, centroid, nutating cross) and models of robot dynamics. Effects of a jamming laser on a specific threat can be readily verified by simulations within this framework. The duel between missile and countermeasure is simulated in near real-time and visualized graphically in 3D. A typical simulation with a reticle seeker jammed by a modulated laser is included in the paper.

  20. Effects of High Intensity and Sprint Interval Training Frequency on 1.5 Mile Run Times in Air Force ROTC Cadets

    OpenAIRE

    Dahle, Jared Hill

    2016-01-01

    The effects of varying high intensity interval training (HIIT) and sprint interval training (SIT) frequency on 1.5 mile (2.4km) run performance in Air Force ROTC cadets were studied. Twenty-seven cadets (21.6 ± 2.8 years) were stratified then randomly assigned to 3 groups: a high frequency group (HF) that performed HIIT/SIT 3x week, a low frequency group (LF) that performed HIIT/SIT 2x week, and a continuous training group (CG) that performed moderate intensity training 3x week. HIIT workou...